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Abstract

We study the problem of globally recovering a dictionary from a set of signals via `1-
minimization. We assume that the signals are generated as i.i.d. random linear combina-
tions of the K atoms from a complete reference dictionary D∗ ∈ RK×K , where the linear
combination coefficients are from either a Bernoulli type model or exact sparse model. First,
we obtain a necessary and sufficient norm condition for the reference dictionary D∗ to be
a sharp local minimum of the expected `1 objective function. Our result substantially ex-
tends that of Wu and Yu (2018) and allows the combination coefficient to be non-negative.
Secondly, we obtain an explicit bound on the region within which the objective value of the
reference dictionary is minimal. Thirdly, we show that the reference dictionary is the unique
sharp local minimum, thus establishing the first known global property of `1-minimization
dictionary learning. Motivated by the theoretical results, we introduce a perturbation
based test to determine whether a dictionary is a sharp local minimum of the objective
function. In addition, we also propose a new dictionary learning algorithm based on Block
Coordinate Descent, called DL-BCD, which is guaranteed to decrease the obective func-
tion monotonically. Simulation studies show that DL-BCD has competitive performance
in terms of recovery rate compared to other state-of-the-art dictionary learning algorithms
when the reference dictionary is generated from random Gaussian matrices.
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1. Introduction

Dictionary learning is a class of unsupervised learning algorithms that learn a data-driven
representation from signals such as images, speech, and video. It has been widely used in
many applications ranging from image imputation to texture synthesis (Rubinstein et al.,
2010; Mairal et al., 2009a; Peyré, 2009). Compared to pre-defined dictionaries, data-driven
dictionaries can extract meaningful and interpretable patterns from scientific data (Ol-
shausen and Field, 1996, 1997) and exhibit enhanced performance in blind source separa-
tion, image denoising and matrix completion. See, e.g., Zibulevsky and Pearlmutter (2001);
Kreutz-delgado et al. (2003); Lesage et al. (2005); Elad and Aharon (2006); Aharon et al.
(2006); Mairal et al. (2009b); Qiu et al. (2014) and the references therein. Dictionary learn-
ing is also closely related to Non-negative Matrix Factorization (NMF) (Lee and Seung,
2001) which has broad applications in biology (Brunet et al., 2004; Wu et al., 2016).

Despite many successful applications, dictionary learning formulations and algorithms
are generally hard to analyze due to their non-convex nature. With different initial inputs, a
dictionary learning algorithm typically outputs different dictionaries as a result of this non-
convexity. For those who use the dictionary as a basis for downstream analyses, the choice
of the dictionary may significantly impact the final conclusions. Therefore, it is natural to
ask the following questions: can dictionary learning algorithms recover the “ground-truth”
dictionary if there is one? Among the many outputs from a dictionary learning algorithm,
which one should be selected for further analysis?

To answer the above questions, we need to understand the theoretical properties of
dictionary learning under generative models. In a number of recent works, the signals
are generated as linear combinations of the columns of a reference dictionary (Gribonval
and Schnass, 2010; Geng et al., 2014; Gribonval et al., 2015). Specifically, denoting by
D∗ ∈ Rd×K the reference dictionary and x(i) ∈ Rd, i = 1, . . . , n the signal vectors, we have:

x(i) ≈D∗α(i), (1)

where α(i) ∈ RK denotes the sparse coefficient vector. If K = d and D∗ is full rank,
the dictionary is called complete. If the matrix has more columns than rows, i.e., K > d,
the dictionary is overcomplete. Under the model (1), for any reasonable dictionary learning
objective function, the reference dictionaryD∗ ought to be equal or close to a local minimum.
This wellposedness requirement, also known as local identifiability of dictionary learning,
turns out to be nontrivial. For a complete dictionary and noiseless signals, Gribonval and
Schnass (2010) studies the following `1-minimization formulation:

minimizeD,{β(i)}ni=1

n∑
i=1

‖β(i)‖1. (2)

subject to ‖Dj‖2 ≤ 1, j = 1, . . . ,K,

x(i) = Dβ(i), i = 1, . . . , n.

They proved a sufficient condition for local identifiability under the Bernoulli-Gaussian
model. A more refined analysis by Wu and Yu (2018) gave a sufficient and almost necessary
condition. The sufficient local identifiability condition in Gribonval and Schnass (2010) was
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extended to the over-complete case (Geng et al., 2014) and the noisy case (Gribonval et al.,
2015).

As most of dictionary learning formulations are nonconvex, local identifiability alone
does not guarantee that the output dictionary is the reference dictionary — the initial
dictionary must also be quite close to the reference dictionary. There are only limited
results on how to choose an appropriate initialization. For example, Arora et al. (2015)
showed that their initialization algorithm guarantees that the output dictionary is within a
small neighborhood of the reference dictionary when certain µ-incoherence condition is met.
In practice, initialization is usually done by using a random matrix or randomly selecting
a sample of signals (Mairal et al., 2014). These algorithms are typically run for multiple
times and the dictionary that achieves the smallest objective value is selected.

The difficulty of initialization is a major challenge of establishing the recovery guarantee
that under some generative models, the output dictionary of an algorithm is indeed the ref-
erence dictionary. This motivates the study of global identifiability. There are two versions
of global identifiability. For the first version, we say that the reference dictionary D∗ is
globally identifiable with respect to an objective function L(·) if D∗ is a global minimum
of L. The second and stricter version, requires all local minima of L are the same as D∗

up to column sign changes and permutation. If the second version of global identifiability
holds, all local minima are global minimum. Thus any algorithm capable of converging to
a local minimum will also recover the reference dictionary. For some matrix decomposition
tasks such as low rank PCA (Srebro and Jaakkola, 2003) and matrix completion (Ge et al.,
2016), despite the fact that the objective function is non-convex, the stricter version of
global identifiability holds under certain conditions. For dictionary learning, several papers
proposed new algorithms with theoretical recovery guarantees that ensure the output is
close or equal to the reference dictionary. For the complete and noiseless case, Spielman
et al. (2013) proposed a linear programming based algorithm that provably recovers the
reference dictionary when the coefficient vectors are generated from a Bernoulli Gaussian
model and contain at most O(

√
K) nonzero elements. Sun et al. (2017a,b) improved the

sparsity tolerance to O(K) using a Riemannian trust region method. For over-complete
dictionaries, Arora et al. (2014b) proposed an algorithm which performs an overlapping
clustering followed by an averaging algorithm or a K-SVD type algorithm. Additionally,
there is another line of research that focuses on the analysis of alternating minimization
algorithms, including Agarwal et al. (2013, 2014); Arora et al. (2014a, 2015); Chatterji
and Bartlett (2017). Barak et al. (2014) proposed an algorithm based on sum-of-square
semi-definite programming hierarchy and proved its desirable theoretical performance with
relaxed assumptions on coefficient sparsity under a series of moment assumptions.

1.1. Our contributions

Despite numerous studies of global recovery in dictionary learning, there are no global
identifiability results for the `1-minimization problem. As we illustrate in Section 3, the ref-
erence dictionary may not be the global minimum even for a simple data generation model.
This motivates us to consider a different condition to distinguish the reference dictionary
from other local minima. We show that the reference dictionary is the unique “sharp” local
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minimum (see Definition 1) of the `1 objective function when certain conditions are met –
in other words, there are no other sharp local minima than the reference dictionary.

Based on this new characterization and the observation that a sharp local minimum is
more resilient to small perturbations, we propose a method to empirically test the sharpness
of the objective function at a given dictionary. Furthermore, we also design a new algorithm
to solve the `1-minimization problem using Block Coordinate Descent (DL-BCD) and the
re-weighting scheme inspired by Candes et al. (2008). Our simulations demonstrate that
the proposed method compares favorably with other state-of-the-art algorithms in terms of
recovery rate if the reference dictionary is generated from random Gaussian matrices.

Our work differs from other recent studies in two main aspects. Firstly, instead of
proposing new dictionary learning formulations, we study the global property of the exist-
ing `1-minimization problem that is often considered difficult in previous studies (Mairal
et al., 2009b; Wu and Yu, 2018). While there are many dictionary learning algorithms that
do not rely on the `1-type penalty, formulations with `1 penalties remain as the most fre-
quently used method in many applications due to their good practical performance and the
availability of efficient algorithms (Mairal et al., 2009b,a). The theoretical understanding of
`1-minimization is therefore of interest to a wider audience than other dictionary learning
methods. Secondly, our data generation models are novel and cover several important cases
not studied by prior works, e.g., non-negative linear coefficients. Even though there is a line
of research that focuses on non-negative dictionary learning in the literature (Aharon et al.,
2005; Hoyer, 2002; Arora et al., 2014a), the reference dictionary and the corresponding
coefficients therein are both non-negative. In comparison, we allow the dictionary to have
arbitrary values but only constrain the reference coefficients to be non-negative. This non-
negative coefficient case is difficult to analyze and does not satisfy the recovery conditions
in previous studies, for instance Barak et al. (2014); Sun et al. (2017a,b).

The rest of this paper is organized as follows. Section 2 introduces notations and basic
assumptions. Section 3 presents main theorems and discusses their implications. Section
4 proposes the sharpness test and the block coordinate descent algorithm for dictionary
learning (DL-BCD). Simulation results are provided in Section 5. We conclude our results
and discuss possible extensions in Section 6.

2. Preliminaries

For a vector w ∈ Rm, denote its j-th element by wj . For an arbitrary matrix A ∈ Rm×n,
let A[k, ], Aj , Ak,j denote its k-th row, j-th column, and the (k, j)-th element respectively.
Denote by A[k,−j] ∈ Rn−1 the k-th row of A without its j-th entry. Let I ∈ RK×K denote
the identity matrix of size K and for k ∈ {1, . . . ,K}, Ik denotes I’s k-th column, whose k-th
entry is one and zero elsewhere. 1 ∈ RK×1 denotes a column vector whose elements are
all ones. For a positive semi-definite square matrix X ∈ RK×K , X1/2 denotes its positive
semi-definite square root. We use ‖ · ‖ to denote vector norms and |||·||| to denote matrix
(semi-)norms. In particular, |||·|||F denotes the Frobenius norm, whereas |||·|||2 denotes the
spectral norm. For any two real functions w(t), q(t) : R → R, we denote w(t) = Θ(q(t)) if

there exist constants c1, c2 > 0 such that for any t ∈ R, c1 <
w(t)
q(t) < c2. If q(t) > 0 and

limq(t)→0
w(t)
q(t) = 0, then we write w(t) = o(q(t)). Define the indicator and the sign functions
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as

1(x = 0) =

{
1 x = 0
0 x 6= 0

, sign(x) =


1 x > 0
0 x = 0
−1 x < 0

.

2.1. The `1 dictionary learning objective

In dictionary learning, a dictionary is represented by a matrix D ∈ Rd×K . We call a column
of the dictionary matrix an atom of the dictionary. In this paper, we consider complete
dictionaries, that is, the dictionary matrix is square (K = d) and invertible. Note that
for the noiseless case, an undercomplete dictionary (K < d) can always be reduced to a
complete dictionary by removing certain rows. A complete or undercomplete dictionary
matrix is typically used in applications such as Independent Component Analysis (Comon,
1994) and Non-negative Matrix Factorization (Lee and Seung, 2001; Brunet et al., 2004;
Wu et al., 2016).

For a complete dictionary D, define L as the `1 objective function:

L(D) =
1

n

n∑
i=1

‖β(i)‖1. where β(i) = D−1x(i) ∀ i ∈ 1, . . . , n. (3)

The `1-minimization formulation (2) is equivalent to the following optimization problem
(Wu and Yu, 2018):

minimizeD∈B(RK)L(D), (4)

where B(RK) is the set of all feasible dictionaries:

B(RK) ,
{
D ∈ RK×K

∣∣∣‖D1‖2 = . . . = ‖DK‖2 = 1, rank(D) = K
}
.

2.2. Generative models

Let D∗ ∈ B(RK) be the reference dictionary of interest. We assume that the signal vector
x ∈ RK is generated from a linear model without noise: x = D∗α, where α ∈ RK is
a random reference coefficient vector. Below, we will introduce two classes of generative
models for α: Bernoulli type models and exact sparse models.

• Bernoulli type model B(p1, . . . , pK ; f). Let z ∈ RK be a random vector whose prob-
ability density function exists and is denoted by f . Let ξ ∈ {0, 1}K be a random
boolean vector. The coordinates of ξ are independent and ξj is a Bernoulli random
variable with success probability P (ξj = 1) = pj ∈ (0, 1). Define α ∈ RK such
that αj = ξjzj for all j. We say that α is generated from the Bernoulli type model
B(p1, . . . , pK ; f).

• Exact sparse model S(s; f). Let z ∈ RK be a random vector whose probability density
function exists and is denoted by f . Let S be a size-s subset uniformly drawn from
all size-s subsets of 1, . . . ,K. Let ξ ∈ {0, 1}K be a random variable such that ξj = 1
if j ∈ S otherwise 0. Define α ∈ RK such that αj = ξjzj for all j. We say that α is
generated from the exact sparse model S(s; f).
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These two classes can be viewed as natural extensions of Bernoulli Gaussian models
and sparse Gaussian models, which have been extensively studied in dictionary learning
(Gribonval and Schnass, 2010; Wu and Yu, 2018; Schnass, 2015, 2014). Denote byN (0, Ik×k)
the k-dimensional standard Gaussian distribution:

• Bernoulli Gaussian model. If α is generated from the Bernoulli type model with
parameters pj = p (p > 0) for all j and f = N (0, Ik×k), we say that α follows a
Bernoulli Gaussian model with parameter p, or BG(p).

• Sparse Gaussian model. If α is generated from the exact sparse model with sparsity
parameter s and f = N (0, Ik×k), we say that α follows the sparse Gaussian model
with parameter s, or SG(s).

