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Abstract

We consider learning problems over training sets in which both, the number of training
examples and the dimension of the feature vectors, are large. To solve these problems we
propose the random parallel stochastic algorithm (RAPSA). We call the algorithm random
parallel because it utilizes multiple parallel processors to operate on a randomly chosen
subset of blocks of the feature vector. RAPSA is doubly stochastic since each processor
utilizes a random set of functions to compute the stochastic gradient associated with a
randomly chosen sets of variable coordinates. Algorithms that are parallel in either of
these dimensions exist, but RAPSA is the first attempt at a methodology that is parallel
in both the selection of blocks and the selection of elements of the training set. In RAPSA,
processors utilize the randomly chosen functions to compute the stochastic gradient com-
ponent associated with a randomly chosen block. The technical contribution of this paper
is to show that this minimally coordinated algorithm converges to the optimal classifier
when the training objective is strongly convex. Moreover, we present an accelerated ver-
sion of RAPSA (ARAPSA) that incorporates the objective function curvature information
by premultiplying the descent direction by a Hessian approximation matrix. We further
extend the results for asynchronous settings and show that if the processors perform their
updates without any coordination the algorithms are still convergent to the optimal argu-
ment. RAPSA and its extensions are then numerically evaluated on a linear estimation
problem and a binary image classification task using the MNIST handwritten digit dataset.
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Figure 1: Random parallel stochastic algorithm (RAPSA). At each iteration, processor Pi
picks a random block from the set {x1, . . . ,xB} and a random set of functions
from the training set {f1, . . . , fN}. The functions drawn are used to evaluate
a stochastic gradient component associated with the chosen block. RAPSA is
shown here to converge to the optimal argument x∗ of (1).

1. Introduction

Learning is often formulated as an optimization problem that finds a vector of parameters
x∗ ∈ Rp that minimizes the average of a loss function across the elements of a training
set. For a precise definition consider a training set with N elements and let fn : Rp →
R be a convex loss function associated with the n-th element of the training set. The
optimal parameter vector x∗ ∈ Rp is defined as the minimizer of the average cost F (x) :=
(1/N)

∑N
n=1 fn(x),

x∗ := argmin
x

F (x) := argmin
x

1

N

N∑
n=1

fn(x). (1)

Problems such as support vector machine classification, logistic and linear regression, and
matrix completion can be put in the form of problem (1). In this paper, we are interested
in large scale problems where both the number of features p and the number of elements N
in the training set are very large – which arise, e.g., in text (Sampson et al., 1990), image
(Mairal et al., 2010), and genomic (Taşan et al., 2014) processing.

When N and p are large, the parallel processing architecture in Figure 1 becomes of
interest. In this architecture, the parameter vector x is divided into B blocks each of which
contains pb � p features and a set of I � B processors work in parallel on randomly
chosen parameter blocks while using a stochastic subset of elements of the training set. In
the schematic shown, Processor 1 fetches functions f1 and fn to operate on block xb and
Processor i fetches functions fn′ and fn′′ to operate on block xb′ . Other processors select
other elements of the training set and other blocks with the majority of blocks remaining
unchanged and the majority of functions remaining unused. The blocks chosen for update
and the functions fetched for determination of block updates are selected independently at
random in subsequent slots.

Problems that operate on blocks of the parameter vectors or subsets of the training
set, but not on both, blocks and subsets, exist. Block coordinate descent (BCD) is the
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generic name for methods in which the variable space is divided in blocks that are processed
separately. Early versions operate by cyclically updating all coordinates at each step (Luo
and Tseng, 1992; Tseng, 2001; Xu and Yin, 2017), while more recent parallelized versions of
coordinate descent have been developed to accelerate convergence of BCD (Richtárik and
Takáč, 2015; Lu and Xiao, 2013; Nesterov, 2012; Beck and Tetruashvili, 2013). Closer to
the architecture in Figure 1, methods in which subsets of blocks are selected at random
have also been proposed (Liu et al., 2015; Yang et al., 2013; Nesterov, 2012; Lu and Xiao,
2015). BCD, serial, parallel, or random, can handle cases where the parameter dimension
p is large but requires access to all N training samples at each iteration.

