
Journal of Machine Learning Research 21 (2020) 1-38 Submitted 11/18; Revised 2/20; Published 4/20

Self-paced Multi-view Co-training

Fan Ma Fan.Ma@student.uts.edu.au
Centre for Artificial Intelligence, University of Technology Sydney
15 Broadway, Ultimo NSW 2007, Australia
School of Mathematics and Statistics and Ministry of Education Key Lab of Intelligent Networks
and Network Security, Xian Jiaotong University
Xi’an, Shaan’xi Province, P. R. China

Deyu Meng∗ dymeng@mail.xjtu.edu.cn
School of Mathematics and Statistics and Ministry of Education Key Lab of Intelligent Networks
and Network Security, Xian Jiaotong University
Xi’an, Shaan’xi Province, P. R. China
Macau Institute of Systems Engineering, Macau University of Science and Technology
Taipa, Macau, P. R. China

Xuanyi Dong Xuanyi.Dong@student.uts.edu.au
Centre for Artificial Intelligence, University of Technology Sydney
15 Broadway, Ultimo NSW 2007, Australia

Yi Yang Yi.Yang@uts.edu.au

Centre for Artificial Intelligence, University of Technology Sydney

15 Broadway, Ultimo NSW 2007, Australia

Editor: Samuel Kaski

Abstract

Co-training is a well-known semi-supervised learning approach which trains classifiers on
two or more different views and exchanges pseudo labels of unlabeled instances in an
iterative way. During the co-training process, pseudo labels of unlabeled instances are very
likely to be false especially in the initial training, while the standard co-training algorithm
adopts a “draw without replacement” strategy and does not remove these wrongly labeled
instances from training stages. Besides, most of the traditional co-training approaches
are implemented for two-view cases, and their extensions in multi-view scenarios are not
intuitive. These issues not only degenerate their performance as well as available application
range but also hamper their fundamental theory. Moreover, there is no optimization model
to explain the objective a co-training process manages to optimize. To address these issues,
in this study we design a unified self-paced multi-view co-training (SPamCo) framework
which draws unlabeled instances with replacement. Two specified co-regularization terms
are formulated to develop different strategies for selecting pseudo-labeled instances during
training. Both forms share the same optimization strategy which is consistent with the
iteration process in co-training and can be naturally extended to multi-view scenarios.
A distributed optimization strategy is also introduced to train the classifier of each view
in parallel to further improve the efficiency of the algorithm. Furthermore, the SPamCo
algorithm is proved to be PAC learnable, supporting its theoretical soundness. Experiments
conducted on synthetic, text categorization, person re-identification, image recognition and
object detection data sets substantiate the superiority of the proposed method.
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1. Introduction

Semi-supervised learning (SSL) aims to implement learning on both labeled and unlabeled
data through fully considering the supervised knowledge delivered by labeled data and po-
tential data structure underlying unlabeled ones. Co-training (Blum and Mitchell, 1998)
is one of the most classical and well-known SSL approaches that trains classifiers on two
or more views and exchanges labels of unlabeled instances in an iterative way. In recent
years, co-training has been attracting much attention attributed to both of its wide ap-
plications (Nigam and Ghani, 2000; Wan, 2009; Kumar and Iii, 2011; Zhu et al., 2012; Do
et al., 2016) and rational theoretical supports (Blum and Mitchell, 1998; Balcan et al., 2004;
Balcan and Blum, 2010; Wang and Zhou, 2007, 2010, 2013, 2017).

Blum and Mitchell (1998) originally designed the co-training scheme and proved its
correctness under the assumption that instances of different views are independent given
that the class label and classifier of each view make useful predictions on unlabeled instances.
Later, Balcan et al. (2004) reduced the strong theoretical requirements that the co-training
algorithm would be useful when there exist confident predictions on unlabeled instances in
each view. However, these assumptions require a strong pre-assumption that the pseudo
labels of unlabeled instances selected in each iteration are of a high confidence extent.
Based on such high-confidence assumptions, most of the current co-training style algorithms
(see Section 2.1 for more details) put pseudo-labeled instances into the training set with
their pseudo labels fixed during the whole learning process. Nevertheless, in most real
cases such an assumption is too subjective to be satisfied, especially in the early learning
stage of a co-training algorithm. The learned classifiers might not be able to distinguish
certain instances confidently nor precisely pseudo-annotate them with an expected accuracy
requirement. This not only inclines to degenerate the performance of co-training since the
wrongly pseudo-labeled instances involved in training have no chance to be rectified in the
latter training process, but also might make the underlying assumption under the theoretical
support of co-training incorrect.

Another issue in most of the current co-training style methods is on the absence of an
optimization model that can measure the performance and explain the intrinsic iterative
mechanism under the co-training implementation. The performance measure is generally
one of the necessary elements for a machine learning method. Some recent works jointly
optimize an objective function based on the same assumption as with the co-training style
algorithms that predictions of different views on instances should be consistent (Sindhwani
et al., 2005b; Li et al., 2012). Those co-regularization approaches (see Section 2.2 for
more details) encode relations of predictions from different views into a co-regularization
term and turn multi-view SSL into a new convex optimization problem. However, the new
objective function is often hard to be optimized, and its solution is generally different from
the co-training process, which makes it unclear how the regularization term impacts the
learning process. Thus, it is meaningful to explore whether there exists such an optimization
model, which can finely interpret the co-training implementation during the process of
solving this model. Such a model also should help reveal more insights underlying co-
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training. Besides, most of the existing co-training regimes are mainly implemented in
two-view cases. When more views are available, these methods are not easy to be extended.
A reasonable performance measure or an objective function is necessary to inspire a sound
learning manner on training classifiers in general multi-view scenarios.

To address the aforementioned issues, the self-paced multi-view co-training (SPamCo)
is proposed in this study. The basic idea of SPamCo was first introduced in Ma et al.
(2017) which presented the SPaCo (self-paced co-training) method. The method contains
a specified objective function in which the optimization process complies with the learn-
ing procedure of conventional co-training in two-view cases. In this study, we have made
a substantial improvement to the prior work. Specifically, this paper proposes a general
framework for multi-view co-training, which allows rich variations for practical realizations.
The SPaCo algorithm in Ma et al. (2017) is only a specific hard implementation scheme
contained in this framework only usable for two-view cases, by properly setting the forms
of self-paced regularizer and the weight co-regularizer. While in such a general framework,
more implementation paradigms can be conducted. Not only the soft weighting scheme
can be easily built, which is expected to more faithfully reflect sample importance in the
learning process, but also multi-view co-training on more than three views can be naturally
attained in a sound modeling manner. Together with other essential ameliorations, like the
implementation scheme from serial to parallel (as introduced in Section 4), the theoreti-
cal rationality from two-view conditions to general multiple view premises (as introduced
in Section 5), experimental evaluations from two-view toy experiments to multi-view text
classification, image recognition, image retrieval, and object detection problems (as intro-
duced in Section 6), this paper substantially enhances the previous SPaCo strategy to be a
potentially useful regime to wider range of practical scenarios.

In summary, this work makes the following contributions:

• A unified self-paced multi-view co-training (SPamCo) framework is presented, which is
formulated as a concise optimization model and can be easily applied to multiple tasks
with more than two views. Specifically, two forms of SPamCo models have been intro-
duced, including those with hard and soft co-regularization terms, respectively. The
SPamCo method with the hard co-regularization term, whose two-view case accords
with the scheme proposed in Ma et al. (2017), follows the binary sample selection
manner of conventional co-training style algorithms. Different from the traditional
co-training algorithms, the soft co-regularization term imposes continuous weights on
samples for cross-view sample training. By using this more elaborate learning fashion,
the prediction consistency among different views is reflected more faithfully and con-
sidered comprehensively, and thus tends to lead a better generalization performance
than the hard version on multi-view co-training.

• The solutions to SPamCo share a similar iterative process with the conventional co-
training algorithms. The difference lies in the strategy of selecting pseudo-labeled
instances. Instead of keeping the unlabeled samples in the training set unchanged
and selecting examples based on predictions of the current view, our model draws
the unlabeled instances with replacement and considers predictions from all views to
select pseudo examples. Furthermore, we introduce a distributed training strategy to
speed up the learning procedure by using an average sample weight from all views
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D Training set L Labeled set
U Unlabeled set X Instance input space
X+ Instance positive region S Confident set
Nl Number of labeled examples Nu Number of unlabeled examples
M Number of available views K Number of classes
y Groundtruth label ỹ Pseudo label
` Loss function R Regularization term
θ Model parameters v sample weight
λ self-paced hyperparameter γ co-regularization hyperparameter

Table 1: Notation Table.

for each unlabeled instance to exchange information from the current view to other
views. In this way, classifiers of all views are trained in parallel when multi-views or
multi-models are available.

• The effectiveness of the proposed SPamCo algorithms under multi-view cases is ana-
lyzed based on the ε-expansion theory previously used in co-training analysis (Balcan
et al., 2004). The result can easily degenerate to the two-view cases as proved in Bal-
can et al. (2004). The rationality of the proposed method can thus also be explained in
the conventional co-training framework. We additionally analyze the proposed model
from the perspective of a robust loss of self-paced learning regime, which provides a
natural explanation for the effectiveness of such a co-training strategy.

• The superiority of the proposed algorithms is comprehensively substantiated on mul-
tiple types of pattern recognition and computer vision tasks including multi-view text
classification, person re-identification, image recognition, and object detection.

The rest of the paper is organized as follows. We first briefly introduce related works
in Section 2. Then in Section 3, we present the proposed SPamCo framework and propose
its different variations with hard/soft co-regularization terms. After that, the SPamCo
algorithms with both serial and parallel schemes are designed in Section 4. In Section 5, we
provide theoretical analysis to support the rationality of the proposed algorithms based on
ε-expansion theory. Experimental results are provided in Section 6, and then we conclude
with a brief discussion in Section 7. The utilized notations in this paper are listed in Table
1 for easy reference of readers.

