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Abstract

We develop an encompassing framework for matching, covariate balancing, and doubly-
robust methods for causal inference from observational data called generalized optimal
matching (GOM). The framework is given by generalizing a new functional-analytical for-
mulation of optimal matching, giving rise to the class of GOM methods, for which we
provide a single unified theory to analyze tractability and consistency. Many commonly
used existing methods are included in GOM and, using their GOM interpretation, can be
extended to optimally and automatically trade off balance for variance and outperform
their standard counterparts. As a subclass, GOM gives rise to kernel optimal matching
(KOM), which, as supported by new theoretical and empirical results, is notable for com-
bining many of the positive properties of other methods in one. KOM, which is solved
as a linearly-constrained convex-quadratic optimization problem, inherits both the inter-
pretability and model-free consistency of matching but can also achieve the

√
n-consistency

of well-specified regression and the bias reduction and robustness of doubly robust meth-
ods. In settings of limited overlap, KOM enables a very transparent method for interval
estimation for partial identification and robust coverage. We demonstrate this in examples
with both synthetic and real data.

Keywords: Causal inference, optimal covariate balance, embeddings, matching, convex
optimization.

1. Introduction

In causal inference, matching is the pursuit of comparability between samples that differ in
systematic ways due to selection (often self-selection) by way of subsampling or re-weighting
the samples (Stuart, 2010). Optimal matching (Rosenbaum, 1989), wherein each treated
unit is matched to one or more control units (for estimating the effect on the treated) to
minimize some objective (such as sum) in the list of within-match pairwise distances so to
optimize comparability,1 as implemented in the popular R package optmatch, is arguably
one of the most commonly used methods for causal inference on treatment effects, whether
used as an estimator or as a preprocessing step before regression analysis (Ho et al., 2007).

1. The term “optimal matching” has also been used in other contexts such as full matching (Rosenbaum,
1991) and optimal near-fine balance (Zubizarreta, 2012), but the most common usage by far, which we
follow here, refers to matching made on one-to-one, one-to-many, or many-to-many basis using network
flow and bipartite approaches, such as optimal bipartite (one-to-one) matching with weights equal to
covariate vector distances.

c©2020 Nathan Kallus.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/19-120.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/19-120.html


Kallus

Since the introduction of optimal matching, a variety of other methods for matching on
covariates have been developed, including coarsened exact matching (Iacus et al., 2011a),
genetic matching (Diamond and Sekhon, 2013), combining optimal matching with near-
fine balance on one stratification (Yang et al., 2012), and using integer programming to
match sample mean vectors for simultaneous near-fine balance on multiple stratifications
(Zubizarreta, 2012). These have largely been developed independently and ad hoc given
distinct motivations and definitions for what is “balance” exactly and how to improve it
relative to no matching, optimally or non-optimally. There are also a variety of other
methods for causal inference on treatment effects such as regression analysis (Lin, 2013),
propensity score matching and weighting (Rosenbaum and Rubin, 1983), and doubly robust
methods that combine the latter two (Robins et al., 1994).

In this paper, we develop an encompassing framework and theory for matching and
weighting methods and related methods for causal inference that reveal the connections
and motivations behind these various existing methods and, moreover, give rise to new and
improved ones. We begin by providing a functional analytical characterization of optimal
matching as a weighting method that minimizes worst-case conditional mean squared er-
ror given the observed data and given assumptions on (a) the space of feasible conditional
expectation functions, (b) the space of feasible weights, and (c) the magnitude of residual
variance. By generalizing the lattermost, we develop a new optimal matching method that
correctly and automatically accounts for the balance-variance trade-off inherent in match-
ing and by doing so can reduce effect estimation error. By generalizing all three and using
functional analysis and modern optimization, we develop a new class of generalized opti-
mal matching (GOM) methods that construct matched samples or redistributions of the
units to eliminate imbalances. This also gives rise to the interpretation of imbalance as the
dual norm of bias. It turns out that many existing methods are included in GOM, includ-
ing nearest-neighbor matching, one-to-one matching, optimal caliper matching, coarsened
exact matching, various near-fine balance approaches, and linear regression adjustment.
Moreover, using the lens of GOM many of these too are extended to new methods that
judiciously and automatically trade off balance for variance and that outperform their stan-
dard matching counterparts. We provide theory on both tractability and consistency that
applies generally to GOM methods.

Finally, as a subclass of GOM, we develop kernel optimal matching (KOM), which is
particularly notable for combining the interpretability and potential use as preprocessing of
matching methods (Ho et al., 2007), the non-parametric nature and model-free consistency
of optimal matching (Rosenbaum, 1989; Abadie and Imbens, 2006), the

√
n-consistency of

well-specified regression-based estimators (Lin, 2013), the robustness (Robins et al., 1994)
of augmented inverse propensity weight estimators, the careful selection of matched sample
size of monotonic imbalance bounding methods (Iacus et al., 2011b), and the model-selection
flexibility of Gaussian-process regression (Williams and Rasmussen, 2006). We show that
KOM can be interpreted as Bayesian optimal in a certain sense, that it is computation-
ally tractable, and that it is consistent. We discuss how to tune the hyperparameters of
KOM and demonstrate the efficacy of doing so. KOM also allows for a transparent way
to bound any irreducible biases due to a lack of overlap between the control and treated
populations, which leads to robust interval estimates that can partially identify effects in
a highly interpretable manner. We develop the augmented kernel weighted estimator and
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establish robustness and bias reduction guarantees for it related to those of the augmented
inverse propensity weighted estimator. Furthermore, we establish similar guarantees for
KOM used as a preprocessing step before linear regression, rigorously establishing that it
reduces model dependence and yields fast estimation under a well-specified model without
ceding model-free consistency under misspecification. We study the practical usefulness of
KOM by applying the new methods developed to a semi-simulated case study using real
data and find that KOM offers significant benefits in estimation error and also in robustness
to practical issues like limited overlap and lack of model specification.

The paper proceeds as follows. In Sec. 2, we setup the problem and provide a reinterpre-
tation of optimal matching from a functional analytical lens. Based on this, we define GOM
in Sec. 3. Specifically, we generalize the notion of balance in Sec. 3.1, discuss its trade off with
variance in Sec. 3.2, define GOM precisely in Sec. 3.3, establish computational tractability
in Sec. 3.4, review the many existing methods GOM encompasses in Sec. 3.5, and provide
general consistency guarantees in Sec. 3.6. We then present the sub-class of KOM methods
in Sec. 4, discuss hyperparameter selection in Sec. 4.1, present consistency guarantees that
are stronger than the general GOM results in Sec. 4.2, discuss KOM-weighted regression
adjustment in Sec. 4.3, extend KOM to semi-kernel optimal matching in Sec. 4.4, discuss
kernel selection in Sec. 4.5, provide an empirical study using data from the Infant Health
and Development Program in Sec. 4.6, and provide recommendations for practice in Sec. 4.7.
In Sec. 5 we provide detail on how GOM generalizes many existing methods, and in Sec. 6
we conclude. Algorithm listings are given in Appendix A. Inference with KOM is discussed
in Appendix B. Connections to and generalization of Equal-Percent Bias Reduction are
discussed in Appendix C. Finally, all proofs are given in Appendix D.

2. Re-interpreting Optimal Matching

In this section we present the first building blocks toward generalizing optimal matching.
We set up the causal estimation problem and provide a bias-variance decomposition of error.
Through a new functional analytical lens on optimal matching, we uncover it as a specific
case of finding weights that minimize worst-case error, but only under zero residual vari-
ance of outcomes given covariates. Our first generalization is to consider non-zero residual
variance, giving rise to a balance-variance Pareto-efficient version of optimal matching and
to a method that automatically chooses the exchange between balance and variance.

2.1. Setting

The observed data consists of n independent and identically distributed (iid) observations
{(Xi, Ti, Yi) : i = 1, . . . , n} of the variables (X,T, Y ), where X ∈ X denotes baseline
covariates, T ∈ {0, 1} treatment assignment, and Y ∈ R outcome. The space X is general;
assumptions about it will be specified as necessary. For t = 0, 1, we let Tt = {i : Ti = t} and
nt = |Tt|. We also let T1:n = (T1, . . . , Tn) and X1:n = (X1, . . . , Xn) denote all the observed
treatment assignments and baseline covariates, respectively. Using Neyman-Rubin potential
outcome notation (Imbens and Rubin, 2015, Ch. 2), we let Yi(0), Yi(1) be the real-valued
potential outcomes for unit i and assume the stable unit treatment value assumption (Rubin,
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1980) holds. We let Yi = Yi(Ti), capturing consistency and non-interference. We define

f0(x) = E [Y (0) | X = x] , εi = Yi(0)− f0(Xi), σ2
i = Var (Yi(0) | Xi) .

We consider estimating the sample average treatment effect on the treated :

SATT = 1
n1

∑
i∈T1(Yi(1)− Yi(0)) = Y T1(1)− Y T1(0),

where Y Tt(s) = 1
nt

∑
i∈Tt Y (s) is the average outcome of treatment s in the t-treated sample.

As Y T1(1) is observed, we consider estimators of the form

τ̂ = Y T1(1)− Ŷ T1(0)

for some choice of Ŷ T1(0). We will focus on weighting estimators Ŷ T1(0) =
∑

i∈T0 WiYi
given weights W ∈ RT0 . We consider honest weights that only depend on the observed
X1:n, T1:n and not on observed outcome data, that is, W = W (X1:n, T1:n). The resulting
estimator has the form

τ̂W = 1
n1

∑
i∈T1 Yi −

∑
i∈T0 WiYi. (1)

Here honesty simply refers to the fact that, conditioned on X1:n, T1:n, we are focusing on
linear estimators. An alternative weighting estimator, which we call the augmented estima-
tor, can be derived as a generalization of the doubly-robust augmented inverse propensity
weighting (AIPW) estimator (Robins et al., 1994; Robins, 1999; Scharfstein et al., 1999;
Robins et al., 1994):

τ̂W,f̂0
= 1

n1

∑
i∈T1(Yi − f̂0(Xi))−

∑
i∈T0 Wi(Yi − f̂0(Xi)), (2)

where f̂0(x) is a regression estimator for f0(x). The standard AIPW for SATT would be

given byWp̂,i = p̂(Xi)
n1(1−p̂(Xi)) where p̂(x) is a binary regression estimator for P (T = 1 | X = x).

Given a data set, we measure the risk of a weighting estimator as its conditional mean
squared error (CMSE), conditioned on all the observed data upon which the weights depend
as honest weights:

CMSE(τ̂) = E
[
(τ̂ − SATT)2 | X1:n, T1:n

]
.

Note that the CMSE is a function of the sample X1:n, T1:n. Correspondingly, our optimiza-
tion analysis will be conditional on the X1:n, T1:n sample, while consistency and inference
analysis will consider the randomness of this sample.

When choosing weights W , one may restrict to a certain space of allowable weights W.
Throughout, we consider only permutation symmetric sets, satisfying PW =W for all per-
mutation matrices P ∈ RT0×T0 . For example, Wgeneral = RT0 allows all weights; Wsimplex ={
W ≥ 0 :

∑
i∈T0 Wi = 1

}
restricts to weights that give a probability measure, preserving the

unit of analysis and ensuring no extrapolation in estimating Y T1(0);Wb-simplex =Wsimplex∩
[0, b]T0 further bounds how much weight we can put on a single unit; Wn′0-multisubset =
Wsimplex∩{0, 1/n′0, 2/n′0, . . . }

T0 limits us to integer-multiple weights that exactly correspond
to sub-sampling a multisubset of controls of cardinality n′0; Wn′0-subset = W1/n′0-simplex ∩
Wn′0-multisubset corresponds to sub-sampling a usual subset of cardinality n′0; andWmultisubsets =
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∪n0

n′0=1
Wn′0-multisubset and Wsubsets = ∪n0

n′0=1
Wn′0-subset correspond to sub-sampling any mul-

tisubset or subset, respectively. We have the inclusions:

Wsubsets ⊆ Wmultisubsets ⊆ Wsimplex ⊆ Wgeneral. (3)

A standing assumption is that of weak mean-ignorability :

Assumption 2.1 Conditioned on X, Y (0) is mean-independent of T : E [Y (0) | T,X] =
E [Y (0) | X] .

A second assumption, which we will relax in the context of partial identification, is overlap.

Assumption 2.2 P (T = 0) ∈ (0, 1) and P (T = 0 | X) is bounded away from 0.

2.2. Decomposing the Conditional Mean Squared Error

In this section we decompose the CMSE of estimators of the form in eq. (1) into a bias
term and a variance term. Let us define

B(W ; f) = 1
n1

∑
i∈T1 f(Xi)−

∑
i∈T0 Wif(Xi)

V 2(W ;σ2
1:n) =

∑
i∈T0 W

2
i σ

2
i + 1

n2
1

∑
i∈T1 σ

2
i

E2(W ; f, σ2
1:n) = B2(W ; f) + V 2(W ;σ2

1:n)

Proposition 1 Under Asn. 2.1,

E [τ̂W − SATT | X1:n, T1:n] = B(W ; f0), CMSE(τ̂W ) = E2(W ; f0, σ
2
1:n).

(Note our use of f0 as the true conditional expectation function of Y (0) and f as a generic
function-valued variable in the space of all functions X → R.)

The above provides a decomposition of the risk of τ̂W into a (conditional) bias term and
a (conditional) variance term, which must be balanced to minimize overall risk. The first
term, B(W ; f0), is exactly the conditional bias of τ̂W . We refer to V 2(W ; f0) as the variance
term of the error.2 More generally, if the units are not independent, the proof makes clear
that Prop. 1 holds with the variance term (W, en1/n1)TΣ(W, en1/n1) where en1 is the vector
of all ones of length n1 and Σ is the conditional covariance matrix.

An analogous result holds for the augmented estimator when f̂0 is fit across split folds.

Corollary 2 Under Asn. 2.1, if f̂0 ⊥⊥ Y1:n | X1:n, T1:n then

E [τ̂W,f0 − SATT | X1:n, T1:n] = B(W ; f0 − f̂0), CMSE(τ̂W,f0) = E2(W ; f0 − f̂0, σ
2
1:n)

2. The conditional variance of τ̂W actually differs from V 2(W ;σ2
1:n) by exactly

1
n2
1

∑
i∈T1 (Var (Yi(1) | Xi)−Var (Yi(0) | Xi)), which accounts for the conditional variance of SATT

and its covariance with τ̂W . Note this difference is constant in W and so it does not matter whether
the estimand we consider is SATT or E [SATT | X1:n, T1:n]. Since we do not condition on potential
outcomes, E [SATT | X1:n, T1:n] may be a more natural estimand; by the above observation, however, it
makes no difference which is considered the estimand and all the results remain the same for either.
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2.3. Re-interpreting Optimal Matching

In this section, we provide an interpretation of optimal matching as minimizing worst-case
CMSE. We consider two forms of optimal matching: nearest neighbor matching (NNM) and
optimal one-to-one matching (1:1M). In both, each treated unit is matched to one control
unit to minimize the sum of distances between matches as measured by a given extended
pseudo-metric δ(Xi, Xj).

3 NNM allows for replacement of control units whereas 1:1M does
not. In the end, the weight Wi assigned to a control unit i ∈ T0 is equal to 1/n1 times the
number of times it has been matched. So, under 1:1M, Wi is capped at 1/n1 and the result
is equivalent to constructing a subset of cardinality n1, where all n0−n1 unmatched control
units have been pruned away. Under NNM, the result is equivalent to a multi -subset of the
control sample of cardinality n1.

Next, consider an alternative perspective. We seek weights W that depend only on data
X1:n, T1:n and that minimize the resulting CMSE. The CMSE depends on unknowns: f0 and
σ2

1:n. In order to get a handle on the CMSE, we make assumptions about these unknowns.
First, we assume (implausibly) that Xi is completely predictive of Yi(0) so that σ2

i = 0.
Second, we assume that f0 is a Lipschitz continuous function with respect to δ. That is,4

∃γ ≥ 0 : ‖f0‖Lip(δ) ≤ γ where ‖f‖Lip(δ) := supx 6=x′
f(x)−f(x′)
δ(x,x′) ≤ γ.

Assuming nothing else, we may seek W to minimize the worst-case CMSE. If we limit
ourselves to simplex weights W =Wsimplex, the next theorem, adapted from Kallus (2017,
Theorem 2), shows that this is precisely equivalent to optimal matching.

Theorem 3 Fix a pseudo-metric δ : X × X → R+. Then, for any γ > 0, NNM and 1:1M
are equivalent to

W ∈ argminW∈W sup‖f‖Lip(δ)≤γ
{
E2(W ; f,0) = B2(W ; f)

}
, (4)

where W =Wsimplex for NNM and W =W1/n1-simplex for 1:1M.

Therefore, optimal matching is indeed optimal in a minimax CMSE sense, given the
assumptions and restrictions made. (Alternatively, without restricting σ2

i = 0, it minimizes
just the worst-case bias.) That is, the above theorem relates optimal matching – an a priori
choice of re-weighting based on data X1:n, T1:n – to the a posteriori error of estimating a
causal treatment effect and says that this choice minimizes the worst-case error over all
γ-Lipschitz functions. Surprisingly, we need not restrict to selecting each control unit an in-
teger multiple number of times – optimal matching, which results in a subset or multisubset
of the control sample, minimizes this error among all continuous weights in the (bounded)
simplex.

The above reinterpretation is closely related to the Rubinstein-Kantorovich theorem that
establishes the dual forms of the Wasserstein metric (Kantorovich and Rubinstein, 1958).
The Wasserstein metric is an example of an integral probability metric (IPM; Müller, 1997),

3. Compared to a metric, an extended pseudo-metric may also assign zero or infinity distance to distinct
elements.

4. Note that since δ may be a pseudo-metric, ‖f0‖Lip(δ) <∞ implies f(x) = f(x′) ∀x, x′ : δ(x, x′) = 0.
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Figure 1: The Balance-Variance Trade-off in Optimal Matching
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which are distance metrics between probability distributions given by the maximum moment
discrepancy of functions in a given class. The Wasserstein metric is given by the class of
1-Lipschitz functions and thus eq. (4) shows that optimal matching minimizes the Wasser-
stein metric between the empirical distributions of the treated sample and the re-weighted
control sample. Other examples of IPMs are the kernel maximum mean discrepancy (MMD;
Gretton et al., 2006) and the total variation distance.

This reinterpretation of optimal matching involved three critical choices: a restriction
on the conditional expectation f0, a restriction on the space weights W, and a restriction
on the magnitude of residual variance σ2

1:n. In this paper, we consider different such choices
that lead to methods that generalize optimal matching.

3. Generalizing Optimal Matching

In this section we consider generalizing the restrictions and assumptions that made opti-
mal matching equivalent to minimizing worst-case error. Doing so recovers other common
matching methods and other causal estimation methods, as well as give rise to new matching
methods such as KOM.

