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Abstract
We study the learnability of sums of independent integer random variables given a bound on the size
of the union of their supports. ForA ⊂ Z+, a sum of independent random variables with collective
support A (called an A-sum in this paper) is a distribution S = X1 + · · · + XN where the Xi’s
are mutually independent (but not necessarily identically distributed) integer random variables with
∪isupp(Xi) ⊆ A.

We give two main algorithmic results for learning such distributions. First, for the case |A| = 3,
we give an algorithm for learning an unknown A-sum to accuracy ε using poly(1/ε) samples and
running in time poly(1/ε), independent of N and of the elements of A. Second, for an arbitrary
constant k ≥ 4, if A = {a1, ..., ak} with 0 ≤ a1 < ... < ak, we give an algorithm that uses
poly(1/ε) · log log ak samples (independent of N ) and runs in time poly(1/ε, log ak). We prove
an essentially matching lower bound: if |A| = 4, then any algorithm must use

Ω(log log a4)

samples even for learning to constant accuracy. We also give similar-in-spirit (but quantitatively
very different) algorithmic results, and essentially matching lower bounds, for the case in which A
is not known to the learner.

Our algorithms and lower bounds together settle the question of how the sample complexity
of learning sums of independent integer random variables scales with the elements in the union of
their supports, both in the known-support and unknown-support settings. Finally, all our algorithms
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easily extend to the “semi-agnostic” learning model, in which training data is generated from a
distribution that is only cε-close to some A-sum for a constant c > 0.
Keywords: Central limit theorem, sample complexity, sums of independent random variables,
equidistribution, semi-agnostic learning.

1. Introduction

The theory of sums of independent random variables forms a rich strand of research in probability.
Indeed, many of the best-known and most influential results in probability theory are about such
sums; prominent examples include the weak and strong law of large numbers, a host of central limit
theorems, and (the starting point of) the theory of large deviations. Within computer science, the
well-known “Chernoff-Hoeffding” bounds, large deviation bounds for sums of independent random
variables, are a ubiquitous tool of great utility in many contexts. Not surprisingly, there are several
books (Gnedenko and Kolmogorov, 1954; Petrov, 1975, 1995; Prokhorov and Statulevicius, 2000;
Klesov, 2014; Borovkov and Balakrishnan, 1985) devoted to the study of sums of independent
random variables.

Given the central importance of sums of independent random variables both within probability
theory and for a host of applications, it is surprising that even very basic questions about learning
these distributions were not rigorously investigated until very recently. The problem of learning
probability distributions from independent samples has attracted a great deal of attention in theoret-
ical computer science for almost two decades (important early papers include Kearns et al., 1994;
Dasgupta, 1999; Arora and Kannan, 2001; Vempala and Wang, 2002; Kalai et al., 2010; Moitra
and Valiant, 2010; Belkin and Sinha, 2010), but most of this work has focused on other types of
distributions such as mixtures of Gaussians, hidden Markov models, et cetera. While sums of inde-
pendent random variables may seem to be a very simple type of distribution, as we shall see below
the problem of learning such distributions turns out to be surprisingly tricky.

Before proceeding further, let us recall the standard PAC-style model for learning distributions
that was essentially introduced by Kearns et al. (1994) and that we use in this work. In this model
the unknown target distribution X is assumed to belong to some class C of distributions. A learning
algorithm has access to i.i.d. samples from X, and must produce an efficiently samplable description
of a hypothesis distribution H such that with probability at least (say) 9/10, the total variation
distance dTV(X,H) between X and H is at most ε. (In the language of statistics, this task is
usually referred to as density estimation, as opposed to parametric estimation in which one seeks
to approximately identify the parameters of the unknown distribution X when C is a parametric
class like Gaussians or mixtures of Gaussians.) In fact, all our positive results hold for the more
challenging semi-agnostic variant of this model, which is as above except that the assumption that
X ∈ C is weakened to the requirement dTV(X,X∗) ≤ cε for some constant c and some X∗ ∈ C.

Learning sums of independent random variables: Formulating the problem. To motivate our
choice of learning problem it is useful to recall some relevant context. Recent years have witnessed
many research works in theoretical computer science studying the learnability and testability of
discrete probability distributions (see Daskalakis et al., 2012c,b, 2013; Rabani et al., 2014; Acharya
et al., 2015; Acharya and Daskalakis, 2015; Canonne, 2015; Li et al., 2015; Canonne et al., 2016;
Canonne, 2016; Diakonikolas et al., 2016a,c; Daskalakis et al., 2016). Our paper belongs to this
line of research. A folklore result in this area is that a simple brute-force algorithm can learn any
distribution over an M -element set using Θ(M/ε2) samples, and that this is best possible if the
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distribution may be arbitrary. Thus it is of particular interest to learn classes of distributions over
M elements for which a sample complexity dramatically better than this “trivial bound” (ideally
scaling as logM , or even independent of M altogether) can be achieved.

This perspective on learning, along with a simple result which we now describe, strongly mo-
tivates considering sums of random variables which have small collective support. Consider the
following very simple learning problem: Let {Xi}ni=1 be independent random variables where Xi

is promised to be supported on the two-element set {0, i} but Pr[Xi = i] is unknown: what is
the sample complexity of learning X = X1 + · · · + XN? Even though each random variable
Xi is “as simple as a non-trivial random variable can be”–supported on just two values, one of
which is zero–a straightforward lower bound (Daskalakis et al., 2012b) shows that any algorithm
for learning X even to constant accuracy must use Ω(N) samples, which is not much better than
the trivial brute-force algorithm based on support size. (We note that this learning problem is the
problem of learning a weighted sum of independent Bernoulli random variables in which the i-th
Bernoulli random variable has weight equal to i, and hence the collective support of X1, . . . ,XN is
|{0, 1, . . . , N}| = N + 1.)

Given this lower bound, it is natural to restrict the learning problem by requiring the random
variables X1, . . . ,XN to have small collective support, i.e. the union supp(X1)∪ · · · ∪ supp(XN )
of their support sets is small. Inspired by this, Daskalakis et al. (2012b) studied the simplest non-
trivial version of this learning problem, in which each Xi is a Bernoulli random variable (so the
union of all supports is simply {0, 1}; note, though, that the Xi’s may have distinct and arbitrary
biases). The main result of Daskalakis et al. (2012b) is that this class (known as Poisson Bino-
mial Distributions) can be learned to error ε with poly(1/ε) samples, so, perhaps unexpectedly, the
complexity of learning this class is completely independent of N , the number of summands. The
proof of Daskalakis et al. (2012b) relies on several sophisticated results from probability theory, in-
cluding a discrete central limit theorem from earlier work (Chen et al., 2011), proved using Stein’s
method, and a “moment matching” result due to Roos (2000). A subsequent sharpening of the re-
sult of Daskalakis et al. (2012b) by Diakonikolas et al. (2016b), giving improved time and sample
complexities, also employed sophisticated tools, namely Fourier analysis and algebraic geometry.

Motivated by this first success, there has been a surge of recent work which studies the learnabil-
ity of sums of richer classes of random variables. In particular, Daskalakis et al. (2013) considered
a generalization of the setting of Daskalakis et al. (2012b) in which each Xi is supported on the set
{0, 1, . . . , k − 1}, and Daskalakis et al. (2015) considered a vector-valued generalization in which
each Xi is supported on the set {e1, . . . , ek}, the standard basis unit vectors in Rk. We will elabo-
rate on these results shortly, but here we first highlight a crucial feature shared by all these results;
in all of the aforementioned previous work the collective support of the individual summands forms
a “nice and simple” set (either {0, 1}, {0, 1, . . . , k − 1}, or {e1, . . . , ek}). Indeed, the technical
workhorses of all these results are various central limit theorems which crucially exploit the simple
structure of these collective support sets. These central limit theorems have since found applications
in other settings, such as the design of algorithms for approximating equilibrium (Daskalakis et al.,
2016, 2015; Diakonikolas et al., 2016c; Cheng et al., 2017) as well as stochastic optimization (De,
2018).

In this paper we go beyond the setting in which the collective support of X1, . . . ,XN is a “nice”
set, by studying the learnability of X1 + · · ·+XN where the collective support may be an arbitrary
set of non-negative integers. Two questions immediately suggest themselves:

1. How (if at all) does the sample complexity depend on the elements in the common support?
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2. Does knowing the common support set help the learning algorithm — how does the complex-
ity vary depending on whether or not the learning algorithm knows the common support?

In this paper we give essentially complete answers to these questions. Intriguingly, the an-
swers to these questions emerge from the interface of probability theory and number theory: our
algorithms rely on new central limit theorems for sums of independent random variables which we
establish, while our matching lower bounds exploit delicate properties of continued fractions and
sophisticated equidistribution results from analytic number theory. The authors find it quite sur-
prising that these two disparate sets of techniques “meet up” to provide matching upper and lower
bounds on sample complexity.

We now formalize the problem that we consider.

Our learning problem. Let X1, . . . ,XN be independent (but not necessarily identically dis-
tributed) random variables. LetA = ∪isupp(Xi) be the union of their supports and assume w.l.o.g.
that A = {a1, ..., ak} for a1 < a2 < · · · < ak ∈ Z≥0. Let S be the sum of these independent
random variables, S = X1 + · · ·+ XN . We refer to such a random variable S as an A-sum.

We study the problem of learning a unknown A-sum S, given access to i.i.d. draws from S.
A-sums generalize several classes of distributions which have recently been intensively studied in
unsupervised learning (Daskalakis et al., 2012b, 2013; Diakonikolas et al., 2016a), namely Poisson
Binomial Distributions and “k-SIIRVs,” and are closely related to other such distributions (Di-
akonikolas et al., 2016c; Daskalakis et al., 2016) (k-Poisson Multinomial Distributions). These
previously studied classes of distributions have all been shown to have learning algorithms with
sample complexity poly(1/ε) for all constant k.

In contrast, in this paper we show that the picture is more varied for the sample complexity of
learning when A can be any finite set. Roughly speaking (we will give more details soon), two of
our main results are as follows:

• Any A-sum with |A| = 3 is learnable from poly(1/ε) samples independent of N and of the
elements of A. This is a significant (and perhaps unexpected) generalization of the efficient
learnability of Poisson Binomial Distributions, which corresponds to the case |A| = 2.

• No such guarantee is possible for |A| = 4: if N is large enough, there are infinitely many sets
A = {a1, a2, a3, a4} with 0 ≤ a1 < ... < a4 such that Ω(log log a4) examples are needed
even to learn to constant accuracy (for a small absolute constant).

Before presenting our results in more detail, to provide context we recall relevant previous work on
learning related distributions.

1.1 Previous work

A Poisson Binomial Distribution of order N , or PBDN , is a sum of N independent (not necessarily
identical) Bernoulli random variables, i.e. an A-sum for A = {0, 1}. Efficient algorithms for
learning PBDN distributions were given by Daskalakis et al. (2012a); Diakonikolas et al. (2016b),
who gave learning algorithms using poly(1/ε) samples and poly(1/ε) runtime, independent of N .

Generalizing a PBDN distribution, a k-SIIRVN (Sum of Independent Integer Random Vari-
ables) is a A-sum for A = {0, ..., k − 1}. Daskalakis et al. (2013) gave poly(k, 1/ε)-time and
sample algorithms for learning any k-SIIRVN distribution to accuracy ε, independent of N (see
also Diakonikolas et al., 2016a).
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Finally, a different generalization of PBDs is provided by the class of (N, k)-Poisson Multino-
mial Distributions, or k-PMDN distributions. Such a distribution is S = X1 + · · · + XN where
the Xi’s are independent (not necessarily identical) k-dimensional vector-valued random variables
each supported on {e1, . . . , ek}, the standard basis unit vectors in Rk. Daskalakis et al. (2015)
gave an algorithm that learns any unknown k-PMDN using poly(k/ε) samples and running in time
min{2O(kO(k))·logO(k)(1/ε), 2poly(k/ε)}; this result was subsequently sharpened (Diakonikolas et al.,
2016c; Daskalakis et al., 2016).

AnyA-sum with |A| = k has an associated underlying k-PMDN distribution: ifA = {a1, ..., ak},
then writing ā for the vector (a1, . . . , ak) ∈ Zk, an A-sum S′ is equivalent to ā · S where S is an
k-PMDN , as making a draw from S′ is equivalent to making a draw from S and outputting its inner
product with the vector ā. However, this does not mean that the learning result for k-PMDN distri-
butions (Daskalakis et al., 2015) implies a corresponding learning result for {a1, ..., ak}-sums. If an
A-sum learning algorithm were given draws from the underlying k-PMDN , then of course it would
be straightforward to run the algorithm due to Daskalakis et al. (2015), construct a high-accuracy
hypothesis distribution H over Rk, and output ā ·H as the hypothesis distribution for the unknown
A-sum. But when learning S′, the algorithm does not receive draws from the underlying k-PMDN

S; instead it only receives draws from ā · S. In fact, as we discuss below, this more limited access
causes a crucial qualitative difference in learnability, namely an inherent dependence on the ai’s in
the necessary sample complexity once k ≥ 4. (The challenge to the learner arising from the blend-
ing of the contributions to a A-sum is roughly analogous to the challenge that arises in learning a
DNF formula; if each positive example in a DNF learning problem were annotated with an identifier
for a term that it satisfies, learning would be trivial.)

1.2 The questions we consider and our algorithmic results.

As detailed above, previous work has extensively studied the learnability of PBDs, k-SIIRVs, and
k-PMDs; however, we believe that the current work is the first to study the learnability of general
A-sums. A first simple observation is that since any A-sum with |A| = 2 is a scaled and translated
PBD, the results on learning PBDs mentioned above easily imply that the sample complexity of
learning any {a1, a2}-sum is poly(1/ε), independent of the number of summands N and the values
a1, a2. A second simple observation is that any {a1, ..., ak}-sum with 0 ≤ a1 < ... < ak can be
learned using poly(ak, 1/ε) samples, simply by viewing it as an ak-SIIRVN . But this bound is in
general quite unsatisfying – indeed, for large ak it could be even larger than the trivial O(Nk/ε2)
upper bound that holds since any A-sum with |A| = k is supported on a set of size O(Nk).

Once k ≥ 3 there can be non-trivial additive structure present in the set of values a1, . . . , ak.
This raises a natural question: is k = 2 the only value for which A-sums are learnable from a
number of samples that is independent of the domain elements a1, . . . , ak? Perhaps surprisingly,
our first main result is an efficient algorithm which gives a negative answer. We show that for
k = 3, the values of the ai’s don’t matter; we do this by giving an efficient learning algorithm (even
a semi-agnostic one) for learning {a1, a2, a3}-sums, whose running time and sample complexity
are completely independent of a1, a2 and a3:

Theorem 1 (Learning A-sums with |A| = 3, known support) There is an algorithm and a pos-
itive constant c with the following properties: The algorithm is given N , an accuracy parameter
ε > 0, distinct values a1 < a2 < a3 ∈ Z≥0, and access to i.i.d. draws from an unknown distribu-
tion S∗ that has total variation distance at most cε from an {a1, a2, a3}-sum. The algorithm uses
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poly(1/ε) draws from S∗, runs in poly(1/ε) time1, and with probability at least 9/10 outputs a
concise representation of a hypothesis distribution H such that dTV(H,S∗) ≤ ε.

We also give an algorithm for k ≥ 4. More precisely, we show:

Theorem 2 (Learning A-sums, known support) For any k ≥ 4, there is an algorithm and a con-
stant c > 0 with the following properties: it is given N , an accuracy parameter ε > 0, distinct
values a1 < · · · < ak ∈ Z≥0, and access to i.i.d. draws from an unknown distribution S∗ that
has total variation distance at most cε from some {a1, . . . , ak}-sum. The algorithm runs in time

(1/ε)2O(k2) · (log ak)
poly(k), uses (1/ε)2O(k2) · log log ak samples, and with probability at least 9/10

outputs a concise representation of a hypothesis distribution H such that dTV(H,S∗) ≤ ε.

In contrast with k = 3, our algorithm for general k ≥ 4 has a sample complexity which depends
(albeit doubly logarithmically) on ak. This is a doubly exponential improvement over the naive
poly(ak) bound which follows from previous ak-SIIRV learning algorithms (Daskalakis et al., 2013;
Diakonikolas et al., 2016a).

Secondary algorithmic results: Learning with unknown support. We also give algorithms for
a more challenging unknown-support variant of the learning problem. In this variant the values
a1, . . . , ak are not provided to the learning algorithm, but instead only an upper bound amax ≥ ak
is given. Interestingly, it turns out that the unknown-support problem is significantly different from
the known-support problem: as explained below, in the unknown-support variant the dependence
on amax kicks in at a smaller value of k than in the known-support variant, and this dependence is
exponentially more severe than in the known-support variant.

Using well-known results from hypothesis selection, it is straightforward to show that upper
bounds for the known-support case yield upper bounds in the unknown-support case, essentially at
the cost of an additional additive O(k log amax)/ε2 term in the sample complexity. This immedi-
ately yields the following:

Theorem 3 (Learning with unknown support of size k) For any k ≥ 3, there is an algorithm
and a positive constant c with the following properties: The algorithm is given N , the value k,
an accuracy parameter ε > 0, an upper bound amax ∈ Z≥0, and access to i.i.d. draws from
an unknown distribution S∗ that has total variation distance at most cε from an A-sum for A =

{a1, . . . , ak} ⊂ Z≥0 where maxi ai ≤ amax. The algorithm uses O(k log amax)/ε2 + (1/ε)2O(k2) ·
log log amax draws from S∗, runs in poly((amax)k)· (1/ε)2O(k2) · (log amax)poly(k) time, and with
probability at least 9/10 outputs a concise representation of a hypothesis distribution H such that
dTV(H,S∗) ≤ ε.

Recall that a {a1, a2}-sum is simply a rescaled and translated PBDN distribution. Using known
results for learning PBDs, it is not hard to show that the k = 2 case is easy even with unknown
support:

Theorem 4 (Learning with unknown support of size 2) There is an algorithm and a positive con-
stant c with the following properties: The algorithm is given N , an accuracy parameter ε > 0, an

1. Here and throughout we assume a unit-cost model for arithmetic operations +, ×, ÷.
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upper bound amax ∈ Z+, and access to i.i.d. draws from an unknown distribution S∗ that has total
variation distance at most cε from an {a1, a2}-sum where 0 ≤ a1 < a2 ≤ amax. The algorithm
uses poly(1/ε) draws from S∗, runs in poly(1/ε) time, and with probability at least 9/10 outputs
a concise representation of a hypothesis distribution H such that dTV(H,S∗) ≤ ε.

1.3 Our lower bounds.

We establish sample complexity lower bounds for learningA-sums that essentially match the above
algorithmic results.

Known support. Our first lower bound deals with the known support setting. We give an Ω(log log a4)-
sample lower bound for the problem of learning an {a1, ..., a4}-sum for 0 ≤ a1 < a2 < a3 < a4.
This matches the dependence on ak of our poly(1/ε) · log log ak upper bound. More precisely, we
show:

Theorem 5 (Lower Bound for Learning {a1, ..., a4}-sums, known support) Let A be any algo-
rithm with the following properties: algorithm A is given N , an accuracy parameter ε > 0, distinct
values 0 ≤ a1 < a2 < a3 < a4 ∈ Z, and access to i.i.d. draws from an unknown {a1, ..., a4}-sum
S∗; and with probability at least 9/10 algorithm A outputs a hypothesis distribution S̃ such that
dTV(S̃,S∗) ≤ ε. Then there are infinitely many quadruples (a1, a2, a3, a4) such that for sufficiently
large N , A must use Ω(log log a4) samples even when run with ε set to a (suitably small) positive
absolute constant.

This lower bound holds even though the target is exactly an {a1, ..., a4}-sum (i.e. it holds even
in the easier non-agnostic setting).

Since Theorem 1 gives a poly(1/ε) sample and runtime algorithm independent of the size of
the ai’s for k = 3, the lower bound of Theorem 5 establishes a phase transition between k = 3 and
k = 4 for the sample complexity of learning A-sums: when k = 3 the sample complexity is always
independent of the actual set {a1, a2, a3}, but for k = 4 it can grow as Ω(log log a4) (but no faster).

Unknown support. Our second lower bound deals with the unknown support setting. We give an
Ω(log amax)-sample lower bound for the problem of learning an {a1, a2, a3}-sum with unknown
support 0 ≤ a1 < a2 < a3 ≤ amax, matching the dependence on amax of our algorithm from
Theorem 3. More precisely, we prove:

Theorem 6 (Lower Bound for Learning {a1, a2, a3}-sums, unknown support) Let A be any al-
gorithm with the following properties: algorithm A is given N , an accuracy parameter ε > 0,
a value 0 < amax ∈ Z, and access to i.i.d. draws from an unknown {a1, a2, a3}-sum S∗ where
0 ≤ a1 < a2 < a3 ≤ amax; and A outputs a hypothesis distribution S̃ which with probability at
least 9/10 satisfies dTV(S̃,S∗) ≤ ε. Then for sufficiently largeN , A must use Ω(log amax) samples
even when run with ε set to a (suitably small) positive absolute constant.

Taken together with our algorithm from Theorem 4 for the case k = 2, Theorem 6 establishes
another phase transition, but now between k = 2 and k = 3, for the sample complexity of learning
A-sums when A is unknown. When |A| = 2 the sample complexity is always independent of the
actual set, but for |A| = 3 and 0 ≤ a1 < ... < a3 it can grow as Ω(log a3) (but no faster).

In summary, taken together the algorithms and lower bounds of this paper essentially settle the
question of how the sample complexity of learning sums of independent integer random variables
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with sparse collective support scales with the elements in the collective support, both in the known-
support and unknown-support settings.

Discussion. As described above, for an arbitrary set {a1, . . . , ak}, the sample complexity undergoes
a significant phase transition between k = 3 and k = 4 in the known-support case and between 2
and 3 in the unknown-support case. In each setting the phase transition is a result of “number-
theoretic phenomena” (we explain this more later) which can only occur for the larger number and
cannot occur for the smaller number of support elements. We find it somewhat surprising that the
sample complexities of these learning problems are determined by number-theoretic properties of
the support sets.

Organization. In the next section we give some of the key ideas that underlie our algorithms. See
Section 3 for an overview of the ideas behind our lower bounds. Full proofs are given starting in
Section 4.

2. Techniques for our algorithms

In this section we give an intuitive explanation of some of the ideas that underlie our algorithms and
their analysis. While our learning results are for the semi-agnostic model, for simplicity’s sake, we
focus on the case in which the target distribution S is actually an A-sum.

A first question, which must be addressed before studying the algorithmic (running time) com-
plexity of learning A-sums, is to understand the sample complexity of learning them. In fact,
in a number of recent works on learning various kinds of “structured” distributions, just under-
standing the sample complexity of the learning problem is a major goal that requires significant
work (Daskalakis et al., 2012a; Wigderson and Yehudayoff, 2012; Daskalakis et al., 2013, 2014,
2015).

In many of the above-mentioned papers, an upper bound on both sample complexity and algo-
rithmic complexity is obtained via a structural characterization of the distributions to be learned;
our work follows a similar conceptual paradigm. To give a sense of the kind of structural character-
ization that can be helpful for learning, we recall the characterization of SIIRVN distributions that
was obtained by Daskalakis et al. (2013) (which is the one most closely related to our work). Their
main result shows that if S is any k-SIIRVN distribution, then at least one of the following holds:

1. S is ε-close to being supported on poly(k/ε) many integers;

2. S is ε-close to a distribution c ·Z + Y, where 1 ≤ c ≤ k − 1, Z is a discretized Gaussian, Y
is a distribution supported on {0, . . . , c− 1}, and Y,Z are mutually independent.

In other words, Daskalakis et al. (2013) show that a k-SIIRVN distribution is either close to sparse
(supported on poly(k/ε) integers), or close to a c-scaled discretized Gaussian convolved with a
sparse component supported on {0, . . . , c−1}. This leads naturally to an efficient learning algorithm
that handles Case (1) above “by brute-force” and handles Case (2) by learning Y and Z separately
(handling Y “by brute force” and handling Z by estimating its mean and variance).

In a similar spirit, in this work we seek a more general characterization of A-sums. It turns out,
though, that even when |A| = 3, A-sums can behave in significantly more complicated ways than
the k-SIIRVN distributions discussed above.

8



SPARSE COLLECTIVE SUPPORT

To be more concrete, let S be a {a1, a2, a3}-sum with 0 ≤ a1 < a2 < a3. By considering a few
simple examples it is easy to see that there are at least four distinct possibilities for “what S is like”
at a coarse level:

• Example #1: One possibility is that S is essentially sparse, with almost all of its probability
mass concentrated on a small number of outcomes (we say that such an S has “small essential
support”).

• Example #2: Another possibility is that S “looks like” a discretized Gaussian scaled by
|ai − aj | for some 1 ≤ i < j ≤ 3 (this would be the case, for example, if S =

∑N
i=1 Xi

where each Xi is uniform over {a1, a2}).

• Example #3: A third possibility is that S “looks like” a discretized Gaussian with no scaling
(the analysis of Daskalakis et al. (2013) shows that this is what happens if, for example, N is
large and each Xi is uniform over {a1 = 6, a2 = 10, a3 = 15}, since gcd(6, 10, 15) = 1).

• Example #4: Finally, yet another possibility arises if, say, a3 is very large (say a3 ≈ N2)
while a2, a1 are very small (say O(1)), and X1, . . . ,XN/2 are each uniform over {a1, a3}
while XN/2+1, . . . ,XN are each supported on {a1, a2} and

∑N
i=N/2+1 Xi has very small

essential support. In this case, for largeN , S would (at a coarse scale) “look like” a discretized
Gaussian scaled by a3 − a1 ≈ N2, but zooming in, locally each “point” in the support of
this discretized Gaussian would actually be a copy of the small-essential-support distribution∑N

i=N/2+1 Xi.

Given these possibilities for how S might behave, it should not be surprising that our actual
analysis for the case |A| = 3 (given in Section 9) involves four cases (and the above four examples
land in the four distinct cases). The overall learning algorithm “guesses” which case the target
distribution belongs to and runs a different algorithm for each one; the guessing step is ultimately
eliminated using the standard tool of hypothesis testing from statistics. We stress that while the
algorithms for the various cases differ in some details, there are many common elements across their
analyses, and the well known kernel method for density estimation provides the key underlying core
learning routine that is used in all the different cases.

In the following intuitive explanation we first consider the case of A-sums for general finite
|A|, and later explain how we sharpen the algorithm and analysis in the case |A| = 3 to obtain
our stronger results for that case. Our discussion below highlights a new structural result (roughly
speaking, a new limit theorem that exploits both “long-range” and “short-range” shift-invariance)
that plays a crucial role in our algorithms.

2.1 Learning A-sums with |A| = k

For clarity of exposition in this intuitive overview we make some simplifying assumptions. First,
we make the assumption that the A-sum S that is to be learned has 0 as one value in its k-element
support, i.e. we assume that S = X1 + . . . + XN where the support of each Xi is contained in
the set {0, a1, . . . , ak−1}. In fact, we additionally assume that each Xi is 0-moded, meaning that
Pr[Xi = 0] ≥ Pr[Xi = aj ] for all i ∈ [N ] and all j ∈ [k − 1]. (Getting rid of this assumption
in our actual analysis requires us to work with zero-moded variants of the Xi distributions that we
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denote X′i, supported on O(k2) values that can be positive or negative, but we ignore this for the
sake of our intuitive explanation here.) For j ∈ [k − 1] we define

γj :=
N∑
i=1

Pr[Xi = aj ],

which can be thought of as the “weight” that X1, . . . ,XN collectively put on the outcome aj .

