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Abstract

In this paper, we consider high-dimensional nonconvex square-root-loss regression problems
and introduce a proximal majorization-minimization (PMM) algorithm for solving these
problems. Our key idea for making the proposed PMM to be efficient is to develop a
sparse semismooth Newton method to solve the corresponding subproblems. By using the
Kurdyka- Lojasiewicz property exhibited in the underlining problems, we prove that the
PMM algorithm converges to a d-stationary point. We also analyze the oracle property
of the initial subproblem used in our algorithm. Extensive numerical experiments are
presented to demonstrate the high efficiency of the proposed PMM algorithm.

Keywords: nonconvex square-root regression problems, proximal majorization-minimization,
semismooth Newton method

1. Introduction

Sparsity estimation is one of the most important problems in statistics, machine learning
and signal processing. One typical example on this aspect is to estimate a vector β̂ from a
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high-dimensional linear regression model

b = Xβ̈ + ε,

where X ∈ Rm×n is the design matrix, b ∈ Rm is the response vector, and ε ∈ Rm is the
noise vector for which each of its component εi has zero-mean and unknown variance ς2.
In many applications, the number of attributes n is much larger than the sample size m
and β̈ is known to be sparse a priori. Under the assumption of sparsity, a regularizer which
controls the overfitting and/or variable selection is often added to the model. One of the
most commonly used regularizers in practice is the `1 norm and the resulting model, first
proposed by Tibshirani (1996), is usually referred to as the Lasso model, which is given by

min
β∈Rn

{
1

2
‖Xβ − b‖2 + λ‖β‖1

}
, (1)

where ‖ · ‖ is the Euclidean norm in Rm. The Lasso estimator produced from (1) is com-
putationally attractive because it minimizes a structured convex function. Moreover, when
the error vector ε follows a normal distribution and suitable design conditions hold, this
estimator achieves a near-oracle performance. Despite having these attractive features, the
Lasso recovery of β̈ relies on knowing the standard deviation of the noise. However, it is
non-trivial to estimate the deviation when the feature dimension is large, particularly when
it is much larger than the sample size. To overcome the aforementioned defect, Belloni et al.
(2011) proposed a new estimator that solves the square-root Lasso (srLasso) model

min
β∈Rn

{
‖Xβ − b‖+ λ‖β‖1

}
, (2)

which eliminates the need to know or to pre-estimate the deviation. It has been shown
(see e.g., Bellec et al., 2018; Derumigny, 2018) that the srLasso estimator can achieve the
minimax optimal rate of convergence under some suitable conditions, even though the noise
level ς is unknown. It is worth mentioning that the scaled Lasso proposed by Sun and Zhang
(2012) is essentially equivalent to the srLasso model (2). The solution approach proposed
by Sun and Zhang (2012) is to iteratively solve a sequence of Lasso problems, which can
be expensive numerically. Moreover, Xu et al. (2010) proved that the srLasso model (2) is
equivalent to a robust linear regression problem subject to an uncertainty set that bounds
the norm of the disturbance to each feature, which itself is an ideal approach of reducing
sensitivity of linear regression.

The Lasso problem and the srLasso problem are both convex and computationally at-
tractive. A number of algorithms, such as the accelerated proximal gradient (APG) method
(Beck and Teboulle, 2009), interior-point method (IPM) (Kim et al., 2007), and least an-
gle regression (LARS) (Efron et al., 2004) have been proposed to solve the Lasso problem
(1). In a very recent work, Li et al. (2018) proposed a highly efficient semismooth Newton
augmented Lagrangian method to solve the Lasso problem (1). In contrast to the Lasso
problem (1), there are currently no efficient algorithms for solving the more challenging
srLasso problem (2) due to the fact that the square-root loss function in the objective is
nonsmooth. Notably the alternating direction method of multipliers (ADMM) was applied
to solve the srLasso problem (2) by Li et al. (2015). However, as can be seen from the nu-
merical experiments conducted later in this paper, the ADMM approach is not very efficient
in solving many large-scale problems.
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Going beyond the `1 norm regularizer, other regularization functions for variables se-
lection are often used to avoid overfitting in the area of support vector machines and other
statistical applications. It has also been shown that, instead of a convex relaxation with
the `1 norm, a proper nonconvex regularization can achieve a sparse estimation with fewer
measurements, and is more robust against noises (Chartrand, 2007; Chen and Gu, 2014).
After the pioneering work of Fan and Li (2001), various nonconvex sparsity functions have
been proposed as surrogates of the `0 function in the last decade and they have been used
as regularizers to avoid model overfitting (see e.g., Hastie et al., 2015) in high-dimensional
statistical learning. It has been proven that each of these nonconvex surrogate sparsity func-
tions can be expressed as the difference of two convex functions (Ahn et al., 2017; Le Thi
et al., 2015). Given the d.c. (difference of convex functions) property of these nonconvex
regularizers, it is natural for one to design a majorization-minimization algorithm to solve
the nonconvex problem. Such an exploitation of the d.c. property of the regularization
function had been considered in the majorized penalty approach proposed by Gao and Sun
(2010) for solving a rank constrained correlation matrix estimation problem.

In this paper, we aim to develop an efficient and robust algorithm for solving the fol-
lowing square-root regression problem

min
β∈Rn

{
g(β) := ‖Xβ − b‖+ λp(β)− q(β)

}
, (3)

where the first part of the regularization function p : Rn → R+ is a norm function whose
proximal mapping is strongly semismooth and the second part q : Rn → R is a convex
smooth function (the dependence of q on λ has been dropped here). We should note that
the assumption made on p is rather mild as the proximal mappings of many interesting
functions, such as the l1-norm function, are strongly semismooth (Meng et al., 2005). For
the case when q ≡ 0, the oracle property of the model has been established by Stucky
and van de Geer (2017) when p is a weakly decomposable norm. For the need of efficient
computations, here we shall extend the analysis to the same model but with the proximal
terms σ

2 ‖β‖
2 + τ

2‖Xβ − b‖
2 added, where σ ≥ 0 and τ ≥ 0 are given parameters.

Based on the d.c. structure of the nonconvex regularizer in (3), we design a two stage
proximal majorization-minimization (PMM) algorithm to solve the problem (3). In both
stages of the PMM algorithm, the key step in each iteration is to solve a convex subproblem
whose objective contains the sum of two nonsmooth functions, namely, the square-root-loss
regression function and p(·). One of the main contributions of this paper is in proposing a
novel proximal majorization approach to solve the said subproblem via its dual by a highly
efficient semismooth Newton method. We also analyze the convergence properties of our
algorithm. By using the Kurdyka- Lojasiewicz (KL) property exhibited in the underlying
problem, we prove that the PMM algorithm converges to a d-stationary point. In the
last part of the paper, we present comprehensive numerical results to demonstrate the
efficiency of our semismooth Newton based PMM algorithm. Based on the performance of
our algorithm against two natural first-order methods, namely the primal based and dual
based ADMM (for the convex case), we can safely conclude that our algorithmic framework
is far superior for solving the square-root regression problem (3).
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2. Preliminary

Let f : Rn → (−∞,+∞] be a proper closed convex function. The Fenchel conjugate of f is
defined by f∗(x) := supy∈Rn{〈y, x〉−f(y)}, the proximal mapping and the Moreau envelope
function of f with parameter t > 0 are defined, respectively, as

Proxf (x) := argmin
y∈Rn

{
f(y) +

1

2
‖y − x‖2

}
, ∀x ∈ Rn,

Φtf (x) := min
y∈Rn

{
f(y) +

1

2t
‖y − x‖2

}
, ∀x ∈ Rn.

Let t > 0 be a given parameter. Then by Moreau’s identity theorem (see e.g., Rockafellar,
1970, Theorem 31.5), we have that

Proxtf (x) + tProxf∗/t(x/t) = x, ∀ x ∈ Rn. (4)

We also know from (Rockafellar and Wets, 1998, Proposition 13.37) that Φtf is continuously
differentiable with

∇Φtf (x) = t−1(x− Proxtf (x)), ∀ x ∈ Rn.

Given a set C ⊆ Rn and an arbitrary collection of functions {fi | i ∈ I} on Rn, we
denote δC(·) as the indicator function of C such that δC(β) = 0 if β ∈ C and δC(β) = +∞
if β /∈ C, conv(C) as the convex hull of C and conv{fi | i ∈ I} as the convex hull of the
pointwise infimum of the collection. This means that conv{fi | i ∈ I} is the greatest convex
function f on Rn such that f(β) ≤ fi(β) for any β ∈ Rn and i ∈ I.

Next we present some results in variational analysis from Rockafellar and Wets (1998).
Let Ψ : O → Rm be a locally Lipschitz continuous vector-valued function defined on an
open set O ⊆ Rn. It follows from (Rockafellar and Wets, 1998, Theorem 9.60) that Ψ is
F(réchet)-differentiable almost everywhere on O. Let DΨ be the set of all points where Ψ
is F-differentiable and JΨ(x) ∈ Rm×n be the Jacobian of Ψ at x ∈ DΨ. For any x ∈ O, the
B-subdifferential of Ψ at x is defined by

∂BΨ(x) :=

{
V ∈ Rm×n

∣∣∣∣∃ {xk} ⊆ DΨ such that lim
k→∞

xk = x and lim
k→∞

JΨ(xk) = V

}
.

The Clarke subdifferential of Ψ at x is defined as the convex hull of the B-subdifferential of
Ψ at x, that is ∂Ψ(x) := conv(∂BΨ(x)).

Let φ be defined from Rn to R. The Clarke subdifferential of φ at x ∈ Rn is defined by

∂Cφ(x) :=

{
h ∈ Rn

∣∣∣∣∣lim sup
x′→x,t↓0

φ(x′ + ty)− φ(x′)− thT y
t

≥ 0 , ∀ y ∈ Rn
}
.

The regular subdifferential of φ at x ∈ Rn is defined as

∂̂φ(x) :=

{
h ∈ Rn

∣∣∣∣lim inf
x 6=y→x

φ(y)− φ(x)− hT (y − x)

‖y − x‖
≥ 0

}
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and the limiting subdifferential of φ at x is defined as

∂φ(x) :=
{
h ∈ Rn

∣∣∣∃ {xk} → x and {hk} → h satisfying hk ∈ ∂̂φ(xk), ∀ k
}
.

If φ is a convex function, then the Clarke subdifferential, the regular subdifferential and
the limiting subdifferential of φ at x coincide with the set of (transposed) subgradients of
φ at x in the sense of convex analysis.

We know from (Rockafellar and Wets, 1998, Theorem 10.1) that 0 ∈ ∂̂φ(x̄) is a necessary
condition for x̄ ∈ Rn to be a local minimizer of φ. If the function φ (may not be convex) is
locally Lipschitz continuous near x̄ and directionally differentiable at x̄, then 0 ∈ ∂̂φ(x̄) is
equivalent to the directional-stationarity (d-stationarity) of x̄, that is

φ′(x̄;h) := lim
λ↓0

φ(x̄+ λh)− φ(x̄)

λ
≥ 0, ∀h ∈ Rn.

In this paper, we will prove that the sequence generated by our algorithm converges to a
d-stationary point of the problem.

For further discussions, we recall the concept of semismoothness originated from (Mifflin,
1977; Qi and Sun, 1993) and other two definitions used in (van de Geer, 2014).

Definition 1 Let F : O ⊆ Rn → Rm be a locally Lipschitz continuous function and K :
O ⇒ Rm×n be a nonempty and compact valued, upper-semicontinuous set-valued mapping
on the open set O. F is said to be semismooth at v ∈ O with respect to the set-valued
mapping K if F is directionally differentiable at v and for any Γ ∈ K(v+ ∆v) with ∆v → 0,

F (v + ∆v)− F (v)− Γ∆v = o(‖∆v‖).