3.1. Generalizing Balance

Balance between the control and treatment samples can be understood as the extent to
which they are comparable. In estimating SATT, we want the samples to be comparable on
their values of f0 so that the bias due to the systematic differences between the samples is
minimal. When we re-weight the control sample by W , the absolute discrepancy in values
of f0 is |B(W ; f0)|. As seen in the preceding section, by minimizing this quantity over all
possible realizations of Lipschitz functions, optimal matching is seeking the best possible
balance over this class of functions. We now generalize this functional restriction, leading to
more general balance metrics called bias-dual-norm balance metrics (Kallus, 2017), which
also take the form of some IPM between the empirical distributions of the treated sample
and the re-weighted control sample.
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Since the bias depends on f0 but we do not know f0, we consider guarding against
any reasonable realization of f0. Bias is linear in f0, i.e., B(W ;αf + α′f ′) = αB(W ; f) +
α′B(W ; f ′). So, we must limit the “size” of f0. In particular, we consider the bias relative to
some extended magnitude ‖f‖ ∈ [0,∞] of f0 that is absolutely homogeneous, i.e., ‖αf‖ =
|α| ‖f‖ (where |α|∞ = ∞), and satisfies the triangle inequality (where ∞ ≤ ∞). This
allows us to generalize the notion of balance for optimal matching. Letting 0/0 = 0, we
redefine imbalance more generally as

B(W ; ‖ · ‖) = supf :X→RB(W ; f)/‖f‖ = sup‖f‖≤1B(W ; f), (5)

where the last equality is due to the homogeneity of B(W ; ·) and ‖ · ‖. The last equality
also shows that B(W ; ‖ · ‖) is of the form of an IPM between the treated sample and re-
weighted control sample given by the class functions in the unit ball of ‖ · ‖. To ensure that
B(W ; ‖ · ‖) is well-defined, we restrict our attention only to certain magnitude functions.
We require that B(W ; ·) is bounded with respect to ‖ · ‖, i.e., ∀W ∈ W ∃MW > 0 :
B(W ; f) ≤ MW ‖f‖.5 Then {f : ‖f‖ <∞} is a semi-normed6 vector space and B(W ; ·) is
a well-defined, continuous, linear operator on the Banach completion of the quotient space
{f : ‖f‖ <∞} / {f : ‖f‖ = 0}, i.e., B(W ; ·) is in its dual space. (See Ledoux and Talagrand,
1991; Royden, 1988 for Banach spaces.) In particular, B(W ; ‖·‖) is precisely the dual norm
of the bias as an operator on conditional expectation functions, which is necessarily finite
and well-defined for any W ∈ W:

B(W ; ‖ · ‖) = ‖B(W ; · )‖∗ <∞.

Definition 4 GivenW and ‖·‖ : [X → R]→ [0,∞] such that ‖·‖ is absolutely homogeneous
and satisfies the triangle inequality and ∀W ∈ W ∃MW > 0 : |B(W ; f)| ≤ MW ‖f‖,7
B(W ; ‖ · ‖) is called a bias-dual-norm (BDN) imbalance metric on W.

3.2. The Balance-Variance Trade-off

Even if the control and treatment samples are made completely comparable, there is inherent
error to the estimation of outcomes in each sample. Just a few controls may provide the
best matches, and hence the least bias. But, if σ2

i are nonzero, then averaging the outcome
in these few units has higher variance than averaging more units by, e.g., finding a few
more but perhaps less good matches. In one extreme, if σ2

i are zero, there is no added
variance and we best use the best matches (e.g., reuse controls with replacement). In the
other extreme, we conceive of σ2

i being so large, that we do not care about the bias due to
imbalance and we would prefer to do no matching on the samples so to minimize variance
(assuming homoskedasticity) and estimate SATT as the simple mean difference of the raw
treated and control samples.

5. This is necessary: were B(W ; ·) not bounded for some W ∈ W then for any M > 0 we would have
some f with B(W ; f) > M‖f‖ so that indeed B(W ; ‖ · ‖) =∞ is not defined. Alternatively, we can let
B(W ; ‖ · ‖) =∞ and treat this as a constraint on the feasibility W ; the resulting feasible set W satisfies
the condition by construction. Note also that MW may also depend on X1:n, T1:n.

6. Compared to a norm, a semi-norm may assign zero magnitude to non-zeros.
7. Note that this condition is relative to W. For example, for ‖ · ‖ = ‖ · ‖Lip(δ), the condition does hold for
W = Wsimplex but does not hold for W = Wgeneral. So the balance metric in optimal matching is not
valid for general non-simplex weights.
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This trade off between bias and variance is well understood in matching (Zubizarreta,
2015; Chan et al., 2016; Zhao, 2016; Iacus et al., 2011b). The most common approach to
this trade off in optimal matching is to disallow replacement (1:1M instead of NNM) and
to increase the number of matches (1:kM instead of 1:1M) (Stuart, 2010, §3.1.2). But given
an explicit understanding of balance as bounding bias, these are only heuristic and need
not be on the Pareto-efficient frontier of achievable balance and variance.

Per Thm. 3, NNM is given by optimizing only balance and ignoring variance. Some
approaches like 1:1M seek to alleviate this by forcing a more even distribution of weights.
However, per Prop. 1, given an imbalance metric, the best way to trade off balance and vari-
ance for minimal error is by directly regularizing imbalance by the sum of squared weights.
This suggests that the right way to trade off balance and variance in optimal matching is
to consider eq. (4) with σ2

1:n 6= 0. Plugging σ2
i = λγ2 for λ ≥ 0 into eq. (4), we refer to

the result as Balance-Variance Efficient Nearest Neighbor Matching (BVE-NNM) because
it generates the Pareto-efficient frontier of achievable variance and (matching) balance and,
for some λ, it gives the minimax optimal weights. We will revisit BVE-NNM in Sec. 5 and
develop NNM++, which automatically selects λ using cross-validation. For now, we explore
the balance-variance trade-off in an example.

In general, moving beyond optimal matching toward GOM, Prop. 1 provides an explicit
form of the total estimation risk in terms of these competing objectives and suggests that
the best choice lies somewhere in between focusing solely on balance or solely on variance,
where balance can be understood more broadly than sum of matched-pair distances.

Example 1 Let X ∼ Unif[−1, 1]2, P (T = 1 | X) = 0.95/(1 + 3√
2
‖X‖2). Fix a draw of

X1:n, T1:n with n = 200. We plot the resulting draw, which has n0 = 130, n1 = 70, in Fig. 1a.
For a range of λ we compute the resulting BVE-NNM weights using the Mahalanobis distance
δ(x, x′) = (x− x′)Σ̂−1

0 (x− x′) where Σ̂0 is the sample covariance of X | T = 0. We plot the
resulting space of achievable balance and variance in Fig. 1b. In one extreme (λ = 0) we
have NNM and in the other (λ =∞) we have no matching. Since 1:1M minimizes the same
balance criterion (sum of pair distances), we can plot the balance and variance it achieves
on the same axes. As intended, 1:1M achieves a trade off between the two extremes, but
it is not actually on the Pareto-efficient frontier since it does not trade these off in the
optimal way. Next, let Y (0) | X ∼ N (‖X‖22−eTX/2,

√
3). In Fig. 1c, varying λ, we plot

the resulting CMSE of τ̂W (solid) and τ̂W,f̂0
(dashed) for f̂0 given by ordinary least squares

(OLS). Since OLS has in-sample residuals summing to zero, τ̂W,f̂0
for λ = ∞ corresponds

to simple OLS regression adjustment. We see that tuning λ correctly can amount to a
significant improvement in CMSE.

3.3. Generalized Optimal Matching Methods

Optimal matching minimized the worst-case squared error given certain restrictions on f0,
σ2

1:n, and W. Generalizing these restrictions, we can consider a whole range of generalized
optimal matching methods that minimize CMSE by trading off variance to new, generalized
notions of balance.

Definition 5 Given W, ‖ · ‖ satisfying the assumptions of Def. 4 and λ ∈ [0,∞], the
generalized optimal matching method GOM(W, ‖ · ‖, λ) is given by the weights W that solve

9
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minW∈W

{
E2(W ; ‖ · ‖, λ) := B2(W ; ‖ · ‖) + λ ‖W‖22

}
. (6)

We let E2
min(W, ‖ · ‖, λ) denote the value of this minimum. If λ =∞, then we define W as

a minimizer of the first term in eq. (6) over the minimizers of the second term.

In other words, per Prop. 1, fixing X1:n, T1:n, the SATT estimator given by

GOM(Wgeneral, ‖ · ‖, λ) is the one given by letting Ŷ T1(0) be the minimax (with respect
to squared error risk) linear estimator constrained in {

∑
i∈T0 WiYi : W ∈ W} for the target

L(f1:n) = 1
n1

∑
i∈T1 fi, which is a linear operator on the possible realizations f1:n ∈ F1:n =

{(f(X1), . . . , f(Xn)) : ‖f‖ ≤ γ} ⊆ Rn, given observations Yi = fi + εi for i ∈ T0, if we
assume that σ2

i = λγ2. In particular, Prop. 1 shows that such minimax linear estimators
are exactly those that minimize a BDN imbalance metric plus a 2-norm regularization on
weights. More generally, if we have knowledge of heteroskedasticity or even if the units
are not independent, we would take the second term to be W TΛW for some positive semi-
definite Λ. In this paper, we focus only on Λ = λI for the sake of simplicity. Our consistency
results, nonetheless, will apply under heteroskedasticity even when we use a single λ.

Thm. 3 established that NNM is equivalent to GOM(Wsimplex, ‖ · ‖Lip(δ), 0) and 1:1M is

equivalent to GOM(W1/n1-simplex, ‖ · ‖Lip(δ), 0). BVE-NNM is given by GOM(Wsimplex, ‖ ·
‖Lip(δ), λ). Similarly, for any ‖ · ‖, no matching is given by GOM(W, ‖ · ‖,∞) for any

W 3 (1/n0, . . . , 1/n0), examples of which include Wsimplex, Wmultisubsets, and Wsubsets.

It follows by Prop. 1 that GOM leads to a bound on the CMSE. Define

‖[f ]‖ = infg:B(W ;g)=0 ∀W∈W ‖f + g‖,

which acts on the quotient space that eliminates degrees of freedom that are irrelevant to
B(W ; f). For example, when W ⊆ Wsimplex, this includes all constant shifts. Note ‖[f ]‖ is
always smaller than ‖f‖.

Corollary 6 Suppose σ2 ≥ σ2
i and γ ≥ ‖[f0]‖. Let λ = σ2/γ2 and let W be given by

GOM(W, ‖ · ‖, λ). Then

CMSE(τ̂W ) ≤ γ2(E2
min(W, ‖ · ‖, λ) + λ/n1).

And, if f̂0 ⊥⊥ Y1:n | X1:n, T1:n and γ ≥ ‖[f0 − f̂0]‖ , then

CMSE(τ̂W,f̂0
) ≤ γ2(E2

min(W, ‖ · ‖, λ) + λ/n1).

In particular, note that GOM controls a bound on the CMSE and not the CMSE itself,
which is unknowable. That is, it is a minimax approach, obtaining the best-possible control
on the range of possible CMSE values by a linear estimator, for each given X1:n, T1:n.

For subset-based matching, the balance-variance Pareto-efficient frontier given by vary-
ing λ is given by solely-balance-optimizing fixed-sized subsets.

Proposition 7 Given ‖ · ‖ and λ ∈ [0,∞], there exists n(λ) ∈ {1, . . . , n0} such that
GOM(Wsubsets, ‖ · ‖, λ) is equivalent to GOM(Wn(λ)-subset, ‖ · ‖, 0).

10
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In particular, to compute GOM(Wsubsets, ‖·‖, λ) we may search over GOM(Wn′0-subset, ‖·‖, 0)
for n′0 ∈ {1, . . . , n0} and pick the one that minimizes E(W ; ‖ · ‖, λ). Note that the converse
is not true: there may be some cardinalities that are not on the Pareto-efficient frontier of
balance-variance efficient subsets. An example of this will be seen in Ex. 4. We also have
the following relationship between optimal fixed-cardinality multisubsets and subsets:

Proposition 8 Given ‖ · ‖, λ ∈ [0,∞] and n′0 ∈ {1, . . . , n0}, the following are equivalent:
GOM(Wn′0-mutlisubset, ‖ · ‖,∞), GOM(Wn′0-subset, ‖ · ‖, 0), and GOM(Wn′0-subset, ‖ · ‖, λ).

3.4. Tractability

GOM is given by an optimization problem, which begs the question of when is it computa-
tionally tractable. We can first establish that the objective is always convex.

Proposition 9 Given anyW, ‖·‖ satisfying the assumptions of Def. 4 and λ ≥ 0, E2(W ; ‖·
‖, λ) is convex in W .

This means that if W =Wsimplex then problem (6) is convex. Indeed, we can show that
we can solve it in polynomial time.

Proposition 10 Given an evaluation oracle for B(W ; ‖ · ‖), we can solve problem (6) for
W =Wsimplex up to ε precision in time and oracle calls polynomial in n, log(1/ε).

In all cases we consider, B(W ; ‖ · ‖) is easy to evaluate. Moreover, in all cases we consider
withW =Wsimplex, we will in fact be able to formulate problem (6) as a linearly-constrained
convex-quadratic optimization problem, which are not only polynomially-time solvable but
also easily solved in practice using off-the-shelf solvers like Gurobi (www.gurobi.com), which
we use in all numerics in this paper to solve such problems in tens to hundreds of milliseconds
on a personal laptop computer. This includes the case of kernel optimal matching, which
we introduce in Sec. 4.

If W = Wn′0-subset then, by Prop. 8, problem (6) is equivalent to a convex-objective
binary optimization problem:

minU∈{0,1}T0 :
∑
i∈T0

Ui=n′0
B(U/n′0; ‖ · ‖). (7)

Unlike simplex weights, this problem is not polynomial-time solvable.

If W = Wsubsets then Prop. 7 shows that problem (6) is equivalent to searching over
the solutions Un′0 to problem (7) for n′0 ∈ {1, . . . , n0} and picking the one with minimal
B(Un′0/n

′
0; ‖ · ‖) + λ/n′0.

In all cases we consider in this paper with W =Wn′0-subset or W =Wsubsets, we will be
able to formulate problem (6) as, respectively, a single or a series of either binary quadratic
or mixed-integer-linear optimization problem(s). These problems, generally hard in the
sense of being NP-hard, can be solved for many practical sizes of n also by Gurobi. In fact,
we solve these problems too in our numerical examples.

11
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Table 1: Existing Matching Methods as GOM

Method
GOM with

See‖ · ‖ = W =

1:1M ‖ · ‖Lip(δ) W1/n1-simplex Thm. 1
NNM ‖ · ‖Lip(δ) Wsimplex Thm. 1
Optimal caliper matching ‖ · ‖∂(µ̂n,δ) W1/n1-simplex Prop. 22
Coarsened exact matching ‖ · ‖L∞(C) Wsimplex Prop. 23
Mean-matching and fine balance ‖ · ‖2−lin Wsubsets Prop. 24
Combined pair- and mean-matching ‖ · ‖Lip(δ) ⊕ρ ‖ · ‖2−lin Wsubsets Prop. 25
Regression adjustment ‖ · ‖2−lin Wgeneral Props. 26, 27

3.5. Existing Matching Methods as GOM

A surprising fact is that many matching methods commonly used in practice – not just
NNM and 1:1M – are actually also GOM. Optimal-caliper matching (OCM), which finds a
control match for each treated unit so to minimize the size of a caliper that would contain all
pair distances, is GOM with respect to an averaged form of the Lipschitz norm. Coarsened
exact matching (CEM) (Iacus et al., 2011a) is GOM with respect to the L∞ norm on piece-
wise linear functions. In addition, various matching and weighting methods that use mean
matching, near-fine balance, and combinations thereof with pair matching (Zubizarreta,
2012; Greenberg, 1953; Rubin, 1973; Rosenbaum et al., 2007; Yang et al., 2012; Bertsimas
et al., 2015) are also GOM with norms given by certain parametric spaces and their direct
sums with Lipschitz spaces.

Some of these results arise from observations in Kallus (2017), which studies method
that minimize only a BDN imbalance objective without the regularization as in GOM. In
particular, like NNM and 1:1M, many of the above are GOM with λ = 0. By automatically
selecting λ using hyperparameter estimation, we can develop extensions of these methods,
such as NNM++ and CEM++, that automatically and optimally trade off balance and
variance and successfully reduce overall estimation error. Finally, regression adjustment
methods are also GOM, revealing a close connection to matching but also a nuanced but
important difference in the handling of extrapolation.

For the sake of a more fluid presentation we defer the full presentation of all these results
to Sec. 5. We summarize the results in in Table 1, showing how a wide range of existing
methods to achieve covariate balance all arise from the GOM framework. Before proving
these and discussing extensions to consider balance-variance tradeoffs, we focus first on
presenting a new, unified analysis of all GOM method and on developing KOM as a special
class of GOM.

3.6. Consistency

In this section we characterize conditions for GOM to lead to consistent estimation. The
conditions include “correct specification” by requiring that ‖[f0]‖ < ∞. We also need the
following technical condition on ‖ · ‖ for consistency. All magnitudes that we consider in
this paper satisfy this condition.

12
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Definition 11 ‖·‖ is B-convex if there is N ∈ N, η < N such that for any ‖g1‖, . . . , ‖gN‖ ≤
1 there is a choice of signs so that ‖±g1 ± · · · ± gN‖ ≤ η.

Theorem 12 Suppose Asns. 2.1 and 2.2 hold and that

(i) for each n, W is given by GOM(W, ‖ · ‖, λn),

(ii) W, ‖ · ‖ satisfy the conditions of Def. 4,

(iii) λn ∈ [λ, λ] ⊂ (0,∞),

(iv) Wsubsets ⊆ W,

(v) ‖ · ‖ is B-convex,

(vi) E[sup‖f‖≤1 (f(X1)− f(X2))2 | T1 = 1, T2 = 1] <∞,

(vii) Var(Y (0) | X) is almost surely bounded, and

(viii) ‖[f0]‖ <∞.

Then, τ̂W − SATT = op(1).

Condition (iv) is satisfied for subset, mutlisubset, and simplex matching. Condition (vi)
requires bounded moments: for either near-fine balance or for optimal matching (‖ · ‖Lip(δ))
with Euclidean distances, the condition is satisfied if covariates have second moments. Con-
dition (viii) requires correct specification of the outcome model. For example, for near-fine
balance, expected potential outcomes have to be additive in the factors (i.e., linear). We
will relax this in the case of KOM and prove model-free consistency.

Note that, letting PATT = E [Y (1)− Y (0) | T = 1], under the above conditions, central
limit and Slutsky’s theorems imply SATT−PATT = Op(1/

√
n). Therefore, all consistency

and rate results extend to estimating PATT.

