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Abstract

Mahalanobis distance is a classical tool in multivariate analysis. We suggest here an exten-
sion of this concept to the case of functional data. More precisely, the proposed definition
concerns those statistical problems where the sample data are real functions defined on a
compact interval of the real line. The obvious difficulty for such a functional extension is
the non-invertibility of the covariance operator in infinite-dimensional cases. Unlike other
recent proposals, our definition is suggested and motivated in terms of the Reproducing
Kernel Hilbert Space (RKHS) associated with the stochastic process that generates the
data. The proposed distance is a true metric; it depends on a unique real smoothing pa-
rameter which is fully motivated in RKHS terms. Moreover, it shares some properties of
its finite dimensional counterpart: it is invariant under isometries, it can be consistently
estimated from the data and its sampling distribution is known under Gaussian models. An
empirical study for two statistical applications, outliers detection and binary classification,
is included. The results are quite competitive when compared to other recent proposals in
the literature.

Keywords: Functional data, Mahalanobis distance, reproducing kernel Hilbert spaces,
kernel methods in statistics, square root operator

1. Introduction

The classical (finite-dimensional) Mahalanobis distance is a well-known tool in multivariate
analysis with multiple applications. Let X be a random variable taking values in Rd with
non-singular covariance matrix Σ. In many practical situations it is required to measure
the distance between two points x, y ∈ Rd when considered as two possible observations
drawn from X. Clearly, the usual (square) Euclidean distance ‖x− y‖2 = (x− y)′(x− y) is
not a suitable choice since it disregards the standard deviations and the covariances of the
components of X (given a column vector x ∈ Rd we denote by x′ the transpose of x). The
most popular alternative is perhaps the classical Mahalanobis distance, M(x, y), defined as

M(x, y) =
(
(x− y)′Σ−1(x− y)

)1/2
. (1)
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Very often the interest is focused on studying “how extreme” a point x is within the
distribution of X; this is typically evaluated in terms of M(x,m), where m stands for the
vector of means of X.

This distance is named after the Indian statistician P. C. Mahalanobis (1893-1972) who
first proposed and analyzed this concept (Mahalanobis, 1936) in the setting of Gaussian
distributions. Nowadays, some popular applications of the Mahalanobis distance are: su-
pervised classification, outlier detection (Rousseeuw and van Zomeren, 1990 and Penny,
1996), multivariate depth measures (Zuo and Serfling, 2000), hypothesis testing (through
Hotelling’s statistic, Rencher, 2012, Ch. 5) or goodness of fit (Mardia, 1975). This list of
references is far from exhaustive.

1.1. The infinite-dimensional (functional) case. The covariance operator

Our framework here is Functional Data Analysis (FDA); see, e.g., Cuevas (2014) for an
overview. In other words, we deal with statistical problems involving functional data. Thus
our sample is made of trajectories X1(t), . . . , Xn(t) in L2[0, 1] drawn from a second order
stochastic process X(t), t ∈ [0, 1] with m(t) = E(X(t)). The inner product and the norm
in L2[0, 1] will be denoted by 〈·, ·〉 and ‖ · ‖, respectively.

We will henceforth assume that the covariance function K(s, t) = Cov(X(s), X(t)) is
continuous. The function K defines a linear operator K : L2[0, 1] → L2[0, 1], called covari-
ance operator, given by

Kf(t) =

∫ 1

0
K(t, s)f(s)ds. (2)

Note that the covariance operator is the infinite-dimensional version of the covariance trans-
formation x 7→ Σx in Rd. Still, its properties are different in some important aspects as we
will discuss below. We will define a Mahalanobis distance associated with K assuming that
K is injective, that is, all the eigenvalues are strictly positive.

For later use, it will be useful to note that the assumption of continuity for K(s, t) entails
m ∈ L2[0, 1] and E‖X‖2 < ∞. Indeed, since

∫ 1
0 K(t, t)dt = E

∫ 1
0 (X(t) − m(t))2dt < ∞,

it holds
∫ 1

0 (X(t) −m(t))2dt < ∞ almost surely (a.s.). Hence, as we are assuming X(t) ∈
L2[0, 1] a.s., we also have m ∈ L2[0, 1]. Now, E

∫ 1
0 (X(t)−m(t))2dt =

∫ 1
0 E(X(t)−m(t))2dt <

∞ implies

E‖X‖2 = E
∫ 1

0
X2(t)dt =

∫ 1

0
EX2(t)dt =

∫ 1

0
E(X(t)−m(t))2dt+

∫ 1

0
m2(t)dt <∞.

It can be noted that this reasoning does not require in fact the continuity of K (boundedness
would suffice) but, for simplicity, we will keep the continuity assumption as it is quite
common in functional data analysis and not very restrictive. Besides, continuity will be
needed below to prove, for example, Theorem 14 on asymptotic distribution.

1.2. Some basic notions on linear operators. Functions of operators

Let (H, 〈·, ·〉) be a real, separable, infinite-dimensional Hilbert space. In what follows, we
will mostly consider the case H = L2[0, 1] but the basic ideas and definitions can be given
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in general. Denote by C the space of self-adjoint bounded linear operators on H; see, e.g.,
Gohberg et al. (2003) for definitions and background.

Let us recall that for any linear bounded operator A : H→H in C, the operator norm
of A is defined by

‖A‖op = sup
‖x‖=1

‖Ax‖ = sup
‖x‖=1

|〈Ax, x〉|.

If K ∈ C is compact then, from the Spectral Theorem, K can be expressed in the form

Kx =
∑
j

λj〈x, ej〉ej , (3)

{ei} being an orthonormal system of eigenfunctions of K and {λi} the corresponding se-
quence of eigenvalues. Let C+ be the subset of positive operators in C, that is the subset of
those operators A in C such that 〈Ax, x〉 ≥ 0, for all x. Note that every compact operator
in C+ has necessarily non-negative eigenvalues.

If K ∈ C is compact, the spectrum of K is defined by

σ(K) = {λj : λj is an eigenvalue of K} ∪ {0}.

If K has a spectral representation (3) and f is a real function defined on a real interval
containing σ(K), bounded on σ(K), we define the operator f(K) by

f(K)(x) = f(0)P0x+
∑
j

f(λj)〈x, ej〉ej ,

where P0x denotes the orthogonal projection of x on the kernel of K. For these operators
we have

‖f(K)‖op = sup
j
|f(λj)|,

see, e.g., Gohberg et al. (2003, Ch. 8).
Some examples of functions f(K) to be considered below are as follows.

(i) If K ∈ C+ is compact and injective, then the square root of K, denoted K1/2, is defined

by K1/2(x) =
∑

j λ
1/2
j 〈x, ej〉ej . Note that the name “square root” is justified since

K1/2K1/2 = K. In fact, A1/2 can be defined as well, in a natural way, even if A is not
compact; see, for example, Debnath and Mikiusinski (2005, p. 173) for a definition of
the square root operator when A is a bounded positive operator.

(ii) We will also need to use operator functions f(A) in some examples where A is not
necessarily compact but it can be expressed in the form Ax =

∑
j µj〈x, ej〉ej , for some

(bounded) sequence of constants {µj} and some orthonormal system {ej}. Then, we
can define f(A) (if f is a function bounded on {µj}) by f(A)(x) =

∑
j f(µj)〈x, ej〉ej

(iii) A particular case arises when A = K + hI, where K is a compact, injective operator,
K ∈ C+, h is a real number and I is the identity operator. Since K is injective there
is an orthonormal basis {ej} of H, made of eigenvectors of K. Thus, if {λj} are the
corresponding eigenvalues, we have, for all x ∈ H, (K + hI)(x) =

∑
j(λj + h)〈x, ej〉ej

and (K+ hI)1/2(x) =
∑

j(λj + h)1/2〈.x, ej〉ej . Similarly, the positive part of K+ hI is

defined by (K+ hI)+(x) =
∑

j(λj + h)+〈x, ej〉ej , where f(t) := t+ = max{t, 0} is the
usual positive part function, defined for real numbers.
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1.3. On the difficulties of defining a functional Mahalanobis-type distance

The aim of this paper is to extend the notion of the multivariate (finite-dimensional) Ma-
halanobis distance (1) to the functional case when x, y ∈ L2[0, 1]. Clearly, in view of (1),
the inverse K−1 of the functional operator K should play some role in this extension if we
want to keep a close analogy with the multivariate case. Unfortunately, such a direct ap-
proach utterly fails since, typically, K is not invertible in general as an operator, in the sense
that there is no linear continuous operator K−1 such that K−1K = KK−1 = I, the identity
operator. This is a well-known consequence of the fact that, when K(s, t) is a continuous
function, the operator K defined in (2) is compact, that is, it takes bounded sets to relative
compact sets, which entails the non-invertibility.

It is interesting to see this from the spectral point of view, starting again with the
finite-dimensional case. Indeed, some elementary linear algebra yields the following repre-
sentations for Σx, Σ−1x and the squared Mahalanobis distance M(x, y)2, for x, y ∈ Rd:

Σx =
d∑
j=1

λj(e
′
jx)ej , Σ−1x =

d∑
j=1

1

λj
(e′jx)ej , Σ−1/2x =

d∑
j=1

1√
λj

(e′jx)ej ,

M(x, y)2 = (x− y)′Σ−1/2Σ−1/2(x− y) =
d∑
j=1

1

λj
((x− y)′ej)

2, (4)

where λ1, . . . , λd are the, strictly positive, eigenvalues of Σ and {e1, . . . , ed} the correspond-
ing orthonormal basis of eigenvectors.

In the functional case, the expression (3) of K in terms of the Spectral Theorem, would
suggest an expression for the inverse operator of type

K−1x =
∞∑
j=1

1

λj
〈x, ej〉ej . (5)

However, it is easy to check that
∫ 1

0

∫ 1
0 K(s, t)2dsdt =

∑∞
j=1 λ

2
j so that, in particular, the

sequence {λj} converges to zero very quickly. As a consequence, there is no hope of keeping a
direct analogy with (4) and the very reason for this is the non-invertibility of the covariance
operator. See more details on this in the next subsection.

Nevertheless, as we will see, the “failed” definition (5) gives some clues in order to extend
Mahalanobis’ idea to the infinite-dimensional case.