2. Related Work

Blum and Mitchell (1998) introduced co-training algorithm which trains classifiers for dif-
ferent views and exchanges predictions of high-confidence unlabeled data to augment the
training set of each view in every iteration. Afterward, multiple advancements have been
developed, which can be roughly categorized into two paradigms: co-training and co-
regularization style algorithms. In this section, both types of algorithms are discussed
at first and then their theoretical supports are presented. We further review the self-paced
learning framework employed in our proposed model for selecting pseudo labeled instances.
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2.1. Co-Training Style Algorithms

Co-training style algorithms follow the iterative learning process of co-training but formu-
late different schemes to select unlabeled instances. Goldman and Zhou (2000) adopted
two distinct algorithms on one view of data when no redundant views are available. Nigam
and Ghani (2000) analyzed the effectiveness of co-training algorithms and proposed Co-EM
to operate on all unlabeled samples at each iteration. Brefeld and Scheffer (2004) further
improved Co-EM by replacing naive Bayes classifier with SVM. To increase the reliability
of selected unlabeled instances, Zhang and Zhou (2011) constructed a neighbour graph to
improve the confidence of selected unlabeled instances. Recently, Xu et al. (2016) used pre-
dictions from all views in every iteration with different strategies and formed a pseudo-label
vector for obtaining a robust prediction. Zhou (2019) introduced the abductive learning
which pseudo labels can be corrected by logical reasoning. All these methods manage to
improve the quantity of right predicted unlabeled instances and boost the performance of
the original classifier.

As compared to conventional co-training methods, the proposed SPamCo method has
mainly two ameliorative aspects. Firstly, instead of fixing pseudo-labels for high-confident
instances selected into the training process, our method can continuously update the la-
bels of all instances through being compensated from predictions of all views. Secondly,
instead of the “draw without replacement” learning manner, our method employs a “draw
with replacement” training mode, which allows some meaningless or even wrongly labeled
instances selected in the early training stage possibly to be removed from training in the
latter training process. Both of these modifications incline to help increase the robustness
of the co-training calculation.

2.2. Co-Regularization Style Algorithms

Co-regularization style algorithms assume each unlabeled instance from all views with the
same label, so the learned predictions of multi-views on unlabeled data should be consistent.
Based on this assumption, co-regularization style algorithms directly encode parameters of
classifiers and predictions on unlabeled data of different views into one optimization problem
and simultaneously calculate all these variables through solving this problem.

Suppose we have M views of training set D = {D(j)|j = 1, . . . ,M}, each training set

consists of labeled set L(j) = {(x(j)
i , yi)}Nli=1 and unlabeled set U (j) = {x(j)

i }
Nl+Nu
i=Nl+1, where

Nl and Nu are numbers of labeled and unlabeled instances, respectively. x
(j)
i ∈ X (j) from

all views (i.e., for all js) share the label yi ∈ Y = {1, 2, ....,K} for all i = 1, · · · , Nl. Let
L = {L(1), . . . ,L(M)} and U = {U (1), . . . ,U (M)}. The general optimization problem of
co-regularization style algorithms can be written as:

min
θ

M∑
j

Nl∑
i=1

`(yi, g(x
(j)
i ; θ(j))) + γR(Θ,U ,L),

where ` is a pre-defined loss function (e.g., a cross-entropy loss), and g(x
(j)
i ; θ(j)) represents

the prediction label with input x
(j)
i . Θ = {θ(j)|j = 1, . . . ,M} are the model parameters

to be learned. Since only a small portion of training data is labeled (i.e., Nl � Nu), the
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regularization term R is important to leverage unlabeled instances from all views along
this line of algorithms. Various regularization terms have been designed to better mine the
information from unlabeled instances. Typical ones are introduced as follows:

Sindhwani et al. (2005b) first introduced co-regularized least squares trying to minimize
the difference between two predictions on both labeled and unlabeled instances. Sind-
hwani and Rosenberg (2008) further proposed the Co-MR method, which deduces a co-
regularization kernel by exploiting two Reproducing Kernel Hilbert Spaces defined over the
same input space. Yu et al. (2011) proposed an improved version of co-training called
Bayesian co-training with the Bayesian undirected graphical model. Li et al. (2012) later
designed two-view TSVM by enforcing consensus predictions between two views. Recently,
Ye et al. (2015) designed a new rank constrained regularizer, which assumes predictions for
unlabeled data under different views consistent with each other and enforces an affixed rank
constraint on the optimization function of each view.

Most conventional co-regularization methods need to be essentially integrated with a
certain learning regime, like SVM, as their base classifier, and specifically design an algo-
rithm to attain its solution. For different co-regularization methods, their algorithms are
generally different and need to use different optimization techniques. This makes them
not very easy to reformulate their implementation schemes and implement their methods
with variations of classifiers. Comparatively, the proposed method is with a more general
realization form, and the implementation is easy to replace with different base classifiers.
Besides, co-regularization approaches tend to make similar emphasis on all instances in all
views (i.e., the loss of each instance is intrinsically imposed with consistent sample weight
1). This inclines to make the method more easily overfit to “bad” views with noisy instance
representations. The SPamCo method alleviates this issue since it is able to automatically
undermine those noisy samples on certain views through imposing small or even 0 weights
on them.

2.3. Co-Training Theory Development

The rationality of co-training is supported by a series of related theoretical analyses. Blum
and Mitchell (1998) showed that the class on two views is learnable in the PAC model
with classification noise when the features of two views are independent given the class.
To further relax the assumption for co-training, Abney (2002) provided a weaker view-
independence condition that assures the success of co-training. Afterward, Balcan et al.
(2004) introduced the ε-expansion assumption, which is a confident assumption on pseudo-
labeled positive instances, further relaxing the condition for guaranteeing the effectiveness
of co-training strategy. Wang and Zhou (2007) proved that co-training algorithm would
succeed when there is only one view available if disagreement exists among different classi-
fiers. Later, Wang and Zhou (2010) made a new analysis of co-training from the standpoint
of label propagation. One important assumption in co-training is that the condition of high
confidence of pseudo-labels of unlabeled instances should be fulfilled, and Wang and Zhou
(2013) relaxed this condition by introducing diversity between two views.

Despite providing theories to support the rationality of co-training methods, most of
these theories are conducted under two-view cases and include some subjective assumptions
like independence between classifiers of different views or high confidence extents of pseudo-
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labels of unlabeled instances obtained by the algorithm. These assumptions, however, are
not only hard to be justified in real applications, but also not very intuitive to be easily
understood, which might possibly keep it from being more extensively used in practice.

2.4. Self-Paced Learning

Bengio et al. (2009) proposed a learning paradigm called curriculum learning(CL), in which
a model is learned by gradually including instances from easy to complex in training so as
to increase the entropy of training instances. Afterward, self-paced learning (Kumar et al.,
2010) is proposed to embed curriculum design as a regularization term into the learning
objective. Due to its generality, the SPL approach has been widely applied to various tasks,
such as object tracking (Supancic and Ramanan, 2013), multimedia event detection (Jiang
et al., 2014a,b), image classification (Jiang et al., 2015), person re-identification (Wu et al.,
2019), and object detection (Dong et al., 2017, 2018). The SPL model considers a weighted
loss term for all samples and a general self-paced regularizer with respect to instance weights,
expressed as:

min
θ,v∈[0,1]n

n∑
i=1

(vi`(yi, g(xi; θ)) + f(vi, λ)),

where λ is the age parameter for controlling the learning pace, v = {v1, v2, · · · , vn} contains
all weights imposed on data, and f(v, λ) represents the self-paced regularizer (SP-regularizer
briefly). The form of this regularizer naturally leads to the “easy-to-hard” learning manner
of SPL by its following definition (Jiang et al., 2014a; Zhao et al., 2015; Meng et al., 2017).

Definition 1 (SP-regularizer) Suppose that v is a weight variable, ` is the loss, and λ
is the age parameter. f(v, λ) is called a self-paced regularizer, if

1. f(v, λ) is convex with respect to v ∈ [0, 1];

2. v∗(`, λ) is monotonically decreasing with respect to `, and it holds that lim`→0 v
∗(`, λ) =

1, lim`→∞ v
∗(`, λ) = 0;

3. v∗(`, λ) is monotonically increasing with respect to λ, and it holds that limλ→∞ v
∗(`, λ) ≤

1, limλ→0 v
∗(`, λ) = 0;

where
v∗(`, λ) = arg min

v∈[0,1]
v`+ f(v, λ),

The three conditions in Definition 1 provide basic principles for constructing a SP-
regularizer. Condition 2 indicates that the model inclines to select easy samples (with
smaller losses) in favor of complex samples (with larger losses). Condition 3 states that
when the model “ age” (controlled by the age parameter λ) becomes larger, it tends to
incorporate more, probably complex, samples to train a “mature” model. The convexity
in Condition 1 ensures the soundness of this regularizer for optimization. Multiple forms
of SP-regularizers based on this definition have been designed recently, such as the hard,
linear and mixture SP-regularizers proposed in (Kumar et al., 2010), (Jiang et al., 2014a),
and (Zhao et al., 2015), respectively. By using the alternative optimization strategy to
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iteratively update v and w in the SPL regime with gradually increasing age parameter λ,
more instances can be automatically included into training from easy to complex in a purely
self-paced way.

SPL has recently witnessed increased focus in various applications. Jiang et al. (2015)
proposed a more effective self-paced curriculum learning (SPCL) regime by embedding
useful loss prior knowledge into the model and analyzed that this regime is analogous to
rational instructor-student-collaborative learning mode of human teaching. Meng et al.
(2017) proved that the optimization problem of SPL solved by the alternative optimization
algorithm is equivalent to a robust loss minimization problem solved by a majorization-
minimization algorithm. This work reveals an understanding of why SPL can conduct
robust learning which are critical in various applications (Xie et al., 2017; Yong et al.,
2017). Instead obtaining sample weights from losses, Shu et al. (2019) showed that sample
weights can be learned from another network. Multiple literatures (Zhang et al., 2015a;
Zhao et al., 2015; Pi et al., 2016) also showed that SPL worked well when dealing with real
data.