Remarks: The advantage of using sparse Gaussian and Bernoulli Gaussian distributions
is that they are simple and yet capable of capturing the most important characteristic
of the reference coefficients: sparsity. By using sparse Gaussian and Bernoulli Gaussian
distributions, Wu and Yu (2018) obtains a sufficient and almost necessary condition for
local identifiability. Take sparse Gaussian distribution as an example: let the maximal

collinearity µ of the reference dictionary D∗ be µ = maxi 6=j

∣∣∣D∗i TD∗j ∣∣∣ and s be the sparsity

of the reference coefficient vector in the sparse Gaussian model. They show that local
identifiability holds when µ < K−s√

s(K−1)
. From the formula, we can see a trade-off between

the maximal collinearity µ and the sparsity of the coefficient vector s. If the coefficient is
very sparse, i.e., s � K, local identifiability holds for a wide range of µ. Otherwise, local
identifiability holds for a narrower range of µ. While sparse/Bernoulli Gaussian models can
be used to illustrate this trade-off, they are rather restrictive for real data. Several papers
(Spielman et al., 2013; Arora et al., 2014a,b, 2015; Gribonval et al., 2015) studied more
general models such as sub-Gaussian models.

Other important examples include models with z drawn from the Laplacian distribution
or a non-negative distribution. In particular, the non-negativity of the coefficients breaks
the popular zero expectation assumption Eαj = 0 (Gribonval and Schnass, 2010; Gribonval
et al., 2015).

• Sparse Laplacian model. If α is generated from the exact sparse model with sparsity
parameter s and density f(z) = 1

2K
exp(−‖z‖1), we say that α follows the sparse

Laplacian model with parameter s, or SL(s).

• Non-negative Sparse Gaussian model. A random vector α is said to be drawn from
a non-negative sparse Gaussian model with parameter s, denoted by |SG(s)|, if for
j = 1, . . . ,K, αj = |α′j | where α′ ∼ SG(s).

2.3. Identifiability of the reference dictionary

In this subsection, we introduce commonly used terminologies in dictionary learning with
respect to the identifiability of the reference dictionary.
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• Sign-permutation ambiguity. In most dictionary learning formulations, the order of
the dictionary atoms as well as their signs do not matter. Let P ∈ RK×K be a
permutation matrix and Λ ∈ RK×K a diagonal matrix with ±1 diagonal entries. The
matrix D′ = DPΛ and D essentially represent the same dictionary but D′ 6= D
element-wise.

• Local identifiability. The reference dictionary D∗ ∈ B(RK) is locally identifiable with
respect to L if D∗ is a local minimum of L. Local identifiability is a minimal require-
ment for recovering the reference dictionary. It has been extensively studied under a
variety of dictionary learning formulations (Gribonval and Schnass, 2010; Geng et al.,
2014; Gribonval et al., 2015; Wu and Yu, 2018; Agarwal et al., 2014; Schnass, 2014).

• Global identifiability. The reference dictionary D∗ ∈ B(RK) is globally identifiable
with respect to L if D∗ is a global minimum of L.

Clearly, whether local or global identifiability holds depends on the objective function
and the signal generation model. If the objective function is `0, i.e., 1

n

∑
i ‖D−1x(i)‖0,

and the linear coefficients are generated from the Bernoulli Gaussian model, the reference
dictionary is globally (and hence locally) identifiable (see Theorem 3 in Spielman et al.
(2013)). However, for the `1 objective considered in this paper, global identifiability might
not hold. In Section 3, we give an example where the reference dictionary is only a local
minimum but not a global minimum.

In this paper, we consider a variant of global identifiability: instead of the global mini-
mum, we require the reference dictionary D∗ to be the unique sharp local minimum of the
dictionary learning objective function. In other words, no dictionary other than D∗ is a
sharp local minimum. Other dictionaries can still be local minima but cannot be sharp at
the same time. This property allows us to globally distinguish the reference dictionary from
other spurious local minima and can be used as a criterion to select the best dictionaries
from a set of algorithm outputs. Sharp local minimum, as per Definition 1, is a common
concept in the field of optimization (Dhara and Dutta, 2011; Polyak, 1979). However, to
the best of our knowledge, we are the first to connect dictionary learning theory with sharp
local minimum and use it to distinguish the reference dictionary from other spurious local
minima.

Definition 1 (Sharp local minimum) Let L(D) : B(RK) → R be a dictionary learning
objective function. A dictionary D0 ∈ B(RK) is a sharp local minimum of L(·) with sharp-
ness ε (Polyak, 1979) if there exists δ > 0 such that for any D ∈ {D : |||D −D0|||F < δ}:

L(D)− L(D0) ≥ ε|||D −D0|||F + o(|||D0 −D|||F ).

Remarks: The definition here can be viewed as a matrix analog of the sharp minimum in
the one dimensional case. For a function f : R → R, v0 is a sharp local minimum of f is
f(v) − f(v0) ≥ ε|v − v0| + o(|v − v0|). Note that the definition of sharp local minimum is
different from the definition of strict local minimum, which means there are no other local
minima in its neighborhood. A sharp local minimum is always a strict local minimum but
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Figure 1: Both exact sparse models and Bernoulli type models satisfy Assumption I and
II. Sparse Gaussian distribution is a special case of exact sparse models, while
Bernoulli Gaussian distribution is a special case of Bernoulli type models.

not vice versa. For example, consider `q functions |x|q for q > 0. When q ≤ 1, x = 0 is a
strict local minimum as well as a sharp local minimum of `q. When q > 1, x = 0 is still a
strict local minimum but not a sharp local minimum. This definition is also different from
the sharp local minimum concepts that are commonly used in the study of artificial neural
networks and stochastic gradient descent (Hochreiter and Schmidhuber, 1997).

2.4. Technical assumptions

In this subsection, we introduce two important technical assumptions that will be used in
our theoretical analysis. All the models introduced in Section 2.2 satisfy these assumptions.
Their relationship is depicted in Fig. 1.

We need additional notations before introducing the assumptions. For any D ∈ B(RK),
define M(D) = DTD as the collinearity matrix of D. For example, if the dictionary is an
orthogonal matrix, M(D) = I is the identity matrix. If all the atoms in the dictionary are
collinear with constant µ > 0, then M(D) = µ11T + (1−µ)I is a matrix whose off-diagonal
elements are all µ’s. When the context is clear, we use M instead of M(D) for notation
ease. Denote by M∗ the collinearity matrix for the reference dictionary D∗. Also, define
the matrix B(α,M) ∈ RK×K as

(B(α,M))k,j , Eαjsign(αk)−Mj,kE|αj | for k, j = 1, . . . ,K.

Here the expectation is with respect to the random coefficient vector α. By the definition
of B(α,M∗), the quantity is the difference between two matrices

B(α,M∗) = B1(α)−B2(α,M∗),

where (B1(α))k,j = Eαjsign(αk) and B2(α,M∗)k,j = M∗j,kE|αj |. Roughly speaking, the
first matrix measures the “correlation” between different coordinates of the coefficients while
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the second matrix measures the collinearity of the atoms in the reference dictionary. For
instance, when the coordinates of α are independent and mean zero, B1(α) = 0. When all
atoms in the dictionary are orthogonal, i.e., M∗ = I, B2(α,M∗) = 0. In that extreme case,
B(α,M) = 0.

For any random vector α, define the semi-norm |||·|||α induced by α as:

|||A|||α ,
K∑
k=1

E|
K∑
j=1

Ak,jαj |1(αk = 0).

Note that the subscript α in |||·|||α is used to indicate the dependence on the distri-
bution of α. |||·|||α is a semi-norm but not a norm because |||A|||α = 0 does not im-
ply A = 0. Actually, for any nonzero diagonal matrix A 6= 0, |||A|||α = 0 because∑K

k=1 E|Ak,kαk|1(αk = 0) = 0. Note that the reason why we define B and |||·|||α this
way is because these quantities appear naturally in the first order optimality condition of
`1-minimization. Hopefully, the motivation of defining these definitions will become clear
later.

Assumption I (Regular data-dependent norm) |||·|||α is cα-regular: There exists a
number cα > 0, dependent on the distribution of α, such that for any matrix A ∈ HK ,
where HK = {A ∈ RK×K | Ai,i = 0 for all 1 ≤ i ≤ K}, |||A|||α is bounded below by A’s
Frobenious norm: |||A|||α ≥ cα|||A|||F .

Note that similar to |||·|||α, we use the subscript α in cα to indicate that the quantity cα
depends on the distribution of α. Assumption I has several implications. First, it ensures
that the coefficient vector α does not lie in a linear subspace of RK . Otherwise, we can make
rows of A orthogonal to α and show that |||·|||α is not regular. Second, it also guarantees
that the coefficient vector α must have some level of sparsity. To see why this is the case,
suppose there exists some coordinate k′ such that the coefficient αk′ 6= 0 almost surely.
We can then construct A such that all of its elements are zero except the k′-th row. Thus,
|||A|||α = E|

∑K
j=1Ak′,jαj |1(αk′ = 0) = 0, but |||A|||F > 0. Third, if we define the dual

(semi-)norm of |||·|||α in the subspace HK as

|||X|||∗α = sup
A 6=0,A∈HK

tr(XTA)

|||A|||α
, for X ∈ RK×K ,

the regularity of |||·|||α implies that the corresponding dual semi-norm is bounded above
by the Frobenius norm. To see this, simply note that |||X|||∗α ≤

1
cα
|||X|||F with the above

definition. Assumption I is crucial for the study of the local identifiability property. As can
be seen later in Theorems 4 and 5, regularity of |||·|||α is indispensable in determining the
sharpness of the local minimum corresponding to the reference dictionary D∗ as well as the
bounding region.

Assumption II (Probabilistic linear independence) For any fixed constants c1, . . . , cK ∈
R, the following statement holds almost surely

K∑
l=1

clαl = 0 =⇒ clαl = 0 ∀ l = 1, . . . ,K,
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or equivalently, for any fixed c1, . . . , cK ,

P

(
K∑
l=1

clαl = 0,

K∑
l=1

c2
lα

2
l > 0

)
= 0.

Assumption II controls the sparsity of any coefficient vector β under a general dictionary
D. For the noiseless signal x = D∗α, its j-th coefficient under a dictionary D can be
written as a linear combination of reference coefficients αl: βj = D−1[j, ]D∗α =

∑K
l=1 clαl

where cl = D−1[j, ]D∗l for l = 1, . . . ,K. Thus, Assumption II implies that under any
general dictionary, the resulting coefficient βj is zero if and only if for each l, either the
reference coefficient is zero (αl = 0) or the corresponding constant is zero (cl = 0). In other
words, elements in the reference coefficient vector cannot “cancel” with each other unless
all the elements are zeros. This assumption seems very similar to the linear independence
property of random variables (Rodgers et al., 1984): Random variables ψ1, . . . , ψK are
linearly independent if c1ψ1 + . . . + cKψK = 0 a.s. implies c1 = c2 = · · · = cK = 0. It is
worth pointing out that Assumption II is a weaker assumption than linear independence.
Many distributions of interest, such as Bernoulli Gaussian distributions, are not linearly
independent but satisfy Assumption II (Proposition 3). This assumption is essential when
we study the uniqueness of the sharp local minimum in Theorem 8.

In the following propositions, we show that both Bernoulli type models and exact sparse
models satisfy Assumption I and II.

Proposition 2 The norm |||·|||α induced by exact sparse models or Bernoulli type models
satisfy Assumption I. The regularity constant has explicit form when the coefficient is from
SG(s) or BG(p):

• If α is from SG(s), the norm |||·|||α is cs-regular, where cs ≥ s(K−s)
K(K−1)

√
2
π .

• If α is from BG(p), the norm |||·|||α is cp-regular, where cp ≥ p(1− p)
√

2
π .

Proposition 3 If the coefficient vector is generated from a Bernoulli type model or an
exact sparse model, Assumption II holds.

Remarks: Although those assumptions are quite general, certain distributions considered
in other papers do not satisfy our assumptions. A key requirement in Bernoulli type or
exact sparse models is that the probability density function of the base random variable z
must exist. For instance, the Bernoulli Randemacher model (Spielman et al., 2013) does
not satisfy Assumption II. To see this, take the following Bernoulli Randemacher model for
K = 2 as an example: suppose ξ ∈ {0, 1}2 where P (ξ1 = 1) = p1, P (ξ2 = 1) = p2. The
base random vector z ∈ {−1, 1}2 with P (z1 = 1) = P (z2 = 1) = 1/2. If we take c1 = 1
and c2 = −1, P (c1α1 + c2α2 = 0, c1α1 6= 0, c2α2 6= 0) = P (α1 − α2 = 0, ξ1 6= 0, ξ2 6= 0) =
P (ξ1 = 1, ξ2 = 1, z1 = z2) = p1 · p2/2 > 0. Therefore, Assumption II does not apply in this
case.
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3. Main Theoretical Results

Similar to Wu and Yu (2018), we first study the following optimization problem:

minimize
D

EL(D) = E‖D−1x‖1 (5)

subject to D ∈ B(RK)

Here, the notation E is the expectation with respect to x = D∗α under a probabilistic
model for α. Therefore, this optimization problem is equivalent to the case when we have
infinite number of samples. As we shall see, the analysis of this population level problem
gives us significant insights into the identifiability properties of dictionary learning. We also
consider the finite sample case (4) in Theorem 9.

3.1. Local identifiability

In this subsection, we will establish a sufficient and necessary condition for the reference
dictionary to be a sharp local minimum.

Theorem 4 (Local identifiability) Suppose |||·|||α is cα-regular (see Assumption I) and
the `1 norm of the reference coefficient vector α has bounded first order moment: E‖α‖1 <
∞. D∗ is a sharp local minimum of Formulation (5) with sharpness at least cα√

2|||D∗|||22
(1−

|||B(α,M∗)|||∗α) if and only if
|||B(α,M∗)|||∗α < 1. (6)

If |||B(α,M∗)|||∗α > 1, D∗ is not a local minimum.

Remarks: Wu and Yu (2018) studied the local identifiability problem when the coefficient
vector α is from Bernoulli Gaussian or sparse Gaussian distributions. They gave a sufficient
and almost necessary condition that ensures the reference dictionary to be a local minimum.
Theorem 4 substantially extends their result in two aspects:

• The reference coefficient distribution can be exact sparse models and Bernoulli type
models, which is more general than sparse/Bernoulli Gaussian models.

• In addition to showing that the reference dictionary D∗ is a local minimum, we show
that D∗ is actually a sharp local minimum with an explicit bound on the sharpness.

To prove Theorem 4, we need to calculate how the objective function changes along
any direction in the neighborhood of the reference dictionary. The major challenge of this
calculation is that the objective function is neither convex nor smooth, which prevents us
from using sub-gradient or gradient to characterize its local structure. Instead, we obtain a
novel sandwich-type inequality of the `1 objective function (Lemma 19). With the help of
this inequality, we are able to carry out a more fine-grained analysis of the `1-minimization
objective. The detailed proof of Theorem 4 can be found in the Appendix 10.