1.4. Some previous proposals

Motivated by the finite-dimensional spectral version (4) of the Mahalanobis distance, Galeano
et al. (2015) have proposed the following definition of the functional Mahalanobis distance.

dkFM (x, y) =

 k∑
j=1

〈x− y, ej〉2

λj

1/2

, (6)

which is well-defined for any x, y ∈ L2[0, 1] at the expense of introducing a sort of tuning
parameter k ∈ N. We keep the notation dkFM used in Galeano et al. (2015). Let us note that
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dkFM (x, y) is a semi-distance, since it lacks the identifiability condition dkFH(x, y) = 0 ⇒
x = y. The applications of dkFM considered by these authors focus mainly on supervised
classification. While this proposal is quite simple and natural, its theoretical motivation
presents some difficulties. The most important one is the fact that the series

∞∑
j=1

〈x− y, ej〉2

λj
(7)

is divergent, with probability one, whenever x and y are independent trajectories from
a Gaussian process with covariance function K and the mean function m belongs to the
Reproducing Kernel Hilbert Space associated with K (see, e.g. Lukić and Beder, 2001, Cor.
7.1); the same holds if y is replaced with the mean function m ∈ L2[0, 1]. So, (6) is defined
in terms of the k-th partial sum of a divergent series. As a consequence, one may expect that
the definition might be strongly influenced by the choice of k. As we will discuss below, in
practice this effect is not noticed if x and y are replaced with certain appropriate smoothed
approximations but, in that case, the smoothing procedure should be incorporated to the
definition.

Another recent proposal is due to Ghiglietti et al. (2017). The idea is also to modify the
template (7) to deal with the convergence issues. In this case, the suggested definition is

dp(x, y) =

∫ ∞
0

∞∑
j=1

〈x− y, ej〉2

eλjc
g(c; p)dc

1/2

, (8)

where p > 0 and g(c; p) is a weight function such that g(0; p) = 1, g is non-increasing
and non-negative and

∫∞
0 g(c; p)dc = p. Moreover, for any c > 0, g(c; p) is assumed to

be non-decreasing in p with limp→∞ g(c; p) = 1. This definition does not suffer from any
problem derived from divergence but, still, it depends on two smoothing functions: the
exponential in the denominator of (8) and the weighting function g(c; p). As pointed out
also in Ghiglietti et al. (2017), a more convenient expression for (8) is given by the following
weighted version of the template, formal definition (7),

dp(x, y) =

 ∞∑
j=1

〈x− y, ej〉2

λj
hj(p)

1/2

,

where hj(p) =
∫∞

0 λje
−λjcg(c; p)dc.

The applications of (8) offered in Ghiglietti et al. (2017) and Ghiglietti and Paganoni
(2017) deal with hypotheses testing for two-sample problems of type H0 : m1 = m2.

All in all, both proposals, Galeano et al. (2015) and Ghiglietti et al. (2017), are natural
extensions to the functional case of the multivariate notion (1). Moreover, as suggested
by the practical examples considered in both works, these options performed quite well in
many cases. However, we believe that there is still some room to further explore the subject
for the reasons we will explain below.
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1.5. The organization on this work

In the next section some theory of RKHS and its connection with the Mahalanobis distance
is introduced, together with the proposed definition. In Section 3 some properties of the
proposed distance are presented and compared with those of the original multivariate defini-
tion. Then, a consistent estimator of the distance is analyzed in Section 4 and convergence
rates are obtained. Finally, some numerical outputs corresponding to different statistical
applications can be found in Section 5, along with some final remarks in Section 6.

2. A new definition of Mahalanobis distance for functional data

In this section we will propose a further definition of a Mahalanobis-type distance, de-
noted Mα (as it will depend on a tuning parameter α). Its most relevant features can be
summarized as follows:

i) Mα is also inspired in the natural template (7). The serious convergence issues ap-
pearing in (7) are solved by smoothing.

ii) Mα depends on a single, real, easy to interpret smoothing parameter α whose choice
is not critical, in the sense that the distance has some stability with respect to α.
Hence, it is possible to think of a cross-validation or bootstrap-based choice of α. In
particular, no auxiliary weight function is involved in the definition.

iii) Mα(x, y) is a true metric which is defined for any given pair x, y of functions in L2[0, 1].
It shares some invariance properties with the finite-dimensional counterpart (1).

iv) If m(t) = E(X(t)), the distribution of Mα(X,m) is explicitly known for Gaussian
processes. In particular, E(M2

α(X,m)) and Var(M2
α(X,m)) have explicit, relatively

simple expressions.

v) The distance Mα(X,m) can be consistently estimated from a random sample and
convergence rates can be obtained under some mild conditions.

The main contribution of this paper is to show that the theory of Reproducing Kernel
Hilbert Spaces (RKHS) provides a natural and useful framework in order to propose an
extension of the Mahalanobis distance to the functional setting. We refer to Berlinet and
Thomas-Agnan (2004), Appendix F in Janson (1997), Schölkopf and Smola (2002), Hsing
and Eubank (2015) for background on RKHS’s.

2.1. A few, very basic, ideas on RKHS’s

There are several equivalent ways of approaching RKHS’s. For our purposes, it is enough
to recall that the RKHS associated with the covariance function K = K(s, t) is defined by

H(K) := K1/2(L2[0, 1]) = {f ∈ L2[0, 1] :
∞∑
j=1

〈f, ej〉2

λj
<∞}, (9)
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(recall that we assume λj > 0 for all j) and the corresponding inner product and norm are
given by

〈f, g〉K =
∞∑
j=1

〈f, ej〉〈g, ej〉
λj

, ‖f‖K =

 ∞∑
j=1

〈f, ej〉2

λj

1/2

. (10)

It can be seen that all finite linear combinations of type g(s) =
∑p

j=1 ajK(s, tj) are inH(K);
in fact, H(K) could be defined as the family of such finite linear combinations plus the
pointwise-limit of all Cauchy sequences made of functions of type g(s) =

∑p
j=1 ajK(s, tj).

Note that, in particular, if g(·) = K(·, t), 〈g, ej〉 = λjej(t), so that 〈f, g〉K = f(t). This
is the so-called ”reproducing property” which accounts for the name of these spaces.

Also, supt ‖〈fn,K(·, t)〉K‖ = supt |fn(t)| ≤ ‖fn‖K supt ‖K(·, t)‖K = ‖fn‖K suptK(t, t)1/2.
So, ‖fn‖K → 0 implies fn(t)→ 0 uniformly on t since K is assumed to be continuous.

2.2. The proposed definition

First note that in the finite dimensional case, the RKHS associated with a non-singular

covariance matrix is just Rd and the square norm is ‖x‖2Σ =
∑p

j=1
(x′ej)2

λj
. Therefore, the

spectral expression (5) of the square Mahalanobis distance in the finite-dimensional case
can be formulated in terms of the corresponding RKHS square norm, that is,

M2(x, y) = ‖x− y‖2Σ.

As discussed above, the difficulty to extend this idea to the functional case lies in the
fact that in general, the RKHS space H(K) is much smaller than the ambient space L2[0, 1]
and, more importantly, the trajectories of a second-order stochastic process with continuous
covariance function K = K(s, t) do not belong, with probability one, to H(K).

This observation suggests us the simple strategy we will follow here: given two functions
x, y ∈ L2[0, 1], just approximate them by two other functions xα, yα ∈ H(K) and calculate
the distance ‖xα−yα‖K . It only remains to decide how to obtain the RKHS approximations
xα and yα. One could think of taking xα as the “closest” function to x in H(K) but this
approach also fails since H(K) is dense in L2[0, 1] whenever all λj are strictly greater
than zero (Remark 4.9 of Cucker and Zhou, 2007). Thus, every function x ∈ L2[0, 1] can
be arbitrarily well approximated by functions in H(K) in such a way that for any given
function x ∈ L2[0, 1] there is no function in H(K) “closest” to x. In other words, there is
no projection of x over H(K) since this space is not closed.

The situation is reminiscent to that arising in the penalization methods in nonparametric
functional estimation: we might look instead for the function xα closest to x among those
that are not “too rough”. In more formal terms: let us fix a penalization parameter α > 0.
Given any x ∈ L2[0, 1], define

xα = argmin
f∈H(K)

‖x− f‖2 + α‖f‖2K . (11)

Whereas the term ‖x−f‖2 controls closeness to x, the term α‖f‖2K accounts for the rough-
ness of the approximation. As we will see below, the “penalized projection” xα is well-
defined. In fact it admits a relatively simple closed form. Finally, the definition we propose
for the functional α-Mahalanobis distance is as follows.
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Definition 1 Let K be the covariance operator associated with the continuous covariance
function K = K(s, t) = Cov(X(s), X(t)) of a process X = {X(t), t ∈ [0, 1]} with trajec-
tories in L2[0, 1]. Assume that K is injective. Thus, all the eigenvalues of K are strictly
positive. Given a constant α > 0 we define the α-Mahalanobis distance between two func-
tions x and y in L2[0, 1] by

Mα(x, y) = ‖xα − yα‖K , (12)

where xα is defined as the unique solution of (11) (see Proposition 2 below) and ‖ · ‖K is
the RKHS norm defined in (10).

Let us note that the original Mahalanobis distance as well as our adapted functional version
(12) are both intrinsically dependent on the covariance operator K. Therefore, (12) is
naturally aimed at measuring either the “statistical distance” between two observations
(trajectories) x = x(t) and y = y(t) of a process with covariance operator K or, more
commonly, the distance between a trajectory x = x(t) and the mean function m = m(t).
In the later case, the notation Mα(x,m) will be used.

As mentioned, given a realization x of the stochastic process, we have relatively simple
expressions for both the smoothed trajectory xα and the proposed distance. Such expres-
sions are given in the following result.

Proposition 2 In the setting of Definition 1 the smoothed trajectories xα defined in (11)
satisfy the following basic properties:

(a) Let I be the identity operator on L2[0, 1]. Then, K + αI is invertible and

xα = (K + αI)−1Kx =
∞∑
j=1

λj
λj + α

〈x, ej〉 ej , (13)

where λj, j = 1, 2, · · · are the eigenvalues of K and ej stands for the unit eigenfunction
of K corresponding to λj.

(b) Denoting as K1/2 the square root operator, the norm of xα in H(K) satisfies

‖xα‖2K =
∞∑
j=1

λj
(λj + α)2

〈x, ej〉2 = ‖K1/2(K + αI)−1x‖2, (14)

and, therefore, Mα(x, y)2 =
∑∞

j=1
λj

(λj+α)2
〈x− y, ej〉2.

