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Abstract

First-order optimization algorithms play a major role in large scale machine learning. A new
class of methods, called adaptive algorithms, were recently introduced to adjust iteratively
the learning rate for each coordinate. Despite great practical success in deep learning,
their behavior and performance on more general loss functions are not well understood.
In this paper, we derive a non-autonomous system of differential equations, which is the
continuous time limit of adaptive optimization methods. We study the convergence of its
trajectories and give conditions under which the differential system, underlying all adaptive
algorithms, is suitable for optimization. We discuss convergence to a critical point in the
non-convex case and give conditions for the dynamics to avoid saddle points and local
maxima. For convex loss function, we introduce a suitable Lyapunov functional which
allows us to study its rate of convergence. Several other properties of both the continuous
and discrete systems are briefly discussed. The differential system studied in the paper is
general enough to encompass many other classical algorithms (such as Heavy Ball and
Nesterov’s accelerated method) and allow us to recover several known results for these
algorithms.

Keywords: Adaptive algorithms, convex and non-convex optimization, first-order meth-
ods, differential equation, forward Euler discretization

1. Introduction

Optimization is at the core of many machine learning problems. Estimating the model
parameters can often be formulated in terms of an unconstrained optimization problem of
the form

min
θ∈Rd

f(θ) where f : Rd → R is differentiable. (1.1)
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The emergence of deep learning has spawned the recent popularity of a special class of
optimizers to solve Equation (1.1): first order adaptive optimization algorithms such as
RMSprop (Tieleman and Hinton, 2012), Adagrad (Duchi et al., 2011; Duchi and Singer,
2013), Adadelta (Zeiler, 2013), Adam (Kingma and Ba, 2014) were originally designed to
solve unconstrained optimization problem.

Despite its obvious efficiency in deep learning (Gregor et al., 2015; Radford et al., 2015),
the reasons of their success are unclear and a large number of fundamental questions are
still unanswered. In particular, recent research paper (S. Reddi and Kumar, 2018) shows
that Adam may diverge.

Our work started from the intuition that these algorithms are not intrinsically better
than gradient descent but rather well suited to the subclass of non-convex functions given
by standard deep learning architectures. Studying the convergence of the discrete and
stochastic adaptive algorithms for non-convex functional is far too complex and general to
get insightful explanation about their efficiency in deep learning. We, therefore, start by
studying a deterministic and continuous equation, and we prove that in simple cases (such
as convex functional), adaptive algorithm are not converging faster than gradient descent.
In particular, the key insights of our analysis are:

1. The convergence rate is nonlinear –in the sense that it depends on the variables–
and depends on the history of the dynamics. Initialization is therefore of crucial
importance.

2. With the standard choices of hyperparameters, adaptivity degrades the rate of con-
vergence to the global minimum of a convex function compared to gradient descent.

These observations are crucial to unwind the mystery of adaptive algorithms and the next
questions to ask are now obvious:

1. Does adaptivity reduces the variance (compared to Stochastic Gradient Descent) and
speed up the training for convex functional?

2. Is the fast training observed in deep learning induced by the specificity of the loss
surface and common initialization scheme for the weights?

The main contribution of this paper is to provide a theoretical framework to study
deterministic adaptive algorithms. Inspired by the history of gradient descent and stochastic
gradient descent, we analyse discrete adaptive optimization algorithms by introducing their
continuous-time counterparts (Equation 2.1), which correspond to the limit of large batch
sizes and small learning rates. We focus on Adam given by Equation (4.3). The techniques
and analysis are similar for other algorithms and include classical accelerated methods.

This work is intended to serve as a solid foundation for the posterior study in the discrete
and stochastic settings, and in this paper, we put an emphasis on the deterministic equation
to understand the fundamental properties of adaptive algorithms.

In Section 2 we introduce two general continuous dynamical system (2.1) and its for-
ward Euler approximation (2.2). The connection between these equations and optimization
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algorithms is summarized in table 1 and made precise in Section 4. Section 2.2 contains
important properties of the Ordinary Differential Equation (2.1). Section 3 contains the
statement of our main results, on the asymptotic behavior of the continuous deterministic
trajectories of the ODE (2.1). In the non-convex setting, we prove in Theorem 4 that the
gradient converges to zero and in Theorem 5 that the trajectories converge to the critical
locus of f . This result is supplemented with the analysis of sufficient conditions in order to
avoid convergence to saddle or local maximum points of the loss function f (see Theorem
6). For convex functions, we design a Lyapunov functional (3.2) and obtain, in Theorem 7,
a rate of convergence to at least a neighborhood of the critical locus. The rate of conver-
gence crucially depends on the behavior over time of ∇f and on the term v (see Equation
3.3 and the subsequent discussion for more details). In particular, this indicates that the
efficiency of adaptive algorithms is highly dependant on the loss function. In Sections 4, we
specialize the convergence results to Adam, AdaFom, Heavy Ball and Nesterov. In
particular, Corollary 8 provides new results on the convergence of the dynamics of Adam,
while Corollary 11 recovers previously known convergence rates of Nesterov’s accelerated
method. We stress that Sections 3 and 4 can be read independently. In Section 5 we pro-
vide some empirical observations on adaptive algorithms that are inspired by the continuous
analysis. Finally, we collect guidelines for designing new adaptive algorithms in Section 6.
Most proofs supporting the paper are postponed to the Appendix.

1.1. Related Work

The study of a continuous dynamical system is often very useful to understand discrete
optimization algorithms. For smooth convex or strongly convex functions, Nesterov (2004)
introduced an accelerated gradient algorithm which was proven to be optimal (a lower
bound matching an upper bound is provided).

However, the key mechanism for acceleration is not well understood and have many
interpretations (Bubeck et al., 2015; Hu and Lessard; Lessard et al., 2016). A particular
interesting interpretation of acceleration is through the lens of a second order differential
equation of the form

θ̈ + a(t)θ̇ +∇f(θ) = 0, θ(0) = θ0, θ̇(0) = ψ0, (1.2)

where t 7→ a(t) is a smooth, positive and decreasing function of time, having possibly
a pole at zero. Even if this singularity has important implications for the choice of the
initial velocity ψ0, we are more interested by the long term behavior of the solution to
(1.2) and hence at limt→∞ a(t). This system is called dissipative because its energy E(t) =
1
2 ||θ̇||

2 + f(θ) decreases over time.

Most accelerated optimization algorithms can be seen as the numerical integration of
Equation (1.2). Alvarez et al. (2002); Alvarez (2000) studied the Heavy Ball method in
which the function a is constant and is called the damping parameter. Gadat and Panloup
(2014); Cabot (2009); Cabot et al. (2009) gave conditions on the rate of decay of a and
its limit in order for the trajectories of Equation (1.2) to converge to a critical point of
f . This analysis highlights situations where solutions to Equation (1.2) are fit (or not) for
optimization. Intuitively, if a decays too fast to zero (like 1/t2) the system will oscillate
and won’t converge to a critical point. The case a(t) = 3/t was studied more specifically in
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Su et al. (2016) and the authors draw interesting connections between (1.2) and Nesterov’s
algorithm. The convergence rates obtained are O(1/(sk2)) and O(1/t2) respectively, which
match with the discrete algorithms by using the time identification t =

√
sk (Su et al.,

2016). Wibisono and Wilson (2015); Wibisono et al. (2016) extended this work and studied
acceleration from a different continuous equation having a theoretically exponential rate
of convergence. However, a näıve discretization loses the nice properties of this continuous
system and current work consists of finding a better one preserving the symplectic structure
of the continuous flow (Betancourt et al., 2018).

By nature, first-order adaptive algorithms have iterates that are non-linear functions
of the gradient of the objective function. The analysis of convergence is, therefore, more
complex, potentially because the rate of convergence might depend on the function itself.
The first known algorithm Adagrad (Duchi and Singer, 2013) consists of multiplying the
gradient by a diagonal preconditioning matrix, depending on previously squared gradients.
The key property to prove the convergence of this algorithm is that the elements of the pre-
conditioning matrix are positive and non-decreasing (Ward et al., 2019; Duchi and Singer,
2013; Chen et al., 2019). Later on, two new adaptive algorithms RMSprop (Tieleman
and Hinton, 2012) and Adam (Kingma and Ba, 2014) were proposed. The preconditioning
matrix is an exponential moving average of the previously squared gradients. As a conse-
quence, it is no longer non-decreasing. The proof of convergence, relying on this assumption
and given in the form of a regret bound in Kingma and Ba (2014), is therefore not cor-
rect (S. Reddi and Kumar, 2018). A new algorithm Amsgrad proposed by S. Reddi and
Kumar (2018) consists of modifying the preconditioning updates to recover this property.
While converging, this algorithm loses the essence of the Adam’s algorithm.Adam is such
a mysterious algorithm that many works have been devoted to understanding its behavior.
Variants of Adam have been proposed by Zhang et al. (2017) as well as convergence anal-
ysis towards a critical point (De et al., 2018; Chen et al., 2019). However, conditions for
convergence seem very restrictive and not easy to verify in practice.

In what follows, we use several times the same non standard operations on vectors. It is
convenient to fix the notation of these operations. Given two vectors u = (u1, . . . , ud) and
v = (v1, . . . , vd) of Rd and constants a, ε ∈ R, we use the following notation:

u+ ε := (u1 + ε, . . . , ud + ε)

u/v := (u1/v1, . . . , ud/vd)

ua := (ua1, . . . , u
a
d)

2. Presentation of the Model

Throughout this paper we study the following dynamical system
θ̇(t) = −m(t)/

√
v(t) + ε

ṁ(t) = h(t)∇f(θ(t))− r(t)m(t)

v̇(t) = p(t) [∇f(θ(t))]2 − q(t)v(t),

(2.1)

where ε ≥ 0, the functions h(t), r(t), p(t) and q(t) are C1-functions defined over R>0 and
(θ,m, v, t) ∈ Rd×Rd×Rd≥0×R>0; if ε = 0, then v ∈ Rd>0. The above system has a momentum
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term m and a memory term v. The system (2.1) is supplemented with initial conditions
x0 = (θ0,m0, v0) at time t = t0 ≥ 0. We denote by x(t) = x(t, t0,x0) = (θ(t),m(t), v(t)) a
solution of (2.1) with initial condition x(t0, t0,x0) = x0, and interval of definition t ∈ [t0, t∞[.

We always make the following hypotheses.

Assumption 1 The objective function f is assumed to be a C2 function defined in Rd.
The functions h, r, p and q are non-negative and non-increasing C1-functions defined over
R>0, and h(t) 6≡ 0, r(t) 6≡ 0. We also require that one of the following is satisfied:

Either p(t) 6≡ 0, in which case we say that the system is adaptive;

Or p(t) ≡ q(t) ≡ 0, in which case we say that the system is non-adaptive.

The choices of functions h, r, p and q, which yield a good optimization algorithm, are
not unique and should adapt to the local properties of the loss function. We provide a
list of known choices in table 1 and give some guidelines on how to choose them in §§ 6.
The momentum term m accelerates the convergence of the algorithm depending on the
choice of the coefficients h and r. Intuitively, the addition of the momentum m implies the
existence of a special energy functional for ODE (2.1) (see Equation 2.3 below) which works
as a “funnel” around minimum points of f . The trajectories of the ODE can, therefore,
be “accelerated” without the risk of diverging to ∞, at the cost of an oscillatory behavior
(just as water in a funnel). An adaptive system has a non-trivial dynamic induced by the
addition of the memory term v used to rescale the learning rate component by component.
The variable v is controlled by the history of the trajectory x(t) and the loss function f .
When the dynamics traverses a region of high gradient, their values will accumulate in v
and the dynamics will slow down. The functions p and q determine how much memory of
past gradients to keep. Based on these two intuitions, we can expect that the choice of h
and r controls how fast these algorithms converge, while p and q may only slow down the
algorithm in general, but accelerate it for certain “classes” of loss functions. This intuition
turns out to be precise when dealing with convex functions, as we discuss in §§ 6.

Remark 1 When the system does not contain a momentum term m, as it is the case for
Adagrad or RMSprop, one must consider the alternative simpler system{

θ̇(t) = −∇f(θ)/
√
ω(t) + ε

ω̇(t) = p(t) [∇f(θ(t))]2 − q(t)ω(t).

The convergence analysis is similar (and simpler) to Equation (2.1), but can not be derived
directly from it and can be found in Belotto da Silva and Gazeau (2018).