Theorem 4 gives the condition under which the reference dictionary is a sharp local
minimum. The below Theorem 5 gives an explicit bound of the size of the region. To the

11
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best of authors’ knowledge, this is the first result about the region where local identifiability
holds for `1-minimization.

Theorem 5 Under notations in Theorem 4, if |||B(α,M∗)|||∗α < 1, for any D in the set

S =

{
D ∈ B(RK)

∣∣∣|||D|||2 ≤ 2|||D∗|||2, |||D −D
∗|||F ≤

(1− |||B(α,M∗)|||∗α) · cα
8
√

2|||D∗|||22 maxj E|αj |

}
,

we have EL(D) ≥ EL(D∗).

Remarks: First of all, note that the set S we study here is different from what Agarwal
et al. (2014) called the “basin of attraction”. The basin of attraction of an iterative al-
gorithm is the set of initialization dictionaries under which the algorithm converges to the
reference dictionary D∗. For an iterative algorithm that decreases its objective function at
each step, its basin of attraction must be a subset of the region within which D∗ has the
minimal objective value. Secondly, Theorem 5 only tells us that D∗ admits the smallest
objective function value within the set S. It does not, however, indicates that D∗ is the
only local minimum within S.

For certain generative models, the conditions in Theorem 4 and 5 can be made more
explicit to compare with other local identifiability results. In what follows, we will study two
examples to gain a better understanding of those conditions. These examples demonstrate
the trade-off between coefficient sparsity, collinearity of atoms in the reference dictionary
and signal dimension K. For simplicity, we set the reference dictionary to be the constant
collinearity dictionary with coherence µ > 0: D∗(µ) = ((1 − µ)I + µ11T )1/2 where 11T ∈
RK×K is a square matrix whose elements are all ones. This simple dictionary class was used
to illustrate the local identifiability conditions in Gribonval and Schnass (2010) and Wu and
Yu (2018). The coherence parameter µ controls the collinearity between dictionary atoms.
By studying this class of reference dictionaries, we can significantly simplify the conditions
and demonstrate how the coherence µ affects dictionary identifiability.

Corollary 6 Suppose the reference dictionary D∗ is a constant collinearity dictionary with
coherence µ > 0: D∗(µ) = ((1 − µ)I + µ11T )1/2 , and the reference coefficient vector α is
from SG(s). If and only if

µ
√
s <

K − s
K − 1

,

D∗ is a sharp local minimum with sharpness at least s√
π(1+µ(K−1))K

(
K−s
K−1 − µ

√
s
)

. For
any

D ∈ S =

{
D ∈ B(RK)

∣∣∣|||D|||2 ≤ 2
√

1 + µ(K − 1), |||D −D∗|||F ≤
K−s
K−1 − µ

√
s

8
√

2(1 + µ(K − 1))

}
,

we have EL(D) ≥ EL(D∗).

Three parameters play important roles for the reference dictionary to be a sharp local
minimum: dictionary coherence µ, sparsity s and dimension K. Since µ

√
s − K−s

K−1 is a

12
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monotonically increasing function with respect to µ and s, local identifiability holds when
the dictionary is close to an orthogonal matrix and the coefficient vector is sufficiently
sparse. Another important observation is that µ

√
s − K−s

K−1 is monotonically decreasing as
K increases. Thus, given that the number of nonzero elements per signal s is fixed, it is
easier for the local identifiability condition to hold for larger K. If K tends to infinity, the
condition becomes s < 1√

µ . Also, the set S shrinks as s or µ increases, implying that the

region is smaller when the coefficients are less sparse or the dictionary has higher coherence.

When µ = 0, the set S becomes
{
D ∈ B(RK)

∣∣∣|||D|||2 ≤ 2, |||D −D∗|||F ≤
1

8
√

2
K−s
K−1

}
.

Next, we consider non-negative sparse Gaussian distribution in the following example.
Since we do not have the explicit form of the regularity constant cα for non-negative sparse
Gaussian distribution, we omit the corresponding results for the sharpness and the region
bound.

Corollary 7 Suppose the reference dictionary is a constant collinearity dictionary with
coherence µ > 0: D∗(µ) = ((1 − µ)I + µ11T )1/2, and the reference coefficient vector α is
from non-negative sparse Gaussian distribution |SG(s)|. If∣∣∣µ− s− 1

K − 1

∣∣∣ < K − s
K − 1

,

D∗ is a sharp local minimum.

Note that the condition K−1
K−s ·

∣∣∣µ− s−1
K−1

∣∣∣ < 1 is equivalent to 2s−K−1
K−1 < µ < 1. When K

tends to infinity, the reference dictionary is a local minimum for µ < 1. Compared to the
same bound from Corollary 6, µ < 1√

s
for large K, the bound for non-negative coefficients

is less restrictive. Therefore, the non-negativity of the coefficient distribution relaxes the
requirement for local identifiability.

Results for other interesting examples, such as Bernoulli Gaussian coefficients and sparse
Laplacian coefficients, can be found in the Appendix 8.

3.2. Global identifiability

For `1-minimization, multiple local minima exist: as a result of sign-permutation ambiguity,
if D is a local minimum, for any permutation matrix P and any diagonal matrix Λ with
diagonal elements ±1, DPΛ is also a local minimum. These local minima are benign in
nature since they essentially refer to the same dictionary. Can there be other local minima
than the benign ones? If so, how can we distinguish benign local minima from them? In
this subsection, we consider the problem of global identifiability. First, we give a counter-
example to show that the reference dictionary is not necessary a global minimum of the
`1-minimization problem even for orthogonal dictionary and sparse coefficients.

Counter-example on global identifiability. Suppose the reference dictionary is the
identity matrix I ∈ R2×2. The coefficients are generated from a Bernoulli-type model
α ∈ R2 such that αi = ziξi for i = 1, 2, where ξ1 and ξ2 are Bernoulli variables with success
probability 0.67, and (z1, z2) is drawn from the below Gaussian mixture model:

1

2
N
(

0,

(
101 −99
−99 101

))
+

1

2
N
(

0,

(
101 99
99 101

))
.
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Figure 2: The empirical data (Left) and the objective surface plot (Middle). We param-
eterize a candidate dictionary as D = (a1, a2), where a1 = (cos(θ1), sin(θ1)),
a2 = (cos(θ2), sin(θ2)). The objective of D is defined as in (3). Green dots/lines
indicate global minima, whereas red dots/lines are the reference dictionary or its
sign-permutation equivalents. The Right figure shows the objective curve for all
orthogonal dictionaries (θ1− θ2 = π/2). While the reference dictionary is a sharp
local minimum, it is not a global minimum.

We generate 2000 samples from the model and compute the dictionary learning objective
L(·) defined in (3) for each candidate dictionary (Fig. 2). As can be seen from the objective
function surface plot, the global minimum for this data set is not the reference dictionary.
Furthermore, one can show that the global minimum is not sharp, i.e., the directional
derivative along certain directions at the global minimum is close to zero for finite samples
and exactly zero for the population case.

The above example shows a potential drawback of directly minimizing the `1 objective
compared to other objectives such as `0. For the `0 objective, under certain Bernoulli
Gaussian models, the reference dictionary is a global minimum (Spielman et al., 2013) and
even in our counter-example, which is not Bernoulli Gaussian, the reference dictionary can
still be shown to be a global minimum. Still, the computation complexity of the `0 objective
remains too high to switch from `1. To remedy this drawback of `1, we observe that in the
above example, although the reference dictionary is not a global minimum, it is still a sharp
local minimum and there is no other sharp local minimum. Therefore there is hope that
we can combine the `1 objective and a “sharpness” test to recover the reference dictionary.
Is this observation true for general cases? The answer is yes. The following theorem shows
that the reference dictionary is the unique sharp local minimum of `1-minimization up to
sign-permutation.

Theorem 8 (Unique sharp local minimum) Suppose the reference coefficient vector α
satisfies probabilistic linear independence (see Assumption II). If D∗ is a sharp local mini-
mum of Formulation (5), it is the only sharp local minimum in B(RK). If it is not a sharp
local minimum, there is no sharp local minimum in B(RK).

Note that Theorem 8 works for the population case where the sample size is infinite. For
the finite sample case, we can show that the sharpness of spurious local minima is close to
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zero. Define Dε to be

Dε =
{
D ∈ B(RK)

∣∣∣D is a sharp local minimum of (4) with sharpness at least ε.
}
.

Define eig(D) to be the set of eigen-values of the matrix D. For any fixed ε > 0 and
ρ2 > ρ1 > 0, define the event A(ρ1, ρ2, ε) to be

A(ρ1, ρ2, ε) = {There exists D ∈ Dε s.t. eig(D) ⊂ (ρ1, ρ2) and

D 6= D∗ up to sign-permutation.} .

In other words, the event A represents the “bad” event that at least one of the sharp local
minima in Dε with bounded eigenvalues is not the reference dictionary. With this notation,
Theorem 8 basically shows that for the population case, the event A(ρ1 = 0, ρ2 =∞, ε = 0)
will never happen. The next theorem shows that for the finite sample case, P (A(ρ1, ρ2, ε))
is upper bounded.

Theorem 9 (Finite-sample case) Suppose n samples of x(i)’s are drawn i.i.d. from a
model satisfying probabilistic linear independence (see Assumption II) and for any i =
1 . . . n, ‖x(i)‖2 ≤ L <∞. Then for any fixed ρ2 > ρ1 > 0 and ε > 0,

P (A(ρ1, ρ2, ε)) ≤ 4 exp

(
2K

(
ln

n

2K
+ 1
)
− n

(
ρ3

1ε

2Lρ2
− 1

n

)2
)
.

In particular, P (A(ρ1, ρ2, ε))→ 0 as K
n → 0.

Remarks: Theorem 9 ensures that as K/n → 0, with high probability no dictionaries

other than D∗ are sharp local minima within a region {D ∈ B(RK)
∣∣∣eig(D) ∈ (ρ1, ρ2)}.

However, it does not tell whether or not D∗ is a sharp local minimum. For the population
case, this issue is resolved in Theorem 4, which gives a sufficient and necessary condition
for the reference dictionary to be a sharp local minimum.

4. Algorithms for checking sharpness and solving `1-minimization

As shown in the previous section, the reference dictionary is the unique sharp local minimum
under certain conditions. Here, we will design an algorithm that uses this property as a
stopping criterion for `1-minimization. If the algorithm finds a sharp local minimum, we
know that it is the reference dictionary. To do so we need to answer the following practical
questions:

• How to determine numerically if a given dictionary is a sharp local minimum?

• How to find a sharp local minimum and recover the reference dictionary?

In this section, we first introduce an algorithm to check if a given dictionary is a sharp local
minimum. We then develop an algorithm to recover the reference dictionary. The latter
algorithm is guaranteed to decrease the (truncated) `1 objective function at each iteration
(Proposition 12).
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4.1. Determining sharp local minimum

Despite the intuitive concept, checking whether a given dictionary is a sharp local minimum
can be challenging. First of all, the dimension of the problem is very high (K2). Secondly,
if a dictionary is a sharp local minimum, the objective function is not differentiable at that
point, precluding us from using gradients or Hessian matrix to solve the problem. One might
also consider using sub-gradients to minimize the objective (Bagirov et al., 2013). However,
because the problem is actually non-convex, sub-gradients might not be well-defined.

We propose a novel algorithm to address these challenges. We decompose the problem
into a series of sub-problems each of which is low-dimensional. In Proposition 10, we show
that a given dictionary is a sharp local minimum in dimension K2 if and only if certain
vectors are sharp local minima for the corresponding sub-problems of dimension K. The
objective function of each subproblem is strongly convex. To deal with non-existence of
gradient or Hessian matrix, we design a perturbation test based on the observation that a
sharp local minimum ought to be stable with respect to small perturbations. For instance,
x = 0 is the sharp local minimum of |x| but is non-sharp local minimum of x2. If we add
a linear function as a perturbation, x = 0 is still a local minimum of |x| + ε · x for any ε
such that |ε| < 1 but not so for x2 + ε · x. The choice of the perturbation is crucial. In
Proposition 10, we show that adding a perturbation to the dictionary collinearity matrix
M is sufficient. Note that perturbations to other quantities might work as well. Intuitively,
a “good” perturbation should provide enough variability along any direction. Otherwise, a
local minimum that is not sharp along certain directions might be mistakenly deemed as
sharp.

Proposition 10 The following three statements are equivalent:

1) D is a sharp local minimum of (4).

2) For any k = 1, . . . ,K, Ik is the sharp local minimum of the strongly convex optimiza-
tion:

Ik ∈ argminw E|
〈
β,w

〉
|+

K∑
h=1,h6=k

√
(wh −Mk,h)2 + 1−M2

k,h · E|βh|. (7)

subject to w = [w1, . . . , wK ] ∈ RK , wk = 1.

3) For a sufficiently small ρ > 0 and any M̃ s.t. |M̃k,h − Mk,h| ≤ ρ for any k, h =
1, . . . ,K, Ik is the local minimum of the convex optimization:

Ik ∈ argminw E|
〈
β,w

〉
|+

K∑
h=1,h6=k

√
(wh − M̃k,h)2 + 1− M̃2

k,h · E|βh|. (8)

subject to w = [w1, . . . , wK ] ∈ RK , wk = 1.

for k = 1, . . . ,K.

Proposition 10 tells us that, in order to check whether a dictionary is a sharp local minimum,
it is sufficient to add a perturbation to the matrix M = DTD and check whether the
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resulting dictionary is the local minimum of the perturbed objective function. Empirically,
we can add a random Gaussian noise with a small enough variance ρ and minimize the
objective (8). If Ik, the k-th column vector of the identity matrix, is the local minimum
for the perturbed objective, by Proposition 10 the given dictionary is guaranteed to be a
sharp local minimum. We formalize this idea into Algorithm 1. We acknowledge that this
algorithm might be conservative and misclassify a sharp local minimum as a non-sharp local
minimum if ρ is not small enough as required in Proposition 10. There is no good rule-of-
thumb in choosing ρ as it can be dependent on the data. We will explore the sensitivity of
this algorithm with respect to choice of ρ in the simulation section.