A useful tool: hypothesis testing. To explain our approach it is helpful to recall the notion of
hypothesis testing in the context of distribution learning (Devroye and Lugosi, 2001). Informally,
given T candidate hypothesis distributions, one of which is ε-close to the target distribution S, a
hypothesis testing algorithm uses O(ε−2 · log T ) draws from S, runs in poly(T, 1/ε) time, and with
high probability identifies a candidate distribution which is O(ε)-close to S. We use this tool in a
few different ways. Sometimes we will consider algorithms that “guess” certain parameters from a
“small” (size-T ) space of possibilities; hypothesis testing allows us to assume that such algorithms
guess the right parameters, at the cost of increasing the sample complexity and running time by only
small factors. In other settings we will show via a case analysis that one of several different learning
algorithms will succeed; hypothesis testing yields a combined algorithm that learns no matter which
case the target distribution falls into. This tool has been used in many recent works on distribution
learning (see Daskalakis et al., 2012a; De et al., 2015; Daskalakis et al., 2013).

Our analysis. Let t1 = Ok,ε(1) � t2 = Ok,ε(1) � · · · � tk−1 = Ok,ε(1) be fixed values (the
exact values are not important here). Let us reorder a1, . . . , ak−1 so that the weights γ1 ≤ · · · ≤
γk−1 are sorted in non-decreasing order. An easy special case for us (corresponding to Section 8.1)
is when each γj ≤ tj . If this is the case, then S has small “essential support”: in a draw from
S = X1 + · · · + XN , with very high probability for each j ∈ [k − 1] the number of Xi that take
value aj is at most poly(tk−1), so w.v.h.p. a draw from S takes one of at most poly(tk−1)k values.
In such a case it is not difficult to learn S using poly((tk−1)k, 1/ε) = Ok,ε(1) samples (see Fact 24).
We henceforth may assume that some γj > tj .

For ease of understanding it is helpful to first suppose that every j ∈ [k − 1] has γj > tj ,
and to base our understanding of the general case (that some j ∈ [k − 1] has γj > tj) off of
how this case is handled; we note that this special case is the setting for the structural results of
Section 7. (It should be noted, though, that our actual analysis of the main learning algorithm given
in Section 8.2 does not distinguish this special case.) So let us suppose that for all j ∈ [k − 1]
we have γj > tj . To analyze the target distribution S in this case, we consider a multinomial
distribution M = Y1 + · · · + YN defined by independent vector-valued random variables Yi,
supported on 0, e1, . . . , ek−1 ∈ Zk−1, such that for each i ∈ [N ] and j ∈ [k− 1] we have Pr[Yi =
ej ] = Pr[Xi = aj ]. Note that for the multinomial distribution M defined in this way we have
(a1, . . . , ak−1) ·M = S.

Using the fact that each γj is “large” (at least tj), recent results (Daskalakis et al., 2016) imply
that the multinomial distribution M is close to a (k − 1)-dimensional discretized Gaussian whose
covariance matrix has all eigenvalues large (working with zero-moded distributions is crucial to
obtain this intermediate result). In turn, such a discretized multidimensional Gaussian can be shown
to be close to a vector-valued random variable in which each marginal (coordinate) is a (±1)-
weighted sum of independent large-variance Poisson Binomial Distributions. It follows that S =
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(a1, . . . , ak−1) ·M is close to a a weighted sum of k − 1 signed PBDs. 2 A distribution S̃ is a
weighted sum of k − 1 signed PBDs if S̃ = a1 · S̃1 + · · · + ak−1 · S̃k−1 where S̃1, . . . , S̃k−1 are
independent signed PBDs; in turn, a signed PBD is a sum of independent random variables each of
which is either supported on {0, 1} or on {0,−1}. The S̃ that S is close to further has the property
that each S̃i has “large” variance (large compared with 1/ε).

Given the above analysis, to complete the argument in this case that each γj > tj we need a
way to learn a weighted sum of signed PBDs S̃ = a1 · S̃1 + · · · + ak−1 · S̃k−1 where each S̃j has
large variance. This is done with the aid of a new limit theorem, Lemma 41, that we establish for
distributions of this form. We discuss (a simplified version of) this limit theorem in Section 2.3;
here, omitting many details, let us explain what this new limit theorem says in our setting and how
it is useful for learning. Suppose w.l.o.g. that Var[ak−1 · S̃k−1] contributes at least a 1

k−1 fraction
of the total variance of S̃. Let MIX denote the set of those j ∈ {1, . . . , k − 2} such that Var[S̃j ]
is large compared with ak−1, and let MIX′ = MIX ∪ {k − 1}. The new limit theorem implies that
the sum

∑
j∈MIX′ aj · S̃j “mixes,” meaning that it is very close (in dTV) to a single scaled PBD

aMIX′ · S̃MIX′ where aMIX′ = gcd{aj : j ∈ MIX′}. (The proof of the limit theorem involves a
generalization of the notion of shift-invariance from probability theory (Barbour and Xia, 1999) and
a coupling-based method. We elaborate on the ideas behind the limit theorem in Section 2.3.)

Given this structural result, it is enough to be able to learn a distribution of the form

T := a1 · S̃1 + · · ·+ a` · S̃` + aMIX′ · S̃MIX′

for which we now know that aMIX′ · S̃MIX′ has at least 1
`+1 of the total variance, and each S̃j

for j ∈ [`] has Var[S̃j ] which is “not too large” compared with ak−1 (but large compared with
1/ε). We show how to learn such a distribution using Ok,ε(1) · log log ak−1 samples (this is where
the log log dependence in our overall algorithm comes from). This is done, intuitively, by guessing
various parameters that essentially define T, specifically the variances Var[S̃1], . . . ,Var[S̃`]. Since
each of these variances is roughly at most ak−1 (crucially, the limit theorem allowed us to get
rid of the S̃j’s that had larger variance), via multiplicative gridding there are Oε,k(1) · log ak−1

possible values for each candidate variance, and via our hypothesis testing procedure this leads to
an Oε,k(1) · log log ak−1 number of samples that are used to learn.

We now turn to the general case, that some j ∈ [k − 1] has γj > tj . Suppose w.l.o.g. that
γ1 ≤ t1, . . . γ`−1 ≤ t`−1 and γ` > t` (intuitively, think of γ1, . . . , γ`−1 as “small” and γ`, . . . , γk−1

as “large”). Via an analysis (see Lemma 46) akin to the “Light-Heavy Experiment” analysis of
Daskalakis et al. (2013), we show that in this case the distribution S is close to a distribution S̃ with
the following structure: S̃ is a mixture of at most poly(t`−1)k−1 many distributions each of which
is a different shift of a single distribution, call it Sheavy, that falls into the special case analyzed
above: all of the relevant parameters γ`, . . . , γk−1 are large (at least t`). Intuitively, having at most
poly(t`−1)k−1 many components in the mixture corresponds to having γ1, . . . , γ`−1 < t`−1 and
` ≤ k − 1, and having each component be a shift of the same distribution Sheavy follows from the
fact that there is a “large gap” between γ`−1 and γ`.

Thus in this general case, the learning task essentially boils down to learning a distribution that
is (close to) a mixture of translated copies of a distribution of the form T given above. Learning
such a mixture of translates is a problem that is well suited to the “kernel method” for density esti-
mation. This method has been well studied in classical density estimation, especially for continuous

2. This is a simplification of what the actual analysis establishes, but it gets across the key ideas.
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probability densities (see Devroye and Lugosi, 2001), but results of the exact type that we need did
not seem to previously be present in the literature. (We believe that ours is the first work that applies
kernel methods to learn sums of independent random variables.)

In Section 5 we develop tools for multidimensional kernel based learning that suit our context.
At its core, the kernel method approach that we develop allows us to do the following: Given a
mixture of r translates of T and constant-factor approximations to γ`, . . . , γk−1, the kernel method
allows us to learn this mixture to error O(ε) using only poly(1/ε`, r) samples. Further, this al-
gorithm is robust in the sense that the same guarantee holds even if the target distribution is only
O(ε) close to having this structure (this is crucial for us). Theorem 49 in Section 8 combines this
tool with the ideas described above for learning a T-type distribution, and thereby establishes our
general learning result for A-sums with |A| ≥ 4.

2.2 The case |A| = 3

In this subsection we build on the discussion in the previous subsection, specializing to k = |A| = 3,
and explain the high-level ideas of how we are able to learn with sample complexity poly(1/ε)
independent of a1, a2, a3.

For technical reasons (related to zero-moded distributions) there are three relevant parameters
t1 � t2 � t3 = Oε(1) in the k = 3 case. The easy special case that each γj ≤ tj is handled as
discussed earlier (small essential support). As in the previous subsection, let ` ∈ [3] be the least
value such that γ` > t`.

In all the cases ` = 1, 2, 3 the analysis proceeds by considering the Light-Heavy-Experiment
as discussed in the preceding subsection, i.e. by approximating the target distribution S by a mix-
ture S̃ of shifts of the same distribution Sheavy. When ` = 3, the “heavy” component Sheavy is
simply a distribution of the form q3 · S3 where S3 is a signed PBD. Crucially, while learning the
distribution T in the previous subsection involved guessing certain variances (which could be as
large as ak, leading to log ak many possible outcomes of guesses and log log ak sample complex-
ity), in the current setting the extremely simple structure of Sheavy = q3 · S3 obviates the need to
make log a3 many guesses. Instead, as we discuss in Section 9.2, its variance can be approximated
in a simple direct way by sampling just two points from T and taking their difference; this easily
gives a constant-factor approximation to the variance of S3 with non-negligible probability. This
success probability can be boosted by repeating this experiment several times (but the number of
times does not depend on the ai values.) We thus can use the kernel-based learning approach in a
sample-efficient way, without any dependence on a1, a2, a3 in the sample complexity.

For clarity of exposition, in the remaining intuitive discussion (of the ` = 1, 2 cases) we only
consider a special case: we assume that S = a1 ·S1+a2 ·S2 where both S1 and S2 are large-variance
PBDs (so each random variable Xi is either supported on {0, a1} or on {0, a2}, but not on all three
values 0, a1, a2). We further assume, clearly without loss of generality, that gcd(a1, a2) = 1.
(Indeed, our analysis essentially proceeds by reducing the ` = 1, 2 case to this significantly simpler
scenario, so this is a fairly accurate rendition of the true case.) Writing S1 = X1 + . . .+ XN1 and
S2 = Y1 + . . .+YN2 , by zero-modedness we have that Pr[Xi = 0] ≥ 1

2 and Pr[Yi = 0] ≥ 1
2 for

all i, so Var[Sj ] = Θ(1) · γj for j = 1, 2. We assume w.l.o.g. in what follows that a2
1 · γ1 ≥ a2

2 · γ2,
so Var[S], which we henceforth denote σ2, is Θ(1) · a2

1 · γ1.

We now branch into three separate possibilities depending on the relative sizes of γ2 and a2
1.

Before detailing these possibilities we observe that using the fact that γ1 and γ2 are both large, it
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can be shown that if we sample two points s(1) and s(2) from S, then with constant probability the
value |s

(1)−s(2)|
a1

provides a constant-factor approximation to γ1.

First possibility: γ2 < ε2 · a2
1. The algorithm samples two more points s(3) and s(4) from the

distribution S. The crucial idea is that with constant probability these two points can be used to
obtain a constant-factor approximation to γ2; we now explain how this is done. For j ∈ {3, 4}, let
s(j) = a1 ·s(j)

1 +a2 ·s(j)
2 where s(j)

1 ∼ S1 and s(j)
2 ∼ S2, and consider the quantity s(3)−s(4). Since

γ2 is so small relative to a1, the “sampling noise” from a1 ·s(3)
1 −a1 ·s(4)

1 is likely to overwhelm the
difference a2 ·s(3)

2 −a2 ·s(4)
2 at a “macroscopic” level. The key idea to deal with this is to analyze the

outcomes modulo a1. In the modular setting, because Var[S2] = Θ(1) ·γ2 � a2
1, one can show that

with constant probability |(a−1
2 · (s

(3)
2 − s

(4)
2 )) mod a1| is a constant-factor approximation to γ2.

(Note that as a1 and a2 are coprime, the operation a−1
2 is well defined modulo a1.) A constant-factor

approximation to γ2 can be used together with the constant-factor approximation to γ1 to employ
the aforementioned “kernel method” based algorithm to learn the target distribution S. The fact that
here we can use only two samples (as opposed to log log a1 samples) to estimate γ2 is really the
crux of why for the k = 3 case, the sample complexity is independent of a1. (Indeed, we remark
that our analysis of the lower bound given by Theorem 5 takes place in the modular setting and this
“mod a1” perspective is crucial for constructing the lower bound examples in that proof.)

Second possibility: a2
1/ε

2 > γ2 > ε2 · a2
1. Here, by multiplicative gridding we can create a list of

O(log(1/ε)) guesses such that at least one of them is a constant-factor approximation to γ2. Again,
we use the kernel method and the approximations to γ1 and γ2 to learn S.

Third possibility: The last possibility is that γ2 ≥ a2
1/ε

2. In this case, we show that S is in
fact ε-close to the discretized Gaussian (with no scaling; recall that gcd(a1, a2) = 1) that has the
appropriate mean and variance. Given this structural fact, it is easy to learn S by just estimating the
mean and the variance and outputting the corresponding discretized Gaussian. This structural fact
follows from our new limit theorem, Lemma 41, mentioned earlier; we conclude this section with a
discussion of this new limit theorem.

2.3 Lemma 41 and limit theorems.

Here is a simplified version of our new limit theorem, Lemma 41, specialized to the case in which
its “D” parameter is set to 2:

Simplified version of Lemma 41. Let S = r1 · S1 + r2 · S2 where S1,S2 are independent signed
PBDs and r1, r2 are nonzero integers such that gcd(r1, r2) = 1, Var[r1 · S1] ≥ Var[r2 · S2], and
Var[S2] ≥ max{ 1

ε8
, r1ε }. Then S is O(ε)-close in total variation distance to a signed PBD S′ (and

hence to a signed discretized Gaussian) with Var[S′] = Var[S].

If a distribution S is close to a discretized Gaussian in Kolmogorov distance and is 1/σ-shift
invariant (i.e. dTV(S,S + 1) ≤ 1/σ), then S is close to a discretized Gaussian in total variation
distance (Röllin, 2007; Barbour, 2015). Gopalan et al. (2011) used a coupling based argument
to establish a similar central limit theorem to obtain pseudorandom generators for certain space
bounded branching programs. Unfortunately, in the setting of the lemma stated above, it is not
immediately clear why S should have 1/σ-shift invariance. To deal with this, we give a novel
analysis exploiting shift-invariance at multiple different scales. Roughly speaking, because of the
r1 · S1 component of S, it can be shown that dTV(S,S + r1) = 1/

√
Var[S1], i.e. S has good
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“shift-invariance at the scale of r1”; by the triangle inequality S is also not affected much if we
shift by a small integer multiple of r1. The same is true for a few shifts by r2, and hence also for
a few shifts by both r1 and r2. If S is approximated well by a discretized Gaussian, though, then
it is also not affected by small shifts, including shifts by 1, and in fact we need such a guarantee to
prove approximation by a discretized Gaussian through coupling. However, since gcd(r1, r2) = 1,
basic number theory implies that we can achieve any small integer shift via a small number of shifts
by r1 and r2, and therefore S has the required “fine-grained” shift-invariance (at scale 1) as well.
Intuitively, for this to work we need samples from r2 · S2 to “fill in the gaps” between successive
values of r1 · S1 – this is why we need Var[S2]� r1.

Based on our discussion with researchers in this area (Barbour, 2015) the idea of exploiting both
long-range and short-range shift invariance is new to the best of our knowledge and seems likely to
be of use in proving new central limit theorems.

3. Lower bound techniques

In this section we give an overview of the ideas behind our lower bounds. Both of our lower
bounds actually work by considering restrictedA-sums: our lower bounds can be proved using only
distributions S of the form S =

∑k
i=1 ai ·Si, where S1, . . . ,Sk are independent PBDs; equivalently,

S =
∑N

i=1 Xi where each Xi is supported on one of {0, a1}, . . . , {0, ak}.
A useful reduction. The problem of learning a distribution modulo an integer plays a key role
in both of our lower bound arguments. More precisely, both lower bounds use a reduction, which
we establish, showing that an efficient algorithm for learning weighted PBDs with weights 0 <
a1 < ... < ak implies an efficient algorithm for learning with weights a1, ..., ak−1 modulo ak.
This problem is specified as follows: Consider an algorithm which is given access to i.i.d. draws
from the distribution (S mod ak) (note that this distribution is supported over {0, 1, . . . , ak − 1})
where S is of the form a1 ·S1 + ...+ ak−1 ·Sk−1 and S1, ...,Sk−1 are PBDs. The algorithm should
produce a high-accuracy hypothesis distribution for (S mod ak). We stress that the example points
provided to the learning algorithm all lie in {0, . . . , ak − 1} (so certainly any reasonable hypothesis
distribution should also be supported on {0, . . . , ak − 1}). Such a reduction is useful for our lower
bounds because it enables us to prove a lower bound for learning

∑k
i=1 ai · Si by proving a lower

bound for learning
∑k−1

i=1 ai · Si mod ak.
The high level idea of this reduction is fairly simple so we sketch it here. Let S = a1 · S1 +

· · ·+ ak−1 ·Sk−1 be a weighted sum of PBDs such that (S mod ak) is the target distribution to be
learned and let N be the total number of summands in all of the PBDs. Let Sk be an independent
PBD with mean and variance Ω(N?). The key insight is that by taking N? sufficiently large relative
to N , the distribution of (S mod ak) + ak ·Sk (which can easily be simulated by the learner given
access to draws from (S mod ak) since it can generate samples from ak · Sk by itself) can be
shown to be statistically very close to that of S′ := S + ak · Sk. Here is an intuitive justification:
We can think of the different possible outcomes of ak · Sk as dividing the support of S′ into bins
of width ak. Sampling from S′ can be performed by picking a bin boundary (a draw from ak · Sk)
and an offset S. While adding S may take the sample across multiple bin boundaries, if Var[Sk]
is sufficiently large, then adding S typically takes ak · Sk + S across a small fraction of the bin
boundaries. Thus, the conditional distribution given membership in a bin is similar between bins
that have high probability under S′, which means that all of these conditional distributions are
similar to the distribution of S′ mod ak (which is a mixture of them). Finally, (S′ mod ak) has
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the same distribution as (S mod ak). Thus, given samples from (S mod ak), the learner can
essentially simulate samples from S′. However, S′ is is a weighted sum of k PBDs, which by
the assumption of our reduction theorem can be learned efficiently. Now, assuming the learner
has a hypothesis H such that dTV(H,S′) ≤ ε, it immediately follows that dTV((H mod ak), (S

′

mod ak)) ≤ dTV(H,S′) ≤ ε as desired.

Proof overview of Theorem 5. At this point we have the task of proving a lower bound for learning
weighted PBDs over {0, a1, a2} mod a3. We establish such a lower bound using Fano’s inequal-
ity (stated precisely as Theorem 28 in Section 4). To get a sample complexity lower bound of
Ω(log log a3) from Fano’s inequality, we must construct T = logΩ(1) a3 distributions S1, . . . , ST ,
where each Si is a weighted PBD on {0, a1, a2} modulo a3, meeting the following requirements:
dTV(Si,Sj) = Ω(1) if i 6= j, and DKL(Si||Sj) = O(1) for all i, j ∈ T. In other words, applying
Fano’s inequality requires us to exhibit a large number of distributions (belonging to the family for
which we are proving the lower bound) such that any two distinct distributions in the family are far
in total variation distance but close in terms of KL-divergence. The intuitive reason for these two
competing requirements is that if Si and Sj are 2ε-far in total variation distance, then a successful
algorithm for learning to error at most ε must be able to distinguish Si and Sj . On the other hand,
if Si and Sj are close in KL divergence, then it is difficult for any learning algorithm to distinguish
between Si and Sj .

Now we present the high-level idea of how we may construct distributions S1,S2, . . . with
the properties described above to establish Theorem 5. The intuitive description of Si that we
give below does not align perfectly with our actual construction, but this simplified description is
hopefully helpful in getting across the main idea.

For the construction we fix a1 = 1, a2 = p and a3 = q. (We discuss how p and q are selected
later; this is a crucial aspect of our construction.) The i-th distribution Si is Si = Ui + pVi

mod q; we describe the distribution Si = Ui + pVi mod q in two stages, first by describing
each Vi, and then by describing the corresponding Ui. In the actual construction Ui and Vi will
be shifted binomial distributions. Since a binomial distribution is rather flat within one standard
deviation of its mean, and decays exponentially after that, it is qualitatively somewhat like the
uniform distribution over an interval; for this intuitive sketch it is helpful to think of Ui and Vi as
actually being uniform distributions over intervals. We take the support of V1 to be an interval of
length q/p, so that adjacent members of the support of (pV1 mod q) will be at distance p apart
from each other. More generally, taking Vi to be uniform over an interval of length 2i−1q/p, the
average gap between adjacent members of supp(pVi mod q) is of length essentially p/2i−1, and
by a careful choice of p relative to q one might furthermore hope that the gaps would be “balanced”,
so that they are all of length roughly p/2i−1. (This “careful choice” is the technical heart of our
actual construction presented later.)

How does Ui enter the picture? The idea is to take each Ui to be uniform over a short interval,
of length 3p/2i. This “fills in each gap” and additionally “fills in the first half of the following
gap;” as a result, the first half of each gap ends up with twice the probability mass of the second
half. (As a result, every two points have probability mass within a constant factor of each other
under every distribution — in fact, any point under any one of our distributions has probability mass
within a constant factor of that of any other point under any other one of our distributions. This
gives the DKL(Si||Sj) ≤ O(1) upper bound mentioned above.) For example, recalling that the
“gaps” in supp(pV1 mod q) are of length p, choosing U1 to be uniform over {1, . . . , 3p/2} will
fill in each gap along with the first half of the following gap. Intuitively, each Si = Ui + pVi
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is a “striped” distribution, with equal-width “light stripes” (of uniformly distributed smaller mass)
and “dark stripes” (of uniformly distributed larger mass), and each Si+1 has stripes of width half of
the Si-sum’s stripes. Roughly speaking, two such distributions Si and Sj “overlap enough” (by a
constant fraction) so that they are difficult to distinguish; however they are also “distinct enough”
that a successful learning algorithm must be able to distinguish which Si its samples are drawn from
in order to generate a high-accuracy hypothesis.

We now elaborate on the careful choice of p and q that was mentioned above. The critical part
of this choice of p and q is that for i ≥ 1, in order to get “evenly spaced gaps,” the remainders of
p · s modulo q where s ∈ {1, . . . , 2i−1q/p} should be roughly evenly spaced, or equidistributed,
in the group Zq. Here the notion of “evenly spaced” is with respect to the “wrap-around” distance
(also known as the Lee metric) on the group Zq (so, for example, the wrap-around distance between
1 and 2 is 1, whereas the wrap-around distance between q − 1 and 1 is 2). Roughly speaking, we
would like p · s modulo q to be equidistributed in Zq when s ∈ {1, . . . , 2i−1q/p}, for a range of
successive values of i (the more the better, since this means more distributions in our hard family
and a stronger lower bound). Thus, qualitatively, we would like the remainders of p modulo q to
be equidistributed at several scales. We note that equidistribution phenomena are well studied in
number theory and ergodic theory (see Tao, 2014).

While this connection to equidistribution phenomena is useful for providing visual intuition (at
least to the authors), in our attempts to implement the construction using powers of two that was
just sketched, it seemed that in order to control the errors that arise in fact a doubly exponential
growth was required, leading to the construction of only Θ(log log q) such distributions and hence
a Ω(log log log q) sample complexity lower bound. Thus to achieve an Ω(log log q) sample com-
plexity lower bound, our actual choice of p and q comes from the theory of continued fractions.
In particular, we choose p and q so that p/q has a continued fraction representation with “many”
(Θ(log q), though for technical reasons we use only logΘ(1) q many) convergents that grow rel-
atively slowly. These T = logΘ(1) q convergents translate into T distributions S1, . . . ,ST in our
“hard family” of distributions, and thus into an Ω(log log q) sample lower bound via Fano’s inequal-
ity.

The key property that we use is a well-known fact in the theory of continued fractions: if gi/hi is
the ith convergent of a continued fraction for p/q, then |gi/hi−p/q| ≤ 1/(hi ·hi+1). In other words,
the ith convergent gi/hi provides a non-trivially good approximation of p/q (note that getting an
error of 1/hi would have been trivial). From this property, it is not difficult to see that the remainders
of p · {1, . . . , hi} are roughly equidistributed modulo q.

Thus, a more accurate description of our (still idealized) construction is that we choose Vi

to be uniform on {1, . . . , hi} and Ui to be uniform on roughly {1, . . . , (3/2) · (q/hi)}. So as
to have as many distributions as possible in our family, we would like hi ≈ (q/p) · ci for some
fixed c > 1. This can be ensured by choosing p, q such that all the numbers appearing in the
continued fraction representation of p/q are bounded by an absolute constant; in fact, in the actual
construction, we simply take p/q to be a convergent of 1/φ where φ is the golden ratio. With this
choice we have that the ith convergent of the continued fraction representation of 1/φ is gi/hi,
where hi ≈ ((

√
5 + 1)/2)i. This concludes our informal description of the choice of p and q.

Again, we note that in our actual construction (see Figure 1), we cannot use uniform distribu-
tions over intervals (since we need to use PBDs), but rather we have shifted binomial distributions.
This adds some technical complication to the formal proofs, but the core ideas behind the construc-
tion are indeed as described above.
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(a) (b) (c)

Figure 1: Examples of targets used in our lower bound construction for Theorem 5. Very roughly,
the distribution in (b) has peaks where the distribution (a) does, plus a constant factor more peaks.
To compensate, its peaks are thinner. The distribution (c) has still more, still thinner, peaks.

Proof overview of Theorem 6. As mentioned earlier, Theorem 6 also uses our reduction from the
modular learning problem. Taking a1 = 0 and a3 ≈ amax to be “known” to the learner, we show
that any algorithm for learning a distribution of the form (a2S2 mod a3), where 0 < a2 < a3 and
a2 is unknown to the learner and S2 is a PBDN , must use Ω(log a3) samples. Like Theorem 5, we
prove this using Fano’s inequality, by constructing a “hard family” of (a3)Ω(1) many distributions
of this type such that any two distinct distributions in the family have variation distance Ω(1) but
KL-divergence O(1).

We sketch the main ideas of our construction, starting with the upper bound on KL-divergence.
The value a3 is taken to be a prime. The same PBDN distribution S2, which is simply a shifted
binomial distribution and may be assumed to be “known” to the learner, is used for all of the dis-
tributions in the “hard family”, so different distributions in this family differ only in the value of
a2. The shifted binomial distribution S2 is taken to have variance Θ((a3)2), so, very roughly, S2

assigns significant probability on Θ(a3) distinct values. From this property, it is not difficult to
show (similar to our earlier discussion) that any point in the domain {0, 1, . . . , a3 − 1} under any
one of our distributions has probability mass within a constant factor of that of any other point under
any other one of our distributions (where the constant factor depends on the hidden constant in the
Θ((a3)2)). This gives the required O(1) upper bound on KL-divergence.

It remains to sketch the Ω(1) lower bound on variation distance. As in our discussion of the
Theorem 5 lower bound, for intuition it is convenient to think of the shifted binomial distribution
S2 as being uniform over an interval of the domain {0, 1, . . . , a3 − 1}; by carefully choosing the
variance and offset of this shifted binomial, we may think of this interval as being {0, 1, . . . , r− 1}
for r = κa3 for some small constant κ > 0 (the constant κ again depends on the hidden constant
in the Θ((a3)2)) value of the variance). So for the rest of our intuitive discussion we view the
distributions in the hard family as being of the form (a2 ·Ur mod a3) where Ur is uniform over
{0, 1, . . . , r − 1}, r = κa3.