2.1. The Discrete-Time Model

In order to establish a relation between the continuous and the optimization algorithms, we
study the finite difference approximation of Equation (2.1) by the forward Euler method

θk+1 = θk − smk/
√
vk + ε

mk+1 = (1− sr(tk+1))mk + sh(tk+1)∇f(θk+1)

vk+1 = (1− sq(tk+1))vk + sp(tk+1) [∇f(θk+1)]2
(2.2)
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Algorithm Equation (2.1) Equation(2.2)

Adam (4.3)

g(t, λ, α) = 1− e−λα
λ(1− e−tα)

λ = s, βi = e−λ/αi , i = 1, 2

h ≡ r ≡ g(t, λ, α1) β1
1−βk1

1−βk+1
1

= µk+1 = 1− sg(tk+1, λ, α1)

p ≡ q ≡ g(t, λ, α2) β2
1−βk2

1−βk+1
2

= νk+1 = 1− sg(tk+1, λ, α2)

Adam without h ≡ 1, r ≡ 1/α1 β1 = 1− s/α1

rescaling p ≡ q ≡ 1/α2 β2 = 1− s/α2

AdaFom (4.6)
h ≡ r ≡ g(t, λ, α1) β1

1−βk1
1−βk+1

1

= µk+1 = 1− sg(tk+1, λ, α1)

p ≡ q ≡ 1/t sp(tk+1) = 1/(k + 1)

Heavy Ball (4.7)
h ≡ 1, r ≡ γ β = 1− sγ, nk = smk, α = s2

p ≡ q ≡ 0 0

Nesterov (4.10)
h ≡ 1, r ≡ 3/t h = 1, r = 3/(k + 1)
p ≡ q ≡ 0 0

Table 1: Connections between Equations (2.1) and (2.2).

where tk = ks. We chose this method because it fits well with Adam discrete system. It
follows from the theory of Euler discretization that the approximation error between the
discrete system (2.2) and continuous system (2.1) tends to zero (with order one) when the
learning rate goes to zero. However this choice of discretization is of course non-unique, and
more efficient quadrature rules could lead to more accurate numerical integration (Duris
and Lyness, 1975; Kythe and Puri, 2002). The connections between our model and the
discrete optimization algorithms is summarized by table 1, and the proof of these relations
is postponed to Section 4.

2.2. An Energy Functional of ODE (2.1) and a Natural Assumption

A crucial property in the study of ODE (2.1) is the existence of an energy functional, which
is inspired from Alvarez (2000):

E(t, θ,m, v) = f(θ) +
1

2h(t)

∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

. (2.3)

This functional plays a crucial role in the study of the convergence of ODE (2.1) in §3.
By direct computation of its derivative (see Equation B.1 in the Appendix), we obtain that:

d

dt
E(t, θ,m, v) ≤ − 1

2h(t)

[
2r(t)− q(t)

2
+
h′(t)

h(t)

] ∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

. (2.4)

This leads us to the following natural hypothesis, assumed almost everywhere in the paper:

Assumption 2 There exists t̃ > 0 such that for every t > t̃ we have that:

2r(t)− q(t)

2
+
h′(t)

h(t)
≥ 0.
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In practice, this is a mild assumption in the hyper-parameters of the model. In terms of
the algorithms in table 1, it is always verified by AdaFom, Heavy Ball and Nesterov
(with t̃ = 0); for Adam (and Adam with rescaling) it leads to the following condition on
the hyper-parameters (which is usually respected by practitioners): 3 + β2 > 4β1. Now,
under assumption 2 the derivative of E(t, θ,m, v) is non-positive, which immediately yields
the following result.

Lemma 2 Suppose that assumptions 1 and 2 are verified. Given a solution x(t) of the
ODE (2.1) such that t0 ≥ t̃, we have that:

E(t,x(t)) ≤ E(t0,x0), ∀ t ∈ [t0, t∞[.

In particular, if f is coercive, then the curve θ(t) is bounded. Furthermore, if f is a function
bounded from below, say by f∗, then:

1

2h(t)

∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

≤ E(t0,x0)− f∗, ∀ t ∈ [t0, t∞[

The above result shows the importance of the energy functional and has important im-
plications. For example, if f is coercive we guarantee that θ(t) is bounded (c.f. Assumption
4 below).

2.3. Existence and Uniqueness of a Solution to ODE (2.1)

We continue our analysis by showing that all solutions of ODE (2.1) are well-defined on the
interval [t0,∞[. Recall that our functions h(t), r(t), p(t) and q(t) are allowed to have poles
at the origin (c.f. table 1) in order to capture the phenomena present in both accelerated
and adaptive methods (c.f. Nesterov and Adam). This imposes some technical difficulties
similar to the analysis of the Nesterov’s differential equation (Su et al., 2016).

We, therefore, need to demand extra assumptions on the coefficients of our model and
the initial conditions in order to guarantee the existence and uniqueness of the solution at
time t0 = 0:

Assumption 3 We assume one of the following conditions: (1) the functions h, r, p, q have
a simple pole at t = 0, or (2) h ∈ C1([0,+∞)) (resp. p ∈ C1([0,+∞))), then r (resp. q)
can have a simple pole at zero; or (3) all functions are assumed to be C1 on [0,∞). In cases
(1) and (2), furthermore, we demand the following two extra-conditions:

(a) the initial conditions must be taken as:

m0 = ∇f(θ0) lim
t→0+

h(t)/r(t), v0 = [∇f(θ0)]2 lim
t→0+

p(t)/q(t).

(b) We assume that p(t) 6≡ 0 and that there exists a small time t̂ such that

2r(t)− q(t) ≥ 0, ∀t < t̂,
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In terms of the algorithms in table 1, the assumption is always verified for Heavy Ball,
Nesterov, AdaFom and Adam without rescaling. For Adam, nevertheless, it is necessary
to add mild assumptions on the hyper-parameters such as β1 ≥ 0.21. We are now ready to
enunciate the existence and uniqueness result. The proof is postponed to appendix A.

Theorem 3 (Existence and uniqueness) Suppose that the ODE (2.1) satisfies assump-
tion 1, and that either f is bounded from below and assumption 2 is satisfied with t̃ = 0
or p(t) 6≡ 0. Then for any t0 > 0 and admissible initial condition x0, there exists a unique
global solution to Equation (2.1) such that:

θ ∈ C2([t0,∞);Rd) and m, v ∈ C1([t0,∞);Rd).

Suppose, furthermore, that assumption 3 is also satisfied. Then, there exists a unique global
solution to Equation (2.1) such that:

θ ∈ C2((0,∞);Rd) ∩ C1([0,∞);Rd) and

m, v ∈ C1((0,∞);Rd) ∩ C0([0,∞);Rd).

3. Convergence Analysis

In this section, we study the asymptotic behavior of the solutions of (2.1). Our analysis is
divided in the following three steps:

(0) Gradient convergence: Find sufficient conditions on the functions f and p, q, r, h in
order for ∇f(θ(t))→ 0 when t→∞.

(1) Topological convergence: Find sufficient conditions on the functions f and p, q, r, h
in order for the solutions of Equation (2.1) to converge to a critical value of f . In
particular we do not require f to be convex.

(2) Avoiding local maximum and saddles: We want to strengthen the result of part (1)
and give sufficient conditions so that the dynamics avoid local maximum and saddles
and only converge to a local minimum. In other words, fix t0 > 0 and denote by St0
the set of initial conditions x0 = (θ0,m0, v0) such that the limit set of the associated
solution θ(t) contains a critical point θ? which is not a local minimum. We give, in
subsection 3.4, sufficient conditions for the set St0 to have Lebesgue measure zero.

(3) Rate of convergence: Under the convexity assumption, find the rate of convergence of
f to a local minimum.

In the remainder of this section, we give precise statements for all of the three steps,
and we will make appropriate assumptions on the objective function.

3.1. Convergence of the Gradient

In the case of non-convex functional, it is often the case that the trajectory θ(t) of the
system is unbounded, even for the gradient descent. For example, if we consider:

f(θ) =
θ2 − 1

(θ2 + 10)2
and initial condition |θ0| > 5. (3.1)
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This is unavoidable and can not be solved without appropriately setting the initial condi-
tions or via a well-chosen regularization technique (see the discussion in §§ 3.2). In this
general setting, it is possible to obtain results concerning the asymptotic of the gradient
∇f , provided that the gradient is globally Lipschitz and bounded. More precisely, we prove
the following result, which can be seen as a continuous counter-part of Theorem 1 in Zaheer
et al. (2018) in the analysis of RMSprop.

Theorem 4 (Gradient convergence) Suppose that assumptions 1 and 2 are satisfied
and that limt→∞ p(t) 6= 0 and limt→∞ q(t) 6= 0. If f is a function bounded from below
whose gradient ∇f is globally Lipschitz and bounded, then∫ ∞

t0

‖∇f(θ(t))‖2dt <∞

and ∇f(θ(t))→ 0 when t→∞.

We postpone the proof of the above Theorem to Appendix B. We note that Adam
satisfies all the assumptions of the above theorem, provided that the hyper-parameters
satisfy 3 + β2 > 4β1. Finally, note that example 3.1 belongs to the setting of Theorem 4.

3.2. On a Compactness Assumption

The following assumption over-arches several points of our analysis:

Assumption 4 The solution θ(t) of the ODE (2.1) is bounded.

We recall that Assumption 4 is automatically satisfied when the loss function f is coer-
cive. More generally, by Lemma 2, Assumption 4 is automatically satisfied when the initial
condition θ0 is in a connected and bounded component of the lower-level set of the loss func-
tion f , that is, if the connected components of {θ ∈ Rd; f(θ) ≤ f(θ0)} are bounded. This
is the case, for example, when `2 regularization of the weights is used as a regularization
technique. Verifying when Assumption 4 is satisfied under other regularization techniques,
or under well-chosen initial conditions, remains an important open problem which should
be addressed in future works.

3.3. Topological Convergence

We now search a stronger convergence result under the compactness assumption 4. In order
to do so, we make an additional assumption on the asymptotic behaviour of the coefficients,
which is designed to simplify the proof while still covering Adam:

Assumption 5 Suppose that ε > 0. Consider the functions:

H(τ) = h(1/τ), R(τ) = r(1/τ), P (τ) = p(1/τ), Q(τ) = q(1/τ),

and suppose that these functions are C1 in [0,∞), H(0) > 0 and 4R(0) > Q(0).
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Note that Assumption 5 is satisfied, essentially, when the coefficients of h(t) and r(t) do
not converge to zero at infinity. Hence, it holds for Adam, AdaFom, and the Heavy Ball
differential equations, c.f. table 1. It also has the interesting feature of being almost com-
pletely independent from the functions p(t) and q(t), a flexibility which should be explored
when trying to design new algorithms. Under this assumption, we prove the convergence of
the dynamics in the following sense:

Theorem 5 (Topological Convergence) Suppose that assumptions 1, 2, 4 and 5 are
verified. Then f(θ(t)) → f? and m(t) → 0 when t → ∞, where f? is a critical value of f .
Furthermore, if either Q(0) > 0 or p(t) ≡ q(t) ≡ 0 and v0 = 0, then v(t)→ 0.

The proof of Theorem 5 is postponed in Appendix C. Our method is inspired by the work
of Alvarez (2000), based on the energy functional of the system (2.3). We use elementary
topological techniques of qualitative theory of ODE’s (à la Poincaré-Bendixson). On the one
hand, this approach avoids most estimates and analytical arguments, which are typically
necessary for this kind of study, and can be easily reproduced in other systems. As an
immediate advantage, we do not need assumptions such as convexity of the loss function or
globally Lipschitz properties of the differential equation. On the other hand, the assumption
is not optimal. For example, it is not satisfied by Nesterov’s acceleration Equation (4.10).
We believe that the optimal threshold to guarantee convergence of ODE (2.1) should be
given by inequality in terms of poles of order at most one for the functions H and R. This
idea is supported by the results in Cabot et al. (2009) which show that the function R can
not be a polynomial function of order bigger than 1 in the case of the dissipative system
related to accelerated dynamics.

3.4. Avoiding Local Maximum and Saddles

In this section, we make the following extra assumption:

Assumption 6 A critical point θ? of f is either a local-minimum or it satisfies the two
following properties:

(a) it is a strict saddle (following Definition 1 in Lee et al. (2019)), that is, there exists
a strictly negative eigenvalue of the Hessian Hf (θ?) of f at θ?.

(b) it is an isolated critical point, that is, there is a neighbourhood U around θ? that does
not contain any other critical points.

We provide a discussion about this assumption in Remark 22, in the Appendix.
Now, fix a time t0 > 0 and recall that the topological limit of a curve θ(t), called ω-limit,

is given by:

ω(θ(t)) =
⋂
τ>t0

θ([τ,∞)).

Consider the set of initial conditions such that the limit set of the associated orbit contains
a critical point which is not a local minimum

St0 := {x0 = (θ0,m0, v0); ω(θ(t)) 3 θ?, where θ? is a strict saddle}

The main result of this subsection is the following:
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Theorem 6 (Avoiding Saddle and Local Maximum points) Suppose that assumptions
1, 2, 4, 5 and 6 are satisfied. If either Q(0) > 0 or p(t) ≡ q(t) ≡ 0, then the set St0 has
Lebesgue measure zero for every t0 > 0.

It follows that, if x0 = (θ0,m0, v0) is a random initial condition, then the solution
x(t, t0,x0) = (θ(t),m(t), θ(t)) converges to a local minimum of f with total probability.
Similar results are proved for discrete systems having isolated critical points in (Lee et al.,
2016, 2019), using essentially the same method as in here. More precisely, we use the theory
of central-stable manifold (for vector-fields).

3.5. Rate of Convergence

The study of the rate of convergence of f(θ(t)) to the minimum value f(θ?) usually relies
on a convexity assumption and a Lyapunov energy functional as in Su et al. (2016); Alvarez
et al. (2002); Alvarez (2000) and Gadat and Panloup (2014). It is therefore natural to make
the following assumption.

Assumption 7 The function f is convex and admits a minimum point, that is, there exists
θ? such that f(θ) ≥ f(θ?) for every θ ∈ Rd.