Algorithm 1 Sharp local minimum test for `1-minimization dictionary learning

Require: Dictionary to be tested D, samples x(1), . . . ,x(n), perturbation level ρ ∈ R+,
threshold T ∈ R+.
for i = 1, . . . , n do
β(i) ←D−1x(i).

end for
for j = 1, . . . ,K do

Generate εj ∼ N (0, ρ · IK×K).
D̃j = Dj + εj .

end for
for k, h = 1, . . . ,K do
M̃k,h ←

〈
D̃h, D̃k

〉
if k 6= h or 0.

end for
r ← 0
for k = 1, . . . ,K do

Solve the strongly convex optimization via BFGS:

w(k) ← minimizew

n∑
i=1

|
〈
β(i),w

〉
|+

K∑
h=1,h 6=k

√
(wh − M̃k,h)2 + 1− M̃2

k,h ·
n∑
i=1

|β(i)
h |.(9)

subject to w = [w1, . . . , wK ] ∈ RK , wk = 1.

Ik ← (0, . . . , 0, 1, 0, . . . , 0) where only the k-th element is 1.
r ← max(r, ‖w(k) − Ik‖22).

end for
if r < T then

Output D is a sharp local minimum.
else

Output D is not a sharp local minimum.
end if

The main component of Algorithm 1 is solving the strongly convex optimization (9). To
do so we use Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Witzgall and Fletcher,
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1989), which is a second order method that estimates Hessian matrices using past gradient
information. Each step of BFGS is of complexity O(nK+K2). If we assume the maximum
iteration to be a constant, the overall complexity of Algorithm 1 is O(nK2 +K3). Because
sample size n is usually larger than the dimension K, the dominant term in the complexity
is O(nK2). In the simulation section, we show that the empirical computation time is in
line with the theoretical bound.

4.2. Recovering the reference dictionary

We now try to solve formulation (4). One of the most commonly used technique in solving
dictionary learning is alternating minimization (Olshausen and Field, 1997; Mairal et al.,
2009a), which is to update the coefficients and the dictionary in an alternating fashion
until convergence. This method fails for noiseless `1-minimization: when the coefficients
are fixed, the dictionary must also be fixed to satisfy all constraints. To allow dictionaries
to be updated iteratively, researchers have proposed different ways to relax the constraints
(Agarwal et al., 2014; Mairal et al., 2014). However, those workarounds tend to have
numerical stability issues if a high precision result is desired (Mairal et al., 2014).

This motivates us to propose Algorithm 2. The algorithm uses the idea from Block
Coordinate Descent (BCD). It updates each row of D−1 and the corresponding row in the
coefficient matrix simultaneously. As we update one row of D−1, we also scale all the other
rows of D−1 by appropriate constants. This is because if we only update one row of D−1

while keeping the others fixed, columns of the resulting dictionary will not have unit norm.
The following lemma gives an admissible parameterization for updating one row of D−1.

Proposition 11 For any dictionary D ∈ B(RK) and any coordinate k ∈ 1, . . . ,K, given a
vector w = [w1, . . . , wK ] ∈ RK such that wk = 1, we can define a matrix Q ∈ RK×K :

Q[k, ] =

{
wTD−1 h = k√

(wh −Mk,h)2 + 1−M2
k,h ·D

−1[h, ] h 6= k
.

Then Q−1 ∈ B(RK), which means each column of Q−1 is of norm 1.

With the parameterization in Proposition 11, we derive the following subproblems from
`1-minimization dictionary learning: for k = 1, ...,K,

argminw

n∑
i=1

|
〈
β(i),w

〉
|+

K∑
h=1,h6=k

√
(wh −Mk,h)2 + 1−M2

k,h ·
∑
|β(i)
h |.

subject to w = [w1, . . . , wK ] ∈ RK , wk = 1.

where β(i) = D−1x(i) for a dictionary D. This new sub-problem is strongly convex, making
it relatively easy to solve. Note that this problem is exactly the same as (7) in Proposition
10. Thus the optimization problem (7) is closely related to `1-minimization dictionary learn-
ing from two different perspectives: First, the sharpness of any solution of `1-minimization
is equivalent to the sharpness of Ik for the optimization (7). Second, the optimization
problem (7) can be viewed as a subproblem of `1-minimization under an appropriate pa-
rameterization.
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A natural way to solve `1-minimization dictionary learning is to solve the above sub-
problems iteratively for each coordinate k. Similar ideas of learning a dictionary from a
series of convex programs have been explored in other papers. For example, Spielman et al.
(2013) reformulated the dictionary learning problem as a series of linear programs (LP) and
construct a dictionary from the LP solutions. Nonetheless, their algorithm is not guaranteed
to minimize the `1 objective at each iteration.

We propose a coordinate-descent-based dictionary learning Algorithm 2. It has a tuning
parameter τ , which aims at improving the performance of `1-minimization under the high
signal-to-noise ratio settings. When τ is set to be infinity, Algorithm 2 minimizes the `1
objective at each update. However, when the signal-to-noise ratio is high, `1-minimization
sometimes ends up with a low quality result. This is commonly due to the fact that the `1-
norm over-penalizes large coefficients, which breaks the local identifiability, i.e., the reference
dictionary is no longer a local minimum. Similar ideas are used in the re-weighted `1
algorithms in the field of compressed sensing (Candes et al., 2008). The motivation of re-
weighted algorithms is to reduce the bias of `1-minimization by imposing smaller penalty
to large coefficients. In our algorithm, we simply truncate coefficient entries beyond the
given threshold τ . The obtained problem is still strongly convex but this trick improves the
numerical performance significantly.

The following theorem guarantees that the proposed algorithm always decreases the
objective function value.

Proposition 12 (Monotonicity) Define

f(D) =

n∑
i=1

K∑
j=1

min
(∣∣∣D−1[j, ]x(i)

∣∣∣, τ) ,
where τ is the threshold used in Algorithm 2. Denote by D(t,K) the dictionary at the t-th
iteration from Algorithm 2. f(D(t,K)) decreases monotonically for t ∈ N: f(D(0,K)) ≥
f(D(1,K)) ≥ f(D(2,K)) . . .

5. Numerical experiments

In this section, we evaluate the proposed algorithms with numerical simulations. We will
study the empirical running time of Algorithm 1 in the first experiment and examine how the
perturbation parameter ρ affects its performance in the second. In the third experiment, we
study the sample size requirement for successful recovery of the reference dictionary. Finally,
we will compare Algorithm 2 against other state-of-the-art dictionary learning algorithms
(Parker et al., 2014a,b; Parker and Schniter, 2016). The first two less computationally
intensive simulations are run on an OpenSuSE OS with Intel(R) Core(TM) i5-5200U CPU
2.20GHz with 12GB memory, while the last two simulations are conducted in a cluster with
20 cores. The source code of the DL-BCD algorithm can be found in the github repository1.

1. https://github.com/shifwang/dl-bcd
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Algorithm 2 Dictionary Learning Block Coordinate Descent (DL-BCD)

Require: Data x(1), . . . ,x(n), threshold τ .
Initialize D(0,1), t← 0. Q← (D(0,1))−1.
while Stopping criterion not satisfied do

for j = 1, . . . ,K do
for i = 1, . . . , n do
β(i) ← Qx(i).

end for
for h = 1, . . . ,K do

mh ←
〈
D

(t,j)
h ,D

(t,j)
j

〉
.

end for
Solve the convex optimization via BFGS:

minimizew
∑
i=1..n,

|β(i)
j |<τ

|
〈
β(i),w

〉
|+

K∑
h=1,h6=j

√
(wh −mh)2 + 1−m2

h ·
∑
i=1..n,

|β(i)
h |<τ

|β(i)
h |.

subject to w = [w1, . . . , wK ] ∈ RK , wj = 1.

Update j-th row of Q: Q[j, ]← wTQ.
for h = 1, . . . ,K, h 6= j do

Q[h, ]← Q[h, ] ·
√

(wh −mh)2 + 1−m2
h.

end for
if j = K then
D(t+1,1) ← Q−1.

else
D(t,j+1) ← Q−1.

end if
end for
t← t+ 1.

end while

5.1. Empirical running time of Algorithm 1

We evaluate the empirical computation complexity of Algorithm 1. Let the reference dic-
tionary be a constant collinearity dictionary with coherence µ = 0.5, i.e.,

D∗ = (0.5I + 0.511T )1/2,

The sparse linear coefficients are generated from the Bernoulli Gaussian distribution BG(p)
with p = 0.7. This specific parameter setting ensures that the reference dictionary is not
a local minimum, thus making Algorithm 1 converge slower. For a fixed dimension, the
computation time scales roughly linearly with the sample size, while for fixed sample size,
the computation time scales quadratically with dimension K (Fig. 3). This shows that the
empirical computation complexity of Algorithm 1 is of order O(nK2), which is consistent
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Figure 3: Computation time of Algorithm 1. Left: For K = 20 and n = 500, . . . , 5000.
Right: For K = 5, . . . , 50 and n = 400.

with the theoretical complexity. Simulation results remain stable for different parameter
settings, see Appendix 9.

5.2. Sensitivity analysis of the perturbation parameter ρ

In this experiment, we test the sensitivity of Algorithm 1 by varying the perturbation
parameter ρ. We set dictionary dimension K = 20, sparsity parameter s = 10 and sam-
ple size n = 1600. Also, we consider constant collinearity dictionaries with coherence
µ = 1√

s
(K−sK−1 + 0.1) (Fig. 4 Left) and µ = 1√

s
(K−sK−1 − 0.2) (Fig. 4 Right). For the first

experiment, the reference dictionary is not a sharp local minimum of the objective function
given sufficiently large sample size. Hence a small perturbation to the dictionary results in
a large distance between the global minimum of the perturbed optimization and Ik, i.e., the
quantity r defined in Algorithm 1. In the second experiment, the reference dictionary is
sharp, indicating the distance r in Algorithm 1 should be small after adding a perturbation.
For each value of ρ between 0.05 and 0.5, we repeat the algorithm 20 times to compute
the resulting distances. When ρ is small, the distance r for the non-sharp case is very big
(around 1.0) whereas for the sharp case it remains small (around 10−12). For the sharp
case, once ρ increases beyond 0.35, r increases drastically to 10−3. This experiment shows
for a wide range of parameter ρ values (0.05 to 0.3), Algorithm 1 succeeds in distinguishing
between the sharp and not-sharp local minima. Nonetheless, there are two caveats when
using this algorithm. Firstly, the parameter ρ depends on the data generation process,
which is usually not known in practice. Thus, it is still an open question about how to
select ρ. Secondly, this algorithm is only useful for the noiseless case or when the noise is
negligible. When the noise is significant, the reference dictionary is no longer a sharp local
minimum. In that case, instead of checking the sharpness, an alternative is to check the
smallest eigen-value of the Hessian matrix. This idea has not been fully explored in this
paper and will be studied in future work.
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Figure 4: Sensitivity analysis of perturbation parameter ρ in Algorithm 1. Left: con-
stant collinearity dictionary with coherence µ = 1√

s
(K−sK−1 + 0.1); Right: constant

collinearity dictionary with coherence µ = 1√
s
(K−sK−1 − 0.2).

5.3. Empirical sample size requirement for local identifiability

When the reference dictionary is the constant collinearity matrix and the coefficients are
sparse Gaussian, Wu and Yu (2018) shows that if the sample size n is of order O(K lnK),
local identifiability holds with high probability. However, the corresponding constants that
ensure local identifiability are unknown. In this subsection, we study the empirical sample
size required for local identifiability with the help of Algorithm 1.

Suppose the reference dictionary has constant coherence µ = 0.5 for various sizes K =
12, 16, 20 and the coefficients are drawn from the Sparse Gaussian distribution with sparsity
s = 5. This specific parameter setting ensures the reference dictionary is a sharp local
minimum given sufficient samples. Perturbation level is set at ρ = 0.01 and the threshold
T = 10−6. The experiment is repeated 20 times. Fig. 5 shows the percentage of experiments
in which Algorithm 1 identifies D∗ as a sharp local minimum for a variety of sample sizes
n. Under this specific setting, to ensure local identifiability with 50 percent probability, the
sample size n is roughly 20K.

To further explore how dimension K affects the sample size for local identifiability,
we run simulations for K = 25, ..., 70 and estimate the sample sizes that ensure the local
identifiability with at least 50% chance. As shown in Fig. 6, the required sample size and
dimension closely follow a linear relation 16.5K + 63. It is linear, i.e., O(K), instead of
O(K lnK) because the sample size only ensures local identifiability with 50% chance.

5.4. Comparison with other algorithms

We compare the performance of DL-BCD with other state-of-the-art algorithms, including
the greedy K-SVD algorithm (Aharon et al., 2006), SPAMS for online dictionary learning
(Mairal et al., 2009b,a), ER-SpUD(proj) for square dictionaries (Spielman et al., 2013), and
EM-BiG-AMP algorithm (Parker et al., 2014a,b). The implementation of these algorithms
is available in the MATLAB package BiG-AMP (Parker et al., 2014a,b).
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Figure 5: The percentage of experiments in which the reference dictionary is a local min-
imum, for different dimensions K = 12, 16, 20 and different sample sizes. The
fitted line is obtained using a logistic regression. The sample size ensuring 50%
chance is 253, 316, 375 respectively for K = 12, 16, 20.
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Figure 6: The estimated sample size that achieves 50 percent chance to ensure local iden-
tifiability for different K when the reference coefficient is generated from sparse
Gaussian distribution and the reference dictionary has constant collinearity.

First we introduce the simulation setting. We generate n = 100K samples using a noisy
linear model:

x(i) = D∗α(i) + ε(i), i = 1, . . . , n.

The reference dictionary D∗, the reference coefficients α(i), and the noise ε(i) are generated
as follows.

• Generation ofD∗: First, we randomly generate a random Gaussian matrix X ∈ RK×K
where Xjk ∼ N (0, 1). We then scale columns of X to get columns of the reference
dictionary D∗j = Xj/‖Xj‖2 for j = 1, . . . ,K.

• Generation of α(i): We generate the reference coefficient from sparse Gaussian distri-
bution with sparsity s: α(i) ∼ SG(s) for i = 1, . . . , n.
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• Generation of ε(i): We generate ε(i) using a Gaussian distribution with mean zero.
The variance of the distribution is set such that the signal-to–noise ratio is 100:

E‖D∗α(1)‖2
E‖ε(1)‖2

= 102.