Proof (a) From Spectral Theorem for compact and self-adjoint operators (see, e.g., The-
orem 2 of Chapter 2 in Cucker and Smale, 2001), Kx =

∑
j λj〈x, ej〉ej . Thus,

(K + αI)x =
∞∑
j=1

(λj + α)〈y, ej〉ej and (K + αI)−1 y =
∞∑
j=1

1

λj + α
〈y, ej〉ej . (15)

The expression xα = (K + αI)−1Kx for the solution of the minimization problem (11)
follows directly from Theorem 8.4 (i) in Cucker and Zhou (2007, p. 136); note that K−1/2(f)
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is well defined for f ∈ H(K), and ‖f‖K = ‖K−1/2(f)‖. Now, expression (13) readily follows
by replacing y with Kx in the second equation of (15).

(b) From (10) and (13),

‖xα‖2K =

∞∑
j=1

λj
(λj + α)2

〈x, ej〉2.

Moreover, from the Spectral Theorem K1/2(x) =
∑∞

i=1

√
λi〈x, ei〉 ei. Then, using (15)

K1/2(K + αI)−1x =
∞∑
j=1

√
λj

λj + α
〈x, ej〉 ej .

By Parseval’s identity we get ‖K1/2(K + αI)−1x‖2 = ‖xα‖2K , as desired.

Corollary 3 The expression Mα given in (12) defines a metric in L2[0, 1].

Proof This result is a direct consequence of Proposition 2. Indeed, from expression (13),
the transformation x 7→ xα form L2[0, 1] to H(K) in injective (since the coefficients 〈x, ej〉
completely determine x). Now, the result follows from the fact that ‖ · ‖K is a norm.

Remark 4 The expression xα = (K + αI)−1Kx obtained in the first part of Proposition 2
has an interesting intuitive meaning: the transformation x 7→ Kx takes first the function
x ∈ L2[0, 1] to the space H(K), made of much nicer functions, with Fourier coefficients
〈x, ej〉 converging quickly to zero, since we must have

∑∞
j=1〈x, ej〉2/λj < ∞; see (10).

Then, after this “smoothing step”, we perform an “approximation step” by applying the
inverse operator (K + αI)−1, in order the get, as a final output, a function xα that is both,
close to x and smoother than x.

On the other hand, the expressions (11) and (13) clearly relate our approach with the
general methodology of Tikhonov regularization; see more details on this in Section 6 below.

3. Some properties of the functional Mahalanobis distance

In this section we analyze in detail and prove some of the features of Mα we have antici-
pated above. We assume throughout that X = X(t) fulfils the conditions indicated in the
statement of Definition 1.

3.1. Invariance

In the finite dimensional case, one appealing property of the Mahalanobis distance is the
fact that it does not change if we apply a non-singular linear transformation to the data.
Then, the invariance for a large class of linear operators appears also as a desirable property
for any extension of the Mahalanobis distance to the functional case. Here, we will prove
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invariance with respect to operators preserving the norm. We recall that a bounded linear
operator L is an isometry if it maps L2[0, 1] to L2[0, 1] and ‖f‖ = ‖Lf‖. In this case, it
holds L∗L = I, where L∗ stands for the adjoint of L.

Theorem 5 Let L be an isometry on L2[0, 1]. Then, Mα(x, y) = Mα(Lx,Ly) for all α > 0,
x, y ∈ L2[0, 1], where Mα was defined in (12).

Proof Let KL be the covariance operator of the process LX. The first step of the proof
is to show that KL = LKL∗. It is enough to prove that for all f, g ∈ L2[0, 1], it holds
〈KLf, g〉 = 〈LKL∗f, g〉. Observe that

〈KLf, g〉 =

∫ 1

0
KLf(t)g(t)dt =

∫ 1

0

∫ 1

0
E[(LX(s)− Lm(s))(LX(t)− Lm(t))]f(s)g(t)dsdt.

Then, using Fubini’s theorem and the definition of the adjoint operator,

〈KLf, g〉 = E
[
〈L(X −m), f〉 · 〈L(X −m), g〉

]
= E

[
〈X −m,L∗f〉 · 〈X −m,L∗g〉

]
.

Analogously, we also have

〈LKL∗f, g〉 = 〈KL∗f, L∗g〉 = E
[
〈X −m,L∗f〉 · 〈X −m,L∗g〉

]
.

From the last two equations we conclude KL = LKL∗.
The second step of the proof is to observe that the eigenvalues λj of KL are the same as

those of K, and the unit eigenfunction uj of KL for the eigenvalue λj is given by vj = Lej ,
where ej is the unit eigenfunction corresponding to λj . Indeed, using L∗L = I we have

KLvj = LKL∗vj = LKL∗Lej = λjLej = λjvj , j = 1, 2, . . .

Then, by (14) and using that L is an isometry,

Mα(Lx,Ly)2 =‖(Lx− Ly)α‖2KL =
∞∑
j=1

λj
(λj + α)2

〈Lx− Ly,Lej〉2

=
∞∑
j=1

λj
(λj + α)2

〈x− y, ej〉2 = Mα(x, y)2.

The family of isometries on L2[0, 1] contains some interesting examples such as symme-
tries and changes between orthonormal bases. Thus, this distance does not depend on the
basis on which the data are represented.

10
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3.1.1. On the effect of regularization on invariance properties.

We have shown that our proposed functional Mahalanobis distance is invariant under isome-
tries. However, unlike the finite-dimensional case, it is not invariant for bounded operators
in general. The reason for this different behavior is the need for regularization (which pre-
cludes general invariance) together with the fact that the class of bounded linear operators
is too broad in the case of infinite-dimensional Hilbert spaces.

To shed some light on these issues, let us consider the Mahalanobis distance changes
under a particular type of bounded operators, namely, those positive compact self-adjoint
bounded operators that commute with K. It turns out that these are precisely the operators
that can be diagonalized simultaneously with K (see Theorem 1.1 in Gohberg et al., 2003,
p. 243). This means that they have the same eigenfunctions as K with different positive
eigenvalues. In the finite-dimensional case these transformations would correspond to non-
uniform changes of scale along the principal directions (that is, eigenvectors).

To be more precise, let L be a positive semidefinite compact self-adjoint bounded oper-
ator that commutes with K. Then, as in Theorem 1 we have that KL = LKL, where KL is
the covariance operator of the process LX. Now, if µ1 ≥ µ2 ≥ · · · are the (non-negative)
eigenvalues of L with unit eigenfunctions e1, e2, . . . (which are the same as those of K), it
holds j = 1, 2, . . . KLej = LKLej = λjµ

2
jej . That is, ej is a unit eigenfunction of KL and its

corresponding eigenvalue is λjµ
2
j . Using Proposition 1(b) together with Spectral Theorem

for compact self-adjoint operators we readily obtain

Mα(Lx,Lm)2 =

∞∑
j=1

λjµ
4
j

(λjµ2
j + α)2

〈x−m, ej〉2,

It is very easy to see that, for all j = 1, 2, . . .

λjµ
4
j

(λjµ2
j + α)2

<
λj

(λj + α)2
⇔ µj < 1.

In particular, if L is such that it shrinks x along all the principal directions, thenMα(Lx,Lm) ≤
Mα(x,m), for all α > 0.

The above discussion shows how regularization (associated with values α > 0) is an
obstacle for invariance: observe that in the finite-dimensional case, where the sum is finite
and α = 0, Mahalanobis distance would remain unchanged.

3.2. Distribution for Gaussian processes

It is a well known fact that the squared Mahalanobis distance to the mean for finite di-
mensional Gaussian data has a χ2 distribution with d degrees of freedom, where d is the
dimension of the data. In the functional case, the distribution of Mα(X,m)2 for a Gaussian
process X equals that of an infinite linear combination of independent χ2

1 random variables.
We prove this fact in the following result and its corollary, and also give explicit expressions
for the expectation and the variance of Mα(X,m)2.

Proposition 6 Let {X(t), t ∈ [0, 1]} be an L2-Gaussian process with continuous covariance
function K such that the corresponding covariance operator K is injective. Let λ1, λ2, · · ·
be the eigenvalues of K and let e1, e2, . . . be the corresponding unit eigenfunctions.

11
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(a) The squared Mahalanobis distance satisfies, for X = X(t) and for all f ∈ L2[0, 1],

Mα(X, f)2 = ‖(X − f)α‖2K =

∞∑
j=1

βjYj , (16)

where βj = λ2
j (λj+α)−2 and Yj, j = 1, 2, · · · , are non-central χ2

1(γj) random variables

with non-centrality parameter γj = µ2
j/λj, with µj := 〈m− f, ej〉.

(b) We have for X = X(t) and for all f ∈ L2[0, 1],

E
(
Mα(X, f)2

)
=
∞∑
j=1

λ2
j

(λj + α)2

(
1 +

µ2
j

λj

)
,

and

Var
(
Mα(X, f)2

)
= 2

∞∑
j=1

λ4
j

(λj + α)4

(
1 +

2µ2
j

λj

)
.

Proof (a) Using (14), ‖(X − f)α‖2K =
∑∞

j=1 βjYj , where βj = λ2
j (λj + α)−2 and Yj =

λ−1
j 〈X−f, ej〉2. Since the process is Gaussian the variables λ

−1/2
j 〈X−f, ej〉 are independent

with normal distribution, mean λ
−1/2
j µj and variance 1 (see Ash and Gardner, 1975, p. 40).

The result follows.

(b) It is easy to see that the partial sums in (16) form a sub-martingale with respect to the
natural filtration σ(Y1, . . . , YN ). Indeed,

E

N+1∑
j=1

βjYj

∣∣∣Y1, . . . , YN

 = βN+1E(YN+1) +

N∑
j=1

βjYj ≥
N∑
j=1

βjYj .

Moreover, if λ̄ := supj λj , which is always finite,

sup
N

E
(N+1∑
j=1

βjYj

)
=
∞∑
j=1

λj(λj + µ2
j )

(λj + α)2
≤ λ̄

α2

( ∞∑
j=1

λj +

∞∑
j=1

µ2
j

)
<∞,

because m ∈ L2[0, 1] and
∑∞

j=1 λj =
∫ 1

0 K(t, t)dt < ∞ (see e.g. Cucker and Smale, 2001,

Corollary 3, p. 34). Now, Doob’s convergence Theorem implies
∑N

j=1 βjYj →
∑∞

j=1 βjYj a.s.
as N →∞, and Monotone Convergence Theorem yields the expression for the expectation
of Mα(X, f)2.

The proof for the variance is fairly similar. Using Jensen’s inequality, we deduce

E

N+1∑
j=1

βj (Yj − EYj)

2 ∣∣∣Y1, . . . , YN

 ≥
 N∑
j=1

βj (Yj − EYj)

2

.