Now, strictly speaking, we do not find a Lyapunov functional for (2.1), but a natu-
ral functional which allow us to prove convergence to a least a neighbourhood of a local
minimum. For accelerated methods, the proposed functional corresponds to the standard
Lyapunov energy used in many other works as in Su et al. (2016); Alvarez et al. (2002);
Alvarez (2000); Gadat and Panloup (2014). More precisely, let t0 > t̃ (as defined in As-
sumption 2) and consider the following functions

A(t) =

∫ t

t0

h(τ)B(τ)dτ, B(t) = e
∫ t
t0
r(τ)dτ

∫ ∞
t

e
−

∫ s
t0
r(u)du

dτ

C(t) =
1

h(t)

∫ t

t0

h(τ)B(τ)dτ.

The expressions of A(t), B(t) and C(t) are simple to compute for all the expressions in table
1, as we show in §4. Note, furthermore, that these functions only depend on h and r (which
re-enforce the heuristic that p and q can be chosen in a very flexible way). We are ready to
introduce the energy functional used in this section:

E(t,m, v, θ) =A(t) (f(θ)− f(θ?))

+
1

2

∥∥∥[v + ε]1/4 (θ − θ?)
∥∥∥2
− B(t) 〈θ − θ?,m〉+

C(t)
2

∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

.
(3.2)

We now need the following assumptions in order to control the behaviour of this functional:

Assumption 8 We make the following two assumptions:

(a) limt→∞
∫ t
t0
e
−

∫ τ
t0
r(u)du

dτ < +∞

11
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(b) There exists t̃ > t0 such that for all t ≥ t̃

B2(t) ≤ C(t) and 3B(t) ≤ C(t)
(

2r(t)− q(t)

2
+
h′(t)

h(t)

)
.

Note that Assumption 8(a) is necessary for the function B(t) to be well-defined, and that
imposes an important constraint in the asymptotic behaviour of the function r(t). More
precisely, the limit limt→∞ t

1+εr(t) must be zero for every ε > 0, which implies that r(t)
has at most a pole of order 1 at infinity. Assumption 8(b) provides the asymptotic control
on the derivative of the energy functional (3.2), and should be compared with Assumption
2. Once again, note that it is independent of the function p, and almost independent of q.
We are now ready to state the main theorem of this section:

Theorem 7 We assume that Assumptions 1, 2, 7 and 8 are all satisfied. Then for all
t ≥ t̃, where t̃ is given in Assumption 2, we have

f(θ)− f(θ?) ≤
1

4A(t)

[
4E(t̃, m(t̃), v(t̃), θ(t̃)) +

∫ t

t̃
p(u)

〈
[∇f(θ)]2

[v + ε]1/2
, [θ − θ?]2

〉
du

]

where E(t,m, v, θ) is the Lyapunov functional (3.2). Furthermore, if either the system is
non-adaptive (that is, p(t) ≡ q(t) ≡ 0) or if limt→∞ p(t)/q(t) < ∞ and assumption 4 is
satisfied, then there exist two positive and finite constants K1 and K2 (which depend on f ,
θ0, v0 and ε) such that for all t ≥ t̃:

f(θ(t))− f(θ?) ≤
1

A(t)

[
E(t̃, m(t̃), v(t̃), θ(t̃)) +K1 +K2

∫ t

t̃
q(u)du

]
.

It follows that the ODE (2.1) converges to the minimum point with rate of convergence of
order at least:

max

{
1,

∫ t

t0

q(u)du

}
/A(t).

It is true that for convex functional, classical convergence results of first-order methods do
not require assumption 4 because most algorithms are linear in the gradient and convexity
inequalities allow for complete control of the derivative of the Lyapunov energy. This is also
the case in the above Theorem 7 for non-adaptive algorithms. But, this is not the case for
adaptive algorithms for which the updates are highly non-linear in the gradient (in both v
and θ). As a consequence, the upper bound of the energy’s derivative depends on the history
of the trajectories and assumption 4 is a sufficient condition to obtain the convergence. We
recall that if f is strongly convex then it is coercive and the assumption is automatically
satisfied. Obtaining convergence results without the compactness assumption 4 remains an
important open question.

From Theorem 7, we observe that the rate of convergence to the global minimum depends
on: the choices of h, r which in turn define the function A; the choices of p, q which, without
extra assumption on the loss function, degrade the rate of convergence. It follows from the

12
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first inequality of Theorem 7 that the rate of convergence of ODE (2.1) depends in an
essential way from the asymptotic behavior of the term:∥∥∥∥∥ ∇f(θ)

[v + ε]1/2

∥∥∥∥∥ . (3.3)

This has been independently remarked in Chen et al. (2019), where the authors back up this
intuition by numerical simulations. The authors also propose AdaFom, whose coefficients
are chosen such that the sum of the terms (3.3) is telescopic, so they can be controlled,
allowing convergence results. Note that our Theorem 7 recovers the expected (in the de-
terministic setting) rate of convergence of AdaFom (see Corollary 9). In general, the term
(3.3) can not be controlled in a similar fashion, and the second inequality of Theorem 7
controls the term (3.3) only in terms of the functions h, r and q.

4. Convergence Results: Application to First Order Algorithms

In this section, we specify the choice of functions h, p, q, r corresponding to different op-
timization methods and apply each convergence theorem to these algorithms. All proofs
are postponed to Appendix F. We start by a brief discussion on the assumptions which
appear in this section, and we then move on to present differential equations and conver-
gence results on Adam, AdaFom, Heavy Ball and Nesterov. Our results on Adam
are new and we give full details of the derivations. Some of our results on AdaFom and
Heavy Ball are, up to our knowledge, also new. Their proofs can be easily formalized by
repeating the arguments used for Adam, and we present a “sketch of proofs” in order to
provide a guideline on the necessary changes. Finally, we recover several known results of
non-adaptive algorithms, such as sharp estimates for the rate of convergence of Nesterov
(see Corollary 11).

4.1. On the Different Assumptions

In the convergence analysis, we recurrent make assumptions which were introduced in § 3.
We briefly recall their meaning and situations where they are satisfied:

Assumption 4 states that the trajectory θ(t) is bounded. We recall that there are some
very practical situations where this assumption is always satisfied; for example in the case
of coercive objective functions (see the discussion after the definition of assumption 4).

Assumption 6 gives a condition on the nature and the degeneracy of the critical points of
the objective function. It is used in the study of saddle points and local maximum points
of the loss functions, and it also appears in Lee et al. (2019). Note that this assumption is
satisfied for generic functions (e.g. Morse functions). See Remark 22 for further discussion.

Assumption 7 states that the loss function f is convex and admits a minimum point.

4.2. Adam

Adaptive Moment Estimation (Adam) proposed in Kingma and Ba (2014) is a famous
variant of RMSprop that incorporates a momentum equation. We recall that Adam has

13
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three hyper-parameters: the learning rate s and the exponential rate of decay for the
moment estimates β1, β2 ∈ (0, 1). The parameter ε is usually set to 10−8 to avoid dividing
by zero. This parameter is typically not tuned. The algorithm reads as follows: for any
constants β1, β2 ∈ (0, 1), ε > 0 and initial vectors θ0 ∈ Rd,m0 = v0 = 0 and for all k ≥ 1

gk = ∇f(θk−1)

mk = µkmk−1 + (1− µk)gk
vk = νkvk−1 + (1− νk)g2

k

θk = θk−1 − s mk/(
√
vk + ε).

(4.1)

where the two parameters for the moving average are given by{
µk = β1(1− βk−1

1 )/(1− βk1 )

νk = β2(1− βk−1
2 )/(1− βk2 ).

We rewrite the update for the parameters θ such that

θk = θk−1 − s mk/
√
vk + ε.

This change does not change the behavior of the algorithm. By modifying the order of
the updates and the value of the initial conditions, we can rewrite the above algorithm in
a more suitable way for our analysis. Indeed, let θ0 ∈ Rd be such that ∇θf(θ0) 6= 0 and
m0 = ∇θf(θ0), v0 = ∇θf(θ0)2, then the following recursive update rules are equivalent to
Adam for all k ≥ 0 

θk+1 = θk − s mk/
√
vk + ε

gk+1 = ∇f(θk+1)

mk+1 = µk+2mk + (1− µk+2)gk+1

vk+1 = νk+2vk + (1− νk+2)g2
k+1

(4.2)

As a consequence, the initial velocity is θ̇0 = − sign(∇f(θ0)).

4.2.1. Adam Differential Equation

Consider now the three parameter family of differential equations
θ̇ = −m/

√
v + ε

ṁ = g(t, λ, α1) (∇f(θ)−m)

v̇ = g(t, λ, α2)
(
∇f(θ)2 − v

) (4.3)

where the coefficients in ODE (2.1) are given by

h ≡ r ≡ g(t, λ, α1) =
1− e−λ/α1

λ
(
1− e−t/α1

) , p ≡ q ≡ g(t, λ, α2) =
1− e−λ/α2

λ
(
1− e−t/α2

) ,
where (λ, α1, α2) are positive real numbers. Note that the coefficients have a simple pole at
t = 0 and, therefore, satisfy assumption 3. Now, let us consider the associated discretization

14
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(2.2) with learning rate s and a sub-family of discrete models parametrized by (β1, β2) ∈
(0, 1)× (0, 1) which are given by

λ = s, βi = e−λ/αi , i = 1, 2. (4.4)

It easily follows that for i = 1, 2

sg((k + 1)s, λ, α1) = 1− β1
1− βk1

1− βk+1
1

= 1− µk+1,

which recovers Adam’s discrete system (4.2), apart from small difference in the evaluation
of µ. Therefore, Adam is an Euler discretization of system (4.3).

4.2.2. Adam without Rescaling Differential Equation

In the original formulation of the algorithm (as stated in (4.1)), the parameters µ and ν
depends on the iterations k to correct for the bias induced by the moving average. These
coefficients can also be taken constant µ = β1 and ν = β2, in which case we say that the
algorithm is Adam without rescaling. In this case, it is easy to verify that the differential
equation (4.3), with g(t, λ, α) = 1/α, is the continuous counter-part of the algorithm when
we consider the sub-family given by β1 = (1− s/α1) and β2 = (1− s/α2).

4.2.3. Convergence of Adam

The next corollary contains the main results about the convergence of Adam.

Corollary 8 (Convergence of Adam) Suppose that f is a C2 function, ε > 0 and

3 + β2 > 4β1, where βi = exp(−λ/αi), i = 1, 2.

Then the following convergence results for equation (4.3) hold true.

(0) Convergence of the gradient: Suppose that the loss function f is bounded from below
and its gradient ∇f is globally Lipschitz and bounded. Then ∇f(θ(t))→ 0 when t→∞.

(I) Topological convergence: Under assumption 4, f(θ(t)) → f?, m(t) → 0 and v(t) → 0
when t→∞, where f? is a critical value of f .

(II) Non-local minimum avoidance: Suppose that assumptions 4 and 6 are satisfied. Fix
t0 > 0 and denote by St0 the set of initial conditions (θ0,m0, v0) ∈ Rd×Rd×Rd≥0 such that
θ? ∈ ω(θ(t)), where θ? is not a local-minimum of f . Then St0 has Lebesgue measure zero.

(III) Rate of convergence: Under assumptions 4 and 7, there exists a constant K > 0 which
depends on f , θ0 and v0, so that:

lim
t→∞

f(θ(t))− f(θ?) < K
1− e−λ/α2

α1(1− e−λ/α1)
= K ln(1/β1)

1− β2

s(1− β1)
.

The rate of convergence to this neighbourhood, furthermore, is of order O(1/t).
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The proof of this result is given in Appendix F. Note that there is an apparent paradox
between point (I) and (III) of the Corollary: the dynamics are convergent by (I), but the
“fast” rate of convergence (of order O(1/t)) can only be guaranteed to a neighborhood.
This is no paradox, nevertheless, because Adam might converge very slowly once it attains
the neighborhood given by point (III). In particular, the discrete version of Adam may not
converge even in the deterministic case (see Proposition 12 below).

Point (III) has two other surprising consequences. First, it justifies the usual choice of
practitioners to take the hyper parameter β2 as close to 1 as possible while there is more
flexibility in the choice of β1 (even if it is convenient to take it close to 1) because:

lim
β2→1

1− β2 = 0, lim
β1→1

ln(1/β1)

1− β1
= 1.

Second, the size of the neighbourhood of fast convergence (of order O(1/t)) is controlled by
a constant K which only depends on f and the initial conditions. This indicates that the
success of Adam for certain loss functions (e.g. loss functions in deep learning) might be
associated to features on the “class” of loss functions considered.

4.2.4. A Variant of Adam: AdaFom

In Chen et al. (2019), the authors propose a variation of Adam algorithm which can be
guaranteed to have good convergence rate. We provide the differential equation associated to
this algorithm. We recover its expected deterministic convergence rate following Corollary
3.2 in Chen et al. (2019). The algorithm reads as follows: for any constants β1 ∈ (0, 1),
ε ≥ 0 and initial vectors θ0 ∈ Rd,m0 = v0 = 0 and for all k ≥ 1

gk = ∇f(θk−1)

mk = µkmk−1 + (1− µk)gk
vk = (1− 1/k)vk−1 + 1/k g2

k

θk = θk−1 − s mk/(
√
vk + ε).

(4.5)

where the parameter for the moving average are given by (just as in Adam):

µk = β1(1− βk−1
1 )/(1− βk1 ).