F is said to be γ-order (γ > 0) (strongly, if γ = 1) semismooth at v with respect to K if F
is semismooth at v and for any Γ ∈ K(v + ∆v),

F (v + ∆v)− F (v)− Γ∆v = O(‖∆v‖1+γ).

F is called a semismooth (γ-order semismooth, strongly semismooth) function on O with
respect to K if it is semismooth (γ-order semismooth, strongly semismooth) at every v ∈ O
with respect to K.

Definition 2 The norm function p defined in Rn is said to be weakly decomposable for an
index set S ⊂ {1, 2, . . . , n} if there exists a norm pS̄ defined on R|S̄| such that

p(β) ≥ p(βS) + pS̄(βS̄), ∀β ∈ Rn,

where S̄ = {1, 2, . . . , n}\S, βS = β ◦ 1S and βS̄ := (βj)j∈S̄ ∈ R|S̄|. Here 1S ∈ Rn denotes
the indicator vector of S and “◦” denotes the elementwise product.

The weakly decomposable property of a norm is a relaxation of the decomposability
property of the `1 norm. It has been proved by Stucky and van de Geer (2017) that many
interesting regularizers such as the sparse group Lasso and SLOPE are weakly decompos-
able. A set S is said to be an allowed set if p is a weakly decomposable norm for this set. We
say that a vector β ∈ Rn satisfies the (L, S)-cone condition for a norm p if pS̄(βS̄) ≤ Lp(βS)
with L > 0 and S being an allowed set.
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Definition 3 Given X ∈ Rm×n. Let S be an allowed set of a weakly decomposable norm p
and L > 0 be a constant. Then the p-eigenvalue is defined as

δp(L, S) := min
{
‖XβS −XβS̄‖

∣∣∣ p(βS) = 1, pS̄(βS̄) ≤ L, β ∈ Rn
}
.

The p-effective sparsity is defined as

Γp(L, S) :=
1

δp(L, S)
.

Note that the p-eigenvalue defined above is a generalization of the compatibility constant
defined by van de Geer (2007).

3. The Oracle Property of the Square-Root Regression Problem with a
Generalized Elastic-Net Regularization

We first consider the following convex problem without q in (3), that is

min
β∈Rn

{
‖Xβ − b‖+ λp(β)

}
. (5)

By adding proximal terms, we shall analyze the oracle property of the square-root regression
problem with a generalized elastic-net regularization. For given σ ≥ 0 and τ ≥ 0, it takes
the following form

min
β∈Rn

{
‖Xβ − b‖+ λp(β) +

σ

2
‖β‖2 +

τ

2
‖Xβ − b‖2

}
, (6)

whose optimal solution set is denoted as Ω(σ, τ). The purpose of this section is to study
the oracle property of an estimator β̂ ∈ Ω(σ, τ) (whose residual is given by ε̂ := b−Xβ̂) to
evaluate how good the estimator is in estimating the true vector β̈.

For the given norm p, the dual norm of p is given by

p∗(β) := max
z∈Rn

{
〈z, β〉 | p(z) ≤ 1

}
, ∀β ∈ Rn.

For a weakly decomposable norm p with the allowed set S, we let

np = λp(β̈)
‖ε‖ , λ0 = p∗(εTX)

‖ε‖ , λm = max
{
pS̄∗ ((εTX)S̄)
‖ε‖ , p∗((ε

TX)S)
‖ε‖ , pS̄∗ (β̈S̄), p∗(β̈S)

}
, (7)

t1 = 1 + τ
2‖ε‖+ σp∗(β̈)p(β̈)

2‖ε‖ , t2 = 2 + τ + σp∗(β̈)p(β̈)
‖ε‖ ,

cu = t1 + np, a =
(
λ0 + σp∗(β̈)cu

)
t1
λ , (8)

where pS̄∗ denotes the dual norm of pS̄ .
Next we state two basic assumptions which are similar to those in (Stucky and van de

Geer, 2017). The first assumption is about non-overfitting in the sense that if the optimal
solution β̂ of (3) satisfies ‖ε̂‖ = 0, then it overfits. Furthermore, it has been proved by
Di Pillo and Grippo (1988) that there exists a scalar λ∗ such that the solution of the
problem (6) satisfies Xβ̂− b 6= 0 if λ > λ∗. In other words, one can find the parameter λ to
avoid overfitting.
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Assumption 1 We assume that ‖ε̂‖ 6= 0 and a+
2λ0np
λ < 1, where the constant a is defined

in (8).

Assumption 2 The function p is a norm function and weakly decomposable in Rn for an
index set S ⊂ {1, . . . , n}, i.e., there exists a norm pS̄ defined on R|S̄| such that

p(β) ≥ p(βS) + pS̄(βS̄), ∀β ∈ Rn.

Remark 4 If σ = 0 and τ = 0, then Assumption 1 goes back to Assumption I given
by Stucky and van de Geer (2017). Let s > 0 and P (‖ε‖ ≤ s) be the probability of
‖ε‖ ≤ s. It follows from the comment to (Laurent and Massart, 2000, Lemma 1) that

P
(
‖ε‖ ≤ ς

√
n− 2

√
ns
)
≤ e−s and P

(
‖ε‖ ≥ ς

√
n+ 2

√
ns+ 2s

)
≤ e−s. Noticing that

for α1 > e−n/4, α2 > 0 and α1 + α2 < 1, P (χ̄1 ≤ ‖ε‖ ≤ χ̄2) ≥ 1 − α1 − α2 with χ̄1 :=

ς
√
n− 2

√
−n ln(α1) and χ̄2 := ς

√
n+ 2

√
−n ln(α2)− 2 ln(α2), the inequalities np ≤ λp(β̈)/χ̄1,

t1 ≤ 1+τ χ̄2/2+σp∗(β̈)p(β̈)/(2χ̄1) := t̄1, cu ≤ t̄1+λp(β̈)/χ̄1, a ≤
(
λ̄0 + σp∗(β̈)t̄1 + λσp∗(β̈)p(β̈)/χ̄1

)
t̄1/λ

hold with probability at least 1 − α1 − α2. It has been proven in (Stucky and van de Geer,
2017, Section 3.4) that

max
{
pS̄∗ ((εTX)S̄)/‖ε‖, p∗((εTX)S)/‖ε‖

}
≤ λ̄0

holds with high probability for some λ̄0 (may depend on
√
m and

√
ln(n)). Combining with

the result λ0 ≤ λ̄0 by Lemma 5 (see below), χ̄1 > 2λ̄0p(β̈) is valid for high dimensional
problems with high probability. We can choose τ , σ and λ with

χ̄1 > σp∗(β̈)p(β̈)t̄1 + 2λ̄0p(β̈),

λ > max

{
χ̄1(λ̄0t̄1 + σp∗(β̈)t̄21)

χ̄1 − σp∗(β̈)p(β̈)t̄1 − 2λ̄0p(β̈)
, λ∗

}

such that Assumption 1 holds with high probability with respect to the random noise vector
ε. Assumption 2 was also used in (Bach et al., 2012; van de Geer, 2014).

We also need some lemmas in order to prove the main theorem. First we introduce the
following basic relationship between λ0 and λm.1

Lemma 5 Let S be an allowed set of a weakly decomposable norm p. For the parameters
λ0 and λm defined by (7), we have λ0 ≤ λm and p∗(β̈) ≤ λm.

The following lemma, which is from (van de Geer, 2014), shows that p(βS) is bounded
by ‖Xβ‖.

1. Actually in (Stucky and van de Geer, 2017) Stucky and van de Geer once employed this relationship
without a proof. For the sake of clarity, we present this fact in the form of a lemma here and its proof
in the appendix.
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Lemma 6 Given X ∈ Rm×n. Let S be an allowed set of a weakly decomposable norm p
and L > 0 be a constant. Then the p-eigenvalue can be expressed in the following form:

δp(L, S) = min

{
‖Xβ‖
p(βS)

∣∣∣ β ∈ Rn satisfies the (L, S)-cone condition and βS 6= 0

}
.

That is p(βS) ≤ Γp(L, S)‖Xβ‖.

An upper bound of ε̂TX(β̈ − β̂), a lower bound and an upper bound of ‖ε̂‖ are also
important. They are presented in the following two lemmas.

Lemma 7 Suppose that Assumption 1 holds. For the estimator β̂ of the generalized elastic-
net square-root regression problem (6), we have

ε̂TX(β̈ − β̂) ≤
(
τ +

1

‖ε̂‖

)−1 (
λp(β̈) + σp∗(β̈)p(β̂)

)
.

Lemma 8 Suppose that Assumption 1 holds. We have

cl :=
1− a− 2λ0np

λ

2 +
(

1 + σp∗(β̈)
λ

)
np
≤ ‖ε̂‖
‖ε‖

≤ cu,

where the constants cu and a are defined in (8).

Based on the above lemmas, we can present the following sharp oracle inequality on the
prediction error.

Theorem 9 Let δ ∈ [0, 1). Under Assumptions 1 and 2, assume that
s2−
√
s22−4s1s3
2s1

< λ <

s2+
√
s22−4s1s3
2s1

with s1 = σλmp2(β̈)
‖ε‖2 , s2 = 1 − λm(3+2σt1+σt2)p(β̈)

‖ε‖ > 0 and s3 = λm(t1 + t2 +

σt1t2 + σt21). For any β̂ ∈ Ω(σ, τ), and any β ∈ Rn such that supp(β) is a subset of S, we
have that

‖X(β̂ − β̈)‖2 + 2δ
(

(λ̂− λ̃m)pS̄(β̂S̄) + (λ̃+ λ̃m)p(β̂S − β)
)
‖ε‖

≤ ‖X(β − β̈)‖2 +
(

(1 + δ)(λ̃+ λ̃m)Γp(LS , S)‖ε‖
)2

+ 2σcu‖β̂ − β̈‖‖β − β̈‖‖ε‖,

where

λ̂ :=
λcl

1 + τcl
, λ̃m := λm(1 + σcu), λ̃ := λcu, LS :=

λ̃+ λ̃m

λ̂− λ̃m
· 1 + δ

1− δ
.

An important special case of Theorem 9 is to choose β = β̈ with supp(β̈) ⊆ S allowed.
Then only the p-effective sparsity term Γp(LS , S) appears in the upper bound.

Remark 10 Since lim
σ↓0

(
s2

2 − 4s1s3

)
=
(

1− 3λmp(β̈)
‖ε‖

)2
> 0, we can find some σ̃ > 0 such

that s2
2 − 4s1s3 > 0 holds if σ < σ̃. Theorem 9 is nearly the same as that in (Stucky and

van de Geer, 2017) due to lim
σ↓0,τ↓0

s2−
√
s22−4s1s3
2s1

= 3λm‖ε‖
‖ε‖−3λmp(β̈)

and lim
σ↓0,τ↓0

s2+
√
s22−4s1s3
2s1

= +∞
with a different definition of λm.
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Remark 11 From Theorem 9 we can see that the upper bound is related to some random
parts λm and ‖ε‖. If we have Gaussian errors ε ∼ N (0, ς2I), then we know from (Stucky
and van de Geer, 2017, Proposition 11) that there exists an upper bound λum of λm such that
λm ≤ λum is valid with probability 1−α for a given constant α. Furthermore, it follows from
Laurent and Massart (2000) that we can find an upper bound c1ς and a lower bound c2ς for
‖ε‖ with a high probability. That is, if λm is replaced by λum and ‖ε‖ is replaced by c1ς or
c2ς, then the sharp oracle bound with the Gaussian errors holds with a high probability.