Parallel implementations of block coordinate methods have been developed initially in
this setting for composite optimization problems (Richtárik and Takáč, 2015). A collection
of parallel processors update randomly selected blocks concurrently at each step. Several
variants that select blocks in order to maximize the descent at each step are proposed
in (Scherrer et al., 2012; Facchinei et al., 2015; Shalev-Shwartz and Zhang, 2013). The
aforementioned works require that parallel processors operate on a common time index.
In contrast, asynchronous parallel methods, originally proposed in Bertsekas and Tsitsiklis
(1989), have been developed to solve optimization problems where processors are not re-
quired to operate with a common global clock. This work focused on solving a fixed point
problem over a separable convex set, but the analysis is more restrictive than standard con-
vexity assumptions. For a standard strongly convex optimization problem, in contrast, Liu
et al. (2015) establish linear convergence to the optimum. All of these works are developed
for optimization problems with deterministic objectives.

To handle the case where the number of training examples N is very large, methods
have been developed to only process a subset of sample points at a time. These methods are
known by the generic name of stochastic approximation and rely on the use of stochastic
gradients. In plain stochastic gradient descent (SGD), the gradient of the aggregate function
is estimated by the gradient of a randomly chosen function fn (Robbins and Monro, 1951).
Since convergence of SGD is slow more often that not, various recent developments have
been aimed at accelerating its convergence. These attempts include methodologies to reduce
the variance of stochastic gradients (Schmidt et al., 2017; Johnson and Zhang, 2013; Defazio
et al., 2014; Mokhtari et al., 2018b) and the use of ideas from quasi-Newton optimization to
handle difficult curvature profiles (Schraudolph et al., 2007; Bordes et al., 2009; Mokhtari
and Ribeiro, 2014, 2015; Mokhtari et al., 2018a). More pertinent to the work considered here
are the use of cyclic block SGD updates (Xu and Yin, 2015) and the exploitation of sparsity
properties of feature vectors to allow for parallel updates (Recht et al., 2011). Moreover,
in (Matsushima et al., 2017; Xiao et al., 2019), saddle point reformulations of ERM are
proposed, and in (Meng et al., 2016), a derivation of Nesterov momentum-type updates,
but both of these methods’ advantages relative to SGD are awash for dense data. Moreover,
since the ERM problem is unconstrained by definition, these reformulations introduce undue
complexity into what can be accomplished by unconstrained optimization. These methods
are suitable when the number of elements in the training set N is large but don’t allow for
parallel feature processing unless parallelism is inherent to the problem’s structure.

The random parallel stochastic algorithm (RAPSA) proposed in this paper represents
the first effort at implementing the architecture in Figure 1 that randomizes over both
parameters and sample functions, and may be implemented in parallel. In RAPSA, the

3



Mokhtari, Koppel, Takáč, and Ribeiro

functions fetched by a processor are used to compute the stochastic gradient component
associated with a randomly chosen block (Section 2). The processors do not coordinate in
either choice except to avoid selection of the same block. Our main technical contribution
is to show that RAPSA iterates converge to the optimal classifier x∗ when using a sequence
of decreasing stepsizes and to a neighborhood of the optimal classifier when using constant
stepsizes (Section 5). In the latter case, we further show that the rate of convergence to this
optimality neighborhood is linear in expectation. These results are interesting because only
a subset of features are updated per iteration and the functions used to update different
blocks are, in general, different. We would like to highlight that RAPSA is doubly stochastic
since each processor utilizes a random set of functions to compute the stochastic gradient
associated with a randomly chosen sets of variable coordinates. We propose two exten-
sions of RAPSA. Firstly, motivated by the improved performance results of quasi-Newton
methods relative to gradient methods in online optimization, we propose an extension of
RAPSA which incorporates approximate second-order information of the objective, called
Accelerated RAPSA. We also consider an extension of RAPSA in which parallel processors
are not required to operate on a common time index, which we call Asynchronous RAPSA.
We further show how these extensions yield an accelerated doubly stochastic algorithm
for an asynchronous system. We establish that the performance guarantees of RAPSA
carry through to asynchronous computing architectures. We then numerically evaluate the
proposed methods on a large-scale linear regression problem as well as the MNIST digit
recognition problem (Section 6).

2. Random Parallel Stochastic Algorithm (RAPSA)

We consider a more general formulation of (1) in which the number of functions fn is not
necessarily finite. Introduce then a random variable θ ∈ Θ ⊂ Rq that determines the
choice of the random smooth convex function f(·,θ) : Rp → R. We consider the problem
of minimizing the expectation of the random functions F (x) := Eθ[f(x,θ)],

x∗ := argmin
x∈Rp

F (x) := argmin
x∈Rp

Eθ [f(x,θ)] . (2)

Problem (1) is a particular case of (2) in which each of the functions fn is drawn with prob-
ability 1/N . Observe that when θ = (z,y) with feature vector z ∈ Rp and target variable
y ∈ Rq or y ∈ {0, 1}, the formulation in (2) encapsulates generic supervised learning prob-
lems such as regression or classification, respectively. We refer to f(·,θ) as instantaneous
functions and to F (x) as the average function.