Consider now the two parameter family of differential equations

θ̇ = −m/
√
v + ε

ṁ =
1− e−λ/α

λ
(
1− e−t/α

) (∇f(θ)−m)

v̇ =
1

t

(
∇f(θ)2 − v

) (4.6)

where (λ, α) are positive real numbers. Just as in the case of Adam, consider the associated
discretization (2.2) with learning rate s and a sub-family of discrete models parametrized
by λ = s and β = e−λ/α. The reader may verify, following the same steps of the analysis
of Adam that the discretization of this sub-family recovers AdaFom algorithm (4.5). We
now turn to the convergence analysis :
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Corollary 9 (Convergence of AdaFom) Suppose that f is a C2 function, ε > 0 and
assumption 4 is satisfied. Then the following convergence results for (4.6) hold true

(I) Topological convergence: f(θ(t))→ f? and m(t)→ 0 when t→∞, where f? is a critical
value of f .

(III) Rate of convergence: Under assumption 7, f(θ(t))→ f(θ?) with the rate O(ln(t)/t).

Note that Theorems 4 and 6 can not be applied to ODE (4.6) in a direct way because
limt→0 p(t) = limt→0 q(t) = limt→0 1/t = 0.

4.3. Accelerated Methods

In this section, we study accelerated methods via our generalized dynamical system (2.1).
We recover known results from the literature.

4.3.1. Heavy Ball

Following Alvarez (2000), we consider the Heavy ball second order differential equation

ẍ+ γẋ+∇f(x) = 0, (4.7)

where γ > 0. By taking θ = x and m = −ẋ (and v ≡ 1), we obtain system (2.1) with

h(t) ≡ 1, r(t) ≡ γ, and p(t) ≡ q(t) ≡ 0.

Note that Equation (2.2) simplifies to{
θk+1 = θk − smk

mk+1 = (1− sγ)mk + s∇f(θk+1)
(4.8)

which corresponds to the classical Heavy ball methods with damping coefficient β = 1−sγ,
momentum variable nk = smk and learning rate α = s2. Implicit discretization has also
been considered in Alvarez (2000). From our analysis on the continuous system (4.7), we
recover results given in Lee et al. (2019) and Ghadimi et al. (2015) for the discrete update
rules (4.8).

Corollary 10 (Convergence of Heavy Ball) Suppose that f is a C2 function. Then
the following convergence results for equation (4.7) hold true

(I) Topological convergence: Under assumption 4, f(θ(t))→ f? and m(t)→ 0 when t→∞,
where f? is a critical value of f .

(II) Non-local minimum avoidance: Suppose that assumptions 4 and 6 are satisfied. Fix
t0 > 0 and denote by St0 the set of initial conditions (θ0,m0) ∈ Rd × Rd such that θ? ∈
ω(θ(t)), where θ? is not a local-minimum of f . Then St0 has Lebesgue measure is zero.

(III) Rate of convergence: Under assumption 7, f(θ(t))→ f(θ?) with the rate O(1/t).
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4.3.2. Nesterov

Following Su et al. (2016), we consider the Nesterov’s second order differential equation,
parametrized by the constant r > 0,

ẍ+
r

t
ẋ+∇f(x) = 0. (4.9)

Similarly as in the Heavy Ball case, we define θ = x and m = −ẋ and write the above
equation as a specialization of system (2.1) given by:{

θ̇ = −m
ṁ = ∇f(θ)− r/t ·m (4.10)

where r > 0. In its standard formulation r = 3. In Su et al. (2016), the authors studied a
slightly different forward Euler scheme and proved that the difference between the numerical
scheme and the Nesterov algorithm goes to zero in the limit s → 0. So ODE (4.10) can
be considered as the continuous counterpart of Nesterov discrete algorithm. We are ready
enunciate the main convergence result for Nesterov’s differential equation, which have been
previously proved in Su et al. (2016); Attouch et al. (2019); Attouch et al. (2018).

Corollary 11 (Convergence Rate of Nesterov) Suppose that f is a C2 function and
that assumption 7 is satisfied. Then the following convergence result for equation (4.10)
hold true: f(θ)→ f(θ?) when t→∞ with rate of convergence:

O(1/t2), if r ≥ 3

O(1/t2r/3), if r ≤ 3.

5. Considerations about the Discrete Algorithm (2.2)

In this section, we draw insights on the discrete algorithm (2.2) from our analysis on the
continuous dynamical system.

5.1. The Discrete Dynamics does not Necessarily Converge.

One strong limitation of Adam is the existence of discrete limit cycles in the sense that the
algorithm produces oscillations that never damp out. If the discrete dynamics reaches such
an equilibrium, the difference f(θk)− f(θ?) can not converge arbitrarily close to zero with
an increasing number of steps. However, it reaches a neighborhood of the critical point
whose radius is determined by the learning rate s. Decaying the learning rate is, therefore,
necessary to obtain convergence of the dynamics Numerically, we found that Adam with
β1 > 0 suffers from the same phenomena but the limit cycles are more difficult to establish.
We believe that the existence of such cycles depends on the local curvature of the function
f near the optimum.

Proposition 12 (Existence of a discrete limit cycle for Adam) Let β1 = 0 and f(θ) =
θ2/2. Then there exists a discrete limit cycle for Equation (4.2).
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(a) Discrete limit cycles for Adam (b) Convergence

Figure 1: Illustration of discrete limit cycles for the Adam’s algorithm with ε = 10−8, β2 =
0.5, s = 10−2. a) Limit cycle of period two for Adam. The algorithm oscillates between two points
(0.005, 0.005) and (−0.005,−0.005). b) Plot of the logarithm of f versus the number of iterations.
The loss plateau after 50 iterations.

Proof Let us assume that there exists a k such that θk = s/2 and that vk = (s/2)2, where
s is the learning rate. It easily follows from the update rules that

θk+1 = θk − s
∇f(θk)√

vk
=
s

2
− s = −θk

vk+1 = (s/2)2

Therefore θk+2 = − s
2 + s = θk and the system has entered a discrete equilibrium.

We illustrate this behavior in Figure 1 on the strongly convex toy function f(x, y) = x2 +y2.

It is important to note that the value of the gap between f(θk) and f(θ?) depends on
the learning rate. Choosing a smaller learning rate reduces the gap, but doesn’t remove it.

5.2. The Hyper-Parameters β1, β2 in Adam Should be Tuned in Terms of the
Learning Rate

The second observation is related to the hyper-parameters of the optimizers and give im-
portant guidance on how to tune them. As observed in Section 4.2, the parameters β1 and
β2 are chosen as functions of the learning rate s and parameters α1 and α2. It is often the
case in practice (in particular in stochastic optimization) to decay the learning rate during
the training process. By doing so, the discrete dynamics is completely modified unless the
β’s are adjusted to keep the parameters αi constant. Therefore, once a particular choice of
hyper-parameters seems promising, a decay in the learning rate should be accompanied by
changing the hyper-parameters βi according to the formula (4.4), which we recall here

βi = e−s/αi , i = 1, 2.

Indeed, by doing so the underlying dynamics is preserved. We illustrate this in plot b),
Figure 2, where we compute the logarithm of the error between different trajectories
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(a) Trajectories (b) Comparison of L2 norms

Figure 2: Fixing β2 and changing the learning rate s lead to different dynamics. a) Trajectories
of Adam (1) & (2) when only the learning rate is changed. b) Comparison of the error between
trajectories (1) & (2) and (1) & (3). As expected the discrepancies between (1) & (3) is very small.

1. The reference dynamics: β2 = 0.99 and s = 0.001. According to formula (4.4),
α2 = −0.001/ log(0.99) ≈ 0.0995

2. Second dynamics: β2 = 0.99 and s = 0.01

3. Third dynamics: same learning rate as the second dynamics s = 0.01 but we adjust
the hyper-parameter: β2 = exp(−0.01/0.0995) = 0.90438.

5.3. Convergence Properties of Adam Depend on The Class of Loss Functions

The convergence analysis in the convex case, given in Theorem 7, seem to indicate that
Adam is a rather slow algorithm because quick convergence (in the order o(1/t)) is only
guaranteed in a neighborhood of the global minimum. Under a closer look, however, we
note that the size of the neighborhood might be very small depending on the class of loss
functions because of its impact on the term (3.3) and the constant K. In particular, we
believe that there are situations where Adam should perform consistently better than other
algorithms, provided that the hyper-parameters are well-chosen. We believe this is the
case for flat loss functions as illustrated in Figure 3. We intend to deepen this remark in
forthcoming works.

6. Guidelines for Future Adaptive Algorithms

Existence and uniqueness of solutions for ODE (2.1) holds for almost arbitrary functions
h(t), r(t), p(t) and q(t). Our convergence analysis, nevertheless, imposes important restric-
tion on the choice of these functions (see Assumptions 5, 6, 8), which we now discuss. From
Theorem 7, the rate of convergence to the global minimum is at least given by the decay of
the function

max

{
1,

∫ t

t0

q(u)du

}
/A(t),

where A depends only on h and r. It is natural to seek for functions h(t), r(t), p(t) and q(t)
such that this upper-bound decays faster to zero, while satisfying the conditions 2 and 8.
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(a) f(x, y) = (x+ y)4 + (x/2− y/2)4 (b) Rate of convergence

Figure 3: Comparison between gradient descent and Adam. Gradient Descent converges faster
initially when the gradients are large but Adam outperforms Gradient descent after entering the
flat region. Both trajectories start from the point (0.5,−2.5).

(a) f(x, y) = (x+ y)4 + (x/2− y/2)4 (b) Rate of convergence

Figure 4: Comparison between gradient descent and Adam. Gradient Descent outperforms Adam
in this example because β1, β2 are large and Adam keeps memory of the past large gradients. Both
trajectories start from the point (0.5,−2.5).

Note that in Theorem 7, we obtained tighter estimates on the rate of convergence depending
on the history of the gradient and the variables v and θ. This suggests that the efficiency of
the algorithm does not only depend on the choice of the functions h(t), r(t), p(t) and q(t)
but also on the path the dynamics is taking and therefore on properties of the loss.

On the flexibility of the coefficients h(t) and r(t). We start by recalling that Assumption 8(a)
implies a strong constraint on the function r(t). Indeed, it is necessary that limt→∞ r(t) ·
t1+ε = 0 for all ε > 0. This is a strong restriction, which have consequences to the choice
of h(t). In order to illustrate this, let us consider two examples r1(t) = r1 and r2(t) = r2/t
with r2 > 1, which are the natural allowed examples. With these choices of functions, we
seek for h such that A has at least linear growth. In the notation of §§ 3.5, we have that:

B1(t) = 1/r1, B2(t) = t/(r2 − 1)

This imposes strong restrictions on h(t), indeed:

lim
t→∞

h1(t) > 0, lim
t→∞

t · h2(t) > 0.

21



Belotto da Silva and Gazeau

It follows that the natural reasonable choices are one of the following three:

1. r(t) = r, h(t) = h (c.f. Heavy Ball, Adam and AdaFom). Under these conditions,
one can expect a convergence rate of order at least O(1/t) and convergence guarantees
(including avoidance of saddle points) even in the non-convex setting;

2. r(t) = r/t, h(t) = h (c.f Nesterov). Under these conditions, one can expect a fast
convergence rate of order at least O(1/t2), but we obtain fewer guarantees in the
non-convex setting because of the convergence to zero of the function r;

3. r(t) = r/t and h(t) = h/t. Under these conditions, one can expect a convergence rate
of order at least O(1/t), but we obtain fewer guarantees in the non-convex setting;

Note that Assumptions 2 and 8 impose further relations on the hyper-parameters r and h.

On the flexibility of the coefficients p(t) and q(t). In sharp contrast with the previous
analysis, the coefficients p(t) and q(t) require fewer restrictions. In particular, note that
assumptions 2, 5 and 8 are almost independent on these coefficients, besides mild constraints
on q(t). Our analysis leads to an interesting dilemma, nevertheless, which deserves further
investigation. At the one hand, Theorem 6 guarantess avoidance of saddle points under
the necessary condition that limt→∞ q(t) > 0 (c.f. Adam). On the other hand, in order
to obtain faster convergence, Theorem 7 indicates that the function q(t) should have a fast
decay to zero to control the growth of

∫ t
t0
q(u)du. Indeed:

(i) if limt→∞ q(t) > 0 (c.f Adam), then the denominator
∫ t
t0
q(u)du has linear growth

which degrades the rate of convergence of the algorithm.

(ii) if limt→∞ t · q(t) > 0 (c.f. AdaFom) then the denominator has logarithmic growth.

(iii) if limt→∞ t
1+ε·q(t) = 0 for some ε > 0, then there is no loss in the expected convergence

rate.

It is, of course, interesting that an optimization algorithm avoids saddle points and converges
as fast as possible. This is an intriguing point, which we feel deserves further empirical
investigation.

Final remarks. From the analysis outlined above, we feel that the combination of choices
1.ii (AdaFom), 1.iii and 2.ii are promising, at least from the perspective of our current
analysis, and deserve further empirical investigation. Moreover, we hope to explore further
different choices of functions p(t) and q(t) as well as the design of hybrid algorithms, which
are also supported by this analysis.