3. Self-paced Multi-view Co-training

In this section, we introduce the general optimization problem of the proposed self-paced
multi-view co-training (SPamCo) algorithm, and then introduce two of its realization forms.
Each of them provides a particular characteristic of correlating different views.

3.1. The SPamCo Model

The general SPL framework introduces a weight for each training instance to decide its
learning order. If we attach weight to every unlabeled instance, the status of this instance
being selected for training can then be determined by the attached weight. Considering
that both co-training style and co-regularization style algorithms assume the same class of
an unlabeled data from all views and the prediction of an instance is associated with its
weight in the SPL framework, we are able to fulfill such class consistency assumption by
regularizing the weight vector implicitly. We can then present the SPamCo optimization
problem as follows:

min
Θ,V,Ỹ

E =

M∑
j=1

( Nl∑
i=1

`
(j)
i +

Nl+Nu∑
i=Nl+1

(
v

(j)
i `

(j)
i + f(v

(j)
i , λ(j))

))
+R(V) +R(Θ), (1)

where

`
(j)
i =

{
`
(
yi, g(x

(j)
i ; θ(j))

)
, i = 1, · · · , Nl,

`
(
ỹi, g(x

(j)
i ; θ(j))

)
, i = Nl + 1, · · · , Nl +Nu,

where yi denotes pre-annotated labels on the supervised samples, and ỹi represents those
to be learned on the unsupervised ones, Ỹ denotes the set of all ỹis, V ∈ RNu×M contains
all weights of unlabeled instances from all views, and the element of ith row and jth column

in V is denoted by Vi,j = v
(j)
i ∈ [0, 1] which corresponds to the weight imposed on x

(j)
i ,

Θ = {θ(1), θ(2), · · · , θ(M)} are the classifier model parameters. R(Θ) is the regularization
term on model parameters, which is a general term used in machine learning models. We
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employ the commonly used L2 regularization to penalize the weights in the present paper,
and more choices, like the L1 or more general Lp forms (Meng et al., 2012), can also be easily
replaced based on certain practical scenarios. R(V) is the specific co-regularizer imposed
on the sample weights of unlabeled data.

Note that only unlabeled instances are attached with weights as the labeled ones have
been properly annotated and should be fully used. When there are enough labeled examples,
and some labels are outliers or noises, we can also attach weights to the labeled ones to
make the model robust to the noise. In the present paper, we assume that labeled examples
are clean to instruct training. The following SP-regularization term proposed by (Jiang
et al., 2014a) is used in our model due to its simplicity:

f(v
(j)
i , λ(j)) = −λ(j)v

(j)
i .

where λj controls how many unlabeled examples would be selected for training in each iter-
ation. When λj is small, only most confident examples with small losses will be considered.
As λj grows, more unlabeled examples will be gradually put into the training. Kumar et al.
(2010) increased the parameter by multiplying a scale variable in each iteration. Zhang et al.
(2015b) adjusted λ based on the specific portion of training examples. These strategies help
the model augment more examples into the training.

As there always exist evident imbalance among different classes, we expect that the
samples with non-zero weights (i.e., the selected pseudo-labeled samples for training) should
be adaptively selected into different classes. We thus specify a different age parameter
for each class to add unlabeled instances as the way in the co-training algorithm. The
corresponding SP-regularization term can be written as follows:

f(v
(j)
i , λ(j)) = −λ(j)

c v
(j)
i ,

where c is the pseudo label of instance x
(j)
i , and λ(j) = {λ(j)

c |c = 1, . . . ,K}, K is the
total number of instance classes. As there are M views, we have to set the MK values of
the age parameters in different views, which would be hard to be tuned during training.
Instead of directly setting λjc, we simply specify the number of selected examples as in the
co-training algorithm (Blum and Mitchell, 1998). λjc can then be calculated based on this
predefined value. The details of calculating λjc are discussed in Section 4.1 (Agument λ).
As the informative knowledge of different views are imperceptible, we share the number of
unlabeled examples to be selected for all views. For different classes, the selected number
is in proportion to the class distribution which can be simply deducted from the labeled
examples. It thus makes tuning λjc as a relatively much easier task by just setting the
number of selected instances with only one value.

The last term R(V) in Eq.(1) is to encode the intrinsic correlation among weights of
different views and compensate each other by combining knowledge from all views. Without
this term, the above Eq.(1) will degenerate into the traditional self-training semi-supervised
problem in each view since all views can be calculated separately with no influence to and
from other views. For that reason, we call R(V) as the co-regularization term since it plays
a critical role in our algorithm for multi-view training.

Both co-training and co-regularization style algorithms assume that all views share con-
sensus predictions while utilizing this assumption in different ways. For the co-training style
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algorithms, confident prediction on an unlabeled instance from one view can be trusted for
the other views, while the co-regularization style algorithms enforce the consistent predic-
tions of disparate views by adding consistent cost into the regularization term. We formulate
the co-regularization term for each mechanism and introduce two types of co-regularization
terms, including hard and soft regularization terms, and explain how these terms correlate
different views.

3.2. SPamCo With Hard Co-Regularization Term

For co-training style algorithms, the unlabeled instances with high prediction probability
of one class in one view would be added into the training pool of the other views. In our
SPamCo framework, the weight of an unlabeled example in one view would be 1 if the
classifier of this view predicts its corresponding instance with high confidence. To force
the algorithm into selecting this instance to others views, we ought to encourage its weight
in other views also being 1. The co-regularization term for implementing this can thus be
written as follows:

Rh(V) = −γ
∑
p<q

(v(p))Tv(q), (2)

where p, q ∈ {1, . . . ,M}, and v(p) = V∗p contains all weights of unlabeled instances in the
pth view. γ is the co-regularization parameter that controls how strongly the regularization
is penalized.

The inner product form of the co-regularization term encodes the relationship of “in-
stance easiness degree” between two views and encourages unlabeled instances of both views
being selected at the same time. This co-regularization term also follows the basic strategy
of co-training that most confident pseudo-labeled instances selected from one view can be
used by the other views. Suppose we are minimizing Eq.(1) using the regularization term in
Eq.(2) with all other parameters fixed except the weight vectors of jth view, by calculating

the derivative of Eq.(1) with respect to v
(j)
i , we have

∂E

∂v
(j)
i

= `
(j)
i − λ

(j)
c − γ

∑
q 6=j

v
(q)
i . (3)

Then we can get the closed-form updating equation for v
(j)
i as follows:

v
(j)∗
i =


1, `

(j)
i < λ(j)

c + γ
∑
q 6=j

v
(q)
i ,

0, otherwise.

(4)

From Eq.(4), we can observe that an instance with its loss value less than λ
(j)
c +

γ
∑

q 6=j v
(q)
i would be selected into training in the next iteration. This indicates that the

confident instances of one view (with relatively smaller loss value `
(j)
i in the classifier of jth

view) and instances selected by other views (with v
(q)
i = 1, meaning that the instance has

been taken as confident ones and selected in previous training process), are prone to be

selected than those with v
(q)
i = 0. Note for an unlabeled instance, its weight can be only 0
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or 1 and is related with all other views. Thus we call the regularization term in Eq. (2) as
the hard co-regularization term.

The parameter γ controls the association degree between different views. If γ is set
sufficiently large with the quantity of added unlabeled instances fixed, all instances selected
from other views will be chosen by the classifier of the current view. It is then equivalent
to conventional co-training style algorithms in which the classifier of one view first picks
instances and then puts them all into the training pool of other views. However, if predic-
tions from one view are not reliable, we can set a small γ to combine predictions from all
views to improve the robustness of predicted results on unlabeled instances.

3.3. SPamCo With Soft Co-Regularization Term

By introducing the inner-product-form co-regularizer term, the correlation information of
sample confidence from different views is finely encoded in the SPamCo model. The pro-
posed model can select unsupervised samples in one iteration and replace them with other
instances. It makes the model choose the confident pseudo-labeled samples for the next
iteration of training. However, the weights on the unlabeled instances can only be 0 or 1,
meaning that they can only be roughly selected or removed. Compared with such a hard
learning manner, the soft one should be more expected since it tends to more faithfully and
comprehensively reflect the correlation information among different views. To this aim, we
further design the following soft co-regularization term:

Rs(V) = γ
∑
p<q

(v(p) − v(q))T (v(p) − v(q)). (5)

As compared to the hard co-regularization term, the meaning of this regularizer should
be more evident: it is the square of the difference between weight vectors from any two
views, and tends to enforce similar importance weights, as well as selected pseudo-labeled
instances for further training, among different views. This form is similar to the form
in co-regularization style algorithms, while instead of forcing the same predictions from
different views, we require that the confidence level of an unlabeled instance should be
similar in disparate views. As the confidence level of an instance is intrinsically related to
its prediction, the proposed co-regularization term implicitly correlates predictions of all
views. In addition, pseudo-labeled instances with high confidence would also be trained to
further boost model performance, which can be easily observed from the following solution
forms.

By taking the derivative with v
(j)
i , we can get:

∂E

∂v
(j)
i

= `
(j)
i − λ

(j)
c + γ

(
(M − 1)v

(j)
i −

∑
q 6=j

v
(q)
i

)
. (6)
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Then we can obtain the closed-form updating equation for v
(j)
i as follows:

v
(j)∗
i =



0, `
(j)
i ≥ λ

(j)
c + γ

∑
p 6=j

v
(p)
i ,

1, `
(j)
i ≤ λ

(j)
c + γ

∑
p 6=j

(v
(p)
i − 1),

1

M − 1
(
∑
p 6=j

v
(p)
i +

λ
(j)
c − `(j)i
γ

), otherwise.

(7)

It can be seen that for each x
(j)
i , v

(j)
i is also calculated as 0 when the `

(j)
i is larger

than the sum of λ
(j)
c + γ

∑
q 6=j v

(q)
i , similar as the 0-weight case in hard SPamCo model.