RAPSA utilizes I processors to update a random subset of blocks of the variable x, with
each of the blocks relying on a subset of randomly and independently chosen elements of the
training set; see Figure 1. Formally, decompose the variable x into B blocks to write x =
[x1; . . . ; xB], where block b has length pb so that we have xb ∈ Rpb . At iteration t, processor i
selects a random index bti for updating and a random subset Θt

i of L instantaneous functions.
It then uses these instantaneous functions to determine stochastic gradient components for
the subset of variables xb = xbti as an average of the components of the gradients of the
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Algorithm 1 Random Parallel Stochastic Algorithm (RAPSA)

1: for t = 0, 1, 2, . . . do
2: loop in parallel, processors i = 1, . . . , I execute:
3: Select block bti ∈ {1, . . . , B} uniformly at random from set of blocks
4: Choose training subset Θt

i for block xb,

5: Compute stochastic gradient : ∇xb
f(xt,Θt

i) =
1

L

∑
θ∈Θt

i

∇xb
f(xt,θ), b = bti [cf.

(3)]
6: Update the coordinates bti of the decision variable xt+1

b = xtb − γt ∇xb
f(xt,Θt

i)
7: end loop; Transmit updated blocks i ∈ It ⊂ {1, . . . , B} to shared memory
8: end for

functions f(xt,θ) for θ ∈ Θt
i,

∇xb
f(xt,Θt

i) =
1

L

∑
θ∈Θt

i

∇xb
f(xt,θ), b = bti. (3)

Note that L can be interpreted as the size of mini-batch for gradient approximation. The
stochastic gradient block in (3) is then modulated by a possibly time varying stepsize γt

and used by processor i to update the block xb = xbti

xt+1
b = xtb − γt∇xb

f(xt,Θt
i), b = bti. (4)

RAPSA is defined by the joint implementation of (3) and (4) across all I processors, and
is summarized in Algorithm 1. We would like to emphasize that the number of updated
blocks which is equivalent to the number of processors I is not necessary equal to the total
number of blocks B. In other words, we may update only a subset of coordinates I/B < 1
at each iteration. We define r := I/B as the ratio of the updated blocks to the total number
of blocks which is smaller than 1.

The selection of blocks is coordinated so that no processors operate in the same block.
The selection of elements of the training set is uncoordinated across processors. The fact
that at any point in time a random subset of blocks is being updated utilizing a random
subset of elements of the training set means that RAPSA requires coordination between
processors only for the choice of blocks. The contribution of this paper is to show that this
very lean algorithm converges to the optimal argument x∗ as we show in Section 5.

3. Accelerated Random Parallel Stochastic Algorithm (ARAPSA)

As we mentioned in Section 2, RAPSA operates on first-order information which may lead to
slow convergence in ill-conditioned problems. We introduce Accelerated RAPSA (ARAPSA)
as a parallel doubly stochastic algorithm that incorporates second-order information of the
objective by separately approximating the function curvature for each block. We do this
by implementing the oLBFGS algorithm for different blocks of the variable x. For related
approaches, see, for instance, Broyden et al. (1973); Byrd et al. (1987); Dennis and Moré
(1974); Li and Fukushima (2001). Define B̂t

b as an approximation for the Hessian inverse
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Algorithm 2 Computation of the ARAPSA step d̂tb = B̂t
b∇xb

f(xt,Θt
i) for block xb.

1: function d̂tb = qs = ARAPSA Step
(
B̂t,0
b , p0 = ∇xb

f(xt,Θt
i), {vub , r̂ub }

t̂b
u=t̂b−s+1

)
2: for u = 0, 1, . . . , s− 1 do {Loop to compute constants αu and sequence pu}
3: Compute and store scalar αu = ρ̂t̂b−ub (vt̂b−ub )Tpu

4: Update sequence vector pu+1 = pu − αur̂t̂b−ub .
5: end for
6: Multiply ps by initial matrix: q0 = B̂t,0

b ps

7: for u = 0, 1, . . . , s− 1 do {Loop to compute constants βu and sequence qu}
8: Compute scalar βu = ρ̂t̂b−s+u+1

b (r̂t̂b−s+u+1
b )Tqu

9: Update sequence vector qu+1 = qu + (αs−u−1 − βu)vt̂b−s+u+1
b

10: end for {return d̂tb = qs}

of the objective function that corresponds to the block b with the corresponding variable
xb. If we consider bti as the block that processor i chooses at step t, then the update of
ARAPSA is defined as multiplication of the descent direction of RAPSA by B̂t

b, i.e.,

xt+1
b = xtb − γt B̂t

b ∇xb
f(xt,Θt

i), b = bti. (5)