7. Conclusion and Final Discussion

The main objective of this work is to provide a theoretical framework to study adaptive al-
gorithms. The proposed continuous dynamical system (2.1) is flexible enough to encompass
commonly used adaptive algorithms (as we show in Section 4), but stays specific enough
to allow simple proofs and guidelines. Our work shows that adaptive dynamics converge
to a critical locus of the loss function but possibly at a slower rate than non-adaptive
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algorithms. Due to the nature of the adaptivity, the convergence rate is not just a non-
increasing function of time but also depends on the gradient history. The performance of
adaptive algorithms is linked to the trajectory taken by the dynamics and properties of the
loss function. We also analyze how different choices of coefficients h, r, p and q impact on
the convergence of the dynamics and we suggested several possible algorithms to be tested
(see §§ 6). It supports our interest in linking specific choices of adaptive algorithms (more
precisely, specific choices of the coefficients h, r, p and q) with properties from the loss
function. We intend to pursue this direction in future works.

The deterministic convergence analysis leads to natural conjectures on the convergence
in the discrete and stochastic setting. In particular, we believe that the Lyapunov functional
(3.2) can be adapted to the stochastic discrete framework (Gadat et al., 2018). We note
that, nevertheless, a precise correspondence between results valid for a continuous ODE
and the stochastic discrete counterparts is far from being obvious. Indeed, recall that
Adam and RMSprop are not always converging in the stochastic setting, even for a convex
loss function (S. Reddi and Kumar, 2018). We expect, therefore, new restrictions on the
coefficients h(t), r(t), p(t) and q(t), as well as on the loss function and the learning rate.
We believe that those conditions will be different compared to SGD.
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Appendix A. Existence and Uniqueness of Solutions

A.1. The Cauchy Problem for t0 > 0 under Assumption 2.

We compute elementary bounds for the solutions of the ODE (2.1), under the additional
assumption 2 with t̃ = 0 and that f is bounded from below (or under Assumption 4).

Indeed, let t0 > 0 and an initial condition x(t0) = x0 be fixed. Because of Assumption 1,
we are in conditions of Picard Theorem, so there exists a solution x(t) with initial condition
x(t0) = x0 and interval of definition [t0, t∞[. The crucial point with this assumption 2 with
t̃ = 0, is that we can apply Lemma 2 in order to find a constant K(x0, t0) which depends
on the initial condition, such that:∥∥∥∥∥ m(t)√

v(t) + ε

∥∥∥∥∥ ≤ K(x0, t0), ∀t ∈ [t0, t∞[, (A.1)

which implies that θ̇(t) is uniformly bounded. We conclude that:

‖θ(t)‖ ≤ ‖θ0‖+K(x0, t0)(t− t0), ∀t ∈ [t0, t∞[. (A.2)

It follows that: either t∞ = ∞, in which case we are done, or t∞ < ∞ and θ(t) satisfies
assumption 4. In order to conclude, it is enough to treat this last case:
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Lemma 13 Let t0 > 0 and x0 = (θ0,m0, v0) be fixed. Under assumption 1, suppose that
the gradient ∇f(θ(t)) is bounded, that is, Lg = sup{‖∇f(θ(t))‖ ; t ≥ t0} is well-defined
(this is verified whenever assumption 4 is satisfied). Then there exists an unique solution
x(t) = (θ(t),m(t), v(t)) of (2.1) with initial condition x(t0) = x0, and which is defined for
all t in [t0,∞). Furthermore, we have v(t) ≥ 0 for all t ∈ [t0,∞) and:

‖m(t)‖ ≤ ‖m(t0)‖+ Lgd

∫ t

t0

h(s)ds, ‖v(t)‖ ≤ ‖v(t0)‖+ L2
gd

∫ t

t0

p(s)ds (A.3)

where we recall that d stands for the dimension of the space. If we suppose that r(t) 6≡ 0
and q(t) 6≡ 0, furthermore, then:

‖m(t)‖ ≤ ‖m(t0)‖+ Lgd sup
s∈[t0,t]

{
h(s)

r(s)

}
, ‖v(t)‖ ≤ ‖v(t0)‖+ L2

gd sup
s∈[t0,t]

{
p(s)

q(s)

}
Proof By assumption 1 and classical ODE’s, there exists a solution x(t) = (θ(t),m(t), v(t))
of system (2.1) with maximal interval of definition [t0, T ) and initial conditions x(t0) = x0 =
(θ0,m0, v0). Now, consider the functions:

a(t) = exp

(∫ t

t0

r(s)ds

)
, b(t) = exp

(∫ t

t0

q(s)ds

)
which are increasing functions bigger than 1 (for all t ≥ t0). We note that:

d

dt
(m · a(t)) = a(t)h(t)∇f(θ),

d

dt
(v · b(t)) = b(t)p(t)∇f(θ)2.

Next, by hypothesis we can assume that |∇f(θ(t))| ≤ Lg for some positive real number Lg.
We easily get inequalities (A.3) and in turn conclude that T = ∞. Finally, if r(t) 6≡ 0, we
get by direct integration:

|mi(t)| ≤ |mi(t0)|+ Lg
1

a(t)

∫ t

t0

r(s)a(s)
h(s)

r(s)
ds

= |mi(t0)|+ Lg sup
s∈[t0,t]

{
h(s)

r(s)

}
a(t)− a(t0)

a(t)
≤ L sup

s∈[t0,t]

{
h(s)

r(s)

}
A similar computation holds whenever q(t) 6≡ 0, which concludes the Lemma.

In order to prove Theorem 3 without assumption 2 with t̃ = 0, it is necessary to obtain
the estimate (A.1). This is possible whenever p(t) 6≡ 0, as we will show in Lemma 15 below.

A.2. A Priori Estimates and Global Solution

We state the following variant of the Gronwall’s Lemma:

Lemma 14 Let ϕ : [t0, t1] → R>0 be absolutely continuous strictly non-negative function
and suppose ϕ obeys the differential inequality ϕ′(t) ≤ γ(t)ϕ(t) + β(t)ϕα(t) for 0 ≤ α < 1
and for almost every t ∈ [t0, t1], where β, γ are continuous. Then for all t ∈ [t0, t1]

ϕ(t) ≤
[
e

(1−α)
∫ t
t0
γ(s)ds

ϕ(t0)1−α +

∫ t

t0

(1− α)e(1−α)
∫ t
s γ(u)duβ(s)ds

]1/(1−α)

.
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Proof It is enough to apply Gronwall’s Lemma to the following inequality:

[ϕ1−α]′ = (1− α)ϕ−αϕ′ ≤ (1− α)ϕ−α(t) (γ(t)ϕ(t) + β(t)ϕα(t))

= (1− α)γ(t)ϕ1−α(t) + (1− α)β(t).

We now turn to more precise estimates of the functions x(t) = (θ(t),m(t), v(t)) in order
to prove existence and uniqueness of the solution of Equation (2.1). We start by controlling
the derivative of θ:

Lemma 15 (Estimate of θ̇) Let 0 < t0 < T <∞ be fixed and suppose that p(t) 6≡ 0. For
any s, t ∈ [t0, T ] such that s ≤ t, we have that:∥∥∥∥∥ m(t)√

v(t) + ε

∥∥∥∥∥
2

≤ e
∫ t
s q(u)−2r(u)du

∥∥∥∥∥ m(s)√
v(s) + ε

∥∥∥∥∥
2

+ d

∫ t

s
e
∫ t
u q(a)−2r(a)dah

2(u)

p(u)
du

Proof It follows from direct computation that:

d

dt

1

2

∥∥∥∥ m√
v + ε

∥∥∥∥2

= h(t)

〈
m√
v + ε

,
∇f (θ)√
v + ε

〉
− r(t)

∥∥∥∥ m√
v + ε

∥∥∥∥2

− 1

2
p(t)

∥∥∥∥m∇f(θ)

v + ε

∥∥∥∥2

+
q

2

∥∥∥∥m√vv + ε

∥∥∥∥2

Now, note that by completing the square

h(t)

〈
m√
v + ε

,
∇f (θ)√
v + ε

〉
− p(t)

2

∥∥∥∥m∇f(θ)

v + ε

∥∥∥∥2

= h(t)

d∑
i=1

mi∂if (θ)

vi + ε
− p(t)

2

d∑
i=1

(
mi∂if(θ)

vi + ε

)2

= −p(t)
2

∥∥∥∥m∇f(θ)

v + ε
− h(t)

p(t)

∥∥∥∥2

+
h2(t)

2p(t)
d

where d is the dimension of the state space. Hence,

d

dt

1

2

∥∥∥∥ m√
v + ε

∥∥∥∥2

= −p(t)
2

∥∥∥∥m∇f(θ)

v + ε
− h(t)

p(t)

∥∥∥∥2

+
h2(t)

2p(t)
d− r(t)

∥∥∥∥ m√
v + ε

∥∥∥∥2

+
q(t)

2

∥∥∥∥m√vv + ε

∥∥∥∥2

≤ h2(t)

2p(t)
d+

(
q(t)

2
− r(t)

)∥∥∥∥ m√
v + ε

∥∥∥∥2

and we easily conclude from Gronwall’s Lemma.

The above Lemma allow us to control θ(t). The next Lemma replaces Assumption 4 in
the existence proof:
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Lemma 16 (Estimate of θ) Let 0 < t0 < T <∞ be fixed. For any s, t ∈ [t0, T ] such that
s ≤ t:

‖θ(t)‖2 ≤
[
‖θ(s)‖+

∫ t

s

∥∥∥∥ m√
v + ε

∥∥∥∥ du]2

.

and, in particular, if p(t) 6≡ 0:

‖θ(t)‖ ≤‖θ(s)‖+

∥∥∥∥∥ m(s)√
v(s) + ε

∥∥∥∥∥
∫ t

s
e

1
2

∫ u
s q(a)−2r(a)dadu

+
√
d

∫ t

s

(∫ u

s
e
∫ u
a q(b)−2r(b)dbh

2(a)

p(a)
da

)1/2

du

Proof From the Cauchy-Schwarz inequality, we obtain

d

dt

1

2
‖θ(t)‖2 = −

〈
θ,

m√
v + ε

〉
≤ ‖θ‖

∥∥∥∥ m√
v + ε

∥∥∥∥ .
We apply Lemma 14 to ϕ(t) = 1

2 ‖θ(t)‖
2, β(t) =

√
2
∥∥∥ m√

v+ε

∥∥∥ and α = 1/2 in order to get

the first inequality. The second inequality follows from the first together with the estimate
of Lemma 15.

Lemma 17 (Estimate of m and v) Let 0 < t0 < T < ∞ be fixed. For any s, t ∈ [t0, T ]
such that s ≤ t:

‖m(t)‖2 ≤
[
e
−

∫ t
t0
r(s)ds ‖m(t0)‖+

∫ t

t0

e−
∫ t
s r(u)duh(s) ‖∇f(θ)‖ ds

]2

∥∥∥√v(t)
∥∥∥2
≤ e−

∫ t
t0
q(s)ds

∥∥∥v1/2(t0)
∥∥∥2

+

∫ t

t0

e−
∫ t
s q(u)dup(s) ‖∇f(θ)‖2 ds,

‖v(t)‖ ≥ e−
∫ t
t0
q(s)ds ‖v0‖ .

Proof From Cauchy Schwarz,

d

dt

1

2
‖m(t)‖2 = h(t) 〈m,∇f (θ)〉 − r(t) ‖m‖2 ≤ h(t) ‖m‖ ‖∇f (θ)‖ − r(t) ‖m‖2 ,

and we just need to apply Lemma 14 in order to conclude the first inequality. Next, we
apply Gronwall’s lemma to

d

dt

∥∥∥v1/2(t)
∥∥∥2

=

〈
p(t) [∇f(θ)]2 − q(t)v

v1/2
, v1/2

〉
= p(t) ‖∇f(θ)‖2 − q(t)

∥∥∥v1/2
∥∥∥2

in order to get the second inequality. Finally, it is enough to apply Gronwall’s lemma to
v̇ = p(t)[∇f(θ)]2 − q(t)v ≥ −q(t)v, in order to obtain the third inequality.
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A.3. Existence and Uniqueness: Proof of Theorem 3 when t0 > 0

Indeed, let t0 > 0 and an initial condition x(t0) = x0 be fixed. Because of Assumption 8,
we are in conditions of Picard Theorem, so there exists a solution x(t) with initial condition
x(t0) = x0 and interval of definition [t0, t∞[. If t∞ = ∞, we are done, so suppose by
contradiction that t∞ < ∞. Then: if p(t) 6≡ 0, by Lemma 16 we conclude that θ(t) is
bounded; otherwise, assumption 2 with t̃ = 0 is satisfied and f is bounded by below, and
by inequality (A.2) we conclude that θ(t) is bounded. In either case we are in conditions to
apply Lemma 13 which implies that t∞ =∞, a contradiction.

A.4. Existence and Uniqueness for t0 = 0

In the previous section, we proved that for all T > 0, there exists a unique solution to
the system (2.1) in the space C1([t0, T ];Rn) for any strictly positive time t0. The purpose
of this section is to extend this result to solutions starting at t0 = 0. Classical results on
differential equations do not apply directly here because the functions h, r, k, q are allowed
to have a pole of order one at t = 0 (see Assumption 3).

We follow a standard argument in dynamical systems: we will approximate the solution
of ODE (2.1) by a sequence of functions with good convergence properties. In this section,
we limit ourselves to describing which is the sequence of functions, and we leave the “good
convergence properties” for later on. Indeed, we consider the orbits xδ, for δ > 0, which are
solutions to the equation

θ̇δ(t) = −mδ(t)/
√
vδ(t) + ε

ṁδ(t) = hδ(t)∇f(θδ(t))− rδ(t)mδ(t)

v̇δ(t) = pδ(t) [∇f(θδ(t)]
2 − qδ(t)vδ(t),

(A.4)

where

hδ(t) = h(max (δ, t))

and similar formulas hold for rδ, pδ and qδ. Those functions are continuous and locally
Liptchitz in time, and defined for every t > 0 by the previous section. Note that for every
T > 0, xδ ∈ C([0, T ];Rn), and is C1 everywhere outside t = δ.