4. The Proximal Majorization-Minimization Algorithm

To deal with the nonconvexity of the regularization function in the square-root regression
problem (3), we design a two stage proximal majorization-minimization (PMM) algorithm
and solve a series of convex subproblems. In stage I, we first solve a problem by removing
q from the original problem and adding appropriate proximal terms, to obtain an initial
point to warm-start the algorithm in the second stage. In stage II, a series of majorized
subproblems are solved to obtain a solution point.

The basic idea of the PMM algorithm is to linearize the concave term −q(β) in the
objective function of (3) at each iteration with respect to the current iterate, say β̃. By doing
so, the subproblem in each iteration is a convex minimization problem, which must be solved
efficiently in order for the overall algorithm to be efficient. However, the objective function
of the resulting subproblem contains the sum of two nonsmooth terms (‖Xβ−b‖ and p(β)),
and it is not obvious how such a problem can be solved efficiently. One important step we
take in this paper is to add the proximal term τ

2‖Xβ −Xβ̃‖
2 to the objective function of

the subproblem. Through this novel proximal term, the dual of the majorized subproblem
can then be written explicitly as an unconstrained optimization problem. Moreover, its
structure is highly conducive for one to apply the semismooth Newton (SSN) method to
compute an approximate solution via solving a nonlinear system of equations.

4.1 A Semismooth Newton Method for the Subproblems

For the purpose of our algorithm developments, given σ > 0, τ > 0, β̃ ∈ Rn, ṽ ∈ Rn, and
b̃ ∈ Rm, we consider the following minimization problem:

min
β∈Rn

{
h(β;σ, τ, β̃, ṽ, b̃) := ‖Xβ − b‖+ λp(β)− q(β̃)− 〈ṽ, β − β̃〉

+
σ

2
‖β − β̃‖2 +

τ

2
‖Xβ − b̃‖2

}
. (9)

The optimization problem (9) is equivalent to

min
β∈Rn,y∈Rm

{
‖y‖+ λp(β)− 〈ṽ, β − β̃〉+

σ

2
‖β − β̃‖2 +

τ

2
‖y + b− b̃‖2

∣∣∣ Xβ − y = b
}
. (10)

9
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The dual of problem (10) admits the following equivalent minimization form:

min
u∈Rm

{
ϕ(u) := 〈u, b〉+

τ

2
‖τ−1u+ b̃− b‖2 − ‖Proxτ−1‖·‖(τ

−1u+ b̃− b)‖ (11)

− 1

2τ
‖ProxτδB (u+ τ(b̃− b))‖2 +

σ

2
‖β̃ + σ−1(ṽ −XTu)‖2

−λ p
(

Proxσ−1λp

(
β̃ + σ−1(ṽ −XTu)

))
− 1

2σ
‖Proxσ(λp)∗(σβ̃ + ṽ −XTu)‖2

}
,

where B = {x | ‖x‖ ≤ 1}. Let ū := argmin
u∈Rm

ϕ(u). Then the optimal solutions ȳ, β̄ to the

primal problem (10) can be computed by

ȳ = Proxτ−1‖·‖(τ
−1ū+ b̃− b), β̄ = Proxσ−1λp

(
β̃ + σ−1(ṽ −XT ū)

)
.

Here we should emphasize the novelty in adding the proximal term τ
2‖Xβ − b̃‖

2 in (9).
Without this term, the objective function in the dual problem (11) does not admit an
analytical expression. As the reader may observe later in the next paragraph, without the
analytical expression given in (11), the algorithmic development in the rest of this subsection
would break down. As a result, designing the PMM algorithm in the next subsection for
solving (3) would also become impossible.

By Moreau’s identity (4) and the differentiability of the Moreau envelope functions of
‖ · ‖ and λp, we know that the function ϕ is convex and continuously differentiable and

∇ϕ(u) = Proxτ−1‖·‖(τ
−1u+ b̃− b)−XProxσ−1λp

(
β̃ + σ−1(ṽ −XTu)

)
+ b.

Thus ū can be obtained via solving the following nonlinear system of equations:

∇ϕ(u) = 0. (12)

In the rest of this subsection, we will discuss how we can apply the SSN method to
compute an approximate solution of (12) efficiently. Since the mappings Proxσ−1‖·‖(·) and
Proxτ−1λp(·) are Lipschitz continuous, the following multifunction is well defined:

∂̂2ϕ(u) := σ−1X∂Proxσ−1λp(β̃ + σ−1(ṽ −XTu))XT + τ−1∂Proxτ−1‖·‖(τ
−1u+ b̃− b).

Let U ∈ ∂Proxσ−1λp(β̃ + σ−1(ṽ −XTu)) and V ∈ ∂Proxτ−1‖·‖(τ
−1u + b̃ − b). Then we

have H := σ−1XUXT + τ−1V ∈ ∂̂2ϕ(u). The following proposition demonstrates that H is
nonsingular at the solution point that does not over fit, which, under Assumption 1, holds
automatically when it is close to β̂. This property is crucial to ensure the fast convergence
of the SSN method for computing an approximate solution of (11).

Proposition 12 Suppose that the unique optimal solution β̄ to the problem (9) satisfies
‖Xβ̄ − b‖ 6= 0. Then all the elements of ∂̂2ϕ(ū) are positive definite.

Proof By the assumption, ȳ = Xβ̄ − b 6= 0. Furthermore, ȳ = Proxτ−1‖·‖(ũ) = ũ −
τ−1ΠB(τ ũ), where ũ = τ−1ū+ b̃− b, ΠB is the Euclidean projection operator onto B. Since
ȳ 6= 0, it follows that ‖ũ‖ > 1

τ and Proxτ−1‖·‖(ũ) is differentiable with

V := ∇Proxτ−1‖·‖(ũ) =

(
1− 1

τ‖ũ‖

)
Im +

ũũT

τ‖ũ‖3
.

10
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Hence for any U ∈ ∂Proxσ−1λp(β̃ + σ−1(ṽ − XT ū)), H = σ−1XUXT + τ−1V ∈ ∂̂2ϕ(ū).
Since V is positive definite and XUXT is positive semidefinite, H is positive definite. This
completes the proof.

Now we discuss how to apply the SSN method to solve the nonsmooth equation (12) to
obtain an approximate solution efficiently. We first prove that ∇ϕ is strongly semismooth.

Proposition 13 The function ∇ϕ is strongly semismooth.

Proof Firstly, we have assumed that the proximal operator Proxp(·) is strongly semis-
mooth. Secondly, by (Chen et al., 2003, Proposition 4.3), it is known that the projection
operator onto the second order cone is strongly semismooth. The strongly semismoothness
of the proximal operator Prox‖·‖(·) then follows from (Meng et al., 2005, Theorem 4), which
states that if the projection onto the second order cone is strongly semismooth, then so is
the proximal mapping of ‖ · ‖. From here, it is easy to prove the required result and we
omit the details.

Now we can apply the SSN method to solve (12) as follows.

Algorithm SSN(σ, τ, β̃, ṽ, b̃) with input σ > 0, τ > 0, β̃, ṽ ∈ Rn, b̃ ∈ Rm. Choose
µ ∈ (0, 1

2), η ∈ (0, 1), % ∈ (0, 1], δ ∈ (0, 1), and u0 ∈ Rm. For j = 0, 1, . . . , iterate the
following steps:

Step 1. Choose U j ∈ ∂Proxσ−1λp(β̃+σ−1(ṽ−XTuj)) and V j ∈ ∂Proxτ−1‖·‖(τ
−1uj+ b̃−b).

Let Hj = σ−1XU jXT + τ−1V j . Compute an approximate solution ∆uj to the linear
system

Hj∆u = −∇ϕ(uj)

such that

‖Hj∆uj +∇ϕ(uj)‖ ≤ min{η, ‖∇ϕ(uj)‖1+%}.

Step 2. Set αj = δtj , where tj is the first nonnegative integer t such that

ϕ(uj + δt∆uj) ≤ ϕ(uj) + µδt〈∇ϕ(uj),∆uj〉.

Step 3. Set uj+1 = uj + αj∆u
j .

With Propositions 12 and 13, the SSN method can be proven to be globally convergent
and locally superlinearly convergent. One may see (Li et al., 2018, Theorem 3.6) for the
details. The local convergence rate for Algorithm SSN is stated in the next theorem without
proof.

11
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Theorem 14 Suppose that ‖Xβ̄ − b‖ 6= 0 holds. Then the sequence {uj} generated by
Algorithm SSN converges to the unique optimal solution u of the problem (11) and

‖uj+1 − u‖ = O(‖uj − u‖)1+%.

4.2 The SSN Based Proximal Majorization-Minimization Algorithm

In this subsection, we describe the details of the PMM algorithm for solving (3) wherein
each subproblem is solved by the SSN method. We briefly present the PMM algorithm as
follows.

Algorithm PMM. Let σ2,0 > 0, τ2,0 > 0 be given parameters.

Step 1. Find σ1 > 0, τ1 > 0 and compute

β0 ≈ argmin
β∈Rn

{
h(β;σ1, τ1, 0, 0, b)

}
(13)

via solving its dual problem such that the KKT residual of the problem (5) sat-
isfies a prescribed stopping criterion. That is, given (σ, τ, β̃, ṽ, b̃) = (σ1, τ1, 0, 0, b),
apply the SSN method to find an approximate solution u0 of (12) and then set
β0 = Proxλp/σ1(−XTu0/σ1). Let k = 0 and go to Step 2.1.

Step 2.1 Compute

βk+1 = argmin
β∈Rn

{
h(β;σ2,k, τ2,k, βk,∇q(βk), Xβk) + 〈δk, β − βk〉

}
via solving its dual problem. That is, given (σ, τ, β̃, ṽ, b̃) =
(σ2,k, τ2,k, βk,∇q(βk), Xβk), apply the SSN method to find an approximate so-
lution uk+1 of (12) such that the error vector δk satisfies the following accuracy
condition:

‖δk‖ ≤ σ2,k

4
‖βk+1 − βk‖+

τ2,k‖Xβk+1 −Xβk‖2

2‖βk+1 − βk‖
, (14)

where βk+1 = Proxλp/σ2,k(βk + (∇q(βk)−XTuk+1)/σ2,k).

Step 2.2. If βk+1 satisfies a prescribed stopping criterion, terminate; otherwise update
σ2,k+1 = ρkσ

2,k, τ2,k+1 = ρkτ
2,k with ρk ∈ (0, 1) and return to Step 2.1 with k = k+1.

Since h(β;σ1, τ1, 0, 0, b) is bounded below, it has been proven in (Flemming, 2011, Propo-
sition 4.19) that the optimal objective value of the problem (13) will converge to the optimal
objective value of the problem (5) with a difference of q(0) as σ1 → 0, τ1 → 0. We simply
describe the convergence result of the algorithm in our first stage as follows and give a
similar proof to that in (Flemming, 2011, Proposition 4.19).
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Theorem 15 Let h̄(σ1, τ1) := min
β∈Rn

{
h(β;σ1, τ1, 0, 0, b)

}
. Then we have

lim
σ1,τ1→0

h̄(σ1, τ1) = min
β∈Rn

{
‖Xβ − b‖+ λp(β)− q(0)

}
.

Proof For any σ1, τ1 > 0 and β ∈ Rn, we have that

h̄(σ1, τ1) ≤ ‖Xβ − b‖+ λp(β)− q(0) +
σ1

2
‖β‖2 +

τ1

2
‖Xβ − b‖2.