12
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Moreover, since the variables Yj are independent,

sup
N

E

 N∑
j=1

βj (Yj − EYj)

2

=
∞∑
j=1

β2
jVar(Yj) = 2

∞∑
j=1

λ3
j (λj + 2µ2

j )

(λj + α)4

≤2λ̄3

α4

( ∞∑
j=1

λj + 2
∞∑
j=1

µ2
j

)
<∞.

Then,
(∑N+1

j=1 βj (Yj − EYj)
)2
→
(∑∞

j=1 βj (Yj − EYj)
)2

a.s., as N →∞, and using Mono-

tone Convergence Theorem,

Var
(
Mα(X, f)2

)
= lim

N→∞
Var
( N∑
j=1

βjYj

)
= 2

∞∑
j=1

λ4
j

(λj + α)4

(
1 +

2µ2
j

λj

)
.

When we compute the squared Mahalanobis distance fromX to the mean the expressions
above simplify because µj = 0 for each j, and then we have the following corollary.

Corollary 7 Under the same assumptions of Proposition 6, if m denotes the mean func-
tion, we have Mα(X,m)2 =

∑∞
j=1 βjYj, where βj = λ2

j (λj + α)−2 and Y1, Y2, . . . are

independent χ2
1 random variables. Moreover, E

(
Mα(X,m)2

)
=
∑∞

j=1 λ
2
j (λj + α)−2 and

Var
(
Mα(X,m)2

)
= 2

∑∞
j=1 λ

4
j (λj + α)−4.

3.3. Stability with respect to the regularization parameter

Our definition of distance depends on a regularization parameter α > 0. In this subsection
we prove the continuity of Mα with respect to this tuning parameter α. The proof of the
main result requires the following auxiliary lemma, which has been adapted from Corollary
8.3 in Gohberg et al. (2003), p. 71.

Lemma 8 Let Aj : H → H, j = 1, 2, . . ., be a sequence of bounded invertible operators
on a Hilbert space H which converges in norm ‖ · ‖op to another operator A, and such that
supj ‖A−1

j ‖op <∞. Then A is also invertible, and ‖A−1
j −A−1‖op → 0, as j →∞.

We will apply the preceding lemma in the proof of the following result.

Proposition 9 Let αj be a sequence of positive real numbers such that αj → α > 0, as
j →∞. Then, ‖Xαj‖K → ‖Xα‖K a.s. as j →∞.

Proof Note that by Proposition 2(b), Eq (14), we have (by the sub-multiplicative property
of the norm)∣∣∣‖Xαj‖K − ‖Xα‖K

∣∣∣ ≤ ‖K1/2(K + αjI)−1X −K1/2(K + αI)−1X‖

≤ ‖K1/2‖op ‖(K + αjI)−1 − (K + αI)−1‖op ‖X‖.

13
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But ‖(K + αjI) − (K + αI)‖op = |αj − α| → 0, as j → ∞, and supj ‖(K + αjI)−1‖op ≤
supj α

−1
j < ∞ (see Gohberg et al., 2003, (1.14), p. 228). Therefore, ‖(K + αjI)−1 − (K +

αI)−1‖op → 0, as j →∞, by Lemma 8.

Observe that Proposition 9 implies the pointwise convergence of the sequence of distri-
bution functions of Mαj (X,m) to that of Mα(X,m). This fact in turn implies the pointwise
convergence of the corresponding quantile functions.

4. A consistent estimator of the functional Mahalanobis distance

Again, throughout this section, we will assume that the process {X(t), t ∈ [0, 1]}, with
trajectories in L2[0, 1], has a continuous covariance function K = K(s, t) and that the
covariance operator K is injective (that is, all the eigenvalues are strictly positive). As
mentioned in the introduction, the continuity of K entails E‖X‖2 < ∞ and m ∈ L2[0, 1],
where m(t) = E(X(t)).

The problem considered in this section is as follows: given a sample X1(t), . . . , Xn(t) of
realizations of the stochastic process X(t), we want to estimate the Mahalanobis distance
between any trajectory of the process X and the mean function m in a consistent way. Let
X̄(t) = n−1

∑n
i=1Xi(t) be the sample mean and let

K̂(s, t) =
1

n

n∑
i=1

(Xi(s)− X̄(s))(Xi(t)− X̄(t))

be the sample covariance function. The function K̂ defines the sample covariance operator
K̂f(·) =

∫ 1
0 K̂(·, t)f(t)dt.

Define the following estimator for Mα(X,m):

M̂α,n(X, X̄) := ‖X̂α − X̄α‖K̂ , (17)

where X̂α = (K̂ + αI)−1K̂X and X̄α = (K̂ + αI)−1K̂X̄.
The following lemma collects, for posterior reference, some asymptotic results on the

estimation of the mean function and covariance operator. Although similar results can be
found at several places in the literature (see, e.g., Hsing and Eubank, 2015, Th. 8.1.2) we
include them here for the sake of completeness.

Lemma 10 Under the conditions on {X(t), t ∈ [0, 1]} stated at the beginning of this sec-
tion, we have ‖X̄ − m‖ → 0, ‖K̂ − K‖L2([0,1]×[0,1]) → 0, and ‖K̂ − K‖op → 0, a.s., as
n→∞.

Proof Mourier’s Strong Law of Large Numbers (see e.g. Theorem 4.5.2 in Laha and
Rohatgi, 1979, p. 452) implies directly ‖X̄ −m‖ → 0 since (E‖X‖)2 ≤ E‖X‖2 < ∞ and
L2[0, 1] is a separable Banach space.

Consider the process Z(s, t) = X(s)X(t). Then, Z ∈ L2([0, 1] × [0, 1]) and this is also
a separable Banach space. Therefore, if Zi(s, t) = Xi(s)Xi(t), Z̄ = n−1

∑n
i=1 Zi(s, t), and

mz(s, t) = E[X(s)X(t)], using again Mourier’s SLLN we have

‖Z̄ −mz‖L2([0,1]×[0,1]) → 0, a.s., n→∞,

14



On Mahalanobis Distance in Functional Settings

and also, since K̂(s, t) = Z̄(s, t) − X̄(s)X̄(t), ‖K̂ − K‖HS → 0 a.s., where ‖K̂ − K‖HS =
‖K̂ −K‖L2([0,1]×[0,1]) stands for the Hilbert-Schmidt norm of the operator K̂ − K.

Finally, for any x ∈ L2[0, 1],

‖(K̂ − K)x‖2 =

∫ 1

0
〈K̂(t, ·)−K(t, ·), x〉2dt ≤ ‖x‖2 ‖K̂ −K‖2L2([0,1]×[0,1]).

Thus, in particular, the operator norm is smaller than the Hilbert-Schmidt norm and we
have ‖K̂ − K‖op ≤ ‖K̂ −K‖L2([0,1]×[0,1]) → 0 a.s. as n→∞.

Now, before going on with the proof of the consistency and convergence rates we need
some, non-trivial, auxiliary results on the square root operator K1/2 which appears in the
definition (9) of the RKHS, and will appear also in the proofs below.

4.1. On the square root operator

We refer here to the notation and definitions included in Subsection 1.2 above. In particular,
recall that we denote by C the family of bounder linear self-adjoint operators on (H, 〈·, ·〉).
Given two operators A,B ∈ C we will say that A � B if and only if B −A is non-negative,
that is B −A ∈ C+.

The following proposition collects some, mostly elementary, operator inequalities which
will be helpful below in the proofs of the results on consistency and convergence rates. The
inequality in part (e) will be especially useful in what follows.

Proposition 11 Let K0,K ∈ C+ be compact operators. Suppose that K is injective. Denote
h0 = ‖K0 −K‖op. We have,

(a) (K − εI)+ � K � (K + εI), for all ε > 0.

(b) (K − h0I)+ � K0 � (K + h0I).

(c) (K − h0I)
1/2
+ � K1/2 � (K + h0I)1/2. Also, (K − h0I)

1/2
+ � K1/2

0 � (K + h0I)1/2.

(d) Let A,B,M∈ C+ be operators such that A �M � B. Then,

‖B −M‖op ≤ ‖B −A‖op, and ‖M−A‖op ≤ ‖B −A‖op.

(e) ‖K1/2
0 −K1/2‖op ≤ 4‖K0 −K‖1/2op .

Proof (a) The relation K � (K+εI) is obvious. To see the other inequality we will use (3),
together with the fact that, as K is injective, Spectral Theorem implies that the eigenvectors
{ej} corresponding to the positive eigenvalues {λj} are in fact an orthonormal basis of H.
Thus, for any x =

∑
j〈x, ej〉ej , 〈(K − (K − εI)+)x, x〉 =

∑
j (λj − (λj − ε)+) 〈x, ej〉2, and

(λj − (λj − ε)+) is either λj − (λj − ε) = ε > 0, or λj , depending on whether λj > ε or
λj ≤ ε, respectively.
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(b) As h0 = sup‖x‖=1 |〈(K −K0)x, x〉|, we have for any x with ‖x‖ = 1,

〈(K + h0I−K0)x, x〉 = 〈(K −K0)x, x〉+ h0〈Ix, x〉 = 〈(K −K0)x, x〉+ h0 ≥ 0,

We thus conclude K0 � K + h0I.
Now, to prove the other inequality, let us first note that, we also have K − h0I � K0

(whose proof is similar to that of K0 � K + h0I). Now, the first inequality in (b) follows
from the following general property:

Let A ∈ C,B ∈ C+, with Ax =
∑
j

λj〈x, ej〉ej ({ej} being an orthonormal basis).

If A � B, then A+ � B.

To prove this, define x∗ =
∑

j x
∗
jej , where x∗j = 〈x, ej〉 when λj > 0, x∗j = 0, otherwise and

x∗∗ = x− x∗. We have 〈A+x, x〉 = 〈Ax∗, x∗〉, so that

〈Bx, x〉 = 〈Bx∗, x∗〉+ 〈Bx∗∗, x∗∗〉 ≥ 〈Ax∗, x∗〉 = 〈A+x, x〉.

We thus conclude A+ � B and the inequality (K−h0I)+ � K0 follows from (K−h0I) � K0.

(c) This follows directly from (a) and (b), together with the operator monotonicity of the
square root transformation for non-negative bounded self-adjoint operators; see Pedersen
(1972).