The results of Thm. 12 can be extended to the augmented estimator:

Theorem 13 Suppose all assumptions of Thm. 12 except (viii) hold, that f̂0 ⊥⊥ Y1:n |
X1:n, T1:n, and that (E[(f̂0(X) − f̃0(X))2])1/2 = O(1/

√
n) for some fixed f̃0. Then the

following three results hold:

(a) If f̃0 = f0: τ̂W,f̂0
− SATT = op(1).

(b) If ‖[f̃0]‖, ‖[f0]‖ <∞: τ̂W,f̂0
− SATT = op(1).

(c) If ‖[f0]‖ <∞, ‖[f̂0]‖ = Op(1): τ̂W,f̂0
− SATT = op(1).

The consistency results for τ̂W and τ̂W,f̂0
are stronger in the case of KOM, which we discuss

next.
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Figure 2: Random functions drawn from a Gaussian process
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4. Kernel Optimal Matching

In this section we develop kernel optimal matching (KOM) methods, which are given by
GOM using a reproducing kernel Hilbert space (RKHS). Kernels methods are standard
in machine learning as ways to generalize the structure of learned conditional expectation
functions, like classifiers or regressors (Scholkopf and Smola, 2001). Kernels have many ap-
plications in statistics, applied and theoretical (Berlinet and Thomas-Agnan, 2004; Gretton
et al., 2006; Zhang et al., 2012; Kallus, 2018).

An RKHS F is a Hilbert space of functions X → R such that, for any x, Ex : f ∈ F 7→
f(x) is a bounded operator. That is, F is a inner product space that is closed with respect
to the norm the inner product defines, ‖f‖ = 〈f, f〉, and |f(x)| ≤ Mx‖f‖ for some Mx for
every x. Since, for every x, Ex is linear and bounded, it has a representer, that is, it can
equivalently be written as an inner product, Exf = 〈K(x, ·), f〉 for some K(x, ·) ∈ F , an
element of F defined for every x. The resulting bivariate function K : X × X → R is a
positive semidefinite (PSD) kernel, meaning that for any m,x1, . . . , xm the Gram matrix
Kij = K(xi, xj) (which is real square symmetric) is PSD (has nonnegative eigenvalues).
The closure of the span of {K(x, ·) : x ∈ X} reproduces F , hence the name. Conversely,
the span of every PSD kernel can be uniquely completed to form an RKHS and hence
induces a norm ‖ · ‖ (Berlinet and Thomas-Agnan, 2004). PSD kernels also describe the
covariance of Gaussian processes (GP): we say that f ∼ GP(µ,K) if for any m,x1, . . . , xm,
(f(x1), . . . , f(xm)) are jointly normal and Ef(xi) = µ(xi), Cov(f(xi), f(xj)) = K(xi, xj).

8

Popular examples of kernels on Rd are polynomial KP
ν (x, x′) = (1 + xT x′

ν )ν , expo-

nential KE(x, x′) = ex
T x′ , Gaussian KG(x, x′) = e−

1
2
‖x−x′‖2 , and Matérn KM

ν (x, x′) =
(
√

2ν‖x−x′‖)ν
2ν−1Γ(ν)

BKν(
√

2ν‖x − x′‖) where BKν is a modified Bessel function of the second

kind. For s = ν + d/2 ∈ N0, the Matérn kernel induces a norm that is equivalent to
the Sobolev norm of order s given by ‖f‖2Hs =

∑
α∈Nd0:‖α‖1≤s

∫
Rd(D

αf)2 (Wendland, 2004,

Cor. 10.13). More generally, any differential norm ‖f‖2 =
∑

α∈Nd0
a‖α‖1

∫
Rd(D

αf)2 with

a0 > 0, ad(d+1)/2e > 0 also corresponds to an RKHS norm (Williams and Rasmussen, 2006,
Sec. 6.2.1) (we treat the case of purely differential regularization, a0 = 0, in Sec. 4.4).

8. Note the difference between “kernel” as the reproducer of an RKHS or covariance operator of a GP
and “kernel” as the integral kernel used in non-parametric smoothing methods such as kernel density
estimation, Nadaraya-Watson kernel regression, and local linear regression. In particular, in the context
of matching, Heckman et al. (1997) interpret 1:k NNM as a regression adjustment using k-nearest-
neighbor regression to impute control potential outcomes and suggest to replace this regression with
a kernel regression. This is wholly distinct from KOM and, in particular, is not GOM and does not
minimize worst-case CMSE. Instead, it directly imputes potential outcomes using kernel regression.
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Fig. 2 displays random draws (on the same realization path) of functions R → R from the
Gaussian processes with mean zero and the kernels above. Generally, we either normalize
covariate data before putting it in a kernel so that the control sample has zero sample mean
and identity covariance or we just fit a rescaling matrix to the data (see Sec. 4.5 for details).
The IPM with respect to the unit ball of an RKHS is the MMD (Gretton et al., 2006).

RKHS norms always satisfy the conditions of Def. 4 by definition. We call the resulting
GOM method, kernel optimal matching (KOM).

Definition 14 Given a PSD kernel K on X , the kernel optimal matching KOM(W,K, λ)
is given by GOM(W, ‖ · ‖, λ) where ‖ · ‖ is the RKHS norm induced by K. We also overload
our notation: B(W ;K) = B(W ; ‖ · ‖), E(W ;K, λ) = E(W ; ‖ · ‖, λ).

Compared to the space of Lipschitz function, RKHSs impose more structure but can
still be extremely general. Lipschitz functions are not only infinite dimensional, they are
also non-separable, i.e., no countable subset is dense. They have too little structure to be
practically useful without immense amounts of data or very little covariates, as we will see
empirically. In contrast, RKHSs are much more flexible: they are always separable and
may be chosen to be as general as needed and may still approximate functions arbitrarily
well, as we will see in Sec. 4.2. Additionally, they easily adapt to the data, as we will see in
Sec. 4.5. These properties and the strong theoretical guarantees that hold specifically for
this class, which we present in the following sections make KOM a particularly appealing
subclass of GOM and practically useful matching method.

KOM is generally given by a quadratic optimization problem.

Proposition 15 Let K be a PSD kernel and let Kij = K(Xi, Xj). Then, KOM(W,K, λ)
is given by the optimization problem

min
W∈W

1
n2

1
eTn1

KT1,T1en1 − 2
n1
eTn1

KT1T0W +W T (KT0T0 + λI)W. (8)

Problem (8) has a convex-quadratic objective. When W = Wsimplex, the problem is a
linearly-constrained quadratic optimization problem, which is polynomially time solvable
and easily computed with off-the-shelf solvers. For subset-based matching
KOM(Wsubsets,K, λ) is given by the following convex-quadratic binary optimization prob-
lem for some n(λ), as a consequence of Props. 7 and 8:

min
U∈{0,1}T0 :

∑
i∈T0

Ui=n(λ)

1
n2

1
eTn1

KT1,T1en1 − 2
n1n(λ)e

T
n1
KT1T0U + 1

n(λ)2U
TKT0T0U.

Unless otherwise noted, when referring to KOM, we mean on the simplex.
In Cor. 6, we saw that GOM immediately leads to a bound on CMSE. For the case of

KOM, we can also interpret it as Bayesian optimal, exactly minimizing the posterior CMSE
of τ̂W , rather than merely bounding it.

Proposition 16 Let K be a PSD kernel, c ∈ R, γ2, σ2 ≥ 0, λ = σ2/γ2. Suppose our prior
is that f0 ∼ GP(c, γ2K) and Yi(0) ∼ N (f0(Xi), σ

2). Then

E[(τ̂W − SATT)2 | X1:n, T1:n] = γ2(E(W ;K, λ) + λ/n1).

If instead our prior is f0 ∼ GP(f̂0, γ
2K)

E[(τ̂2
W,f̂0
− SATT)2 | X1:n, T1:n] = γ2(E(W ;K, λ) + λ/n1).
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Figure 3: The Balance-Variance Trade-off in KOM
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In the Appendix C, we discuss the equal-percent bias reduction (Rubin, 1976a, EPBR)
properties of KOM and new kernel-based generalizations thereof.

4.1. Automatic Selection of λ

An important question that remains is how to choose λ. Using the Bayesian interpretation
of KOM given by Prop. 16, we treat the choice of λ as hyperparameter estimation problem
for the prior and employ an empirical Bayes approach.

Given a kernel K, we postulate f0 ∼ GP(c, γ2K), Yi ∼ N (f0(Xi), σ
2), where we set

c = Y T0 . Given this model, we can ask what is the likelihood of the data for a given
assignment to γ2, σ2. This is known as the marginal likelihood as it marginalizes over the
actual regression function f0 rather than asking what is the likelihood under a particular
choice thereof (as in MLE). It is straightforward to show that the negative log marginal
likelihood of the control data given the prior parameters γ2, σ2 is

`(γ2, σ2) = − logP
(
YT0 | XT0 , γ2, σ2

)
= 1

2(YT0 − Y T0)T (γ2K + σ2I)−1(YT0 − Y T0) + 1
2 log |γ2K + σ2I|+ n0 log(2π)

2 ,

where K is the Gram matrix on T0. Choosing γ̂2, σ̂2 to minimize this quantity, we let
λ̂ = σ̂2/γ̂2. We give the name KOM++ to KOM with λ = λ̂.

In a strict sense, KOM++ does not produce “honest” weights because λ̂ depends on YT0 .
However, as we only extract a single parameter λ̂, we guard against data mining, as seen
by the resulting low CMSE in the next example and in our investigation of its performance
on real data in Sec. 4.6.

Example 2 Let us revisit Ex. 1 to study KOM. We consider KOM with the Gaussian,
quadratic, exponential, Matérn ν = 3/2, and Matérn ν = 5/2 kernels. We plot the resulting
balance-variance landscape in Fig. 3a. Note that the horizontal axis is different across the
curves and so the curves are not immediately comparable. We plot the resulting CMSE in
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Fig. 3b. In both figures, we point out the result of KOM++, which chooses λ by marginal
likelihood and which appears to perform well across all kernels. We include SKOM with the
second-order Beppo-Levi kernel KBL

2 as detailed in Sec. 4.4.

4.2. Consistency

We now characterize conditions for KOM to lead to consistent estimation. Under correct
specification, we can guarantee

√
n-consistency. Under incorrect specification but with a

C0-universal kernel, we can still ensure consistency. A C0-universal kernel, defined below, is
one that can arbitrarily approximate compactly-supported continuous functions in L∞. The
Gaussian and Matérn kernels are C0-universal and the exponential kernel is C0-universal
on compact spaces (Sriperumbudur et al., 2010).

Definition 17 A PSD kernel K on a Hausdorff X ( e.g., Rd) is C0-universal if, for any
continuous function g : X → R with compact support ( i.e., for some C compact, {x : g(x) 6=
0} ⊆ C) and η > 0, there exists m,α1, x1, . . . , αm, xm such that supx∈X |

∑m
j=1 αiK(xj , x)−

g(x)| ≤ η.

Theorem 18 Suppose Asns. 2.1 and 2.2 hold and that

(i) for each n, W is given by KOM(W,K, λn),

(ii) λn ∈ [λ, λ] ⊂ (0,∞),

(iii) Wsubsets ⊆ W,

(iv) E[K(X,X) | T = 1] <∞, and

(v) Var(Y (0) | X) is almost surely bounded.

Then the following two results hold:

(a) If ‖[f0]‖ <∞: τ̂W − SATT = Op(n
−1/2).

(b) If K is C0-universal: τ̂W − SATT = op(1).

As before, condition (iii) is satisfied for subset, mutlisubset, and simplex matching. Con-
dition (iv) is trivially satisfied for any bounded kernel (K(x, x) ≤M), such as the Gaussian
and Matérn kernels. Condition (v) is generally weak and, in particular, is satisfied un-
der homoskedasticity. Case (a) is the case of a well-specified model, even if K induces an
infinite-dimensional RKHS (all C0-universal kernels do). For example, while the exponen-
tial kernel is infinite dimensional and C0-universal on compact spaces, polynomial functions
(e.g., linear) have finite norm in its induced RKHS. Moreover, under the common semipa-
rameteric specification where f0 is assumed to be Sobolev (e.g., be square-integrable so that
Var(Y (0)) < ∞ and have square-integrable derivatives of degrees up to d(d+ 1)/2e), it is
well-specified by the Matérn kernel. Case (b) is the case of a misspecified model, wherein a
C0-universal kernel still guarantees model-free consistency.

The results can be extended to the augmented estimator.
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Theorem 19 Suppose the conditions of Thm. 18 hold and that f̂0 ⊥⊥ Y1:n | X1:n, T1:n. Then
the following five results hold:

(a) If ‖[f̂0 − f0]‖ = op(1): τ̂W,f̂0
− SATT = 1

n1

∑
i∈T1 εi−

∑
i∈T0 Wiεi+op(n

−1/2).

(b) If ‖[f0]‖ <∞, ‖[f̂0]‖ = Op(1): τ̂W,f̂0
− SATT = Op(n

−1/2).

If (E[(f̂0(X)− f̃0(X))2])1/2 = O(r(n)) for r(n) = o(1) and

(c) If f̃0 = f0: τ̂W,f̂0
− SATT = Op(r(n) + n−1/2).

(d) If K is C0-universal: τ̂W,f̂0
− SATT = op(1).

(e) If ‖[f̃0]‖, ‖[f0]‖ <∞: τ̂W,f̂0
− SATT = Op(r(n) + n−1/2).

Case (c) says that f̂0 is weakly L2-consistent with rate r(n). The condition holds with a
parametric r(n) = n−1/2, for example, if f0 is linear and f̂0 is given by OLS on XT0 , YT0 .
Cases (d), (e), and (b) say that when f̂0 may be inconsistent, kernel weights can correct
for the error, with the situation varying on whether the regression estimator is itself in the
RKHS. Thus, one useful case is when f̂0 is given by a parametric regression and we use
KOM with a C0-universal kernel: then we get a parametric rate when the model is correct
but do not sacrifice consistency when it is not. Case (a) shows that if f̂0 is consistent in the
RKHS norm then we are only left with the irreducible error that involves only the residuals
εi, which of course X cannot control for. Example of such cases include when f̂0 is given
by a well-specified kernel ridge regression and we use KOM with the same kernel or when
its given by any nonparametric regression and its derivatives up to d(d+ 1)/2e are weakly
consistent and we use KOM with the Matérn kernel.

For the case where f̂0 is given by kernel ridge regression and W by KOM with Wgeneral

(see Sec. 5.6) and both use the same kernel and λ, we get a closed form for the augmented
KOM estimator:

1
n1
eTn1

(YT1 −KT1T0(KT0T0 + λI)−1(KT0T0 + 2λI)(KT0T0 + λI)−1YT0).

This estimator essentially debiases the kernel ridge regression adjustment – bias which
is unavoidable in nonparametric kernel ridge regression (e.g., universal kernel). In the
parametric case (rank of KT0T0 is bounded), we can set λ = 0 and recover plain OLS
adjustment as it is already unbiased.

In a related alternative usage of augmented estimators, Athey et al. (2016) recently
showed that in a setting with a correctly specified but high-dimensional parametric (lin-
ear) model, fast, consistent estimation is possible using τ̂W,f̂0

with f̂0 given by LASSO

(Tibshirani, 1996) and W given by the equivalent of GOM(Wsimplex, ‖ · ‖1-lin, λ).

4.3. Kernel Matching to Reduce Model Dependence

A popular use of matching, as implemented in the popular R package MatchIt, is as pre-
processing before regression analysis, in which case matching is commonly understood to
reduce model dependence (Ho et al., 2007). Similar in spirit to double robustness in the face

18



Generalized Optimal Matching

of potential model misspecification, this is understood commonly and in Ho et al. (2007)
as pruning unmatched control subjects before a linear regression-based treatment effect es-
timation. More generally, however, we can consider any nonnegative weights W , whether
subset or simplex weights. This leads to the following weighted least squares estimator:

τ̂WLS(W ) = argminτ∈R minα∈R,β1,β2∈Rd
∑n

i=1(Ti/n1 + (1− Ti)Wi)

× (Yi − α− τTi − βT1 Xi − βT2 (Xi −XT1)Ti)
2

When W is given by KOM, we can show that this procedure indeed achieves the desired
robustness: consistency without model dependence and parametric rates when the model
is correctly specified.

Theorem 20 Suppose the conditions of Thm. 18 hold and that K is C0-universal, X
bounded, and E[XXT | T = 1] non-singular. Then,

(a) Regardless of f0: τ̂WLS(W ) − SATT = op(1).

(b) If ∃α0, β0 s.t. f0(x) = α0 + βT0 x: τ̂WLS(W ) − SATT = Op(n
−1/2).

4.4. Semi-Kernel Optimal Matching

We next extend KOM to the semiparametric case with unconstrained parametric part, where
we combine both a parametric exact balance criterion such as exact matching of means with
a non-parametric criterion such as that of KOM. A notable example will include matching
against all functions with square-integrable Hessians, as in smoothing splines (Friedman
et al., 2001, Sec. 5.7). First, we define conditionally PSD kernels.

For a class of functions G ⊆ [X → R], a G-conditionally PSD kernel on X ⊂ Rd is
a symmetric function K : X × X → R that satisfies

∑m
i=1 vivjK(xi, xj) ≥ 0 for every

m,x1, . . . , xm, v1, . . . , vm satisfying
∑n

i=1 vig(xi) = 0 for all g ∈ G. For example, {0}-
conditionally PSD kernels are just the PSD kernels. Given a G-conditionally PSD kernel K,
we can define a corresponding magnitude:

‖f‖2 = inf


∞∑

i,j=1

αiαjK(xi, xj) :
f = g +

∑∞
i=1 αiK(xi, ·),

g ∈ G,
∑∞

i=1 α
2
iK(xi, xi) <∞,∑∞

i=1 αig
′(xi) = 0 ∀g′ ∈ G

 . (9)

If K is G-conditionally PSD, then we refer to GOM(W, ‖ · ‖, λ) with ‖ · ‖ as in eq. (9) as
SKOM(W,K, λ), abbreviating SKOM for semi-kernel optimal matching and treating G as
implicit in K.

An important example is smooth functions on Rd. Let G be all polynomials of degree
at most ν − 1: Gpoly

ν = span{xα : α ∈ Nd0, ‖α‖1 ≤ ν − 1}. Then, For ν > d/2, the Beppo-

Levi kernel KBL
ν (x, x′) = κν(‖x − x′‖2) is Gpoly

ν -conditionally PSD, where κν(0) = 0 and
κν(u) = (−1)ν+(d−2)/2u2ν−d log(u) for d even and κd,ν(u) = u2ν−d for d odd. The Beppo-
Levi kernel’s corresponding magnitude in eq. (9) is equivalent to the square-integral of the
νth derivatives (Wendland, 2004, Prop. 10.39): ‖f‖2BL =

∑
α∈Nd0,‖α‖1=ν

(
ν
α

) ∫
Rd(D

αf)2.