Therefore, lim
σ1,τ1→0

h̄(σ1, τ1) ≤ ‖Xβ − b‖+ λp(β)− q(0). That is

lim
σ1,τ1→0

h̄(σ1, τ1) ≤ min
β∈Rn

{
‖Xβ − b‖+ λp(β)− q(0)

}
.

Furthermore, h̄(σ1, τ1) ≥ min
β∈Rn

{
‖Xβ − b‖+ λp(β)− q(0)

}
. The desired result follows.

4.3 Convergence Analysis of the PMM Algorithm

In this subsection, we analyze the convergence of the PMM algorithm. First we recall the
definition of the KL property of a function (see e.g., Attouch and Bolte, 2009; Bolte and
Pauwels, 2016; Bolte et al., 2014, for more details). Let η > 0 and Φη be the set of all
concave functions ψ : [0, η)→ R+ such that

(1) ψ(0) = 0;

(2) ψ is continuous at 0 and continuously differentiable on (0, η);

(3) ψ′(x) > 0, for any x ∈ (0, η).

Definition 16 Let f : Rn → (−∞,∞] be a proper lower semi-continuous function and
x̄ ∈ dom(∂f) := {x ∈ dom(f) |∂f(x) 6= ∅}. The function f is said to have the KL property
at x̄ if there exist η > 0, a neighbourhood U of x̄ and a concave function ψ ∈ Φη such that

ψ′(f(x)− f(x̄))dist(0, ∂f(x)) ≥ 1, ∀x ∈ U and f(x̄) < f(x) < f(x̄) + η,

where dist(x,C) := miny∈C ‖y − x‖ is the distance from a point x to a nonempty closed set
C. Furthermore, a function f is called a KL function if it satisfies the KL property at all
points in dom∂f .

Note that a function is said to have the KL property at x̄ with an exponent α if the
function ψ in the definition of the KL property takes the form of ψ(x) = γx1−α with γ > 0
and α ∈ [0, 1). For the function f(x) = x, it has the KL property at any point with the
exponent 0.

Now we are ready to conduct the convergence analysis of the PMM algorithm. Denote
hk(β) := h(β;σ2,k, τ2,k, βk,∇q(βk), Xβk). At the k-th iteration of stage II, we have that

βk+1 = argmin
β∈Rn

{
hk(β) + 〈δk, β − βk〉

}
such that condition (14) is satisfied. The following lemma shows the descent property of
the function hk.
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Lemma 17 Let βk+1 be an approximate solution of the subproblem in the k-th iteration
such that (14) holds. Then we have

hk(β
k) ≥ hk(β

k+1)− σ2,k

4
‖βk+1 − βk‖2 − τ2,k

2
‖Xβk+1 −Xβk‖2.

Proof Since hk is a convex function and −δk ∈ ∂hk(βk+1), we obtain

hk(β
k)− hk(βk+1) ≥ 〈δk, βk+1 − βk〉 ≥ −σ

2,k

4
‖βk+1 − βk‖2 − τ2,k

2
‖Xβk+1 −Xβk‖2.

The last inequality is valid since the condition (14) holds. The desired result follows.

Next we recall the following lemma which is similar to that in (Cui et al., 2018; Pang
et al., 2017).

Lemma 18 The vector β̄ ∈ Rn is a d-stationary point of (3) if and only if there exist
σ, τ ≥ 0 such that

β̄ ∈ argmin
β∈Rn

{
h(β;σ, τ, β̄,∇q(β̄), Xβ̄)

}
.

Proof Recall the objective function g defined in (3). Since g is directionally differentiable
at β̄, we can see that β̄ being a d-stationary point of g is equivalent to 0 ∈ ∂g(β̄). It
is easy to show that ∂g(β̄) = ∂βh(β̄;σ, τ, β̄,∇q(β̄), Xβ̄). For given σ, τ and β̄, the func-
tion h(·;σ, τ, β̄,∇q(β̄), Xβ̄) is convex. Thus 0 ∈ ∂βh(β̄;σ, τ, β̄,∇q(β̄), Xβ̄) is equivalent to

β̄ ∈ argminβ∈Rn
{
h(β;σ, τ, β̄,∇q(β̄), Xβ̄)

}
. This completes the proof.

It has been proven by Cui et al. (2018) that the sequence generated by the PMM algo-
rithm converges to a directional stationary solution if the exact solutions of the subproblems
are obtained. The following theorem shows that the result is also true if the subproblems
are solved approximately.

Theorem 19 Suppose that the function g in (3) is bounded below and Assumption 1 holds.
Assume that {σ2,k} and {τ2,k} are convergent sequences. Let {βk} be the sequence generated
by the PMM algorithm. Then every cluster point of the sequence {βk}, if exists, is a d-
stationary point of (3).

Proof Combing Lemma 17 and the convexity of q, we have

g(βk) = hk(β
k) ≥ hk(β

k+1)− σ2,k

4
‖βk+1 − βk‖2 − τ2,k

2
‖Xβk+1 −Xβk‖2

≥ g(βk+1) +
σ2,k

4
‖βk+1 − βk‖2.

Therefore the sequence {g(βk)} is non-increasing. Since g(β) is bounded below, the sequence
{g(βk)} converges and so is the sequence {‖βk+1− βk‖} which converges to zero. Next, we
prove that the limit of a convergent subsequence of {βk} is a d-stationary point of (3). Let
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β∞ be the limit of a convergent subsequence {βk}k∈K. We can easily prove that {βk+1}k∈K
also converges to β∞. It follows from the definition of βk+1 that

hk(β) ≥ hk(β
k+1) + 〈δk, βk+1 − β〉 ≥ hk(βk+1)− ‖δk‖‖βk+1 − β‖, ∀β ∈ Rm.

Letting k(∈ K)→∞, we obtain that

β∞ ∈ argmin
β∈Rn

{
h(β;σ2,∞, τ2,∞, β∞,∇q(β∞), Xβ∞)

}
,

where σ2,∞ = lim
k→∞

σ2,k ≥ 0 and τ2,∞ = lim
k→∞

τ2,k ≥ 0. The desired result follows from

Lemma 18. This completes the proof.

We can also establish the local convergence rate of the sequence {βk} under either an
isolation assumption of the accumulation point or the KL property assumption.

Theorem 20 Suppose that the function g is bounded below and Assumption 1 holds. Let
{βk} be the sequence generated by the PMM algorithm. Let B∞ be the set of cluster points
of the sequence {βk}. If either one of the following two conditions holds,

(a) B∞ contains an isolated element;

(b) The sequence {βk} is bounded; for all β ∈ B∞, ∇q is locally Lipschitz continuous near
β and the function g has the KL property at β;

then the whole sequence {βk} converges to an element of B∞. Moreover, if condition (b) is
satisfied such that {βk} converges to β∞ ∈ B∞ and the function g has the KL property at
β∞ with an exponent α ∈ [0, 1), then we have the following results:

(i) If α = 0, then the sequence {βk} converges in a finite number of steps;

(ii) If α ∈ (0, 1
2 ], then the sequence {βk} converges R-linearly, that is, for all k ≥ 1, there

exist ν > 0 and η ∈ [0, 1) such that ‖βk − β∞‖ ≤ νηk;

(iii) If α ∈ (1
2 , 1), then the sequence {βk} converges R-sublinearly, that is, for all k ≥ 1,

there exists ν > 0 such that ‖βk − β∞‖ ≤ νk−
1−α
2α−1 .

Proof We know from Theorem 19 that lim
k→∞

‖βk+1 − βk‖ = 0. Then it follows from

(Facchinei and Pang, 2003, Proposition 8.3.10) that the sequence {βk} converges to an
isolated element of B∞ under the condition (a). In order to derive the convergence rate of
the sequence {βk} under the condition (b), we first establish some properties of the sequence
{βk}, i.e.,

(1) g(βk) ≥ g(βk+1) + σ2,k

4 ‖β
k+1 − βk‖2;

(2) there exists a subsequence {βkj} of {βk} such that βkj → β∞ with g(βkj )→ g(β∞) as
j →∞;

(3) for k sufficient large, there exist a constant K > 0 and ξk+1 ∈ ∂g(βk+1) such that
‖ξk+1‖ ≤ K‖βk+1 − βk‖.
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The properties (1) and (2) are already known from Theorem 19. To establish the prop-
erty (3), we first note that B∞ is a nonempty, compact and connected set by (Facchinei and
Pang, 2003, Proposition 8.3.9). Furthermore, let ξk+1 = ∇q(βk)−∇q(βk+1)− σ2,k(βk+1 −
βk)−τ2,kXTX(βk+1−βk)−δk. We have that ξk+1 ∈ ∂g(βk+1). Since ∇q is locally Lipschitz

continuous near all β ∈ B∞ and ‖δk‖ ≤ σ2,k

4 ‖β
k+1 − βk‖ + τ2,k‖Xβk+1−Xβk‖2

2‖βk+1−βk‖ , the property

(3) holds for some constant K > 0 with ‖ξk+1‖ ≤ K‖βk+1 − βk‖ for k sufficiently large.
With the properties (1)-(3), the convergence rate of the sequence {βk} can be established
similarly to that of (Bolte and Pauwels, 2016, Proposition 4).

5. Numerical Experiments

In this section, we use some numerical experiments to demonstrate the efficiency of our
PMM algorithm for the square-root regression problems. We implemented the algorithm
in MATLAB R2017a. All runs were performed on a PC (Intel Core 2 Duo 2.6 GHz with
4 GB RAM). We tested our algorithm on two types of data sets. The first set consists of
synthetic data generated randomly in the high-sample-low-dimension setting. That is,

b = Xβ̈ + ςε, ε ∼ N(0, I).

Each row of the input data X ∈ Rm×n is generated randomly from the multivariate nor-
mal distribution N(0,Σ) with Σ as the covariance matrix. Now we present four examples
which are similar to that in (Zou and Hastie, 2005). For each instance, we generate 8000
observations for the training data set and 2000 observations for the validation data set.

(a) In example 1, the problem has 800 predictors. Let β = (3, 1.5, 0, 0, 2, 0, 0, 0) and
β̈ = (β, . . . , β︸ ︷︷ ︸

100

)T . The parameter ς is set to 3 and the pairwise correlation between the

i-th predictor and the j-th predictor is set to be Σij = 0.5|i−j|.

(b) In example 2, the setting is the same as that in example 1 except that β̈ = (β, . . . , β︸ ︷︷ ︸
400

)T

with the vector β = (0, 1).

(c) In example 3, we set β̈ = (β, . . . , β︸ ︷︷ ︸
200

)T with the vector β = (0, 1), ς = 15 and Σij =

0.8|i−j|.

(d) In example 4, the problem has 800 predictors. We choose β̈ = (3, . . . , 3︸ ︷︷ ︸
300

, 0, . . . , 0︸ ︷︷ ︸
500

) and

ς = 3. Let Xi be the i-th predictor of X. For i ≤ 300, Xi is generated as follows:

Xi = Z1 + ε̃i, Z1 ∼ N(0, I), i = 1, . . . , 100,

Xi = Z2 + ε̃i, Z2 ∼ N(0, I), i = 101, . . . , 200,

Xi = Z3 + ε̃i, Z3 ∼ N(0, I), i = 201, . . . , 300,

with ε̃i ∼ N(0, 0.01I), i = 1, . . . , 300. For i > 300, the predictor Xi is just white
noise, i.e., Xi ∼ N(0, I).
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We also evaluate our algorithm on some large scale LIBSVM data sets (X, b) (Chang
and Lin, 2011) which are obtained from the UCI data repository (Lichman, 2013). As in
(Li et al., 2018), we use the method by Huang et al. (2010) to expand the features of these
data sets by using polynomial basis functions. The last digit in the names of the data
sets, abalone7, bodyfat7, housing7, mpg7 and space9, indicate the order of the polynomial
used to expand the features. The number of nonzero elements of a vector is defined as the
minimal k such that

k∑
i=1

|β̌i| ≥ 0.9999‖β‖1,

where β̌ is obtained by sorting β such that |β̌1| ≥ |β̌2| ≥ . . . ≥ |β̌n|.