(d) The result is immediate since 〈Bx, x〉 ≥ 〈Mx, x〉 ≥ 〈Ax, x〉 ≥ 0. and

‖B − A‖op = sup
‖x‖=1

((〈Bx, x〉 − 〈Ax, x〉)) .

(e) Using the precedent results (b), (c) and (d), together with triangular inequality, we get

‖K1/2
0 −K1/2‖op ≤ 2‖(K + h0I)1/2 − (K − h0I)

1/2
+ ‖op.

But, since

〈(K + h0I)1/2x− (K − h0I)
1/2
+ x, x〉 =

∑
j

(√
(λj + h0)−

√
(λj − h0)+

)
〈x, ej〉2,

and ‖x‖2 =
∑

j〈x, ej〉2 = 1, we conclude

‖(K + h0I)1/2 − (K − h0I)
1/2
+ ‖op ≤ sup

j

(√
(λj + h0)−

√
(λj − h0)+

)
= sup

j

(λj + h0)− (λj − h0)+√
(λj + h0) +

√
(λj − h0)+

≤ 2h0

h
1/2
0

= 2h
1/2
0 .
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4.2. Consistency

Let us first establish a consistency statement for (17). As we will see the square root
operator, K1/2, will play a relevant role throughout this subsection.

Theorem 12 Under the assumptions and notation established at the beginning of Section
4, denote, as usual, by m the mean function of X, X̄ the sample mean trajectory and n the
sample size. Then,

M̂α,n(X, X̄)→Mα(X,m) a.s., as n→∞.

In fact, the result is true when measuring the distance between the mean and any function
f in L2[0, 1], that is, M̂α,n(f, X̄)→Mα(f,m) a.s., as n→∞.

Proof First note that M̂α,n(X, X̄) = ‖K̂1/2(K̂+αI)−1(X − X̄)‖. This follows from Propo-
sition 2(b), Eq. (14). Therefore,∣∣∣M̂α,n(X, X̄)−Mα(X,m)

∣∣∣ ≤ ‖K̂1/2(K̂ + αI)−1(X − X̄)−K1/2(K + αI)−1(X −m)‖

≤ ‖K̂1/2(K̂ + αI)−1‖op ‖X̄ −m‖+ ‖K̂1/2(K̂ + αI)−1 −K1/2(K + αI)−1‖op ‖X −m‖.

By Lemma 10, ‖X̄ − m‖ goes to zero a.s. as n → ∞. As a consequence, it is enough to
show that ‖K̂1/2(K̂ + αI)−1 −K1/2(K + αI)−1‖op → 0 a.s. For that purpose, observe that

‖K̂1/2(K̂ + αI)−1 −K1/2(K + αI)−1‖op
≤ ‖K̂1/2(K̂ + αI)−1 − K̂1/2(K + αI)−1‖op + ‖K̂1/2(K + αI)−1 −K1/2(K + αI)−1‖op
≤ ‖K̂1/2‖op ‖(K̂ + αI)−1 − (K + αI)−1‖op + ‖K̂1/2 −K1/2‖op ‖(K + αI)−1‖op.

Therefore, to end the proof we will show that ‖K̂1/2 − K1/2‖op → 0 a.s. as n→∞ and

‖(K̂ + αI)−1 − (K + αI)−1‖op → 0 a.s. as n → ∞. From Lemma 10, ‖K̂ − K‖op → 0 a.s.

Moreover, using part (e) of Proposition 11 with K0 = K̂ we also get ‖K̂1/2 − K1/2‖op → 0,
a.s., as n→∞.

Finally, observe that ‖K̂ − K‖op = ‖(K̂ + αI)− (K + αI)‖op → 0 a.s., and we also have

supn ‖(K̂ + αI)−1‖op ≤ α−1 < ∞, see Gohberg et al. (2003, eq. (1.14), p. 228). Then,

Lemma 8 implies ‖(K̂ + αI)−1 − (K + αI)−1‖op → 0 a.s. as n→∞.
The statement for a given f readily follows along the same lines.

4.3. Asymptotic distribution

Putting together Theorem 12 and Proposition 6 we get the asymptotic distribution of M̂α,n.

Corollary 13 Under the assumptions and notation of Theorem 12, M̂α,n(X, X̄) converges
in distribution to

∑∞
j=1 βjYj, where βj = λ2

j (λj + α)−2 and Y1, Y2, . . . are independent χ2
1

random variables.

We can also prove another asymptotic distribution result involving the distances between
the sample and the population means, which could be useful to perform inference on the
mean.
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Theorem 14 Under the assumptions and notation established at the beginning of Section
4, we have

√
n M̂α,n(X̄,m)

d→
( ∞∑
j=1

λ2
j

(λj + α)2
Yj

) 1
2
, (18)

where Y1, Y2, . . . are independent χ2
1 random variables.

Proof We can rewrite the left-hand side of Equation (18) as,

√
n M̂α,n(X̄,m) =

√
n(M̂α,n(X̄,m)−Mα(X̄,m)) +

√
nMα(X̄,m). (19)

Now, from Equation (12) and Proposition 2, we have

√
n|M̂α,n(X̄,m)−Mα(X̄,m)| ≤

√
n ‖K̂1/2(K̂ + αI)−1(X̄ −m)−K1/2(K + αI)−1(X̄ −m)‖

≤ ‖K̂1/2(K̂ + αI)−1 −K1/2(K + αI)−1‖op ‖
√
n(X̄ −m)‖.

As a part of the proof of Theorem 12 we have seen that the first norm in the right-hand
side goes to zero a.s. as n → ∞. From the Functional Central Limit Theorem (see e.g.,
Theorem 7.5.1 in Laha and Rohatgi, 1979),

√
n(X̄−m) converges in distribution in L2[0, 1]

to a Gaussian stochastic process Z with zero mean and covariance operator K. Since the
norm is a continuous function in this space, by the continuous mapping theorem the second
term converges in distribution to the random variable ‖Z‖. Thus, by Slutsky’s theorem,
the distribution of the product goes to zero, and this convergence holds also in probability
since the limit is a constant.

We can rewrite the remaining term of Equation (19) as,

√
nMα(X̄,m) =

√
n ‖K1/2(K + αI)−1(X̄ −m)‖ =

∥∥∥√n ( 1

n

n∑
i=1

χα,i − µα
)∥∥∥,

where we denote χα,i = K1/2(K+αI)−1Xi and µα = K1/2(K+αI)−1m. Since K1/2(K+αI)−1

is a bounded linear operator and the process X is Bochner-integrable (E‖X‖ < ∞), the
expectation and the operator commute, that is,

Eχα,1 = E[K1/2(K + αI)−1X1] = K1/2(K + αI)−1EX1 = µα.

Therefore, we can use again the Functional Central Limit Theorem with χα,i and µα, since

E‖χα,1‖2 ≤ ‖K1/2(K + αI)−1‖2op E‖X1‖2 < ∞,

which gives us that
√
nMα(X̄,m) converges in distribution to ‖ξ‖, ξ being a random element

with zero mean and whose covariance operator is the same as that of χα,1.
Using the same reasoning as at the beginning of the proof of Theorem 5 and denoting

as A∗ the adjoint of the operator A, the covariance operator of χα,1 is given by

K1/2(K + αI)−1K[K1/2(K + αI)−1]∗ = K1/2(K + αI)−1K(K + αI)−1K1/2,

since both K1/2 and (K + αI)−1 are self-adjoint operators (for instance, Theorem 3.35 and
Problem 3.32 of Kato, 2013, Chapter 5 and Proposition 2.4 of Conway, 1990, Chapter X).
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Now ξ is a zero-mean Gaussian process with a compact covariance operator which has the
same eigenfunctions as K and its eigenvalues are λ2

j (λj + α)−2. Thus, using its Karhunen-
Loève representation we get

‖ξ‖ = ‖
∞∑
j=1

Zjej‖ =
( ∞∑
j=1

Z2
j

) 1
2
,

where ej are the eigenfunctions of K and Zj are independent Gaussian random variables
with zero mean and variances λ2

j (λj+α)−2 (the eigenvalues of the covariance operator of ξ).
Then the result follows from the standardization of these Zj , applying Slutsky’s theorem to
the sum of Equation (19).

4.4. Convergence rates

Convergence rates, in probability, can be obtained for the distance estimator using part (e)
of Proposition 11.

Theorem 15 Under the assumptions established at the beginning of Section 4 and assuming
in addition that E‖X‖4 <∞, we have

|M̂α,n(X, X̄)−Mα(X,m)| = OP (n−1/4) as n→∞. (20)

where OP stands here for convergence order in probability.

Proof At the beginning of the proof of Theorem 12, we got

∣∣∣M̂α,n(X, X̄)−Mα(X,m)
∣∣∣ ≤

≤ ‖K̂1/2(K̂ + αI)−1‖op ‖X̄ −m‖+ ‖K̂1/2(K̂ + αI)−1 −K1/2(K + αI)−1‖op ‖X −m‖. (21)

The first term in the right hand side of (21) is the product of two random variables,
say U1 and U2. From the a.s. convergence of K̂ towards K, we know that U1 converges
a.s. to ‖K1/2(K + αI)−1‖op. Regarding the second factor U2 = ‖X̄ −m‖, we have E(U2

2 ) =
1
nE(‖X−m‖2); indeed, note that X̄−m =

∑n
i=1 Zi/n where the Zi = Xi−m are iid random

elements with the same distribution as X −m. Therefore, as we have E‖X‖2 <∞ (which
entails E‖X−m‖2 <∞) we conclude that U2 is OP (n−1/2) as n→∞. Therefore the global
convergence rate for the first term in the right-hand side of (21) is of type OP (n−1/2).

Now, to handle the second term in the upper bound of (21) note that

‖K̂1/2(K̂ + αI)−1 −K1/2(K + αI)−1‖op
≤ ‖K̂1/2‖op ‖(K̂ + αI)−1 − (K + αI)−1‖op + ‖K̂1/2 −K1/2‖op ‖(K + αI)−1‖op := W1 +W2.

Regarding W1, we first note ‖K̂1/2‖op → ‖K1/2‖op, a.s., since ‖K̂1/2 −K1/2‖op → 0, a.s.