Two important cases are cubic and thin-plate splines. In d = 1, the cubic spline kernel
KBL

2 (x, x′) = |x− x′|3 is conditionally PSD with respect to all linear functions Glin = Gpoly
2 .
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In d = 2, the thin-plate spline kernel KBL
2 (x, x′) = ‖x − x′‖2 log(‖x − x′‖) is also Glin-

conditionally PSD. In either case, the magnitude in eq. (9) is equivalent to the roughness
of f , or square integral of the Hessian:

‖f‖2Roughness =
∫
Rd ‖∇

2f‖2Frobenius.

Thus, SKOM(W,KBL
2 , λ) seeks weights to balance all smooth functions. In particular, as

the linear part of f is completely unconstrained since linear functions have zero Hessian, it
will, if possible, exactly balance all linear functions, i.e., it will exactly match the sample
means.

Like KOM, SKOM admits a solution as a convex-quadratic-objective optimization prob-
lem.

Proposition 21 Let G = span{g1, . . . , gm}, let K be a G-conditionally PSD kernel, let
Kij = K(Xi, Xj), let Gij = gi(Xj), and let N ∈ Rn×k have columns forming a basis for
the null space of G. Then SKOM(W,K, λ) is given by W = NT0U with U given by the
optimization problem

min UTNT (K + λIT0)NU
s.t. U ∈ Rk, NT0U ∈ W, NT1U = −en1/n1

(10)

where (IT0)ij = I[i = j ∈ T0]. Moreover, NTKN is PSD matrix so that the quadratic
objective is convex.

Note that in the case of W = Wsimplex, if a constant function is in G as in the case of
smooth functions, then the constraint

∑n
i=1Wi = 1 is redundant in problem (10) as it is

already enforced by the other constraints. In particular, the constraints necessarily imply
B(W ; g) = 0 for all g ∈ G.

This also means that, in the case of SKOM over smooth functions with W =Wsimplex,
there may exist no solution at all to the SKOM unless the treated sample mean XT1 =
1
n1

∑
i∈T1 Xi is in the convex hull of the control sample conv{Xi : i ∈ T0}. If it is, then SKOM

will seek the weights that simultaneously match the means exactly without extrapolation
and balance all smooth functions. If it is not, a solution will nonetheless exist if we instead
use W =Wgeneral (effectively fit a spline), but this allows extrapolation and is inadvisable.
More appropriately, in the case where exactly matching means without extrapolation is not
feasible, one should instead seek to achieve approximate matching without extrapolation by
simply using standard KOM (which penalizes linear terms in f0). First-order discrepancies
can be emphasized by putting higher weight on linear functions by, e.g., using a direct sum
of a universal RKHS with an appropriately weighted linear RKHS.

4.5. Automatic Selection of K

We can go further than just selecting λ in a data-driven manner for KOM and also use
marginal likelihood to choose K. Consider a parametrized family of kernels
K = {Kθ(x, x′) : θ ∈ Θ}. The most common example is parameterizing the length-scale
of the Gaussian kernel:

{
Kθ(x, x′) = KG(x/θ, y/θ) : θ > 0

}
. But we can easily conceive of

more complex structures such as fitting a rescaling matrix for any kernel:
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Table 2: MSE of various estimators in Ex. 3

τ̂W τ̂W,f̂0 τ̂WLS(W )

KOM++ ARD KP2 0.028481 0.028698 0.028685
KOM++ ARD KM3/2 0.028886 0.029165 0.029182

KOM++ ARD KM5/2 0.028983 0.029279 0.029323

KOM++ ARD KG 0.029033 0.029288 0.029316
KOM++ ARD KE 0.029072 0.029188 0.029128
KOM++ KG 0.029783 0.029834 0.029856
KOM++ KM5/2 0.029895 0.029935 0.029956

KOM++ KM3/2 0.029944 0.029980 0.030001

KOM++ KP2 0.030391 0.030471 0.030543
IPW 0.033168 0.033146 0.033126
PSLLM 0.033379 0.033399 –
No matching 0.034188 0.032925 0.032925
1:1M 0.034283 0.034769 0.034797
PS1:1M 0.038382 0.037646 0.037914
CEM++ 0.039811 0.039611 0.039533
CEM 0.040418 0.040228 0.040073
NNM++ 0.042890 0.043184 0.043511
NNM 0.047071 0.047399 0.047695
LLM 0.081411 0.081411 –

{
Kθ(x, x′) = K(θx, θy) : θ ∈ Θ ⊆ Rd×d

}
, where Θ can be restricted to diagonal matrices

in order to rescale each covariate (known as automatic relevance detection, ARD), can be
unrestricted to fit a full covariance structure, or can be restricted to matrices with only
d′ < d rows in order to find a projection onto a lower dimensional space. Additionally, we
can consider mixtures of kernels, {θK1 + (1− θ)K2 : θ ∈ [0, 1],K1 ∈ K1,K2 ∈ K2}, and more
complex structures like the spectral mixture kernel (Wilson and Adams, 2013).

It is easy to see that given any such parameterized kernel Kθ, the negative log marginal
likelihood is simply given by the parametrized Gram matrix:

`(θ, γ2, σ2) = 1
2(YT0 − Y T0)T (γ2Kθ + σ2I)−1(YT0 − Y T0) + 1

2 log |γ2Kθ + σ2I|+ n0 log(2π)
2 ,

where Kθ,i,j = Kθ(Xi, Xj) for i, j ∈ T0. As before, we can optimize this over θ, γ2, σ2 jointly
to select both K and λ for KOM.

Note that if it is the case that for any θ ∈ Θ and unitary matrix U we haveKθ(Ux,Ux′) =
Kθ′(x, x′) for some θ′ ∈ Θ, then KOM after marginal likelihood is affinely invariant. For
example, this is the case when we parametrize either an unrestricted low-dimensional pro-
jection or full covariance matrix for the kernel. This means that it is not necessary to
preprocess the data to make the sample covariance identity by studentization.

Example 3 We revise the setup of Ex. 1 with higher dimensions and data size: we let
n = 500, X ∼ Unif[−1, 1]5, P (T = 1 | X) = 0.95/(1 + 3√

5
‖X‖2), and Y (0) | X ∼

N (X2
1 + X2

2−X1/2−X2/2,
√

3), so that there are three redundant covariates. We con-
sider all weighting methods in the preceding examples along with the following additional
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methods: KOM++ with ARD; inverse propensity weights (including AIPW when used in
the augmented estimator) and propensity score matching (PS1:1M) with propensities esti-
mated by logistic regression; and local linear matching as proposed by Heckman et al. (1997)
applied either to X (LLM) or to propensities (PSLLM). For CEM, we coarsen into the
greatest number of levels per covariate while maintaining at least one control unit in each
stratum with a treated unit. For local linear matching, we use triweight kernel on Maha-
lanobis distances and 50% span. For each method, we interpret the result as a set of weights
and consider either the simple weighting estimator τ̂W , the augmented estimator τ̂W,f̂0

with

f̂0 given by OLS, and the weighted least squares estimator τ̂WLS(W ) (except for local linear
matching due to negative weights). We run 500 replications and tabulate the marginal mean
squared error (MSE) for estimating SATT in Tab. 2.

4.6. Infant Health and Development Program

We next consider evaluating the practical usefulness of KOM++ by studying data from
the Infant Health and Development Program (IHDP). IHDP was a randomized experiment
intended to measure the effect of a program consisting of child care and home visits from
a trained provider on early child development (Brooks-Gunn et al., 1992), as measured
through cognitive test scores.

To make an observational study from this data, we follow the construction of Hill (2012),
where the subject of study is a child. We make one modification to further exacerbate
overlap. Like Hill (2012), we remove all children with non-white mothers from the treatment
group. To make overlap worse, we further remove all children with mothers aged 23 or
younger from the treatment group and all children with mothers that are either white or aged
26 or older in the control group. Following Hill (2012), mother’s age and race are omitted as
covariates. In sum, the treatment group (n1 = 94) consists only of children with older white
mothers and the control group (n0 = 279) consists only of children with younger nonwhite
mothers, creating groups that are highly disparate in socioeconomic privilege. (The age
cutoffs are near the mean and were chosen so to keep the data non-linearly-separable or else
propensity score methods with scores estimated by logistic regression would be undefined.)
Each unit is described by 25 covariates, 6 continuous and 19 binary, corresponding to
measurements on the child (birth weight, etc.), measurements on the child’s mother (smoked
during pregnancy, etc.), and site. We generate outcomes Yi(0), Yi(1) precisely as described
by the non-linear response surface of Hill (2012) (“response surface B,” which specified
f0 as the exponential of a linear function in covariates) conditioning on the coefficient on
mother’s age being zero.

We consider a range of methods: standard methods, KOM++ with various kernels,
and KOM++ with ARD. The standard methods we consider include: inverse propensity
weighting (IPW) and propensity score matching (PS1:1M) both using propensity scores
estimated by logistic regression, NNM and 1:1M on the Mahalanobis distance, local linear
matching (Heckman et al., 1997) on covariates (LLM) or propensities (PSLLM) using the
triweight kernel on Mahalanobis distances with 50% span, and CEM on a coarsening chosen
for maximal overlap. Coarsening on all variables (treating continuous variables as indicators
for being above or below the mean) creates too many strata (225) and leaves only one treated
unit in a stratum with at least one control unit. Instead, for CEM, we select half of the
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Figure 4: Effect Estimation for the Infant Health and Development Program
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covariates (13) to maximize the number of treated units that are in a stratum with at least
one control unit after coarsening on only these covariates. Following the suggestion of Iacus
et al. (2011a), we then proceed to prune all treated units in strata without overlap, leaving
69 units (only for CEM). We also omit NNM++ due to the high computational burden
of its cross-validation procedure. For KOM++ we consider the quadratic (KP

2 ), Gaussian
(KG), and Matérn (KM

3/2,K
M
5/2) kernels and either using or not using ARD. We compute

standard errors for all methods using the method of Imbens and Rubin (2015, §19.6). We
construct confidence intervals by adding 1.96 standard errors to either the point estimate
for all standard methods or to the interval estimate given by eq. (14) (see Appendix B) for
KOM++, using the magnitude of f0 as estimated by the marginal likelihood step.

We plot the results in Fig. 4. At the top, the figure lists the marginal mean-squared
errors (MSE) E[(τ̂ − SATT)2] and the coverage of the 95% confidence intervals over 10,000
runs (note that SATT differs by run). Below the MSEs, the figure shows the results from
one representative example run, showing SATT (dashed line), point estimates (red dots),
confidence intervals (black bars), and, in the case of KOM++, interval estimates (pink
bars). It is clear that among matching and weighting methods, KOM++ and, in particular,
KOM++ when using ARD leads to significantly smaller error. As a weighting method, it
can easily be combined with any regression technique by reweighting the training data or
by reweighting the average of residuals.

The low overlap in this example leads IPW to produce extreme weights and suffer high
MSE. In comparison, KOM++, while it cannot fix the unavoidable bias due to lack of
overlap in and of itself, is able to maintain stable weights and small MSE by considering
error directly while limiting extrapolation. 1:1M also provides rather stable weights but
has a much harder time achieving good balance, leading to significantly higher MSE than
KOM++. Through the lens of GOM we can identify two causes for this. On the one
hand, 1:1M is only a heuristic way to trade off balance and variance: as seen in Ex. 1,
it is not necessarily on the Pareto-efficient frontier. On the other, it is trying to balance
far too much than is really necessary. One way to understand 1:1M’s slow convergence
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rate in d ≥ 2 (Abadie and Imbens, 2006) is that finding good pairs becomes rapidly hard
as dimension grows modestly. GOM offers another, functional-analytic perspective: 1:1M,
which optimizes balance with respect to Lipschitz functions, is trying to balance far too
much. Lipschitz functions are not only infinite dimensional, they are also non-separable so
they have too little structure to be practically useful. In comparison, a C0-universal RKHS,
such as those given by the Gaussian or Matérn kernels, can still approximate any function
arbitrarily well, but is still a separable space, admitting a countable orthonormal basis so
that KOM++ is essentially balancing a countable number of moments. Essentially, this
imposes enough structure so that good balance is actually achievable but not too much so
that the resulting method remains fully non-parametric. Often, as in this example, even
quadratic is enough, but it does not hurt too much to use the Gaussian or Matérn kernels and
guarantee consistency without specification. Of course, if f0 is truly extremely unsmooth,
traditional matching (i.e., optimizing against Lipschitz f0) may be perform better, but this
is generally not the case and would still not prevent consistency of KOM when using a
C0-universal RKHS. Adding ARD to KOM++ significantly improves its performance by
learning the right representation of the data to balance, leading to lower MSEs.

4.7. Recommendations for Practical Use

In sum the results, both theoretical and empirical, suggest that KOM++ can offer signifi-
cant benefits in estimation precision and robustness. Using KOM with a C0-universal kernel
such as Gaussian or Matérn is non-parametric, just like optimal matching, and guarantees
consistency regardless of model specification, which is particularly reassuring in an obser-
vational study. At the same time, the empirical results provide strong evidence that, when
applied correctly using KOM++ with ARD for parameter tuning, using these nonpara-
metric kernels incurs little to no deterioration in precision compared to using parametric
kernels like quadratic when quadratic happens to be well-specified (which of course could
not be known in practice). Therefore, a robust general-purpose recommendation for the use
of KOM in practice is to use the Gaussian or Matérn kernel with KOM++ with ARD for
parameter tuning. The choice of which C0-universal kernel seems to matter little based on
the results in Sec. 4.6 and Ex. 3.. In theory, the Matérn kernel only requires the existence
of enough derivatives for “correct specification” and a speed up from op(1) to Op(1/

√
n).

The Gaussian kernel requires more but it is more standard in practice and is simpler in
form. In practice, such abstract notations of specification may have little relevance as both
kernels yield very similar MSEs and what matters most is the reassuring blanket guarantee
of model-free consistency, which is shared by both.

As a matching method, KOM is amenable to the same inference methods, such as that
of (Abadie and Imbens, 2006), which was developed for optimal matching and generalized
in (Imbens and Rubin, 2015, §19.6). It also gives rise to new inference methods based on
the empirical Bayesian estimation of hyperparameter used in KOM++. These enable the
construction of confidence intervals for KOM++ estimates.

More importantly, KOM provides an explicit bound on bias, which can be useful in in-
stances with limited overlap where the bias can be significant or even ultimately irreducible.
It is again advisable to use a C0-universal kernel for constructing interval estimates using
KOM as in eq. (14). The question for balance is whether the matched samples are com-

24



Generalized Optimal Matching

Figure 5: The Balance-Variance Trade-off in CEM and NFB
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parable for the purpose of effect estimation. This means that evaluating balance just on
differences of covariates means (as for example done on a Love plot) will not be helpful if
effects are nonlinear. Evaluating balance using KOM with a nonparametric, C0-universal
kernel, however, will necessarily protect against any possible form of the effect. It will also
be smaller than a similar bound for a pair-matching method because the imbalances it will
leave will necessarily be huge, especially for data with more than just a couple dimensions.
Correspondingly, the interval estimate produced by KOM with a C0-universal kernel will
be both precise and reliable in practice even when overlap is low so that both estimating
effects and assessing specification is difficult.

5. Existing Matching Methods as GOM

As discussed in Sec. 3.5, many matching methods commonly used in practice – not just
NNM and 1:1M – are GOM. In this section, we review these results and discuss practical
implications, such as considering the balance-variance trade off. Like NNM and 1:1M, many
of these methods are GOM with λ = 0, in which case they just minimize a bias-dual-norm
balance metric (Kallus, 2017). Note that while very many existing methods can be seen as
GOM, a few cannot, including full matching (Rosenbaum, 1991; Sävje et al., 2017), which
focuses on finding strata composed of multiple units to be used for stratification-based
estimation and inference (on the other hand, given these strata, the matching is equivalent
to exact matching, which weights control units in each stratum by the inverse fraction of
control units in the stratum, which is GOM with respect to L∞).

5.1. Nearest-Neighbor Matching

Per Thm. 3, NNM is equivalent to GOM(Wsimplex, ‖ · ‖Lip(δ), 0). Minimizing CMSE when

residual variances are not zero, however, would lead to GOM(Wsimplex,
‖ · ‖Lip(δ), λ), which refer to as BVE-NNM and which is given by the following linearly-
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constrained convex-quadratic optimization problem:

min (
∑

i∈T0,j∈T1 δ(Xi, Xj)Sij)
2 + λ ‖W‖22

s.t. W ∈ RT0 , S ∈ RT0×T1+∑
i∈T0 Sij = 1/n1 ∀j ∈ T1∑
j∈T1 Sij = Wi ∀i ∈ T0

Ex. 1 illustrates the need to carefully weigh the imperative to balance in the face of
variance in NNM but also begs the question of how should we appropriately tune the ex-
change rate λ. We present a approach we call NNM++ based on the interpretation of
optimal matching as protecting against Lipschitz continuous functions and using cross val-
idation for hyperparameter estimation. Assuming homoskedasticity, the hyperparameters
of interest are the residual variance σ2 and Lipschitz constant γ.

NNM++ proceed as follows. We consider regularization parameters Ψ ⊆ [0,∞) and m
disjoint folds T0 = T0

(1)t· · ·tT0
(m). For each ψ ∈ Ψ and validation fold k = 1, . . . ,m, we find

f̂
(k)
0 that minimizes the sum of squared errors in T0\T0

(k) regularized by ψ times the Lipschitz

constant. Out of fold, a range of functions agrees with the fitted value v̂i = f̂
(k)
0 (Xi),

γ̂ = ‖f̂ (k)
0 ‖Lip(δ): f̂

(k)
0 (x) ∈ [mini∈T0\T0(k) (v̂i + γ̂δ(Xi, x)) , maxi∈T0\T0(k) (v̂i − γ̂δ(Xi, x))].

For the purposes of evaluating out-of-fold error, we use the point-wise midpoint of this
interval. We select ψ̂ with least out-of-fold mean squared error averaged over folds, let σ̂2

be this least error, and refit the ψ̂ regularized problem on the whole T0 sample to estimate
γ̂. This cross-validation procedure is summarized in Alg. 1, listed in Appendix A. Note that
we are not interested in a good fit of f̂0 – only a handle on the hyperparameter λ = σ2/γ2.
Finally, we compute the BVE-NNM weights with λ̂ = σ̂2/γ̂2. In Ex. 1, NNM++ is shown
using 10-fold cross validation in Figs. 1b and 1c.

Note that given only that f0 is Lipschitz, is not generally possible to estimate its Lips-
chitz constant without bias given noisy observations. The above cross-validation procedure
will necessarily shrink the estimate and have some downward bias. Moreover, NNM++
does not produce “honest” weights. It is also a very computationally intensive procedure,
requiring solving many large quadratic optimization problems. We merely present NNM++
as one principled way to trade off balance and variance in optimal matching that seems to
perform competitively.

An alternative approach to finding something on the Pareto-efficient frontier that is
strictly “honest” is to compute 1:1M and find anything on the frontier that dominates it,
e.g., in Ex. 1, we may choose any point on the frontier that is below or to the left of 1:1M
in Fig. 1b and improve upon it.