In all the experiments, the parameter λ is set to λ = λcΛ, where Λ = 1.1Φ−1(1 −
0.05/(2n)) with Φ being the cumulative normal distribution function and Λ is the theoretical
choice recommended by Belloni et al. (2011) to compute a specific coefficient estimate. For
all the tables in the following sections, we use “s sign(t)|t|” to denote a number of the form
“s× 10t”, e.g., 1.0-2 denotes 1.0× 10−2.

5.1 Numerical Experiments for the Convex Square-Root Regression Problems

In this section, we compare the performances of the alternating direction method of mul-
tipliers (ADMM) and our stage I algorithm for solving the convex square-root regression
problem (5). For comparison purpose, we adopt the widely used ADMM algorithms for
both the primal and dual problems of (5). For convenience, we use pADMM to denote
the ADMM applied to the primal problem, dADMM to denote the ADMM applied to the
dual problem, and PMM to denote our stage I algorithm for solving the convex square-root
regression problem (5).

5.1.1 The ADMM Algorithm for the Problem (5)

In this subsection, we describe the implementation details of the ADMM for the problem
(5). The convex problem (5) can be written equivalently as

min
β,z∈Rn,y∈Rm

{
‖y‖+ λp(z)

∣∣∣Xβ − y = b, β − z = 0
}
. (15)

The dual problem corresponding to (15) has the following form

min
u,w∈Rm,v∈Rn

{
δB(w) + (λp)∗(v) + 〈u, b〉

∣∣∣XTu+ v = 0,−u+ w = 0
}
. (16)
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Given ζ > 0, the augmented Lagrangian functions corresponding to (15) and (16) are
given by

Lζ(β, y, z;u, v) := ‖y‖+ λp(z) + 〈u,Xβ − y − b〉+
ζ

2
‖Xβ − y − b‖2

+〈v, β − z〉+
ζ

2
‖β − z‖2,

L̃ζ(u, v, w;β, y) := δB(w) + (λp)∗(v) + 〈u, b〉 − 〈β,XTu+ v〉+
ζ

2
‖XTu+ v‖2

−〈y,−u+ w〉+
ζ

2
‖ − u+ w‖2,

respectively. Based on the above augmented Lagrangian functions, the ADMMs (see e.g.,
Eckstein and Bertsekas, 1992; Gabay and Mercier, 1976) for solving (15) and (16) are given
as below.

In the pADMM and dADMM, we set the parameter ρ = 1.618 and solve the linear
system in Step 1 of pADMM and dADMM by using the Sherman-Morrison-Woodbury
formula (Golub and Van Loan, 1996) if it is necessary, i.e.,(

In +XTX
)−1

= Im −X
(
Im +XXT

)−1
XT ,(

Im +XXT
)−1

= In −XT
(
In +XTX

)−1
X.

Depending on the dimension n,m of the problem, we either solve the linear system with
coefficient matrix Im + XXT (or In + XTX) by Cholesky factorization or by an iterative
solver such as the preconditioned conjugate gradient (PCG) method. We should mention
that when the latter approach is used, the linear system only needs to be solved to a
sufficient level of accuracy that depend on the progress of the algorithm without sacrificing
the convergence of the ADMMs. For the details, we refer the reader to Chen et al. (2017).

Algorithm pADMM for the primal problem (15). Let ρ ∈ (0, (1 +
√

5)/2), ζ > 0 be
given parameters. Choose (y0, z0, u0, v0) ∈ Rm × Rn × Rm × Rn, set k = 0 and iterate.

Step 1. Compute

βk+1 = argmin
β∈Rn

{
Lζ(β, yk, zk;uk, vk)

}
= (In +XTX)−1(zk − ζ−1vk +XT (yk + b− ζ−1uk)),

(yk+1, zk+1) = argmin
y∈Rm,z∈Rn

{
Lζ(βk+1, y, z;uk, vk)

}
=

(
Proxζ−1‖·‖(Xβ

k+1 − b+ ζ−1uk),Proxζ−1λp(β
k+1 + ζ−1vk)

)
.

Step 2. Update

uk+1 = uk + ρζ(Xβk+1 − yk+1 − b), vk+1 = vk + ρζ(βk+1 − zk+1).

If the prescribed stopping criterion is satisfied, terminate; otherwise return to Step 1
with k = k + 1.
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Algorithm dADMM for the dual problem (16). Let ρ ∈ (0, (1 +
√

5)/2), ζ > 0 be
given parameters. Choose (v0, w0, β0, y0) ∈ Rn × Rm × Rn × Rm, set k = 0 and iterate.

Step 1. Compute

uk+1 = argmin
u∈Rm

{
L̃ζ(u, vk, wk;βk, yk)

}
= (Im +XXT )−1(wk − ζ−1yk +X(−vk + ζ−1βk)− b),

(vk+1, wk+1) = argmin
v∈Rn,w∈Rm

{
L̃ζ(uk+1, v, w;βk, yk)

}
=

(
Proxζ−1(λp)∗(ζ

−1βk −XTuk+1),Proxζ−1δB (ζ−1yk + uk+1)
)
.

Step 2. Update

βk+1 = βk − ρζ(XTuk+1 + vk+1), yk+1 = yk − ρζ(−uk+1 + wk+1).

If the prescribed stopping criterion is satisfied, terminate; otherwise return to Step 1
with k = k + 1.

5.1.2 Stopping Criteria

In order to measure the accuracy of an approximate optimal solution β, we use the relative
duality gap defined by

ηG :=
|pobj− dobj|

1 + |pobj|+ |dobj|
,

where pobj := ‖Xβ − b‖+ λp(β), dobj := −〈u, b〉 are the primal and dual objective values,
respectively. We also adopt the relative KKT residual

ηkkt :=

∥∥∥β − Proxλp

(
β − XT (Xβ−b)

‖Xβ−b‖

)∥∥∥
1 + ‖β‖+ ‖XT (Xβ−b)‖

‖Xβ−b‖

to measure the accuracy of an approximate optimal solution β. For a given tolerance, our
stage I algorithm is terminated if

ηkkt < εkkt = 10−6, (17)

or the number of iterations reaches the maximum of 200 while the ADMMs are terminated
if (17) is satisfied or the number of iterations reaches the maximum of 10000. All the
algorithms are stopped if they reach the pre-set maximum running time of 4 hours.

5.1.3 Numerical Results for the srLasso Problem (2)

Here we compare the performance of different methods for solving the convex problem (2).
In (Stucky and van de Geer, 2017), it adopted the R package Flare (Li et al., 2015) to
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solve the srLasso problem (2). As the algorithm in Flare is in fact the pADMM with unit
steplength, we first compare our own implementation of the pADMM with that in the
Flare package. For a fair comparison, our pADMM is also written in R. Since the stopping
criterion of the Flare package is not stated explicitly, we first run the Flare package to
obtain a primal objective value and then run our pADMM, which is terminated as soon as
our primal objective value is smaller than that obtained by Flare. We note that since (2) is
an unconstrained optimization problem, it is meaningful to compare the objective function
values obtained by Flare and our pADMM.

We report the numerical results in Tables 1 and 2. We report the problem name (prob-
name), the number of samples (m) and features (n), λc, the primal objective value (pobj),
and the computation time (time) in the format of “hours:minutes:seconds”. The symbol
“–” in Table 2 means that the Flare package fails to solve the problem due to excessive
memory requirement. From Tables 1 and 2, we can observe that our pADMM is clearly
faster than the Flare package. A possible cause of this difference may lie in the different
strategies for dynamically updating the parameter ζ in the practical implementations of the
pADMM. As our implementation of the pADMM is much more efficient than that in the
Flare package, in the subsequent experiments, we will not compare the performance of our
PMM algorithm with the Flare package but with our own pADMM.

Table 1: The performance of the Flare package and our
pADMM on synthetic datasets for the srLasso
problem.

probname
λc

pobj time
m; n Flare pADMM Flare pADMM

exmp1 1.0 3.8876+3 3.5799+3 11:26 12
8000;800 0.5 3.0501+3 1.9174+3 21:09 13

0.1 1.0487+3 5.8738+2 28:42 16
exmp2 1.0 2.2422+3 2.2419+3 14:09 19

8000;800 0.5 1.8050+3 1.2811+3 27:18 11
0.1 5.6150+2 4.6013+2 27:37 09

exmp3 1.0 2.4758+3 2.4569+3 10:05 07
8000;400 0.5 1.9819+3 1.9421+3 7:26 07

0.1 1.4888+3 1.4438+3 7:14 05
exmp4 1.0 1.1210+4 1.1205+4 29:11 20:16

8000;4000 0.5 1.0165+4 1.0165+4 1:43:48 21:48
0.1 7.6846+3 3.4069+3 3:11:27 5:12

Next we conduct numerical experiments to evaluate the performance of the pADMM,
dADMM and PMM. For the numerical results, besides the results reported in Tables 1 and
2, we also report the relative KKT residual (ηkkt), the relative duality gap (ηG), the number
of nonzero elements of β (nnz), the mean square error defined by ‖β − β̈‖2/n (MSE), and
the percentage (P) of the nonzero positions of β̈ that are picked up by β. The last three
results were obtained from the PMM algorithm. In the implementation of the pADMM and
dADMM, we first compute the (sparse) Cholesky decomposition of In+XTX or Im+XXT

and then solve the linear system of equations in each iteration by using the pre-computed
Cholesky factor.

Tables 3 and 4 show the performance of the three algorithms. For the synthetic datasets,
the pADMM is more efficient than the dADMM in almost all cases. Furthermore, we can
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Table 2: The performance of the Flare package and
our pADMM on UCI datasets for the srLasso
problem.

probname
λc

pobj time
m; n Flare pADMM Flare pADMM

abalone.scale.expanded7 1.0 – 2.3852+2 – 25:57
4177;6435 0.5 – 2.0312+2 – 25:32

0.1 – 1.5586+2 – 26:29
mpg.scale.expanded7 1.0 2.3550+2 2.3544+2 1:00 04

392;3432 0.5 1.5856+2 1.5831+2 57 03
0.1 7.8656+1 7.8616+1 1:06 03

space.ga.scale.expanded9 1.0 1.3113+1 1.3113+1 12:59 5:19
3107;5005 0.5 2.2419+1 2.1607+1 9:01 2:00

0.1 1.2950+1 1.1999+1 6:13 3:00

see that our PMM algorithm can solve all the problems to the required accuracy. The
PMM algorithm not only takes much less time than the pADMM or dADMM does but also
obtains more accurate solutions (in terms of ηkkt) in almost all cases.