Otherwise, as `
(j)
i linearly decreases to λ

(j)
c + γ

∑
p6=j(v

(p)
i − 1), v

(j)
i would linearly increase

to 1. This means the sample weight is possible to be soft values in [0,1] beyond only 0
or 1. We thus call the term in Eq. (5) as the soft co-regularization term. Only for those

pseudo-labeled instances with sufficient confidence, v
(j)
i will be 1, i.e., the instance will be

used in the next training process. There are two possible types of such confident instances:

the instance with large v
(p)
i for all other views, and that with relatively smaller prediction

loss value `
(j)
i in the current view. Both correspond to the confident instances complying

with our intuition.

The parameter γ is very similar to that in the hard SPamCo model. A relatively larger
γ would make most of the weights of unlabeled instances tend to be 1 and a smaller one
would make these weights as 0. The difference is that it leads to a soft weight updating
scheme in soft SPamCo cases and thus tends to get a more faithful evaluation of instances’
importance weights.

3.4. Remark

Our proposed SPamCo model introduces an importance weight for each pseudo-labeled in-
stance of each view to reflect its confidence degree (with pseudo-label annotated in the train-
ing process) for training and to facilitate selection of confident ones for the next training pro-
cess. The predictions among different views are correlated by imposing a co-regularization
term on weight terms. Hard and soft co-regularization terms are developed for this task.
For the hard co-regularization term, the designed inner product form between any of two
views encourages instances selected from one view to more possibly be put into the training
pool of the other views. It follows the learning procedure in co-training style algorithms,
but has a specific objective function for this procedure. The soft co-regularization term
is similar to the form adopted by most co-regularization style algorithms while the differ-
ence between predictions is encoded by the difference between weights from all views. This
form not only forces the consensus predictions implicitly but also uses unlabeled data with
confident predictions for further training.
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4. Optimization Strategy

In the previous section, we propose the SPamCo model with hard and soft co-regularization
terms, respectively. The alternative optimization strategy (AOS) can then be readily em-
ployed to solve both models. In this section, we first introduce the traditional optimization
strategy in which each view is updated in a serial way. Then to speed up the learning
process, we introduce the parallel amelioration of our algorithm.

4.1. Alternative Optimization Algorithm

The inputs to our model include the labeled set L(j) = {(x(j)
i , yi)}Nli=1 and the unlabeled set

U (j) = {x(j)
i }

Nu
i=1. Then the detailed optimization steps for solving the proposed SPamCo

model can be provided as follows.

Initiation: The first step is to initialize the parameters in the proposed model. The
importance weight parameter matrix V ∈ RNu×M can be easily initiated as a zero matrix.
Classifiers in all views are firstly trained based on labeled set, and predictions are made on
unlabeled set. Labels of all unlabeled instances are set based on the average predictions

from classifiers in all views. Age parameter λ
(j)
c in each view is initialized with a small value

to allow the most confident unlabeled instances of each class in all views being selected. The

strategy of tuning λ
(j)
c will be discussed in the following contents. The V is then updated

based on the rule in Eq.(4) or Eq.(7) for picking confident unlabeled instances for each view.
After that, for each iteration round, we repeat the following steps to update each view.

Update v(j): For the current jth view, the weight vector v(j) is updated for preparing

training samples. By taking derivatives with each v
(j)
i , we can easily get the selected pseudo-

labeled into the training process (i.e., obtain their weights). As discussed in Section 3, the

solution for updating v
(j)
i given hard and soft co-regularization terms are presented in Eq.(4)

and Eq.(7), respectively.

Update θ(j): The training pool in the current view now contains labeled and newly
selected pseudo-labeled instances. The problem of updating parameters θ(j) now becomes
the following sub-optimization problem:

min
θ(j)

Nl∑
i=1

`
(j)
i +

Nl+Nu∑
i=Nl+1

v
(j)
i `

(j)
i +R(θ(j)), (8)

This is a standard objective function of supervised learning and can be easily solved
by off-the-shelf toolkits. For instance, if a neural network is adopted and the cross-entropy
loss is used for image classification tasks, the parameter θ(j) is simply optimized using the
SGD algorithm. Our proposed model has no limitation on the base classifiers which makes
it applicable for general applications.

Update Ỹ : The newly learned classifier is expected to perform gradually better since
more confident data are expected to be used for training. It is then reasonable to make use
of the updated predictions on the unlabeled set to update their pseudo-labels. It can be
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Algorithm 1 Serial SPamCo Algorithm

1: Input: Labeled set L and unlabeled set U , co-regularization parameter γ, and iteration
rounds T.

2: Output: Θ = {θ(j)|j = 1, . . . ,M}.
3: Initialize weight matrix V, age parameter λ, and current training round t = 1.
4: Update Θ
5: Update V
6: while t < T || no available data do
7: for vid← 1 to M do
8: Update v(vid): prepare training pool for current view
9: Update θ(vid): learn a new classifier based on added instances

10: Update Ỹ : renew predictions on all unlabeled instances
11: Augment λ: allow more instances being picked
12: Update v(vid): select confident instances for other views
13: end for
14: end while
15: Return Θ

easily done by solving the following minimization sub-problem:

min
ỹi

M∑
j=1

v
(j)
i `(ỹi, g(x

(j)
i ; θ(j))). (9)

It is easy to prove that the global optimum of the above problem can be obtained by
setting the pseudo-label ỹi as the weighted average predictions directly. Note that in this
manner, some of the wrongly pseudo-labeled instances are possible to be rectified.

Augment λ and Update v(j): Once pseudo-labels of unlabeled data are refreshed,

λ = {λ(j)
c |c ∈ [K], j ∈ [M ]} is enlarged to allow more instances with lager loss values, i.e.,

the unlabeled instances with lower confidences, into the training pool in the next iteration.
Specifically, at each iteration, we increase the number of selected unlabeled instances in the
same way employed by co-training algorithms. Suppose that we increase the number of
unlabeled samples by 5 for each class in the current iteration. We first calculate losses of
all unlabeled examples by Eq.(4) and Eq.(7), and then sort the losses for each class in the
ascending order. We then set λjc as the value of the top 6th loss for the cth class under hard
and soft regularization term settings, respectively.

We then update v(j) to pick the specific number of unlabeled instances for the next
iteration. There are chances that instances selected for previous training (i.e., weight equals
1 in the previous iteration) may not be selected (i.e., the weight is updated as 0) if their loss
values increase to an evident large value. That is, our algorithm possesses the capability of
“draw with replacement” instead of “draw without replacement” manner as most current
co-training approaches do.

The iteration will be terminated when all unlabeled instances have been involved in
training or the preset largest iteration number is reached. Algorithm 1 presents the entire
optimization procedure. It is easy to see that the training steps of Algorithm 1 are very
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Algorithm 2 Parallel SPamCo Algorithm

1: Input: Labeled set L and unlabeled set U , co-regularization parameter γ, and iteration
rounds T.

2: Output: Θ = {θ(j)|j = 1, . . . ,M}.
3: Initialize weight matrix V, age parameter λ, and current training round t = 1.
4: Update Θ
5: Update V:
6: while t < T || no available data do
7: Update V: prepare training data for all views
8: Update Θ : train classifiers for all views in a distributed way
9: Update Ỹ : renew predictions on all unlabeled instances

10: Augment λ: allow more instances being picked
11: end while
12: Return Θ

similar to the standard co-training method proposed in (Blum and Mitchell, 1998). Specifi-
cally, it also iteratively trains classifiers on different views by exchanging labels of unlabeled
instances in an iterative way. This shows that the proposed algorithm is closely related
to other co-training approaches. Yet beyond others, the proposed algorithm complies with
an optimization implementation on an underlying self-paced learning model. This model
makes the co-training process capable of being easily executed in multi-view scenarios (more
than 3 views) under sound objective guidance, and tends to provide some novel insightful
understandings on the intrinsic effectiveness mechanism under the co-training approach.

4.2. Training Model in Parallel

The problem of the above training strategy lies in its training speed. Since the parameters
of all views need to be updated one by one serially, the training time will increase especially
in the cases that many views are available for the problem or multi-modal information is
expected to be employed. The training time becomes critical when deep neural networks are
adopted for each view. The parallel training manner should be not only necessary but also
a must. For this reason, we develop a parallel learning strategy for the proposed SPamCo
model, as summarized in Algorithm 2.

To guarantee a feasible parallel model of our algorithm, we need to avoid further using
those up-to-date weights calculated in the current iteration since these values are temporar-
ily restored in other machines and we need to reduce the costs of communication of different
machines. The updating rule for importance weight vectors is thus simplified in each view
based on weights of all views learned from the previous iteration. If a hard co-regularization

term is adopted, v
(j)
i is determined by its loss and weights from all other views, and the

solution in Eq.(4) is modified as follows:

v
(j)∗
i,t =

{
1, `

(j)
i < λ(j)

c + γv̄i,t−1,

0, otherwise.
(10)
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where t denotes the current training round, and v̄i,t−1 = 1
M

∑
j v

(j)
i,t−1 is the average weight

for xi in the previous (t− 1)th training round. Similarly, given the soft co-regularization

term, we can rewrite the updating rule for v
(j)
i as below:

v
(j)∗
i,t =


0, `

(j)
i ≥ λ

(j)
c + γv̄i,t−1

1, `
(j)
i ≤ λ

(j)
c + γ(v̄i,t−1 − 1)

v̄i,t−1 +
λ

(j)
c − `(j)i
γ

, otherwise.

(11)

The updating rule for the sample weight in each view is now correlated with the average
instance weight, and the classifier of each view can thus be optimized in a distributed way.
The training of classifiers in all views can be deployed on several threads or machines, and
the bottleneck of training time in one iteration depends on the classifier with the longest
training time among all views. Such a parallel learning manner can also be easily executed
in distributed machines when multiple deep neural networks are employed. It is useful if we
employ multi-classifiers for each view to further improve the probability of selecting correct
pseudo-labeled instances.

5. Rationality Exploration

In the previous section, we have introduced the unified self-paced multi-view co-training
model for multi-view semi-supervised learning and introduce the optimization strategy for
solving it. However, rationality is not discussed despite the optimization strategy is very
similar to the current co-training learning process. In this section, we will analyze the
effectiveness of our proposed framework from two aspects, including traditional co-training
theoretical support and self-paced learning explanation.