5.2. Optimal-Caliper Matching

A sibling of NNM is optimal-caliper matching (OCM), which selects matches with distances
that all fit in the smallest possible single caliper. Allowing replacement, NNM is one of many
OCM solutions. Without replacement, NNM and OCM differ. The next theorem shows
that OCM is GOM with λ = 0.

Proposition 22 Fix a pseudo-metric δ : X × X → R+. Let

‖f‖∂(µ,δ) = Ex∼µ,x′∼µ
[
δ(x, x′)−1|f(x)− f(x′)| | x 6= x′

]
.
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OCM with replacement is equivalent to GOM(Wsimplex, ‖·‖∂(µ̂n,δ), 0), where µ̂n is the empiri-
cal distribution of X. OCM without replacement is equivalent to
GOM(W1/n1-simplex, ‖ · ‖∂(µ̂n,δ), 0).

5.3. Coarsened Exact Matching

Given a coarsening C : X → {1, . . . , J} stratifying X , CEM (Iacus et al., 2011a) minimizes
the coarsened L1 distance,∑M

j=1

∣∣∣ 1
n1

∑
i∈T1 I[C(Xi)=j] −

∑
i∈T0 WiI[C(Xi)=j]

∣∣∣ , (11)

by simply equating the matched control distribution in each stratum by setting Wi =
n−1

1 |{j ∈ T1 : [C(Xi) = C(Xj)]}|/|{j ∈ T0 : [C(Xi) = C(Xj)]}|.
CEM is also GOM with λ = 0 as the next result, adapted from Kallus (2017, Theorem

4), shows.

Proposition 23 Fix a coarsening function C : X → {1, . . . , J}. Let

‖f‖Lp(C) =

{
‖(supx∈C−1(j) |f(x)|)Jj=1‖p

∣∣f(C−1(j))
∣∣ = 1 ∀j,

∞ otherwise.

(I.e., the vector p-norm of the values taken by f on the coarsened regions if f is piecewise
constant.) CEM is equivalent to GOM(Wsimplex, ‖ · ‖L∞(C), 0).

In practice, one often considers a sequence of nested coarsenings, each coarser than the
previous, and chooses one to control balance and extreme weights. Instead, we can simply
consider a Balance-Variance Efficient CEM (BVE-CEM) given by
GOM(Wsimplex, ‖ · ‖L∞(C), λ) for general λ. The BVE-CEM weights are given by the fol-
lowing optimization problem

min
W∈Wsimplex

(
∑J

j=1 |
1
n1

∑
i∈T1 I[C(Xi)=j] −

∑
i∈T0 WiI[C(Xi)=j]|)2 + λ ‖W‖22 (12)

Unlike CEM, the solution does not have a closed form. We can solve this optimization
problem explicitly by considering all combinations of signs for the J absolute values. For
each combination, a Lagrange multiplier argument yields an optimal solution. By further
observing that we need only consider monotonic deviations from the usual CEM solution,
we obtain Alg. 2, listed in Appendix A, which finds the BVE-CEM weights in O(J2) time.

We also consider a CEM++ variant given by estimating λ and using the correspond-
ing BVE-CEM. Unlike BVE-NNM, here the class of functions {f : ‖f‖L∞(C) < ∞} is
generally “small.”9 Therefore, we sidestep a complicated validation scheme and simply
estimate the parameters in-sample but use the one-standard-error rule (Friedman et al.,
2001, §7.10) to carefully tune γ̂. Set µ̂j =

∑
i∈T0 I[C(Xi)=j]Yi/

∑
i∈T0 I[C(Xi)=j] and σ̂2 =

1
n0−J

∑
i∈T0(Yi− µ̂C(Xi))

2. To estimate γ, we seek the smallest γ̂ ≥ 0 such that the minimal

error over functions with range 2γ̂ is no worse than σ̂2 plus its standard error σ̂2
√

2
n0−J . (Note

9. Specifically, parametric with fewer parameters than data, J < n0. In NNM++, the class of functions
was not only infinite dimensional but also non-separable.
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σ̂2 error is achieved by 2γ̂ = maxj µ̂j − minj µ̂j .) That is, we seek smallest γ̂ ≥ 0 with
1

n0−J minc∈R
∑

i∈T0(Yi−max(min(µ̂j , c+ γ̂), c− γ̂))2 ≤ σ̂2(1 +
√

2/(n0 − J)). We do this by
using bisection search on γ̂ and a nested golden section search on c. We refer to BVE-CEM
with λ̂ = σ̂2/γ̂2 as CEM++.

5.4. Mean matching and near-fine balance

Suppose X ⊆ Rd so Xi is vector-valued. Mean matching (Zubizarreta, 2012, 2015; Green-
berg, 1953; Rubin, 1973; Bertsimas et al., 2015) are methods that find a subset of control
units T0

′ ⊆ T0 to reduce the Mahalanobis distance between the sample means

MV (T0
′) = ‖V 1/2( 1

n1

∑
i∈T1 Xi − 1

|T0′|
∑

i∈T0′ Xi)‖2.

We can consider optimal mean matching (OMM) as fully minimizing MV (T0
′) over all

possible subsets T0
′, which we show is GOM.

Proposition 24 Suppose X ⊆ Rd. Let V ∈ Rd×d be positive definite and

‖f‖22-lin(V ) =

{
α2 + βTV −1β f(x) = α+ βTx,
∞ otherwise.

Then OMM is equivalent to GOM(Wsubsets, ‖ · ‖2-lin(V ), 0).

Again, we may consider the more general GOM(Wsubsets, ‖ · ‖2-lin(V ), λ). As per Prop. 7
this can be written as the following convex-quadratic binary optimization problem for some
n(λ) and with Ui = n(λ)Wi:

min
U∈{0,1}T0 :

∑
i∈T0

Ui=n(λ)
(
∑

i∈T1
Xi
n1
−
∑

i∈T0
UiXi
n(λ) )TV (

∑
i∈T1

Xi
n1
−
∑

i∈T0
UiXi
n(λ) ).

An alternative form of mean matching would be to minimize the `p distance between
sample means. If we define ‖x 7→ α + βTx‖p-lin(V ) = ‖(α, V −1/2β)‖p (and ∞ for all non-

linear functions) then GOM(Wsubsets, ‖ · ‖p-lin(I), λ) is given by the following convex binary
optimization problem for some n(λ)

minU∈{0,1}T0 :
∑
i∈T0

Ui=n(λ) ‖
∑

i∈T1
Xi
n1
−
∑

i∈T0
UiXi
n(λ) ‖p′ , (13)

where 1/p+ 1/p′ = 1. This optimization problem is an integer linear optimization problem
whenever p′ ∈ {1,∞} (equivalently, p ∈ {1,∞}).

If the covariates are 0-1 indicators (e.g., if they are 2-level factors, if multilevel and
encoded in unary as concatenated one-hot vectors, or if continuous and coarsened into
multilevel factors and thus encoded), then the sample mean is simply the vector of sample
proportions, i.e., it is all marginal distributions of each multilevel factor. In this specific
case, mean matching (especially when p′ = 1, or equivalently p = ∞) is known as near -
fine balance (Zubizarreta, 2012). In this case, we refer to GOM(Wsubsets, ‖ · ‖∞-lin(I), 0) as
optimal near-fine balance (ONFB). When the marginal sample distributions can be made
exactly equal, the resulting allocation is known as fine balance (Rosenbaum et al., 2007).

Zubizarreta (2015) considers the finding the simplex weights that minimize the variance
of the set of weights subject to balance constraints on mean discrepancies. Because the
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weights are in the simplex, their variance is equal to their squared Euclidean norm up to a
constant. And, by convex duality, constraining mean discrepancies is the same as penalizing
them. Therefore, Zubizarreta (2015) is equivalent to GOM(Wsimplex, ‖ · ‖1-lin(diag(v)), λ) for

some v ∈ Rd+, λ ≥ 0.

We can also consider a variant given by estimating λ for automatic subset size selection.
Assuming d < n0, the function class is “small,” so we estimate λ in-sample. We let α̂, β̂, σ̂
be given by OLS regression on {(Xi, Yi) : i ∈ T0} and set λ̂ = σ̂2/‖β̂‖2p. We refer to

GOM(Wsubsets, ‖ · ‖∞-lin, λ̂) as ONFB++.

5.5. Mixed objectives

Methods such as Yang et al. (2012); Zubizarreta (2012) seek to minimize both the sum of
pairwise distances and a discrepancy in means. These are also GOM.

Proposition 25 Let W, ‖ · ‖A, ‖ · ‖B, and ρ > 0 be given. Then

B(W ; ‖ · ‖‖·‖A⊕ρ‖·‖B) = B(W ; ‖ · ‖A) + ρB(W ; ‖ · ‖B)

where ‖f‖‖·‖A⊕ρ‖·‖B = inffA+fB=f max {‖fA‖A , ‖fB‖B /ρ}

Therefore, for example, GOM(Wsubsets, ‖ · ‖‖·‖Lip(δ)⊕ρ‖·‖∞-lin
, λ) is given by the following

integer linear optimization problem (for some n(λ)):

min 1
n(λ)

∑
i∈T0,j∈T1 δ(Xi, Xj)Sij + ρ

n(λ)

∑d
k=1Dk

s.t. U ∈ {0, 1}T0 , S ∈ RT0×T1+ , D ∈ Rd∑
i∈T0 Ui = n(λ)∑
i∈T0 Sij = n(λ)/n1 ∀j ∈ T1∑
j∈T1 Sij = Ui ∀i ∈ T1

Dk ≥ n(λ)
n1

∑
i∈T1 Xik −

∑
i∈T0 UiXik ∀k = 1, . . . , d

Dk ≥
∑

i∈T0 UiXik − n(λ)
n1

∑
i∈T1 Xik ∀k = 1, . . . , d

For n(λ) = n′0 chosen a priori, this is one of the problems considered by Zubizarreta (2012).
Note our formulation has only n0 discrete variables as we need not constrain S to be integral
because the matching polytope is totally unimodular (Ahuja et al., 1993).

Similarly, given a coarsening function C : X → {1, . . . , J}, (Yang et al., 2012, eq. (2))
is given by GOM(Wn1-subset, ‖ · ‖‖·‖Lip(δ)⊕ρ‖·‖L∞(C)

, 0), (Yang et al., 2012, eq. (3)) is given

by GOM(Wn1-subset, ‖ · ‖‖·‖Lip(δ)⊕ρ‖·‖L1(C)
, 0), and (Yang et al., 2012, eq. (4)) is given by

GOM(Wn1-subset, ‖ · ‖‖·‖Lip(δ)⊕ρ‖·‖L2(C)
, 0),10 all for ρ > 0 sufficiently large.

Example 4 Let us revisit Ex. 1 to study coarsened exact and near-fine balance matching.
We coarsen each of the two covariates into an 8-level factor encoding its marginal octile in
the sample.11 We consider BVE-CEM with all J = 64 strata and plot the achievable balance-
variance landscape in Fig. 5a. We point out both CEM and CEM++. No matching is in

10. Using the vector 2-norm scaled by (
∑
i∈T1 I[C(Xi)=j])

J
j=1.

11. In particular, we chose the greatest number ` of levels such that for the resulting `2 strata, every stratum
with a treated unit had at least one control unit.
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the far right, outside the plot area. We also consider mean-matching (p =∞, p′ = 1) on the
resulting 16-dimensional vector, which corresponds to near-fine balance on the two coarsened
covariates, and plot the balance-variance landscape in Fig. 5b. The red curve in Fig. 5b is
the balance-variance achieved by GOM(Wn′0-subset, ‖·‖∞-lin, 0) for n′0 ∈ {1, . . . , n0} (n′0 ≤ 22
is outside the plot area). ONFB is the leftmost point and has n′0 = 33. Note that not all
points on the curve are on the Pareto-efficient frontier given by GOM(Wsubsets, ‖ · ‖∞-lin, λ)
for λ ∈ [0,∞]. In particular, any n′0 < 33 cannot be on the frontier (showing the converse
of Prop. 7 is false). We also point out ONFB++ and no matching in the plot. The yellow
curve in Fig. 5b is a commonly used greedy heuristic for mean-matching whereby, starting
from an empty subset, we incrementally add the unused control unit that would minimize
the mean-matching objective. We point out GNFB, given by choosing the point along the
greedy path with minimal mean-matching objective. It is the leftmost point on the curve.
We plot the resulting CMSE of τ̂W (solid) and τ̂W,f̂0

(dashed) in Fig. 5c corresponding only
to points on the Pareto-efficient frontier of each curve. The need to tune λ and consider the
variance objective is clear. Even GNFB beats ONFB because the unintended larger matched
set induced by sub-optimality. Correctly tuning λ, ONFB++ improves on both. Similarly,
CEM++ improves on CEM.

5.6. Regression as GOM

An alternative to matching is regression adjustment via OLS with interaction terms (Lin,
2013):12

τ̂OLS = argmin
τ∈R

min
α∈R,β1,β2∈Rd

n∑
i=1

(
Yi − α− τTi − βT1 Xi − βT2 (Xi −XT1)Ti

)2
,

where XT1 = 1
n1

∑
i∈T1 Xi is the treated sample mean vector. Surprisingly, this is exactly

equivalent to an unrestricted version of mean-matching.

Proposition 26 Let V positive definite be given and let W be given by GOM(Wgeneral, ‖ ·
‖2-lin(V ), 0). Then τ̂W = τ̂OLS.

We actually prove this as a corollary of a more general result about the ridge-regression
version of the regression adjustment with interaction terms:

τ̂λ-ridge = argmin
τ∈R

min
α∈R,β1,β2∈Rd

n∑
i=1

(
Yi − α− τTi − βT1 Xi − βT2 (Xi −XT1)Ti

)2
+ λ ‖β1‖22 + λα2.

Proposition 27 Let W be given by GOM(Wgeneral, ‖ · ‖2-lin, λ) for λ ≥ 0. Then τ̂W =
τ̂λ-ridge.

12. Note that using the interaction term (Xi −XT1)Ti corresponds to estimating the effect on the treated
whereas using the interaction term (Xi −X)Ti, as it appears in Lin (2013), corresponds to estimating
the overall average effect. Note also that by no means does Lin (2013) recommend regression adjustment
in observational settings; he instead studies the experimental setting, where model-agnostic consistency
is assured.
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These results reveal a very close connection between matching and regression adjust-
ment and expands the scope of existing connections (Qingyuan and Daniel, 2017; Athey
et al., 2016). But, there are several nuanced but important differences between regression
adjustment and regular mean-matching (i.e., with simplex or subset weights). Matching
with simplex or subset weights results in a distribution over the sample units and thus is
more interpretable, preserving the unit of analysis. This also allows certain randomization-
based inferences. Moreover, whereas linear regression is subject to dangerous extrapolation
(King and Zeng, 2006; Ho et al., 2007), matching with weights in the simplex (corresponding
to convex combinations), including subsets, inherently prohibits extrapolation. OLS and
mean-matching may coincide only if exact fine balance is feasible.

Proposition 27 can be easily generalized to an RKHS norm where it would recover
regression adjustment via kernel ridge regression. More generally, recalling that GOM
is a minimax linear estimator with coefficients constrained as W ∈ W (see Section 3.3),
GOM(Wgeneral, ‖ · ‖, λ) for any ‖ · ‖ is the unconstrained minimax linear estimator. Since
the minimax linear estimator is also the minimax affine estimator, Donoho (1994, Corollary
1) gives that this estimator has worst-case CMSE (i.e., E2

min(Wgeneral, ‖ · ‖, λ)) at most 5/4

of the general (non-linear) minimax risk (i.e., the minimal worst-case CMSE where Ŷ T1(0)
may be any measurable function of YT0 , where the function may depend on X1:n, T1:n),
although the general minimax risk may depend on the distribution of εi beyond σ2

i . .

6. Conclusion

In this paper, we presented an encompassing framework and theory for matching methods
for causal inference, arising from generalizations of a new functional analytical interpre-
tation of optimal matching. On the one hand, this framework revealed a unifying thread
between and provided a unified theoretical analysis for a variety of commonly used meth-
ods, including both matching and regression methods. This in turn lead to new extensions
to methods subsumed in this framework that appropriately and automatically adjust the
balance-variance trade-off inherent in matching revealed by the theory developed. These
extensions lead to benefits in estimation error relative to their standard counterparts.

On the other hand, this framework lead to the development of a new class of matching
methods based on kernels. The new methods, called KOM, were shown to have some of the
more appealing properties of the different methods in common use, as supported by special-
ized theory developed. In particular, KOM yields either a distribution over or a subset of the
control units preserving the unit of analysis and avoiding extrapolation, KOM has favorable
consistency properties yielding parametric-rate estimation under correct specification and
model-free consistency regardless thereof, KOM has favorable robustness properties when
used in an augmented weighted estimator, KOM has similarly favorable robustness proper-
ties when used as preprocessing before regression, KOM++ judiciously and automatically
weighs balance in the face of variance, and KOM allows for flexible model selection via
empirical Bayes methods. These properties make KOM a particularly apt tool for causal
inference. Beyond SATT, KOM may be used to estimate a variety of causal estimands,
including SATE, ATE on a target population, and continuous treatments, as demonstrated
in extensions of the present work (Kallus et al., 2018; Kallus and Santacatterina, 2019b,a).
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Appendix A. Algorithm listings

ALGORITHM 1: Cross-Validation Estimation for NNM++

input: Control data YT0 , distance matrix D ∈ RT0×T0 , regularizer grid Ψ ⊆ R+,
and number of folds m.

Randomly split the control data into disjoint folds T0 = T0
(1) t · · · t T0

(m).
for k ∈ {1, . . . ,m}, ψ ∈ Ψ: do

Solve
minv̂,γ̂

1
|i∈T0\T0(k)|

∑
i∈T0\T0(k)(v̂i − yi)2 + ψγ̂

s.t. v̂i − vj ≤ γ̂Dij ∀i, j ∈ T0\T0
(k)

.

Set Ŷi = 1
2(minj∈T0\T0(k) (v̂j + γ̂Dij) + maxj∈T0\T0(k) (v̂j − γ̂Dij)).

Set σ̂2
k,ψ =

∑
i∈T0(k)(Yi − Ŷi)2/(|T0

(k)| − 1).
end for
Set σ̂2

ψ = 1
m

∑m
k=1 σ̂

2
k,ψ for ψ ∈ Ψ, ψ̂ = argminψ∈Ψ σ̂

2
ψ and σ̂2 = minψ∈Ψ σ̂

2
ψ.

Solve
minv̂,γ̂

1
|T0|
∑

i∈T0(v̂i − yi)2 + ψ̂γ̂

s.t. v̂i − vj ≤ γ̂Dij ∀i, j ∈ T0
.

output: λ̂ = σ̂2/γ̂2.