5.2 Numerical Experiments for the Square-Root Regression Problems with
Nonconvex Regularizers

In this section, we compare the performance of the ADMM and our PMM algorithm for
solving the nonconvex square-root regression problem (3). The relative KKT residual

η̃kkt :=

∥∥∥β − Proxλp−q

(
β − XT (Xβ−b)

‖Xβ−b‖

)∥∥∥
1 + ‖β‖+ ‖XT (Xβ−b)‖

‖Xβ−b‖

is adopted to measure the accuracy of an approximate optimal solution β. In our PMM
algorithm, stage I is implemented to generate an initial point for stage II and is stopped if
ηkkt < 10−4. The tested algorithms will be terminated if η̃kkt < ε̃kkt = 10−6. In addition,
the algorithms are also stopped when they reach the pre-set maximum number of iterations
(200 for stage II of the PMM and 10000 for the ADMM) or the pre-set maximum running
time of 4 hours. For each synthetic data set, the models are fitted on the training data
set and the validation data set is used to select the regularization parameter λc. For each
UCI data set, we adopt a tenfold cross validation to find the regularization parameter. The
PMM algorithm is used to perform the cross validation.

5.2.1 The ADMM Algorithm for the Problem (3)

To describe the ADMM implemented (which is not guaranteed to converge though due to
the nonconvexity) for solving the nonconvex square-root regression problem (3), we first
reformulate it to the following constrained problem:

min
β,z∈Rn,y∈Rm

{
‖y‖+ λp(z)− q(z)

∣∣∣Xβ − y = b, β − z = 0
}
. (18)
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Table 3: The performance of different algorithms on synthetic
datasets for the srLasso problem. In the table,
“a”=PMM, “b”=pADMM, “c”=dADMM.

probname λc nnz
ηkkt ηG pobj time MSE

P
m; n a b c a b c a b c a b c a b c

exmp1
1 305 8.6-7 1.0-6 9.7-7 8.2-10 3.6-6 1.4-9 3.3895+3 3.3895+3 3.3895+3 12 1:03 5:09 1.4882-2 1.4882-2 1.4882-2 100%

8000;800

exmp2
1 437 4.4-7 1.0-6 1.0-6 1.8-9 1.1-6 2.9-7 2.1067+3 2.1067+3 2.1067+3 17 1:10 5:21 2.9740-2 2.9740-2 2.9740-2 100%

8000;800

exmp3
1 277 4.0-7 1.0-6 1.0-6 6.8-10 1.5-6 1.1-8 2.2169+3 2.2169+3 2.2169+3 07 1:16 1:01 1.2955-1 1.2955-1 1.2955-1 98%

8000;400

exmp4
1 300 7.6-7 9.9-7 1.0-6 3.1-9 1.3-6 4.1-7 4.5283+3 4.5283+3 4.5283+3 12 2:36 4:47 2.5358-1 2.5358-1 2.5358-1 100%

8000;800

Table 4: The performance of different algorithms on UCI
datasets for the srLasso problem. In the table,
“a”=PMM, “b”=pADMM, “c”=dADMM.

probname λc nnz
ηkkt ηG pobj time

m; n a b c a b c a b c a b c

E2006.test
1 1 9.4-9 9.8-7 9.1-7 1.5-6 1.1-5 5.3-10 2.6706+1 2.6706+1 2.6706+1 10 03 03

3308;150358

log1p.E2006.test
1 5 9.8-7 1.2-4 5.2-3 2.7-4 8.8-2 1.3-3 2.6046+1 2.8627+1 2.6046+1 1:06 1:10:39 49:11

3308;1771946

E2006.train
1 1 3.8-7 8.0-7 9.6-7 2.2-6 3.1-6 2.1-10 5.4180+1 5.4180+1 5.4180+1 26 35 44

16087;150358

log1p.E2006.train
1 22 4.5-7 1.6-1 7.6-1 5.9-4 9.9-1 5.6-1 5.2032+1 6.9860+5 8.1873+2 4:27 4:00:19 4:01:26

16087;4272227

abalone.scale.expanded7
1 6 9.7-7 9.6-6 7.5-3 9.9-8 1.1-3 1.3-2 2.3562+2 2.3589+2 2.3575+2 04 20:10 17:57

4177;6435

housing.scale.expanded7
1 22 7.7-7 2.7-6 3.7-4 4.1-6 1.2-3 1.5-3 2.6957+2 2.6989+2 2.6957+2 07 40:35 22:48

506;77520

mpg.scale.expanded7
1 5 9.6-7 1.0-6 1.0-6 1.6-8 4.0-5 1.2-6 2.1320+2 2.1321+2 2.1320+2 01 18 26

392;3432

space.ga.scale.expanded9
1 4 5.5-7 1.0-6 9.6-7 8.2-8 2.7-4 1.1-7 1.3111+1 1.3115+1 1.3111+1 03 1:57 56

3107;5005

pyrim.scale.expanded5
1 23 8.0-7 5.6-6 8.5-2 1.8-4 7.4-2 2.1-2 3.3790+0 3.7206+0 3.7958+0 07 15:11 9:39

74;201376

bodyfat.scale.expanded7
1 2 7.0-7 1.9-6 1.0-6 1.3-5 2.1-2 2.5-8 4.5326+0 4.6458+0 4.5326+0 07 30:53 6:18

252;116280
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For ζ > 0, the augmented Lagrangian function of (18) can be written as

Lζ(β, y, z;u, v) := ‖y‖+ λp(z)− q(z) + 〈u,Xβ − y − b〉+
ζ

2
‖Xβ − y − b‖2

+〈v, β − z〉+
ζ

2
‖β − z‖2.

The template of the ADMM for solving the problem (3) is given as the following form.

Algorithm ADMM for the problem (3). Let ζ > 0 be a given parameter. Choose
(y0, z0, u0, v0) ∈ Rm × Rn × Rm × Rn, set k = 0 and iterate.

Step 1. Compute

βk+1 = argmin
β∈Rn

{
Lζ(β, y

k, zk;uk, vk)
}

= (In +XTX)−1(zk − ζ−1vk +XT (yk + b− ζ−1uk)),

(yk+1, zk+1) = argmin
y∈Rm,z∈Rn

{
Lζ(β

k+1, y, z;uk, vk)
}

=
(

Proxζ−1‖·‖(Xβ
k+1 − b+ ζ−1uk),Proxζ−1(λp−q)(β

k+1 + ζ−1vk)
)
.

Step 2. Update

uk+1 = uk + ζ(Xβk+1 − yk+1 − b), vk+1 = vk + ζ(βk+1 − zk+1).

If the prescribed stopping criterion is satisfied, terminate; otherwise return to Step 1
with k = k + 1.

5.2.2 Numerical Experiments for the Square-Root Regression Problems
with SCAD Regularizations

The SCAD regularization involves a concave function pλ, proposed in (Fan and Li, 2001),
that has the following properties: pλ(0) = 0 and for |t| > 0,

p′λ(|t|) =

{
λ, if |t| ≤ λ,
(asλ−|t|)+

as−1 , otherwise,

for some given parameter as > 2. In the above, (asλ − |t|)+ denotes the positive part
of asλ − |t|. We can reformulate the expression of the SCAD regularization function as
λp(β)− q(β) with p(β) = ‖β‖1 and

q(β) =
n∑
i=1

qscad(βi; as, λ), qscad(t; as, λ) =


0, if |t| ≤ λ,
(|t|−λ)2

2(as−1) , if λ ≤ |t| ≤ asλ,
λ|t| − as+1

2 λ2, if |t| > asλ.
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The function q(β) is continuously differentiable with

∂q(β)

∂βi
=


0, if |βi| ≤ λ,
sign(βi)(|βi|−λ)

as−1 , if λ < |βi| ≤ asλ,
λsign(βi), if |βi| > asλ.

We can see that the SCAD regularization function associated with βi is increasing and
concave in [0,+∞). It has been shown by Fan and Li (2001) that the SCAD regularization
usually performs better than the classical `1 regularization in selecting significant variables
without creating excessive biases.

The performance of the PMM algorithm and ADMM for the SCAD regularization with
as = 3.7 are listed in Tables 5 and 6. We can see that in most cases, the PMM algorithm
is not only much more efficient than the ADMM, but it can also obtain better objective
function values. Although the objective value of the ADMM is less than that of the PMM
algorithm in the housing.scale.expanded7 data set, the solution of the PMM algorithm is
more sparse than that of the ADMM with nnz being 62 versus 68777. Figure 1 shows the
log-log curves of the KKT residuals and the MSEs versus the iteration counts for the SCAD
regularized problem on the first two random data sets, while Figure 2 shows the log-log
curves of the KKT residuals versus the iteration counts for the SCAD regularized problem
on the abalone.scale.expanded7 and housing.scale.expanded7 data sets. We observe that
both the PMM and ADMM algorithms achieved about the same level of MSE.

5.2.3 Numerical Experiments for the Square-Root Regression Problems
with MCP Regularizations

In this subsection, we consider the regularization by a minimax concave penalty (MCP)
function (Zhang, 2010). For two positive parameters am > 2 and λ, the MCP regularization
can be defined as λp(β)− q(β) with p(β) = 2‖β‖1 and

q(β) =

n∑
i=1

qmcp(βi; am, λ), qmcp(t; am, λ) =

{
t2

am
, if |t| ≤ amλ,

2λ|t| − amλ2, if |t| > amλ.

The function q(β) is continuously differentiable with its derivative given by

∂q(β)

∂βi
=

{
2βi
am
, if |βi| ≤ amλ,

2λsign(βi), if |βi| > amλ.

We evaluate the performance of our PMM algorithm on the same set of problems as in
the last subsection with the MCP regularization. The numerical results are presented in
Tables 7 and 8. In this case, we set the parameter am = 3.7.

From the numerical results, one can see the efficiency and power of our SSN method
based PMM algorithm. Note that though for the abalone.scale.expanded7 data set the
objective value obtained by the ADMM is less than that obtained the PMM algorithm, the
solution obtained by the PMM algorithm is more sparse than that by the ADMM with nnz
being 55 versus 1039. Overall, our PMM algorithm is clearly more efficient and accurate
than the ADMM on the tested datasets. Figures 3 and 4 are the same as Figures 1 and 2
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Table 5: The performance of the ADMM and PMM on
synthetic datasets for the SCAD regulariza-
tion. In the table, “a”=PMM, “b”=ADMM.

probname λc nnz
ηkkt pobj time MSE

P
m; n a b a b a b a b

exmp1
0.145 460 3.9-7 5.9-1 5.9368+2 5.9392+2 20 3:39 9.1948-4 9.4117-4 100%

8000;800

exmp2
0.087 616 5.9-7 1.0-1 4.0760+2 4.0777+2 28 3:33 1.3380-3 1.3737-3 100%

8000;800

exmp3
0.230 293 7.8-7 2.7-1 1.5486+3 1.5529+3 10 2:02 9.8282-2 1.0018-1 100%

8000;400

exmp4
0.184 451 6.4-7 7.0-1 8.4087+2 8.4154+2 15 4:45 5.7208-4 6.0617-4 100%

800;4000

Table 6: The performance of the ADMM and PMM on
UCI datasets for the SCAD regularization. In
the table,“a”=PMM, “b”=ADMM.

probname λc nnz
ηkkt pobj time

m; n a b a b a b

E2006.test
0.071 1 2.2-8 9.0-7 2.2165+1 2.2165+1 08 12:51

3308;150358

log1p.E2006.test
0.257 207 2.1-7 5.9-3 2.1613+1 2.1366+2 3:50 2:36:14

3308;1771946

E2006.train
0.021 1 5.1-7 9.8-1 4.8922+1 4.9442+1 12 3:10:28

16087;150358

log1p.E2006.train
0.562 65 2.7-7 9.6-1 4.9516+1 2.8862+2 6:49 4:02:03

16087;4272227

abalone.scale.expanded7
0.011 49 9.9-7 6.9-1 1.3292+2 1.3864+2 12 21:41

4177;6435

housing.scale.expanded7
0.070 62 2.1-7 5.0-1 6.1449+1 5.7203+1 25 30:37

506;77520

mpg.scale.expanded7
0.107 27 3.1-9 4.9-1 5.5558+1 5.9918+1 01 1:38

392;3432

space.ga.scale.expanded9
0.043 16 1.9-7 4.4-1 6.9072+0 9.0447+0 03 12:50

3107;5005

pyrim.scale.expanded5
0.109 70 1.4-7 4.3-3 6.8301-1 7.2608-1 13 21:26

74;201376

bodyfat.scale.expanded7
0.201 2 3.9-8 7.6-2 9.4125-1 9.5136-1 06 25:51

252;116280
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Figure 1: The KKT residuals and the MSEs of the PMM and ADMM algorithms for solving
the SCAD regularized problem with the first two random data sets.