5.1. Multi-view Expansion Theory

Similar to the theoretical support for traditional co-training methods, we want to prove
that the proposed SPamCo algorithm is a PAC learning algorithm (Valiant, 1984) under
certain assumptions about the data. Since traditional investigations mainly focus on the
rationality for data with only two views, it is then critical to guarantee the effectiveness of
the learning algorithm when applied to the case with more available views. To make this
feasible, we define a more general version of ε-expansion condition as used in Balcan et al.
(2004) and prove its effectiveness when being applied to multi-view data.

Let D be the distribution over an instance space X = X1 × · · · × XM , and X+ and
X− denote the positive and negative regions of X, respectively (for simplicity we assume
we are doing binary classification). Let D+ and D− denote the margin distributions of
D over X+ and X−, respectively. Following the definition in (Balcan et al., 2004), we

denote S = {S(j)|i = 1, . . . ,M} as confident sets in each view (Sj ⊆ Xj+
), and then

Pr(
∣∣ ∨
j∈[M ]

S(j)
∣∣) = Pr(S(1) ∨ · · · ∨S(M)) denotes the probability mass on instance for which

we are confident about at least one view. The multi-view ε-expansion condition is defined
as follows:
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Definition 2 D+ is ε-expanding if the following inequality holds:

Pr

(∣∣∣∣ ⊕
j∈[M ]

S(j)

∣∣∣∣) ≥ ε min

(
Pr

(∣∣∣∣ ≥2∨
j∈[M ]

S(j)

∣∣∣∣), P r(∣∣∣∣ ∧
j∈[M ]

S̄(j)

∣∣∣∣)
)
,

where Pr
(∣∣ ⊕
j∈[M ]

S(j)
∣∣) denotes the probability mass on instances for which we are confi-

dent about only one view, Pr
(∣∣ ≥2∨
j∈[M ]

S(j)
∣∣) denotes the probability mass on instances being

confident at least two views, and Pr
(∣∣ ∧
j∈[M ]

S̄(j)
∣∣) denotes the probability of instances which

none of views are confident about. Pr(
∣∣ ∨
j∈[M ]

S(j)
∣∣) = Pr

(∣∣ ≥2∨
j∈[M ]

S(j)
∣∣) + Pr

(∣∣ ⊕
j∈[M ]

S(j)
∣∣)

and Pr(
∣∣ ∨
j∈[M ]

S(j)
∣∣) + Pr

(∣∣ ∧
j∈[M ]

S̄(j)
∣∣) = 1.

Definition 2 is a more general version of that provided in (Balcan et al., 2004). If there
are only two views (M = 2), the proposed definition degenerates to the original one. Based
on this multi-view ε-expansion condition, we can prove the following two lemmas.

Lemma 1 Suppose Pr
(∣∣ ≥2∨
j∈[M ]

S(j)
∣∣) ≤ Pr(∣∣ ∧

j∈[M ]

S̄
(j)∣∣) and Pr

(
T(j)

∣∣∣∣∣ ∨
j∈[M ]

S(j)
∣∣) ≥ 1− ε(j)

for every ε(j) ≤ ε
8 , and then Pr

(∣∣ ≥2∨
j∈[M ]

T(j)
∣∣) ≥ (1 + ε

2)Pr
(∣∣ ≥2∨
j∈[M ]

S(j)
∣∣) where T(j) = S

(j)
t+1

denotes the updated confident region of ith view.

Lemma 2 Suppose Pr
(∣∣ ≥2∨
j∈[M ]

S(j)
∣∣) > Pr

(∣∣ ∧
j∈[M ]

S̄i
∣∣) and let α = 1 − Pr

(∣∣ ≥2∨
j∈[M ]

S(j)
∣∣),

if Pr
(
T(j)

∣∣∣∣∣ ∨
j∈[M ]

S(j)
∣∣) > 1 − αε(j) for every ε(j) < ε

8 , and then Pr
(∣∣ ≥2∨
j∈[M ]

T(j)
∣∣) ≥ (1 +

αε
8 )Pr

(∣∣ ≥2∨
j∈[M ]

S(j)
∣∣).

Based on the above two lemmas, we can then prove the following theorem for the
proposed SPamCo algorithm.

Theorem 1 Let εfin and δfin be the desired accuracy and confidence parameters. Suppose
that the multi-view ε-expanding condition is satisfied in each training round, and our al-
gorithm trains classifier in each view with accuracy and confidence parameters set to

ε·εfin
8

and
δfin
N , respectively. After running the SPamCo for N = O(1

ε log
1

εfin·ρinit ) rounds, we can

then achieve the error rate as follows:

Pr
(
E(x,y)∼D(`(y, g(x,Θ)) < εfin

)
≥ 1− δfin (12)

As a result, the rationality of our proposed algorithm can also be supported in terms of
traditional PAC theory. And to the best of our knowledge, this is the first time that the
expansion theory is analyzed for general multi-view semi-supervised learning.
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5.2. Explanation by Self-Paced Learning Robustness Theory

Meng et al. (2017) proved that the optimization problem of SPL is closely related to a
robust loss minimization problem. Such an understanding can be adopted in this study to
present a new understanding of the effectiveness insight underlying this co-training strat-
egy. Specifically, in the SPamCo model, there is a separate SPL objective function for each
view, which implicitly corresponds to a robust loss function for training the classifier of
each view on pseudo-labeled samples. However, such robust losses for different views are
not independent while closely related to each other since a sample should be synchronously
labeled correct or wrong for any view of data representation. Thus in the SPamCo model,
the co-training curriculum regularization actually encodes such a relationship among ro-
bustness of different views. That is, through consistently exchanging pseudo-labels selected
in different views, the robust loss functions of all views are enforced to be related by the
regularization term. This guarantees a sound learning manner for the co-training process.
Note that such an explanation for the effectiveness of the SPamCo algorithm can be easily
understood and requires no subjective assumptions on pseudo-label confidences or two-view
independence. It is thus expected to facilitate a better extension of co-training paradigms
to general users.

6. Experimental Results

To validate the performance of the proposed method, we conduct five series of experiments
on different tasks. First, we compare our proposed SPamCo with classical co-training on 3
toy instances. The progress of how each view selects pseudo-labeled examples in a “draw
with replacement” manner is also visualized. We also conduct experiments on multi-view
text classification, person re-identification, image recognition and object detection tasks.

6.1. Toy Data Experiments

First of all, we display some 2D toy classification tasks to visualize the co-training results
in Figure 1. For each of these 2D problems, we assume that one view only contains one
single feature. The traditional co-training algorithm iteratively trains the classifier of each
view and adds most confident unlabeled samples into the training pool of the other view.
In SPamCo, we use the hard co-regularization term with γ = 3 and 0.3, respectively, and
follow the training process as described in Section 4. All instances are generated using
scikit-learn Python module (Pedregosa et al., 2011)1.

The first example shown in Figure 1(a) is a two-Gaussian case where the two view
features of an instance are its two coordinates x(1) and x(2), respectively. It can be obviously
obtained that each view is used to train the classifier for finely separating all instances. SVM
with linear kernel function is employed as a base classifier in this case with hinge-loss as its
loss function. The canonical co-training handles this problem very well since every single
view is sufficient to train a classifier and both views are conditionally independent. Our
SPamCo algorithm can also solve this case with γ set to different values.

1. More details about our algorithm codes and datasets can be seen in
https://github.com/Flowerfan/SPamCo.
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Figure 1: Toy problems for co-training. The first column is toy data generated by dif-
ferent Gaussian distributions, (a) and (e) are two-Gaussian data in which each
distribution corresponds to one class and (i) is four-Gaussian data in which two
distributions correspond to one class. The canonical co-training results on toy
data are shown in the second column. Last two columns are results of SPamCo
with different γ. The blue and yellow dots denote the instances from two classes,
and black triangles and stars are labeled points.

For the second toy data depicted in Figure 1(e), only one view feature x(2) can be used
to get the correct classifier while x(1) is irrelevant to the classification task. In this case, the
traditional co-training fails to separate two clusters since wrong pseudo-labeled instances
are selected in the earlier training stage by using the x(1) feature. The SPamCo with a large
γ, approximately degenerated into the traditional co-training algorithms (as introduced in
Section 3.2), also encounters such issue, while with a relatively small γ, this phenomenon
can be relieved since both predictions are considered when adding pseudo-labeled instances,
and wrongly labeled ones would be removed in the latter training process even when they
are wrongly picked into training pool in the earlier iterations attributed to the “draw with
replacement” property of our method. We visualize the process of how the classifier in each
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Figure 2: Visualized illustrations over the selected unlabeled examples during iterations of
our method. Yellow and blue dots denote the predictions on unlabeled examples,
respectively. Yellow stars are the selected pseudo-labeled examples of the first
class, and blue triangles denote the pseudo-labeled examples of the second class.
The first row presents the view using features along the vertical axis, and the
second row represents the view using features along the horizontal axis. The
third row is the fused predictions from both the first and the second views. Black
triangles and stars denote the labeled points.

view selects unlabeled examples with γ = 0.3 in Figure 2. Predictions from four iterations
are presented in the figure. We can obtain the view using the feature x(1) which fails to give
right predictions and select some wrongly pseudo-labeled examples during iteration 4 to
10. However, these wrongly labeled examples are rectified in the 16 round. Moreover, some
examples selected in early iterations are removed in later training data. This validates that
although the first view is bad for generating a good classifier, we can relieve its influence by
setting the γ to a small value. By allowing more unlabeled examples into the training, the
boundary of each class is also updated and these correct pseudo-labeled examples contribute
to the improvement of the classification ability.