ALGORITHM 2: BVE-CEM (solves eq. (12))

input: Data X1:n, T1:n, coarsening function C : X → {1, . . . , J}, and exchange λ.
Let ntj =

∑
i∈Tt I[C(Xi)=j] for t = 0, 1, j = 1, . . . , J .

Let qj = n1j/(n1n0j) and sort qj1 ≤ · · · ≤ qjJ (qj0 = −∞, qjJ+1 =∞).
Set v∗ =∞.
for J+ = 0, . . . , J, J− = 0, . . . , J − J+ do

Set n0+ =
∑J+

k=1 n0jJ+1−k , n0− =
∑J−

k=1 n0jk , r =
∑J+1−J+

k=J−+1 n0jkqjk ,

r∆ =
∑J+

k=1 n0jJ+1−kq0jJ+1−k −
∑J−

k=1 n0jkqjk , r2 =
∑J−J+

k=J−+1 n0jkq
2
jk
,

w+ = 2n0−(1−r+r∆)+λ(1−r)
4n0+n0−+λ(n0++n0−) , w− = 2n0+(1−r−r∆)+λ(1−r)

4n0+n0−+λ(n0++n0−) , and

v = (
∑J+

k=1 n0jJ+1−k

∣∣qjJ+1−k − w+

∣∣+
∑J−

k=1 n0jk |qjk − w−|)2

+ λ(n0pw
2
+ + n0mw

2
− + r2).

if v < v∗ then

Set Wi =


1/n1 i ∈ T1,
w− i ∈ T0, qC(Xi) ≤ qjJ− ,
w+ i ∈ T0, qC(Xi) ≥ qjJ+1−J+

,

qC(Xi) otherwise.
end if

end for
output: W .

Appendix B. Inference and Partial Identification with KOM

In order to conduct inference on the value of SATT using KOM, it is important to develop
appropriate standard errors or other confidence intervals for τ̂W . There are several options
for estimating standard errors. One general-purpose option is the bootstrap. In applying
the bootstrap to KOM, we re-optimize the weights for each bootstrap sample and record the
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resulting estimator to produce the bootstrap distribution (rather than, say, using a weight-
ing function precomputed at the onset on the complete dataset). Quantile, studentized,
and BCA bootstrap intervals are possible choices (Efron and Tibshirani, 1994). Another
general-purpose option is to use the estimate τ̂WLS(W ) and employ the corresponding robust
sandwich (Huber-White) standard errors.

However, more specialized procedures are possible. One particularly appealing nature of
matching is the transparent structure of the data (Rosenbaum, 2010, Ch. 6): it preserves the
unit of analysis since the result, like the raw control sample, is still a valid distribution over
the control units, whether it is a subset, a multisubset with duplicates, or any redistribution
that is nonnegative and sums to one. This is preserved in KOM and enables the use of similar
inferential methods as used in standard matching that interpret the data as a weighted
sample.13 In particular, since the weighted estimator τ̂W for SATT exactly matches the
criteria presented in (Imbens and Rubin, 2015, §19.8), one approach to compute standard
errors is to use the within-treatment-group matching techniques developed in (Abadie and
Imbens, 2008, 2011, 2006) to estimate residual variances. In the specific case of KOM++,
one can also use the marginal likelihood estimate of the residual variance to produce a
standard error based on Prop. 1.14 The next example explores how to use these methods
to produce confidence intervals for KOM. Then, we will see how the interpretable nature of
KOM can also allow us to account for unavoidable imbalances that lead to deceptive point
estimates and instead produce more honest interval estimates.

Example 5 We revisit Ex. 2 to look at (finite-sample) inference on SATT using KOM++
based on each of the confidence intervals above. We consider the situation of a constant
effect Y (1)−Y (0) = τ and plot the desired significance α against the difference of the actual
coverage and 1−α in Fig. 6 for two examples: quadratic and Matérn. Coverage is computed
keeping X1:n, T1:n fixed. A conservative confidence interval corresponds to a point above the
horizontal axis. For the method of (Imbens and Rubin, 2015, §19.6), we use a single match.
Given an estimate τ̂ , standard error estimate ŝ, and desired significance α, we construct
the confidence region τ̂ ± Φ−1(1 − α/2)ŝ. For the bootstrap, we construct the confidence
interval as the interval between the α/2 and 1− α/2 quantiles of the bootstrap distribution
over 1000 re-samples.

All above confidence interval methods discard the conditional bias term in the error of
τ̂W . To quote Imbens and Rubin (2015), “with a sufficiently flexible estimator, this term
will generally be small,” meaning asymptotically insignificant compared to standard error.
Indeed, in the above example, bias is small and estimated standard errors alone achieve
approximately valid confidence intervals. However, in settings where overlap is limited, the
bias may be in fact be significant. In the extreme case of no overlap (Asn. 2.2 does not
hold), causal effects may be unidentifiable and bias may be unavoidable even asymptotically.
In settings of low overlap, standard inverse propensity weighting approaches lead to very
large weights and high variance and, in the extreme case of no overlap, they lead to infinite
weights and provide no insights into average causal effects (unless we change the target of

13. Moreover, KOM can even be restricted to produce subset weights if such are desired. KOM, however,
does not preserve the property of producing finitely-many coarsened strata of units as in such methods
as full matching (Rosenbaum, 1991).

14. Marginal likelihood can also be used to estimate heteroskedastic noise (Goldberg et al., 1998).
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Figure 6: Inference with KOM++
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estimation as in Crump et al., 2006). Similarly, matching methods will fail to find good
matches and a significant bias will remain.

KOM opens the door to the possibility of partial identification of causal effects in the
absence of overlap by bounding or approximately bounding the bias. With KOM, we can
obtain an explicit bound on the bias: it is bounded by ‖[f0]‖B(W ;K). We may have an a
priori bound on ‖[f0]‖ ≤ γ̂. For example, using the Beppo-Levi kernel presented in the next
section, this can take the form of an a priori bound on the roughness of f0. Alternatively,
in the case of KOM++, we may take a data-driven approach and rely on the marginal
likelihood estimate γ̂ of ‖[f0]‖. That is, in the absence of overlap, we assume we can still
judge the complexity of f0 on the treated population of X, if not its actual values, by
observing its values with noise on the control population of X. In either case, assuming
that ‖[f0]‖ <∞, we can obtain an interval estimate of the treatment effect:

T̂W = [τ̂W − γ̂B(W ;K), τ̂W + γ̂B(W ;K)]. (14)

This interval accounts for the possible bias precisely in terms of the covariate imbalances
left in the re-weighted samples and in the extent to which f0 could, in the worst case,
depend on these imbalances and induce the worst bias. If this characterization of f0 is valid
(i.e., ‖[f0]‖ ≤ γ̂) then this interval contains SATT + 1

n1

∑
i∈T1 εi −

∑
i∈T0 Wiεi, as a trivial

consequence of Prop. 1. To the interval estimate in eq. (14), we can further add standard
errors to account for the residual variance in εi and produce a robust confidence interval
that provides coverage even in cases of limited overlap.

That KOM preserves the unit of analysis is critical. Using negative weights that do not
necessarily sum to one, one can always make perfectly zero any imbalance metric, including
that used by KOM – the result is essentially equivalent to regression (see Sec. 5.6). This,
however, requires extreme extrapolation and the sense in which this is a “perfect match”
is deceptive: in the absence of overlap and parametric specification, identification is simply
impossible. Instead, KOM avoids extrapolation by preserving the unit of analysis and
restricts only to a valid distribution over the controls (potentially, if so restricted, to a
proper subset of the control sample). The imbalances between this distribution of controls
and the empirical distribution of treated units are transparent and easily red off from the
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Figure 7: Partial Identification with KOM++
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result of the KOM optimization problem. This enables us to construct an honest and robust
interval for the effect, without extrapolating beyond what we actually observe.

Example 6 We repeat Ex. 5 but change the distribution of covariates to eliminate overlap
completely. Instead of drawing T as given by P (T = 1 | X) in Ex. 1, we fix Ti = 1 whenever
this given propensity function is greater than 0.4 and otherwise Ti = 0. This yields the
draw in Fig. 7c, which has n0 = 133, n1 = 67. We repeat Ex. 5 either as before (solid
lines) or by instead adding the confidence terms to the endpoints of the interval estimate in
eq. (14) using the γ̂ estimate from the application of KOM++ (dashed lines) and plot the
coverage in Figs. 7a and 7b. In Fig. 7d, we compare the point estimate given by 1:1M (red
dot) for SATT (dashed line) to the interval estimate given by KOM++ (pink intervals),
both surrounded by a confidence interval given by the standard error of (Imbens and Rubin,
2015, §19.6). The CMSE (above plot) of the KOM++ point estimates is not a substantial
improvement over 1:1M – little can be done in the face of such an extreme lack of overlap
– but the robust confidence intervals that arise from accounting for the non-vanishing bias
help in achieving correct coverage (above plot) in the face of lack of overlap.
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Appendix C. Connections to and Generalization of Equal-Percent Bias
Reduction

Equal-percent bias reduction (EPBR) (Rubin, 1976a,b) is a property of matching methods
stipulating that, on average, the reduction in discrepancy in the mean vector be equal across
all the the covariates relative to doing no matching at all. This is the case if and only if
the matching reduces imbalance for any linear function of the covariates. In this section we
discuss connections to KOM as well as non-linear generalizations of EPBR.

For the sake of exposition, we define EPBR somewhat differently and explain the con-
nection below.

Definition 28 For X ⊆ Rd, a matching method W is linearly EPBR relative to W ′, written
W �lin-EPBR W

′, if |E [B(W ; f)]| ≤ |E [B(W ′; f)]| for any f(x) = βTx+ α, β ∈ Rd, α ∈ R.

Usually, we compare relative to the no-matching weights W
(0)
i = 1/n0. The definition of

EPBR in Rubin (1976a) is equivalent to saying in our definition that W is comparable to
W (0) in lin-EPBR, i.e., either W �lin-EPBR W (0) or W (0) �lin-EPBR W . This equivalence is
proven in the following. The definition in Rubin (1976a) is stated in terms of the equivalent
proportionality statement below, relative to W (0) and without magnitude restrictions on α.

Proposition 29 Suppose X ⊆ Rd. Then, W �lin-EPBR W ′ if and only if
E[ 1

n1

∑
i∈T1 Xi −

∑
i∈T0 WiXi] = αE[ 1

n1

∑
i∈T1 Xi −

∑
i∈T0 W

′
iXj ] for some α ∈ [−1, 1] as

vectors in Rd.

In Rubin and Thomas (1992), the authors show that in the special case of proportionally
ellipsoidal distributions, affinely invariant matching methods are EPBR. We restate and
reprove the result in terms of our definitions.

Definition 30 For X ⊆ Rd, a matching method W is affinely invariant if W (X1:n, T1:n) =
W (X1:nA

T + 1na
T , T1:n) for all non-singular A ∈ Rd×d and a ∈ Rd ( i.e., x 7→ Ax + a is

applied to each data point separately).

Definition 31 Two random vectors Z and Z ′ are proportionally ellipsoidal if there exists
PSD matrix Σ, α, α′ ∈ R+, and a characteristic function φ : R → C such that, for any v,
vTZ and vTZ ′ have characteristic functions eiv

TE[Z]tφ(αvTΣvt2) and eiv
TE[Z′]tφ(α′vTΣvt2),

respectively.

Proposition 32 If X | T = 0, X | T = 1 are proportionally ellipsoidal and W is affinely
invariant, then W and W (0) are lin-EPBR comparable.

Methods based on the Mahalanobis distance are affinely invariant. KOM with a fitted
scaling matrix is also affinely invariant as discussed in 4.5. All unitarily invariant matching
methods can be made to be affinely invariant by preprocessing the data. This procedure is
detailed in Alg. 3. KOM is unitarily invariant if the kernel is unitarily invariant, including
all kernels studied in this paper. With the exception of CEM, all methods we have studied
have been unitarily invariant.
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Definition 33 For X ⊆ Rd, a matching method W is unitarily invariant if W (X1:n, T1:n) =
W (X1:nA

T , T1:n) for all unitary A = A−T ∈ Rd×d. Equivalently, W is unitarily invariant
if it only depends on X1:nX

T
1:n, T1:n.

Proposition 34 Suppose X ⊆ Rd. If W is unitarily invariant then Alg. 3 produces an
affinely invariant weighting method.

At the same time, affinely invariant methods only make sense if we have more datapoints
than the dimension of the data, since the dimension of the data is precisely the dimension
of the space of linear functions on the data.

Proposition 35 Suppose X ⊆ Rd. If W is affinely invariant then W is constant over all
data X1:n that is affinely independent.15

In other words, if n ≤ d, then any affinely invariant matching method does nothing useful
at all because it is (generically) invariant to the data.

The above exposition establishes the connection of KOM to EPBR and the benefits it
bestows. If we either fit a scaling matrix by marginal likelihood or studentize the data,
then KOM is affinely invariant and hence EPBR for proportionally ellipsoidal data, i.e.,
has uniform improvement over all linear outcomes. However, one of the main attractions
of KOM is in dealing with non-linear outcomes. We next present a direct generalization of
EPBR to non-linear outcomes, allowing us to characterize when matching methods can have
performance guarantees over families of non-linear outcomes. We recreate the analogous
lin-EPBR results for the non-linear version.

Definition 36 A matching method W is F-EPBR relative to W ′, written W �F-EPBR W
′,

if |E [B(W ; f)]| ≤ |E [B(W ′; f)]| for every f ∈ F .

Proposition 37 Let F be a linear subspace of the functions X → R under pointwise addi-
tion and scaling. Then, W �F-EPBR W

′ if and only if there exists α ∈ [−1, 1] such that, as
operators on F , E [B(W ; ·)] = αE [B(W ′; ·)] .

Definition 38 Let K be a PSD kernel on X and let F be its RKHS. The X -valued random
variables Z and Z ′ are proportionally K-ellipsoidal if there exist µ, µ′ ∈ F , PSD compact
C ∈ F⊗F , α, α′ ∈ R+, and a characteristic function φ : R→ C such that, for every x ∈ X ,
K(Z, x) and K(Z ′, x) are a real random variables distributed with characteristic functions
eiµ(x)tφ(C(x, x)t2), eiµ

′(x)tφ(αC(x, x)t2) respectively.

For example, proportionally ellipsoidal is equivalent to proportionally K-ellipsoidal with
K(x, x′) = xTx′.

Definition 39 Let K be a PSD kernel on X and let F be its RKHS. A matching method W
is K-affinely invariant if ∃W ′ : Fn × {0, 1}n → W such that for any bounded non-singular
A ∈ F ⊗ F and a ∈ F , we have W (X1:n, T1:n) = W ′({AK(Xi, ·) + a}ni=1 , T1:n).

15. X1:n are said to be affinely independent if X2:n −X1 are linearly independent.
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ALGORITHM 3: Affine Invariance by Studentization

input: Data X1:n, T1:n, a matching method W (X1:n, T1:n).
Let µ̂ = 1

n0

∑
i∈T0 Xi, Σ̂ = 1

n0−1

∑
i∈T0(Xi − µ̂)(Xi − µ̂)T .

Eigen-decompose Σ̂ = U Diag(τ1, . . . , τd)U
T .

Set Σ̂†/2 = U Diag(I[τ1 6=0]τ
−1/2
1 , . . . , I[τd 6=0]τ

−1/2
d )UT .

output: W ((X1:n − µ̂)Σ̂†/2, T1:n).

ALGORITHM 4: K-Affine Invariance by K-Studentization

input: Data X1:n, T1:n, a PSD kernel K, a K-unitarily invariant W (X,T ).

Let Kij = K(Xi, Xj), E
(0)
ij = I[j∈T0]/n0.

Set KC = (I − E(0))K(I − E(0))T , Mij =
∑

l∈T0 K
C
ilK

C
jl .

Compute the pseudo-inverse M † and let K = KCM †KC .
output: W ′(K, T1:n).

Proposition 40 Let K be a PSD kernel on X and let F be its RKHS. If X | T = 0,
X | T = 1 are proportionally K-ellipsoidal and W is affinely invariant then W is F-EPBR
relative to W (0).

Definition 41 Let K : X × X → R be a PSD kernel. W is K-unitarily invariant if it
depends on the data via its Gram matrix, i.e., ∃W ′ : Sn×n+ × {0, 1}n → W such that
W (X1:n, T1:n) = W ′((K(Xi, Xj))

n
i,j=1 , T ).

For example, KOM is K-unitarily invariant.

Proposition 42 If W ′ is K-unitarily invariant then Alg. 4 produces a K-affinely invariant
weighting method.

However, there are limits to K-affine invariance. The following shows that K-affine invari-
ance only makes sense for non-universal kernels since all C0-universal kernels are strictly
positive definite (has Gram matrix that is positive definite whenever all datapoints are
distinct).

Proposition 43 Suppose K is strictly positive definite and W is K-affinely invariant.
Then, W is constant over all X1:n that are distinct.

Appendix D. Proofs

Proof [Proof of Prop. 1] Define

Ξ(W ) = 1
n1

∑
i∈T1 εi −

∑
i∈T0 Wiεi. (15)

Rewrite SATT = 1
n1

∑
i∈T1 Yi−

1
n1

∑
i∈T1 Yi(0), it is clear SATT differs from τ̂W only in the

second term so that, letting Wi = 1/n1 for i ∈ T1,

τ̂−SATT = 1
n1

∑
i∈T1 Yi(0)−

∑
i∈T0 WiYi(0) = B(W ; f0) + Ξ(W )

=
∑n

i=1(−1)Ti+1Wif0(Xi) +
∑n

i=1(−1)Ti+1Wiεi,
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For each i, we have

E[εi | X1:n, T1:n] = E[Yi(0) | Xi, Ti]− f0(Xi) = E[Yi(0) | Xi]− f0(Xi) = 0,

where the first equality is by definition of εi and the second by Asn. 2.1. Since Wi =
Wi(X1:n, T1:n), we have E[(−1)Ti+1Wiεi | X1:n, T1:n] = 0. For each i, j,

E
[
(−1)Ti+TjWiWjεiεj | X1:n, T1:n

]
= (−1)Ti+TjWiWjE [εiεj | X1:n, T1:n]

= WiWj Cov(Yi(0), Yj(0)) = I[i=j]W 2
i σ

2
i ,

E[(−1)Ti+TjWiWjεif0(Xj) | X1:n, T1:n] = 0,

completing the proof.

Proof [Proof of Thm. 3] Let D be the distance matrix Dii′ = δ(Xi, Xi′). By the definition
of the Lipschitz norm and linear optimization duality we get,

B(W ; ‖ · ‖Lip(δ)) = sup
vi−vi′≤Dii′

1
n1

∑
i∈T1 v1 −

∑
i∈T0 Wivi

= minS∈Rn×n+

∑
i,i′ Dii′Sii′

s.t.
∑n

i′=1 (Sii′ − Si′i) = 1/n1 ∀i ∈ T1∑n
i′=1 (Sii′ − Si′i) = −Wi ∀i ∈ T0.