Table 7: The performance of the ADMM and PMM
on synthetic datasets for the MCP regulariza-
tion. In the table, “a”=PMM, “b”=ADMM.

probname λc nnz
ηkkt pobj time MSE

P
m; n a b a b a b a b

exmp1
0.209 380 5.2-8 1.9-2 5.5695+2 5.6091+2 29 3:33 7.0382-4 1.1677-3 100%

8000;800

exmp2
0.151 535 2.7-7 1.3-1 4.5225+2 4.5414+2 38 3:30 9.8362-4 1.6202-3 100%

8000;800

exmp3
0.081 267 9.3-7 1.5-1 1.3590+3 1.3617+3 1:11 2:01 1.5072-1 1.7776-1 98%

8000;400

exmp4
0.321 334 7.7-7 3.5-2 9.6711+2 9.7146+2 14 4:45 4.4676-4 8.4202-4 100%

800;4000
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Figure 2: The KKT residuals of the PMM and ADMM algorithms for solving the SCAD
regularized problem with the UCI data. (a) The abalone.scale.expanded7 data;
(b) The housing.scale.expanded7 data.

Table 8: The performance of the ADMM and PMM on
UCI datasets for the MCP regularization. In
the table, “a”=PMM, “b”=ADMM.

probname λc nnz
ηkkt pobj time

m; n a b a b a b

E2006.test
0.090 1 2.4-8 9.3-7 2.2077+1 2.2077+1 07 07

3308;150358

log1p.E2006.test
0.261 187 8.2-7 2.2-3 2.1455+1 3.6500+1 4:09 2:20:46

3308;1771946

E2006.train
0.028 1 6.8-7 1.1-6 4.8914+1 4.9256+1 20 3:12:39

16087;150358

log1p.E2006.train
0.541 67 1.2-7 1.4-2 4.9200+1 1.6911+2 6:49 4:02:05

16087;4272227

abalone.scale.expanded7
0.012 55 7.1-7 1.6-5 1.3271+2 1.2693+2 09 21:32

4177;6435

housing.scale.expanded7
0.282 22 6.9-7 4.1-2 1.1022+2 7.2573+2 26 30:09

506;77520

mpg.scale.expanded7
0.102 23 7.3-7 2.1-2 5.0964+1 5.9492+1 01 1:36

392;3432

space.ga.scale.expanded9
0.046 15 5.9-7 3.3-2 6.6399+0 7.8456+0 05 12:46

3107;5005

pyrim.scale.expanded5
0.221 43 9.9-7 7.0-3 1.1428+0 4.6112+0 18 19:36

74;201376

bodyfat.scale.expanded7
0.183 2 2.8-7 5.3-6 5.7347-1 5.8278-1 06 25:11

252;116280
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Figure 3: The KKT residuals and the MSEs of the PMM and ADMM algorithms for solving
the MCP regularized problem with the first two random data sets.
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Figure 4: The KKT residuals of the PMM and ADMM algorithms for solving the MCP
regularized problem with the UCI data. (a) The abalone.scale.expanded7 data;
(b) The housing.scale.expanded7 data.

but for the MCP regularized problem. Observe that the MSEs achieved by the PMM are
better than those attained by the ADMM.

We have mentioned in the introduction that the scaled Lasso problem is equivalent to
the srLasso problem (2). However, in order to solve the scaled Lasso problem, we have
to call an algorithm several times to solve the standard Lasso subproblems. However, by
handling the srLasso problem (2) directly, our algorithm is as fast as the highly efficient
algorithm, LassoNAL (Li et al., 2018), for solving a single standard Lasso problem.

6. Conclusion

In this paper, we proposed a two stage PMM algorithm to solve the square-root regression
problems with nonconvex regularizations. We are able to achieve impressive computational
efficiency for our algorithm by designing an innovative proximal majorization framework
for the convex subproblem arising in each PMM iteration so that it can be solved via its
dual by the SSN method. We presented the oracle property of the problem in stage I and
analyzed the convergence of the PMM algorithm with its subproblems solved inexactly.
Extensive numerical experiments have demonstrated the efficiency of our PMM algorithm
when compared to other natural alternative algorithms such as the ADMM based algorithms
in solving the problem of interest.

From the superior performance of our algorithm, it is natural for us to consider apply-
ing a similar proximal majorization-minimization algorithmic framework to design efficient
algorithms to solve other square-root regression problems with structured sparsity require-
ments such a group sparsity in the regression coefficients (Bunea et al., 2014). We leave
such an investigation as a future research topic.
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Appendix A. Proofs for Section 3

In this appendix, we first provide the proofs for Lemma 5, Lemma 7 and Lemma 8. Based
on these results, we then give the proof for Theorem 9.

Lemma 5 Let S be an allowed set of a weakly decomposable norm p. For the parameters
λ0 and λm defined by (7), we have λ0 ≤ λm and p∗(β̈) ≤ λm.

Proof For a given allowed set S of a weakly decomposable norm p, denote

C1 =
{
z ∈ Rn

∣∣∣p(zS) ≤ 1, zS̄ = 0
}
, C2 =

{
z ∈ Rn

∣∣∣pS̄(zS̄) ≤ 1, zS = 0
}
,

C =
{
z ∈ Rn

∣∣∣p(zS) + pS̄(zS̄) ≤ 1
}
.

Then we have that

δ∗C1
(β) = max

z∈Rn

{
〈z, β〉

∣∣∣p(zS) ≤ 1, zS̄ = 0
}

= max
z∈Rn

{
〈z, βS〉

∣∣∣p(zS) ≤ 1, zS̄ = 0
}

≤ max
z∈Rn

{
〈z, βS〉

∣∣∣p(z) ≤ 1
}

= p∗(βS), (19)

δ∗C2
(β) = max

z∈Rn

{
〈z, β〉

∣∣∣pS̄(zS̄) ≤ 1, zS = 0
}

= max
z∈Rn

{
〈zS̄ , βS̄〉

∣∣∣pS̄(zS̄) ≤ 1
}

= pS̄∗ (βS̄). (20)

Furthermore, on one hand, for any x ∈ C1, y ∈ C2 and 0 ≤ t ≤ 1, it is easy to prove that
tx+(1−t)y ∈ C. That is conv(C1∪C2) ⊆ C. On the other hand, for any z ∈ C with zS = 0
or zS̄ = 0, it is clear that z ∈ conv(C1 ∪ C2); and for any z ∈ C with zS 6= 0 and zS̄ 6= 0,
we can find x = zS

p(zS) ∈ C1 and y =
zS̄

1−p(zS) ∈ C2 such that z = p(zS)x + (1 − p(zS))y.

Therefore we have shown that C = conv(C1 ∪ C2).
Due to (Rockafellar, 1970, Theorem 5.6), we can prove the following fact easily.

conv(δC1 , δC2)(β) = δconv(C1∪C2)(β), ∀β ∈ Rn, (21)
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where conv(δC1 , δC2) denotes the greatest convex function that is less than or equal to
δC1 and δC2 pointwise over the entire Rn. Based on the above basic results (19)-(21),
C = conv(C1 ∪ C2) and (Rockafellar, 1970, Theorem 16.5), we have that

p∗(β) = max
z∈Rn

{
〈β, z〉

∣∣∣p(z) ≤ 1
}
≤ max

z∈Rn

{
〈β, z〉

∣∣∣p(zS) + pS̄(zS̄) ≤ 1
}

= δ∗C(β) = δ∗conv(C1∪C2)(β) = (conv(δC1 , δC2))∗ (β) = max
{
δ∗C1

(β), δ∗C2
(β)
}

≤ max
{
p∗(βS), pS̄∗ (βS̄)

}
.

The desired results follow by taking β = β̈ and dividing both sides of the above inequality
by ‖ε‖ with β = εTX, respectively.

Lemma 7 Suppose that Assumption 1 holds. For the estimator β̂ of the generalized elastic-
net square-root regression problem (6), we have

ε̂TX(β̈ − β̂) ≤
(
τ +

1

‖ε̂‖

)−1 (
λp(β̈) + σp∗(β̈)p(β̂)

)
.

Proof Since β̂ ∈ argmin
β∈Rn

{h(β;σ, τ, 0, 0, b)} and p is a convex function, we have

−X
T (Xβ̂ − b)
‖Xβ̂ − b‖

− σβ̂ − τXT (Xβ̂ − b) ∈ λ∂p(β̂).

Hence

λp(β) ≥ λp(β̂) +

〈
XT ε̂

‖ε̂‖
− σβ̂ + τXT ε̂, β − β̂

〉
. (22)

Let β = β̈. Then the inequality (22) can be rearranged to(
τ +

1

‖ε̂‖

)
ε̂TX(β̈ − β̂) ≤ λp(β̈)− λp(β̂) + σβ̂T (β̈ − β̂) ≤ λp(β̈) + σβ̂T β̈

≤ λp(β̈) + σp∗(β̈)p(β̂).

Note that the last inequality is obtained by the definition of p∗. The desired result now
follows readily.

Lemma 8 Suppose that Assumption 1 holds. We have

cl :=
1− a− 2λ0np

λ

2 +
(

1 + σp∗(β̈)
λ

)
np
≤ ‖ε̂‖
‖ε‖

≤ cu,

where the constants cu and a are defined in (8).
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Proof Since β̂ ∈ argmin
β∈Rn

{h(β;σ, τ, 0, 0, b)}, we have h(β̂;σ, τ, 0, 0, b) ≤ h(β̈;σ, τ, 0, 0, b).

Thus, by the definition of the dual norm, we get

‖ε̂‖ ≤ ‖ε‖+
τ

2
‖ε‖2 +

σ

2
‖β̈‖2 + λp(β̈) ≤ ‖ε‖+

τ

2
‖ε‖2 +

(
λ+

σp∗(β̈)

2

)
p(β̈), (23)

λp(β̂) ≤ ‖ε‖+
τ

2
‖ε‖2 +

σ

2
‖β̈‖2 + λp(β̈) ≤ ‖ε‖+

τ

2
‖ε‖2 +

(
λ+

σp∗(β̈)

2

)
p(β̈). (24)

Dividing both sides of (23) by ‖ε‖, we obtain

‖ε̂‖
‖ε‖
≤ 1 +

τ

2
‖ε‖+ np +

σp∗(β̈)p(β̈)

2‖ε‖
= cu,

where cu is defined in (8). In order to obtain the lower bound of ‖ε̂‖‖ε‖ , we first use the

triangle inequality ‖ε̂‖ = ‖ε −X(β̂ − β̈)‖ ≥ ‖ε‖ − ‖X(β̂ − β̈)‖, and then the upper bound
of ‖X(β̂ − β̈)‖. By Lemma 7 and the definition of the dual norm, we have

‖X(β̂ − β̈)‖2 = εTX(β̂ − β̈) + ε̂TX(β̈ − β̂)

≤ εTX(β̂ − β̈) + κ
(
λp(β̈) + σp∗(β̈)p(β̂)

)
≤ λ0p(β̂ − β̈)‖ε‖+ κ

(
λp(β̈) + σp∗(β̈)p(β̂)

)
≤ λ0

(
p(β̂) + p(β̈)

)
‖ε‖+ κ

(
λp(β̈) + σp∗(β̈)p(β̂)

)
= (λ0‖ε‖+ λκ) p(β̈) +

(
λ0‖ε‖+ σκp∗(β̈)

)
p(β̂),

where κ =
(
τ + 1

‖ε̂‖

)−1
. Substituting the inequality (24) into the above formula, we can

obtain

‖X(β̂ − β̈)‖2 ≤
‖ε‖+ τ

2‖ε‖
2

λ

(
λ0‖ε‖+ σκp∗(β̈)

)
+
(

2λ0‖ε‖+ (λκ+ σκp∗(β̈)) +
σp∗(β̈)

2λ
(λ0‖ε‖+ σκp∗(β̈))

)
p(β̈).