Recalling that a3 is prime, it is clear that for any 0 < a2 < a3, the distribution (a2·Ur mod a3)
is uniform over an (r = κa3)-element subset of {0, . . . , a3 − 1}. If a2 and a′2 are two independent
uniform random elements from {1, . . . , a3 − 1}, then since κ is a small constant, intuitively the
overlap between the supports of (a2 · Ur mod a3) and (a′2 · Ur mod a3) should be small, and
consequently the variation distance between these two distributions should be large. This in turn
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suggests that by drawing a large random set of values for a2, it should be possible to obtain a
large family of distributions of the form (a2 ·Ur mod a3) such that any two of them have large
variation distance. We make this intuition precise using a number-theoretic equidistribution result of
Shparlinski (2008) and a probabilistic argument showing that indeed a random set of (a3)1/3 choices
of a2 is likely to have the desired property. This gives a “hard family” of size (a3)1/3, leading to
an Ω(log a3) = Ω(log amax) lower bound via Fano’s inequality. As before some technical work
is required to translate these arguments for the uniform distribution over to the shifted binomial
distributions that we actually have to work with, but we defer these technical details to Section 13.

4. Preliminaries

In this section we lay some groundwork.

4.1 Basic notions and useful tools from probability.

Distributions. We will typically ignore the distinction between a random variable and its distribu-
tion. We use bold font Xi,S, etc. to denote random variables (and also distributions).

For a distribution X supported on the integers we write X(i) to denote the value Pr[X = i] of
the probability density function of X at point i, and X(≤ i) to denote the value Pr[X ≤ i] of the
cumulative density function of X at point i. For S ⊆ Z, we write X(S) to denote

∑
i∈S X(i) and

XS to denote the conditional distribution of X restricted to S.

Total Variation Distance. Recall that the total variation distance between two distributions X and
Y over a countable set D is

dTV (X,Y) :=
1

2
·
∑
α∈D
|X(α)−Y(α)| = max

S⊆D
[X(S)−Y(S)],

with analogous definitions for pairs of distributions over R, over Rk, etc. Similarly, if X and Y
are two random variables ranging over a countable set, their total variation distance dTV(X,Y) is
defined as the total variation distance between their distributions. We sometimes write “X

ε
≈ Y” as

shorthand for “dTV(X,Y) ≤ ε”.
For X and Y with dTV(X,Y) ≤ ε, the following coupling lemma justifies thinking of a draw

from Y as being obtained by making a draw from X, and modifying it with probability at most ε.

Lemma 7 ((Lindvall, 2002)) For random variables X and Y with dTV(X,Y) ≤ ε, there is a joint
distribution whose marginals are X and Y such that, with probability at least 1− ε, X = Y.

Shift-invariance. Let X be a finitely supported real-valued random variable. For an integer k
we write dshift,k(X) to denote dTV(X,X + k). We say that X is α-shift-invariant at scale k if
dshift,k(X) ≤ α; if X is α-shift-invariant at scale 1 then we sometimes simply say that X is α-shift-
invariant. We will use the following basic fact:

Fact 8 1. If X,Y are independent random variables then dshift,k(X + Y) ≤ dshift,k(X).

2. Let X be α-shift-invariant at scale p and Y (independent from X) be β-shift-invariant at
scale q. Then X + Y is both α-shift-invariant at scale p and β-shift-invariant at scale q.
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Kolmogorov Distance and the DKW Inequality. Recall that the Kolmogorov distance dK(X,Y)
between probability distributions over the integers is

dK(X,Y) := max
j∈Z
|Pr[X ≤ j]−Pr[Y ≤ j]|,

and hence for any interval I = {a, a+ 1, . . . , a+ b} ⊂ Z we have that

|Pr[X ∈ I]−Pr[Y ∈ I]| ≤ 2dK(X,Y).

Learning any distribution with respect to the Kolmogorov distance is relatively easy, which fol-
lows from the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality. Let X̂m denote the empirical distribu-
tion ofm i.i.d. samples drawn from X. The DKW inequality states that form = Ω((1/ε2)·ln(1/δ)),
with probability 1− δ (over the draw of m samples from X) the empirical distribution X̂m will be
ε-close to X in Kolmogorov distance:

Theorem 9 ((Dvoretzky et al., 1956; Massart, 1990)) Let X̂m be an empirical distribution of m
samples from distribution X over the integers. Then for all ε > 0, we have

Pr[dK(X, X̂m) > ε] ≤ 2e−2mε2 .

Convolving with an α-shift invariant distribution can “spread the butter” to transform distribu-
tions that are close w.r.t. Kolmogorov distance into distributions that are close with respect to the
more demanding total variation distance. The following lemma makes this intuition precise:

Lemma 10 ((Gopalan et al., 2011)) Let Y,Z be distributions supported on the integers and X be
an α-shift invariant distribution that is independent of Y,Z. Then for any a, b such that dK(Y,Z) ≤
αb, we have

dTV(Y + X,Z + X) = O(
√
dK(Y,Z) · α · b) + Pr[Y /∈ [a, a+ b)] + Pr[Z /∈ [a, a+ b)].

We will also require a multidimensional generalization of Kolmogorov distance and of the DKW
inequality. Given probability distributions X,Y over Zd, the Kolmogorov distance between X and
Y is

dK(X,Y) := max
(j1,...,jd)∈Zd

|Pr[Xi ≤ ji for all i ∈ [d]]−Pr[Y ≤ ji for all i ∈ [d]]|,

and so for any axis-aligned rectangle R =
∏d
i=1{ai, . . . , ai + bi} ⊂ Zd we have

|Pr[X ∈ R]−Pr[Y ∈ R]| ≤ 2ddK(X,Y).

We will use the following generalization of the DKW inequality to the multidimensional setting.

Lemma 11 ((Talagrand, 1994)) Let X̂m be an empirical distribution of m samples from distri-
bution X over Zd. There are absolute constants c1, c2 and c3 such that, for all ε > 0, for all
m ≥ c1d/ε

2,
Pr[dK(X, X̂m) > ε] ≤ cd2e−c3ε

2m.

Covers. Let P denote a set of distributions over the integers. Given δ > 0, a set of distributions Q
is said to be a δ-cover of P (w.r.t. the total variation distance) if for every distribution P in P there
exists some distribution Q in Q such that dTV(P,Q) ≤ δ. We sometimes say that distributions
P,Q are δ-neighbors if dTV(P,Q) ≤ δ, or that P and Q are δ-close.

Support and essential support. We write supp(P) to denote the support of distribution P.Given a
distribution P over the integers, we say that P is τ -essentially supported on S ⊂ Z if P(S) ≥ 1−τ.
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4.2 The distributions we work with.

We recall the definition of an A-sum and give some related definitions. For 0 ≤ a1 < ... < ak and
A = {a1, ..., ak}, a A-sum is a distribution S =

∑N
i=1 Xi where the Xi’s are independent integer

random variables (not assumed to be identically distributed) all of which are supported on the same
set of integer values a1 < a2 < · · · < ak ∈ Z≥0. A Poisson Binomial Distribution, or PBDN , is a
{0, 1}-sum.

A weighted sum of PBDs is a distribution S = a2S2+· · ·+akSk where each Si is an independent
PBDNi and N2 + · · · + Nk = N. Equivalently we have that S =

∑N
i=1 Xi where N2 of the Xi’s

are supported on {0, a2}, N3 are supported on {0, a3}, and so on.
Let us say that a signed PBDN is a random variable S =

∑N
i=1 Xi where the Xi’s are indepen-

dent and each is either supported on {0, 1} or is supported on {0,−1}. We defined a weighted sum
of signed PBDs analogously to the unsigned case.

Finally, we say that an integer valued random variable X has mode 0 if Pr[X = 0] ≥ Pr[X =
b] for all b ∈ Z.

Translated Poisson Distributions and Discretized Gaussians. We will make use of the translated
Poisson distribution for approximating signed PBDs with large variance.

Definition 12 ((Röllin, 2007)) We say that an integer random variable Y is distributed according
to the translated Poisson distribution with parameters µ and σ2, denoted TP (µ, σ2), iff Y can be
written as

Y = bµ− σ2c+ Z,

where Z is a random variable distributed according to Poisson(σ2 + {µ − σ2}), where {µ − σ2}
represents the fractional part of µ− σ2.

The following lemma gives a useful bound on the variation distance between a signed PBD and a
suitable translated Poisson distribution.

Lemma 13 Let S be a signed PBDN with mean µ and variance σ2 ≥ 1. Then

dTV

(
S, TP (µ, σ2)

)
≤ O(1/σ).

Proof Without loss of generality we may suppose that S = X1 + · · ·+XN where X1, . . . ,XM are
supported on {0,−1} with E[Xi] = −pi for i ≤ M , and XM+1, . . . ,XN are supported on {0, 1}
with E[Xi] = pi for i > M. Let X′i = Xi+1 for 1 ≤ i ≤M , so S′ := X′1 + · · ·+X′M +XM+1 +
· · ·+ XN are independent Bernoulli random variables where E[X′i] = 1− pi for i ≤M.

Röllin (2007) (specifically equation (3.4)) shows that if J1, . . . ,JN are independent Bernoulli
random variables with E[Ji] = pi, then

dTV

(
N∑
i=1

Ji, TP (µ, σ2)

)
≤

√∑N
i=1 p

3
i (1− pi) + 2∑N

i=1 pi(1− pi)
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where µ =
∑N

i=1 pi. Applying this to S′, we see that for µ′ = E[S′], we have

dTV

(
S′, TP (µ′, σ2)

)
≤

√∑M
i=1 pi(1− pi)3 +

∑N
i=M+1 p

3
i (1− pi) + 2∑N

i=1 pi(1− pi)

≤

√∑N
i=1 pi(1− pi) + 2∑N
i=1 pi(1− pi)

≤ O(1/σ).

The claimed bound follows from this on observing that S′ is a translation of S byM and TP (µ′, σ2)
is likewise a translation of TP (µ, σ2) by M .

The following bound on the total variation distance between translated Poisson distributions will
be useful.

Lemma 14 ((Barbour and Lindvall, 2006, Lemma 2.1)) For µ1, µ2 ∈ R and σ2
1, σ

2
2 ∈ R+ with

bµ1 − σ2
1c ≤ bµ2 − σ2

2c, we have

dTV(TP (µ1, σ
2
1), TP (µ2, σ

2
2)) ≤ |µ1 − µ2|

σ1
+
|σ2

1 − σ2
2|+ 1

σ2
1

.

We will also use discretized Gaussians, both real-valued and vector-valued (i.e. multidimen-
sional). A draw from the discretized Gaussian ND(µ, σ2) is obtained by making a draw from the
normal distributionN (µ, σ) and rounding to the nearest integer. We refer to µ and σ2 respectively as
the “underlying mean” and “underlying variance” of ND(µ, σ). Similarly, a draw from the multidi-
mensional discretized GaussianND(µ,Σ) is obtained by making a draw from the multidimensional
Gaussian N (µ,Σ) with mean vector µ and covariance matrix Σ and rounding each coordinate to
the nearest integer. To avoid confusion we will always explicitly write “multidimensional” when
dealing with a multidimensional Gaussian.

We recall some simple facts about the variation distance between different discretized Gaussian
distributions.

Lemma 15 ((Daskalakis et al., 2013, Proposition B.5)) Let G be distributed as N (µ, σ2) and let
λ ∈ R. Then dTV(bG + λc, bGc+ bλc) ≤ 1

2σ .

The same argument that gives Lemma 15 also gives the following small extension:

Lemma 16 Let G be distributed as N (µ, σ2) and let λ ∈ R, ρ ∈ Z. Then dTV(bG + λc, bGc +

ρ) ≤ |ρ−λ|2σ .

We will use the following theorem about approximation of signed PBDs.

Theorem 17 ((Chen et al., 2011, Theorem 7.1) 3) For S a signed PBD, dTV(S,ND(µ, σ2)) ≤
O(1/σ) where µ = E[S] and σ2 = Var[S].

The following is a consequence of Theorem 17 and Lemma 16 which we explicitly record for
later reference:
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Fact 18 Let S be a signed PBD with Var[S] = σ2
S. Then S is τ -shift-invariant at scale 1 for

τ = O(1/σS), and hence for any integer c, the distribution cS is τ -shift-invariant at scale c.

We also need a central limit theorem for multinomial distributions. We recall the following
result, which is a direct consequence of the “size-free CLT” for Poisson Multinomial Distributions
in (Daskalakis et al., 2016). (Below we write ei to denote the real vector in {0, 1}d that has a 1 only
in the i-th coordinate.)

Theorem 19 Let X1, . . . ,XN be independent Zd-valued random variables where the support of
each Xi is contained in the set {0,±e1, . . . ,±ed}. Let M = X1 + . . .+ XN . Then we have

dTV(M,ND(µ,Σ)) ≤ O

(
d7/2

σ1/10

)
,

where µ = E[M] is the mean and Σ is the d × d covariance matrix of S, and σ2 is the minimum
eigenvalue of Σ.

Covers and structural results for PBDs. Our proof of Theorem 4, which is about learning PBDs
that have been subject to an unknown shifting and scaling, uses the fact that for any ε there is
a “small cover” for the set of all PBDN distributions. We recall the following (Daskalakis and
Papadimitriou, 2015):

Theorem 20 (Cover for PBDs) Let S be any PBDN distribution. Then for any ε > 0, we have that
either

• S is ε-essentially supported on an interval of O(1/ε3) consecutive integers (in this case we
say that S is in sparse form); or if not,

• S is ε-close to some distribution u+Bin(`, q) where u, ` ∈ {0, 1, . . . , N}, and Var[Bin(`, q)] =
Ω(1/ε2) (in this case we say that S is in 1/ε-heavy Binomial form).

We recall some well-known structural results on PBDs that are in 1/ε-heavy Binomial form (see
Chen et al., 2011, Theorem 7.1 and p. 231):

Fact 21 Let Y be a PBDN distribution that is in 1/ε-heavy Binomial form as described in Theorem
20. Then

1. dTV(Y,Z) = O(ε), where Z is a discretized N (E[Y],Var[Y]) Gaussian.

2. dshift,1(Y) = O(ε).

4.3 Extension of the Barbour-Xia coupling lemma

In (Barbour and Xia, 1999), Barbour and Xia Barbour and Xia (1999) proved the following lemma
concerning the shift-invariance of sums of independent integer random variables.
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Lemma 22 ((Barbour and Xia, 1999, Proposition 4.6)) Let X1, . . . ,XN be N independent inte-
ger valued random variables and let S = X1 + . . .+ XN . Let dshift,1(Xi) ≤ 1− δi. Then,

dshift,1(S) ≤ O
(

1√∑N
i=1 δi

)
.

We require a dshift,p analogue of this result. To obtain such an analogue we first slightly generalize
the above lemma so that it does not require Xi to be supported on Z. The proof uses a simple
reduction to the integer case.

Claim 23 Let X1, . . . ,XN be N independent finitely supported random variables and let S =
X1 + . . .+ XN . Let dshift,1(Xi) ≤ 1− δi. Then,

dshift,1(S) ≤ O
(

1√∑N
i=1 δi

)
.

Proof Assume that for any i, the support of Xi is of size at most k and is supported in the interval
[−k, k]. (By the assumption of finite support this must hold for some integer k.) Given any Xi,
create a new random variable Yi which is defined as follows: First, let us partition the support of
Xi by putting two outcomes into the same cell whenever the difference between them is an integer.
Let S(i)

1 , . . . , S
(i)
k′ be the non-empty cells, so k′ ≤ k, and, for each S(i)

j , there is a real βj such

that S(i)
j ⊆ {βj + ` : ` ∈ Z}. Let γj,i denote the smallest element of S(i)

j . Let us define integers
{mj,i}1≤j≤k,1≤i≤N as follows: mj,i = (N · k)k·i+j . The random variable Yi is defined as follows:
For all ` ∈ Z+, let the map Mi send γj,i + ` to mj,i + `. The probability distribution of Yi is the
distributed induced by the map Mi when acting on Xi, i.e. a draw from Yi is obtained by drawing
xi from Xi and outputting Mi(xi). It is clear that Yi is integer-valued and satisfies

dshift,1(Xi) = dshift,1(Yi).

Now consider a sequence of outcomes Y1 = y1, . . . ,YN = yN and Y′1 = y′1, . . . ,Y
′
N = y′N such

that ∣∣ N∑
i=1

(yi − y′i)
∣∣ = 1.

We can write each yi as mαi,i + δi where each 1 ≤ αi ≤ k and each −k ≤ δi ≤ k. Likewise,
y′i = mα′i,i

+ δ′i where each 1 ≤ α′i ≤ k and each −k ≤ δ′i ≤ k. Since mj,i = (N · k)k·i+j , it is
easy to see that the following must hold:

For all i = 1, . . . , N, mαi,i = mα′i,i
and

∣∣∣∣∣
N∑
i=1

(δi − δ′i)

∣∣∣∣∣ = 1.

This immediately implies that dshift,1
(∑N

i=1 Xi

)
= dshift,1

(∑N
i=1 Yi

)
. Applying Lemma 22, we

have that

dshift,1(

N∑
i=1

Yi) ≤ O

 1√∑N
i=1 δi

 ,
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which finishes the upper bound.

This immediately yields the following corollary.

Corollary 24 Let X1, . . . ,XN be finitely supported independent integer valued random variables.
Let dshift,p(Xi) ≤ 1− δi. Then, for S =

∑N
i=1 Xi, we have

dshift,p(S) = O

 1√∑N
i=1 δi

 .

Proof Let Yi = Xi/p for all 1 ≤ i ≤ N . Then for S′ =
∑N

i=1 Yi, it is clear that dshift,1(S′) =
dshift,p(S). Applying Claim 23, we get the corollary.

4.4 Other background results on distribution learning.

Learning distributions with small essential support. We recall the following folklore result,
which says that distributions over a small essential support can be learned efficiently:

Fact 25 There is an algorithm A with the following performance guarantee: A is given a pos-
itive integer s, an accuracy parameter ε, a confidence parameter δ, and access to i.i.d. draws
from an unknown distribution P over Z that is promised to be ε-essentially supported on some
set S with |S| = s. Algorithm A makes m = poly(s, 1/ε, log(1/δ)) draws from P, runs for time
poly(s, 1/ε, log(1/δ)) and with probability at least 1− δ outputs a hypothesis distribution P̃ such
that dTV(P, P̃) ≤ 2ε.

(The algorithm of Fact 25 simply returns the empirical distribution of itsm draws from P.) Note
that by Fact 25, if S is a sum of N < poly(1/ε) integer random variables then there is a poly(1/ε)-
time, poly(1/ε)-sample algorithm for learning S, simply because the support of S is contained in a
set of size poly(1/ε). Thus in the analysis of our algorithm for k = 3 we can (and do) assume that
N is larger than any fixed poly(1/ε) that arises in our analysis.

4.4.1 HYPOTHESIS SELECTION AND “GUESSING”.

To streamline our presentation as much as possible, many of the learning algorithms that we present
are described as “making guesses” for different values at various points in their execution. For
each such algorithm our analysis will establish that with very high probability there is a “correct
outcome” for the guesses which, if it is achieved (guessed), results in an ε-accurate hypothesis.
This leads to a situation in which there are multiple hypothesis distributions (one for each possible
outcome for the guesses that the algorithm makes), one of which has high accuracy, and the overall
learning algorithm must output (with high probability) a high-accuracy hypothesis. Such situations
have been studied by a range of authors (see Yatracos, 1985; Daskalakis and Kamath, 2014; Suresh
et al., 2014; Daskalakis et al., 2012a; De et al., 2015) and a number of different procedures are
known which can do this. For concreteness we recall one such result, (De et al., 2015, Proposition
6):
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Proposition 26 Let D be a distribution over a finite set W and let Dε = {Dj}Mj=1 be a collec-
tion of M hypothesis distributions over W with the property that there exists i ∈ [M ] such that
dTV(D,Di) ≤ ε. There is an algorithm SelectD which is given ε and a confidence parameter δ,
and is provided with access to (i) a source of i.i.d. draws from D and from Di, for all i ∈ [M ];
and (ii) an “evaluation oracle” evalDi , for each i ∈ [M ], which, on input w ∈ W , determin-
istically outputs the value Di(w). The SelectD algorithm has the following behavior: It makes
m = O

(
(1/ε2) · (logM + log(1/δ))

)
draws from D and from each Di, i ∈ [M ], and O(m) calls

to each oracle evalDi , i ∈ [M ]. It runs in time poly(m,M) (counting each call to an evalDi or-
acle and draw from a Di distribution as unit time), and with probability 1 − δ it outputs an index
i? ∈ [M ] that satisfies dTV(D,Di?) ≤ 6ε.

We shall apply Proposition 26 via the following simple corollary (the algorithm A′ described
below works simply by enumerating over all possible outcomes of all the guesses and then running
the SelectD procedure of Proposition 26):

Corollary 27 Suppose that an algorithm A for learning an unknown distribution D works in the
following way: (i) it “makes guesses” in such a way that there are a total of M possible different
vectors of outcomes for all the guesses; (ii) for each vector of outcomes for the guesses, it makes
m draws from D and runs in time T ; (iii) with probability at least 1 − δ, at least one vector of
outcomes for the guesses results in a hypothesis D̃ such that dTV(D, D̃) ≤ ε, and (iv) for each
hypothesis distribution D′ corresponding to a particular vector of outcomes for the guesses, A can
simulate a random draw from D′ in time T ′ and can simulate a call to the evaluation oracle evalD′

in time T ′. Then there is an algorithm A′ that makes m + O
(
(1/ε2) · (logM + log(1/δ))

)
draws

from D; runs in time O(TM) + poly(m,M, T ′); and with probability at least 1 − 2δ outputs a
hypothesis distribution D̃ such that dTV(D, D̃) ≤ 6ε.

We will often implicitly apply Corollary 27 by indicating a series of guesses and specifying the
possible outcomes for them. It will always be easy to see that the space of all possible vectors of
outcomes for all the guesses can be enumerated in the required time. In Appendix A we discuss
the specific form of the hypothesis distributions that our algorithm produces and show that the time
required to sample from or evaluate any such hypothesis is not too high (at most 1/ε2poly(k) when
|A| = 3, hence negligible given our claimed running times).

4.5 Small error

We freely assume throughout that the desired error parameter ε is at most some sufficiently small
absolute constant value.

4.6 Fano’s inequality and lower bounds on distribution learning.

A useful tool for our lower bounds is Fano’s inequality, or more precisely, the following extension
of it given by Ibragimov and Has’minskii (1981) and Assouad and Birge (1983):

Theorem 28 (Generalization of Fano’s Inequality.) Let P1, . . . ,Pt+1 be a collection of t + 1
distributions such that for any i 6= j ∈ [t + 1], we have (i) dTV(Pi,Pj) ≥ α/2, and (ii)
DKL(Pi||Pj) ≤ β, where DKL denotes Kullback-Leibler divergence. Let A be a learning al-
gorithm which is given samples from an unknown distribution P which is promised to be one of
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P1, . . . ,Pt+1 and which outputs an index i ∈ [t+ 1] specifying a distribution Pi. Then, to achieve
expected error E[dTV(P,Pi)] ≤ α/4 (where the expectation is over the random samples from P),
algorithm A must have sample complexity Ω

(
ln t
β

)
.

5. Tools for kernel-based learning

At the core of our actual learning algorithm is the well-known technique of learning via the “kernel
method” (see Devroye and Lugosi, 2001). In this section we set up some necessary machinery for
applying this technique in our context.

The goal of this section is ultimately to establish Lemma 35, which we will use later in our main
learning algorithm. Definition 29 and Lemma 35 together form a “self-contained take-away” from
this section.

We begin with the following important definition.

Definition 29 Let Y,Z be two distributions supported on Z. We say that Y is (ε, δ)-kernel learn-
able from T = T (ε, δ) samples using Z if the following holds: Let Ŷ = {y1, . . . , yT1} be a multiset
of T1 ≥ T i.i.d. samples drawn from Y and let U

Ŷ
be the uniform distribution over Ŷ . Then with

probability 1− δ (over the outcome of Ŷ ) it is the case that dTV(U
Ŷ

+ Z,Y) ≤ ε.

Intuitively, the definition says that convolving the empirical distribution U
Ŷ

with Z gives a distri-
bution which is close to Y in total variation distance. Note that once T1 is sufficiently large, U

Ŷ
is close to Y in Kolmogorov distance by the DKW inequality. Thus, convolving with Z smoothens
U
Ŷ

.
The next lemma shows that if Y is (ε, δ)-kernel learnable, then a mixtures of shifts of Y is

also (ε, δ)-kernel learnable with comparable parameters (provided the number of components in the
mixture is not too large).

Lemma 30 Let Y be (ε, δ)-kernel learnable using Z from T (ε, δ) samples. If X is a mixture (with
arbitrary mixing weights) of distributions c1+Y, . . . , ck+Y for some integers c1, . . . , ck, then X is
(7ε, 2δ)-kernel learnable from T ′ samples using Z, provided that T ′ ≥ max

{
kT (ε,δ/k)

ε , C · k
2 log(k/δ)

ε2

}
.

Proof Let πj denote the weight of distribution cj + Y in the mixture X. We view the draw of a
sample point from X as a two stage process, where in the first stage an index 1 ≤ j ≤ k is chosen
with probability πj and in the second stage a random draw is made from the distribution cj + Y.

Consider a draw of T ′ independent samples x1, . . . , xT ′ from X. In the draw of xi, let the index
chosen in the first stage be denoted ji (note that 1 ≤ ji ≤ k). For j ∈ [k] define

Sj = {1 ≤ i ≤ T ′ : ji = j}.

The idea behind Lemma 30 is simple. Those j such that πj is small will have |Sj | small and will
not contribute much to the error. Those j such that πj is large will have |Sj |/T ′ very close to πj so
their cumulative contribution to the total error will also be small since each such U{xi:i∈Sj} + Z is
very close to the corresponding cj + Y. We now provide details.

Since T ′ ≥ O
(
k2 log(k/δ)

ε2

)
, a simple Chernoff bound and union bound over all j ∈ [k] gives

that ∣∣∣∣ |Sj |T ′ − πj
∣∣∣∣ ≤ ε/k for all j ∈ [k] (1)
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with probability at least 1 − δ. For the rest of the analysis we assume that indeed (1) holds. We
observe that even after conditioning on (1) and on the outcome of j1, . . . , jT ′ , it is the case that for
each i ∈ [T ′] the value xi is drawn independently from cji + Y.

Let Low denote the set {1 ≤ j ≤ k : T ′ · (πj − ε/k) ≤ T (ε, δ/k)}, so each j /∈ Low satisfies
T ′ · (πj − ε/k) ≥ T (ε, δ/k). Fix any j 6∈ Low. From (1) and the definition of Low we have that
|Sj | ≥ T ′ · (πj − ε/k) ≥ T (ε, δ/k), and since cj + Y is (ε, δ/k)-kernel learnable from T (ε, δ/k)
samples using Z, it follows that with probability at least 1− δ/k we have

dTV

(
U{xi:i∈Sj} + Z, cj + Y

)
≤ ε,

and thus ∑
z∈Z

∣∣∣∣ |Sj |T ′ Pr[U{xi:i∈Sj} + Z = z]− πj Pr[Y = z]

∣∣∣∣
≤
∣∣∣∣ |Sj |T ′ − πj

∣∣∣∣+ max

{
|Sj |
T ′

, πj

}
· ε

2
. (2)

By a union bound, with probability at least 1− δ the bound (2) holds for all j /∈ Low. For j ∈ Low,
we trivially have∑

z∈Z

∣∣∣∣ |Sj |T ′ Pr[U{xi:i∈Sj} + Z = z]− πj Pr[Y = z]

∣∣∣∣ ≤ |Sj |T ′ + πj ≤
∣∣∣∣ |Sj |T ′ − πj

∣∣∣∣+ 2 · πj .

Next, note that ∑
j∈Low

πj ≤
∑
j∈Low

(
T (ε, δ/k)

T ′
+ ε/k

)
≤
∑
j∈Low

(ε/k + ε/k) ≤ 2ε.

Thus, we obtain that

∑
z∈Z

∣∣∣∣∣∣
k∑
j=1

|Sj |
T ′

Pr[U{xi:i∈Sj} + Z = z]−
k∑
j=1

πj Pr[Y = z]

∣∣∣∣∣∣
≤

k∑
j=1

∑
z∈Z

∣∣∣∣∣∣ |Sj |T ′ Pr[U{xi:i∈Sj} + Z = z]−
k∑
j=1

πj Pr[Y = z]

∣∣∣∣∣∣
≤

k∑
j=1

∣∣∣∣ |Sj |T ′ − πj
∣∣∣∣+

∑
j 6∈Low

max

{
|Sj |
T ′

, πj

}
· ε

2
+ 2

∑
j∈Low

πj ≤ 7ε.