In order to show that this family of functions converges, we use Arzela-Ascoli Theorem.
The next section is dedicated to proving that the hypotheses of Arzela-Ascoli are verified.

A.4.1. Equicontinuity and Uniform Boundedness

We prove in this section, that the family of functions xδ is equicontinuous and uniformly
bounded, where xδ is the solution to (A.4). This allows us to apply Arzela-Ascoli at the
end of this subsection in order to get the candidate for a solution of ODE (2.1).

The key result is the following proposition whose proof is left to subsection A.4.3

Proposition 18 If assumptions 3 is satisfied, then there exists a positive constant C2(T ),
independent of δ, such that for all t, s ∈ [0, T ]

‖xδ(t)− xδ(s)‖2 ≤ C2(T )(t− s)2.
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As a consequence of the previous Proposition, we can control the norm of the solution
xδ; this is done in terms of a special norm (instead of the usual one). More precisely, let us
recall the notion of fractional Sobolev space. For a real number 0 < δ < 1 and p ≥ 1, we
denote by Wα,p([0, T ]) the fractional Sobolev space of functions u ∈ Lp(0, T ) satisfying∫ T

0

∫ T

0

‖u(t)− u(s)‖p

|t− s|δp+1
dsdt < +∞

The space Cγ([t0, T ];R3d) is the space of Hölder continuous function of order γ > 0 on
[t0, T ] with values in R3d. It follows that

Lemma 19 If assumptions 3 is satisfied, there exists a positive constant C3(T ), indepen-
dent of δ, such that

‖xδ‖2W γ,2 ≤ C3(T )

for any γ < 1.

Proof The proof is a direct consequence of Lemma 18. Indeed∫ T

0

∫ T

0

‖xδ(t)− xδ(s)‖2

|t− s|2γ+1 dsdt ≤ C2(T )

∫ T

0

∫ T

0

(t− s)2

|t− s|2γ+1dsdt < +∞

where the last inequality holds if and only if γ < 1.

We now use the Sobolev embedding W γ,2([0, T ]) ↪−→ Cα([0, T ]) for γ − α > 1/2 and
γ < 1, which implies α < 1/2. It follows that the family xδ ∈ Cα([0, T ],Rn). From Lemma
19, we conclude that the family is uniformly bounded. Finally, the family is equi-continuous
because of the definition of the norm in Cα and its uniform bound in δ.

Applying Arzela Ascoli Theorem, we deduce that there exists a converging sub-sequence
(still denoted xδ) in C([0, T ],Rn). We denote by x̂ its limit and we prove in the next section
that x̂ satisfies Equation (2.1).

A.4.2. Identification of the Limit and Uniqueness of the Solution

Existence. The convergence of the initial conditions are a direct consequence of the uniform
convergence (which implies point-wise convergence at every point). Now fix T > 0; it is clear
that the ODE (A.4) converges uniformely to ODE (2.1) when δ → 0 in a neighbourhood
of t = T (indeed, for δ << T , the two differential equations are equal). Since xδ converges
uniformly to x̂, we conclude that x̂ is a solution of of ODE (2.1) in a neighbourhood of
t = T . Since T > 0 was arbitrary, we conclude the result.

Uniqueness. We proceed by contradiction. Assume there exist two solutions x = (θ,m, v)
and y = (ψ, n,w) to the system (2.1). An easy computation shows that for all 0 ≤ t ≤ T
(because v and w are lower bounded, see Lemma 17)

‖θ(t)− ψ(t)‖ ≤
∫ t

0

∥∥∥∥ m√
v + ε

− n√
w + ε

∥∥∥∥ ds ≤ C ∫ t

0
‖m− n‖+ ‖n‖ ‖w − v‖ ds

28



An Ode to Model First-Order Adaptive Algorithms

By continuity of the solution of equation (2.1) on [0, T ], we know that there exists a constant
C̃ such that for all s ≤ t, ‖n(s)‖ ≤ C̃ and therefore

‖θ(t)− ψ(t)‖ ≤ C
∫ t

0
‖m− n‖+ C̃ ‖y − v‖ ds. (A.5)

Let us consider aη(t) = exp
(∫ t

η r(s)ds
)

. Computing the time derivative of m · aη(t) and

integrating, we easily conclude that

m(t) =
1

aη(t)

(
m(η) +

∫ t

η
aη(s)h(s)∇f(θ)ds

)
It follows from Assumptions 3 and inequality (A.5), that for all η ≤ t ≤ T ,

‖m(t)− n(t)‖ =

∥∥∥∥ 1

aη(t)
(m(η)− n(η)) +

1

aη(t)

∫ t

η
aη(s)h(s) (∇f(θ)−∇f(ψ)) ds

∥∥∥∥
≤ ‖m(η)− n(η)‖+ C1

∫ t

η
h(s)

∫ s

0
‖m− n‖+ C̃ ‖v − w‖ duds

≤ ‖m(η)− n(η)‖+ C1

(
sup

0≤u≤t
‖m− n‖+ C̃ sup

0≤u≤t
‖v − w‖

)∫ t

η
s · h(s)ds

By continuity of the process m and n, the fact that m0 = n0 and the continuity of s 7→ sh(s)
on [0, t], we obtain by taking the limit when η goes to zero that, apart from increasing C1,

‖m(t)− n(t)‖ ≤ C1t

(
sup

0≤u≤t
‖m− n‖+ C̃ sup

0≤u≤t
‖v − w‖

)
.

Similarly we introduce bη(t) = exp
(∫ t

η q(s)ds
)

. Then, we prove that there is a constant C2

such that

‖v(t)− w(t)‖ ≤ C2t

(
sup

0≤u≤t
‖m− n‖+ C̃ sup

0≤u≤t
‖v − w‖

)
.

Hence, by combining all bounds, there exists two constants, still denoted C1 and C2, such
that

‖m(t)− n(t)‖+ ‖v(t)− w(t)‖+ ‖θ(t)− ψ(t)‖ ≤ C1t sup
0<u≤t

‖m− n‖+ C2t sup
0<u≤t

‖v − w‖ .

Since there exists a t > 0 such that C1t and C2t are strictly smaller than 1, this inequality
yields a contradiction. We conclude that the solution must be unique.

A.4.3. Proof of Proposition 18

We start by a preliminary estimate, which extends Lemma 15 to an uniform bound in terms
of δ:
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Lemma 20 Suppose that p(t) 6≡ 0. There exists two constants K1 and K2 such that for all
t ∈ [0, T ] and all δ > 0 sufficiently small∥∥∥∥∥ mδ(t)√

vδ(t) + ε

∥∥∥∥∥
2

≤ K1

∥∥∥∥ m0√
v0 + ε

∥∥∥∥2

+K2.

Proof From Lemma 15 and assumption 3 (which implies that δhδ(δ), δqδ(δ), δrδ(δ) and
hδ(δ)
pδ(δ)

are bounded for δ < 1), there exits a constants K1 ≥ 0 and K2 ≥ 0 such that for every
δ ≤ 1 and t < δ, we have:∥∥∥∥∥ mδ(t)√

vδ(t) + ε

∥∥∥∥∥
2

≤ e
∫ δ
0 qδ(δ)−2rδ(δ)du

∥∥∥∥ m0√
v0 + ε

∥∥∥∥2

+ d

∫ δ

0
e
∫ δ
u qδ(δ)−2rδ(δ)da

h2
δ(δ)

pδ(δ)
du

= eδ(qδ(δ)−2rδ(δ))

∥∥∥∥ m0√
v0 + ε

∥∥∥∥2

+ d
eδ(qδ(δ)−2rδ(δ)) − 1

qδ(δ)− 2rδ(δ)

h2
δ(δ)

pδ(δ)
(A.6)

≤ K1

∥∥∥∥ m0√
v0 + ε

∥∥∥∥2

+K2.

Moreover from Lemma 15 and assumption 3 (which implies that qδ(u) − 2rδ(u) < 0,
hδ(t)/pδ(u) and hδ(t)/rδ(u) are bounded for δ and u small), there exits a constants K̃1 ≥ 0
and K̃2 ≥ 0 such that for every δ > 0 small enough and t ≥ δ, we have:∥∥∥∥∥ mδ(t)√

vδ(t) + ε

∥∥∥∥∥
2

≤ e
∫ t
δ qδ(u)−2rδ(u)du

∥∥∥∥∥ mδ(δ)√
vδ(δ) + ε

∥∥∥∥∥
2

+ d

∫ t

δ
e
∫ t
u qδ(a)−2rδ(a)dah

2
δ(u)

pδ(u)
du

≤

∥∥∥∥∥ mδ(δ)√
vδ(δ) + ε

∥∥∥∥∥
2

+ d sup
δ<u<t

hδ(u)

pδ(u)
sup
δ<u<t

∣∣∣∣ hδ(u)

qδ(u)− 2rδ(u)

∣∣∣∣ (A.7)

≤ K̃1

∥∥∥∥∥ mδ(δ)√
vδ(δ) + ε

∥∥∥∥∥
2

+ K̃2,

We conclude combining the two inequalities.

We are now ready to prove Proposition 18. The proof uses the integral formulation and
weighted space. First, we define the following norm for all 0 < t ≤ T

N(t, δ) = sup
0<u≤t

‖hδ(u)∇f(θδ(u))− rδ(u)mδ(u)‖

+ sup
0<u≤t

∥∥∥pδ(u) [∇f(θδ(u))]2 − qδ(u)vδ(u)
∥∥∥+ sup

0<u≤t

∥∥∥∥∥ mδ(u)√
vδ(u) + ε

∥∥∥∥∥ .
We claim that there exists a constant C(T ) (independent of δ) such that N(t, δ) ≤ C(T )
for all t ∈ (0, T ]. Note that Proposition 18 immediately follows from the claim and the
following inequality

‖xδ(t)− xδ(s)‖2 ≤
(∫ t

s
‖ẋδ(u)‖du

)2

≤ N(T, δ)2(t− s)2.
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We now turn to the proof of the claim.
The case t ≤ δ. For all t ≤ δ, the function rδ is constant and the equation for mδ, given

by system (A.4), has the equivalent Duhamel formulation given by

mδ(t) = e−trδ(δ)m0 + e−trδ(δ)
∫ t

0
eurδ(δ)hδ(δ)∇f(θδ(u))du (A.8)

A similar equation holds for vδ. From Lemma 20, we know that
∥∥∥mδ(t)/

√
vδ(t) + ε

∥∥∥2
is

uniformly bounded with respect to δ. Moreover, ‖θδ(t)‖ is uniformly bounded; indeed

‖θδ(t)− θ0‖ ≤
∫ t

0

∥∥∥∥∥ mδ(u)√
vδ(u) + ε

∥∥∥∥∥ du ≤ t
(
K1

∥∥∥∥ m0√
v0 + ε

∥∥∥∥+K2

)
. (A.9)

Next, consider the first term which appears in N(t, δ). From the Duhamel formulation
(A.8), the triangle inequality and that the initial condition m0 = ∇f(θ0) limt→0+ h(t)/r(t),
we obtain an upper bound of the form

‖hδ(δ)∇f(θδ(t))− rδ(δ)mδ(t)‖ ≤ N1 +N2 +N3

where:

N1 = ‖hδ(δ) (∇f(θδ(t))−∇f(θ0))‖ , N2 =

∥∥∥∥rδ(δ)e−trδ(δ)(m0 −
hδ(δ)

rδ(δ)
∇f(θ0)

)∥∥∥∥
N3 =

∥∥∥∥rδ(δ)e−trδ(δ) ∫ t

0
eurδ(δ)hδ(δ) (∇f(θδ(u))−∇f(θ0)) du

∥∥∥∥
We now show that each one of these terms are bounded uniformly in terms of δ.

The term N1 is bounded because f is C2 (and therefore, the gradient is locally Lipschitz)
and θδ(t) is uniformly bounded by inequality (A.9); in particular, denote by L the Lipschitz
constant of ∇f in the compact set containing all solutions θδ(t) for bounded t. More
precisely, by the Duhamel formula (A.8) and Lemma 20

N1 ≤ δhδ(δ)L

(
K1

∥∥∥∥ m0√
v0 + ε

∥∥∥∥2

+K2

)
,

and we easily conclude that N1 is uniformly bounded by assumption 3.
The term N2 is bounded from the choice of the initial condition and the fact that

h(t)/r(t) is a C1 function. More precisely

N2 ≤ δrδ(δ)e−trδ(δ) ‖∇f(θ0)‖
∣∣∣∣hδ(δ)rδ(δ)

− lim
t→0

h(t)

r(t)

∣∣∣∣ δ−1.

and we can easily conclude that N2 is uniformly bounded by assumption 3.
The term N3 is bounded in a similar way as N1 using assumption 3, inequality (A.9)

and Lemma 20. More precisely:

N3 ≤
δ2rδ(δ)hδ(δ)

2
L

(
K1

∥∥∥∥ m0√
v0 + ε

∥∥∥∥2

+K2

)
.
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Gathering all bounds, we easily conclude that there exists a constant C1 such that:

sup
0<u≤t

‖hδ(u)∇f(θδ(u))− rδ(u)mδ(u)‖ ≤ C1, ∀ δ ≤ 1.