This describes a min-cost flow problem with sources T1 with inputs 1/n1, sinks T0 with
outputs Wi, edges between every two nodes with costs Dii′ and without capacities. Consider
any source i ∈ T1 and any sink i′ ∈ T0 and any path i, i1, . . . , im, i

′. By the triangle
inequality, Dii′ ≤ Dii1 + Di1i2 + · · · + Dimi′ . Therefore, as there are no capacities, it is
always preferable to send the flow from the sources to the sinks along the direct edges from
T1 to T0. That is, we can eliminate all other edges and write

B(W ; ‖ · ‖Lip(δ)) = min
S∈RT1×T0+

∑
i∈T1, i′∈T0 Dii′Sii′

s.t.
∑

i′∈T0 Sii′ = 1/n1 ∀i ∈ T1∑
i′∈T1 Si′i = Wi ∀i ∈ T0.

For the case of NNM, using the transformation W ′i = n1Wi, we get

min
W∈Wsimplex

B(W ; ‖ · ‖Lip(δ)) = 1
n1

min
S,W ′

∑
i∈T1, i′∈T0 Dii′Sii′

s.t. S ∈ RT1×T0+ , W ′ ∈ RT0+∑
i∈T0 W

′
i = n1∑

i′∈T0 Sii′ = 1 ∀i ∈ T1∑
i∈T1 Sii′ −W

′
i′ = 0 ∀i′ ∈ T0.

This describes a min-cost netwrok flow problem with sources T1 with inputs 1; nodes T0

with 0 exogenous flow; one sink with output n1; edges from each i ∈ T1 to each i′ ∈ T0 with
flow variable Sii′ , cost Dii′ , and without capacity; and edges from each i ∈ T0 to the sink
with flow variable W ′i and without cost or capacity. Because all data is integer, the optimal
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solution of is integer (see Ahuja et al., 1993). This solution (in terms of W ′) is equal to
sending the whole input 1 from each source in T1 to the node in T0 with smallest distance
and from there routing this flow to the sink, which corresponds exactly to NNM.

For the case of 1:1M, using the same transformation, we get

min
W∈W1/n1-simplex

B(W ; ‖ · ‖Lip(δ)) = 1
n1

min
S,W ′

∑
i∈T1, i′∈T0 Dii′Sii′

s.t. S ∈ RT1×T0+ , W ′i ∈ RT0+∑
i∈T0 W

′
i = n1

W ′i ≤ 1 ∀i ∈ T0∑
i′∈T0 Sii′ = 1 ∀i ∈ T1∑
i∈T1 Sii′ −W

′
i = 0 ∀i′ ∈ T0.

This describes the same min-cost netwrok flow problem except that the edges from each
i ∈ T0 to the sink have a capacity of 1. Because all data is integer, the optimal solution
is integer. Since the optimal Sii′ is integer, by

∑
i′∈T0 Sii′ = 1, for each i ∈ T1 there is

exactly one i′ ∈ T0 with Sii′ = 1 and all others are zero. Sii′ = 1 denotes matching i with
i′. The optimal W ′i is integral and so, by W ′i ≤ 1, W ′i ∈ {0, 1}. Hence, for each i ∈ T0,∑

i′∈T1 Sii′ ∈ {0, 1} so we only use node i at most once. The cost of S is exactly the sum of
pairwise distances in the match. Hence, the optimal solution corresponds exactly to 1:1M.

Proof [Proof of Cor. 6] Let W be given by GOM(W, ‖ · ‖, λ). Then V 2(W ;σ2
1:n) ≤

σ2(‖W‖2+1/n1) = γ2λ(‖W‖2+1/n1) and B2(W ; f0) ≤ infg:B(W ;g)=0 ∀W∈W B2(W ; f0+g) ≤
γB(W ; ‖ · ‖). Finally, apply Prop. 1.

Proof [Proof of Prop. 7] Let W be given by GOM(Wsubsets, ‖ · ‖, λ) and let n(λ) = ‖W‖0 =
|{i ∈ T0 : W ∗i > 0}|. ThenW ∈ Wn(λ)-subset soW is also given by GOM(Wn(λ)-subset, ‖ · ‖, λ).
However, ‖W ′‖22 = 1/n(λ) for all W ′ ∈ Wn(λ)-subset, so the variance term is constant among
this space of weights. Therefore, W is given by GOM(Wn(λ)-subset, ‖ · ‖, 0).

Proof [Proof of Prop. 8] Note argminW∈Wn(λ)-multisubset ‖W‖22 = Wn(λ)-subset. So by defi-
nition of GOM for λ = ∞ we get the equivalence between the first and the second. The
equivalence between the second and third was argued in the proof of Prop. 7.

Proof [Proof of Prop. 9] This follows because ‖W‖22 is convex, B(W ; ‖ · ‖) is nonnegative
and is the supremum of affine functions in W (i.e., B(λW + (1 − λ)W ′; f) = λB(W ; f) +
(1 − λ)B(W ′; f)) and hence convex, and the square is convex and nondecreasing on the
nonnegative line.
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Proof [Proof of Prop. 10] Define F (W ) = sup‖f‖≤1

∑n
i=1(2Ti − 1)Wif(Xi) for W ∈ Rn,

and rewrite problem (6) redundantly as

min r + λs

s.t. W ∈ Rn, r ∈ R, s ∈ R, t ∈ R (16)

WT0 ∈ Wsimplex (17)

WT1 = en1/n1 (18)

‖W‖22 ≤ s (19)

t2 ≤ r (20)

F (W ) ≤ t, ‖W‖2 ≤ 1 (21)

Since each of (16)-(21) are convex, by (Grotschel et al., 1993, Thm. 4.2.2) we reduce the
ε-optimization problem to ε-separation on each of (16)-(21), which is immediately trivial
for (16)-(20) in polynomial time in n. By (Grotschel et al., 1993, Thms. 4.2.5, 4.2.7) we
reduce ε-separation on (21) to ε-violation, which by binary search reduces ε-violation on
St =

{
W ∈ RTC : F (W ) ≤ v, ‖W‖2 ≤ 1

}
for fixed t ≥ 0. If t = 0, then St = {0} and we

are done. Otherwise, letting Ei : f 7→ f(Xi) and Mi = ‖[Ei]‖∗ < ∞, note that F (W ) is
continuous since

F (W )− F (W ′) = sup‖f‖≤1B(WT0 ; f)− sup‖f‖≤1B(W ′T0 ; f)

≤ sup‖f‖≤1B(WT0 −W ′T0 ; f)

≤ sup‖f‖≤1 ‖WT0 −W ′T0‖2(
∑n

i=1 f(Xi))
1/2

≤ ‖WT0 −W ′T0‖2‖M‖2

Therefore, since F (0) = 0, we have {‖W‖2 ≤ t/‖M‖2} ⊂ St ⊂ {‖W‖2 ≤ 1}. Since we can
check membership by evaluating ‖W‖2 and F (w), by (Grotschel et al., 1993, Thm. 4.3.2)
we have an ε-violation algorithm.

For the next few proofs we use the following lemma.

Lemma 44 For random variables Zn ≥ 0 and any sub-sigma algebra G,
E[Zn | G] = Op(1) =⇒ Zn = Op(1) and E[Zn | G] = op(1) =⇒ Zn = op(1).

Proof [Proof of Lemma 44] Suppose E[Zn | G] = Op(1). Let ν > 0 be given. Then
E[Zn | G] = Op(1) says that there exist N,M such that P(E[Zn | G] > M) ≤ ν/2 for all
n ≥ N . Let M0 = max{M, 2/ν}. Then, for all n ≥ N ,

P(Zn > M2
0 ) = P(Zn > M2

0 ,E[Zn | G] > M0) + P(Zn > M2
0 ,E[Zn | G] ≤M0)

= P(Zn > M2
0 ,E[Zn | G] > M0) + E[P(Zn > M2

0 | G)I[E[Zn|G]≤M0]]

≤ ν/2 + E
[
E[Zn | G]

M2
0

I[E[Zn|G]≤M0]

]
≤ ν/2 + 1/M0 ≤ ν.
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Now suppose E[Zn | G] = op(1). Let η > 0, ν > 0 be given. Let N be such that
P(E[Zn | G] > νη/2) ≤ ν/2. Then for all n ≥ N :

P(Zn > η) = P(Zn > η,E[Zn | G] > ην/2) + P(Zn > η,E[Zn | G] ≤ ην/2)

= P(Zn > η,E[Zn | G] > ην/2) + E[P(Zn > η | G)I[E[Zn|G]≤ην/2]]

≤ ν/2 + E
[
E[Zn | G]

η
I[E[Zn|G]≤ην/2]

]
≤ ν/2 + ν/2 ≤ ν.

Proof [Proof of Thm. 12] Let p(x) = P (T = 1 | X = x), p0 = P (T = 0), p1 = P (T = 1).
By Asn. 2.2, there exists α > 0 such that q(X) = αp(X)/(1−p(X)) is a.s. in [0, 1). For each
i, let W̃ ′i ∈ {0, 1} be 1 if Ti = 1 and otherwise Bernoulli with probability q(Xi) (where the
draw for i is fixed over n). Then we have that Xi | Ti = 0, W̃ ′i = 1 is distributed identically
as Xi | Ti = 1. Let n′0 =

∑
i∈T0 W̃

′
i and for each i ∈ T0 set W̃i = W̃ ′i/n

′
0. For i ∈ T1, set

W̃i = 1/n1. Let X
(1)
i be new, independent replicates distributed as X

(1)
i ∼ (X | T = 1). Let

ξi(f) = W̃ ′i (f(Xi)−f(X
(1)
i )) and ξ̃i(f) = W̃ ′i (f(Xi)−Ef(X

(1)
i )). By construction of W̃ ′i and

ξ, we see that E [ξi(f) | T1:n] = 0 for every f . And, by (vi), E[‖ξ‖2∗ | T1:n] ≤M <∞. Also,

each ξi is independent. Let At = 1
nt

∑
i∈Tt ξ̃i. Then, by adding and subtracting Ef(X

(1)
i ),

we get

B(W̃ ; ‖ · ‖) = sup‖f‖≤1(A1(f) + n0
n′0
A0(f))

≤ sup‖f‖≤1A1(f) + n0
n′0

sup‖f‖≤1A0(f) = ‖A1‖∗ + n0
n′0
‖A0‖∗.

Next, by Jensen’s inequality, for each t = 0, 1, we have that

E[‖At‖2∗ | T1:n] ≤ E[(sup‖f‖≤1
1
nt

∑
i∈Tt ξi(f))2 | T1:n].

Let ξ′i be an identical and independent replicate of ξi, conditioned on Ti. Let ρi be iid
Rademacher random variables independent of all else. Then, again by Jensen’s inequality,

E[‖At‖2∗ | T1:n] ≤ E[(sup‖f‖≤1
1
nt

∑
i∈Tt(ξi(f)− E[ξ′i(f) | T1:n]))2 | T1:n]

≤ E[(sup‖f‖≤1
1
nt

∑
i∈Tt(ξi(f)− ξ′i(f)))2 | T1:n]

= E[(sup‖f‖≤1
1
nt

∑
i∈Tt ρi(ξi(f)− ξ′i(f)))2 | T1:n]

≤ 4E[(sup‖f‖≤1
1
nt

∑
i∈Tt ρiξi(f))2 | T1:n]

= 4E[‖ 1
nt

∑
i∈Tt ρiξi‖

2
∗ | T1:n]. (22)

The B-convexity of F implies the B-convexity of F∗ (Giesy, 1966; Maurey, 2003). Next,
the B-convexity of F∗ implies that it has a non-trivial Rademacher type 1 < p ≤ 2 (Pisier,
1973; Maurey, 2003). Consequently, by the definition of Rademacher type, there is some
C > 0 such that

E[‖ 1
nt

∑
i∈Tt ρiξi(f)‖2∗ | T1:n] ≤ C

n2
t
E[(
∑

i∈Tt ‖ξi‖
p
∗)

2/p | T1:n]

≤ C
n2
t
E[n

2/p−1
t

∑
i∈Tt ‖ξi‖

2
∗ | T1:n] = MC

n
2−2/p
t

.
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Hence, by iterated expectations and Markov’s inequality, ‖At‖∗ = Op(n
1/p−1). Moreover,

(n0/n
′
0) → α/p1 < ∞ in probability as well as ‖W̃T0‖22 = 1/n′0 = Op(1/n). Since W̃T0 is

feasible by (iv) and W is optimal,

E2(W ; ‖ · ‖, λn) ≤ E2(W̃T0 ; ‖ · ‖, λn) ≤ B2(W̃T0 ; ‖ · ‖) + λ‖W̃T0‖22 = Op(n
1/p−1).

By (viii), ∃γ : ‖[f0]‖ ≤ γ <∞. By (vii), ∃σ2 : σ2
i ≤ σ2. By Prop. 1,

CMSE(τ̂W ) ≤ (γ2 + σ2/λ)E2(W ; ‖ · ‖, λn) + σ2/n1 = Op(n
1/p−1).

Then, by Lemma 44, τ̂W − SATT = Op(n
1/p−1) = op(1).

Proof [Proof of Thm. 13]Recalling Ξ(W ) from eq. (15), we can write

τ̂W,f̂0
− SATT = B(W ; f̃0 − f̂0) +B(W ; f0 − f̃0) + Ξ(W ),

From the proof of Thm. 12, we have B(W ; ‖ · ‖) = op(1), ‖W‖2 = op(1), Ξ2(W ) = op(1).
Moreover,

|B(W ; f̃0 − f̂0)| ≤ (‖W‖22 + 1/n1)1/2(
∑n

i=1(f̃0(Xi)− f̂0(Xi))
2)1/2

= op(1)Op(1) = op(1).

In case (a), B(W ; f0 − f̃0) = 0 yields the result. In case (b), E|B(W ; f0 − f̃0)| ≤ (‖f0‖ +
‖f̃0‖)EB(W ;K) = O(n−1/2), yielding the result. In case (c), we write τ̂W,f̂0

− SATT =

B(W ; f0−f̂0)+Ξ(W ) and |B(W ; f0−f̂0)| ≤ (‖[f0]‖+‖[f̂0]‖)B(W ;K) = Op(1)op(1) = op(1).

Proof [Proof of Prop. 15] Writing W ′i = Ti/n1−(1− Ti)Wi, by the representer property of
K and by self-duality of Hilbert spaces,

B2(W ; ‖ · ‖) = max‖f‖≤1

(∑n
i=1(−1)Ti+1W ′i 〈K(Xi, ·), f〉

)2
=
∥∥∑n

i=1(−1)Ti+1W ′iK(Xi, ·)
∥∥2

=
〈∑n

i=1(−1)Ti+1W ′iK(Xi, ·),
∑n

i=1(−1)Ti+1W ′iK(Xi, ·)
〉

=
∑n

i,j=1(−1)Ti+TjW ′iW
′
jKij ,

which when written in block form gives rise to the result.

Proof [Proof of Prop. 16] By Prop. 1, we have

E
[
(τ̂W − SATT)2 | X,T, f0

]
= B2(W ; f0) + σ2‖W‖22 + σ2

n1
.

Marginalizing over f0 and writing W ′i = Ti/n1 + (1− Ti)Wi, we get

CMSE(τ̂W ) =
∑n

i,j=1(−1)Ti+TjW ′iW
′
jE [f0(Xi)f0(Xj) | X1:n, T1:n] + σ ‖W ′‖22

=
∑n

i,j=1(−1)Ti+TjW ′iW
′
jγ

2K(Xi, Xj) + σ2 ‖W ′‖22
= γ2B(W ;K) + σ2‖W ′‖22 = γ2(E(W ;K, λ) + λ/n1),
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where the second equality is by the of Gaussian process prior and the third equality is due
to Prop. 15.

Proof [Proof of Thm. 18] Repeat the proof of Thm. 12 up to eq. (22). By (iv), M =
E[‖ξi‖2∗ | T ] ≤ 4E[K(X,X) | T = 1] <∞. Note that ‖ξ − ζ‖2∗ + ‖ξ + ζ‖2∗ = 2‖ξ‖2∗ + 2‖ζ‖2∗ +
2 〈ξ, ζ〉−2 〈ξ, ζ〉 = 2‖ξ‖2∗+2‖ζ‖2∗. By induction,

∑
ρi∈{−1,+1}m ‖

∑m
i=1 ρiξi‖2∗ = 2m

∑m
i=1 ‖ξi‖2∗

(parallelogram law). Therefore, continuing from eq. (22), we have

E[‖ 1
nt

∑
i∈Tt ρiξi(f)‖2∗ | T1:n] = C

n2
t
E[
∑

i∈Tt ‖ξi‖
2
∗ | T1:n] = MC

nt
.

We conclude that,

E2(W̃T0 ;K, λn) = ‖A1 + (n0/n
′
0)A0‖2∗ + λn‖W̃T0‖22 = Op(1/n).

Because W is optimal and by (iii) W̃T0 is feasible and λ−1 ≤ λ−1, we then also have
B2(W ;K) = Op(1/n) and ‖W‖22 = Op(1/n). By (v), ∃σ2 : σ2

i ≤ σ2. Therefore, V 2(W ;σ2
1:n) ≤

σ2(‖W‖22 + 1/n1) = Op(1/n) and hence by Lemma 44 Ξ(W ) = Op(n
−1/2).

In case (a), we have B(W ; f0) ≤ ‖[f0]‖B(W ;K) = O(n−1). Prop. 1 and Lemma 44 yield
the result.

Now consider case (b). Fix η > 0, ν > 0. Let τ =
√
νη/3/M . Because B(W ;K) =

Op(n
−1/2) = op(n

−1/4) and ‖W‖2 = Op(n
−1/2), there are M,N such that for all n ≥ N

both P(n1/4B(W ;K) >
√
η) ≤ ν/3 and P(n1/2(‖W‖2 + 1/

√
n1) > M

√
η) ≤ ν/3. By ex-

istence of second moment, there is g′0 =
∑`

i=1 βiISi with (E
[
(f0(X)− g′0(X))2

]
)1/2 ≤ τ/2

where IS(x) are the simple functions IS(x) = I [x ∈ S] for S measurable. Let i = 1, . . . , `.
Let Ui ⊃ Si open and Ei ⊆ Si compact be such that P (X ∈ Ui\Ei) ≤ τ2/(4` |βi|)2.
By Urysohn’s lemma (Royden, 1988), there exists a continuous function hi with support
Ci ⊆ Ui compact, 0 ≤ hi ≤ 1, and hi(x) = 1∀x ∈ Ei. Therefore, (E

[
(ISi(X)− hi)2

]
)1/2 =

(E
[
(ISi(X)− hi)2I [X ∈ Ui\Ei]

]
)1/2 ≤ (P (X ∈ Ui\Ei))1/2 ≤ τ/(4` |βi|). By C0-universality,

∃gi =
∑m

j=1 αjK(xj , ·) such that supx∈X |hi(x)− gi(x)| < τ/(4` |βi|). Because E
[
(hi − gi)2

]
≤

supx∈X |hi(x)− gi(x)|2, we have
√

E [(IS′(X)− gi)2] ≤ τ/(2` |βi|). Let g0 =
∑`

i=1 βigi.
Then
(E
[
(f0(X)− g0(X))2

]
)1/2 ≤ τ/2 +

∑`
i=1 |βi| τ/(2` |βi|) = τ and ‖g0‖ < ∞. Let

δn =
√

1
n

∑n
i=1(f0(Xi)− g0(Xi))2. Then, we have that

|B(W ; f0)| ≤ |B(W ; g0)|+ |B(W ; f0 − g0)|
≤ ‖[g0]‖B(W ;K) +

√
n(‖W‖2 + 1/

√
n1)δn.