We choose the dimension K between 2 and 20 and sparsity s between 2 and K. For each
(s,K)-pair, we repeat the experiment 100 times. The accuracy of an estimated dictionary
D̂ is quantified using the normalized mean square error (NMSE):

NMSE(D̂,D∗) = min
J∈J

‖D̂J −D∗‖2F
‖D∗‖2F

,

where J = {Γ · Λ | Γ is a permutation matrix and Λ is a diagonal matrix whose diagonal
elements are ±1.} is a set of matrices introduced to resolve the permutation and scale
ambiguities. We say an algorithm has a successful recovery if the NMSE of D̂ is smaller
than the threshold 0.01. We compare different algorithms in terms of their recovery rate,
defined as the proportion of simulations that an algorithm has a successful recovery.

The algorithms being tested have several important parameters. For the purpose of
comparison, we choose these parameters in a way such that they are consistent with other
papers (Parker et al., 2014a,b). The details of parameter settings can be found in Appendix
D.

Fig. 7 shows the recovery rate for a variety of choices of dimension K and sparsity s.
For each algorithm, the blue region corresponds to (s,K) configurations under which an
algorithm has high recovery rate, whereas yellow region indicates low recovery rate. Our
results demonstrate that DL-BCD with τ = 0.5 has the best recovery performance compared
to other algorithms. We tried τ = 0.1, 0.5, 1, 2, 10, and ∞ but with no further fine tuning.
The algorithm EM-BiG-AMP has the second best performance.

We also compare the algorithms in terms of their computation cost. We record the
average computation times for K = 20 and s = 10 (Fig. 8). It can be seen that the SPAMS
package is the fastest. The speed of our DL-BCD is roughly the same as that of K-SVD.
ER-SpUD is the slowest among all the algorithms.

6. Conclusions and future work

In this paper, we study the theoretical properties of `1-minimization dictionary learning
under complete reference dictionary and noiseless signal assumptions. First, we derive a
sufficient and almost necessary condition for local identifiability of `1-minimization. Our
theorems not only extend previous local identifiability results to a much wider class of
coefficient distributions, but also give an explicit bound on the region within which the
objective value of the reference dictionary is minimal and characterize the sharpness of a
local minimum. Secondly, we show that the reference dictionary is the unique sharp local
minimum for `1-minimization. Based on our theoretical results, we design an algorithm
to check the sharpness of a local minimum numerically. Finally, We propose the DL-
BCD algorithm and demonstrate its competitive performance over other state-of-the-art
algorithms in noiseless complete dictionary learning.
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Figure 7: Recovery rate of different algorithms for K = 2, . . . , 20 and s = 2, . . . ,K.
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Figure 8: Average running time of different algorithms for K = 20 and s = 10.

Although we mainly focus on complete dictionaries in this paper, we believe that some
of the results can be extended to the over-complete case. The challenge is that the represen-
tation of the optimization problem in the complete case (Formulation 5) will become much
more complicated as the dictionary is no longer invertible. To deal with this issue, we note
that some collections of the columns of the dictionary are invertible and as a result, the
problem is now a double minimization minD∈D EminD′∈RK×K ,D′⊂D ‖D′−1x‖1. Techniques
used in compressed sensing (Chen et al., 2001; Fuchs, 2004) and prior works of overcomplete
dictionary learning (Geng et al., 2014) can be useful in establishing the generalized results.
Besides over-complete settings, it would also be interesting to generalize the result to the
noisy case (Gribonval et al., 2015).
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8. Appendix A: Additional Examples

Corollary 13 Let the reference dictionary be a constant collinearity dictionary with coher-
ence µ. Assume that the reference coefficients are generated from the Bernoulli Gaussian

model BG(p). If
µ
√
p(K−1)

1−p < 1, the reference dictionary is a sharp local minimum of EL(D)

with sharpness at least p√
π(1+µ(K−1))

(
1− p− µ

√
p(K − 1)

)
. In addition, for any

D ∈
{
D ∈ B(RK)

∣∣∣|||D|||2 ≤ 2
√

1 + µ(K − 1),

|||D −D∗|||2F ≤
1

8
√

2(1 + µ(K − 1))

(
1− p− µ

√
p(K − 1)

)}
,

E‖D−1x‖1 ≥ E‖α‖1.

Corollary 14 Let the reference dictionary be a constant collinearity dictionary with coher-
ence µ. Assume that the coefficients are generated from the sparse Laplacian model SL(s).
If

µs(K − 1)

(K − s)
∫∫∞

0 |y − x|(xy)s−1 exp(−(x+ y))Γ(s)−2dxdy
< 1,

then the reference dictionary is a sharp local minimum of EL(D).

Although the condition in Corollary 14 is quite convoluted, we can compare it with the
sparse Gaussian case empirically. For sparse Gaussian distributions, there are two parame-
ters: sparsity s and dimension K. Define the phase transition curve to be the asymptotic
boundary that separates the region where local identifiability holds (the area below the
curve) and the region where local identifiability fails (the area above the curve). When
K = 10 and 20, the phase transition curve (|||B(α,M∗)|||∗α = 1) for sparse Laplace distri-
bution and sparse Gaussian distribution can be found in Fig. 9. As can be seen in the
figure, the phase transition curve for sparse Laplace distribution is slightly higher than that
for sparse Gaussian distribution, suggesting that the Laplace distribution has less strin-
gent local identifiability condition. That is consistent with our intuition: while the density
function of a standard Gaussian distribution is rotation symmetric, which implies that it
does not prefer any direction, the density function of the Laplace distribution is not. For
example, consider a simple two-dimensional case: let D∗ be the identity matrix in R2×2.
If the reference coefficient is from the standard Gaussian distribution with no sparsity, i.e.

s = K, all the orthogonal dictionaries will have the same objective value
√

2
π . So local

identifiability does not hold for Gaussian distribution under the setting s = K. However,

for the Laplace distribution, even if s = K, for an orthogonal dictionary

(
cos θ sin θ
sin θ − cos θ

)
with θ ∈ [0, π/2], its `1 objective function value is 2(sin θ+ cos θ+ 1

sin θ+cos θ ), which attains
its minimum when θ = 0 or π

2 . This means the local identifiability still holds.
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Figure 9: The theoretical phase transition curve for constant collinearity dictionary with
coherence µ and sparsity s for K = 10 (Left) and K = 20 (Right).
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Figure 10: Computation time of Algorithm 1. p = 0.1 and µ = 0.1. Left: For K = 20 and
n = 500, . . . , 5000. Right: For K = 5, . . . , 50 and n = 400.

9. Appendix B: Additional Simulations

9.1. Running time complexity

Following the simulation in Section 5.1, we carry out the same simulation for different
values of µ and p. Let the reference dictionary be a constant collinearity dictionary with
coherence µ = 0.1 and µ = 0.9. The sparse linear coefficients are generated from the
Bernoulli Gaussian distribution BG(p) where p = 0.1 and p = 0.9. The simulation results
are shown in Fig. 10 and Fig. 11. We find that for a fixed dimension, the computation time
scales roughly linearly with sample size, and for fixed sample size, the computation time
scales quadratically with dimension K. That reveals the same trend as in Section 5.1.
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Figure 11: Computation time of Algorithm 1. p = 0.9 and µ = 0.9. Left: For K = 20 and
n = 500, . . . , 5000. Right: For K = 5, . . . , 50 and n = 400.

9.2. Sensitivity analysis for ρ

We test the sensitivity of Algorithm 1 by varying the parameter ρ. Let dictionary dimension
K = 20, sparsity parameter s = 10 and sample size n = 1600. We consider constant
collinearity dictionaries with µ = 1√

s
(K−sK−1 + 0.05) (Fig. 12 Left) and µ = 1√

s
(K−sK−1 − 0.1)

(Fig. 12 Right). For the first experiment, the reference dictionary is not a sharp local
minimum of the objective function given large enough samples. Hence a small perturbation
to Algorithm 1 will result in a large r defined in the Algorithm 1. Similarly, in the second
experiment, the reference dictionary is sharp, indicating r in the Algorithm 1 should be
small with respect to the perturbation. The results are in Fig. 12. This experiment shows
for parameter ρ values ranging from 0.05 to 0.1, Algorithm 1 succeeds in distinguishing
between the sharp and not-sharp local minima.

10. Appendix C: Proofs

10.1. Proofs of Propositions

Proof [Proof of Proposition 2] To prove both models satisfy Assumption I, we just need
to prove |||·|||α is lower bounded by |||·|||F in the linear subspace HK = {A ∈ RK×K |Ak,k =
0∀ k}. If we can prove |||·|||α is a norm on HK , then we know it is equivalent to the
Frobenious norm since HK is a finite dimensional space.

In order to show that |||·|||α is a norm, we need to prove three properties:

• Sub-additivity: for any A,B ∈ HK , |||A+B|||α ≤ |||A|||α + |||B|||α.

• Absolutely homogeneity: for any A ∈ HK and λ > 0, |||λA|||α = λ|||A|||α.

• Positive definiteness: If |||A|||α = 0 and A ∈ HK , we know A = 0.

The first two properties are quite straightforward so we leave the details to readers. Here we
focus on proving the third property. Note that |||A|||α is a sum of K non-negative terms, if
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Figure 12: Sensitivity analysis of perturbation parameter ρ in Algorithm 1. Left: constant
collinearity dictionary with µ = 1√

s
(K−sK−1 + 0.05); Right: constant collinearity

dictionary with coherence µ = 1√
s
(K−sK−1 − 0.1).

|||A|||α = 0, then for any k ∈ {1, . . . ,K}, each term should be zero, i.e. E|
∑

j Ak,jαj |1(αk =
0) = 0. If α is from Bernoulli type models B(p1, . . . , pK ; f), then we could further decompose
E|
∑

j Ak,jαj |1(αk = 0) = 0 into:

E|
∑
j

Ak,jαj |1(αk = 0) = 0⇔ P (ηk = 0)E|
∑
j

Ak,jηjzj | = 0⇔ E|
∑
j

Ak,jηjzj | = 0.

The second “⇔” is because P (ηk = 0) = 1− pk > 0 and Ak,k = 0. Since E|
∑

j Ak,jηjzj | =
0 > P (η1 = . . . = ηK = 1)E|

∑
j Ak,jzj | ≥ 0 for p1, . . . , pK 6= 0, we know E|

∑
j Ak,jzj | = 0.

Define X =
∑

j Ak,jzj , since E|X| = 0, we know X = 0 almost surely. If Aj,k are not
all zeros, this means z1, . . . , zK are linearly dependent. In other words, z lies in a linear
subspace of RK almost surely. However, that contradicts the fact that z has a density
probability function in RK . So A must be zero. That completes the proof for Bernoulli
type models. For exact sparse models, the approach is essentially the same.
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Now for sparse Gaussian and Bernoulli Gaussian distributions, we can obtained the
constant cα. We first derive the constant for the sparse Gaussian distribution. For X ∈ HK ,

|||X|||α =

√
2

π

K∑
k=1

(
K

s

)−1 ∑
S⊂{1,...,K}
k 6∈S,|S|=s

√∑
j∈S

X2
k,j

=
s(K − s)
K(K − 1)

√
2

π

K∑
k=1

(
K − 2

s− 1

)−1 ∑
S⊂{1,...,K}
k 6∈S,|S|=s

√∑
j∈S

X2
k,j

(Lemma 6.5 in Wu and Yu (2018)) ≥ s(K − s)
K(K − 1)

√
2

π

K∑
k=1

√√√√ K∑
j=1

X2
k,j

(‖x‖1 ≥ ‖x‖2) ≥ s(K − s)
K(K − 1)

√
2

π
|||X|||F .

Here, we need to use Lemma 6.5 in Wu and Yu (2018). For the completeness of this paper,
we rewrite the lemma below:

Lemma 6.5 in Wu and Yu (2018) Let z ∈ RK−1, then for 1 ≤ l ≤ m ≤ K − 1,(
K − 2

l − 1

)−1 ∑
S⊂{1,...,K−1}

|S|=l

√∑
j∈S

z2
j ≥

(
K − 2

m− 1

)−1 ∑
S⊂{1,...,K−1}
|S|=m

√∑
j∈S

z2
j .

Then the first inequality holds by setting l = s and m = K−1. In summary, we have shown

that for X ∈ HK , |||X|||α ≥
s(K−s)
K(K−1)

√
2
π |||X|||F , which means cα is at least s(K−s)

K(K−1)

√
2
π .

Now, we will compute the constant cα for Bernoulli Gaussian distribution. For X ∈ HK ,
if we define s̃ = d(K − 2)p+ 1e,

|||X|||α =

√
2

π

K∑
k=1

K−1∑
s=0

∑
S⊂{1,...,K}
|S|=s,k 6∈S

ps(1− p)K−s
√∑

j∈S
X2
k,j

(Wu and Yu, 2018, Lemma 6.6) ≥(1− p)
√

2

π

K∑
k=1

(
K − 1

s̃

)−1 ∑
S⊂{1,...,K}
k 6∈S,|S|=s̃

√∑
j∈S

X2
k,j

(Wu and Yu, 2018, Lemma 6.5) ≥(1− p)d(K − 2)p+ 1e
K − 1

√
2

π
|||X|||F

≥p(1− p)
√

2

π
|||X|||F .

Here, we have used Lemma 6.6 in Wu and Yu (2018). We rewrite that Lemma using the
notations in our paper as follows:
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Lemma 6.6 in Wu and Yu (2018) Let p ∈ (0, 1) and s̃ = d(K − 2)p + 1e. For any
z ∈ RK−1,

K−1∑
s=0

∑
S⊂{1,...,K−1}

|S|=s

ps(1− p)K−1−s
√∑

j∈S
z2
j ≥

(
K − 1

s̃

)−1 ∑
S⊂{1,...,K−1}

|S|=s̃

√∑
j∈S

z2
j .

In summary, we have shown that for X ∈ HK , |||X|||α ≥ p(1 − p)
√

2
π |||X|||F , which

means cα is at least p(1− p)
√

2
π .

Proof [Proof of Proposition 3] In order to prove Assumption II, we only need to show that
for any c1, . . . , cK , P (

∑d
l=1 clαl = 0, and ∃ l, clαl 6= 0) = 0. Note that αj = ξjzj for

j = 1, . . . ,K,

P (
d∑
l=1

clαl = 0, and ∃ l, clαl 6= 0)

≤
∑

S⊂{1...,K}

P (ξl = 1 if l ∈ S and 0 if l 6∈ S) · P (
∑
l∈S

clzl = 0, and
∑
l∈S

c2
l > 0).