As X is obtained by mixing c1+Y, ..., ck+Y with weights π1, ..., πk and Ux1,...,xT ′ is obtained
by mixing U{xi:i∈S1}, ...,U{xi:i∈Sk} with weights |S1|

T ′ , ...,
|Sk|
T ′ , the lemma is proved.

The next lemma is a formal statement of the well-known robustness of kernel learning; roughly
speaking, it says that if X is kernel learnable using Z then any X′ which is close to X is likewise
kernel learnable using Z.
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Lemma 31 Let X be (ε, δ)-kernel learnable using Z from T (ε, δ) samples, and suppose that 0 <

dTV(X,X′) = κ < 1. If T0 > max{T (ε, δ), C · log(1/δ)
ε2
}, then X′ is (2ε+2κ, 2δ)-kernel learnable

from T0 samples using Z.

Proof We establish some useful notation: let Xcommon denote the distribution defined by

Pr[Xcommon = i] =
min{Pr[X = i],Pr[X′ = i]}∑
i min{Pr[X = i],Pr[X′ = i]}

,

let Xresidual denote the distribution defined by

Pr[Xresidual = i] =
Pr[X = i]−min{Pr[X = i],Pr[X′ = i]}∑
i(Pr[X = i]−min{Pr[X = i]Pr[X′ = i]})

,

and likewise let X′residual denote the distribution defined by

Pr[X′residual = i] =
Pr[X′ = i]−min{Pr[X = i],Pr[X′ = i]}∑
i(Pr[X′ = i]−min{Pr[X = i]Pr[X′ = i]})

.

A draw from X (from X′ respectively) may be obtained as follows: draw from Xcommon with
probability 1− κ and from Xresidual (from X′residual respectively) with the remaining κ probability.
To see this, note that if X̃ is a random variable generated according to this two-stage process and
C ∈ {0, 1} is an indicator variable for whether the draw was from Xcommon, then, since κ =
1−

∑
i min{Pr[X = i],Pr[X′ = i]}, we have

Pr[X̃ = i] = Pr[X̃ = i ∧C = 1] + Pr[X̃ = i ∧C = 0]

=
min{Pr[X = i],Pr[X′ = i]}

1− κ
× (1− κ)

+
Pr[X′ = i]−min{Pr[X = i],Pr[X′ = i]}

1− (1− κ)
× κ

= Pr[X = i].

We consider the following coupling of (X,X′): to make a draw of (x, x′) from the coupled
joint distribution (X,X′), draw xcommon from Xcommon, draw xresidual from Xresidual, and draw
x′residual from X′residual. With probability 1− κ output (xcommon, xcommon) and with the remaining
κ probability output (xresidual, x

′
residual).

Let ((x1, x
′
1), . . . , (xT0 , x

′
T0

)) be a sample of T0 pairs each of which is independently drawn
from the coupling of (X,X′) described above. Let X̂ = (x1, . . . , xT0) and X̂ ′ = (x′1, . . . , x

′
T0

) and
observe that X̂ is a sample of T0 i.i.d. draws from X and similarly for X̂ ′. We have

dTV(U
X̂′ + Z,X′) ≤ dTV(U

X̂′ + Z,U
X̂

+ Z) + dTV(U
X̂

+ Z,X) + dTV(X,X′)

≤ dTV(U
X̂′ ,UX̂

) + ε+ κ (by the data processing inequality for `1),

where the second inequality holds with probability 1− δ over the draw of X̂ since T0 ≥ T (ε, δ). A
simple Chernoff bound tells us that with probability at least 1−δ, the fraction of the T0 ≥ C · log(1/δ)

ε2

pairs that are of the form (xresidual, x
′
residual) is at most κ + ε. Given that this happens we have

dTV(U
X̂′ ,UX̂

) ≤ κ+ ε, and the lemma is proved.
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To prove the next lemma (Lemma 33 below) we will need a multidimensional generalization of
the usual coupling argument used to prove the correctness of the kernel method. This is given by
the following proposition:

Proposition 32 For all 1 ≤ j ≤ k, let aj , bj ∈ Z with bj ≥ 1 and let B be the subset of Zk given
by B = [a1, a1 + b1] × . . . × [ak, ak + bk]. Let X,Y be random variables supported on Zk such
that Pr[X 6∈ B],Pr[Y 6∈ B] ≤ δ. Let Z be a random variable supported on Zk such that for all
1 ≤ j ≤ k, dTV(Z,Z + ej) ≤ βj . If dK(X,Y) ≤ λ, βj ≤ ρ/bj for all j (where ρ ≥ 1), and Z is
independent of X and Y, then

dTV(X + Z,Y + Z) ≤ 2δ +O
(

4kλ
1
k+1 ρ1− 1

k+1

)
.

Proof Let d1 ≤ b1, . . . , dk ≤ bk be positive integers that we will fix later. Divide the box B into
boxes of size at most d1 × . . . × dk by dividing each [ai, ai + bi] into intervals of size di (except
possibly the last interval which may be smaller). Let S denote the resulting set of k-dimensional
boxes induced by these intervals, and note that the number of boxes in S is `1 × . . . × `k where
`j = dbj/dje.

Let µX and µY be the probability measures associated with X and Y, and let µX,B and µY,B
be the restrictions of µX and µY to the box B (so µX and µY assign value zero to any point not
in B). For a box S ∈ S, let µX,S denote the restriction of µX to S. Let xS = Pr[X ∈ S] and
yS = Pr[Y ∈ S]. Let wS = min{xS , yS}. Let XS and YS be the random variables obtained by
conditioning X and Y on S, and µXS

and µYS
be their measures. Note that µX,S = xS · µXS

and
µY,S = yS ·µYS

. With this notation in place, using f ∗ g to denote the convolution of the measures
f and g, we now have

dTV(X + Z,Y + Z) =
1

2
`1(µX+Z, µY+Z)

=
1

2
`1(µX ∗ µZ, µY ∗ µZ)

≤ Pr[X 6∈ B] + Pr[Y 6∈ B] +
1

2
`1(µX,B ∗ µZ, µY,B ∗ µZ)

≤ 2δ +
1

2

∑
S∈S

`1(µX,S ∗ µZ, µY,S ∗ µZ)

≤ 2δ +
1

2

∑
S∈S

`1(xSµXS
∗ µZ, ySµYS

∗ µZ)

≤ 2δ +
1

2

∑
S∈S

`1(wSµXS
∗ µZ, wSµYS

∗ µZ) +
∑
S∈S
|xS − yS |

≤ 2δ +
1

2

∑
S∈S

wS`1(µXS
∗ µZ, µYS

∗ µZ) + |S| · 2kλ

≤ 2δ +
∑
S∈S

wSdTV(XS + Z,YS + Z) + |S| · 2kλ.

Here the second to last inequality uses the fact that the definition of dK(X,Y) gives sup |xS−yS | ≤
2kλ. Next, notice that since dTV(Z,Z+ej) ≤ ρ/bj and each box in S has size at most d1×. . .×dk,
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we get that dTV(XS + Z,YS + Z) ≤
∑k

i=1 βi(di − 1). Thus, using that |S| =
∏k
j=1dbj/dje and∑

S∈S wS ≤ 1, we have

dTV(X + Z,Y + Z) ≤ 2δ +
∑
S∈S

wS ·
( k∑
i=1

βi(di − 1)
)

+ 4kλ ·
k∏
j=1

(bj/dj).

Optimizing the parameters d1, . . . , dk, we set each di =

⌈(
λ
ρ

) 1
k+1

bi

⌉
which yields

dTV(X + Z,Y + Z) ≤ 2δ + (k + 4k)λ
1
k+1 ρ1− 1

k+1 ,

completing the proof.

Now we can prove Lemma 33, which we will use to prove that a weighted sum of high-variance
PBDs is kernel-learnable for appropriately chosen smoothening distributions.

Lemma 33 Let independent random variables X1, . . . ,Xk over Z, and ρ ≥ 1, be such that

1. For 1 ≤ j ≤ k, there exist aj , bj ∈ Z, δj ≥ 0 such that Pr[Xj 6∈ [aj , aj + bj ]] ≤ δj ,

2. For all 1 ≤ j ≤ k, dshift,1(Xj) ≤ βj ≤ ρ/bj .

Let Y =
∑k

j=1 pj ·Xj for some integers p1, . . . , pk. Let Zj be the uniform distribution on the set

Z ∩ [−cj , cj ] where cj ∈ Z satisfies cj =
Θ(ε)bj
k·ρ and 1 ≤ cj ≤ bj and Z1, . . . ,Zk are mutually

independent and independent of X1, . . . ,Xk. Define Z =
∑k

j=1 pj · Zj . Then, Y is (ε + 4(δ1 +

. . .+ δk), δ)-kernel learnable using Z from T = exp(O(k2))

εO(k) · ρO(k) · log(1/δ) + log(4k
δ ) ·maxj 1/δ2

j

samples.

Proof We first observe that

dTV(Y + Z,Y) ≤
k∑
j=1

dTV(pj ·Xj + pj · Zj , pj ·Xj)

=

k∑
j=1

dTV(Xj + Zj ,Xj) ≤
k∑
j=1

ρcj
bj

= Θ(ε) (3)

where the last inequality uses the fact that Zj is supported on the interval [−cj , cj ] and dshift,1(Xj) ≤
ρ
bj

. Now, consider a two-stage sampling process for an element y ← Y: For 1 ≤ j ≤ k,

we sample x(y)
j ∼ Xj and then output y =

∑k
j=1 pj · x

(y)
j . Thus, for every sample y, we can

associate a sample x(y) = (x
(y)
1 , . . . , x

(y)
k ). For y1, . . . , yT ← Y, let x(y1), . . . , x(yT ) denote

the corresponding samples from Zk. Let U
X̂

denote the uniform distribution over the multiset
of T samples x(y1), . . . , x(yT ), and let U

Ŷ
denote the uniform distribution on y1, . . . , yT . Let

30



SPARSE COLLECTIVE SUPPORT

Xmulti = (X1,X2, . . . ,Xk). By Lemma 11, we get that if T ≥ c(k + log(1/δ))/η2 (for a pa-
rameter η we will fix later), then with probability 1 − δ/2 we have dK(Xmulti,UX̂

) ≤ η; more-
over, if T ≥ log(4k

δ ) · maxj 1/δ2
j , then by a Chernoff bound and a union bound we have that

Pr[(U
X̂

)j 6∈ [aj , aj + bj ]] ≤ 2δj for 1 ≤ j ≤ k (which we will use later) with probability 1− δ/2.
In the rest of the argument we fix such an X̂ satisfying these conditions, and show that for the corre-
sponding Ŷ we have dTV(Y,U

Ŷ
+Z) ≤ 4(δ1 + . . .+ δk) + ε, thus establishing kernel learnability

of Y using Z.
Next, we define Zmulti = (Z1, . . . ,Zk), with the aim of applying Proposition 32. We observe

that dTV(Zmulti,Zmulti + ej) ≤ 1
cj

and as noted above, for 1 ≤ j ≤ k we have Pr[(U
X̂

)j 6∈
[aj , aj+bj ]] ≤ 2δj . Define the box B = [a1, a1 +b1]× . . .× [ak, ak+bk]. Applying Proposition 32,
we get

dTV(Xmulti + Zmulti,UX̂
+ Zmulti) ≤ 4(δ1 + . . .+ δk) +O

(
4kη

1
k+1

(
kρ

Θ(ε)

)1− 1
k+1

)

since
∑

j βj ≤ ε. Taking an inner product with p = (p1, . . . , pk), we get

dTV(Y + Z,U
Ŷ

+ Z) = dTV(〈p,Xmulti + Zmulti〉, 〈p,UX̂
+ Zmulti〉)

≤ dTV(Xmulti + Zmulti,UX̂
+ Zmulti)

≤ 4(δ1 + . . .+ δk) +O

(
4kη

1
k+1

(
kρ

Θ(ε)

)1− 1
k+1

)
.

Combining this with (3), we get that

dTV(Y,U
Ŷ

+ Z) ≤ 4(δ1 + . . .+ δk) +O

(
4kη

1
k+1

(
kρ

Θ(ε)

)1− 1
k+1

)
+ Θ(ε), (4)

Setting η = ε2k+1

4k(k+1)kkρk
, the condition T ≥ c(k + log(1/δ))/η2 from earlier becomes

T ≥ c(k + log(1/δ))/η2 =
eO(k2)

εO(k)
· ρ2k · log(1/δ)

and we have dTV(Y,U
Ŷ

+ Z) ≤ 4(δ1 + . . .+ δk) + Θ(ε), proving the lemma.

We specialize Lemma 33 to establish kernel learnability of weighted sums of signed PBDs as
follows:

Corollary 34 Let S1, . . . ,Sk be independent signed PBDs and let Y =
∑k

j=1 pj · Sj . Let σ2
j =

Var[Sj ] = ω(k2/ε2) and let Zj be the uniform distribution on [−cj , cj ]∩Z where cj = Θ(ε·σj/k).

Let Z =
∑k

j=1 pj ·Zj . Then Y is (ε, δ)-kernel learnable using Z from T = eO(k2)

εO(k) ·log(1/δ) samples.

Proof Note that for 1 ≤ j ≤ k, there are integers aj such that for bj = O(σj · ln(k/ε)), by
Bernstein’s inequality we have Pr[Sj 6∈ [aj , aj + bj ]] ≤ ε/k. Also, recall from Fact 18 that
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dshift,1(Sj) = O(1)
σj

. Since each cj satisfies 1 ≤ cj ≤ bj , we may apply Lemma 33 and we get that

Y is (O(ε), δ)-kernel learnable using T = eO(k2)

εO(k) · log(1/δ) samples.

(It should be noted that while the previous lemma shows that a weighted sum of signed PBDs
that have “large variance” are kernel learnable, the hypothesis U

Ŷ
+ Z is based on Z and thus con-

structing it requires knowledge of the variances σ1, . . . , σj ; thus Lemma 33 does not immediately
yield an efficient learning algorithm when the variances of the underlying PBDs are unknown. We
will return to this issue of knowing (or guessing) the variances of the constituent PBDs later.)

Finally, we generalize Corollary 34 to obtain a robust version. Lemma 35 will play an important
role in our ultimate learning algorithm.

Lemma 35 Let S be κ-close to a distribution of the form S′ = Soffset +
∑K

j=1 pj · Sj , where
Soffset,S1, . . . ,SK are all independent and S1, . . . ,SK are signed PBDs. For a ∈ [K] let σ2

a =
Var[Sa] = ω(K2/ε2). Let m = |supp(Soffset)| and let γ1, . . . , γK be such that for all 1 ≤ a ≤ K
we have σa ≤ γa ≤ 2σa. Let Zj be the uniform distribution on the interval [−cj , cj ] ∩ Z where
cj = Θ(ε · γj/K). Then for Z =

∑K
a=1 pa · Za, the distribution S is (O(ε + κ), O(δ))-kernel

learnable using Z from exp(O(K2))

εO(K) ·m2 · log(m/δ) samples.

Proof Applying Corollary 34 and Lemma 30, we first obtain that the distribution S′ is (O(ε), O(δ))-
kernel-learnable using Z from exp(O(K2))

εO(K) ·m2 · log(m/δ) samples. Now, applying Lemma 31, we

obtain that S is (O(ε+ κ), O(δ))-learnable using Z from exp(O(K2))

εO(K) ·m2 · log(m/δ) samples.

6. Setup for the upper bound argument

Recall that an A-sum is S = X1 + · · ·+ XN where the X1, . . . ,XN distributions are independent
(but not identically distributed) and each Xi is supported on the set A = {a1, . . . , ak} where
{a1, . . . , ak} ⊂ Z≥0 and a1 < · · · < ak (and a1, . . . , ak, N, ε are all given to the learning algorithm
in the known-support setting).

For each Xi we define X′i to be the “zero-moded” variant of Xi, namely X′i = Xi−mode(Xi)
where mode(Xi) ∈ {a1, . . . , ak} is a mode of Xi (i.e. mode(Xi) satisfies Pr[Xi = mode(Xi)] ≥
Pr[Xi = ai′ ] for all i′ ∈ [k]). We define S′ to be

∑N
i=1 X

′
i. It is clear that S′ + V = S where V is

an (unknown) “offset” in Z. Below we will give an algorithm that learns S′ + V given independent
draws from it.

For each i ∈ [N ] the support of random variable X′i is contained in {0,±q1, . . . ,±qK}, where
K = O(k2) and {q1, . . . , qK} is the set of all distinct values achieved by |a`−a`′ |, 1 ≤ ` < `′ ≤ k.
As noted above each X′i has Pr[X′i = 0] ≥ 1/k ≥ 1/K.

To help minimize confusion we will consistently use letters i, j, etc. for dummy variables that
range over 1, . . . , N and a, b, c, d etc. for dummy variables that range over 1, . . . ,K.

32



SPARSE COLLECTIVE SUPPORT

We define the following probabilities and associated values:

For i ∈ [N ] and a ∈ [K] : cqa,i = Pr[X′i = ±qa] (5)

For a ∈ [K] : cqa =
N∑
i=1

cqa,i. (6)

We may think of the value cqa as the “weight” of qa in S′.
It is useful for us to view S′ =

∑N
i=1 X

′
i in the following way. Recall that the support of X′i is

contained in {0,±q1, . . . ,±qK}. For i ∈ [N ] we define a vector-valued random variable Yi that is
supported on {0,±e1, . . . ,±eK} by

Pr[Yi = 0] = Pr[X′i = 0] ≥ 1

K
, Pr[Yi = τea] = Pr[X′i = τqa] for τ ∈ {−1, 1}, a ∈ [K].

(7)
We define the vector-valued random variable M =

∑N
i=1 Yi, so we have X′i = (q1, . . . , qK) ·Yi

for each i and S′ = (q1, . . . , qK) ·M. Summarizing for convenient later reference:

X′1, . . . ,X
′
N : independent, each supported in {0,±q1, . . . ,±qK} (8)

S′ = X′1 + · · ·+ X′N : supported in Z (9)

Y1, . . . ,YN : independent, each supported in {0,±e1, . . . ,±eK} (10)

M = Y1 + · · ·+ YN : supported in Zk (11)

S′ = (q1, . . . , qK) ·M. (12)

From this perspective, in order to analyze S′ it is natural to analyze the multinomial random
variable M, and indeed this is what we do in the next section.

Finally, we note that while it suffices to learn S′ of the form captured in (8) and (9) for the K
and S′ that arise from our reduction to this case, our analysis will hold for all K ∈ Z+ and all S′ of
this form.

7. Useful structural results when all cqa’s are large

In this section we establish some useful structural results for dealing with a distribution S′ =∑N
i=1 X

′
i for which, roughly speaking, all the values cq1 , . . . , cqK (as defined in Section 6) are

“large.” More formally, we shall assume throughout this section that each cqa ≥ R, where the exact
value of the parameter R will be set later in the context of our learning algorithm in (29) (we note
here only that R will be set to a fixed “large” polynomial in K and 1/ε). Looking ahead, we will
later use the results of this section to handle whatever cqa’s are “large”.

The high-level plan of our analysis is as follows: In Section 7.1 we show that the multinomial
distribution M (recall (11) and (12)) is close in total variation distance to a suitable discretized
multidimensional Gaussian. In Section 7.2 we show in turn that such a discretized multidimensional
Gaussian is close to a vector-valued random variable that can be expressed in terms of independent
signed PBDs. Combining these results, in Section 7.3 we show that S′ is close in variation distance
to a weighted sum of signed PBDs. The lemma stating this, Lemma 40 in Section 7.3, is one of
the two main structural results in this section. The second main structural result in this section,
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Lemma 41, is stated and proved in Section 7.4. Roughly speaking, it shows that, for a weighted sum
of signed PBDs, it is possible to replace the scaled sum of the “high-variance” PBDs by a single
scaled PBD. This is useful later for learning since it leaves us in a situation where we only need to
deal with scaled PBDs whose variance is “not too high.”

We record some useful notation for this section: for i ∈ [N ], a ∈ [K] and τ ∈ {−1, 1} let pi,a,τ
denote

pi,a,τ := Pr[Yi = τea] = Pr[X′i = τqa]. (13)

7.1 From multinomials to discretized multidimensional Gaussians

The result of this subsection, Lemma 36, establishes that the multinomial distribution M is close in
total variation distance to a discretized multidimensional Gaussian.

Lemma 36 Let Y1, . . . ,YN be as in (10), so each Yi has Pr[Yi = 0] ≥ 1/K. Assume that
cqa ≥ R for all a ∈ [K]. As in (11) let M = Y1 + · · · + YN , and let µ̃ = E[M] be the
K-dimensional mean of M and Σ̃ be the K ×K covariance matrix Cov(M). Then

(1) Defining σ̃2 to be the smallest eigenvalue of Σ̃, we have that σ̃2 ≥ R/K.

(2) dTV(M,ND(µ̃, Σ̃)) ≤ O(K71/20/R1/20).

Proof Given part (1), Theorem 19 directly gives the claimed variation distance bound in part (2), so
in the following we establish (1).

Since Y1, . . . ,YN are independent we have that

Σ̃ =

N∑
i=1

Σ̃i, where Σ̃i = Cov(Yi).

Fix i ∈ [N ]. Recalling (13), we have that Σ̃i is the K ×K matrix defined by

(Σ̃i)a,b =

{
(pi,a,1 + pi,a,−1)(1− pi,a,1 − pi,a,−1) + 4pi,a,1pi,a,−1 if a = b

−(pi,a,1 − pi,a,−1)(pi,b,1 − pi,b,−1) if a 6= b.

Hence we have

(Σ̃)a,b =

{∑N
i=1(pi,a,1 + pi,a,−1)(1− pi,a,1 − pi,a,−1) + 4pi,a,1pi,a,−1 if a = b∑N
i=1−(pi,a,1 − pi,a,−1)(pi,b,1 − pi,b,−1) if a 6= b.

(14)

For later reference (though we do not need it in this proof) we also note that the mean vector µ̃ is
defined by

µ̃a =

N∑
i=1

(pi,a,1 − pi,a,−1). (15)

Let δi = Pr[Yi = 0] = 1 − pi,1,1 − pi,1,−1 − · · · − pi,K,1 − pi,K,−1 and observe that by
assumption we have δi ≥ 1/K for all i ∈ [N ]. We lower bound the smallest eigenvalue using the
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variational characterization. For any unit vector x in RK , we have

xT · Σ̃ · x =
K∑
a=1

x2
a

(
N∑
i=1

(pi,a,1 + pi,a,−1)(1− pi,a,1 − pi,a,−1) + 4pi,a,1pi,a,−1

)

−
K∑
a=1

∑
b∈[K],b 6=a

xaxb

(
N∑
i=1

(pi,a,1 − pi,a,−1)(pi,b,1 − pi,b,−1)

)
. (16)

Let p′i,a,1 = pi,a,1 + pi,a,−1. Recalling that each pi,a,1, pi,a,−1 ≥ 0, it is not difficult to see that then
we have

(16) ≥
K∑
a=1

x2
a

(
N∑
i=1

p′i,a,1(1− p′i,a,1)

)
−

K∑
a=1

∑
b∈[K],b 6=a

|xa| · |xb|

(
N∑
i=1

p′i,a,1p
′
i,b,1

)
, (17)

so for the purpose of lower bounding (16) it suffices to lower bound (17). Rewriting p′i,a,1 as pi,a
for notational simplicity, so now δi = 1− pi,1 − · · · − pi,K ,we have

(17) ≥
K∑
a=1

x2
a

N∑
i=1

pi,a(1− pi,a)−
K∑
a=1

∑
b∈[K],b 6=a

|xa| · |xb|
N∑
i=1

pi,api,b

=
N∑
i=1

 K∑
a=1

pi,a(1− pi,a)x2
a −

K∑
a=1

∑
b∈[K],b 6=a

pi,api,b|xa| · |xb|


=

N∑
i=1

 K∑
a=1

δipi,ax
2
a +

K∑
a=1

pi,ax
2
a

 ∑
b∈[K],b 6=a

pi,b

− K∑
a=1

∑
b∈[K],b 6=a

pi,api,b|xa| · |xb|


=

N∑
i=1

δi K∑
a=1

pi,ax
2
a +

K∑
a=1

∑
b∈[K],b 6=a

(pi,api,bx
2
a − pi,api,b|xa| · |xb|)


=

N∑
i=1

(
δi

K∑
a=1

pi,ax
2
a +

K∑
a=1

∑
b<a

pi,api,b(|xa| − |xb|)2

)

≥
N∑
i=1

δi

K∑
a=1

pi,ax
2
a. (18)

Recalling that δi ≥ 1/K for all i ∈ [N ] and
∑n

i=1 pi,a = cqa ≥ R for all a ∈ [K], we get

N∑
i=1

δi

K∑
a=1

pi,ax
2
a ≥

1

K

K∑
a=1

x2
a

N∑
i=1

pi,a ≥
1

K

K∑
a=1

cqax
2
a ≥

R

K

K∑
a=1

x2
a =

R

K
,

so σ̃2 ≥ R/K and the lemma is proved.
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7.2 From discretized multidimensional Gaussians to combinations of independent signed
PBDs

The first result of this subsection, Lemma 37, is a technical lemma establishing that the discretized
multidimensional Gaussian given by Lemma 36 is close to a vector-valued random variable in which
each marginal (coordinate) is a (±1)-weighted linear combination of independent discretized Gaus-
sians, certain of which are promised to have large variance.

Lemma 37 Under the assumptions of Lemma 36 the following items (1) and (2) both hold:

(1) The pair µ̃ ∈ RK , Σ̃ ∈ RK×K , defined in (15) and (14), are such that there exist µa,b ∈ R,
1 ≤ a ≤ b ≤ K, satisfying

µ̃a = µa,a +
∑
c<a

µc,a +
∑
a<d

sign(Σ̃a,d) · µa,d, (19)

and there exist σa,b ∈ R, 1 ≤ a ≤ b ≤ K, such that

σ2
a,b = |Σ̃a,b| = |Σ̃b,a| for all a < b and Σ̃a,a = σ2

a,a +
∑
c<a

σ2
c,a +

∑
a<d

σ2
a,d. (20)

Furthermore, for all a ∈ [K] we have σ2
a,a ≥ σ2, where we define σ2 := R/K.

(2) Let Ua,b, 1 ≤ a < b ≤ K be discretized Gaussians Ua,b = ND(µa,b, σ
2
a,b) that are all

mutually independent. For a ∈ [K] let Xa be defined as

Xa = Ua,a +
∑
c<a

Uc,a +
∑
a<d

sign(Σ̃a,d) ·Ua,d.

Then

dTV

(
(X1, . . . ,XK),ND(µ̃, Σ̃)

)
≤ K2

σ
=
K5/2

R1/2
.

Proof We first prove part (1). Existence of the desired µa,b values is immediate since for each a ∈
[K] the variable µa,a appears in only one equation given by (19) (so we can select arbitrary values for
each µa,b with a < b, and there will still exist a value of µa,a satisfying (19)). The first part of (20)
is trivial since for a < b we take σ2

a,b = |Σ̃a,b| (which of course equals |Σ̃b,a| since the covariance
matrix Σ̃ is symmetric). For the second part we take σ2

a,a = Σ̃a,a −
∑

c<a σ
2
c,a −

∑
a<d σ

2
a,d which
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we now proceed to lower bound.