Let N ′ = max{N, 2d‖[f0]‖4/η2e}. Then by union bound, for all n ≥ N ′, we have

P(|B(W ; f0)| > η) ≤ P(n−1/4‖[g0]‖ > √η) + P(n1/4B(W ;K) >
√
η)

+ P(n1/2(‖W‖2 + 1/
√
n1) > M

√
η) + P(δn >

√
η/M)

≤ 0 + ν/3 + ν/3 + ν/3 = ν.

Hence, |B(W ; f0)| = op(1). Prop. 1 and Lemma 44 yield the result.
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Proof [Proof of Thm. 19] From the proof of Thm. 18 we have B2(W ;K) = Op(1/n), ‖W‖22 =

Op(1/n),Ξ(W ) = Op(n
−1/2). In case (a), we have |B(W ; f0 − f̂0)| ≤ ‖[f0 − f̂0]‖B(W ;K) =

op(n
−1/2) and so τ̂W,f̂0

− SATT = Ξ(W ) + op(n
−1/2), yielding the result. In case (b), we

have |B(W ; f0 − f̂0)| ≤ (‖[f0]‖+ ‖[f̂0]‖)B(W ;K) = Op(1)Op(n
−1/2), yielding the result.

In the other cases, expand the error of τ̂W,f̂0
:

τ̂W,f̂0
− SATT = B(W ; f̃0 − f̂0) +B(W ; f0 − f̃0) + Ξ(W ).

|B(W ; f̃0 − f̂0)| ≤ (‖W‖22 + 1/n1)1/2(
∑n

i=1(f̃0(Xi)− f̂0(Xi))
2)1/2

= Op(n
−1/2)Op(1).

In case (c), B(W ; f0 − f̃0) = 0 yields the result. In case (d), we repeat the argument in the
proof of Thm. 18 to show that both |B(W ; f0)| → 0 and |B(W ; f̃0)| → 0, yielding the re-
sult. In case (e), |B(W ; f0−f̃0)| ≤ (‖f0‖+‖f̃0‖)B(W ;K) = Op(n

−1/2), yielding the result.

Proof [Proof of Thm. 20] From the proof of Thm. 18, B2(W ;K) = O(1/n), ‖W‖22 =

O(1/n). From the proof of Prop. 27, for f̂0(x) = α̂ − β̂Tx where
α̂, β̂ = argminα∈R,β∈Rd

∑
i∈T0 Wi(Yi−α−βTXi)

2, we have τ̂WLS(W ) = 1
n1

∑
i∈T1(Yi−f̂0(Xi)).

Because least squares with intercept has zero in-sample bias,
∑

i∈T0 Wif̂0(Xi) =
∑

i∈T0 WiYi,

so that by adding and substracting this term, we see that τ̂WLS(W ) = τ̂W,f̂0
= τ̂W−B(W ; f̂0).

Let X̃i = (1, Xi), β̃ = (α̂, β̂T )T , P̂ = X̃T
T0WX̃T0 =

∑
i∈T0 WiX̃iX̃

T
i ,

Ĝ =
∑

i∈T0 Wif0(Xi)X̃i, and Ĥ =
∑

i∈T0 WiX̃iεi. Then β̃ = P̂−1(Ĝ+ Ĥ). Follow the argu-

ment in Thm. 18 for the case of K being C0-universal to show P̂ → P in probability, where
P = E[X̃X̃T | T = 1]. By the Schor complement, since E[XXT | T = 1] is non-singular,
P is also non-singular and hence we have P̂−1 → P−1 in probability. Follow the argument
in Thm. 18 for the case of K being C0-universal to show Ĝ → G = E[f0(X)X̃ | T = 1]
in probability. Moreover, letting M > 1 be such that supx∈X ‖x‖2 ≤ M by assumption,
E[‖Ĥ‖22 | X1:n, T1:n] =

∑
i∈T0 W

2
i σ

2
i ‖X̃i‖22 ≤ 2M2σ2‖W‖22 = Op(1/n) so that by Lemma 44

‖Ĥ‖22 = Op(1/n).
Consider case (a). By Thm. 18, τ̂W → 0 in probability. By the above, we have ‖β̃‖2 =

Op(1). Let η > 0, ρ > 0 be given. Then there is R > 0 such that P(‖β̃‖2 > R) ≤
ρ/3. Let M ′, N ′ be such that P(

√
n(‖W‖22 + 1/n1)1/2 > M ′) ≤ ρ/3 for all n ≥ N ′. Let

r = η/(8MM ′) and {β : ‖β − β̃1‖2 ≤ r}, . . . , {β : ‖β − β̃`‖2 ≤ r} be a finite cover of

the compact
{
β : ‖β‖2 ≤ R

}
. Let fβ(x) = β

T
(1, x). By C0-universality and boundedness,

∃gk with ‖gk‖ < ∞ and supx∈X |gk(x) − fβ(x)| ≤ η/(4M ′). Let Γ = maxk=1,...,` ‖gk‖
and let N ′′ ≥ N ′ be such that P(B(W ;K) > η/(2Γ)) ≤ ρ/3 for all n ≥ N ′′. Note that

supx∈X |fβ(x)− f
β
′(x)| ≤ 2M‖β − β′‖2. Then we have that

sup‖β‖≤R|B(W ; fβ)|

≤ sup‖β‖≤R mink(|B(W ; gk)|+ |B(W ; fβk
− gk)|+ |B(W ; fβ − fβk)|)

≤ ΓB(W ;K) +
√
n(‖W‖22 + 1/n1)1/2(κ+ 2Mr)

= ΓB(W ;K) +
√
n(‖W‖22 + 1/n1)1/2η/(2M ′)
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Finally, for all n ≥ N ′′, we have

P(|B(W ; f̂0)| > η) ≤ P(‖β̃‖ > R) + P(|B(W ; f̂0)| > η, ‖β̃‖ ≤ R)

≤ ρ/3 + P(sup‖β‖≤R |B(W ; fβ)| > η)

≤ ρ/3 + P(B(W ;K) > η/(2Γ)) + P(
√
n(‖W‖22 + 1/n1)1/2 > η/(2M ′)) ≤ ρ

which is eventually smaller than ρ. Since η, ρ were arbitrary we conclude that B(W ; f̂0)→ 0
in probability so that τ̂WLS(W ) → 0 in probability.

Consider case (b). Let β0 = (α0, β
T
0 )T . Then β̃ − β0 = P̂−1Ĥ so by the above

β̃− β0 = Op(n
−1/2). Noting that τ̂WLS(W )− SATT = 1

n1

∑
i∈T1 εi + (β0− β̃)T ( 1

n1

∑
i∈T1 X̃i)

completes the proof.

Proof [Proof of Prop. 21] Writing W ′i = (1− Ti)Wi − Ti/n1, K ′ = K + λIT0 , we have that
SKOM(W,K, λ) is given by

min
W∈W

sup∑∞
i,j=1 αiαjK(xi, xj) ≤ 1,

g ∈ G,
∑∞
i=1 α

2
iK(xi, xi) <∞,∑∞

i=1 αig
′(xi) = 0 ∀g′ ∈ G

n∑
i=1

W ′i

g(Xi) +
∞∑
j=1

αiK(xj , Xi)

+ λ‖W‖22

= min
W∈W

{
∞ ∃g ∈ G :

∑n
i=1W

′
ig(Xi) 6= 0

W ′TK ′W ′ ∀g ∈ G :
∑n

i=1W
′
ig(Xi) = 0

= min
W ∈ W,
GW ′ = 0

W ′TK ′W ′.

The result follows by writing GW ′ = 0 as W ′ ∈ null(G) = span(N), which is in turn written
as W ′ = NU for a new variable U ∈ Rk.

Proof [Proof of Prop. 22] Using similar arguments to the proof of Thm. 3, we get that
B(W ; ‖ · ‖∂(µ̂n,δ)) is equal (up to a scaling of n(n− 1)) to

min
S∈RT1×T0+ ,t∈R+

t

s.t.
∑

i′∈T0 Sii′ = 1/n1 ∀i ∈ T1∑
i′∈T1 Si′i = Wi ∀i ∈ T0

t ≥ Dii′Sii′ ∀i ∈ T1, i
′ ∈ T0.

Hence, minimizing it over Wsimplex or W1/n1-simplex we get the same network flow problems
except with a bottleneck objective. The solution is still integer and gives the pair match-
ing with minimal maximal pair distance, corresponding exactly to OCM with or without
replacement.

Proof [Proof of Prop. 23] For f piecewise constant on the coarsening components let fj
denote its value on the jth component. By writing f(x) =

∑M
j=1 I[C(x)=j]fj and exchanging

sums we can rewrite B(W ; f) as

B(W ; f) =
∑J

j=1 fj(
1
n1

∑
i∈T1 I[C(Xi)=j] −

∑
i∈T0 WiI[C(Xi)=j]).

51



Kallus

Under the constraint |fj | ≤ 1 ∀j, the maximizer of the above assigns ±1 to each fj in order
to make the jth term nonnegative. Hence,

B(W ; ‖ · ‖L∞(C)) =
∑J

j=1 |
1
n1

∑
i∈T1 I[C(Xi)=j] −

∑
i∈T0 WiI[C(Xi)=j]|,

which we recognize as the coarsened L1 distance from eq. (11).

Proof [Proof of Prop. 24] Let W ∈ Wsubsets and T0
′ = {i ∈ T0 : Wi > 0}. Then, by duality

of Euclidean norms,

B(W ; ‖ · ‖2-lin(V )) = sup
βTV β≤1

βT ( 1
n1

∑
i∈T1 Xi −

∑
i∈T0 WiXi) = MV (T0

′).

Proof [Proof of Prop. 25] By linearity, we have

B(W ; ‖ · ‖‖·‖A⊕ρ‖·‖B) = sup‖f‖‖·‖A⊕ρ‖·‖B≤1B(W ; f)

= sup‖fA‖A≤1,‖fB‖B/ρ≤1B(W ; fA + fB)

= B(W ; ‖ · ‖A) + ρB(W ; ‖ · ‖B)

Proof [Proof of Prop. 26] Note that GOM(Wgeneral, ‖·‖2-lin(V ), 0) is the same as GOM(Wgeneral, ‖·
‖2-lin, 0) applied to the data X̃i = V 1/2Xi. However, applying OLS adjustment to data Xi

or data X̃i is exactly the same because β1, β2 are unrestricted so we can make the transfor-
mation β̃1, β̃2 = V −1/2β1, V

−1/2β2 without any effect except transforming X̃i to Xi. Finally,
we apply Prop. 27 with λ = 0.

Proof [Proof of Prop. 27] We can rewrite the ridge-regression problem as

min
τ,α,β1,β2

n∑
i=1

(Yi − α− τTi − βT1 Xi − βT2 (Xi −XT1)Ti)
2 + λ ‖β1‖22 + λα2

= min
τ,α,β1,β2

(∑
i∈T0

(Yi − α− βT1 Xi)
2 + λ ‖β1‖22 + λα2

+
∑
i∈T1

(Yi − (α+ τ − βT2 XT1)− (β1 + β2)TXi)
2

)
= min
α,β1

(
∑
i∈T0

(Yi − α− βT1 Xi)
2 + λ ‖β1‖22 + λα2) + min

α̃,β̃

∑
i∈T1

(Yi − α̃− β̃TXi)
2,

where we used the transformation α̃ = α+ τ − βT2 XT1 , β̃ = β1 + β2 and the fact that τ and
β2 are unrestricted to see that α̃, β̃ are unrestricted. Because α̃, β̃ solve an OLS problem
with intercept on T1, the mean of in-sample residuals are zero, and therefore:

0 = 1
n1

∑
i∈T1(Yi − α̃− β̃TXi) = Y T1(1)− α̃− βT1 XT1 − βT2 XT1 ,

=⇒ τλ-ridge = α̃− α+ βT2 XT1 = Y T1(1)− α− βT1 XT1
= Y T1(1)− (α, βT1 )X̃T

T1
en1
n1
,
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where X̃i = (1, Xi) and X̃Tt is the nt × (d + 1) matrix of these. Note α, β1 solve ridge-
regression on T0, so:

(α, βT1 )T = (X̃T
T0X̃T0 + λId+1)−1X̃T

T0YT0 .

Therefore, letting W̃ = 1
n1
X̃T0(X̃T

T0X̃T0 + λId+1)−1X̃T
T1en1 , we must have

τλ-ridge = Y T1(1)−
∑

i∈T0 W̃iYi.

On the other hand, the weightsW given by GOM(Wgeneral, ‖·‖2-lin, λ) minimize the following
objective function:

sup
α2+‖β‖22≤1

(
1
n1

∑
i∈T1(α+ βTXi)−

∑
i∈T0 Wi(α+ βTXi)

)2
+ λ ‖W‖22

= sup
α2+‖β‖22≤1

((
W

− en1
n1

)T
X̃

(
α
β

))2

+ λ ‖W‖22 =

∥∥∥∥X̃T

(
W

− en1
n1

)∥∥∥∥2

2

+ λ ‖W‖22

=‖X̃T
T0W − X̃

T
T1
en1
n1
‖22 + λ ‖W‖22 .

By first order optimality conditions on unrestricted W we have

0 = X̃T0(X̃T
T0W − X̃

T
T1
en1
n1

) + λW =⇒ W = (X̃T0X̃
T
T0 + λIn0)−1X̃T0X̃

T
T1
en1
n1
.

Fix λ̃ > 0. By applying the Sherman-Morrison-Woodbury (SMW) formula (Boyd and
Vandenberghe, 2004, §C.4.3) twice, we have

(X̃T0X̃
T
T0 + λ̃In0)−1X̃T0

SMW
= ( 1

λ̃
In0 − X̃T0( 1

λ̃
X̃T
T0X̃T0 + Id+1)−1X̃T

T0)X̃T0

= 1
λ̃
X̃T0(Id+1 − ( 1

λ̃
X̃T
T0X̃T0 + Id+1)−1 1

λ̃
X̃T
T0X̃T0)

SMW
= 1

λ̃
X̃T0( 1

λ̃
X̃T
T0X̃T0 + Id+1)−1

= X̃T0(X̃T
T0X̃T0 + λ̃Id+1)−1.

If λ > 0 then set λ̃ = λ. If λ = 0 and X̃T
T0X̃T0 is invertible then, by continuous transforma-

tion over the limit λ̃ → 0, the equation of the first to the last holds with λ̃ = 0. In either
case, this shows W = W̃ , completing the proof.

Proof [Proof of Prop. 29] Let ∆ = E
[∑

i∈T1 WiXi −
∑

i∈T0 WiXi

]
and similarly define ∆′.

Suppose ∆ = α∆ for α ∈ [−1, 1]. Then, for any f(x) = βTx + β0, |E [B(W ; f)]| =∣∣βT∆
∣∣ = |α|

∣∣βT∆′
∣∣ ≤ ∣∣βT∆′

∣∣ = |E [B(W ′; f)]|.
Now, suppose W is linearly EPBR relative to W ′. Then, for any β, we have that

if βT∆′ = 0 then B(W ′; f) = 0 for f(x) = βTx, which by linear EPBR implies that
B(W ; f) = 0, which means that βT∆ = 0. In other words, span(∆′)⊥ ⊆ span(∆)⊥. There-
fore, span(∆) ⊆ span(∆′), which exactly means that ∃α ∈ R such that ∆ = α∆′. If ∆′ = 0
then we can choose α = 0. If ∆′ 6= 0 then there exists β such that

∣∣βT∆′
∣∣ > 0 and hence

|α| =
∣∣βT∆

∣∣ / ∣∣βT∆′
∣∣ ≤ 1 by linear EPBR.
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Proof [Proof of Prop. 32] Fixing any µ ∈ Rd, µ 6= 0, we can affinely transform the data
so that X | T = 0 is spherical at zero (has zero mean, unit covariance, and its distribu-
tion is unitarily invariant) and X | T = 1 is distributed the same as µ + αX | T = 0
for some α ∈ R+. For any affinely invariant W ′, we may assume this form for the data
and any affinely invariant W ′ is also unitarily invariant so that by spherical symmetry,
E
[∑n

i=1(−1)Ti+1WiXi

]
∈ span(µ). Both W and W (0) are affinely invariant.

Proof [Proof of Prop. 34] Fix X, T , A ∈ Rd×d, and a ∈ Rd with A non-singular. Let µ̂
and Σ̂ be defined as in Alg. 3 for X, T . Let µ̂A and Σ̂A be defined as in Alg. 3 for the
transformed data XA = XAT + 1na

T , T . Then, µ̂A = Aµ̂+ a and Σ̂A = AΣ̂AT . The inner
products produced by Alg. 3 on the transformed data are ((XA)i− µ̂A)T Σ̂†A((XA)j − µ̂A) =

(AXi −Aµ̂)TA−T Σ̂†A−1(AXj −Aµ̂) = (Xi − µ̂)T Σ̂†(Xj − µ̂), which are the inner products
produced by Alg. 3 on the untransformed data.

Proof [Proof of Prop. 35] If X1:n is affinely independent then it can be affinely mapped to
the (n − 1)-dimensional simplex, composed of 0 and the first n − 1 unit vectors. If W is
affinely invariant then it takes the same value on all affinely independent X1:n as it does on
the (n− 1)-dimensional simplex.

Proof [Proof of Prop. 37] The proof is the same as that of Prop. 29.

Proof [Proof of Prop. 40] The proof is the same as that of Prop. 32: without loss of general-
ity we may assume that the embedded control data is spherical (ellipsoidal with zero mean
and identity covariance operator and therefore spherically symmetric under unitary trans-
formations) and that treated data is distributed like scaling and shifting the control data.

Proof [Proof of Prop. 42] The proof is the same as that of Prop. 34.

Proof [Proof of Prop. 43] Let X1:n and X ′1:n each be a list of n distinct elements of X . Since
K is strictly positive definite, both {K(Xi, ·) : i = 1, . . . , n} and {K(X ′i, ·) : i = 1, . . . , n}
are linearly independent sets of vectors. Therefore, there exists a bounded non-singular
A ∈ F ⊗ F such that AXi = X ′i. Since W is K-affinely invariant, it is the same for X1:n

and X ′1:n.
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