The inequality holds because αk = ηk · zk for k = 1, . . . ,K and η and z are independent for
exact sparse models or Bernoulli type models. Since z has a density function, z1, . . . , zK
are linearly independent, i.e., P (

∑
l∈S clzl = 0, and

∑
l∈S c

2
l > 0) = 0 for any S.

10.2. Proofs of Corollaries

Before proving the corollaries, we need the following lemma.

Lemma 15 If X equals to c · 11T , and |||A|||α =
K∑
k=1

√
2
π
s
K

(
K−1
s−1

)−1 ∑
S⊂{1,...,K}
k 6∈S,|S|=s

√∑
j∈S A

2
k,j,

then |||X|||∗α = cK(K−1)√
s(K−s)

√
π
2 .

Proof [Proof of Lemma 15] Essentially, we are trying to prove that

max
A 6=0,A∈HK

tr(ATX)

|||A|||α
= max
A 6=0,A∈HK

c
∑K

k=1

∑
j 6=k Ak,j∑K

k=1
s
K

(
K−1
s−1

)−1 ∑
S⊂{1,...,K}
k 6∈S,|S|=s

√∑
j∈S A

2
k,j

√
π

2

=
cK(K − 1)√
s(K − s)

√
π

2
.
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Note that this is equivalent to the fact that the following convex optimization problem
attains the minimum (K − s)

√
s :

min
K∑
k=1

s

K

(
K − 1

s− 1

)−1 ∑
S⊂{1,...,K}
k 6∈S,|S|=s

√∑
j∈S

A2
k,j

subject to
K∑
k=1

∑
j 6=k

Ak,j = K(K − 1).

First of all, note that the problem can be split into K sub-problems: For k = 1, . . . ,K,

min
s

K

(
K − 1

s− 1

)−1 ∑
S⊂{1,...,K}
k 6∈S,|S|=s

√∑
j∈S

A2
k,j

subject to
∑
j 6=k

Ak,j = K − 1.

Furthermore, note that both the objective and the constraint are permutation symmetric:
if Ã is obtained by permuting off-diagonal elements from each row in A, then the objective
function remains the same. It is not hard to show for the optimal solution A∗ must satisfy
that for any k, j1 6= k, and j2 6= k, A∗k,j1 = A∗k,j2 . Therefore, A∗k,j = 1 and the objective

function is s
(
K−1
s−1

)−1(K−1
s

)√
s = (K − s)

√
s. That completes the proof.

Proof [Proof of Corollary 6] (local identifiability for constant collinearity reference dictio-
nary and sparse Gaussian coefficients) The coefficients are generated from sparse Gaussian
distribution SG(s). First, the collinearity matrix M∗ = (D∗)TD∗ = (1 − µ)I + µ11T .

Because α is sparse Gaussian, we know Eαjsign(αk) = 0 for any j 6= k and E|αj | =
√

2
π
s
K .

The bias matrix B is

(B(α,M∗))k,j =

{
−Mj,kE|αj | = −Mj,k

√
2
π
s
K = −

√
2
π
µs
K for j 6= k

E|αj | − E|αj | = 0 if j = k
.

That means B(α,M∗) is a constant matrix except for the diagonal elements. In the proof

of Proposition 2, we showed |||X|||α =
√

2
π

∑K
k=1

s
K

(
K−1
s−1

)−1∑
k 6∈S,|S|=s

√∑
j∈S X

2
k,j . In

general, |||·|||∗α does not have an explicit formula, but for constant matrices, there is a closed
form formula (see Lemma 15). Using Lemma 15, we know

|||B(α,M∗)|||∗α =
µ
√
s(K − 1)

K − s
.

Now we will calculate the sharpness constant and the region bound. First of all, |||D∗|||22 =

|||M∗|||2 = 1 + µ(K − 1). Secondly, |||B(α,M∗)|||∗α = µ
√
s(K−1)
K−s and cα ≥ s(K−s)

K(K−1)

√
2
π .

Combining those formulas, the sharpness is at least:

1√
π(1 + µ(K − 1))

s

K

(
K − s
K − 1

− µ
√
s

)
≈ s√

πµK2

(
1− µ

√
s
)

for large K.
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For sparse Gaussian distributions, maxj E|αj | =
√

2
π
s
K , the set S in Theorem 5 is

S =

{
D ∈ B(RK)

∣∣∣|||D|||2 ≤ 2|||D∗|||2, |||D −D
∗|||F ≤

(1− |||B(α,M∗)|||∗α) · cα
8
√

2|||D∗|||22 maxj E|αj |

}
=
{
D ∈ B(RK) | |||D|||2 ≤ 2

√
1 + µ(K − 1),

|||D −D∗|||F ≤
1

8
√

2(1 + µ(K − 1))

(
K − s
K − 1

− µ
√
s

)}
,

which completes the proof.

Proof [Proof of Corollary 7] Assume the reference dictionary is a constant collinearity
dictionary with coherence µ and the coefficients are generated from non-negative sparse

Gaussian distribution |SG(s)|. Since Eαksign(αj) = Eηkηjzk =
√

2
π

s(s−1)
K(K−1) when j 6= k, it

can be shown that

(B(α,M∗))k,j =

{
−
√

2
π

(
µs
K −

s(s−1)
K(K−1)

)
for j 6= k.

0 if j = k.

This shows B(α,M∗) is still a constant matrix except the diagonal elements. However, com-

pared with standard sparse Gaussian coefficients, the constant here is
√

2
π

(
µs
K −

s(s−1)
K(K−1)

)
,

which is smaller than
√

2
π
µs
K in Corollary 6. Recall the explanation of the matrix B after

Theorem 4, that is because for non-negative sparse Gaussian coefficients, the bias matrix
B1 introduced by the coefficient is of different signs compared to the bias matrix B2 in-
troduced by the reference dictionary and they cancel with each other. In standard sparse
Gaussian case, B = 0 if µ = 0, which means the reference dictionary is orthogonal. For this
non-negative case, B = 0 if µ = s/K, which means the atoms in the reference dictionary
should have positive collinearity s/K. As will be shown next, this significantly relaxes the
local identifiability condition for non-negative coefficients.

We now compute the closed form formula for the dual semi-norm. By definition, for
any matrix X whose elements are all non-negative, |||X|||α =

∑K
k=1 E|

∑K
j=1Xk,jαj |1(αk =

0) =
∑K

k=1

∑K
j=1Xk,jEαj1(αk = 0) =

√
2
π
s(K−s)
K(K−1)

∑K
k=1

∑K
j=1,j 6=kXj,k. Thus we have

|||B(α,M∗)|||∗α =

√
2
π
s
K ·
∣∣∣µ− s−1

K−1

∣∣∣√
2
π
s(K−s)
K(K−1)

=
K − 1

K − s
·
∣∣∣µ− s− 1

K − 1

∣∣∣.

Proof [Proof of Corollary 13] First of all,

(B(α,M∗))k,j =

{
−Mj,kE|αj | = −Mj,k

√
2
πp = −

√
2
πµp for j 6= k.

0 if j = k.
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Because all the elements in the matrix are constant except the diagonal ones, similar to
Lemma 15, we can show the optimal A that attains the maximum of |||B(α,M∗)|||∗α =

max tr(ATB(α,M∗))
|||A|||α

is a constant matrix 11T . Thus, we have

|||B(α,M∗)|||∗α =
µp(K − 1)

(1− p)
∑K−1

s=0

(
K−1
s

)
ps(1− p)K−1−s√s

≤
µ
√
p(K − 1)

1− p
.

Here we are using the Jensen inequality that

K−1∑
s=0

(
K − 1

s

)
ps(1− p)K−1−s√s >

√√√√K−1∑
s=0

(
K − 1

s

)
ps(1− p)K−1−ss =

√
(K − 1)p.

Thus RHS < 1 when µ and p are small. The sharpness is at least

p√
π(1 + µ(K − 1))

(
1− p− µ

√
p(K − 1)

)
,

Because E|αj | = p
√

2
π for any j, the set S in Theorem 5 is{

D ∈ B(RK)
∣∣∣|||D|||2 ≤ 2

√
1 + µ(K − 1),

|||D −D∗|||2F ≤
1

8
√

2(1 + µ(K − 1))

(
1− p− µ

√
p(K − 1)

)}
.

Proof [Proof of Corollary 14] We compute the local identifiability condition when the
reference dictionary is a constant collinearity dictionary with coherence µ and the coefficients
are generated from sparse Laplace distribution, i.e., for any j αj = ξjzj where zj is from a
standard Laplace distribution and ξ is a random 0-1 vector with s nonzeros. For standard
Laplace distributions, since E|αj | = s

K , we have

(B(α,M∗))k,j =

{
−µ s

K for j 6= k.
0 if j = k.

Similar to Lemma 15, we can show the optimalA that attains the maximum of |||B(α,M∗)|||∗α =

maxA
tr(ATB(α,M∗))

|||A|||α
is a constant matrix 11T .

|||B(α,M∗)|||∗α =
µs(K − 1)

(K − s)
∫∫∞

0 |y − x|(xy)s−1 exp(−(x+ y))Γ(s)−2dxdy
.

To derive this denominator, we need to give an explicit formula for a linear combination of
Laplace random variables. The formula can be found in a few papers, e.g., Nadarajah and
Kotz (2005).
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10.3. Proofs of Theorems

The following lemmas are useful for proving Theorem 4.

Lemma 16 Given two dictionaries D and D′ ∈ B(RK), we have the decomposition:

D−1D′ = I + (D−1D′ − I− Λ(D,D′)) + Λ(D,D′).

where Λ(D,D′) is a diagonal matrix whose j-th element is −1
2‖Dj −D′j‖22. Then we know

1. For any j = 1, . . . ,K, M [j, ](D−1D′j − Ij − Λj(D,D
′)) = 0 where M = DTD.

2. |||Λ(D)|||F = Θ(|||D −D∗|||2F ):

1

2
√
K
|||D −D∗|||2F ≤ |||Λ(D)|||F ≤

1

2
|||D −D∗|||2F .

3. When
〈
Dj ,D

′
j

〉
≥ 0 for any j = 1, . . . ,K, |||D−1D′ − I − Λ(D,D′)|||F = Θ(|||D −

D∗|||F ):

|||D −D′|||F√
2|||D|||2

≤ |||D−1D′ − I− Λ(D,D′)|||F ≤ |||D
−1|||2 · |||D −D

′|||F

4. Let M ′ = (D′)TD′, for any A satisfying M ′[j, ]Aj = 0 for j = 1, . . . ,K and |||A|||F
sufficiently small, there is a D ∈ B(RK) such that D−1D′ − I− Λ(D,D′) = A.

Proof [Proof of Lemma 16]
(1):

M [j, ](D−1D′j − Ij − Λj(D,D
′))

=
〈
Dj ,D(D−1D′j − Ij − Λj(D,D

′))
〉

=
〈
Dj ,D

′
j −Dj +

1

2
Dj‖Dj −D′j‖22

〉
=
〈
Dj ,D

′
j −Dj

〉
+

1

2
‖Dj −D′j‖22

=
〈
Dj ,D

′
j

〉
− 1 + 1−

〈
Dj ,D

′
j

〉
= 0.

(2): |||Λ(D,D∗)|||F = 1
2

√∑
j ‖Dj −D∗j ‖42 ≤

1
2 |||D −D

∗|||2F . On the other hand, because

of the power inequality ‖x‖2 ≥ 1√
K
‖x‖1, we have

|||Λ(D,D∗)|||F =
1

2

√∑
j

‖Dj −D∗j ‖42 ≥
1

2
√
K
|||D −D∗|||2F .
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(3): Firstly, consider |||D′ −D −DΛ(D,D′)|||F , we have

|||D′ −D −DΛ(D,D′)|||2F =
K∑
j=1

‖D′j −Dj

〈
Dj ,D

′
j

〉
‖22

=

K∑
j=1

1−
〈
Dj ,D

′
j

〉2

=
K∑
j=1

min
tj∈R
‖D′j − tj ·Dj‖22.

Then by taking tj = 1 for all j = 1, . . . ,K, we have

|||D′ −D −DΛ(D,D′)|||2F ≤ |||D
′ −D|||2F .

On the other hand, when
〈
Dj ,D

′
j

〉
≥ 0.

K∑
j=1

1−
〈
Dj ,D

′
j

〉2
=

K∑
j=1

(1−
〈
Dj ,D

′
j

〉
)(1+

〈
Dj ,D

′
j

〉
) ≥

K∑
j=1

(1−
〈
Dj ,D

′
j

〉
) =

1

2
|||D−D′|||2F .

Then for (D−1D′ − I− Λ(D,D′)), using the above inequalities, we have:

|||D′ −D|||F ≤
√

2|||D′ −D −DΛ(D,D′)|||F
≤
√

2|||D|||2|||D
−1D′ − I− Λ(D,D′)|||F ,

which proves the first inequality. The second inequality follows from

|||D−1D′ − I− Λ(D,D′)|||F
≤|||D−1|||2|||D

′ −D −DΛ(D,D′)|||F
≤|||D−1|||2|||D

′ −D|||F .

(4): Consider a differentiable mapping F (D) = D−1D′ − I−Λ(D,D′) from B(RK) to
a linear manifold

H = {A ∈ RK×K
∣∣∣M ′[j, ]Aj = 0 for any j = 1, . . . ,K.}

Since F (D′) = 0, if we can prove the differential of F at D′, namely dF , is bijective from

the tangent space TB(RK)
∣∣∣
D′

= {A ∈ RK×K
∣∣∣〈D′j , Aj〉 = 0 for any j = 1, . . . ,K.} to the

tangent space TH
∣∣∣
0

= H, then by the inverse function theorem on the manifold, we have the

conclusion. To prove it is indeed bijective, we note that dF (∆)
∣∣∣
D′

is
∑

k,j(D
′)−1
j I[k, ]∆j,k =

(D′)−1∆. Clearly dF is injective: (D′)−1∆ = 0 implies ∆ = 0. To show it is also surjective,

first of all for any ∆ ∈ TB(RK)
∣∣∣
D′

, its image under dF is in H:

M ′[j, ](D′)−1∆j =
〈
D′j ,D

′((D′)−1∆j

〉
=
〈
D′j ,∆j

〉
= 0.
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Because these two linear manifolds have the same dimension, dF must be one-on-one. This
concludes the proof.