Both of the above cases are linearly separable ones. The third experiment is a more
intricate one in which the classification boundary is nonlinear. As shown in Figure 1(i),
each class of the data is related to a two-Gaussian distribution. We also change the linear
kernel function with radial basis function for producing a nonlinear decision surface. The
traditional co-training and SPamCo with a large γ both fail to get the right classifier. The
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Language #docs (%) #dim c #l #u #t

English 18,758 16.78 21,531 6 84 2,916 18,674
French 26,648 23.45 24,893 6 84 2,916 26,564
German 12,342 26.80 11,547 6 84 2,916 12,258
Italian 29,953 21.51 34,279 6 84 2,916 29,869
Spanish 24,039 11.46 15,506 6 84 2,916 23,855

Table 2: Reuters multilingual data set summarization. #dim is the dimension of corre-
sponding language, #docs, #c, #l, #u, and #t are the numbers of documents,
categories, labeled instances, unlabeled instances and test instances, respectively.
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Figure 3: Convergence tendency of accuracy for SPamCo with hard and soft regularization
terms under different λ updating strategy, and λ is adjusted by the number of
samples added in each iteration. The left figure is the trend of the mean accuracy
on the test set over iteration rounds for SPamCo with hard regularization term,
and the right figure is the result for SPamCo with soft regularization term.

SVM TSVM Co-LapSVM Co-Label SPamCo(hard) SPamCo(soft)

Accuracy 66.79±1.11 69.34±1.22 69.34±0.82 72.45±1.12 73.28±1.23 73.83±0.99

Table 3: Results for Reuters with different semi-supervised learning algorithms. Mean ac-
curacy with deviation for all competing methods are presented.

SPamCo with a smaller γ, however, can learn a good decision boundary in this case, showing
its capability in recovering the non-linear structure under an appropriate γ.

In summary, these toy problems indicate that our SPamCo method with a relatively
large γ possess similar characteristics compared to the traditional co-training algorithm, and
SPamCo with a proper small γ performs better than, or at least as well as the traditional
co-training model. Therefore, SPamCo model can be viewed as a more adaptive co-training
model for various multi-view data structures.
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6.2. Multi-view Text Categorization Experiments

We also evaluate our SPamCo model for multi-view semi-supervised learning on the Reuters
multilingual data set in Amini et al. (2009), which is from Reuters RCV1 and RCV2 col-
lections. This data set contains newswire articles written in 5 languages, including English,
French, German, Italian and Spanish, so there are 5 views in total. Each language is catego-
rized into 6 classes: C15 (Performance), CCAT (Corporate/Industrial), E21 (Government
Finance), ECAT (Economics), GCAT (Government Social), M11 (Equity Markets). All
documents in the data set are represented as a bag of words, using a TFIDF-based weight-
ing scheme. And each document in one language is translated into other four languages
using the statistical machine translation system PORTAGE. The processed data set can be
directly downloaded from the UCI website.

To compare with other multi-view semi-supervised algorithms, we follow the experiment
setting as described in Xu et al. (2016). For each class of each language, 14 and 486
documents are selected as labeled and unlabeled training instances, respectively. Thus a
total number of 84 and 2916 documents are used as the labeled and unlabeled data for
each language. The rest of all the instances are used as test data. Detailed information
of this data set is listed in Table 2. For each view, SVM with a linear kernel is employed
as a base classifier and one-versus-all strategy is employed for the multi-class task. The
corresponding loss function in our model is thus the sum of k hinge loss function values.
All experiments are repeated for five times with random data partitions.

We first analyze the converge rate for SPamCo with hard and soft regularization terms
under different λ tuning strategies. Since λ is hard to be tuned for choosing unlabeled
samples in each iteration, we specify the value for λ by controlling the number of unlabeled
samples after every update. The mean accuracy on the test set with two settings is displayed
in Figure 3. We employ seven λ tuning strategies by setting the increment of selected
unlabeled instances as 5, 10, 15, 20, 50, 100 and 500 respectively for each class in every
iteration, and γ is set as 0.3 in this experiment. Results of 100 iterations under these
settings are presented for better comparison.

From Figure 3, it can be seen that our SPamCo algorithm with both hard and regu-
larization terms under all λ settings converges and improves the performance of initialized
model which are only trained on the labeled set. The increment of the selected unlabeled
instance is in direct ratio with the converging rate of the proposed model but may degen-
erate its performance. Adding more unlabeled data with pseudo-labels into the training
pool in one iteration would also introduce more noise data which may degenerate the model
performance. Besides that, SPamCo with soft regularization term is less sensitive to the
increment of selected unlabeled instances than that with hard regularization term.

We also compare our proposed method with other competing semi-supervised learning
methods. For single view semi-supervised learning algorithms, features from all views are
combined for training in SVM and TSVM (Collobert et al., 2006). Two multi-view learning
methods, including CoLapSVM (Sindhwani et al., 2005a) and Co-label (Xu et al., 2016),
are also compared in this experiment. The Co-LapSVM is a typical co-regularization style
algorithm which introduces a prediction consistency regularization term of multi-views.
For the Co-Label method, it uses predictions from all views in every iteration with different
strategies and forms a pseudo-label vector for obtaining robust predictions. For our SPamCo
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Resnet50 & Densenet121 Resnet101 & Densenet121
View1 View2 Final View1 View2 Final

Base 40.5±1.57 38.5±1.20 47.7±0.78 44.5±1.06 38.5±1.20 49.8±0.85
SelfTrain 59.2±0.70 61.7±1.14 67.7±0.72 62.7±0.50 61.7±1.14 69.3±0.42
Cotrain 59.3±0.50 61.9±0.80 67.0±0.33 62.5±0.15 62.2±0.65 68.5±0.29
Cotrain(Rep) 60.1±0.72 62.5±0.77 67.7±0.42 63.1±0.64 63.2±0.52 69.3±0.39

SPamCo(hard) 61.4±0.44 63.8±0.39 68.9±0.37 63.7±0.43 64.4±0.61 70.3±0.30
SPamCo(soft) 61.7±0.21 64.7±0.66 69.5±0.33 64.6±0.90 64.8±0.31 70.9±0.35

Table 4: Mean average precision (MAP) comparison of all competing methods on Market-
1501 data set with two views. The first line is the supervised learning result using
only labeled data. Self iterative training and co-training results are presented in
the second and third lines, respectively. The “Rep” denotes that the co-training
algorithm is trained with the replacement strategy. The last two lines show the
results of our proposed SPamCo model with hard and soft regularization terms.

method, both hard and soft regularization terms are employed with γ fixed as 0.3 and the
increment quantified in each iteration is set to 15. The means and the standard deviations
of accuracy of all five languages for different methods on Reuters data set are presented in
Table 3.

From the table, we can observe that our SPamCo method with both hard and soft regu-
larization terms perform better than other methods. And SPamCo with soft regularization
term achieves relatively higher mean accuracy with lower deviation than that with hard
one. This demonstrates that it should be beneficial to select confident unlabeled instances
during training with the soft regularization term.

6.3. Person Re-identification Experiments

The person re-identification task is usually viewed as an image retrieval problem, aiming
to match pedestrians from the gallery (Zheng et al., 2016). Specifically, given a person-of-
interest (query), the person re-identification method aims to determine whether the person
has been observed by cameras.

Experiments are conducted on Market-1501 dataset for this task. This dataset contains
32,668 detected bounding boxes with persons of 1,501 identities (Zheng et al., 2015). Images
of each identity are captured by six cameras at most, and two at least. According to the data
set setting, the training set contains 12936 cropped images of 751 identities and testing set
contains 19,732 cropped images of 750 identities. They are directly detected by Deformable
Part Model (DPM) instead of hand-drawn bounding boxes, which is closer to the realistic
setting. Each identity may have multiple images under each camera. We use the provided
fixed train and test sets, under both the single-query and multi-query evaluation settings.

In this experiment, 20% instances of training data are chosen as the labeled set, and the
rest of the data are treated as unlabeled. Since images for different classes are unbalanced,
we randomly select 20% labeled instances for each class to make sure that the training set
contains images of every class. The experiment is repeated for ten times, and the average
performance in test data is reported as the final result.

23



Ma, Meng, Dong and Yang

Resnet50 & Densenet121 Resnet101 & Densenet121
View1 View2 Final View1 View2 Final

Base 63.4±2.06 61.9±1.65 70.1±0.99 66.7±1.04 61.9±1.65 71.8±0.65
SelfTrain 79.5±0.77 81.7±0.59 85.1±0.43 81.5±0.59 82.2±0.45 86.0±0.32
Cotrain 79.5±0.41 81.7±0.45 84.6±0.32 81.4±0.37 81.8±0.56 85.6±0.42
Cotrain(Rep) 79.9±0.50 82.3±0.37 85.1±0.40 81.7±0.40 82.7±0.38 86.0±0.43

SPamCo(hard) 80.6±0.56 83.2±0.57 85.7±0.45 82.5±0.54 83.5±0.24 86.6±0.31
SPamCo(soft) 81.0±0.57 83.8±0.58 86.3±0.27 82.6±0.87 83.6±0.37 86.9±0.35

Table 5: Rank 1 accuracy of all competing methods on Market-1501 data set with two
views. The first line is the supervised learning result using only labeled data. Self
iterative training and co-training results are presented in the second and third
lines, respectively. The “Rep” denotes that the co-training algorithm is trained
with the replacement strategy. The last two lines show the results of our proposed
SPamCo model with hard and soft regularization term.

Three state-of-art deep network structures, including ResNet-50, ResNet-101 (He et al.,
2016) and DenseNet-121 (Huang et al., 2017), are used to get 3-view features for the Market-
1501 data set. All these models are pre-trained with ImageNet data sets, and input images
are resized to 256× 128 for ResNet50 and Resnet-101, 224× 224 for DenseNet-101, respec-
tively. In the training phase, images are randomly horizontal flipped and cropped for data
augmentation. The cross entropy loss function is used in this experiment, and thus the
re-ID task can be well handled using the SPamCo algorithm.