σ2
a,a = Σ̃a,a −

∑
c<a

σ2
c,a −

∑
a<d

σ2
a,d = Σ̃a,a −

∑
b 6=a
|Σ̃b,a|

≥ Σ̃a,a −
∑
b 6=a

N∑
i=1

(pi,a,1 + pi,a,−1)(pi,b,1 + pi,b,−1) (by (14))

=

N∑
i=1

(pi,a,1 + pi,a,−1)

(1− pi,a,1 − pi,a,−1)−
∑
b 6=a

(pi,b,1 + pi,b,−1)

+ 4pi,a,1pi,a,−1

(again by (14))

≥
N∑
i=1

(pi,a,1 + pi,a,−1)

(1− pi,a,1 − pi,a,−1)−
∑
b 6=a

(pi,b,1 + pi,b,−1)


=

N∑
i=1

(pi,a,1 + pi,a,−1)

δi +
∑
b6=a

(pi,b,1 + pi,b,−1)−
∑
b6=a

(pi,b,1 + pi,b,−1)


(by definition of δi)

=
N∑
i=1

δi(pi,a,1 + pi,a,−1) ≥ 1

K

N∑
i=1

(pi,a,1 + pi,a,−1) (since δi ≥ 1
K )

≥ 1

K
cqa ≥

R

K
.

With µa,b and σa,b in hand, now we turn to proving part (2) of the lemma. For 1 ≤ a ≤ b ≤ K
let U′a,b be the (non-discretized) univariate GaussianN (µa,b, σ

2
a,b) that Ua,b is based on, so Ua,b =⌊

U′a,b

⌉
and the distributions U′a,b are all mutually independent. For a ∈ [K] we define random

variables V′a,a, Va,a as

V′a,a =
∑
c<a

U′c,a +
∑
a<d

sign(Σ̃a,d) ·U′a,d,

Va,a =
∑
c<a

⌊
U′c,a

⌉
+
∑
a<d

⌊
sign(Σ̃a,d) ·U′a,d

⌉
=
∑
c<a

⌊
U′c,a

⌉
+
∑
a<d

sign(Σ̃a,d) ·
⌊
U′a,d

⌉
=
∑
c<a

Uc,a +
∑
a<d

sign(Σ̃a,d) ·Ua,d.

Fix a possible outcome (u′a,b)a<b of (U′a,b)a<b and for each a < b let ua,b =
⌊
u′a,b

⌉
be the corre-

sponding outcome of Ua,b. For a ∈ [K] let

v′a,a =
∑
c<a

u′c,a +
∑
a<d

sign(Σ̃a,d) · u′a,d,

va,a =
∑
c<a

⌊
u′c,a
⌉

+
∑
a<d

⌊
sign(Σ̃a,d) · u′a,d

⌉
=
∑
c<a

uc,a +
∑
a<d

sign(Σ̃a,d) · ua,d.
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Recalling Lemma 16, we have that

dTV(
⌊
U′a,a + v′a,a

⌉
,
⌊
U′a,a

⌉
+ va,a) ≤

K

σ

for each a ∈ [K], and hence by independence we get that

dTV

(
(
⌊
U′1,1 + v′1,1

⌉
, ...,

⌊
U′K,K + v′K,K

⌉
), (
⌊
U′1,1

⌉
+ v1,1, ...,

⌊
U′K,K

⌉
+ vK,K)

)
≤ K2

σ
.

Averaging over all outcomes of (u′a,b)a<b ← (U′a,b)a<b, we get that

dTV

(
(
⌊
U′1,1 + V′1,1

⌉
, ...,

⌊
U′K,K + V′K,K

⌉
), (
⌊
U′1,1

⌉
+ V1,1, ...,

⌊
U′K,K

⌉
+ VK,K)

)
≤ K2

σ
.

To complete the proof it remains to show that the vector-valued random variable

(
⌊
U′1,1 + V′1,1

⌉
, . . . ,

⌊
U′K,K + V′K,K

⌉
)

is distributed according to ND(µ̃, Σ̃). It is straightforward to verify, using (19) and linearity of
expectation, that E[U′a,a + V′a,a] = µ̃a. For the covariance matrix, we first consider the diagonal
terms: we have Var[U′a,a + V′a,a] = Σ̃a,a by the second part of (20) and independence of the U′a,b
distributions. Finally, for the off-diagonal terms, for a < b we have

Cov(U′a,a + V′a,a,U
′
b,b + V′b,b)

= Cov

(
U′a,a +

∑
c<a

U′c,a +
∑
a<d

sign(Σ̃a,d) ·U′a,d,U′b,b +
∑
c<b

U′c,b +
∑
b<d

sign(Σ̃b,d) ·U′b,d

)
= Cov(sign(Σ̃a,b) ·U′a,b,U′a,b) = sign(Σ̃a,b) ·Var[U′a,b] = sign(Σ̃a,b) · σ2

a,b = Σ̃a,b = Σ̃b,a

as desired.

We would like a variant of Lemma 37 where signed PBDs play the role of discretized Gaussians.
This is given by the following lemma. (Note that the lemma also ensures that every nontrivial signed
PBD has high variance; this will be useful later.)

Lemma 38 Given the µ̃ ∈ RK , Σ̃ ∈ RK×K from Lemma 36 and the µa,b, σa,b and σ2 defined
in Lemma 37, there exist signed PBDs Wa,b, 1 ≤ a ≤ b ≤ K, each of which is either trivial
(a constant random variable) or has Var[Wa,b] ≥ σ1/2 = R1/4/K1/4, such that the random
variables Sa, a ∈ [K], defined as

Sa = Wa,a +
∑
c<a

Wc,a +
∑
a<d

sign(Σ̃a,d)Wa,d, (21)

satisfy

dTV

(
(S1, . . . ,SK),ND(µ̃, Σ̃)

)
≤ O

(
K2

σ1/4

)
= O

(
K17/8

R1/8

)
.
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Proof Let Ua,b, Xa be as defined in Lemma 37. We “swap out” each discretized Gaussian Ua,b =
ND(µa,b, σ

2
a,b) in Xa for a signed PBD Wa,b as follows: Given 1 ≤ a ≤ b ≤ K,

(I) If σ2
a,b ≥ σ1/2, we define Wa,b to be a signed PBD that has |E[Wa,b] − µa,b| ≤ 1/2 and

Var[Wa,b] = σ2
a,b. (To see that there exists such a signed PBD, observe that we can take

N1 many Bernoulli random variables each with expectation p, satisfying N1p(1− p) = σ2
a,b,

to exactly match the variance, and then take an additional N2 many constant-valued random
variables (each of which is 1 or −1 depending on whether N1p is greater or less than µa,b) to
get the mean of the signed PBD to lie within an additive 1/2 of µa,b.)

(II) If σ2
a,b < σ1/2 we define Wa,b to be a trivial signed PBD that has E[Wa,b] = bµa,be and

Var[Wa,b] = 0.

In the above definition all Wa,b’s are independent of each other. We note that Lemma 37 implies
that when b = a the PBD Wa,a has Var[Wa,a] = σ2

a,a ≥ σ2 = R/K � σ1/2, and hence the PBD
Wa,a falls into the “large-variance” Case (I) above.

The random variable Sa defined in Equation (21) is the analogue of Xa from Lemma 37 but
with Wa,b replacing each Ua,b. To establish the variation distance bound, fix a ∈ [K]; we first
argue that the variation distance between Sa and Xa is small. We start by observing that since
Var[Wa,a] ≥ σ2, Theorem 17 and Lemma 16 give

dTV(Wa,a,Ua,a) ≤ O(1/σ), (22)

and moreover Wa,a is O(1/σ)-shift-invariant by Fact 18.
Now consider a c < a such that Wc,a falls into Case (II). By the standard concentration bound

for the Gaussian U′c,a ∼ N (µc,a, σ
2
c,a) on which Uc,a is based, we have that Pr[U′c,a /∈ [µc,a −

tσc,a, µc,a + tσc,a]] ≤ 2e−t
2/2 for all t > 0. It follows from Claim 39 (stated and justified below)

and the O(1/σ)-shift-invariance of Wa,a that

dTV(Wa,a + Wc,a,Wa,a + Uc,a) ≤ O
(
tσc,a + 1

σ

)
+ 2e−t

2/2.

Selecting t = σ1/4 so that tσc,a + 1 ≤ σ1/4 · σ1/4 + 1 = O(σ1/2) and e−t
2/2 = o(1/σ1/2), we get

that

dTV(Wa,a + Wc,a,Wa,a + Uc,a) ≤ O
(

1

σ1/2

)
. (23)

A similar argument holds for each d > a such that Wa,d falls into Case (II), giving

dTV(Wa,a + sign(Σ̃a,d) ·Wa,d,Wa,a + sign(Σ̃a,d) ·Ua,d) ≤ O
(

1

σ1/2

)
. (24)

Finally, for each c < a such that Wc,a falls into Case (I), once again applying Theorem 17 and
Lemma 16, we get

dTV(Wc,a,Uc,a) ≤ O(1/σ1/4), (25)

and similarly for d > a such that Wa,d falls into Case (I) we have

dTV(sign(Σ̃a,d) ·Wa,d, sign(Σ̃a,d) ·Ua,d) ≤ O(1/σ1/4). (26)

39



DE, LONG AND SERVEDIO

Combining (22—25) and recalling the definitions of Sa and Xa, by the triangle inequality for
each a ∈ [K] we have

dTV(Sa,Xa) ≤ O
(
K

σ1/4

)
.

Finally, another application of the triangle inequality gives

dTV((S1, . . . ,SK), (X1, . . . ,XK)) ≤ O
(
K2

σ1/4

)
,

which with Lemma 37 gives the claimed bound.

The following claim is an easy consequence of the definition of shift-invariance:

Claim 39 Let A be an integer random variable that is α-shift-invariant, and let B be an integer
random variable such that Pr[B /∈ [u, u + r]] ≤ δ for some integers u, r. Then for any integer
r′ ∈ [u, u+ r] we have dTV(A + B,A + r′) ≤ αr + δ.

7.3 S′ is close to a shifted weighted sum of signed PBDs

Recall that S′ = (q1, . . . , qK) ·M is as defined in (12). Combining Lemmas 36 and 38, and taking
the dot-product with (q1, . . . , qK) to pass from M to S′, we get that the variation distance between
S′ = (q1, . . . , qK)·M and (q1, . . . , qK)·(S1, . . . ,SK) is at mostO(K71/20/R1/20). We can express
(q1, . . . , qK) · (S1, . . . ,SK) as

K∑
a=1

qa

(
Wa,a +

∑
c<a

Wc,a +
∑
a<d

sign(Σ̃a,d)Wa,d

)

=
K∑
a=1

qaWa,a +
∑

1≤a<b≤K
(qb + sign(Σ̃a,b) · qa)Wa,b.

Recalling that each Wa,b is either a constant random variable or a signed PBD with variance at
least σ1/2 = R1/4/K1/4, that each Var[Wa,a] ≥ σ2 > σ1/2, and that all of the distributions
Wa,a,Wa,b are mutually independent, we get the following result showing that cq1 , . . . , cqK ≥ R
implies that S′ is close to a weighted sum of signed PBDs.

Lemma 40 Assume that cq1 , . . . , cqK ≥ R. Then there is an integer V ′, a subset of pairs A ⊆
{(a, b) : 1 ≤ a < b ≤ K}, and a set of sign values {τa,b}(a,b)∈A where each τa,b ∈ {−1, 1}, such
that dTV(S′,B) = O(K71/20/R1/20), where B is a shifted sum of signed PBDs

B = V ′ +
K∑
a=1

qaWa,a +
∑

(a,b)∈A

(qb + τa,b · qa)Wa,b (27)

in which all the Wa,a and Wa,b distributions are independent signed PBDs with variance at least
R1/4/K1/4.

40



SPARSE COLLECTIVE SUPPORT

7.4 A useful limit theorem: Simplifying by coalescing multiple large-variance scaled PBDs
into one

Lemma 40 leads to consideration of distributions of the form T = r1T1 + · · · + rDTD, where
T1, . . . ,TD are independent signed large-variance PBDs. Let us consider for a moment the case
that D = 2, so that T = r1T1 + r2T2. (As we will see, to handle the case of general D it
suffices to consider this case.) Since gcd(r1, r2) divides every outcome of T, we may assume that
gcd(r1, r2) = 1 essentially without loss of generality. When gcd(r1, r2) = 1, if the variance of T2

is large enough relative to r1, then the gaps between multiples of r1 are filled in, and T is closely
approximated by a single PBD. This is helpful for learning, because it means that cases in which
Var[T2] is this large are subsumed by cases in which there are fewer PBDs. This phenomenon is
the subject of Lemma 41.

Lemma 41 Let T = r1T1 + · · · + rDTD where T1, . . . ,TD are independent signed PBDs and
r1, . . . , rD are nonzero integers with the following properties:

• Var[r1T1] ≥ 1
D Var[T];

• For each a ∈ {2, . . . , D} we have Var[Ta] ≥ max{σ2
min,

(
r1
ε′

)2}, where σ2
min ≥ (1/ε′)8.

Let r′ = gcd(r1, . . . , rD). Then there is a signed PBD T′ with Var[r′T′] = Var[T] such that

dTV

(
T, r′T′

)
≤ O(Dε′).

Proof . Reduction to the case that D = 2. We begin by showing that the case D = 2 implies the
general case by induction, and thus it suffices to prove the D = 2 case. Let us suppose that we have
proved the lemma in the D = 2 case and in the D = t − 1 case; we now use these to prove the
D = t case. By the D = 2 case, there is an absolute constant C > 0 and a signed PBD T12 such
that we have

dTV(r1T1 +r2T2, gcd(r1, r2)T12) ≤ Cε′ and Var[r1T1 +r2T2] = Var[gcd(r1, r2)T12]. (28)

Since for all a = 3, ..., t we have

Var[Ta] ≥
(r1

ε′

)2
≥
(

gcd(r1, r2)

ε′

)2

,

the D = t − 1 case implies that, if T12,T3, ...,TT are mutually independent, then there is a PBD
T′ such that

dTV

(
gcd(r1, r2)T12 +

t∑
a=3

raTa, r
′T′

)
≤ C(t− 1)ε′

and

Var[r′T′] = Var

[
gcd(r1, r2)T12 +

t∑
a=3

raTa

]
= Var[gcd(r1, r2)T12] + Var

[
t∑

a=3

raTa

]
,

which, combined with (28), completes the proof of the D = t case. We thus subsequently focus on
the D = 2 case.
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Reduction to the case that r′ = 1. Next, we note that we may assume without loss of generality
that r′ = gcd(r1, r2) = 1, since dividing each ra by r′ scales down Var[r1T1 + r2T2] by (r′)2 and
dTV (r1T1 + r2T2, r

′T′) is easily seen to equal dTV ((r1/r
′)T1 + (r2/r

′)T2, T
′) .

Main proof of the D = 2, r′ = 1 case. Recall that T = r1T1 + r2T2. Let µ denote E[T], and let
σ2 denote Var[T].

As did Gopalan et al. (2011), we will use shift-invariance to go from bounds on dK to bounds
on dTV. Our first step is to give a bound on dK. For this we will use the following well-known
Berry-Esseen-like inequality, which can be shown using Lemma 13, Theorem 17 and Gaussian
anti-concentration:

Lemma 42 There is a universal constant c such

dK(TP (µ, σ2), N(µ, σ2)) ≤ c

σ

for all µ and all σ2 > 0.

Now we are ready for our bound on the Kolmogorov distance:

Lemma 43 dK(T, TP (µ, σ2)) ≤ O(1/σmin).

Proof Lemma 13 implies that for a = 1, 2 we have

dK(Ta, TP (µ(Ta), σ(Ta)
2)) ≤ O(1/σmin),

which directly implies

dK(raTa, raTP (µ(Ta), σ(Ta)
2)) ≤ O(1/σmin).

Lemma 42 and the triangle inequality then give

dK(raTa, N(raµ(Ta), r
2
aσ(Ta)

2)) ≤ O(1/σmin),

and applying Lemma 42 and the triangle inequality again, we get

dK(raTa, TP (raµ(Ta), r
2
aσ(Ta)

2)) ≤ O(1/σmin).

The lemma follows from the fact that dK(X+Y,X′+Y′) ≤ dK(X,X′) +dK(Y,Y′) when X,Y
are independent and X′,Y′ are independent.

Facts 8 and 18 together imply that T is O(1/σmin)-shift invariant at scales r1 and r2, but, to
apply Lemma 10, we need it to be shift-invariant at a smaller scale. Very roughly, we will do
this by effecting a small shift using a few shifts with steps with sizes in {r1, r2}. The following
generalization of Bézout’s Identity starts to analyze our ability to do this.

Lemma 44 Given any integer 0 ≤ u < r1 ·r2, there are integers v1, v2 such that u = v1 ·r1 +v2 ·r2

with |v1| < r2, |v2| < r1.
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Proof By Bézout’s Identity, there exist x1 and x2 with |x1| < r2 and |x2| < r1 such that

x1r1 + x2r2 = 1.

Let y1 be obtained by adding r2 to x1 if x1 is negative, and otherwise just taking x1, and define y2

similarly; i.e., y1 = x1 + r21[x1 < 0] and y2 = x2 + r11[x2 < 0]. Then

y1r1 + y2r2 = 1 mod (r1r2)

and 0 ≤ y1 < r2 and 0 ≤ y2 < r1. Thus

uy1r1 + uy2r2 = u mod (r1r2).

This in turn implies that

u = uy2r2 mod r1 and u = uy1r1 mod r2,

so if z1 ∈ {0, 1, . . . , r2 − 1} and z2 ∈ {0, 1, . . . , r1 − 1} satisfy z1 = uy1 mod r2 and z2 = uy2

mod r1, we get
(z1r1 + z2r2) = u mod r1

and
(z1r1 + z2r2) = u mod r1.

By the Chinese Remainder Theorem, z1r1 + z2r2 = u mod (r1r2). Furthermore, as 0 ≤ z1 < r2

and 0 ≤ z2 < r1, we have 0 ≤ z1r1 + z2r2 < 2r1r2. If z1r1 + z2r2 < r1r2, then we are done; we
can set v1 = z1 and v2 = z2. If not, either z1 > 0 or z2 > 0. If z1 > 0, setting v1 = z1 − r2 and
v2 = z2 makes z1r1 + z2r2 = z1r1 + z2r2 − r1r2 = u, and the corresponding modification of z2

works if z2 > 0.

Armed with Lemma 44, we are now ready to work on the “local” shift-invariance of T. The
following more general lemma will do the job.

Lemma 45 Let X,Y be independent integer random variables where X is α-shift-invariant at
scale 1 and Y is β-shift-invariant at scale 1. Let Z = r1 ·X+ r2 ·Y. Then for any positive integer
d we have dTV(Z,Z + d) ≤ r2α+ r1β + min

{
d
r1
α, dr2β

}
.

Proof Note that d = s · r1 · r2 + z where 0 ≤ z < r1 · r2, 0 ≤ s ≤ d/(r1 · r2), and s is an integer.
By using Lemma 44, we have that d = s · r1 · r2 + v1 · r1 + v2 · r2 where |v1| < r2 and |v2| < r1,
so d = (s · r2 + v1) · r1 + v2 · r2. Note that

|s · r2 + v1| ≤ |v1|+ s · r2 ≤ (r2 − 1) + d/r1.

Thus, d = t1 · r1 + t2 · r2 where t1, t2 are integers and |t1| ≤ r2 − 1 + d/r1 and |t2| ≤ (r1 − 1).
Hence we have

dTV(Z,Z + d) = dTV(r1 ·X + r2 ·Y, r1 ·X + r2 ·Y + t1 · r1 + t2 · r2)

≤ |t1| · α+ |t2| · β

≤
(
d

r1
+ r2

)
· α+ r1 · β.
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By swapping the roles of r1 and r2 in the above analysis, we get the stated claim.

Now we have everything we need to prove Lemma 41 in the case that D = 2.
Let V = TP (µ, σ2). Let Ud denote the uniform distribution over {0, 1, . . . , d − 1}, where d

will be chosen later. We will bound dTV(T+Ud,V+Ud), dTV(T,T+Ud), and dTV(V,V+Ud),
and apply the triangle inequality via

dTV(T,V) ≤ dTV(T,T + Ud) + dTV(T + Ud,V)

≤ dTV(T,T + Ud) + dTV(T + Ud,V + Ud) + dTV(V,V + Ud).

First, recalling that T = r1 ·T1 +r2 ·T2 and that (by Fact 18) T1 isO(1/σ(T1))-shift-invariant
at scale 1 and T2 is O(1/σ(T2))-shift-invariant at scale 1, we have that

dTV(T,T + Ud) ≤ Ex∼Ud
[dTV(T,T + x)]

≤ max
x∈supp(Ud)

dTV(T,T + x)

≤ O

(
r1

σ(T2)
+

r2

σ(T1)
+ min

{
d

r1σ(T1)
,

d

r2σ(T2)

})
(by Lemma 45)

≤ O

(
r1

σ(T2)
+

d

r1σ(T1)

)
(since r1σ(T1) > r2σ(T2))

≤ O(ε′) +O

(
d

r1σ(T1)

)
,

since σ(T2) > r1/ε
′.

Next, Fact 18 implies that V is O
(

1
r1σ(T1)

)
-shift-invariant, so repeated application of the tri-

angle inequality gives

dTV(V,V + Ud) ≤ O
(

d

r1σ(T1)

)
.

Finally, we want to bound dTV(T+Ud,V+Ud). Observe that Pr[|T−µ| < σ/ε′] and Pr[|V−
E[V]| ≤ σ/ε′] are both 2−poly(1/ε′). Hence applying Lemma 10 and recalling that r1σ(T1) >
r2σ(T2), we get

dTV(T + Ud,V + Ud) ≤ o(ε′) +O
(√

(1/σmin) · ((r1σ(T1))/ε′) · (1/d)
)
.

Combining our bounds, we get that

dTV(T,V) ≤ O(ε′) +O

(√
(1/σmin) · ((r1σ(T1))/ε′) · (1/d) +

d

r1σ(T1)

)
.

Taking d = r1σ(T1)/(σminε
′)1/3, we get

dTV(T,V) ≤ O(ε′) + 1/(σminε
′)1/3 = O(ε′)

since (1/σmin)2 > (1/ε′)8.
Finally, let T′ be a signed PBD that has |E[T′]− µ| ≤ 1/2 and Var[T′] = σ2. (The existence

of such a signed PBD can be shown as in (I) in the proof of Lemma 38.) Lemmas 13 and 14 imply
that dTV(TMIX′ ,V) ≤ 1/σ(V) ≤ ε′, completing the proof.
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8. The learning result: Learning when |A| ≥ 4

With the kernel-based learning results from Section 5 and the structural results from Section 7 in
hand, we are now ready to learn a distribution S∗ that is cε-close to a distribution S = S′+V , where
S′ is described in Section 6. We give two distinct learning algorithms, one for each of two mutually
exclusive cases. The overall learning algorithm works by running both algorithms and using the
hypothesis selection procedure, Proposition 26, to construct one final hypothesis.

The high-level idea is as follows. In Section 8.1 we first easily handle a special case in which
all the cqa values are “small,” essentially using a brute-force algorithm which is not too inefficient
since all cqa’s are small. We then turn to the remaining general case, which is that some cqa are large
while others may be small.

The idea of how we handle this general case is as follows. First, via an analysis in the spirit
of the “Light-Heavy Experiment” from the work of Daskalakis et al. (2013), we approximate the
distribution S′+V as a sum of two independent distributions Slight +Sheavy where intuitively Slight

has “small support” and Sheavy is a 0-moded A-sum supported on elements all of which have large
weight (this is made precise in Lemma 46). Since Slight has small support, it is helpful to think of
Slight + Sheavy as a mixture of shifts of Sheavy. We then use structural results from Section 7 to
approximate this distribution in turn by a mixture of not-too-many shifts of a weighted sum of signed
PBDs, whose component independent PBDs satisfy a certain technical condition on their variances
(see Corollary 48). Finally, we exploit the kernel-based learning tools developed in Section 5 to
give an efficient learning algorithm for this mixture distribution. Very roughly speaking, the final
log log ak sample complexity dependence (ignoring other parameters such as ε and k) comes from
making O(log ak) many “guesses” for parameters (variances) of the weighted sum of signed PBDs;
this many guesses suffice because of the technical condition alluded to above.

We now proceed to the actual analysis. Let us reorder the sequence q1, . . . , qK so that cq1 ≤
. . . ≤ cqK . Let us now define the sequence t1, . . . , tK as ta = (1/ε)2a . (For intuition on the
conceptual role of the ti’s, the reader may find it helpful to review the discussion given in the “Our
analysis” subsection of Section 2.1.) Define the “largeness index” of the sequence cq1 ≤ . . . ≤ cqK
as the minimum ` ∈ [K] such that cq` > t`, and let `0 denote this value. If there is no ` ∈ [K] such
that cq` > t`, then we set `0 = K + 1.

We first deal with the easy special case that `0 = K + 1 and then turn to the main case.

8.1 Learning when `0 = K + 1

Intuitively, in this case all of cq1 , . . . , cqK are “not too large” and we can learn via brute force. More
precisely, since each cqa ≤ 1/ε2K , in a draw from S′ the expected number of random variables
X′1, . . . ,X

′
N that take a nonzero value is at most K/ε2K , and a Chernoff bound implies that in a

draw from S′ we have Pr[more than poly(K/ε2K ) of the X′i’s take a nonzero value] ≤ ε. Note that
for any M , there are at most MO(K) possible outcomes for S = S′ + V that correspond to having
at most M of the X′i’s take a nonzero value. Thus it follows that in this case the random variable S′

(and hence S) is ε-essentially supported on a set of size at most MO(K) = (K/ε2K )O(K). Thus S∗

is O(ε)-essentially supported on a set of the same size. Hence the algorithm of Fact 25 can be used

to learn S∗ to accuracy O(ε) in time poly(1/εO(2K)) = poly(1/ε2O(k2)
).
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8.2 Learning when `0 ≤ K.

Now we turn to the main case, which is when `0 ≤ K. The following lemma is an important
component of our analysis of this case. Roughly speaking, it says that S′ is close to a sum of
two independent random variables, one of which (Slight) has small support and the other of which
(Sheavy) is the sum of 0-moded random variables that all have large weight.

Lemma 46 Suppose that `0 ≤ K. Then there exists S̃ = Sheavy + Slight such that dTV(S̃,S′) ≤
O(ε) and the following hold:

1. Sheavy and Slight are independent of each other;

2. The random variable Slight is Slight =
∑

1≤b<`0 qb · Sb where for each 1 ≤ b < `0, Sb is
supported on the set [−(1/ε) · tcutoff , (1/ε) · tcutoff ] ∩ Z where tcutoff = (t1 + . . . + t`0−1)
and the {Sb} are not necessarily independent of each other;

3. The random variable Sheavy is the sum of 0-moded random variables supported in {0,±q`0 ,
. . . , ±qK}. Further, for all b ≥ `0, we have cqb,heavy >

t`0
2 where cqb,heavy is defined as in

Section 6 but now with respect to Sheavy rather than with respect to S′.

Proof The proof follows the general lines of the proof of Theorem 4.3 of Daskalakis et al. (2013).
Let L = {±q1, . . . ,±q`0−1} and H = {0,±q`0 , . . . ,±qK}. (It may be helpful to think of L as the
“light” integers, and H as “heavy” ones.) We recall the following experiment that can be used to
make a draw from S′, referred to by Daskalakis et al. (2013) as the “Light-Heavy Experiment”:

1. [Stage 1]: Informally, sample from the conditional distributions given membership in L.
Specifically, independently we sample for each i ∈ [N ] a random variable X′i ∈ L as follows:

for each b ∈ L, X′i = b,with probability
Pr[X′i = b]

Pr[X′i ∈ L]
;

i.e. X′i is distributed according to the conditional distribution of X′i, conditioning on X′i ∈ L.
In the case that Pr[X′i ∈ L] = 0 we define X′i = 0 with probability 1.

2. [Stage 2]: Sample analogously for H. Independently we sample for each i ∈ [N ] a random
variable X

′
i ∈ H as follows:

for each b ∈ H, X
′
i = b,with probability

Pr[X′i = b]

Pr[X′i ∈ H]
;

i.e. X′i is distributed according to the conditional distribution of X′i, conditioning on X′i ∈ H.

3. [Stage 3]: Choose which X′i take values in L: sample a random subset L ⊆ [N ], by indepen-
dently including each i into L with probability Pr[X′i ∈ L].