Rearranging the above inequality, we have

‖X(β̂ − β̈)‖ ≤ ‖ε‖

√√√√
â+

2λ0p(β̈)

‖ε‖
+
‖ε̂‖
‖ε‖

(
λ+ σp∗(β̈)

)
p(β̈)

(1 + τ‖ε̂‖)‖ε‖

≤ ‖ε‖

√√√√â+
2λ0np
λ

+
‖ε̂‖
‖ε‖

(
1 +

σp∗(β̈)

λ

)
np,

where

â =

((
1 + τ

2‖ε‖
)

λ
+
σp∗(β̈)p(β̈)

2λ‖ε‖

)(
λ0 +

σκp∗(β̈)

‖ε‖

)

≤

((
1 + τ

2‖ε‖
)

λ
+
σp∗(β̈)p(β̈)

2λ‖ε‖

)(
λ0 + σp∗(β̈)cu

)
= a.

32



A sparse SSN based PMM algorithm for nonconvex square-root-loss regression problems

Therefore, by noting that ‖X(β̂ − β̈)‖ = ‖ε− ε̂‖ and triangle inequality, we have

‖ε̂‖
‖ε‖
≥ 1−

√√√√a+
2λ0np
λ

+
‖ε̂‖
‖ε‖

(
1 +

σp∗(β̈)

λ

)
np.

By rearranging the above inequality, in the case when ‖ε̂‖‖ε‖ < 1, we further derive that

a+
2λ0np
λ

+
‖ε̂‖
‖ε‖

(
1 +

σp∗(β̈)

λ

)
np ≥

(
1− ‖ε̂‖
‖ε‖

)2

≥ 1− 2‖ε̂‖
‖ε‖

.

Then we can obtain that

‖ε̂‖
‖ε‖
≥

1− a− 2λ0np
λ

2 +
(

1 + σp∗(β̈)
λ

)
np

:= cl > 0.

In the other case, if ‖ε̂‖‖ε‖ ≥ 1, we have already obtain a lower bound that is larger than cl.

Theorem 9 Let δ ∈ [0, 1). Under Assumptions 1 and 2, assume that
s2−
√
s22−4s1s3
2s1

< λ <

s2+
√
s22−4s1s3
2s1

with s1 = σλmp2(β̈)
‖ε‖2 , s2 = 1 − λm(3+2σt1+σt2)p(β̈)

‖ε‖ > 0 and s3 = λm(t1 + t2 +

σt1t2 + σt21). For any β̂ ∈ Ω(σ, τ), and any β ∈ Rn such that supp(β) is a subset of S, we
have that

‖X(β̂ − β̈)‖2 + 2δ
(

(λ̂− λ̃m)pS̄(β̂S̄) + (λ̃+ λ̃m)p(β̂S − β)
)
‖ε‖

≤ ‖X(β − β̈)‖2 +
(

(1 + δ)(λ̃+ λ̃m)Γp(LS , S)‖ε‖
)2

+ 2σcu‖β̂ − β̈‖‖β − β̈‖‖ε‖,

where

λ̂ :=
λcl

1 + τcl
, λ̃m := λm(1 + σcu), λ̃ := λcu, LS :=

λ̃+ λ̃m

λ̂− λ̃m
· 1 + δ

1− δ
.

Proof First we note that if the following inequality holds

〈X(β̂ − β̈), X(β̂ − β)〉 ≤ −δ
(

(λ̃+ λ̃m)p(β̂S − β) + (λ̂− λ̃m)pS̄(β̂S̄)
)
‖ε‖

+σcu‖β̂ − β̈‖‖β − β̈‖‖ε‖,

then we can verify that the theorem is valid by the following simple calculations:

‖X(β̂ − β̈)‖2 − ‖X(β − β̈)‖2 + 2δ
(

(λ̃+ λ̃m)p(β̂S − β) + (λ̂− λ̃m)pS̄(β̂S̄)
)
‖ε‖

= 2〈X(β̂ − β̈), X(β̂ − β)〉 − ‖X(β − β̂)‖2 + 2δ
(

(λ̃+ λ̃m)p(β̂S − β) + (λ̂− λ̃m)pS̄(β̂S̄)
)
‖ε‖

≤ −‖X(β − β̂)‖2 + 2σcu‖β̂ − β̈‖‖β − β̈‖‖ε‖
≤ 2σcu‖β̂ − β̈‖‖β − β̈‖‖ε‖.
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Thus it is sufficient to show that the result is true if

〈X(β̂ − β̈), X(β̂ − β)〉 ≥ −δ
(

(λ̃+ λ̃m)p(β̂S − β) + (λ̂− λ̃m)pS̄(β̂S̄)
)
‖ε‖

+σcu‖β̂ − β̈‖‖β − β̈‖‖ε‖. (25)

By the inequality (22) and the fact that ε̂ = X(β̈ − β̂ + ε), we can get

〈X(β̂ − β̈), X(β̂ − β)〉+ λκp(β̂) ≤ 〈ε,X(β̂ − β)〉+ σκ〈β̂, β − β̂〉+ λκp(β), (26)

where κ :=
(
τ + 1

‖ε̂‖

)−1
. Since supp(β) ⊆ S, it follows from the definition of the dual norm

and the generalized Cauchy-Schwartz inequality that

〈ε,X(β̂ − β)〉 = 〈ε,X(β̂S − β)〉+ 〈ε,X(β̂S̄ − β)〉

≤
(
p∗((ε

TX)S)p(β̂S − β) + pS̄∗ ((εTX)S̄)pS̄(β̂S̄)
)

≤ λm

(
p(β̂S − β) + pS̄(β̂S̄)

)
‖ε‖. (27)

By substituting (27) into (26), we obtain

〈X(β̂ − β̈), X(β̂ − β)〉+ λκp(β̂)

≤ λm

(
p(β̂S − β) + pS̄(β̂S̄)

)
‖ε‖+ σκ〈β̂, β − β̂〉+ λκp(β). (28)

Furthermore, by using the weak decomposability and the triangle inequality in (28) we
derive

〈X(β̂ − β̈), X(β̂ − β)〉+ λκ
(
pS̄(β̂S̄) + p(β̂S)

)
≤ λm

(
p(β̂S − β) + pS̄(β̂S̄)

)
‖ε‖+ σκ〈β̂, β − β̂〉+ λκ

(
p(β̂S) + p(β̂S − β)

)
. (29)

Then by eliminating λκp(β̂S) on both sides of (29) and using the weak decomposability, we
get

〈X(β̂ − β̈), X(β̂ − β)〉+ λκpS̄(β̂S̄)

≤ λm

(
p(β̂S − β) + pS̄(β̂S̄)

)
‖ε‖+ σκ〈β̂, β − β̂〉+ λκp(β̂S − β)

≤ λm

(
p(β̂S − β) + pS̄(β̂S̄)

)
‖ε‖+ σκ〈β̈, β − β̂〉+ σκ〈β̂ − β̈, β − β̈〉+ λκp(β̂S − β)

≤ λm

(
p(β̂S − β) + pS̄(β̂S̄)

)
‖ε‖+ λκp(β̂S − β) + λmσκ

(
p(β̂S − β) + pS̄(β̂S̄)

)
(30)

+σκ‖β̂ − β̈‖‖β − β̈‖.

By using the result of Lemma 8, the inequality (30) becomes

〈X(β̂ − β̈), X(β̂ − β)〉+
(
λ̂− λ̃m

)
pS̄(β̂S̄)‖ε‖

≤
(
λ̃+ λ̃m

)
p(β̂S − β)‖ε‖+ σcu‖β̂ − β̈‖‖β − β̈‖‖ε‖. (31)
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From the condition (25) in (31) and simple rearrangement, we have that(
λ̂− λ̃m

)
(1− δ)pS̄(β̂S̄) ≤

(
λ̃+ λ̃m

)
(1 + δ)p(β̂S − β).

By Lemma 5 we have λ0 ≤ λm and p∗(β̈) ≤ λm. Since

λ− λmt1(1 + σt1 + σnp)− 2λmnp

λ
(

2 + np + σp∗(β̈)p(β̈)
‖ε‖

) < cl <
1

2 + np + σp∗(β̈)p(β̈)
‖ε‖

,

we can see that

λ̂ >
λ− λmt1(1 + σt1 + σnp)− 2λmnp

t2 + np
.

Then it is easy to find that if

s2 −
√
s2

2 − 4s1s3

2s1
< λ <

s2 +
√
s2

2 − 4s1s3

2s1
,

then we have λ̂ = λcl/(1 + τcl) > λ̃m = λm(1 + σcu).
Furthermore,

pS̄(β̂S̄) ≤

(
λ̃+ λ̃m

λ̂− λ̃m

)
· 1 + δ

1− δ
· p(β̂S − β).

From the definition of LS and Lemma 6 with the assumption supp(β) ⊆ S, it follows that

pS̄(β̂S̄) ≤ LSp(β̂S − β), p(β̂S − β) ≤ Γp(LS , S)‖X(β̂ − β)‖.

By using the inequality (31), we can derive that

〈X(β̂ − β̈), X(β̂ − β)〉+ δ‖ε‖(λ̂− λ̃m)pS̄(β̂S̄)

≤ (λ̃+ λ̃m)p(β̂S − β)‖ε‖+ σcu‖β̂ − β̈‖‖β − β̈‖‖ε‖

≤ (1 + δ)(λ̃+ λ̃m)Γp(LS , S)‖X(β̂ − β)‖‖ε‖ − δ(λ̃+ λ̃m)p(β̂S − β)‖ε‖
+σcu‖β̂ − β̈‖‖β − β̈‖‖ε‖.

Noticing that

2〈X(β̂ − β̈), X(β̂ − β)〉 = ‖X(β̂ − β̈)‖2 − ‖X(β − β̈)‖2 + ‖X(β̂ − β)‖2,

2(1 + δ)|(λ̃+ λ̃m)Γp(LS , S)‖X(β̂ − β)‖‖ε‖ ≤
(

(1 + δ)(λ̃+ λ̃m)Γp(LS , S)
)2
‖ε‖+ ‖X(β̂ − β)‖2,

we get

‖X(β̂ − β̈)‖2 + 2δ
(

(λ̂− λ̃m)pS̄(β̂S̄) + (λ̃+ λ̃m)p(β̂S − β)
)
‖ε‖

≤ ‖X(β − β̈)‖2 + (1 + δ)2(λ̃+ λ̃m)2Γ2
p(LS , S)‖ε‖2 + 2σcu‖β̂ − β̈‖‖β − β̈‖‖ε‖.

Therefore the oracle inequality holds and this completes the proof.
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