For two-view experiments, two combinations, ResNet-50 with DenseNet-121 and ResNet-
101 with DenseNet-121, respectively, are adopted. The base algorithm uses only labeled
data in this experiment. Self-train algorithm iteratively trains each classifier and adds un-
labeled instances in its own view while the co-training algorithm exchanges their selected
unlabeled data for training. To make a fair comparison, we also trained the co-training algo-
rithm with the “draw with replacement” strategy. Specifically, instead of fixing the pseudo-
labeled examples in the training pool, the selected unlabeled examples are re-selected from
all unlabeled examples in each iteration. For the SPamCo method, hard and soft regu-
larization terms are both implemented with the same γ set as 0.3. The number of added
unlabeled samples is proportional to the number of labeled samples. We set this proportion
to 0.5 in algorithms for fair comparison. The maximum iteration round is set as 5 so that
all unlabeled instances get their chance to be selected. Both mean average precision (MAP)
and rank-1 accuracy measures are employed for performance evaluation. All trials were
repeated for 10 times and the means and standard deviations are shown in Tables 4 and 5,
in terms of both measures. Compared with the traditional co-training, the co-training with
the “draw with replacement” strategy performs better. However, it is still inferior to the
SPamCo method. This can be explained by that the selected pseudo-labeled examples are
more confident in our method as they are selected based on all views rather than on the
predictions from the single view in the co-training algorithm.

The triple view experiment combines all three networks as 3-view features for learning.
The traditional co-training is not included since it can only deal with two views. All other
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Mean average precision Rank-1 accuracy
Res50 Den121 Res101 Final Res50 Den121 Res101 Final

Base 40.5±1.57 38.5±1.20 44.5±1.06 52.3±0.73 63.4±2.06 61.9±1.65 66.7±1.04 73.8±0.69
Selftrain 59.2±0.70 61.7±1.14 62.7±0.50 70.8±0.37 79.5±0.77 81.7±0.59 81.5±0.59 86.7±0.41

SPamCo(hard) 61.2±0.61 63.8±0.48 63.7±0.47 71.3±0.32 80.6±0.78 83.2±0.64 82.3±0.62 87.0±0.60
SPamCo(Fhard) 54.7±0.83 56.6±0.59 56.8±0.43 64.8±0.52 75.5±0.65 78.2±0.34 77.2±0.59 83.1±0.38
SPamCo(Phard) 61.4±0.74 63.9±0.81 63.7±0.72 71.2±0.52 80.6±0.56 83.0±0.81 82.2±0.70 86.8±0.57

SPamCo(soft) 61.6±0.75 64.5±0.72 64.3±0.43 71.8±0.45 81.1±0.88 83.6±0.56 82.8±0.59 87.4±0.47
SPamCo(Fsoft) 57.3±1.02 59.9±0.82 59.4±0.61 67.3±0.63 77.7±0.50 80.6±0.47 79.1±0.55 84.6±0.50
SPamCo(Psoft) 61.7±0.61 64.4±0.75 64.3±0.38 71.7±0.44 81.3±0.45 83.6±0.62 82.7±0.43 87.3±0.27

Table 6: MAP and rank-1 accuracy of all competing methods on Market-1501 data set
with triple-views. The first line is the supervised learning result using only labeled
data. SelfTrain result is presented in the second line. Phard and Psoft indicate that
parallel training strategy is employed compared to serial training strategy. Fhard
and Fsoft denote that the model does not update labels of unlabeled examples
during iterations. Last six lines show the results of SPamCo method with hard
and soft regularization term under different training strategies

.

settings, including initialized parameters and training strategy, are also the same with two-
view experiments. The results of all competing methods are compared in Table 6.

From Tables 4, 5 and 6, it is seen that MAP and rank-1 accuracy of all methods are
improved compared to the base algorithm, in which only labeled samples are involved
into training. Although multi-view features are generated by employing multi-models, the
integrated results are evidently better than results using only any single model. We also
fix the labels (as predicted in the first iteration) and only learn sample weights during
iterations. It means that Eq. (9) is removed when optimizing the whole model. We can
obtain that the model without updating predictions on unlabeled examples achieves much
lower performance. It indicates that updating labels of unlabeled examples is necessary for
generating better predictions. This can be easily explained by the fact that the pseudo-labels
roughly annotated on the unsupervised instances inevitably contain many false ones, and
naturally degenerate the classification capacity. While by allowing the pseudo-labels capable
of being ameliorated during the training process, the wrongly annotated labels can thus to
be possibly rectified. Besides, when fixing the labels of unlabeled examples, the model with
soft regularization term performs better than the model with hard regularization term.
It shows that soft sample weights make the model relatively more robust to unexpected
noises. Besides, SPamCo in three-view combination with serial or parallel training strategy
performs better than that in two-view settings. This can be explained by the fact that
different network structures learn their own representations which together build up a better
representation for original images from multiple aspects. However, the performance of
traditional co-training performs worse compared with the self-train algorithm. Our proposed
method performs better than both co-training and self-train algorithms with both hard or
soft regularization terms. This can be explained by the mechanism that the proposed
model considers to add pseudo-labeled instances from predictions of all views and some
wrongly labeled samples involved into training in an early stage can be removed or rectified
in the later iterations. Note that the best rank 1 accuracy and MAP results under every
single and combined view are achieved by our SPamCo model with soft regularization term.
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Method CIFAR-10 CIFAR-10
(2000 examples) (4000 examples)

LadderNetwork (Rasmus et al., 2015) − 20.40±0.47
ImprovedGAN (Salimans et al., 2016) 19.61±2.09 18.63±2.32
TripleGAN (Chongxuan et al., 2017) − 16.99±1.62
GoodBadGAN (Dai et al., 2017) − 14.14±0.30
Temporal Ensembling (Laine and Aila, 2016) 15.64±0.39 12.16±0.24
Mean Teacher (Tarvainen and Valpola, 2017) 15.73±0.31 12.31±0.28
SNTG (Luo et al., 2018) 13.64±0.32 9.89±0.34
ICT (Verma et al., 2019) 9.26±0.09 7.66±0.17

SPamCo(Phard) 12.23±0.43 7.28±0.28
SPamCo(Psoft) 11.97±0.49 7.05±0.24

Table 7: Performance comparison of all competing methods on CIFAR-10 with different la-
beled examples (2000 and 4000). The mean error rates (%) and standard deviation
are presented. The best performance is marked in bold.

This indicates that some unlabeled instances may harm the model performance while the
SPamCo algorithm with soft model finely relieves this negative effect.

6.4. Image Recognition Experiments

To compare with more latest methods using deep learning models, we conduct experiments
on the image recognition task. The CIFAR-10 dataset is employed. The dataset consists
of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000
training images and 10000 test images. In this experiment, 2000 and 4000 training samples
are randomly selected to be taken as supervised data, respectively, and other rest training
ones are taken as unsupervised instances. In both cases, the same 10000 test images are
used for evaluation.

The following methods represent the latest state-of-the-art handling this problem. The
Ladder network (Rasmus et al., 2015) constrained the predictions of unlabeled examples
with different perturbations. Some recent works (Salimans et al., 2016; Chongxuan et al.,
2017; Dai et al., 2017) used generative adversarial networks (GAN) to generate samples
for auxiliary training. The samples generated by GAN can be viewed as another kind of
“data augmentation” to “tell” the decision boundary where to lie. The temporal ensem-
bling method (Laine and Aila, 2016) maintained an exponentially moving average (EMA)
of predictions over epochs. Instead of averaging predictions every epoch, the mean teacher
algorithm (Tarvainen and Valpola, 2017) updated the targets more frequently by average
model parameters. Later Luo et al. (2018) proposed the smooth neighbors on the teacher
graph (SNTG) based on previous methods which considered the connections between data
points to induce smoothness on the data manifold. Verma et al. (2019) introduced a co-
regularization style algorithm2, called ICT, which encourages the prediction at an interpo-
lation of unlabeled points to be consistent with the interpolation of the predictions at those

2. https://github.com/vikasverma1077/ICT
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Steps ER (Shake) ER (WRN) ER (Fuse) DR CE

Iteration 0 32.77 29.62 28.43 27.43 1.10
Iteration 1 24.52 25.40 23.20 19.15 0.81
Iteration 2 22.26 22.15 20.96 14.92 0.64
Iteration 3 19.05 19.14 18.33 11.39 0.48
Iteration 4 15.62 16.90 15.50 9.15 0.38
Iteration 5 12.38 13.04 12.21 6.37 0.32

Table 8: Results of SPamCo on the test data of CIFAR-10 during model iterations with
2000 examples labeled. We use ER to denote the error rate (%) and DR to denote
the difference rate between predictions from two views. Shake and WRN represent
the network names of two views. We report the cross entropy (CE) loss between
the predictions from two views in the last column.

points. We report the error rate of these algorithms on the CIFAR-10 dataset in Table 7
for comprehensive performance comparison.

We evaluate our model on CIFAR-10 dataset with two models employed as two views:
the Wide Resnet (Zagoruyko and Komodakis, 2016) and ShakeDrop (Yamada et al., 2018).
We set γ to 0.3, and iteration steps to 5 and 4 for the experiment with 2000 and 4000 labeled
instances, respectively. The model in each view is trained for 300 epochs in all iterations,
and the learning rate is 0.1 in the beginning and is reduced 10 times after training of
100 epochs. In each iteration, the number of selected unlabeled examples increase by the
number of training examples in the last iteration. We employ the random erasing technique
in Zhong et al. (2020) in the data augmentation to increase the diversity of samples from
different views.

Table 7 summarizes the error rates obtained by all competing methods. It can be
observed that our method with both hard and soft regularization terms outperform other
algorithms with only 4000 labeled examples. The SPamCo model with soft co-regularization
term achieves 7.05% error rate, lower than that of the ICT method by 8%. It thus shows
that the SPamCo method also works well integrated with deep learning models on the
standard image recognition task.

We further present the error rate of each model in different iterations on the test set
in Table 8. The algorithm is performed once with the hard co-regularization term for this
experiment. As more unlabeled examples are pseudo-labeled and selected for updating clas-
sifiers, the error rate on the test data decreases. We also report the diversity degree among
different models using difference rate (DR) and cross entropy (CE) loss. From Table 8,
we can see that the different models indeed introduce diverse predictions. The diversity
between classifiers help different views exchange information on unlabeled examples, and
the model can thus add confident pseudo-labeled examples into the training to improve the
model performance.