After these three stages we output
∑

i∈LX′i +
∑

i/∈LX
′
i as a sample from S′, where

∑
i∈LX′i

represents “the contribution of L” and
∑

i/∈LX
′
i “the contribution of H.” Roughly, Stages 1 and 2

provide light and heavy options for each X′i, and Stage 3 chooses among the options. We note that
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the two contributions are not independent, but they are independent conditioned on the outcome
of L. Thus we may view a draw of S′ as a mixture, over all possible outcomes L of L, of the distri-
butions

∑
i∈LX

′
i +
∑

i/∈LX
′
i; i.e. we have S′ = MixL←L(

∑
i∈LX

′
i +
∑

i/∈LX
′
i). This concludes

the definition of the Light-Heavy Experiment.
Let tcutoff = t1 + . . . + t`0−1. Note that E[|L|] ≤ tcutoff . Let Bad denote the set of all

outcomes L of L such that |L| > (1/ε) · tcutoff . A standard application of the Hoeffding bound
implies that Pr[L ∈ Bad] = Pr[|L| > (1/ε) · tcutoff ] ≤ 2−Ω(1/ε). It follows that if we define
the distribution S′′ to be an outcome of the Light-Heavy Experiment conditioned on L /∈ Bad, i.e.
S′′ = MixL←L | L/∈Bad(

∑
i∈LX

′
i+
∑

i/∈LX
′
i), we have that dTV(S′′,S′) ≤ 2−Ω(1/ε). Consequently

it suffices to show the existence of S̃ satisfying the properties of the lemma such that dTV(S̃,S′′) ≤
ε.

We will now show that for any L1, L2 /∈ Bad, the random variables SLj =
∑

i 6∈Lj X
′
i (for

j ∈ {1, 2}) are close to each other in total variation distance. (If we think of L1 and L2 as different
possibilities for the final step in the process of sampling from the distribution of S′, recall that the
values of X′i are always in H. Loosely speaking, during the first sample from S′ the values of X′i
for i ∈ L1 are not used, and during the second sample, the values for i ∈ L2 are not used.) Let
Lunion = L1 ∪ L2. Note that by definition

|L2 \ L1|, |L1 \ L2| ≤ (1/ε) · tcutoff .

Define
SLunion =

∑
i/∈Lunion

X
′
i = SL1 −

∑
i∈L2−L1

X
′
i = SL2 −

∑
i∈L1−L2

X
′
i.

Choose b ≥ `0. We have that

dshift,qb(X
′
i) = 1−

∑
j

(min{Pr[X
′
i = j],Pr[X

′
i = j + qb})

≤ 1−min{Pr[X
′
i = 0],Pr[X

′
i = qb]} −min{Pr[X

′
i = −qb],Pr[X

′
i = 0]}

= 1−Pr[X
′
i = −qb]−Pr[X′i = qb],

since X′i is 0-moded. By Corollary 24, this implies that

dshift,qb(SLunion) ≤ O(1)√∑
i/∈Lunion

Pr[X
′
i = ±qb]

≤ O(1)√
cqb − |Lunion|

≤

√
2

t`0
.

Here the penultimate inequality uses the fact that∑
i/∈Lunion

Pr[X
′
i = ±qb] =

∑
i∈[n]

Pr[X
′
i = ±qb]−

∑
i∈Lunion

Pr[X
′
i = ±qb] ≥ cqb − |Lunion|.

The last inequality uses that

cqb − |Lunion| ≥ cqb − |L1| − |L2| ≥ cqb − 2 · (1/ε) · tcutoff ≥ tb − 2 · (1/ε) · tcutoff ≥
t`0
2
.
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As each of the summands in the sum
∑

i∈L2\L1
X
′
i is supported on the set {0,±q`0 , . . . ,±qK},

viewing SL1 as a mixture of distributions each of which is obtained by shifting SLunion at most
|L2 \ L1| many times, each time by an element of {0,±q`0 , . . . , qK}, we immediately obtain that

dTV(SLunion ,SL1) ≤ |L2 \ L1| ·

√
2

t`0
≤ 2(1/ε) · tcutoff ·

√
2

t`0
≤ O(ε).

Choose any L∗ /∈ Bad arbitrarily, and define Sheavy :=
∑

i 6∈L∗X
′
i. By the above analy-

sis, for any L′ /∈ Bad it holds that dTV(
∑

i 6∈L′X
′
i,Sheavy) = O(ε). Thus, for any outcome

L /∈ Bad, we have dTV(
∑

i∈LX
′
i +

∑
i/∈LX

′
i,
∑

i∈LX
′
i + Sheavy) = O(ε). Define Slight :=

MixL←L | L/∈Bad
∑

i∈LX
′
i.

We now verify that the above-defined Sheavy and Slight indeed satisfies the claimed properties.
Note that for each L /∈ Bad,

∑
i∈LX

′
i is supported on the set∑

b≤`0

qb · Sb : Sb ∈ [−(1/ε) · tcutoff , (1/ε) · tcutoff ]

 ,

so the second property holds as well. Likewise, Sheavy is a sum of 0-moded random variables
with support in {0,±q`0 , . . . ,±qK}. Note that we have already shown that

∑
i/∈L∗ Pr[X

′
i =

±qb] ≥ t`0/2 , giving the third property. Finally, combining the fact that Pr[L ∈ Bad] ≤ ε
with dTV(

∑
i∈LX

′
i +
∑

i/∈LXi,
∑

i∈LXi + Sheavy) = O(ε), we obtain the claimed variation dis-
tance bound dTV(S̃,S′) ≤ O(ε), finishing the proof.

With Lemma 46 in hand, we now apply Lemma 40 to the distribution Sheavy with

R = K25/ε32. (29)

This gives the following corollary:

Corollary 47 The distribution S′ is δ-close in total variation distance to a distribution S′′ =
S′light +

∑K
a=`0

qa ·Wa,a +
∑

(a,b)∈A(qb + τa,b · qa)Wa,b where δ = O(K71/20 · ε1/20) and

1. A ⊆ {(a, b) : `0 ≤ a < b ≤ K}, τa,b ∈ {−1, 1}, and Wa,a, Wa,b are signed PBDs.

2. Var[Wa,a], Var[Wa,b] ≥ (R/K)−1/4 > K6/ε8,

3. The random variables S′light, Wa,a and Wa,b are all independent of each other, and

4. S′light is supported on a set of cardinality M ≤ (2tK/ε)
K .

Proof By Lemma 46 S′ is O(ε)-close to S̃ = Sheavy + Slight where the decomposition of S̃ is as
described in that lemma. Applying Lemma 40, we further obtain that Sheavy is δ = O(K71/20 ·
ε1/20)-close to a distribution of the form

K∑
a=`0

qa ·Wa,a +
∑

(a,b)∈A

(qb + τa,b · qa)Wa,b + V ′,
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with Wa,a and Wa,b satisfies the conditions stated in the corollary. Defining S′light = V + Slight

will satisfy all the required conditions. We note that the size of the support of S′light is the same
as the size of the support of Slight, so applying item (2) of Lemma 46, we get that the size of the
support of S′light is bounded by (2tK/ε)

K .

Let us look at the structure of the distribution

S′′ = S′light +
K∑
a=`0

qa ·Wa,a +
∑

(a,b)∈A

(qb + τa,b · qa)Wa,b.

For (a, b) ∈ A let q(a,b) denote qb+τa,b ·qa, and let B denote the set B = {`0, . . . ,K}∪A. For any
B′ ⊆ B, let us write gcd(B′) to denote gcd({qα}α∈B). Let α∗ denote the element of B for which
Var[qα∗ ·Wα∗ ] is largest (breaking ties arbitrarily) and let MIX denote the following subset of B:

MIX = {α∗} ∪ {α ∈ B : Var[Wα] ≥ max{1/ε8, q2
α∗/ε

2}}. (30)

By applying Lemma 41 to the distribution
∑

α∈MIX qα ·Wα, with its σ2
min set to K6/ε8 and its ε′

set to ε, noting that |B|ε′ = O(K2ε) = o(K71/20 · ε1/20) we obtain the following corollary:

Corollary 48 The distribution S′ is δ′ = O(K71/20 · ε1/20)-close in total variation distance to a
distribution S(2) of the following form, where ∅ ( MIX ⊂ B is as defined in (30):

S(2) = S′light + qMIX · SMIX +
∑

qα∈B\MIX

qα · Sα,

where qMIX = gcd(MIX) and the following properties hold:

1. The random variables S′light, SMIX and {Sα}qα∈B\MIX are independent of each other.

2. S′light is supported on a set of at most M integers, where M ≤ (2tK/ε)
K .

3. SMIX and {Sα}qα∈B\MIX are signed PBDs such that for all qα ∈ B\MIX, we haveK6/ε8 ≤
Var[Sα] ≤ r2/ε2, where r = maxqα∈B |qα|. Moreover Var[SMIX] ≥ K6/ε8.

4. Var[qMIX · SMIX] = c ·
(
Var[qMIX · SMIX] +

∑
qα∈B\MIX Var[qα · Sα]

)
for some c ∈

[ 1
K2 , 1].

The above corollary tells us that our distribution S′ is close to a “nicely structured” distribution
S(2); we are now ready for our main learning result, which uses kernel-based tools developed in
Section 5 to learn such a distribution. The following theorem completes the `0 ≤ K case:

Theorem 49 There is a learning algorithm and a positive constant c with the following properties:
It is given as input N , values ε, δ > 0, and integers 0 ≤ a1 < · · · < ak, and can access draws
from an unknown distribution S∗ that is cε-close to a {a1, . . . , ak}-sum S. The algorithm runs in

time (1/ε)2O(k2) · (log ak)
poly(k) and uses (1/ε)2O(k2) · log log ak samples, and has the following

property: Suppose that for the zero-moded distribution S′ such that S′ + V = S (as defined in
Section 6), the largeness index `0 (as defined at the beginning of this section) is at most K (again
recall Section 6). Then with probability 1− o(1) the algorithm outputs a hypothesis distribution H
with dTV(H,S) ≤ O(K71/20 · ε1/20).
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(To obtain an O(ε)-accurate hypothesis, simply run the learning algorithm with its accuracy
parameter set to ε′ = ε20/K71.)
Proof The high level idea of the algorithm is as follows: The algorithm repeatedly samples two
points from the distribution S∗ and, for each pair, uses those two points to guess (approximately)
parameters of the distribution

Spure := qMIX · SMIX +
∑

qα∈B\MIX

qα · Sα

from Corollary 48. The space of possible guesses will be of size (1/ε)2O(k2) · (log ak)
poly(k), which

leads to a poly(2k
2
, log(1/ε)) · log log ak factor in the sample complexity by Corollary 27. For

each choice of parameters in this space, Lemma 35 allows us to produce a candidate hypothesis
distribution (this lemma leads to a exp(poly(k))/ε2O(k)

factor in the sample complexity); by the
guarantee of Lemma 35, for the (approximately) correct choice of parameters the corresponding
candidate hypothesis distribution will be close to the target distribution S′. Given that there is a
high-accuracy candidate hypothesis distribution in the pool of candidates, by Corollary 27 (which
details how our algorithms can “make guesses”), the algorithm of that corollary will with high
probability select a high-accuracy hypothesis distribution H from the space of candidates.

We now give the detailed proof. To begin, the algorithm computesK and the values q1, . . . , qK .
It guesses an ordering of q1, . . . , qK such that cq1 ≤ · · · ≤ cqK (K! = 2poly(k) possibilities),
guesses the value of the largeness index `0 (O(K) = poly(k) possibilities), guesses the subset
A ⊆ {(a, b) : `0 ≤ a < b ≤ K} and the associated bits (τa,b)(a,b)∈A from Corollary 47 (2poly(k)

possibilities) , and guesses the subset MIX ⊆ B from Corollary 48 (2poly(k) possibilities). The
main portion of the algorithm consists of the following three steps:

First main step of the algorithm: Estimating the variance of S(2). In the first main step, the

algorithm constructs a space of 1/ε2O(k2)
many guesses, one of which with very high probability is

a multiplicatively accurate approximation of
√

Var[Spure]. This is done as follows: the algorithm
makes two independent draws from S∗. Since S∗ is cε-close to S = S′ + V , by Corollary 48 and
Lemma 7, the distribution over these two draws could be obtained by sampling twice independently
from S(2), and modifying the result with probability O(K71/20 · ε1/20). Let us write these two
draws as s(j) = s

(j)
light + s

(j)
pure where j ∈ {1, 2} and s(j)

light ∼ Slight and s(j)
pure ∼ Spure (where s(1)

light,

s
(1)
pure, s(2)

light, s
(2)
pure are all independent draws). By part (2) of Corollary 48, with probability at least

1/|Slight| ≥ 1/M ≥ (ε/2tK)K = ε2O(k2)
, it is the case that s(1)

light = s
(2)
light. In that event, with

probability at least 1/2poly(K), we have

1

2
·
√

Var[Spure] ≤ |s(2) − s(1)| ≤ 2 ·
√
Var[Spure]. (31)

To see this, observe that since each of the O(K2) independent constituent PBDs comprising Spure

has variance at least K6, for each one with probability at least 1
Θ(K2)

the difference between two

independent draws will lie between (1 − 1
Θ(K2)

) and (1 + 1
Θ(K2)

) times the square root of its

variance. If this happens then we get (31). By repeating 2poly(k) · ε2O(k2)
times, the algorithm can

obtain 2poly(k)/ε2O(k2)
many guesses, one of which will, with overwhelmingly high probability, be

a quantity γpure that is a multiplicative 2-approximation of
√
Var[Spure].
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Second main step of the algorithm: Gridding in order to approximate variances. Consider the
set J defined as

J =

1+log(K)⋃
j=−1

{2j · γpure/qMIX}.

Given that γpure is within a factor of two of
√
Var[Spure] (by (31)) and given part (4) of Corol-

lary 48, it is easy to see that there is an element γMIX ∈ J such that γMIX is within a multiplicative
factor of 2 of

√
Var[SMIX]. Likewise, for each α ∈ B \MIX, define the set Jqα as

Jqα =

1+log(
√

max{1/ε8,r2/ε2})⋃
j=−1

{2j · (ε ·K)−1/4/qα},

where, as in Corollary 48, r = maxqα∈B |qα|. By part (3) of Corollary 48, for each qα ∈ B \MIX
there is an element γqα ∈ Jqα such that γqα is within a multiplicative factor of two of Var[Sqα ].
These elements of J and of Jqα are the guesses for the values of

√
Var[SMIX] and of

√
Var[Sqα ]

that are used in the final main step described below. We note that the space of possible guesses here
is of size at most O(log k) · (log(ak/ε))

poly(k).

Third main step of the algorithm: Using guesses for the variances to run the kernel-based
learning approach. For each outcome of the guesses described above (denote a particular such
outcome by γ; note that a particular outcome for γ comprises an element of J and an element of
Jqα for each α ∈ B \MIX), let us define the distribution ZMIX,γ to be uniform on the set [−(cε ·
γMIX)/K, (cε ·γMIX)/K]∩Z and Zqα,γ to be uniform on the set [−(cε ·γqα)/K, (cε ·γqα)/K]∩Z,
where c is the hidden constant in the definition of cj in Lemma 35. Applying Lemma 35, we can

draw exp(poly(K))

εpoly(K) ·m2 · log(m/δ) samples from S, where m = (1/ε)2O(k2) ≥ (2tK/ε)
K ≥ |Slight|,

and we get a hypothesis Hγ resulting from this outcome of the guesses and this draw of samples
from S. The guarantee of Lemma 35 ensures that for the outcome γ all of whose components
are factor-of-two accurate as ensured in the previous step, the resulting hypothesis Hγ satisfies
dTV(Hγ ,S

′) ≤ O(K71/20 · ε1/20 + ε) = O(K71/20 · ε1/20) with probability at least 1− δ. Finally,
an application of Corollary 27 concludes the proof.

9. Learning {a1, a2, a3}-sums

In this section we show that when |A| = 3 the learning algorithm can be sharpened to have no
dependence on a1, a2, a3 at all. Recall Theorem 1:

Theorem 1 (Learning when |A| = 3 with known support). There is an algorithm and a positive
constant c with the following properties: The algorithm is given N , an accuracy parameter ε > 0,
distinct values a1 < a2 < a3 ∈ Z≥0, and access to i.i.d. draws from an unknown random variable
S∗ that is cε-close to an {a1, a2, a3}-sum S. The algorithm uses poly(1/ε) draws from S∗, runs in
poly(1/ε) time, and with probability at least 9/10 outputs a concise representation of a hypothesis
distribution H such that dTV(H,S∗) ≤ ε.

The high-level approach we take follows the approach for general k; as in the general case,
a sequence of transformations will be used to get from the initial target to a “nicer” distribution
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(whose exact form depends on the precise value of the “largeness index”) which we learn using
the kernel-based approach. (Lemmas 50 and 51, which establish learning results for distributions
in two of these nicer forms, are deferred to later subsections.) Intuitively, the key to our improved
independent-of-a3 bound is a delicate analysis that carefully exploits extra additive structure that is
present when k = 3, and which lets us avoid the “gridding” over O(log ak) many multiplicatively
spaced guesses for variances that led to our log log ak dependence in the general-k case.

To describe this additive structure, let us revisit the framework established in Section 6, now
specializing to the case k = 3, so S is an {a1, a2, a3}-sum with a1 < a2 < a3. We now have that
for each i ∈ [N ] the support of the zero-moded random variable X′i is contained in {0} ∪Q where
Q = {±q1,±q2,±q3} where q1 = a2 − a1, q2 = a3 − a2, and q3 = a3 − a1. Further, the support
size of each X′i is 3 and hence it includes at most two of the elements from the set {q1, q2, q3}. The
fact that q3 = q1 + q2 is the additive structure that we shall crucially exploit. Note that in the case
k = 3 we have K = 3 as well, and Pr[X′i = 0] ≥ 1/k = 1/K = 1/3 for each i ∈ [N ].

Recalling the framework from the beginning of Section 8, we reorder q1, q2, q3 so that cq1 ≤
cq2 ≤ cq3 . We define the “largeness index” `0 ∈ {1, 2, 3, 4} analogously to the definition at the
beginning of Section 8, but with a slight difference in parameter settings: we now define the se-
quence t1, . . . , tK as t` = (1/ε)C

`
where C is a (large) absolute constant to be fixed later. Define

the “largeness index” of the sequence cq1 ≤ . . . ≤ cqK as the minimum ` ∈ [K] such that cq` > t`,
and let `0 denote this value. If there is no ` ∈ {1, 2, 3} such that cq` > t`, then we set `0 = 4.

Viewing S as S′ + V as before, our analysis now involves four distinct cases, one for each
possible value of `0.

9.1 The case that `0 = 4.

This case is identical to Section 8.1 specialized to K = 3, so we can easily learn to accuracy O(ε)
in poly(1/εC

3
) = poly(1/ε) time.

9.2 The case that `0 = 3.

In this case we have cq1 ≤ (1/ε)C and cq2 ≤ (1/ε)C
2

but cq3 ≥ (1/ε)C
3
. By Lemma 46, we

have that dTV(S̃,S′) ≤ O(ε) where S̃ = Sheavy + Slight, Sheavy and Slight are independent of
each other, Slight is supported on a set of O(1/ε2C2+2) integers, and Sheavy is simply q3S3 where
S3 =

∑N
i=1 Yi is a signed PBD with

∑N
i=1 Pr[Yi = ±1] ≥ 1/(2εC

3
). Given this constrained

structure, the poly(1/ε)-sample and running time learnability of S∗ follows as a special case of the
algorithm given in the proof of Theorem 49. In more detail, as described in that proof, two points
drawn from S∗ can be used to obtain, with at least poly(ε) probability, a multiplicative factor-2
estimate of

√
Var[Sheavy]. Given such an estimate no gridding is required, as it is possible to learn

S∗ to accuracy O(ε) simply by using the K = 1 case of the kernel learning result Lemma 35
(observe that, crucially, having an estimate of Var[Sheavy] provides the algorithm with the value γ1

in Lemma 35 which is required to construct Z and thereby carry out the kernel learning of S′ + V
using Z).

9.3 The case that `0 = 2.

In this case we have cq1 ≤ (1/ε)C while cq3 , cq2 ≥ (1/ε)C
2
. As earlier we suppose that q1+q2 = q3.

(This is without loss of generality as the other two cases are entirely similar; for example, if instead
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we had q1 + q3 = q2, then we would have q3 = −q1 + q2, and it is easy to check that replacing q1

by −q1 everywhere does not affect our arguments.)
Lemma 46 now gives us a somewhat different structure, namely that dTV(S̃,S′) ≤ O(ε) where

S̃ = Sheavy + Slight, Sheavy and Slight are independent of each other, Slight = q1S1 where S1 is
supported on [−O(1/εC+1), O(1/εC+1)] ∩ Z, and Sheavy is a sum of 0-moded integer random
variables over {±q2,±q3}, and which satisfies cq2,heavy, cq3,heavy > 1/(2εC

2
). Applying Lemma 40

to Sheavy, we get that dTV(Sheavy,B) = O(εC
2/20) where either

B = V ′ + q2W2 + q3W3 (32)

(if the set A from Lemma 40 is empty) or

B = V ′ + q2W2 + q3W3 + (q3 + τ2,3q2)W2,3 (33)

(if A = {(2, 3)}), where all the distributions W2,W3 (and possibly W2,3) are independent signed
PBDs with variance at least Ω(1/εC

2/4) and τ2,3 ∈ {−1, 1}.
Let us first suppose that (32) holds, so S′ + V is O(εC

2/20)-close to

V ′′ + q1S1 + q2W2 + q3W3, (34)

where V ′′ = V + V ′. Since, by Fact 18, q2W2 is O(εC
2/8)-shift-invariant at scale q2, recalling the

support of S1 we get that S′+V is (O(εC
2/20)+O(εC

2/8/εC+1))-close (note that this isO(εC
2/20)

for sufficiently large constant C) to

V ′′ + (q1 + q2)S1 + q2W2 + q3W3 = V ′′ + q2W2 + q3(W3 + S1).

Again using the support bound on S1 and Fact 18 (but now on q3W3), we get that S′ + V , and
therefore S∗, is O(εC

2/20)-close to

V ′′ + q2W2 + q3W3. (35)

We can now apply the algorithm in Lemma 50 to semi-agnostically learn the distribution V ′′ +
q2W2 + q3W3 with poly(1/ε) samples and time complexity.

Next, let us consider the remaining possibility in this case which is that (33) holds. If τ2,3 = −1,
then S′ + V is O(εC

2/20)-close to

V ′ + q1S1 + q2W2 + q3W3 + (q3 − q2)W2,3 = V ′ + q1S1 + q2W2 + q3W3 + q1W2,3,

and using Fact 18 as earlier, we get that S′ + V is O(εC
2/20)-close to

V ′′ + q2W2 + q3W3 + q1W2,3. (36)

On the other hand, if τ2,3 = 1 then S′ + V is O(εC
2/20)-close to

V ′′ + q1S1 + q2W2 + q3W3 + (q3 + q2)W2,3,

and by the analysis given between (34) and (35) we get that S′ + V is O(εC
2/20)-close to

V ′′ + q2W2 + q3W3 + (q3 + q2)W2,3, (37)

In either case (37) or (36), we can use Lemma 51 to learn the target distribution with poly(1/ε)
samples and running time.
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9.4 The case that `0 = 1.

In this case we have cq1 , cq2 , cq3 ≥ (1/ε)C . Assuming that C ≥ 96, we appeal to Lemma 53 to
obtain that there are independent signed PBDs S1, S2 and S3, each with variance at least 1/ε2, such
that

dTV(S′, V + q1S1 + q2S2 + q3S3) ≤ O(ε2).

As before, we can appeal to Lemma 51 to learn the target distribution with poly(1/ε) samples and
running time.

9.5 Deferred proofs and learning algorithms from the earlier cases

9.5.1 LEARNING ALGORITHM FOR WEIGHTED SUMS OF TWO PBDS

Lemma 50 There is a universal constant C1 such that the following holds: Let S2,high be a distri-
bution of the form p · S(p) + q · S(q) + V , where both S(p) and S(q) are independent PBDN distri-
butions with variance at least 1/εC1 and V ∈ Z. Let S be a distribution with dTV(S,S2,high) ≤ ε.
There is an algorithm with the following property: The algorithm is given ε, p, q and access to i.i.d.
draws from S. The algorithm makes poly(1/ε) draws, runs in poly(1/ε) time, and with probability
999/1000 outputs a hypothesis distribution H satisfying dTV(H,S) ≤ O(ε).

Proof The high level idea of the algorithm is similar to Theorem 49. First, assume that Var[p ·
S(p)] ≥ Var[q · S(q)] (the other case is identical, and the overall algorithm tries both possibilities
and does hypothesis testing). Let σ2

p = Var[S(p)], σ2
q = Var[S(q)] and σ2

2,high = Var[S2,high].
We consider three cases depending upon the value of σq and show that in each case the kernel
based approach (i.e. Lemma 35) can be used to learn the target distribution S2,high with poly(1/ε)
samples (this suffices, again by hypothesis testing). We now provide details.

Estimating the variance of S2,high: The algorithm first estimates the variance of S2,high. This is
done by sampling two elements s(1), s(2) from S2,high and letting |s(1) − s(2)| = σ̂2,high. Similar to
the analysis of Theorem 49, it is easy to show that with probability Ω(1), we have

1√
2
· σ2,high ≤ σ̂2,high ≤

√
2 · σ2,high. (38)

Guessing the dominant variance term and the relative magnitudes: Observe that

Var[S2,high] = Var[p · S(p)] + Var[q · S(q)].

The algorithm next guesses whether p · σp ≥ q · σq or vice-versa. Let us assume that it is the
former possibility. The algorithm then guesses one of the three possibilities: (i) σq ≤ ε · p, (ii)
ε · p ≤ σq < p/ε, (iii) σq > p/ε. The chief part of the analysis is in showing that in each of these
cases, the algorithm can drawO(1/ε2) samples from S and (with the aid of Lemma 35) can produce
a hypothesis H such that dTV(H,S2,high) = O(ε).

(i) In this case, we assume σq ≤ ε·p. This case is the crucial point of difference where we save the
factor of log log p as opposed to the case k > 3; this is done by working modulo p to estimate
σq. (This is doable in this case because σq is so small relative to p.) The algorithm samples
two points s(3), s(4) ∼ S; note that with probability 1 − O(ε) these points are distributed
exactly as if they were drawn from S2,high, so we may analyze the points as if they were drawn
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from S2,high. Let us assume that s(3) = p · s(3)
p + q · s(3)

q + V , s(4) = p · s(4)
p + q · s(4)

q + V

where s(3)
p , s

(4)
p are i.i.d. draws from S(p) and similarly for s(3)

q , s
(4)
q . Then, note that with

probability at least 1/10, we have

1√
2
· σq ≤ |s(4)

q − s(3)
q | ≤

√
2 · σq.

This immediately implies that if we define σ̂q = q−1 · (s(3) − s(4)) (mod p), then σ̂q =

|s(4)
q − s(3)

q |, and thus
1√
2
· σq ≤ σ̂q ≤

√
2 · σq.

This gives one of the estimates required by Lemma 35; for the other one, we observe that
defining σ̂p := σ̂2,high/p, having pσp ∈ [Var[S2,high]

2 ,Var[S2,high]] and (38) together give
that

1

2
· σp ≤ σ̂p ≤ 2σp.

We can now apply Lemma 35 to get that using poly(1/ε) samples, we can produce a hypoth-
esis distribution Hlow such that dTV(Hlow,S) = O(ε).

(ii) In this case, we assume ε · p < σq ≤ p · (1/ε). In this case we simply guess one of the
O(log(1/ε)/ε) many values

σ̂q ∈
{

p

(1 + ε/10)i

}
i∈{−O(ln(1/ε)/ε),...,O(ln(1/ε)/ε)}

and one of these guesses σ̂q for σq will be (1 + ε/10)-multiplicatively accurate. For each of
these values of σ̂q, as in case (ii) we can get a multiplicatively accurate estimate σ̂p of σp, so
again by invoking Lemma 35 we can create a hypothesis distribution Hmed,i, and for the right
guess we will have that dTV(Hmed,i,S) = O(ε).