From a similar argument, we obtain that there exists a constant C2 such that:

sup
0<u≤t

∥∥∥pδ(u) [∇f(θδ(u))]2 − qδ(u)vδ(u)
∥∥∥ ≤ C2 ∀ δ ≤ 1.

We conclude that there exists a constant C such that N(t, δ) < C for every t ≤ δ and δ ≤ 1.
The case t > δ. The proof uses the same arguments as in the case of t ≤ δ using the

appropriate integral formulation and Lemma 20. We omit the details here.

Appendix B. Proof of Theorem 4

From the fact that f is bounded from below, we conclude that the energy functional
E(t, θ,m, v) introduced in (2.3) is bounded from below. Under assumption 2, this energy is
non-increasing, and we conclude that there exists E? ∈ R such that:

lim
t→∞

E(t, θ,m, v) = E?

Next, by direct computation we obtain that:

d

dt
E(t, θ,m, v) =− 1

h(t)

(
r(t) +

h′(t)

2h(t)

)∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

+
d∑
i=1

m2
i {q(t)vi − p(t) · [∂θif(θ)]2}

4h(t) · (vi + ε)3/2
,

(B.1)
and it follows from assumption 2, that:

d

dt
E(t, θ,m, v) ≤ − p(t)

4h(t)

∥∥∥∥ ∇f(θ)

(v + ε)3/4

∥∥∥∥2

and, since the gradient of f is bounded, limt→∞ p(t) 6= 0 and limt→∞ q(t) 6= 0 by hypothesis,
we conclude by Lemma 13 that v is bounded from above. Furthermore, from the fact that
h is decreasing, we get that there exists a constant C > 0 such that:

d

dt
E(t, θ,m, v) ≤ −C ‖∇f(θ)‖2 =⇒ 0 ≤ C

∫ ∞
t0

‖∇f(θ(s))‖2 ds ≤ E(t0, θ0,m0, v0)− E∗

It is therefore clear that lim inft→∞ ‖∇f(θ)‖2 = 0. We claim that the same is true for
the limit sup, because of the hypothesis of ∇f being globally Lipschitz, which avoid sharp
oscillations. Indeed, suppose by contradiction that lim supt→∞ ‖∇f(θ)‖2 > K > 0. It
follows that there exists a sequence of points (ti)i∈N which diverges to infinity, and such
that ‖∇f(θ(ti))‖ ≥

√
K/2. Now, by Lemma 2, we get that ∇f(θ(t)) is a globally Lipschitz

for every t ∈ [t̃,∞[ and, without loss of generality, we assume t0 ≥ t̃. It follows that there
exists δ > 0 such that ‖∇f(θ(t))‖ ≥

√
K/4 whenever t ∈ Bδ(ti), for every i ∈ N. Apart

from shrinking δ > 0, we can assume that all the balls Bδ(ti) are disjoint, allowing us to
conclude that:∫ ∞

t0

‖∇f(θ(s))‖2 ds ≥
∞∑
i=1

∫
Bδ(ti)

‖∇f(θ(s))‖2 ds ≥ K2

16

∞∑
i=1

2δ =∞
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which contradicts the fact that the energy is bounded from below. We therefore conclude
that lim supt→∞ ‖∇f(θ)‖2 = 0, finishing the proof.

Appendix C. Proof of Theorem 5

Consider the autonomous system associated to (2.1) (we recall that this means that we
treat the time t as a variable with differential equation ṫ = 1), that is, the following vector
field defined in R3d+1:

∂ = ∂t −
d∑
i=1

mi√
vi + ε

∂θi + (h(t)∂θif(θ)− r(t)mi)∂mi

+ (p(t) [∂θif(θ)]2 − q(t)vi)∂vi .

which is well-defined for every (θ,m, v, t) ∈ Rd ×Rd ×Rd≥0 ×R>0 (because we assume that
ε > 0, c.f. assumption 5). In order to study the convergence of the vector field when
t→∞, we perform the change of coordinates s = 1/t (in this case, studying the behaviour
at t→∞ is replaced to studying the behaviour when s→ 0), which yields:

∂ = −s2∂s +
d∑
i=1

− mi√
vi + ε

∂θi + (H(s)∂θif(θ)−R(s)mi)∂mi

+ (P (s) [∂θif(θ)]2 −Q(s)vi)∂vi .

(C.1)

and note that the above vector-field is kept autonomous. We recall that the time of the
associated differential equation is now denoted by τ (that is, a solution of this vector field
is a curve y(τ) = (θ(τ),m(τ), v(τ), s(τ)) such that ẏ(τ) = ∂(y(τ))). We now fix an orbit

y(τ) = (θ(τ),m(τ), v(τ), s(τ))

with initial conditions y(τ0) = (θ(τ0),m(τ0), v(τ0), 1/τ0). By the Lemma 13, we know that
y(τ) is bounded and v(τ) > 0 for all τ ∈ [τ0,∞). Denote by ω(y(τ)) the topological limit
of y(τ). By assumption 4 we know that θ(τ) is bounded, and by Lemma 13 we conclude
that m(τ) and v(τ) are also bounded. It follows that ω(y(τ)) is non-empty, and that it is
the union of orbits of ∂. Furthermore, from the expression s = 1/t (and the fact that the
solutions are defined for all τ ∈ [τ0,∞), which implies that t takes all values in [τ0,∞)) we
know that ω(y(τ)) ⊂ (s = 0).

We now consider the energy functional E given in (2.3) but in this new coordinate
system. More precisely, consider the functional:

Ẽ(y) = f(θ) +
1

2H(s)

∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

,

which by assumption 5 is everywhere well-defined (because H(0) > 0). It follows from
direct computation that:

d

dτ
Ẽ(y) ≤ − 1

2H(s)

[
2R(s)− Q(s)

2
− s2H

′(s)

H(s)

] ∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

.
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which is everywhere non-positive by assumption 2 and 5. Now, since E(x(τ)) is bounded
from below (because E is continuous and y(τ) is bounded), we conclude that the limit:

lim
τ→∞

Ẽ(y(τ)) = Ẽ∞

exists. In particular, it follows that ω(y(τ)) ⊂ (Ẽ(y) = Ẽ∞). This implies that ω(y(τ))
must be contained in the set of zero derivative of Ẽ(y). By assumption 5 this implies that
ω(y(τ)) ⊂ (m = 0). Now note that:

∂ ·mi = H(s)∂θif(θ)−R(s)mi,

and since H(0) 6= 0 (assumption 5), we conclude that ω(y(τ)) ⊂ (∇f(θ) = 0). Finally, if
either P (s) ≡ Q(s) ≡ 0 or Q(0) > 0, by the expression:

∂ · vi = P (s)∂θif(θ)2 −Q(s)vi,

we conclude that ω(x(τ)) ⊂ (v = 0). We conclude easily.

Appendix D. Proof of Theorem 6

The proof of the Theorem relies on central-stable manifold theory (see S. Chow and Wang
(2009) for an introduction), that is, in the following result, which is a local version of
(S. Chow and Wang, 2009, Ch. 1 Thm 4.2), by using the cut-off technique given in (S. Chow
and Wang, 2009, Ch. 1 Lem. 3.1); c.f. (S. Chow and Wang, 2009, Ch. 1, Thm 1.1 and 3.2).

Theorem 21 Consider the differential equation ẋ = Ax+ F (x) defined over Rn, where A
is a matrix which contains at least one positive eigenvalue, and F (x) is a Ck function, for
some k ≥ 1, such that F (0) = 0 and DF (0) = 0. Then there exists a neighbourhood U of
0 and a Ck sub-manifold Σ (the center-stable manifold) such that: (1) the manifold Σ is
invariant by the differential equation everywhere over U ; (2) the manifold Σ contains the
origin 0 and has dimension at most n− 1; and (3) if x0 ∈ U \ Σ, then there exists t̃0 > t0
such that x(t̃0) /∈ U , where x(t) denotes the solution of the differential equation with initial
condition x(t0) = x0.

Now, recall the vector field ∂ defined in (C.1), which describes the ODE (2.1). Consider
the set:

B = {θ? ∈ Rd; ∇f(θ?) = 0, and θ? is not a local minimum of f}

By assumption 6(b) the set B is discrete and, therefore, a countable union of isolated points
of Rd. It follows from Theorem 5 that the set:

C := {y = (θ,m, v, s); θ ∈ B and y is a singularity of ∂}

is a countable union of isolated points, all of each have the form y∗ = (θ?, 0, 0, 0), where
θ? ∈ B. We now consider the set:

S := {y0 = (θ0,m0, v0, s0); ω(y(τ)) ∩ C 6= ∅, where y(τ0) = y0}
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It follows that ω(y(τ)) is a connected set, so that:

S := {y0 = (θ0,m0, v0, s0); ω(y(τ)) ⊂ C, where y(τ0) = y0}

We now make a local argument valid for each singular point in C in order to show that S
is locally a sub-manifold; indeed, fix y∗ ∈ S. Consider the linearization of ∂ at the singular
point y∗ = (θ?, 0, 0, 0), which is the 3d+ 1 square matrix:

Jac(∂)(y∗) =


0 −ε−1/2Id 0 0

H(0)Hf (θ?) −R(0)Id 0 0
0 0 −Q(0)Id 0
0 0 0 0

 ,
where Id denotes the Identity of a d-square matrix, and Hf (θ?) is the Hessian of f at θ?.
It follows from direct computation that the eigenvalues λ of this matrix are: 0 with order
1, −Q(0) with order d and the solutions of the quadratic equations:

ηi = − ε1/2

H(0)
(R(0) + λ)λ, i = 1, . . . , d (D.1)

where {η1, . . . , ηd} are the eigenvalues of Hf (θ?). By assumption 6, we can suppose without
loss of generality that η1 < 0, and we easily conclude by equation (D.1) that there exists
one strictly positive eigenvalue λ of Jac(∂)(y∗). By Theorem 21, there exists an open
neighbourhood Uy∗ of y∗ and a C1 manifold Σy∗ ⊂ Uy∗ such that every orbit y(τ) with
initial condition in Uy∗ \Σy∗ , leaves Uy∗ in finite time. Note that the Lebesgue measure of
Σy∗ is zero. Consider the set Σ given by the union of all orbits with initial conditions in
Σy? , for every y? ∈ C. Since C is a countable set, we conclude that the Lebesgue measure
of Σ must be zero (since each Σy∗ has Lebesgue measure zero). Now, since y∗ is an isolated
singularity of ∂ and the ω-limit of an arbitrary orbit y(τ) with initial condition in S is
connected, we conclude that if ω(y(τ)) = y∗, then y(τ) ⊂ Σy? for τ >> τ0. It easily follows
that S ⊂ Σ, and we conclude that S has measure zero.

Finally, let t0 > 0 be fixed and denote by St0 = S ∩{s = 1/t0}. Now, S has volume zero
and contains orbits of ∂, all of each are transverse to the set {s = 1/t0}. It follows that the
volume of St0 ⊂ R3d is zero by transversality, and we conclude easily.

Remark 22 (On Assumption 6) Assumption 6(a) was introduced in Lee et al. (2019)
and has crucial technical consequences. It allows us to use the center-stable manifold theory
recalled above. Without this hypothesis, the singular points of the ODE (2.1) at infinite (see
equation (C.1)) can be arbitrarily degenerated, and there is no general singularity theory to
treat these points in dimension higher than three. In order to relax such a hypothesis, it
is necessary to develop specific singularity techniques for equation (2.1), and we intend to
pursue this direction in a future paper.

Assumption 6(b) allows us to exclude pathological differences between local and global
center-stable manifold theory. An alternative to this hypothesis is to add a globally Lips-
chitz assumption onto the system (2.1), and to study the relationship between the Lipschitz
approximation and the Hessian of the loss function f (which would allow us to use the strong
global result (S. Chow and Wang, 2009, Ch. 1 Thm 1.1)). This has been done, for example,
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in Panageas and Piliouras (2017) where the authors study the analog problem for a simpler
ODE. We understand that a study in the generality of ODE (2.1) without condition 6(b)
would demand the development of specific singularity techniques for equation (2.1), and we
intend to pursue this direction in a mathematical paper.

Appendix E. Proof of Theorem 7

Let θ? be a minimum point of f (which exists by the convexity Assumption 7). We start by
computing the derivative of the energy functional (3.2), so that we can find conditions on
the functions A, B and C, as well as the coefficients h, p, q, r, so that d

dtE is bounded (the
conditions must also guarantee that E is positive). In order to simplify the notation, we
denote by:

E1(t,m, v, θ) = A(t) (f(θ)− f(θ?))

E2(t,m, v, θ) =
1

2

∥∥∥[v + ε]1/4 (θ − θ?)
∥∥∥2
− B(t) 〈θ − θ?,m〉+

C(t)
2

∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

.

From the convexity assumption on the objective function f , we get

d

dt
E1(t, θ) ≤ A′(t) 〈∇f(θ), θ − θ?〉 − A(t)

〈
∇f(θ),

m

[v + ε]1/2

〉
(E.1)

Next, we derive each term of E2.

1

2

d

dt

∥∥∥[v + ε]1/4 (θ − θ?)
∥∥∥2

=− 〈m, θ − θ?〉 −
q(t)

4

〈
v

[v + ε]1/2
(θ − θ?) , θ − θ?