Lemma 17 If |||·|||α is regular with constant cα, then we know for any D,D′ such that〈
Dj ,D

′
j

〉
≥ 0 for any j = 1, . . . ,K, |||(D)−1D′|||α ≥

cα√
2|||D|||22

|||D −D′|||F .

Proof First of all, because for any A ∈ RK×K , by definition of |||·|||α, |||A|||α does
not depend on diagonal elements Aj,j for any j = 1, . . . ,K. Thus, |||(D)−1D′|||α =
|||(D)−1D′ − I − Λ(D,D′)|||α, where Λ is defined in Lemma 16. If we denote A as
(D)−1D′ − I − Λ(D,D′), then Lemma 16 shows M [j, ]Aj = 0. Since Mj,j = 1, Aj,j =
−M [j,−j]A[−j, j]. Thus ‖Aj‖22 ≤ (M [j,−j]A[−j, j])2 + ‖A[−j, j]‖22 ≤ (‖M [j,−j]‖22 +
1)‖A[−j, j]‖22 = ‖M [j, ]‖22‖A[−j, j]‖22. Summing over j, we have

|||A|||F ≤ max
j
‖M [j, ]‖2

√∑
j

‖A[−j, j]‖22.

Note that for any j, ‖M [j, ]‖2 = ‖DT
j D‖2 ≤ |||D|||2, thus we have:

|||A|||F ≤ |||D|||2
√∑

j

‖A[−j, j]‖22.

On the other hand, by Lemma 16, we know |||A|||F ≥
1√

2|||D|||2
|||D−D′|||F . Combining those

together, we have

|||(D)−1D′|||α =|||(D)−1D′ − I− Λ(D,D′)|||α

(Because of Assumption I)) ≥cα
√∑

j

‖A[−j, j]‖22

≥cα
|||A|||F
|||D|||2

≥cα
|||D −D′|||F√

2|||D|||22
.

Lemma 18 For x, y ∈ R, y·sign(x)+|x|+|y|·1(x = 0) ≤ |y+x| ≤ y·sign(x)+|x|+|y|·1(x =
0) + 2|y| · 1(|y| > |x| > 0).

Proof If x = 0, the above inequality definitely holds. So without loss of generality, let’s
assume x 6= 0. When |y| < |x|, sign(x + y) = sign(x), so |y + x| = sign(x)(x + y) =
|x| + sign(x)y. When |y| > |x|, sign(x + y) = sign(y), if sign(x) = sign(y), clearly we have
|x + y| = |x| + |y| = ysign(x) + |x|. If sign(x) 6= sign(y), |y + x| = |y| − |x| > |x| − |y| =
|x| + ysign(x). So in summary, we prove the first inequality. The second inequality comes
from: |y + x| ≤ |y|+ |x| ≤ |x|+ 2|y|+ ysign(x), which completes the proof.
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Lemma 19 We have the upper and lower bound of the objective function:

E‖(D∗)−1x‖1 + |||D−1D∗|||α − tr(B(α,M)TD−1D∗) + o(|||D −D∗|||F )

≥ E‖D−1x‖1 ≥
E‖(D∗)−1x‖1 + |||D−1D∗|||α − tr(B(α,M)TD−1D∗)− E‖Λα‖1

Proof [Proof of Lemma 19] By Lemma 16, (D)−1D∗ can be decomposed into

D−1D∗ = I + ∆(D,D∗) + Λ(D,D∗),

where ∆(D,D∗) = D−1D∗− I−Λ(D,D∗) and Λ(D,D∗) is defined in Lemma 16. In what
follows, we use Λ,∆ without writing D,D∗ explicitly for notation ease.

Let ∆k,j be the element of ∆ at k-th row and j-th column. Then the objective function
can be lower bounded by:

E‖D−1x‖1 =E‖(D∗)−1x− (I−D−1D∗)(D∗)−1x‖1
=E‖α+ (∆ + Λ)α‖1

(a) ≥E‖α+ ∆α‖1 − E‖Λα‖1

(b) ≥E
K∑
k=1

|αk|+ 1(αk = 0)|
∑
j

∆k,jαj | − signαk
∑
j

∆k,jαj − E‖Λα‖1

≥E‖α‖1 + |||∆|||α − E
∑
k,j

∆k,jEαjsignαk − E‖Λα‖1.

(a) holds because of the triangle inequality. (b) holds because of Lemma 18 (let x = ∆[k, ]α
and y = αk). Note that by the definition of |||·|||α, the diagonal elements of ∆ do not
matter, so |||∆|||α = |||D−1D∗|||α.

Recall Mj,k =
〈
Dj ,Dk

〉
, by Lemma 16, ∆k,j satisfies: M [j, ]∆j =

∑
k 6=jMj,k∆k,j +

∆j,j = 0 (Because Mj,j = 1) for any j. Thus we have

K∑
j,k=1

∆k,jEαjsignαk =
K∑
j=1

∑
k 6=j

∆k,jEαjsignαk + ∆j,jE|αj |


=

K∑
j=1

∑
k 6=j

∆k,j (Eαjsignαk −Mj,kE|αj |) = tr(B(α,M)T∆).

Because the diagonal elements of B(α,M) are all zeros, we know

tr(B(α,M)T∆) = tr(B(α,M)TD−1D∗).

In summary, we have shown that

E‖D−1x‖1 ≥E‖α‖1 + |||D−1D∗|||α − tr(B(α,M)TD−1D∗)− E‖Λα‖1.
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In order to have an upper bound, we have

E‖D−1x‖1 =E‖(D∗)−1x− (I−D−1D∗)(D∗)−1x‖1
=E‖α+ (∆ + Λ)α‖1
≤E‖α+ ∆α‖1 + E‖Λα‖1

(Lemma 18) ≤E‖α‖1 + |||D−1D∗|||α − tr(B(α,M)TD−1D∗)

+
∑
k

2E

∣∣∣∣∣∣
∑
j

∆k,jαj

∣∣∣∣∣∣1
∣∣∣∣∣∣
∑
j

∆k,jαj

∣∣∣∣∣∣ > |αk| > 0

+ E‖Λα‖1.

Note that by Lemma 16, E‖Λα‖1 ≤ |||D −D∗|||2F maxj E|αj | = o(|||D −D∗|||F ). Further-
more,

E

∣∣∣∣∣∣
∑
j

∆k,jαj

∣∣∣∣∣∣1
∣∣∣∣∣∣
∑
j

∆k,jαj

∣∣∣∣∣∣ > |αk| > 0

 (10)

≤
K∑
k=1

max
j
|∆k,j | · E 1(αk 6= 0)1(|

∑
j

∆k,jαj | ≥ |αk|)‖α‖1.

Because 1(αk 6= 0)1(|
∑

j ∆k,jαj | ≥ |αk|)‖α‖1 ≤ ‖α‖1, E‖α‖1 <∞, and

lim
∆k,j→0

1(αk 6= 0)1(|
∑
j

∆k,jαj | ≥ |αk|)‖α‖1 = 0 a.s.,

by the dominant convergence theorem, we know

lim
∆→0

E1(αk 6= 0)1(|
∑
j

∆k,jαj | ≥ |αk|)‖α‖1

=E lim
∆→0

1(αk 6= 0)1(|
∑
j

∆k,jαj | ≥ |αk|)‖α‖1

=0.

This means (10) is o(|||D −D∗|||F ), which proves the upper bound.

Proof [Proof of Theorem 4]
(i): We will first prove that if |||·|||α is regular with constant cα and (6) holds, D∗ is a

sharp local minimum. When (6) is satisfied andD →D∗, |||B(α,M)|||∗α → |||B(α,M∗)|||∗α <
1 and

|||D−1D∗|||α − tr(B(α,M)TD−1D∗)

=|||D−1D∗|||α − tr(B(α,M∗)TD−1D∗) + o(|||D−1D∗|||α)

≥(1− |||B(α,M)|||∗α)|||D−1D∗|||α + o(|||D−1D∗|||α).
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Because |||·|||α is regular and Lemma 17, by appropriately choosing signs of each column in
D∗, we have

|||D−1D∗|||α ≥
cα√

2|||D|||22
|||D∗ −D|||F .

Combine those two inequalities, when |||D −D∗|||F is small enough,

E‖D−1x‖1 − E‖α‖1
≥(1− |||B(α,M∗)|||∗α)

cα√
2 · |||D∗|||22

|||D −D∗|||F + o(|||D −D∗|||F ).

By Definition 1, D∗ is a sharp local minimum with sharpness at least

(1− |||B(α,M∗)|||∗α)
cα√

2|||D∗|||22
.

(ii) When (6) does not hold or |||·|||α is not regular, D∗ is not a sharp local minimum.
If |||B(α,M∗)|||∗α ≥ 1, then there exists ∆′ such that |||∆′|||α − tr(B(α,M∗)T∆′) ≤ 0.

Note that the left hand side does not depend on diagonal elements of ∆′, so we can find a
matrix ∆ that is the same as ∆′ except the diagonal elements such that M∗[j, ]∆j = 0 for
any j and |||∆|||α − tr(B(α,M∗)T∆) ≤ 0. For any t > 0, by Lemma 16 we can construct a
series of dictionaries D(t) for a sufficiently small t such that

(D(t))−1D∗ = I + ∆ + Λ(D(t),D∗).

Then by Lemma 19, we have the formula for the objective of D(t):

E‖D(t)−1x‖1 =E‖α‖1 +
(
|||∆|||α − tr(B(α,M∗)T∆)

)
+ o(‖D(t)−D∗‖F ).

Because |||∆|||α− tr(B(α,M∗)T∆) ≤ 0, E‖D(t)−1x‖1 ≤ E‖α‖1 + o(‖D(t)−D∗‖F ). By
definition, D∗ is not a sharp local minimum. If |||·|||α is not regular, for any c > 0, there
exists ∆ such that M∗[j, ]∆j = 0 for any j and |||∆|||α < c‖∆‖F . Without loss of generality,
assume tr(B(α,M∗)T∆) ≥ 0, otherwise just take −∆. For sufficiently small t, there exists
a dictionary D(t) such that

(D(t))−1D∗ = I + ∆ + Λ(D(t),D∗).

Then by Lemma 19, we have the formula for the objective of D(t):

E‖D(t)−1x‖1 =E‖α‖1 +
(
|||∆|||α − tr(B(α,M∗)T∆)

)
+ o(‖D(t)−D∗‖F )

≤E‖α‖1 + c|||∆|||F + o(‖D(t)−D∗‖F )

≤E‖α‖1 + c|||D(t)−1|||2 · |||D(t)−D∗|||F + o(‖D(t)−D∗‖F )

Because that holds for any c > 0, by definition, we have shown D∗ is not a sharp local
minimum.

(iii): When |||B(α,M∗)|||∗α > 1, D∗ is not a local minimum. This part is essentially the
same as (ii). The key is to construct a series of dictionaries D(t) using Lemma 16 as in (ii).
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Then by using the upper bound in Lemma 19, we can find a small t > 0 and a small c > 0
such that

E‖D−1
t x‖1 ≤ E‖α‖1 − c‖D(t)−D∗‖F + o(‖D(t)−D∗‖F ).

Thus by definition D∗ is not a local minimum.

Proof [Proof of Theorem 5] Note that by the definition of Λ(D,D∗) as in Lemma 16, we
have

E‖Λ(D,D∗)α‖1 ≤max
j

E|αj ||||D −D∗|||2F

On the other hand, by Lemma 19, we know

E‖D−1x‖1 − E‖α‖1 ≥|||D−1D∗|||α − tr(B(α,M)TD−1D∗)− E‖Λ(D,D∗)α‖1

Similar to the proof of Theorem 4, the right hand side is bounded by

|||D−1D∗|||α − tr(B(α,M)TD−1D∗)− E‖Λ(D,D∗)α‖1
≥(1− |||B(α,M)|||∗α)|||D−1D∗|||α − E‖Λ(D,D∗)α‖1
≥(1− |||B(α,M)|||∗α)|||D−1D∗|||α −max

j
E|αj | · |||D −D∗|||2F

≥(1− |||B(α,M)|||∗α)
cα√

2|||D|||22
|||D −D∗|||F −max

j
E|αj | · |||D −D∗|||2F

≥(1− |||B(α,M)|||∗α)
cα

4
√

2|||D∗|||22
|||D −D∗|||F −max

j
E|αj | · |||D −D∗|||2F . (11)

Because |||M −M∗|||F ≤ (|||D|||2 + |||D∗|||2) · |||D − D∗|||F ≤ 3|||D∗|||2 · |||D − D∗|||F
and |||D − D∗|||F ≤

cα(1−|||B(α,M∗)|||∗α)

8
√

2 maxj E|αj ||||D∗|||22
we know |||M − M∗|||F ≤

cα(1−|||B(α,M∗)|||∗α)
2 maxj E|αj ||||D∗|||2

≤
cα(1−|||B(α,M∗)|||∗α)

2 maxj E|αj | . The last inequality is because |||D∗|||2 ≥ 1. Based on this chain of

inequalities, we have:

1− |||B(α,M)|||∗α ≥1− |||B(α,M∗)|||∗α − ||||B(α,M)|||∗α − |||B(α,M∗)|||∗α|
≥1− |||B(α,M∗)|||∗α − |||B(α,M)−B(α,M∗)|||∗α

≥1− |||B(α,M∗)|||∗α −
1

cα
|||B(α,M)−B(α,M∗)|||F

≥1− |||B(α,M∗)|||∗α −
1

cα
max
j

E|αj | · |||M −M∗|||F

≥1

2
(1− |||B(α,M∗)|||∗α).

Based on this, (11) is bounded by:

1

2
(1− |||B(α,M∗)|||∗α)

cα

4
√

2|||D∗|||22
|||D −D∗|||F −max

j
E|αj | · |||D −D∗|||2F

≥

(
cα(1− |||B(α,M∗)|||∗α)

8
√

2 maxj E|αj ||||D∗|||22
− |||D −D∗|||F

)
|||D −D∗|||F max

j
E|αj | ≥ 0.
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This shows the LHS is positive when D 6= D∗ and we have completed the proof.