(iii) In this case, we invoke Lemma 41 to get that there is a signed PBD S′ such that dTV(S′, p ·
S(p) + q · S(q)) = O(ε). This also yields that there is a signed PBD S′′ = S′ + V such that
dTV(S′′,S2,high) = O(ε). By a trivial application of Lemma 35, using poly(1/ε) samples,
we obtain a hypothesis Hhigh such that dTV(Hhigh,S) = O(ε).

Finally, invoking the Select procedure from Proposition 26 on the hypothesis distributions

Hlow, {Hmed,i}i∈{−O(ln(1/ε)/ε),...,O(ln(1/ε)/ε)} and Hhigh,

we can use an additional poly(1/ε) samples to output a distribution H such that dTV(H,S) = O(ε).

9.5.2 LEARNING ALGORITHM FOR WEIGHTED SUMS OF THREE PBDS

We now give an algorithm for learning a distribution of the form p · S(p) + q · S(q) + r · S(r) + V
where r = p+ q.
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Lemma 51 There is a universal constant C1 such that the following holds: Let S3,high be a dis-
tribution of the form p · S(p) + q · S(q) + r · S(r) + V , where S(p),S(q) and S(r) are independent
PBDN distributions with variance at least 1/εC and V ∈ Z and r = q + p. Let S be a distribu-
tion with dTV(S,S3,high) ≤ ε. There is an algorithm with the following property: The algorithm
is given ε, p, q, r and access to i.i.d. draws from S. The algorithm makes poly(1/ε) draws, runs
in poly(1/ε) time, and with probability 999/1000 outputs a hypothesis distribution H satisfying
dTV(H,S) ≤ O(ε).

Proof The algorithm begins by sampling two points s(1), s(2) from S. Similar to the preceding
proof, with probability Ω(1) we have

1√
2
· σ3,high ≤ σ̂3,high ≤

√
2 · σ3,high,

where σ2
3,high = Var[S3,high]. Having obtained an estimate of σ3,high, let us now assume (without

loss of generality, via hypothesis testing) that σp ≥ σq ≥ σr. Similar to Lemma 50, we consider
various cases, and for each case (and relevant guesses) we run Lemma 35 and obtain a hypothesis
distribution for each of these guesses. Finally, we will use procedure Select (Proposition 26) on the
space of these hypotheses to select one. Let us now consider the cases:

1. σr ≥ ε5 · σp: In this case, note that given σ̂3,high, we can construct a grid J of poly(1/ε)
many triples such that there exists γ = (γp, γq, γr) ∈ J such that for α ∈ {p, q, r},

1√
2
· σα ≤ γα ≤

√
2 · σα.

For each such possibility γ, we can apply Lemma 35 which uses poly(1/ε) samples; as
before, for the right guess, we will obtain a hypothesis Hγ such that dTV(Hγ ,S) = O(ε).

2. σr ≤ ε5 · σp: In this case, since r = p+ q,

p · S(p) + q · S(q) + r · S(r) = p · S(p) + q · S(q) + (p+ q) · S(r).

As σr ≤ ε5 · σp, using the O(1/σp)-shift-invariance of p · S(p) at scale p that follows from
Fact 18 and a Chernoff bound on S(r), we get that for some integer V ′,

dTV(p · S(p) + q · S(q) + r · S(r), p · (S(p) + V ′) + q · (S(q) + S(r))) = O(ε4).

Thus we have

dTV(S3,high, V ′′ + p · S(p) + q · (S(q) + S(r))) = O(ε4)

for some integer V ′′. However, now we are precisely in the same case as Lemma 50. Thus,
using poly(1/ε) samples, we can now obtain H(2) such that dTV(H(2),S) = O(ε).

Finally, we apply Select (Proposition 26) on H(2) and {Hγ}γ∈J . This finishes the proof.
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9.5.3 STRUCTURAL LEMMA FOR DECOMPOSING A HEAVY DISTRIBUTION INTO A SUM OF

WEIGHTED SUMS OF PBDS

Our goal in this subsection is to prove Lemma 53. To do this, we will need a slightly more detailed
version of Lemma 40 in the case that K = 2, which is implicit in the proof of that lemma (using the
case that A = ∅ for (39) and the case that A = {(1, 2)} for (40)).

Lemma 52 Under the assumptions of Lemma 40 in the case that K = 2, there is an integer V ′,
and independent signed PBDs W1,1, W2,2 and W1,2, all with variance at least Ω(R1/4), such that
either

dTV (S′, V ′ + q1W1,1 + q2W2,2) = O(R−1/20), (39)

or

dTV (S′, V ′ + q1W1,1 + q2W2,2 + (q2 + sign(Cov(M1,M2))q1)W1,2) = O(R−1/20), (40)

where M = (M1,M2) is as defined in (11).

Let S′ =
∑N

i=1 X
′
i where each X′i is 0-moded and supported on {0,±p,±q,±r} where r =

q + p. Each random variable X′i has a support of size 3, and by inspection of how X′i is obtained
from Xi, we see that each X′i is supported either on {0, p, r}, or on {−p, 0, q}, or on {−r,−q, 0}.
If for α ∈ {p, q, r}, we define cα =

∑N
i=1 Pr[X ′i = ±α], then we have the following lemma.

Lemma 53 Let S′ =
∑N

i=1 X
′
i as described above where cp, cq, cr > 1/εC . Then we have

dTV(S′, V + p · S(p) + q · S(q) + r · S(r)) ≤ O(εC1), (41)

where V is a constant, C1 = C/48 and S(p),S(q) and S(r) are mutually independent PBDN distri-
butions each of which has variance at least 1/(εC1).

Proof We first prove that

dshift,p(S
′) ≤ εC/2; dshift,q(S

′) ≤ εC/2; dshift,r(S
′) ≤ εC/2. (42)

To see this, note that, as we showed in the proof of Lemma 46, dshift,p(X′i) ≤ 1 − Pr[X′i = ±p].
By applying Corollary 24, we get that

dshift,p(S
′) = O

(
1√∑

iPr[X′i = ±p]

)
= O(εC/2).

Likewise, we also get the other components of (42).
Let us next consider three families of i.i.d. random variables {Y′i}mi=1, {Z′i}mi=1 and {W′

i}mi=1

defined as follows: for 1 ≤ i ≤ m,

Pr[Y′i = 0] = Pr[Y′i = p] = 1/2; Pr[Z′i = 0] = Pr[Z′i = q] = 1/2;Pr[W′
i = 0] = Pr[W′

i = r] = 1/2;

Let m = ε−C/4. Let
∑m

i=1 Y
′
i = S(y),

∑m
i=1 Z

′
i = S(z) and

∑m
i=1 W

′
i = S(w). Let Se =

S(y) + S(z) + S(w), and note that Se is supported on {i · p + j · q + k · r} where 0 ≤ i, j, k ≤ m.
Using (42), we have

dTV(S′,S′ + Se) ≤ m · εC/2 = O(εC/4).
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Thus, it suffices to prove

dTV(S′ + Se, V + p · S(p) + q · S(q) + r · S(r)) ≤ O(εC1). (43)

We assign each random variable X′i to one of three different types:

• Type 1: The support of X′i is {0, p, r}.

• Type 2: The support of X′i is {−p, 0, q}.

• Type 3: The support of X′i is {−r,−q, 0}.

Let the set of Type 1 variables be given by S1. We will show that there exists independent signed
PBDs S(p,1), S(q,1) and S(r,1) and a constant V1 such that the variances of S(p,1) and S(r,1) are each
at least ε−C1 , and S(q,1) is either constant (when (39) holds) or has variance at least ε−C1 (when
(40) holds), and that satisfy

dTV

(∑
i∈S1

X′i +

m/2∑
i=1

Y′i +

m/2∑
i=1

W′
i, V1 + p · S(p,1) + q · S(q,1) + r · S(r,1)

)
= O(εC/48). (44)

If we can prove (44), then we can analogously prove the symmetric statements that

dTV

(∑
i∈S2

X′i +

m∑
i=m/2+1

Y′i +

m/2∑
i=1

Z′i, V2 + p · S(p,2) + q · S(q,2) + r · S(r,2)

)
= O(εC/48)

and

dTV

(∑
i∈S3

X′i +

m∑
i=m/2+1

W′
i +

m∑
i=m/2+1

Z′i, V3 + p · S(p,3) + q · S(q,3) + r · S(r,3)

)
= O(εC/48),

with analogous conditions on the variances of S(p,2),S(q,2),S(r,2),S(p,3),S(q,3),S(r,3), and combin-
ing these bounds with (44) will imply the desired inequality (43).

Thus it remains to prove (44). Let γ1 =
∑

i∈S1 Pr[X′i = p] and δ1 =
∑

i∈S1 Pr[X′i = r]. We
consider the following cases:

Case (I): Assume γ1 and δ1 ≥ ε−C/8. Since the possibilities X′i = p and X′i = r are mutually
exclusive, for each i we have that Cov(1X′i=p,1X′i=r) ≤ 0, which implies that

Cov(
∑
i

1X′i=p,
∑
i

1X′i=r) ≤ 0.

Applying Lemma 52 to the distribution
∑

i∈S1 X
′
i, we obtain (44) in this case.

Case (II): Now let us assume that at least one of γ1 or δ1 is less than ε−C/8, without loss of gener-
ality, that γ1 < ε−C/8. For each variable X′i, let us consider a corresponding random variable X̃′i
defined by replacing the p-outcomes of X′i with 0’s. If Z is any distribution such that dshift,p(Z) ≤ κ,
then

dTV(Z + X′i,Z + X̃′i) ≤ κ ·Pr[X̃′i = p].
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Applying this observation iteratively, we have

dTV

(∑
i∈S1

X′i +

m/2∑
i=1

Y′i +

m/2∑
i=1

W′
i,
∑
i∈S1

X̃′i +

m/2∑
i=1

Y′i +

m/2∑
i=1

W′
i

)
= O(γ1 · εC/4) = O(εC/8).

However, now note that
∑

i∈S1 X̃
′
i+
∑m/2

i=1 Y′i+
∑m/2

i=1 W′
i can be expressed as p ·S(p,1) +r ·S(r,1)

for independent signed PBDs S(p,1), and S(r,1), and that the variances of
∑m/2

i=1 Y′i and
∑m/2

i=1 W′
i

ensure that Var[S(p,1)],Var[S(r,1)] ≥ ε−C/2. This establishes (44) in this case, completing the
proof of the lemma.

10. Unknown-support algorithms: Proof of Theorems 3 and 4

We begin by observing that the hypothesis selection procedure described in Section 4.4.1 provides
a straightforward reduction from the case of unknown-support to the case of known-support. More
precisely, it implies the following:

Observation 54 For any k, let A be an algorithm that semi-agnostically learns {a1, ..., ak}-sums,
with 0 ≤ a1 < · · · < ak, using m(a1, . . . , ak, ε, δ) samples and running in time T (a1, . . . , ak, ε, δ)
to learn to accuracy ε with probability at least 1 − δ, outputting a hypothesis distribution from
which it is possible to generate a draw or evaluate the hypothesis’s p.m.f. on a given point in time
T ′(a1, . . . , ak). Then there is an algorithm A′ which semi-agnostically learns (amax, k)-sums using(

max
0≤a1<···<ak≤amax

m(a1, . . . , ak, ε/6, δ/2)

)
+O(k log(amax)/ε2 + log(1/δ)/ε2)

samples, and running in time

poly((amax)k, 1/ε) ·
(

max
0≤a1<···<ak≤amax

(T (a1, . . . , ak, ε)) + T ′(a1, . . . , ak)

)
,

and, with probability at least 1− δ, outputting a hypothesis with error at most 6ε.

The algorithm A′ works as follows: first, it tries all (at most (amax)k) possible vectors of values
for (a1, . . . , ak) as the parameters for algorithmA, using the same set of max0≤a1<···<ak≤amax m(a1,
. . . , ak, ε, δ/2) samples as the input for each of these runs of A. Having done this, A′ has a list of
candidate hypotheses such that with probability at least 1 − δ/2, at least one of the candidates is
ε-accurate. Then A′ runs the Select procedure from Proposition 26 on the resulting hypothesis
distributions.

Together with Theorems 1 and 2, Observation 54 immediately yields Theorem 3 (learning
(amax, 3)-sums). It also yields a result for the unknown-support k = 2 case, but a sub-optimal
one because of the log(amax) dependence. In the rest of this section we show how the sharper
bound of Theorem 4, with no dependence on amax, can be obtained by a different (but still simple)
approach.

Recall Theorem 4:
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Theorem 4 (Learning with unknown support of size 2) There is an algorithm and a positive con-
stant c with the following properties: The algorithm is given N , an accuracy parameter ε > 0, an
upper bound amax ∈ Z+, and access to i.i.d. draws from an unknown distribution S∗ that has total
variation distance at most cε from an {a1, a2}-sum where 0 ≤ a1 < a2 ≤ amax. The algorithm
uses poly(1/ε) draws from S∗, runs in poly(1/ε) time, and with probability at least 9/10 outputs
a concise representation of a hypothesis distribution H such that dTV(H,S∗) ≤ ε.

Proof Let the {a1, a2}-sum S over (unknown values) {a1, a2} be S =
∑N

i=1 Xi where Xi(a1) =
1− pi, Xi(a2) = pi. Let X′i, i ∈ [N ] be independent Bernoulli random variables with X′i(1) = pi.
The distribution S is identical to a1N + (a2 − a1)S′ where S′ is the PBD S′ =

∑N
i=1 X

′
i.

Intuitively, if the values a1 and a2 (hence a1 and a2−a1) were known then it would be simple to
learn using the algorithm for learning a PBDN . The idea of what follows is that either (i) learning is
easy because the essential support is small, or (ii) it is possible to infer the value of a2−a1 (basically
by taking the gcd of a few sample points) and, given this value, to reduce to the problem of learning
a PBDN . Details follow.

If the PBD S′ is in sparse form (see Theorem 20), then it (and hence S) is ε-essentially-supported
on a set of size O(1/ε3). In this case the algorithm A′ of Fact 25 can learn S∗ to accuracy O(ε)
in poly(1/ε) time using poly(1/ε) samples. Thus we may subsequently assume that S′ is not in
sparse form. (The final overall algorithm will run both A′ and the learning algorithm described
below, and use the hypothesis selection procedure from Section 4.4.1 to choose the overall final
hypothesis from these two.)

Since S′ is not in sparse form, by the last part of Theorem 20 it is in 1/ε-heavy binomial form.
We will require the following proposition:

Proposition 55 Let a ∈ Z+, b ∈ Z be arbitrary constants. For all small enough ε > 0, if S′ =∑N
i=1 S

′
i is a PBD in 1/ε-heavy binomial form, then with probability at least 1 − O(

√
ε), the gcd

of m = Ω(1/
√
ε) i.i.d. draws v1, . . . , vm from a(S′ − b) is equal to a.

Proof S′ is ε-close to a translated Binomial distribution Y as described in the second bullet of
Theorem 20, and (by Fact 21) Y is O(ε)-close to Z, a discretized N(µY, σ

2
Y) Gaussian where

σ2
Y = Ω(1/ε2). By Lemma 7, a collection of m i.i.d. draws from S∗ is distributed exactly as a

collection of m i.i.d. draws from Z except with failure probability O(mε). Incurring this failure
probability, we may suppose that v1, . . . , vm are i.i.d. draws from Z. Except with an additional
failure probability 2−Ω(m), at least Ω(m) of these draws lie within ±σY of µY, so we additionally
suppose that this is the case. Next, since any two points within one standard deviation of the mean
of a discretized Gaussian have probability mass within a constant factor of each other, with an
additional failure probability of at most 2−Ω(m) we may suppose that the multiset {v1, . . . , vm}
contains at least ` = Ω(m) points that are distributed uniformly and independently over the integer
interval I := [µY − σY, µY + σY] ∩ Z. Thus, to establish the proposition, it suffices to prove that
for any b ∈ Z, with high probability the gcd of ` points drawn uniformly and independently from
the shifted interval I − b is 1.

The gcd is 1 unless there is some prime p such that all ` draws from I − b are divisible by
p. Since ε is at most some sufficiently small constant, we have that |I| is at least (say) 100; since
|I| ≥ 100, for any prime p at most a 1.02/p fraction of the points in I are divisible by p, so
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Pr[all ` draws are divisible by p] ≤ (1.02/p)`. Thus a union bound gives

Pr[gcd > 1] ≤
∑

prime p

Pr[ all ` draws are divisible by p]

≤
∑

prime p

(1.02/p)`

<
∑
n≥2

(1.02/n)`

< (2/3)`,

and the proposition is proved.

We now describe an algorithm to learn S∗ when S′ is in 1/ε-heavy binomial form. The algorithm
first makes a single draw from S∗ call this the “reference draw”. With probability at least 9/10, it
is from S; let us assume from for the rest of the proof that this is the case, and let its value be
v = a1(N − r) + a2r. Next, the algorithm makes m = Ω(1/

√
ε) i.i.d. draws u1, . . . , um from S∗.

Since dTV (S,S∗) < cε for a small positive constant c, and ε is at most a small constant, a union
bound implies that, except for a failure probability O((1/

√
ε)ε) < 1/10, all of these draws come

from S. Let us assume from here on that this is the case. For each i, the algorithm sets vi = ui − v,
and computes the gcd of v1, . . . , vm. Each ui equals a1(N − ni) + a2ni where ni is drawn from
the PBD S′, so we have that

vi = a1(N − ni) + a2ni − a1(N − r)− a2r = (a2 − a1)(ni − r),

and Proposition 55 gives that with failure probability at most O(
√
ε), the gcd of n1 − r, ..., nm − r

is 1, so that the gcd of v1, ..., vm is equal to a2 − a1.

With the value of a2 − a1 in hand, it is straightforward to learn S. Dividing each draw from S
by a2 − a1, we get draws from a1N

a2−a1 + S′ where S′ is the PBDN described above. Such a “shifted
PBD” can be learned easily as follows: if a1N

a2−a1 is an integer then this is a PBD(a1+1)N , hence is
a PBD(amax+1)N , and can be learned using the algorithm for learning a PBDN ′ given the value of
N ′. If a1N

a2−a1 is not an integer, then its non-integer part can be obtained from a single draw, and
subtracting the non-integer part we arrive at the case handled by the previous sentence.

The algorithm described above has failure probability O(
√
ε), but by standard techniques like

Proposition 26 (see also Haussler et al., 1991, Lemma 3.4) and this failure probability can be re-
duced to an arbitrary δ at the cost of a log(1/δ) factor increase in sample complexity. This concludes
the proof of Theorem 4.

11. A reduction for weighted sums of PBDs

Below we establish a reduction showing that an efficient algorithm for learning sums of weighted
PBDs with weights {0 = a1, . . . , ak} implies the existence of an efficient algorithm for learning
sums of weighted PBDs with weights {0 = a1, . . . , ak−1} mod ak. Here by “learning sums of
weighted PBDs with weights {0 = a1, . . . , ak−1} mod ak” we mean an algorithm which is given
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access to i.i.d. draws from the distribution S′ := (S mod ak) where S is a weighted sum of PBDs
with weights {0 = a1, . . . , ak−1}, and should produce a high-accuracy hypothesis distribution for
S′ (which is is supported over {0, 1, . . . , ak − 1}); so both the hypothesis distribution and the
samples provided to the learning algorithm are reduced mod ak. Such a reduction will be useful
for our lower bounds because it enables us to prove a lower bound for learning a weighted sum of
PBDs with k unknown weights by proving a lower bound for learning mod ak with k − 1 weights.

The formal statement of the reduction is as follows:

Theorem 56 Suppose that A is an algorithm with the following properties: A is given N , an
accuracy parameter ε > 0, a confidence parameter δ > 0, and distinct non-negative integers
0 = a1, . . . , ak. A is provided with access to i.i.d. draws from a distribution S where S =
a2S2 + · · · + akSk and each Si is an unknown PBDN . For all N , A makes m(a1, . . . , ak, ε, δ)
draws from S and with probability at least 1− δ outputs a hypothesis S̃ such that dTV(S′, S̃) ≤ ε.

Then there is an algorithm A′ with the following properties: A′ is given N, 0 = a1, . . . , ak, ε, δ
and is provided with access to i.i.d. draws from T′ := (T mod ak) where T = a2T2 + · · · +
ak−1Tk−1 where in turn each Ti is a PBDN . A′ makes m′ = m(a1, . . . , ak, ε, δ/2) draws from T′

and with probability 1− δ outputs a hypothesis T̃′ such that dTV(T′, T̃′) ≤ ε.

Proof The high-level idea is simple; in a nutshell, we leverage the fact that the algorithm A works
with sample complexity m(a1, . . . , ak, ε, δ) independent of N for all N to construct a data set
suitable for algorithm A from a “mod ak” data set that is the input to algorithm A′.

In more detail, as above suppose the target distribution T′ is (T mod ak) where T = a2T2 +
· · · + ak−1Tk−1 and each Ti is an independent PBDN . Algorithm A′ works as follows: First,
it makes m′ draws v′1, . . . , v

′
m′ from T′, the j-th of which is equal to some value (a2N2,j + · · · +

ak−1Nk−1,j) mod ak. Next, using its own internal randomness it makesm′ drawsNk,1, . . . , Nk,m′

from the PBDN? distribution Tk := Bin(N?, 1/2) (we specify N? below, noting here only that
N? � N ) and constructs the “synthetic” data set of m′ values whose j-th element is

uj := v′j + akNk,j .

Algorithm A′ feeds this data set of values to the algorithm A, obtains a hypothesis H, and outputs
(H mod ak) as its final hypothesis.

To understand the rationale behind this algorithm, observe that if each value v′j were an inde-
pendent draw from T rather than T′ (i.e., if it were not reduced mod ak), then each uj would be
distributed precisely as a draw from T? := a2T2 + · · · + ak−1Tk−1 + akTk (observe that each
PBDNi is also a PBDN? , simply by having the “missing” N? − Ni Bernoulli random variables all
trivially output zero). In this case we could invoke the performance guarantee of algorithm A when
it is run on such a target distribution. The issue, of course, is that v′j is a draw from T′ rather than T,
i.e. v′j equals (vj mod ak) where vj is some draw from T. We surmount this issue by observing
that since akTk is shift-invariant at scale ak, by taking Tk to have sufficiently large variance, we
can make the variation distance between the distribution of each v′j and the original vj sufficiently
small that so it is as if the values v′j actually were drawn from T rather than T′.

In more detail, let us view v′j as the reduction mod ak of a draw vj from T as just discussed;
i.e., let v′j ∈ {0, ..., ak − 1} satisfy v′j = vj + akcj for cj ∈ Z. We observe that each cj satisfies
|cj | < amax · N. Recalling that Tk = Bin(N?, 1/2) has Var[Tk] = N?/4, by Fact 18 we have
that dTV(akTk + T, akTk + T′) ≤ O(1/

√
N?) · amax ·N . Hence the variation distance between
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(akTk +T′)m
′

(from which the sample u1, . . . , um′ is drawn) and (akTk +T)m
′

= (T?)m
′

(what
we would have gotten if each v′j were replaced by vj) is at most O(1/

√
N?) · amax · N · m′. By

taking N? = Θ((amax ·N ·m′/δ)2), this is at most δ/2, so at the cost of a δ/2 failure probability
we may assume that the m′ = m(a1, . . . , ak, ε, δ/2)-point sample u1, . . . , um′ is drawn from T?.
Then with probability 1 − δ/2 algorithm A outputs an ε-accurate hypothesis, call it T̃? (this is the
H mentioned earlier), for the target distribution T? from which its input sample was drawn, so
dTV(T̃?,T?) ≤ ε. Taking T̃′ to be (T̃? mod ak) and observing that (T? mod ak) ≡ T′, we
have that

dTV(T̃′,T′) = dTV((T̃? mod ak), (T
? mod ak)) ≤ dTV(T̃?,T?) ≤ ε,

and the proof is complete.

12. Known-support lower bound for |A| = 4: Proof of Theorem 5

Recall Theorem 5:

Theorem 5 (Lower Bound for Learning {a1, ..., a4}-sums, known support) Let A be any algo-
rithm with the following properties: algorithm A is given N , an accuracy parameter ε > 0, distinct
values 0 ≤ a1 < a2 < a3 < a4 ∈ Z, and access to i.i.d. draws from an unknown {a1, ..., a4}-sum
S∗; and with probability at least 9/10 algorithm A outputs a hypothesis distribution S̃ such that
dTV(S̃,S∗) ≤ ε. Then there are infinitely many quadruples (a1, a2, a3, a4) such that for sufficiently
large N , A must use Ω(log log a4) samples even when run with ε set to a (suitably small) positive
absolute constant.

12.1 Proof of Theorem 5

Fix a1 = 0 and a2 = 1. (It suffices to prove a lower bound for this case.) To reduce clutter in
the notation, let p = a3 and q = a4. Applying Theorem 56, it suffices to prove that Ω(log log q)
examples are needed to learn distributions of random variables of the form S = U + pV mod q,
where U and V are unknown PBDs over Θ(N) variables. We do this in the rest of this section.

Since an algorithm that achieves a small error with high probability can be used to achieve small
error in expectation, we may use Lemma 28, which provides lower bounds on the number of exam-
ples needed for small expected error, to prove Theorem 5. To apply Lemma 28, we must find a set
of distributions S1, . . . ,Si, . . . , where Si = Ui + pVi mod q, that are separated enough that they
must be distinguished by a successful learning algorithm (this is captured by the variation distance
lower bound of Lemma 28), but close enough (as captured by the Kullback-Liebler divergence up-
per bound) that this is difficult. We sketched the ideas behind our construction of these distributions
S1, . . . ,ST , T = logΘ(1) q, earlier in Section 3, so we now proceed to the actual construction and
proof.

The first step is to choose p and q. The choice is inspired by the theory of rational approximation
of irrational numbers. The core of the construction requires us to use an irrational number which is
hard to approximate as a ratio of small integers but such that, expressed as a continued fraction, the
convergents do not grow very rapidly. For concreteness, we will consider the inverse of the golden
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ratio φ:
1

φ
=

1

1 +
1

1 +
1

1 + · · ·

Let f0 = 1, f1 = 1, f2 = 2, . . . denote the Fibonacci numbers; It is easy to see that the tth

convergent of 1/φ is given by ft−1/ft. We take p = fL, q = fL+1 where we think of L as an
asymptotically large parameter (and of course q = fL+1 implies L = Θ(log q)). Looking ahead,
the two properties of 1/φ which will be useful will be: (a) For any t, ft/ft+1 is a very good
approximation of 1/φ, and moreover, (b) the approximations obtained by these convergents are
essentially the best possible.

Definition 57 Let ρq(a, b) be the Lee metric on Zq, i.e., the minimum of |j| over all j such that
a = b+ j mod q.

The following lemma records the properties of p and q that we will use. To interpret this lemma,
it may be helpful to imagine starting at 0, taking steps of size p through [q], wrapping around when
you get to the end, and dropping a breadcrumb after each step. Because p and q are relatively prime,
after q steps, each member of [q] has a breadcrumb. Before this, however, the lemma captures two
ways in which the breadcrumbs are “distributed evenly” (in fact, within constant factors of optimal)
throughout the walk: (a) they are pairwise well-separated, and (b) all positions have a breadcrumb
nearby.

Lemma 58 There are absolute constants c1, c2 > 0 such that, for all integers v 6= v′, v, v′ ∈
(−c2q, c2q), we have

ρq(pv, pv
′) >

c1q

max{|v|, |v′|}
. (45)

Furthermore, for any i ∈ [q], for any t ≤ L, there is a v ∈ {−ft, ..., ft} such that

ρq(i, pv) ≤ 3q

ft
. (46)

To prove the first part of Lemma 58, we need the following lemma on the difficulty of approxi-
mating 1/φ by rationals.