Now, for ‖(K̂ + αI)−1 − (K + αI)−1‖op we use the following inequality (see Gohberg et al.,
2003, Cor. 8.2, p. 71): if A is an invertible bounded linear operator and An is a sequence
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of bounded linear operators such that ‖An − A‖op → 0, then the An are also (eventually)
invertible and

‖A−1
n −A−1‖op ≤

‖A−1‖2op‖An −A‖op
1− ‖A−1‖op‖An −A‖op

,

so that, in particular, ‖A−1
n −A−1‖op = O (‖An −A‖op) , as n → ∞. Using this result for

A = K+αI, An = K̂+αI, we get W1 = O
(
‖K̂ − K‖op

)
, a.s. But according to Theorem 8.1.2

in Hsing and Eubank (2015) we have, under the assumption E‖X‖4 <∞, that
√
n(K̂ − K)

converges in law (with respect to the Hilbert-Schmidt norm, ‖ · ‖HS) to a Gaussian element
with mean 0. In particular,

√
n(K̂ − K) must be bounded in probability (with respect to

‖ · ‖HS) so that ‖K̂ −K‖op = OP (n−1/2), since ‖ · ‖op ≤ ‖ · ‖HS . So, we conclude that W1 is
OP (n−1/2), as n→∞.

As for the term W2 we use part (e) in Proposition 11, with K0 = K̂. This gives

‖K̂1/2 − K1/2‖op ≤ 4‖K̂ − K‖1/2op , so that, finally (using again Theorem 8.1.2 in Hsing and
Eubank, 2015) we get that W2 is OP (n−1/4). Collecting the convergence orders obtained
for U2, W1 and W2 we get (20).

5. Statistical applications

The purpose of this section is to give a general overview of possible applications of the
proposed distance by analyzing its practical performance under various simulation scenarios
and real data examples . The selected models and examples have been mostly chosen among
those previously proposed in the literature. However, as usual in empirical studies, many
other meaningful scenarios could be considered. Thus we make no attempt to reach any
definitive conclusion. Only the long term practitioners’ experience will lead to a safer
judgment.

5.1. Exploratory analysis

The Mahalanobis distance can be used to analyze and summarize some interesting features
of the data. Typically this is done, by example, via outlier detection and boxplots-type
summaries of the data. We follow here the experimental setting proposed in Arribas-Gil
and Romo (2014), where some real and simulated data sets are used for outliers detection
and functional boxplots.

5.1.1. Outliers detection

Our aim. We will measure the number of true positives and false positives of different
methods when detecting functional outliers. We ran 100 simulations of each model with
different contamination rates c = 0, 0.05, 0.1, 0.15 and 0.2.

Methods. We replicate the simulation study proposed in Arribas-Gil and Romo (2014) with
a selection of the methods presented there (we have excluded those methods that assumed
some prior knowledge of the number of outliers). The details about the implementations of
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each method can be found in that paper. We have adapted the original code provided by
the authors to include our method.

In order to formally define what we exactly mean by “an outlier” with our method, we
have approximated the distribution of the random variable ‖Xα−mα‖K given in Corollary
7 for Gaussian processes through a Monte Carlo sample of size 2000 where the Monte Carlo
observations are generated using the covariance structure of the original data. Note that
this procedure may present some drawbacks when the process is far from being Gaussian,
as we will see when generating the boxplots.

Then we mark as outliers the curves whose distance to the mean is greater that the
95% of the distances for the simulated data. A weak point of this method would be that
the distribution of Corollary 7 is computed using the covariance structure of the data.
Therefore, if the number of outliers is large compared with the sample size, this estimation
is biased. In order to partially overcome this problem, we compute the covariance function
using the robust minimum covariance determinant (MCD) estimator, see Rousseeuw and
Driessen (1999).

Regarding our proposal, we have noticed that the choice of α does not affect the number
of selected outliers significantly. We have chosen α = 0.01, but an automatic technique (as
the one proposed in Arribas-Gil and Romo, 2014 for the choice of the factor of the adjusted
outliergram) could be used as well.

Simulation models. The curves are generated using three different combinations of the main
process (from which most trajectories are drawn) and the contamination one (from which
the outliers come from). Given a contamination rate c, n − dc · ne curves are drawn from
the main process and dc · ne from the contamination one (we denote as dxe the smallest
integer not smaller than x).

• The first model is defined by,

main process: X(t) = 30t(1− t)3/2 + ε(t),
contamination process: X(t) = 30t3/2(1− t) + ε(t),

for t ∈ [0, 1], where ε is a Gaussian process with zero mean and covariance function
K(s, t) = 0.3 exp(−|s− t|/0.3).

• The second model is given by,

main process: X(t) = 4t+ ε(t),

contamination process: X(t) = 4t+ (−1)u1.8 + (0.02π)−1/2 e
−(t−µ)2

0.02 + ε(t),

where ε is a Gaussian process with zero mean and covariance function K(s, t) =
exp(−|s− t|), u follows a Bernoulli distribution with parameter 0.5 and µ is uniformly
distributed over [0.25, 0.75].

• Finally, using the same definitions for ε and µ, the third model is given by,

main process: X(t) = 4t+ ε(t),
contamination process: X(t) = 4t+ 2 sin(4(t+ µ)π) + ε(t).

The sample size for each simulation was 100 and the curves are simulated in a discretized
fashion over a grid of 50 equidistant points in [0, 1].
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Results. The proportions (pc and pf ) of correctly and falsely detected outliers for each
method on the different settings can be found in Table 1. We can see that the Mahalanobis-
based method proposed in this paper (denoted Mah RKHS in the table) is quite competitive.

5.1.2. Boxplots

Our aim. As a part of the exploratory analysis of the data, we include the functional
boxplots of two real data sets used also in Arribas-Gil and Romo (2014). We do not include
here the boxplots obtained with the other methods, which can be found in that paper.

Our methodology. We use the proposed Mahalanobis distance to define a depth measure
by (1 + M2

α(x,m))−1, for a realization x of the process. Using this depth, we mark as the
functional median the deepest curve of the set. The central band of the boxplot is built as
the envelope of the 50% deepest curves, and the “whiskers” are constructed as the envelope
of all the curves that are not marked as outliers. In order to detect the outliers we use the
same procedure as before. However, the sample sizes now are too small to estimate robustly
the covariance matrix over the grid, so we use the standard empirical covariance matrix.

For the mortality data set we choose again the value α = 0.01. However, for the Berkeley
data set the distribution of the distances seems far from Gaussian. Then, in this case the
value of α has a greater effect on the number of curves marked as outliers with our procedure.
In an attempt to overcome this problem, the parameter α is adjusted automatically in order
to minimize an estimate of the KL divergence between the empirical distribution and the
distribution for Gaussian processes. The selected values of α with this procedure are 0.089
for the female set and 0.1 for the male set.

Data sets. The two data sets under study are:

• Male mortality rates in Australia 1901-2003: this data set can be found in the R
package “fds”. It contains Australia male log mortality rates between 1901 and 2003,
provided by the Australian Demographic Data Bank.

• Berkeley growth: this data set is available in the R package “fda”. It contains height
measures of 54 girls and 39 boys, under the age of 18, at 31 fixed points.

In Arribas-Gil and Romo (2014) the authors suggest to smooth the data, since the curves
in the first set are very irregular. However, the distance proposed here has an intrinsic
smoothing procedure, so we work directly with the original curves.

Results. The curves marked as outliers for the male mortality set correspond to years
1919 (influenza epidemic) and 1999-2003, which are among the curves detected using other
different proposals in Arribas-Gil and Romo (2014). The resulting boxplot for this data
set can be found in Figure 1b, where the outliers are plotted in red. This figure includes
also (on the left) a graphic representation of the depths: from green, the deepest curves, to
ochre, the outer ones.

The boxplots for the Berkely growth sets, female and male, are shown in Figure 2.
Although now the smoothing parameter is adapted to the data set, the number of outliers
detected is quite large when compared to the sample size.
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c= 0 Model 1 Model 2 Model 3

Method pc pf pc pf pc pf
Fun. BP - 0.001 (0.003) - 0.001 (0.002) - 0.000 (0.002)
Adj. Fun. BP - 0.007 (0.010) - 0.006 (0.010) - 0.007 (0.012)
Rob. Mah. Dist. - 0.016 (0.014) - 0.015 (0.013) - 0.015 (0.015)
ISE - 0.038 (0.020) - 0.032 (0.021) - 0.033 (0.021)
DB weighting - 0.016 (0.012) - 0.015 (0.011) - 0.014 (0.011)
Outliergram - 0.054 (0.025) - 0.057 (0.027) - 0.058 (0.022)
Adj. Ourliergram - 0.012 (0.012) - 0.011 (0.013) - 0.011 (0.014)
Mah. RKHS - 0.037 (0.015) - 0.033 (0.018) - 0.035 (0.016)

c= 0.05 Model 1 Model 2 Model 3

Method pc pf pc pf pc pf
Fun. BP 0.186 (0.193) 0.001 (0.003) 0.208 (0.220) 0.000 (0.001) 0.184 (0.179) 0.000 (0.002)
Adj. Fun. BP 0.576 (0.282) 0.008 (0.012) 0.551 (0.330) 0.006 (0.010) 0.588 (0.344) 0.008 (0.012)
Rob. Mah. Dist. 0.976 (0.096) 0.008 (0.009) 0.361 (0.250) 0.008 (0.010) 0.104 (0.153) 0.015 (0.013)
ISE 0.865 (0.313) 0.033 (0.020) 1.000 (0.000) 0.038 (0.026) 1.000 (0.000) 0.033 (0.021)
DB weighting 0.894 (0.259) 0.008 (0.009) 0.941 (0.203) 0.012 (0.011) 0.957 (0.168) 0.011 (0.009)
Outliergram 0.998 (0.020) 0.038 (0.022) 0.998 (0.020) 0.033 (0.021) 1.000 (0.000) 0.036 (0.023)
Adj. Ourliergram 0.994 (0.035) 0.006 (0.008) 0.978 (0.070) 0.006 (0.009) 0.998 (0.020) 0.012 (0.014)
Mah. RKHS 0.998 (0.020) 0.022 (0.016) 1.000 (0.000) 0.027 (0.014) 1.000 (0.000) 0.031 (0.016)