6.5. Object Detection Experiment

We also conduct experiments on the object detection task, which is one of the most funda-
mental problems in computer vision. Instead of simply classifying images into a single class,
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aero bike bird boat botl bus car cat chair cow table dog hors mbik pers plnt shp sofa train tv mean

Zhang et al. (2017) 47.4 22.3 35.3 23.2 13.0 50.4 48.0 41.8 1.8 28.9 27.8 37.7 41.6 43.8 20.0 12.0 27.8 22.9 48.9 31.6 31.3

Wang et al. (2014) 48.9 42.3 26.1 11.3 11.9 41.3 40.9 34.7 10.8 34.7 18.8 34.4 35.4 52.7 19.1 17.4 35.9 33.3 34.8 46.5 31.6

Kantorov et al. (2016) 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3

Bilen and Vedaldi (2016) 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.3

Li et al. (2016) 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5

Diba et al. (2017) 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8

Vgg16-FRCNN 35.8 57.5 24.3 19.8 19.6 41.1 53.8 46.7 19.8 19.0 25.5 14.9 45.4 53.5 33.3 14.3 31.8 47.5 57.9 44.9 35.3

Res50-RFCN 41.0 51.6 28.6 16.9 23.5 49.5 46.7 47.4 14.6 24.1 23.7 16.4 41.9 53.8 25.7 14.4 28.4 33.7 57.2 47.4 34.3

Res101-RFCN 40.2 56.8 37.5 20.4 22.6 47.2 54.1 52.1 19.9 26.8 17.3 14.3 44.4 56.8 29.9 17.7 29.6 46.7 61.3 43.6 36.9

Final 42.4 61.3 39.4 23.5 25.1 50.1 57.3 55.2 18.8 26.4 22.4 17.0 48.2 56.3 34.8 19.2 30.6 49.0 61.3 51.0 39.5

Table 9: Performance comparison in average precision (AP) of all competing methods on
the PASCAL VOC 2007 test set. The five compared methods make use of full
image-level labels for training. Our method (the last four rows) requires only
approximately four strong annotated images per class. Results on each class are
shown in one column. We use Fast RCNN with VGG16 and RFCN with ResNet
50 and 101 as our base detectors to get 3-view features for the task.

all objects in one image with their position are required to be predicted in this task. It is
often expensive and time-consuming to obtain amounts of labeled objects, and thus how to
use the collected small amount of labeled data together with large amounts of unlabeled
instances in object detection is important.

Object detection methods can be divided into proposal based and proposal free types.
Proposal based methods first determine bounding boxes of objects in each image and then
make predictions on these given bounding boxes, while proposal free methods predict object
bounding box and its class at the same time. In this experiment, every bounding box instead
of every image is viewed as a training instance, and thus proposal based methods are em-
ployed for simplicity. Two proposal based objected detection models, Fast RCNN (Girshick,
2015) and R-FCN (Dai et al., 2016), are adopted as base detectors, and VGG (Simonyan
and Zisserman, 2014), ResNet (He et al., 2016) are the backbone networks for the detectors.
Three combinations, Fast RCNN with VGG, R-FCN with ResNet50 and ResNet101, are
treated as three separate views for each image. In the meanwhile, selective search (Uijlings
et al., 2013), an unsupervised method, is used to generate proposals for both training and
test images.

We evaluate our method on PASCAL VOC 2007 detection data set (Everingham et al.,
2010), which is one of the most widely used benchmarks in the object detection task. This
data set contains 10022 images annotated with bounding boxes for 20 object categories. It
is officially split into 2501 training, 2510 validation, and 5011 testing images.

For each class, we randomly label 4 images, which contain at least one bounding box
belonging to the given class. It results in a total of 60 initial annotated images, and all the
object bounding boxes in these 60 images are annotated. There are in fact an average of
4.2 images per class since some images have multiple bounding boxes.

For our proposed SPamCo method, classification and localization loss are both employed
for selecting unlabeled boxes during training. In the training phase, 2000 proposals for each
image are generated using the selective search method and all images are randomly flipped
for data augmentation. γ is set to 0.3 for leveraging predictions from all views. The
maximum iteration round is set to 5 and training epochs in each round is set to 9. We
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

Figure 4: Typical selected pseudo-labeled instances during training, where the bounding
boxes with different colors indicate the generated pseudo-boxes by our method
for different classes.

empirically use the learning rate 0.001 for the first eight epochs and reduce it to 0.0001 for
the last epochs. The momentum and weight decay are set as 0.9 and 0.0005, respectively.

Since there is rare work that only uses such few instances for object detection, we
compare our proposed approach with recent state-of-art semi-supervised object detection
methods which use full image-level labels from training. Li et al. (2016) decomposed this
task into several steps to improve the detection accuracy. Wang et al. (2014) used the typical
probabilistic latent semantic analysis to learn categories of images. Zhang et al. (2017)
simply used self-paced curriculum learning to detect objects from easy to hard. Kantorov
et al. (2016) introduced context-aware guidance models to improve the localization. Bilen
and Vedaldi (2016) proposed a weakly supervised detection network using selective search to
generate proposals and train image-level classification based on regional features. Diba et al.
(2017) employed location, segmentation and multi-instance network to solve this problem.

Table 9 summarizes the average precision (AP) of all competing methods on the PAS-
CAL VOC 2007 test set. The competing methods usually use full image-level labels. In
contrast, we use the same set of images but with much fewer annotations: totally 60 an-
notated images and the others are free-labeled. Our proposed SPamCo method achieves
39.5% mAP, a competitive performance compared to state-of-art weakly supervised object
detection algorithms. And results in some specific classes, e.g., bike, bottle and persons,
even achieve the best performance.

We also display some pseudo-labeled images obtained by our method over each iteration
in Figure 4. It is seen that the detector tends to choose images with relatively high clas-
sification confidence aggregated over the bounding boxes. After the detector is updated,
it can gradually label objects in a more complicated situation. For instance, A rotated
TV-Monitor is selected with higher confidence in iteration round 3 compared to the TV-
Monitor instance selected in the first iteration round, and Sofa overlapped with the person
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is also selected with higher confidence in last iteration round while the detector in other
three iterations fails to detect it.

7. Conclusion and Future Work

In this paper, we have proposed a unified self-paced multi-view co-training(SPamCo) model,
which iteratively trains the classifier of each view and adds unlabeled instances into training
with a “draw with replacement” learning manner. Two co-regularization terms, including
hard and soft co-regularization terms, are introduced to define different strategies for un-
labeled data. Our proposed model with hard co-regularization term follows traditional
co-training style algorithms which pick confident instances from one view and then puts
them into the training pool of other views. The soft co-regularization term implicitly en-
forces identical predictions for unlabeled instances which are often employed in conventional
co-regularization style algorithms. Both co-regularization terms can be easily extended to
multi-view cases with more than 3 views. We present two optimization strategies, including
the serial and parallel training regimes, for solving the proposed model. The rationality
of our proposed SPamCo model is theoretically analyzed by PAC learning theory and SPL
robustness explanation.

From the experiment, we obtain that the diversity between different views may result
in prediction biases. The diverse predictions may contribute to learning among views (i.e.,
the results shown in Table 7), but there is also the chance that some views are bad and thus
hurting the performance. We can reduce the influence from bad views by tuning the γ to a
small value as we have done in the experiment. We can also make the model robust to the
bad view by directly imposing weights on views and learning it by the similar self-paced
strategy. The weight can be learned from the weights on unlabeled examples among views.
It is worth further developing such strategies to leverage different views. Besides, when
the supervised samples contain certain outliers or heavy noises, it should be better to also
impose weights to labeled instances to further suppress the influence of these noisy ones.
This is also a meaningful research issue in our future investigations. The optimization theory
of the proposed method (Hestenes, 1975) is also a meaningful research direction worthy of
being further investigated. Furthermore, we will make more investigations to strengthen the
theoretical results of our algorithms from the benefit of its better label correction capability
in our future research.
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Appendix A. Proof of Lemma 1
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Appendix B. Proof of Lemma 2
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From Eq.(14) we can get Pr
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Appendix C. Proof of Theorem 1

For i ≥ 1, assume that S
(j)
i ⊆ X (j)+ is the confident set in each view after step i − 1 of

self-paced co-training. Define pi = Pr
(∣∣ ≥2∨
j∈[M ]

S
(j)
i

∣∣), qi = Pr
(∣∣ ∧
j∈[M ]

S̄i
∣∣), and αi = 1 − pi,
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with all probabilities with respect to D+. We try to bound Pr(
∣∣ ∨
j∈[M ]

S
(j)
n

∣∣) after N rounds

of iteration.
After each training round, we get that with probability 1− δfin

N , we have:
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8
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Then after first iteration, with probability 1− δfin
N , we can get:
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Now we consider that for i ≥ 1, If pi ≤ qi, we can obtain that with probability 1− δfin
N ,

we have Pr
(∣∣ ≥2∨
j∈[M ]

S
(j)
i+1

∣∣) ≥ (1 + ε
2)Pr

(∣∣ ≥2∨
j∈[M ]

S
(j)
i
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2. And with probability at least 1− δfin, learning algorithm A(j) of each view will success
after N rounds of training.

From above observations, we have pi+1 = (1+ ε
16)i(1− ε

4)ρinit as long as pi ≤ 1
2 . Then the

required training rounds for pN1 >
1
2 can be calculated by solving the following inequality:
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From Eq.(18), we can easily get that N1 >
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). At this point, we compare

the relationship between αi and αi+1. From Lemma 2, we can get:
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Given pN1 > 1
2 , after N2 iterations, we have

αN1+N2
αN1

≤ (1 − ε
16)N2 . Due to αN1 =

1− pN1 <
1
2 , we can then make αN1+N2 ≤ εfin by calculating the required training rounds

through solving the following inequality:

1

2
(1− ε

16
)N2 ≤ εfin. (20)

By solving Eq.(20), we can get that after iterations N2 = O(1
ε log

1
εfin

), we have pN1+N2 <

1−εfin. Therefore, after a total ofO(1
ε log

1
εfin·ρinit ) rounds, we can have a predictor of desired

accuracy with the desired confidence.
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