Lemma 59 ((Hardy et al., 2008)) There is a constant c3 > 0 such that for all positive integers m
and n, ∣∣∣∣mn − 1

φ

∣∣∣∣ ≥ c3

n2
.

We will also use the fact that ft−1

ft
is a good approximation.

Lemma 60 ((Hardy et al., 2008)) For all t,∣∣∣∣ft−1

ft
− 1

φ

∣∣∣∣ < 1

f2
t

.
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Proof [Proof of Lemma 58] Assume without loss of generality that v′ < v. By the definition of ρq,
there is an integer u such that

|pv − pv′ − uq| = ρq(pv, pv
′).

Dividing both sides by q(v − v′), we get∣∣∣∣pq − u

v − v′

∣∣∣∣ =
ρq(pv, pv

′)

q(v − v′)
.

Hence we have
c3

(v − v′)2
≤
∣∣∣∣ 1φ − u

v − v′

∣∣∣∣ < ρq(pv, pv
′)

q(v − v′)
+

1

q2
,

where we have used Lemma 59 for the first inequality and Lemma 60 for the second.
If |v| ≤

√
c3/4 · q and |v′| ≤

√
c3/4 · q, then we get

ρq(pv, pv
′)

q(v − v′)
>

c3

2(v − v′)2
,

so that
ρq(pv, pv

′) >
c3q

2(v − v′)
≥ c3q

4 max{|v|, |v′|}
,

completing the proof of (45).
Now we turn to (46). Two applications of Lemma 60 and the triangle inequality together imply∣∣∣∣ft−1

ft
− p

q

∣∣∣∣ =

∣∣∣∣ft−1

ft
− fL
fL+1

∣∣∣∣ ≤ ∣∣∣∣ft−1

ft
− 1

φ

∣∣∣∣+

∣∣∣∣ fLfL+1
− 1

φ

∣∣∣∣ ≤ 1

f2
t

+
1

f2
L+1

≤ 2

f2
t

.

Thus, for all integers j with |j| ≤ ft, we have∣∣∣∣jft−1

ft
− jp

q

∣∣∣∣ ≤ 2

ft
. (47)

Since ft−1 and ft are relatively prime, the elements
{
jft−1

ft
mod 1 : j ∈ [ft]

}
are exactly equally

spaced over [0, 1], so there is some j̃ ∈ [q] such that the fractional part of j̃ft−1

ft
is within ± 1

ft
of

i/q. Applying (47), the fractional part of j̃p
q is within ± 3

ft
of i/q, and scaling up by q yields (46),

completing the proof of Lemma 58.

Let ` = b
√
Lc. Now that we have p and q, we turn to defining (U1,V1), ..., (U`,V`). The

distributions that are hard to distinguish will be chosen from among

S1 = U1 + pV1 mod q, . . . ,S` = U` + pV` mod q.

For a positive integer a let Bin(a2, 1/2) be the Binomial distribution which is a sum of a2 indepen-
dent Bernoulli random variables with expectation 1/2, and let W(a) = Bin(2a2, 1/2) − a2. Let
C = da2/qe so that Cq − a2 ≥ 0, and observe that

W(a) + Cq mod q is identical to W(a) mod q,
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and that W(a) + Cq is a PBDΘ(q+a2) distribution.
We will need a lemma about how the W random variables “behave like discretized Gaussians”

that is a bit stronger in some cases than the usual Chernoff-Hoeffding bounds. We will use the
following bound on binomial coefficients:

Lemma 61 ((Rosen, 1999)) If k = o(n3/4), then

1

2n
·
(

n

bn/2c+ k

)
= O

(
1√
n

exp

(
−2k2

n

))
.

Now for our bound regarding W.

Lemma 62 There is a constant c4 > 0 such that for all k,

Pr[W(a) = k] ≤
c4 exp

(
− k2

2a2

)
a

.

Proof If |k| ≤ a4/3, the lemma follows directly from Lemma 61. If |k| > a4/3, we may suppose
w.l.o.g. that k is positive. Then Hoeffing’s inequality implies that

Pr[W(a) = k] ≤ Pr[W(a) ≥ k] ≤ exp

(
−k

2

a2

)
≤ exp

(
− k2

2a2

)
exp

(
− k2

2a2

)
≤ exp

(
− k2

2a2

)
exp

(
−a

2/3

2

)
= O

(
exp

(
− k2

2a2

)
/a

)
,

completing the proof.

The following lemma may be considered a standard fact about binomial coefficients, but for
completeness we give a proof below.

Lemma 63 For every c > 0, there exists c′ > 0 such that for all integers x, a with |x| < c · a,

Pr[W(a) = x] ≥ c′

a
.

Proof Note that

Pr[W(a) = x] =
1

22a2
·
(

2a2

a2 + x

)
Thus,

Pr[W(a) = x] ≥ 1

22a2
·
(

2a2

a2

)
· (a2)!(a2)!

(a2 + x)!(a2 − x)!

≥ 1

10 · a
·
x∏
j=1

a2 − j + 1

a2 + j
=

1

10 · a
·
x∏
j=1

1− j−1
a2

1 + j
a2

≥ 1

10 · a
·
x∏
j=1

e
−10·j
a2 ≥ 1

10 · a
· e−

10·x2
a2 .
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Here the second inequality uses that 2−2n ·
(

2n
n

)
≥ 1

10·
√
n

and the third inequality uses that for

j ≤ a2/2, e
−10·j
a2 ≤ (1− j−1

a2
)/(1 + j

a2
). The bound on Pr[W(a) = x] follows immediately.

Now, let Ut = W(b p
c5ft
c), where c5 is a constant that we will set in the analysis, and let

Vt = W(ft). Recall that St = Ut + pVt mod q. Let `′ = bL1/4c and recall that ` = bL1/2c. Let
S = {S`′ , ...,S`} This is the set of Ω(log1/2 q) distributions to which we will apply Lemma 28.

Now, to apply Lemma 28 we need upper bounds on the KL-divergence between pairs of ele-
ments of S, and lower bounds on their total variation distance. Intuitively, the upper bound on the
KL-divergence will follow from the fact that each St “spaces apart by Θ(p/ft) PBDs with a lot of
measure in a region of size p/ft” (i.e. the translated Ut distributions), so the probability never gets
very small between consecutive “peaks” in the distribution; consequently, all of the probabilities in
all of the distributions are within a constant factor of one another. The following lemma makes this
precise:

Lemma 64 There is a constant c6 > 0 such that, for large enough q, if bL1/4c < t < L1/2, for all
i ∈ [q],

1

c6q
≤ Pr[St = i] ≤ c6

q
.

Proof Fix an arbitrary t for which bL1/4c < t < L1/2. Since t is fixed, we drop it from all
subscripts.

First, let us work on the lower bound. Roughly, we will show that a random v ∼ V has
a good chance of translating U within Θ(σ(U)) of i. Specifically, (46) implies that there is a
u ∈ [−3bq/ftc, 3bq/ftc] and a v ∈ [−ft, ft] such that i = u+ pv mod q. Thus

Pr[S = i] ≥ Pr[U = u] ·Pr[V = v] ≥ Ω

(
ft
p
· 1

ft

)
≥ Ω

(
1

p

)
= Ω

(
1

q

)
,

where the second inequality follows from an application of Lemma 63 (recalling that q = Θ(p)).
Now for the upper bound. We have

Pr[S = i] =
∑
v

Pr[S = i|V = v]Pr[V = v]

=
∑
v

Pr[U = i− pv mod q]Pr[V = v]

< o(1/q) +
∑

v:|v|≤σ(V ) ln q

Pr[U = i− pv mod q]Pr[V = v],

since Pr[|v| > σ(V ) ln q] = o(1/q). Let V1 = [−σ(V), σ(V)], and, for each j > 1, let Vj =
[−jσ(V), jσ(V)]− Vj−1. Then

Pr[S = i] ≤ o(1/q) +

bln qc∑
j=1

∑
v∈Vj

Pr[U = i− pv mod q]Pr[V = v]

≤ o(1/q) +O(1) ·
bln qc∑
j=1

e−j
2/2

σ(V)

∑
v∈Vj

Pr[U = i− pv mod q], (48)
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by Lemma 62.
Now fix a j ≤ ln q. Let (v′k)k=1,2,... be the ordering of the elements of Vj by order of increasing

ρq-distance from pv′k to i. Since each |v′k| ≤ j · σ(V) � c2q, Lemma 58 implies that ρq-balls of

radius Ω
(

q
jσ(V)

)
centered at members of pv′1, ..., pv

′
k are disjoint, so

k · Ω
(

q

jσ(V)

)
< 2ρq(pv

′
k, i) + 1.

Since σ(U)σ(V) = Θ(q), we get

ρq(pv
′
k, i) = Ω

(
kσ(U)

j

)
. (49)

Applying Lemma 62, we get

∑
v∈Vj

Pr[U = i− pv mod q] ≤ 1

σ(U)

∑
k>0

exp

(
− Ω

(
k2 · σ2(U)

j2σ2(U)

))
= O

(
j

σ(U)

)
.

Combining with (48), we get

Pr[S = i] =
∞∑
j=1

O

(
j

σ(U)

)
·O
(

1

σ(V)

)
· e−j2/2 = O

(
1

σ(U) · σ(V)

)
= O

(
1

q

)
.

This finishes the upper bound on Pr[S = i], concluding our proof.

We have the following immediate corollary.

Lemma 65 There is a constant c7 such that, for all i, j ∈ {`′, ..., `}, we have DKL(Si||Sj) ≤ c7.

It remains only to give a lower bound on the total variation distance.

Lemma 66 There is a positive constant c8 such that, for large enough q, for ` ≥ i > j, we have
dTV (Si,Sj) > c8.

Proof LetW be the union of two integer intervals

W = [−fi, ...,−fj+1] ∪ [fj+1, ..., fi].

It may be helpful to think ofW as being comprised of v such that pv is the location of a “peak” in
Si, but not in Sj . We will show that Si assigns significantly more probability to points close to pv
than Sj does.

Choose v ∈ W , and u with |u| ≤ p
c5fi

. (We will later set c5 > 0 to be a sufficiently large
absolute constant.) For large enough q, standard facts about binomial coefficients give that

Pr[Si = pv + u mod q] ≥ Pr[Vi = v] ·Pr[Ui = u] ≥ 1

5fi
· c5fi

5p
=

c5

25p
. (50)
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Now, let us upper bound Pr[Sj = pv + u mod q]. Let a ∈ [q] be such that pv + u = a mod q.
We have

Pr[Sj = a] =
∑
v

Pr[Sj = a |Vj = v]Pr[Vj = v]

< o(1/q2) +
∑

v:|v|≤σ(Vj) ln q

Pr[Sj = a |Vj = v]Pr[Vj = v].

As before, let V1 = [−σ(Vj), σ(Vj)], and, for each h > 1, let Vh = [−hσ(Vj), hσ(Vj)]− Vh−1,
so that Lemma 62 implies

Pr[Sj = a] ≤ o(1/q2) +

bln qc∑
h=1

∑
v∈Vh

Pr[Uj = a− pv mod q]Pr[Vj = v] (51)

≤ o(1/q2) +

bln qc∑
h=1

c4e
−(h−1)2/2

σ(Vj)

∑
v∈Vh

Pr[Uj = a− pv mod q]. (52)

Let (v′k)k=1,2,... be the ordering of the elements of Vh by order of increasing ρq distance from a to
pv′k. Since each |v′k| ≤ h · σ(V)� c2q, Lemma 58 implies that ρq-balls of radius c1q

2hfj
centered at

members of pv′1, ..., pv
′
k are disjoint, so

k · c1q

hfj
< 2ρq(a, pv

′
k) +

c1q

hfj
.

so, for large enough q, we have

ρq(a, pv
′
k) >

c1(k − 1)q

5hfj
.

Using this with Lemma 62, we get that, for large enough q,∑
v∈Vh

Pr[Uj = a− pv mod q] ≤ 1

σ(Uj)

∑
k

c4 exp

(
−(k − 1)2c2

1q
2c2

5

100h2p2

)

≤ 2 · c4c5fj
p

∑
k

exp

(
−(k − 1)2c2

1c
2
5

100h2

)
≤ c4c5fj

p
· 40(h+ 1)

c1c5
=

40(h+ 1)c4fj
c1p

.

Plugging back into (52), we get

Pr[Sj = a] ≤ o(1/q2) + 40

bln qc∑
h=1

(h+ 1)e−(h−1)2/2c2
4

c1p
.

Thus, if c5 is a large enough absolute constant, there is a constant c7 such that

Pr[Si = pv + u mod q]−Pr[Sj = pv + u mod q] >
c7

p
,

for all v ∈ W , and uwith |u| ≤ p
c5fi

. Lemma 58 implies that, if c5 is large enough, the resulting val-
ues of pv+u are distinct elements of [q], and the number of such pairs is at least (fi+1−fi)·bΩ( pfi )c
which is Ω(p), which completes the proof.
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13. Lower bound for (amax, 3)-sums: Proof of Theorem 6

Theorem 6 follows from the following stronger result, which gives a lower bound for learning a
weighted sum of PBDs with weights {0 = a1, a2, a3} even if the largest support value a3 is
known.

Theorem 67 (k = 3, strengthened unknown-support lower bound) LetA be any algorithm with
the following properties: algorithm A is given N , an accuracy parameter ε > 0, a value 0 <
amax ∈ Z, and access to i.i.d. draws from an unknown S = a2S2 + a3S3, where a3 is the largest
prime that is at most amax} and 0 < a2 < a3. (So the values a1 = 0 and a3 are “known” to
the learning algorithm A, but the value of a2 is not.) Suppose that A is guaranteed to output, with
probability at least 9/10, a hypothesis distribution S̃ satisfying dTV(S, S̃) ≤ ε. Then for sufficiently
large N , A must use Ω(log amax) samples even when run with ε set to a (suitably small) positive
absolute constant.

Via our reduction, Theorem 56, we obtain Theorem 67 from the following lower bound for
learning a single scaled PBD mod a3 when the scaling factor is unknown:

Theorem 68 (lower bound for learning mod a3) Let A be any algorithm with the following prop-
erties: algorithm A is given N , an accuracy parameter ε > 0, a value 0 < amax ∈ Z, and access
to i.i.d. draws from from a distribution S′ = (a2S2 mod a3) where S2 is a PBDN , a3 is the largest
prime that is at most amax, and a2 ∈ {1, . . . , a3 − 1} is “unknown” to A. Suppose that A is guar-
anteed to output a hypothesis distribution S̃′ satisfying E[dTV(S′, S̃′)] ≤ ε (where the expectation
is over the random samples drawn from S′ and any internal randomness of A). Then for sufficiently
large N , A must use Ω(log amax) samples when run with ε set to some sufficiently small absolute
constant.

While Theorem 68 lower bounds the expected error of the hypothesis produced by a learning
algorithm that uses too few samples, such a lower bound is easily seen to imply an (ε, δ)-type bound
as well. Thus to prove Theorem 67 (and thus Theorem 6) it suffices to prove Theorem 68.

13.1 Proof of Theorem 68

Recall that by the Bertrand-Chebychev theorem we have a3 = Θ(amax); throughout what follows
we view a3 as a “sufficiently large” prime number. Let S2 be the distribution Bin(N ′, 1

2) + a3 −(
N ′

2 −
c
√
N ′

2

)
, where N ′ = d

(
a3
cK

)2e and c,K > 0 are absolute constants that will be specified
later. (It is helpful to think of c as being a modest number like, say, 10, and to think of K as
being extremely large relative to c.) Note that S2 is a PBDN for N = poly(a3), and that S2 has
Var[S2] = N ′/4 = σ2

S2
where σS2 = (a3)/(cK) +O(1). Note further that nothing is “unknown”

about S2 — the only thing about S′ = a2S2 that is unknown to the learner is the value of a2.

Remark 69 For intuition, it is useful to consider the distribution S2 mod a3, and to view it as a
coarse approximation of the distribution U which is uniform over the interval {1, . . . , c

√
N ′} where

c
√
N ′ ≈ a3/K; we will make this precise later.

The lower bound of Theorem 68 is proved by considering distributions S′r, 1 ≤ r ≤ a3 − 1,
which are defined as S′r := (r · S2 mod a3). The theorem is proved by applying the generalized
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Fano’s Inequality (Theorem 28) to a subset of the distributions {S′r}r∈[a3−1]; recall that this requires
both an upper bound on the KL divergence and a lower bound on the total variation distance. The
following technical lemma will be useful for the KL divergence upper bound:

Lemma 70 For any 1 ≤ r1 6= r2 ≤ a3− 1 and any j ∈ {0, 1, . . . , a3− 1}, the ratio S′r1(j)/S′r2(j)
lies in [1/C,C] where C is a constant (that is independent of a3 but depends on c,K).

Proof Recalling that a3 is prime, for any r ∈ [a3 − 1] and any j ∈ {0, 1, . . . , a3 − 1}, if r−1 ∈ [a3]
is such that r−1r = 1 mod a3, we have

S′r(j) = Pr[r · S2 ≡ j mod a3] = Pr[S2 ≡ jr−1 mod a3] = Θ(1) · S2(M),

where M ∈ {0, 1, . . . , N} is the integer in a3Z+ jr−1 that is closest to N/2. Since |M −N/2| ≤
a3/2 = Θ(

√
N) and S2 = Bin(N, 1/2), standard facts about binomial coefficients imply that

S2(M) =
(
N
M

)
/2N = Θ(1)/

√
N , from which the lemma follows.

From this, recalling the definition of KL-divergence DKL(S′r1 ||S
′
r2) =

∑
i S
′
r1(i) ln

S′r1 (i)

S′r2 (i) , we
easily obtain

Corollary 71 For any 1 ≤ r1 6= r2 ≤ a3 − 1 we have DKL(S′r1 ||S
′
r2) = O(1).

Next we turn to a lower bound on the variation distance; for this we will have to consider only a
restricted subset of the distributions {S′r}r∈[a3−1], and use a number theoretic equidistribution result
of Shparlinski. To apply this result it will be most convenient for us to work with the distribution U
instead of S2 (recall Remark 69) and to bring S2 and the S′r distributions into the picture later (in
Section 13.1.2) once we have established an analogue of our desired result for some distributions
related to U.

13.1.1 EQUIDISTRIBUTION OF SCALED MODULAR UNIFORM DISTRIBUTIONS U′r.

For 1 ≤ r ≤ a3 − 1 we consider the distributions U′r := (r ·U mod a3) (note the similarity with
the distributions S′r). Since for each r ∈ [a3 − 1] the distribution U′r is uniform on a Θ(1/K)-
fraction of the domain {0, 1, . . . , a3 − 1}, it is natural to expect that dTV (U′r1 ,U

′
r2) is large for

r1 6= r2. To make this intuition precise, we make the following definition.

Definition 72 Given integers r, p, Y, Z and a set X of integers, we define

Nr,p(X , Y, Z) :=

∣∣∣∣{(x, y) ∈ X × [Z + 1, Z + Y ] : r · x ≡ y (mod p)

}∣∣∣∣.
We will use the following, which is due to Shparlinski (2008).

Lemma 73 ((Shparlinski, 2008)) For all integers p, Z,X, Y such that p ≥ 2 and 0 < X,Y < p,
for any X ⊆ {1, ..., X}, we have

p∑
r=1

∣∣∣∣Nr,p(X , Y, Z)− |X | · Y
p

∣∣∣∣2 ≤ |X | · (X + Y ) · po(1).
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We shall use the following corollary. Set X = {1, ..., X}. Let us define the quantity

Nr,X = |{(x, y) : x, y ∈ X , r · x ≡ y (mod p)}|.

Taking Z = 0 and Y = X , we get:

Corollary 74 For all integers p and X such that p > 0 and 0 < X < p, we have

p∑
r=1

∣∣∣∣Nr,X − X2

p

∣∣∣∣2 ≤ X2 · po(1).

This easily yields

Er∈[p]

[∣∣∣∣Nr,X − X2

p

∣∣∣∣2
]
≤ X2

p1−o(1)

which in turn implies

Prr∈[p]

[
Nr,X ≥

2X2

p

]
≤ p1+o(1)

X2
.

We specialize this bound by setting X to be dc
√
N ′e and p = a3 which gives X2

p = a3
K2 +O(1),

from which we get that

Prr∈[a3]

[
Nr,X ≥

2a3

K2

]
≤ a

o(1)
3

a3
. (53)

Using (53) it is straightforward to show that there is a large subset of the distributions {U′r}r∈[a3]

any two of which are very far from each other in total variation distance:

Theorem 75 Given any sufficiently large prime a3, there is a subset of t ≥ a
1/3
3 many values

{q1, . . . , qt} ⊂ [a3] such that for any qi 6= qj we have dTV(U′qi ,U
′
qj ) ≥ 1− 3

K .

Proof To prove the theorem it suffices to show that if q1, q2 are chosen randomly from [a3] then

dTV(U′qi ,U
′
qj ) ≥ 1 − 3

K with probability 1 − a
o(1)
3
a3

. (From there, the theorem follows from a
standard deletion argument (Alon et al., 1992).) Since a3 is prime, to show this it suffices to prove

that for a randomly chosen r ∈ [a3] we have that dTV(U,U′r) ≥ 1− 3
K with probability 1− a

o(1)
3
a3

.
Observe that for a given outcome of r, since both U and U′r are uniform distributions over their
domains (X and (r · X mod a3) respectively) which are both of size X = dc

√
N ′e, we have that

dTV(U,U′r) = 1− |X∩(r·X mod a3)|
X . Moreover, we have that

Nr,X = |{(x, (rx mod a3)) : x, (rx mod a3) ∈ X}| = |X ∩ (r · X mod a3)|,

so
dTV(U,U′r) = 1−

Nr,X
X

= 1−
Nr,X
dc
√
N ′e

= 1−
Nr,X

a3/K +O(1)
,

which is at least 1 − 3
K provided that Nr,X < 2a3

K2 . So by (53) we get that dTV(U,U′r) ≥ 1 − 3
K

with probability 1− a
o(1)
3
a3

over a random r, as desired, and we are done.
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13.1.2 CONCLUDING THE PROOF OF THEOREM 68.

Given Theorem 75 it is not difficult to argue that the related family of distributions {S′q1 , . . . ,S
′
qt}

are all pairwise far from each other with respect to total variation distance. First, recall that S2 is a
Bin(N ′, 1

2) distribution (mod a3) which has been shifted so that its mode is in the center of supp(U)
and so that the left and right endpoints of supp(U) each lie c/2 standard deviations away from its
mode. From this, the definition of S′qi , and well-known tail bounds on the Binomial distribution it is
straightforward to verify that a 1−e−Θ(c2) fraction of the probability mass of S′qi lies on supp(U′qi),
the support of U′qi . Moreover, standard bounds on the Binomial distribution imply that for any two
points α, β ∈ supp(U′qi), we have that

1

Γ(c)
≤

S′qi(α)

S′qj (β)
≤ Γ(c) (54)

where Γ(c) is a function depending only on c. Let S′′r denote (S′r)supp(U′r)
, that is the condi-

tional distribution of S′r restricted to the domain supp(U′r). Recalling Theorem 75 and the fact that

dTV(U′qi ,U
′
qj ) = 1−

|supp(U′qi )∩supp(U′qj )|
|supp(U′qi )|

, by (54) we see that by choosing K to be suitably large

relative to Γ(c), we can ensure that dTV(S′′qi ,S
′′
qj ) is at least 9/10. Since dTV(S′′r ,S

′
r) ≤ e−Θ(c2),

taking c to be a modest positive constant like 10, we get that dTV(S′qi ,S
′
qj ) is at least 8/10 (with

room to spare). Thus we have established:

Theorem 76 Given any sufficiently large prime a3, there is a subset of t ≥ a
1/3
3 many values

{q1, . . . , qt} ⊂ [a3] such that for any qi 6= qj we have dTV(S′qi ,S
′
qj ) ≥ 4/5.

All the pieces are now in place to apply Fano’s Inequality. In the statement of Theorem 28
we may take α = 1 (by Theorem 76), β = O(1) (by Corollary 71), and ε to be an absolute
constant, and Theorem 28 implies that any algorithm achieving expected error at most ε must use
Ω(ln t) = Ω(ln a3) samples. This concludes the proof of Theorem 68.
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Appendix A. Time complexity of evaluating and sampling from our hypotheses

Inspection of our learning algorithms reveals that any possible hypothesis distribution H that the
algorithms may construct, corresponding to any possible vector of outcomes for the guesses that the
algorithms may make, must have one of the following two forms:

(a) (see Sections 8.1 and 9.1) H is uniform over a multiset S of at most 1/ε2poly(k) many integers
(see the comment immediately after Fact 25; note that the algorithm has S).

(b) (see Lemma 35 and Definition 29) H is of the form U
Ŷ

+Z where Ŷ is a multiset of at most

1/ε2poly(k) integers (note that the algorithm has Ŷ ) and Z =
∑K=poly(k)

a=1 paZa where Za is
the uniform distribution on the interval [−ca, ca] ∩ Z (and the algorithm has K, the pa’s, and
the ca’s).

It is easy to see that a draw from a type-(a) distribution can be simulated in time 1/ε2poly(k) , and
likewise it is easy to simulate an evalH oracle for such a distribution in the same time. It is also easy
to see that a draw from a type-(b) distribution can be simulated in time 1/ε2poly(k) . The main result
of this appendix is Theorem 77, stated below. Given this theorem it is easy to see that a type-(b)
evalH oracle can be simulated in time 1/ε2poly(k) , which is the final piece required to establish that
our hypotheses can be efficiently sampled and evaluated as required by Corollary 27.

Theorem 77 Let H be a distribution which is of the form H = Y +
∑K

a=1 pa · Za where the
distributions Y,Z1, . . . ,ZK are independent integer valued random variables. Further,

1. Each Za is uniform on the integer intervals [−γa, . . . , γa].

2. Y is supported on a set AY ⊆ Z of size m with the probabilities given by {αV }V ∈AY
.

Given as input the sets AY, {pa}Ka=1, {αV }V ∈AY
and {γa}Ka=1 and a point x ∈ Z, we can evaluate

Pr[H = x] in time LO(K) where L is the length of the input.

Our chief technical tool to prove this will be the following remarkable theorem of Barvinok (1994),
which shows that the number of integer points in a rational polytope can be computed in polynomial
time when the dimension is fixed:

Theorem 78 (Barvinok) There is an algorithm with the following property: given as input a list
of m pairs (a1, b1), . . . , (am, bm) where each ai ∈ Qd, bi ∈ Q, specifying a polytope X ⊆ Rd,
X = {x ∈ Rd : 〈ai, x〉 ≤ bi}mi=1, the algorithm outputs the number of integer points in X in time
LO(d) where L is the length of the input, that is the description length of {ai}mi=1 and {bi}mi=1.

We will use this algorithm via the following lemma.

Lemma 79 Let H′ be a distribution which is of the form H′ = V+
∑K

a=1 pa·Za where V, p1, . . . , pK ∈
Z and Z1, . . . ,ZK are independent integer valued random variables and for 1 ≤ a ≤ K, Za
is uniform on [−γa, . . . , γa]. Then, given any point x ∈ Z, {pa}Ka=1, {γa}Ka=1 and V , the value
Pr[H′ = x] can be computed in time LO(K) where L is the description size of the input.
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Proof Consider the polytope defined by the following inequalities:

for 1 ≤ a ≤ k, −γa ≤ ya ≤ γa, and x− V − 0.1 ≤
K∑
a=1

pa · ya ≤ x− V + 0.1.

Then it is easy to see that if Nx is the number of integer points in the above polytope, then

Pr[H′ = x] = Nx ·
K∏
a=1

1

2γa + 1
.

Combining this observation with Theorem 78 proves the lemma.

Proof of Theorem 77 Let V ∈ AY. Then, using Lemma 79, we obtain that for HV = V +∑K
a=1 pa · Za, Pr[HV = x] can be computed in time LO(K). Now, observe that

Pr[H = x] =
∑
V ∈AY

Pr[HV = x] · αV .

As each term of the above sum can be computed in time LO(K), hence the total time required to
compute the above sum is bounded by LO(K) (note that L ≥ |AY|).
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