c= 0.1 Model 1 Model 2 Model 3

Method pc pf pc pf pc pf
Fun. BP 0.139 (0.123) 0.000 (0.001) 0.158 (0.151) 0.000 (0.002) 0.134 (0.128) 0.000 (0.002)
Adj. Fun. BP 0.549 (0.239) 0.005 (0.008) 0.593 (0.268) 0.008 (0.010) 0.632 (0.248) 0.008 (0.012)
Rob. Mah. Dist. 0.961 (0.105) 0.004 (0.007) 0.373 (0.170) 0.007 (0.009) 0.104 (0.108) 0.011 (0.014)
ISE 0.790 (0.335) 0.027 (0.017) 1.000 (0.000) 0.036 (0.021) 1.000 (0.000) 0.033 (0.022)
DB weighting 0.176 (0.247) 0.001 (0.004) 0.910 (0.232) 0.005 (0.008) 0.922 (0.258) 0.006 (0.008)
Outliergram 0.981 (0.040) 0.020 (0.014) 0.998 (0.014) 0.018 (0.012) 1.000 (0.000) 0.020 (0.016)
Adj. Ourliergram 0.897 (0.118) 0.006 (0.009) 0.971 (0.076) 0.006 (0.009) 1.000 (0.000) 0.007 (0.011)
Mah. RKHS 0.767 (0.148) 0.014 (0.012) 1.000 (0.000) 0.014 (0.011) 0.995 (0.030) 0.015 (0.013)

c= 0.15 Model 1 Model 2 Model 3

Method pc pf pc pf pc pf
Fun. BP 0.098 (0.105) 0.000 (0.002) 0.114 (0.101) 0.000 (0.002) 0.134 (0.130) 0.000 (0.001)
Adj. Fun. BP 0.494 (0.215) 0.006 (0.010) 0.550 (0.242) 0.006 (0.009) 0.584 (0.247) 0.006 (0.009)
Rob. Mah. Dist. 0.927 (0.098) 0.001 (0.003) 0.324 (0.184) 0.004 (0.007) 0.152 (0.175) 0.005 (0.008)
ISE 0.778 (0.349) 0.027 (0.018) 0.999 (0.007) 0.040 (0.029) 1.000 (0.000) 0.034 (0.023)
DB weighting 0.020 (0.039) 0.001 (0.003) 0.659 (0.329) 0.002 (0.005) 0.634 (0.391) 0.002 (0.005)
Outliergram 0.879 (0.137) 0.011 (0.012) 0.984 (0.043) 0.008 (0.011) 0.999 (0.013) 0.008 (0.009)
Adj. Ourliergram 0.616 (0.220) 0.003 (0.007) 0.969 (0.099) 0.006 (0.008) 0.996 (0.019) 0.007 (0.010)
Mah. RKHS 0.295 (0.122) 0.013 (0.011) 0.988 (0.052) 0.008 (0.009) 0.941 (0.167) 0.007 (0.009)

c= 0.2 Model 1 Model 2 Model 3

Method pc pf pc pf pc pf
Fun. BP 0.060 (0.090) 0.000 (0.001) 0.098 (0.104) 0.000 (0.001) 0.102 (0.094) 0.000 (0.000)
Adj. Fun. BP 0.376 (0.226) 0.003 (0.006) 0.509 (0.205) 0.005 (0.009) 0.540 (0.227) 0.003 (0.006)
Rob. Mah. Dist. 0.866 (0.167) 0.000 (0.002) 0.304 (0.171) 0.002 (0.005) 0.111 (0.118) 0.004 (0.007)
ISE 0.513 (0.396) 0.031 (0.023) 0.997 (0.018) 0.047 (0.031) 0.999 (0.010) 0.028 (0.023)
DB weighting 0.015 (0.025) 0.001 (0.004) 0.216 (0.228) 0.001 (0.003) 0.111 (0.179) 0.000 (0.002)
Outliergram 0.356 (0.202) 0.002 (0.005) 0.894 (0.158) 0.001 (0.004) 0.959 (0.146) 0.001 (0.004)
Adj. Ourliergram 0.248 (0.179) 0.001 (0.003) 0.959 (0.074) 0.004 (0.008) 0.999 (0.007) 0.008 (0.011)
Mah. RKHS 0.141 (0.089) 0.012 (0.011) 0.945 (0.127) 0.005 (0.007) 0.749 (0.232) 0.006 (0.009)

Table 1: Proportions of correctly and falsely detected outliers (standard errors appear in brackets)
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(a) Depths of the curves (b) Boxplot and outliers

Figure 1: Male mortality rates in Australia 1901-2003

(a) Depths of the curves (female) (b) Boxplot and outliers (female)

(c) Depths of the curves (male) (d) Boxplot and outliers (male)

Figure 2: Berkeley growth

Female: 3, 8, 10, 13, 15, 18, 26, 29, 42, 43, 48 and 53.

Male: 5, 10, 15, 27, 29, 32, 35 and 37.

But if we look at the estimated density functions corresponding to the distribution of
M2
α on each set (Figure 3), we can see that these distributions have two modes. In fact, all

the curves marked as outliers are the ones that fall into the second mode (whose distance
to the mean is greater that the red dotted line). This behavior is similar to that of the
Integrated Squared Error shown in Arribas-Gil and Romo (2014).
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(a) Female (b) Male

Figure 3: Estimated density functions of the distributions of M2
α for Berkeley growth.

5.2. Supervised classification

The goals of the study. Mahalanobis distance can be also used as a tool for supervised
classification. Mimicking a common criterion (see, e.g., Galeano et al., 2015, Section 3.3)
we would classify the curve x to the population j ∈ {1, . . . , k} whenever

M2
α(x,mj)− 2 log πj = min

1≤i≤k

(
M2
α(x,mi)− 2 log πi

)
,

where π1, . . . , πk denote the prior probabilities of the classes, which are assumed to be
homoskedastic, and mj stands for the j-th mean function. In the examples below we will
just consider the case of equal probabilities, which amounts to assign x to the population
for which the Mahalanobis distance to the respective mean is smaller. The heteroskedastic
case is also considered later on.

Here we present two different examples of binary classification with same prior proba-
bilities, for which the percentage of misclassified curves is measured.

In order to check the performance of our proposal, we compare it with other classifiers
presented below. The name used on the tables for each method is shown between brackets.

• Optimal Bayes classifier proposed in Dai et al. (2017) (“OB”). This is a functional
extension of the classical multivariate Bayes classifier based on nonparametric estima-
tors of the density functions corresponding to the main coefficients in Karhunen-Loève
expansions. Here the curves are projected onto a common sequence of eigenfunctions,
and the quotient in Bayes classifier is taken using the densities of these projections.
The authors propose three approaches to estimate these densities. We have chosen the
implementation which assumes that these densities are Gaussian since, according to
their results, it seems to slightly outperform the others. The number of eigenfunctions
used for the projections is fixed by cross-validation.

• Mahalanobis-based semidistance of Equation (6) proposed in Galeano et al. (2015)
(“dkFM”).

• k-nearest neighbours with 3 and 5 neighbours (“knn3” and “knn5”). In spite of
its simplicity, this method tends to show a good performance when dealing with
functional data.
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Our methodology. Our proposal is denoted as “Mα”. Now the parameter α is fixed by
cross-validation, for α ∈ [10−4, 10−1]. For heterokedastic problems, we have implemented
our binary classifier mimicking an improvement that is usually made in the multivariate
context. In that finite setting, given two equiprobable populations with covariance matrices
Σ0,Σ1, a curve x is assigned to class 1, according to the Quadratic Discriminant classifier,
whenever

M2
Σ0

(x, x0)−M2
Σ1

(x, x1) > log
|Σ1|
|Σ0|

,

where MΣ0 ,MΣ1 denote the finite dimensional Mahalanobis distances using the covariance
matrices Σ0 and Σ1 respectively. The finite dimensional distance M is defined in (1) (see, for
instance, Section 8.3.7 of Izenman, 2008). In most cases with multivariate data, classifying
with this rule gives better results than merely classifying to class 1 when M2(x, x0) >
M2(x, x1).

In the case of functional data we will consider the following heuristic version of this idea.
If m0,K0 and m1,K1 are the mean and covariance functions of each class, we classify x to
class 1 if M2

α,K0
(x,m0) −M2

α,K1
(x,m1) > C, and to 0 otherwise. These are the distances

between the projections into H(K0) and H(K1), respectively. The constant C is computed
as log((λ1

1 · . . . ·λ1
10)/(λ0

1 · . . . ·λ0
10)), where λ0

j , λ
1
j , j = 1, . . . , 10, are the ten larger eigenvalues

of K0 and K1, respectively.

First case study: cut Brownian Motion vs. Brownian Bridge. The first problem under
consideration is to distinguish between two “cut” versions of a standard Brownian Motion
and a Brownian Bridge. By “cut” we mean to take the process X(t) on the interval t ∈ [0, T ],
T < 1. We know an explicit expression for the Bayes error of this problem, which depends
on the cut point T . For the case of equal prior probabilities of the classes, which will be
the case here, this Bayes error is given by,

L∗ =
1

2
− Φ

(
(−(1− T ) log(1− T ))1/2

(T (1− T ))1/2

)
+ Φ

(
(−(1− T ) log(1− T ))1/2

T 1/2

)
,

where Φ stands for the distribution function of a standard Gaussian random variable. Since
both processes are almost indistinguishable around zero, L∗ → 0.5 when T → 0. Also
L∗ → 0 when T → 1, since then one can decide the class with no error just looking at the
last point of the curve.

The trajectories of both processes are shown in Figure 4 and the cut points considered,
0.75, 0.8125, 0.875, 0.9375 and 1, are marked with vertical dotted lines. For each class, 50
samples are drawn for training and 250 for test. The experiment is run 500 times for each
cut point, and the trajectories are sampled over an equidistant grid in [0, 1] of size 50.

Second case study: simulated data as in Dai et al. (2017). We have implemented also the
experimental setting proposed in Dai et al. (2017). The authors consider three different
scenarios. For the first two, the curves of both classes X(0) and X(1), are drawn from
processes

X(i)(t) = mi(t) +
50∑
j=1

Aj,iφj(t) + ε, i = 0, 1,

26



On Mahalanobis Distance in Functional Settings

Figure 4: Trajectories of Brownian Motion and Bridge with cut points (vertical)

where ε is a Gaussian variable with zero mean and variance 0.01. Function φj is the jth
element in the Fourier basis, starting with

φ1(t) = 1, φ2(t) =
√

2 cos(2πt), φ3(t) =
√

2 sin(2πt).

For Scenario A, the coefficients Aj,0, Aj,1 are independent centered Gaussian variables. For
Scenario B they are independent centered exponential random variables. Finally, in Scenario
C the processes are

X(i)(t) = mi(t) +
50∑
j=1

Aj,i
Bi

φj(t), i = 0, 1,

where Aj,0, Aj,1 are the same as in Scenario B and B0, B1 are independent variables with
common distribution χ2

30/30. Thus, in this latter case the coefficients of the basis expansion
are dependent but uncorrelated. The means and the variances of the coefficients Aj,i,
i = 0, 1, are changed in order to check the “same” and “different” scenarios for mean and
variances. Then m0(t) = 0 always, and m1(t) is either 0 or t. In the same way, the variance
of Aj,0 is always exp(−j/3) and the variance of Aj,1 is either exp(−j/3), or exp(−j/2). The
curves are sampled on 51 equidistant points in [0, 1].