Proof [Proof of Theorem 8] In order to prove Theorem 8, it suffices to prove any dictionary
D in B(RK) other thanD∗ will not be a sharp local minimum. Recall β(D) is the coefficient
of the samples under dictionary D, i.e., β(D) = D−1x. For notation ease, we omit D and
simply write β.

The following lemma provides a necessary condition for a dictionary to be a sharp local
minimum.

Lemma 20 For any dictionary D, if D is a sharp local minimum of optimization form (5),
then for any k = 1, . . . ,K, β · 1(βk = 0) does not lie in any linear subspace of dimension
K − 2.

Proof [Proof of Lemma 20] If D is a sharp local minimum, by the proof of Theorem 4, it
should satisfy (12).∑

j,k

∆k,j(Eβjsign(βk)−Mj,kE|βj |) <
∑
k

E|
∑
j

∆k,jβj |1(βk = 0). (12)

For any ∆k,j , let ∆′k,j , −∆k,j , it should also satisfy (12). That makes

−
∑
j,k

∆k,j(Eβjsign(βk)−Mj,kE|βj |) <
∑
k

E|
∑
j

∆k,jβj |1(βk = 0).

Thus we have

E|
K∑

j=1,j 6=k
∆k,jβj |1(βk = 0) > 0. (13)

If β1(βk = 0) lies in a linear subspace of dimensionK−2, because there areK−1 free param-
eters in ∆j,k for j 6= k, we can find a set of nonzero ∆j,k such that

∑K
j=1,j 6=k ∆k,jβj ·1(βk =

0) = 0 a.s.. That contradicts (13). Therefore, β1(βk = 0) does not lie in any linear sub-
space of dimension K − 2.

In order to show D 6= D∗ up to sign-permutation is not a sharp local minimum, by
Lemma 20, it suffices to find a k such that the random vector β · 1(βk = 0) lies in a linear
manifold of dimension at most K − 2.

Note that β = D−1D∗α is linear transform of α. For D 6= D∗ up to the sign-
permutation sense, D−1D∗ 6= I, which means there exists k such that βk 6= αk′ for any
k′ = 1, . . . ,K. This means βk is the linear combination of at least two elements in α.
Without loss of generality, βk =

∑T
l=1 clαl such that c1, . . . , cT 6= 0 and T ≥ 2. Because of

Assumption II, βk = 0 implies α1 = . . . = αT = 0. Thus, β · 1(βk = 0) = D−1D∗α1(α1 =
. . . = αT = 0), we know β · 1(βk = 0) lies in a linear manifold of dimension K − T almost
surely.
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Proof [Proof of Theorem 9] The whole proof consists of two major steps. The first step is
to show that the finite population satisfies the Assumption I with high probability: for any
ε > 0,

P

 sup
c1,...,cK

1

n

n∑
i=1

1(
∑
j

cjα
(i)
j = 0 and

K∑
j=1

(
cjα

(i)
j

)2
> 0) ≥ ε


≤4 exp

(
2K

(
ln

n

2K
+ 1
)
− n

(
ε− 1

n

)2
)
. (14)

In order to prove (14), define

fc(α) , 1(
K∑
j=1

cjαj = 0 and
K∑
j=1

(cjαj)
2 > 0),

F(α) , {fc(·)|c ∈ RK} and consider its VC dimension. We will prove the VC dimension of
F is no bigger than 2K, namely, for any α(1), . . . ,α(2K), define a set

F (2K)(α(1), . . . ,α(2K)) , {(fc(α(1)), . . . , fc(α
(2K)))|c ∈ RK},

The cardinality of F (2K) is not 22K . If (1, . . . , 1)︸ ︷︷ ︸
2K

is not in F (2K), then we are done. Other-

wise, there exists c s.t. fc(α
(i)) = 1 for any i = 1, . . . , 2K. That means

∑
j cjα

(i)
j = 0 for any

i = 1, . . . , 2K. Therefore, the dimension of the linear space spanned by α(1), . . . ,α(2K) is at
most K−1. So we can find K−1 coefficients such that all other coefficients are their linear
combinations. Without loss of generality, assume those coefficients are α(1), . . . ,α(K−1).
Define the support of a vector to be the entries where it is nonzero. For α(K), . . . ,α(2K),
there will be one coefficient whose support is contained in the union of all the other coeffi-
cients. If this is not the case, each coefficient can be mapped to one entry which is only con-
tained in its own support but not any support of other coefficients. But there are K+1 coef-
ficient and only K entries, which leads to a contradiction. Without loss of generality, assume
that coefficient is α(K). Now we will show that (1, . . . , 1︸ ︷︷ ︸

K

, 0, . . . , 0) 6∈ F (2K)(α(1), . . . ,α(2K)).

Since fc(α
(i)) = 1 for i = 1, . . . ,K − 1, we have∑

j

cjα
(i)
j = 0 ∀ i = 1, . . . ,K − 1.

Because α(K), . . . ,α(2K) are linear combinations of α(1), . . . ,α(K−1), we know∑
j

cjα
(i)
j = 0 ∀ i = K, . . . , 2K.

If fc(α
(i)) = 0 for i = K + 1, . . . , 2K, it means∑

j

(
cjα

(i)
j

)2
= 0 ∀ i = K + 1, . . . , 2K,
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which means the support of c does not overlap with the support of α(K+1), . . . ,α(2K).
However, the support of α(K) is contained in the union of the supports of α(K+1), . . . ,α(2K).
That means fc(α

(K) = 0 not 1, a contradiction.
Then by the classic statistical learning theory, for example, see Theorem 4.1 in Vapnik

(1998), we know (14) holds true.
Now comes the second major step: we want to show that

A(ε, ρ1, ρ2)⇒ sup
c1,...,cK

1

n

n∑
i=1

fc(α
(i)) >

ρ3
1ε

2Lρ2
.

Then, using (14), we get the desired conclusion.
For any ε, ρ1, ρ2 > 0, ifD 6= D∗ is a local min with sharpness at least ε and eigenvalue(D) ∈

[ρ1, ρ2], then supc1,...,cK
1
n

∑n
i=1 fc(α

(i)) >
ρ31ε
Lρ2

. Since D 6= D∗ up to sign-permutation ambi-

guity, at least one row of D−1D∗ contains two nonzero elements. Without loss of generality,
assume the k-th row of D−1D∗, denoted as c(k), has at least two nonzero entries. We will
prove that it satisfies the desired condition:

1

n

n∑
i=1

fc(k)(α
(i)) >

ρ3
1ε

2Lρ2
.

Recall that β(i) = D−1x(i) for i = 1, . . . , n. Because |||D−1|||2 ≤ ρ
−1
1 and ‖x(i)‖2 is bounded

by L, for any vector w such that ‖w‖2 = 1, we have |
∑

j wjβ
(i)
j | ≤ Lρ−1

1 by Cauchy
inequality. We have

1

n

n∑
i=1

fc(k)(α
(i)) ≥ρ1

L
max
i
{
∣∣∣∑

j

wjβ
(i)
j

∣∣∣} 1

n

∑
i

fc(k)(α
(i))

≥ρ1

L

1

n

∑
i

|
∑
j

wjβ
(i)
j |fc(k)(α

(i))

=
ρ1

L

1

n

∑
i

|
∑
j

wjβ
(i)
j |1(β

(i)
k = 0,

∑
j

(c
(k)
j α

(i)
j )2 > 0). (15)

Note that this inequality holds for any w with unit norm. Recall that c
(k)
j has at least

two non-zero entries. Thus, for all the i’s such that
∑

j(c
(k)
j α

(i)
j )2 = 0, α

(i)
j must sat-

isfy at least two linear constraints, which implies the corresponding β(i)’s must lie in a
linear subspace of dimensions at most K − 2. Therefore, we can always select w such

that wk = 0 and for any i such that
∑

j(c
(k)
j α

(i)
j )2 = 0, we have

∑
j wjβ

(i)
j = 0. Then,

by using this specific w (this w satisfies ‖w‖2 = 1, wk = 0, and for any i = 1, . . . , n,∑
j wjβ

(i)
j 1

(
β

(i)
k = 0,

∑
j

(
c

(k)
j α

(i)
j

)2
= 0

)
= 0), we have:

ρ1

L

1

n

∑
i

|
∑
j

wjβ
(i)
j |1(β

(i)
k = 0,

∑
j

(c
(k)
j α

(i)
j )2 > 0) =

ρ1

L

1

n

∑
i

|
∑
j

wjβ
(i)
j |1(β

(i)
k = 0).(16)
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Using the parametrization in Proposition 11, for t > 0 sufficiently small, t·w can map to aD′

in the neighborhood of D such that |||D′−D|||F ≥ ρ2
1|||D′−1−D−1|||F ≥ ρ2

1 ·t ·‖wTD−1‖2 ≥
ρ21t
ρ2

. Because D is sharp local minimum with sharpness at least ε, we have

1

n

n∑
i=1

‖(D′)−1x(i)‖1 −
1

n

n∑
i=1

‖D−1x(i)‖1 ≥ ε|||D′ −D|||F + o(|||D′ −D|||F ).

By Lemma 16, we know the left hand side of the above inequality is equivalent to

|||(D′)−1D|||β − tr(((D′)−1D)TB(β,DTD) ≥ ε|||D′ −D|||F + o(|||D′ −D|||F ).

Without loss of generality, we could select D′ (or −D′) such that

tr(((D′)−1D)TB(β,DTD) ≥ 0.

This means the above inequality can be further rewritten as

|||(D′)−1D|||β ≥
ρ2

1ε

ρ2
t+ o(t).

Note that

|||(D′)−1D|||β =
1

n

n∑
i=1

∑
k′

∣∣∣β′(i)k′

∣∣∣ · 1(β
(i)
k′ = 0)

=t · 1

n

∑
i

|
∑
j

wjβ
(i)
j |1(β

(i)
k = 0).

That means that when t is small,

1

n

∑
i

|
∑
j

wjβ
(i)
j |1(β

(i)
k = 0) >

ρ2
1ε

2ρ2
. (17)

Combining (15), (16), and (17), we complete the proof.

Proof [Proof of Proposition 10] 1)↔ 2): First observe that 2) is equivalent to the property
that the directional derivative of the optimization (7) at Ik along any direction is always
positive. By Theorem 4, we know 1) is equivalent to

|||B(β,M)|||∗α < 1.

Because of the definition of |||·|||α, this condition is equivalent to for any k = 1, . . . ,K, and
δk,j ∈ R for j = 1, . . . ,K, j 6= k such that

∑
j 6=k δ

2
k,j > 0,∣∣∣∑

j

δk,jβj

∣∣∣1(βk = 0) +
∑
k,j

δk,jβjsign(βk)−Mk,jE|βk| > 0.

On the other hand, the left hand side is exactly the directional derivative of the optimization
(7) at Ij along direction (δ1, . . . , δK). Because every directional derivative is strictly positive,
Ik is a sharp local minimum of the optimization.
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2)↔ 3). We have already shown that 2) is equivalent to∣∣∣∑
j

δk,jβj

∣∣∣1(βk = 0) +
∑
k,j

δk,jβjsign(βk) +Mk,jE|βk| > 0.

3) is equivalent to∣∣∣∑
j

δk,jβj

∣∣∣1(βk = 0) +
∑
k,j

δk,jβjsign(βk) + M̃k,jE|βk| ≥ 0.

for any |M̃k,h −Mk,h| ≤ ρ. These two are clearly equivalent for a sufficiently small ρ.

Proof [Proof of Proposition 11] Without loss of generality, we only need to show ‖Q−1
j ‖2 = 1

for any j = 1, . . . ,K when k = 1. We can write Q = ΓD−1, where the matrix Γ is equal to:

Γh,j =


wj if h = 1√

(wh −M1,h)2 + 1−m2
h if j = h 6= 1

0 otherwise

.

Note that Γ is upper triangle so we can obtain its inverse easily. Then Q−1 = DΓ−1 and

Γ−1
h,j =


1 h = 1, j = 1

−wj/(
√

(wh −M1,h)2 + 1−M2
1,h) h = 1, j > 1

1/(
√

(wh −M1,h)2 + 1−M2
1,h) h > 1, j = h

0 h > 1, j 6= h

Q−1’s first column has the form: ‖Q−1
1 ‖22 = ‖D1‖22 = 1. For any other column Q−1

j where

j > 1, ‖Q−1
j ‖22 = ‖wjD1 −Dj‖22/((wj −M1,j)

2 + 1−M2
1,j) = 1.

Proof [Proof of Proposition 12] Recall f(D) =
∑n

i=1

∑K
j=1 min(|D−1[j, ]x(i)|, τ). Denote

β(i) = (D(t,j))−1x(i) and define a new function f̃(D) =
∑K

j=1

∑n

i=1,|β(i)
j |≤τ

|D−1[j, ]x(i)| +∑n

i=1,|β(i)
j |>τ

τ. Note that for any D, f̃(D) is always no smaller than f(D), that is, f̃(D) ≥

f(D). Also, f̃(D(t,j)) = f(D(t,j)). Because of Proposition 11, we know the iterate D(t,j+1)

in Algorithm 2 is the optimal solution of the following optimization:

argminQ f̃(Q−1)

subject to Q is parameterized as in Proposition 11.

That means f̃(D(t,j+1)) ≤ f̃(D(t,j)). Combining the fact that f(D(t,j)) = f̃(D(t,j)) and
f(D(t,j+1)) ≤ f̃(D(t,j+1)), we have f(D(t,j+1)) ≤ f̃(D(t,j+1)) ≤ f̃(D(t,j)) = f(D(t,j)).
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11. Appendix D: Parameter settings of dictionary learning algorithms in
Section 5.4

• EM-BiG-AMP: The outer loop that performs EM iterations is allowed up to 20 itera-
tions. The inner loop is allowed a minimum of 30 and a maximum of 1500 iterations.

• K-SVD: K-SVD has two parameters: number of iterations and the enforced sparsity.
The number of iterations is set to be 1000. The enforced sparsity is set to be the same
as the true sparsity of the underlying model s.

• SPAMS: SPAMS optimizes an LASSO type objective iteratively. The number of
iterations is set to be 1000 and the penalty parameter in front of the L1 norm is
λ = .1/

√
N .

• DL-BCD: Our algorithm has an outer loop and an inner loop. The outer loop is set
to be at most 3. The inner loop is allowed a maximum of 100 iterations. τ is either
∞ or 0.5.

• ER-SpUD: We use the default settings in the package developed by the authors of
ER-SpUD.
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