〉

+
p(t)

4

〈
[∇f(θ)]2

[v + ε]1/2
(θ − θ?) , θ − θ?

〉

d

dt
B(t) 〈θ − θ?,m〉 =− B(t)

∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

+ B(t)h(t) 〈∇f(θ), θ − θ?〉

+ (B′(t)− B(t)r(t)) 〈θ − θ?,m〉

d

dt

C(t)
2

∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

=h(t)C(t)

〈
∇f(θ),

m

[v + ε]1/2

〉
+
(
−r(t)C(t) + C′(t)/2

) ∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

+
C(t)q(t)

4

∥∥∥∥∥ m [v]1/2

[v + ε]3/4

∥∥∥∥∥
2

− C(t)p(t)
4

∥∥∥∥∥ ∇f(θ)m

[v + ε]3/4

∥∥∥∥∥
2

By adding all of the above computations, we get that E1(t, θ) and E2(t,m, v, θ) are positive
functions such that:

d

dt
E(t,m, v, θ) ≤ p(t)

4

〈
[∇f(θ)]2

[v + ε]1/2
(θ − θ?) , θ − θ?

〉
,
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provided that all the following sufficient conditions are satisfied

A(t) ≥ 0, A′(t) ≥ 0, (E.2)

A′(t) = h(t)B(t) (E.3)

A(t) = h(t)C(t) (E.4)

B′(t)− B(t)r(t) = −1 (E.5)

B(t) ≤ C(t)
3

(
2r(t)− q(t)

2
+
h′(t)

h(t)

)
(E.6)

B2(t) ≤ C(t). (E.7)

It is now easy to see that equations (E.3), (E.4) and (E.5) are equivalent to the choices of
A, B and C chosen in Subsection 3.5, and that assumption 8 implies inequalities (E.6) and
(E.7). It is now immediate from the Fundamental Theorem of calculus (and the fact that
E2 ≥ 0) that:

f(θ)− f(θ?) ≤
E(t0,m0, v0, θ0)

A(t)
+

∫ t
t0
p(u)

〈
[∇f(θ)]2

[v+ε]1/2
, [θ − θ?]2

〉
du

4A(t)
.

which proves the first part of the Theorem. Next, under assumption 4, Lemma 13 implies
that there exists a finite constant:

K = sup
t∈R+

∥∥∥[v + ε]1/4 (θ − θ?)
∥∥∥2

∞
,

and we note that:

p(t)

〈
[∇f(θ)]2

[v + ε]1/2
, [θ − θ?]2

〉
≤ Kp(t)

∥∥∥∥ ∇f(θ)√
v + ε

∥∥∥∥2

≤ Kp(t)
∥∥∥∥∇f(θ)√

v

∥∥∥∥2

.

Now, from the expression of ODE (2.1) in v we get:

d

dt
ln(v) + q(t) = p(t)

[∇f(θ)]2

v

which implies that:

p(t)

〈
[∇f(θ)]2

[v + ε]1/2
, [θ − θ?]2

〉
≤ K

(
d · q(t) +

d∑
i=1

d

dt
ln(vi)

)
.

and it follows that:∫ t

t0

p(u)

〈
[∇f(θ)]2

[v + ε]1/2
, [θ − θ?]2

〉
du ≤

∫ t

t0

K

(
d · q(t) +

d∑
i=1

d

dt
ln(vi)

)
du

The second inequality now easily follows from the fact that v(t) is bounded by Lemma 13.

37



Belotto da Silva and Gazeau

E.1. A Refined Bound

We may also consider the slightly more general energy functional:

E2(t,m, v, θ) =
D(t)

2

∥∥∥[v + ε]1/4 (θ − θ?)
∥∥∥2
− B(t) 〈θ − θ?,m〉+

C(t)
2

∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

,

where D(t) is a positive function. If we assume that D(t) is bounded, we are able to follow
the same reasoning of the previous section. In this case, we need to add the sufficient
condition D(t)′ ≤ 0, and equality (E.5) and inequality (E.7) are now given by:

B′(t)− B(t)r(t) = −D(t) (E.8)

B2(t) ≤ D(t)C(t) (E.9)

In particular, this implies that:

B(t) = e
∫ t
t0
r(s)ds

∫ ∞
t
D(s)e

−
∫ s
t0
r(u)du

ds

while the equations for A(t) and C(t) are unchanged. Since D(t) has a negative derivative,
in general, this computation can not lead to a stronger convergence rate than the one
obtained in the previous section. Nevertheless, it does allow one to obtain convergence
rates for parameters that are inaccessible in the previous section.

Appendix F. Proof of the Corollaries in Section 4

F.1. Proof of Corollary 8

The proof of (0) and (I) directly follows from Theorems 4 and 5 provided that assumptions
2 and 5 are satisfied. Hence, the proof simply consists of checking the validity of both
assumptions under the condition that 3 + β2 > 4β1. Let us recall that the coefficients for
the Adam’s differential equations are given by

h ≡ r ≡ gA1 (t, λ, α1, α2) =
1− e−λ/α1

λ
(
1− e−t/α1

) , p ≡ q ≡ gA2 (t, λ, α1, α2 =
1− e−λ/α2

λ
(
1− e−t/α2

)),

and (λ, α1, α2) are positive real numbers. It is easy to check that assumptions 2 and 5 are
satisfied if there exists a t, large enough, such that

4(1− e−λ/α1)

λ(1− e−t/α1)
− 1− e−λ/α2

λ(1− e−t/α2)
> 0

Taking the limit as t goes to infinity in the above inequality gives

4(1− e−λ/α1) > 1− e−λ/α2 ,

and we conclude by using the expressions of β1 and β2. Next, the proof of (II) follows directly
from Theorem 6 since assumptions 2 and 5 are satisfied under the condition 3 + β2 > 4β1.
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Finally, in order to prove (III), let us check the hypotheses of Theorem 7. We compute
explicitly the functions

A(t) =
1− e−λ/αi

λ

∫ t

t0

es/α1

es/α1 − 1
B(s)ds

B(t) = (et/α1 − 1)

∫ ∞
t

1

es/α1 − 1
ds

C(t) =
et/α1 − 1

et/α1

∫ t

t0

es/α1

es/α1 − 1
B(s)ds

so, by direct computation via L’Hôpital’s rule:

lim
t→∞
A(t)/t = α1

1− e−λ/α1

λ
lim
t→∞
B(t) = α1 lim

t→∞
C(t)/t = α1

and it easily follows that assumption 8 is verified. Finally, by using L’Hôpital’s rule, we get:

lim
t→∞

∫ t

t0

q(s)ds/A(t) = α−1
1

1− e−λ/α2

1− e−λ/α1

which yields the result.

F.2. Sketch of the Proof of Corollary 9

By the choice of functions h(t), r(t), p(t) and q(t), it is easy to see that Assumptions 2 and
5 are always verified. Part (I) is, therefore, direct consequences from Theorem 5. Next,
the computation of A, B and C are independent on p(t) and q(t), so they are analogous to
the one’s obtained for Adam. It follows that assumption 8 is verified. Finally, by Theorem
7, the rate of convergence is controlled by the asymptotic behaviour of

∫ t
t0
q(s)ds/A(t) =

ln(t/t0)/A(t),, which can easily be verified to be of order O(ln(t)/t).

F.3. Sketch of the Proof of Corollary 10

By the choice of functions h(t), r(t), p(t) and q(t), it is easy to see that Assumptions 2 and
5 are always verified. Part (I) and (II) are, therefore, direct consequences from Theorems
5 and 6. Next, by direct computation, we get:

A(t) = γ(t− t0) B(t) = γ C(t) = γ(t− t0).

It follows that assumption 8 is verified. Finally, by Theorem 7, the rate of convergence is
controlled by the asymptotic behaviour of 1/A(t), which is of order O(ln(t)/t).

F.4. Proof of Corollary 11

First, assume that r ≥ 3. From direct computation, we get:

A(t) = (t2 − t20)/2(r − 1) B(t) = t/(r − 1) C(t) = (t2 − t20)/2(r − 1)

It easily follows that, whenever r ≥ 3, the inequalities of assumption 8 are verified, and the
result follows from Theorem 7.
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Next, assume that r < 3. Let t0 = 1 and D(t) = t−α for some positive α which satisfies
2 > α > 1− r. Following Section E.1, we get:

B(t) =
t1−α

r + α− 1
, A(t) = C(t) =

t2−α − 1

(2− α)(r + α− 1)

Therefore, from inequality (E.6) we get:

t1−α

r + α− 1
≤ t2−α − 1

(2− α)(r + α− 1)

(
2r

3t

)
⇐⇒ 2− 2r

3
≤ α

while from (E.9) we obtain:

t2−2α

(r + α− 1)2
≤ t2−2α − 1

(2− α)(r + α− 1)
⇐⇒ 1− r

2
≤ α

In other words, it is enough to consider α = 2− 2r/3 for every 0 < r < 3. This implies that
f(θ(t))→ f? with rate of convergence o(1/A(t)) = o(1/t2r/3) as we wanted to prove.
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Boston, 2002. ISBN 9780817641924.

J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht. Gradient Descent Converges to
Minimizers. 29th Annual Conference on Learning Theory, PMLR 49:1246-1257, 2016.

J. D. Lee, I. Panageas, G. Piliouras, M. Simchowitz, M. I. Jordan, and B. Recht. First-order
Methods Almost Always Avoid Saddle Points. Math. Program., 179:311337, 2019.

41

https://cs.stanford.edu/~ppasupat/a9online/uploads/proximal_notes.pdf
https://cs.stanford.edu/~ppasupat/a9online/uploads/proximal_notes.pdf


Belotto da Silva and Gazeau

L. Lessard, B. Recht, and A. Packard. Analysis and design of optimization algorithms via
integral quadratic constraints. SIAM Journal on Optimization, 26(1):57–95, 2016.

Y. Nesterov. Introductory Lectures on Convex Optimization: a Basic Course. Kluwer
Academic Publishers, 2004.

I. Panageas and G. Piliouras. Gradient Descent Only Converges to Minimizers: Non-Isolated
Critical Points and Invariant Regions. ITCS, 2017.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015.

C. Li S. Chow and D. Wang. Normal Forms and Bifurcation of Planar Vector Fields.
Cambridge University Press, 2009.

S. Kale S. Reddi and S. Kumar. Amsgrad, on the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

W. Su, S. Boyd, and E. J. Candes. A Differential Equation for Modeling Nesterov’s Accel-
erated Gradient Method: Theory and Insights. Journal of Machine Learning Research,
17(153), 2016.

T. Tieleman and G. Hinton. Lecture 6.5RmsProp: Divide the gradient by a running average
of its recent magnitude, 2012.

R Ward, X Wu, and L Bottou. AdaGrad stepsizes: Sharp convergence over nonconvex
landscapes, from any initialization. In Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, vol-
ume 97, pages 6677–6686, 2019.

A. Wibisono and A. C. Wilson. On Accelerated Methods in Optimization. arXiv e-prints,
art. arXiv:1509.03616, September 2015.

A. Wibisono, A. C. Wilson, and M. I. Jordan. A variational perspective on accelerated
methods in optimization. Proceedings of the National Academy of Sciences, 113(47):
E7351–E7358, 2016.

M. Zaheer, S. Reddi, D. Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods for
nonconvex optimization. Advances in Neural Information Processing Systems (NeurIPS),
pages 9815 – 9825, 2018.

M. D. Zeiler. Adadelta: An adaptive learning rate method. ECCV, 2013.

Z. Zhang, L. Ma, Z. Li, and C. Wu. Normalized Direction-preserving Adam. arXiv e-prints,
art. arXiv:1709.04546, September 2017.

42


	Introduction
	Related Work

	Presentation of the Model
	The Discrete-Time Model
	An Energy Functional of ODE (2.1) and a Natural Assumption
	Existence and Uniqueness of a Solution to ODE (2.1)

	Convergence Analysis
	Convergence of the Gradient
	On a Compactness Assumption
	Topological Convergence
	Avoiding Local Maximum and Saddles
	Rate of Convergence

	Convergence Results: Application to First Order Algorithms
	On the Different Assumptions
	Adam
	Adam Differential Equation
	Adam without Rescaling Differential Equation
	Convergence of Adam
	A Variant of Adam: AdaFom

	Accelerated Methods
	Heavy Ball
	Nesterov


	Considerations about the Discrete Algorithm (2.2)
	The Discrete Dynamics does not Necessarily Converge.
	The Hyper-Parameters 1, 2 in Adam Should be Tuned in Terms of the Learning Rate
	Convergence Properties of Adam Depend on The Class of Loss Functions

	Guidelines for Future Adaptive Algorithms
	Conclusion and Final Discussion
	Existence and Uniqueness of Solutions
	The Cauchy Problem for t0 > 0 under Assumption 2.
	A Priori Estimates and Global Solution
	Existence and Uniqueness: Proof of Theorem 3 when t0>0
	Existence and Uniqueness for t0=0
	Equicontinuity and Uniform Boundedness
	Identification of the Limit and Uniqueness of the Solution
	Proof of Proposition 18


	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	A Refined Bound

	Proof of the Corollaries in Section 4
	Proof of Corollary 8
	Sketch of the Proof of Corollary 9
	Sketch of the Proof of Corollary 10
	Proof of Corollary 11