The prior probabilities of both classes are set to 0.5 and two sample sizes, 50 and 100,
are tested for training. For test we use 500 realizations of the processes. Each experiment
is repeated 500 times.

Results. Table 2 shows the percentages of misclassified curves, as well as the Bayes errors
for the first data set. Our proposal and knn with 5 neighbors seem to outperform the other
methods for this problem.

The misclassification percentages for all the different scenarios of the second data set are
shown in Table 3. Our proposal is mainly the winner, although in Scenario A it is overtaken
by the Optimal Bayes classifier in the case of equal means and different variances. Also
knn with 5 neighbors performs better sometimes in the case of different means and equal
variances.
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6. Some final remarks

In this section we include some final remarks and additional comments.

6.1. Sensitivity of the distance with respect to α and λi

In Section 3.3 we proved that the proposed distance is continuous with respect to the
smoothing parameter α. However the choice of this value may be of importance in some
cases, specially in those cases where cross-validation procedures can not be applied. Then
we will try to shed some light on the role this parameter plays in the distance.

To simplify matters in the following discussion we consider the distance from a function
x to the mean m. Let us begin with a simple, derivative-based, analysis of the squared
distance, when considered as a function of α and λj , as defined in (12),

Mα(x,m)2 =

∞∑
j=1

λj
(λj + α)2

〈x−m, ej〉2. (22)

Some informal conclusions can be drawn from the above formula as well as from the
definition of xα:

(a) In general, larger values of α generate smoother curves fα, for a given original
function f . In order to gain some intuition on this, we show in Figure 5, the aspect of a
smoothed Brownian trajectory xα for different values of α.

(b) Of course, Mα(x,m)2 is a decreasing function of α. This means that when α gets
larger, so providing increasingly smoother versions of x and m, the distance decreases to 0.
Clearly a very large value of α would provide functions xα and mα too far away from the
original unsmoothed versions x and m. On the opposite side, the choice α = 0 leads to the
divergence problems addressed in Subsection 1.4.

(c) The derivative (with respect to α) of the j-th coefficient g(λj , α) =
λj

(λj+α)2
in (22)

is ∂
∂αg(λj , α) =

−2λj
(λj+α)3

whose absolute value is again a decreasing function of α.

Since λj are usually unknown, and must be estimated, it is also interesting to consider

the sensitivity of the coefficients g(λj , α) with respect to λj . Note that ∂
∂λj

g(λj , α) =
α−λj

(α+λj)3

so that the speed of variation (in absolute value) is minimized for λj = α.

t Bayes Mα OB dkFM knn3 knn5

0.75 33.9 42.5 (3.5) 43.5 (2.5) 46.4 (3.2) 43.2 (2.8) 42.4 (2.8)
0.8125 30.8 40.0 (3.7) 41.9 (2.6) 44.8 (3.3) 41.0 (2.8) 40.1 (3.0)
0.875 26.9 36.1 (3.6) 40.2 (2.6) 42.6 (3.7) 38.0 (3.0) 36.9 (3.0)
0.9375 20.9 32.3 (3.1) 38.0 (2.8) 39.9 (3.5) 33.7 (2.7) 32.5 (2.7)
1 0.0 26.5 (2.8) 35.9 (2.9) 36.0 (3.5) 28.4 (2.7) 27.6 (2.7)

Table 2: Percentage of misclassification for the cut versions of Brownian Motion Brownian Bridge
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Scenario A (Gaussian)
n mean sd Mα OB dkFM knn3 knn5

50 same diff 35.9 (3.5) 19.0 (4.0) 47.0 (3.1) 45.6 (2.2) 46.2 (2.0)
diff same 42.3 (3.8) 47.3 (6.8) 43.7 (3.7) 42.9 (3.6) 42.0 (3.6)
diff diff 29.1 (5.0) 36.4 (10.1) 40.0 (5.4) 39.7 (3.0) 40.0 (3.1)

100 same diff 34.2 (3.0) 9.3 (2.1) 45.8 (3.5) 44.6 (1.9) 45.4 (1.8)
diff same 34.6 (4.5) 45.1 (8.2) 37.0 (4.4) 42.1 (3.0) 41.0 (3.0)
diff diff 22.0 (4.9) 35.7 (11.3) 34.2 (6.2) 38.3 (2.4) 38.6 (2.5)

Scenario B (exponential)
n mean sd Mα OB dkFM knn3 knn5

50 same diff 24.2 (5.2) 30.2 (10.4) 37.0 (6.6) 37.6 (2.6) 38.0 (2.7)
diff same 41.8 (3.9) 49.1 (5.5) 42.3 (4.1) 38.0 (3.4) 37.2 (3.6)
diff diff 14.3 (4.8) 31.8 (12.8) 25.1 (9.0) 24.7 (3.1) 25.1 (3.5)

100 same diff 16.9 (3.1) 24.0 (9.6) 28.2 (6.1) 35.3 (2.4) 35.7 (2.3)
diff same 34.5 (4.6) 48.3 (5.9) 36.7 (4.2) 36.5 (2.8) 35.6 (2.7)
diff diff 7.7 (2.9) 30.1 (13.4) 17.8 (6.3) 21.6 (2.4) 21.8 (2.6)

Scenario C (dependent)
n mean sd Mα OB dkFM knn3 knn5

50 same diff 30.0 (5.4) 33.3 (8.1) 40.1 (5.9) 39.9 (2.7) 39.9 (2.7)
diff same 43.6 (4.1) 48.8 (4.8) 42.9 (4.2) 38.1 (3.6) 37.5 (3.8)
diff diff 19.9 (4.9) 36.2 (11.0) 30.3 (7.7) 26.4 (3.1) 26.6 (3.3)

100 same diff 21.7 (3.0) 28.0 (7.5) 29.4 (5.7) 37.6 (2.4) 37.5 (2.4)
diff same 38.0 (4.3) 48.8 (5.0) 38.9 (3.8) 36.5 (2.7) 35.6 (2.8)
diff diff 13.3 (3.2) 34.6 (11.0) 23.2 (6.1) 23.4 (2.4) 23.3 (2.4)

Table 3: Percentage of misclassification for the experimental setting of Dai et al. (2017).

6.2. Mahalanobis-based classifiers and optimality

Our distance-based classifiers might be seen as a geometrically oriented proposal to func-
tional classification. One might wonder under which circumstances these classifiers are
close to the optimal (Bayes) classifier. It might be seen (see, e.g, Báıllo et al., 2011) that,
under very general conditions, when the distribution P1 of X|Y = 1 is absolutely con-
tinuous with respect to that of X|Y = 0, denoted by P0, the Bayes rule is just g(x) =

1({dP1(x)
dP0

> log 1−p
p }),

dP1(x)
dP0

being the Radon-Nikodym derivative of P1 with respect to P0,
p = P(Y = 1) and 1(A) the indicator function of the event A . Now, taking into account

the results by Parzen (1961) concerning the explicit expression of dP1(x)
dP0

in the Gaussian
homoskedastic case (see Berrendero et al., 2018 for additional details) one might see that
the optimal rule amounts to assign the observation x to population 1 whenever

〈x−m1, x−m1〉K − 〈x−m2, x−m2〉K > log
1− p
p

, (23)

Here we must assume that P1 and P0 are Gaussian processes with continuous trajectories
and a continuous covariance function K and the mean functions m0 and m1 belong both
to the RKHS, H(K), associated with K. Also, it is important to note that the notation
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Figure 5: Smoothed versions of a Brownian trajectory for different values of α

〈x −m1, x −m1〉K must be carefully interpreted in terms of the so-called Loève isometry
since, with probability one, the trajectories x do not belong to H(K) so that 〈x, ·〉K is not
directly defined and, in fact, (23) is defined in terms of such isometry.

As a consequence,

〈xα −m1, xα −m1〉K − 〈xα −m2, xα −m2〉K > log
1− p
p

,

(where 〈·, ·〉K is now the true inner product in H(K)) can be seen as an approximation
to the optimal rule (23) when we replace the Loéve isometry 〈x −m1, x −m1〉K with the
smoothed approximation given by our estimated Mahalanobis-type distance. Note that,
strictly speaking, Mα(x,mi)

2 = 〈xα −miα, xα −miα〉K = ‖xα −miα‖2K but, if we assume
m1, m2 ∈ H(K), there is no need of considering the smoothed versions of these functions.

6.3. Connections with Tikhonov’s regularization methodology

Our proposal is closely related to standard regularization results developed to deal with
ill-posed equations in functional analysis; see e.g. Kress (1989). Indeed, observe that we
can write xα = (K + αI)−1Kx = K1/2(K + αI)−1K1/2x = K1/2Rαx, where Rαx := (K +
αI)−1K1/2x is a Thikonov regularization operator (which yields a continuous approximation
to the Moore-Penrose pseudoinverse of K1/2).

Generally speaking, each regularization operatorRα is associated with a function q(α, λj)
that downweights the effect of 1/

√
λj in the spectral representation of xα. In the case of

Thikonov regularization, q(α, λj) = λj/(λj + α). Thus,

Rxα =
∞∑
j=1

√
λj

λj + α
〈x, ej〉ej =

∞∑
j=1

q(α, λj)√
λj
〈x, ej〉ej ,

and therefore ‖xα‖2K = ‖K1/2Rαx‖2K = ‖Rαx‖2 =
∑∞

j=1 q(α, λj)
2/λj .
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In principle, to define the Mahalanobis distance one could select other regularization
methods. For instance, the cut-off operator is given by

Rαx =
∑
λj≥α

1√
λj
〈x, ej〉ej ,

which corresponds to q(α, λj) = 1, when λj ≥ α, and q(α, λj) = 0, when λj < α. For this
choice, the regularization parameter determines the terms of the series that are retained.
Other possibility is the so-called Landweber regularization operator, given by q(m, a, λj) =
1 − (1 − aλj)m+1, for 0 < a < min{λ−1

j : λj > 0}. In this case regularization depends on
two parameters, a and m.

We believe Tikhonov scheme provides a natural choice with good properties since it
depends on just one regularization parameter (unlike Landweber method) and defines a
metric in L2[0, 1] (unlike the cut-off approach).
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