Subsequently, we define the d̂tb := B̂t
b ∇xb

f(xt,Θt
i). We next detail how to properly specify

the block approximate Hessian B̂t
b so that it behaves in a manner comparable to the true

Hessian. To do so, define for each block coordinate xb at step t the variable variation vtb
and the stochastic gradient variation r̂tb as

vtb = xt+1
b − xtb, r̂tb = ∇xb

f(xt+1,Θt
i)−∇xb

f(xt,Θt
i). (6)

Observe that the stochastic gradient variation r̂tb is defined as the difference of stochastic
gradients at times t+1 and t corresponding to the block xb for a common set of realizations
Θt
i. The term ∇xb

f(xt,Θt
i) is the same as the stochastic gradient used at time t in (5),

while ∇xb
f(xt+1,Θt

i) is computed only to determine the stochastic gradient variation r̂tb.
An alternative and perhaps more natural definition for the stochastic gradient variation is
∇xb

f(xt+1,Θt+1
i ) − ∇xb

f(xt,Θt
i). However, as pointed out by Schraudolph et al. (2007),

this formulation is insufficient for establishing the convergence of stochastic quasi-Newton
methods. We proceed to developing a block-coordinate quasi-Newton method by first noting
an important property of the true Hessian, and design our approximate scheme to satisfy
this property. The secant condition may be interpreted as stating that the stochastic gra-
dient of a quadratic approximation of the objective function evaluated at the next iteration
agrees with the stochastic gradient at the current iteration. We select a Hessian inverse
approximation matrix associated with block xb such that it satisfies the secant condition
B̂t+1
b r̂tb = vtb, and thus behaves in a comparable manner to the true block Hessian.

The oLBFGS Hessian inverse update rule maintains the secant condition at each it-
eration by using information of the last s ≥ 1 pairs of variable and stochastic gradient
variations for the last s time indices that the block xb is updated. As an example assume
that s = 3 and block xb = x1 is chosen to be updated at time t = 10. Further, consider that
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Algorithm 3 Accelerated Random Parallel Stochastic Algorithm (ARAPSA)

1: for t = 0, 1, 2, . . . do
2: loop in parallel, processors i = 1, . . . , I execute:
3: Select block bti uniformly at random from set of blocks {1, . . . , B}
4: Choose a set of realizations Θt

i for the block xb

5: Compute stochastic gradient : ∇xb
f(xt,Θt

i) =
1

L

∑
θ∈Θt

i

∇xb
f(xt,θ) [cf. (3)]

6: Compute the initial Hessian inverse approximation: B̂t,0
b = ηtbI

7: Compute descent direction:

d̂tb = ARAPSA Step
(
B̂t,0
b , ∇xb

f(xt,Θt
i), {vub , r̂ub }

t̂b
u=t̂b−s+1

)
8: Update the coordinates of the decision variable xt+1

b = xtb − γt d̂tb

9: Compute updated stochastic gradient: ∇xb
f(xt+1,Θt

i) =
1

L

∑
θ∈Θt

i

∇xb
f(xt+1,θ)

10: Update variations vtb = xt+1
b − xtb and r̂ti = ∇xb

f(xt+1,Θt
i)−∇xb

f(xt,Θt
i) [ cf.(6)]

11: end loop; Transmit updated blocks i ∈ It ⊂ {1, . . . , B} to shared memory
12: end for

the block xb = x1 was previously updated at time indices t = 8, t = 5, t = 4, and t = 1.
Then to update xb = x1 at time t = 10 we use the variable and gradient variations vectors
{vub , r̂ub }u∈{8,5,4}. To properly define this notation we introduce the subset Tb(t) which con-
tains the time indices that block xb is updated before step t. According to this notation,
when at step t we aim to update block xb we use the curvature information vectors {vub , r̂ub }
for s largest indices u ∈ Tb. For simplicity we indicate this set by {vub , r̂ub }

t̂b
u=t̂b−s+1

where

u = t̂b corresponds to the largest element in the set Tb(t) and u = t̂b − s + 1 denotes the
s-th largest element in Tb(t).

To state the update rule of oLBFGS for revising the Hessian inverse approximation
matrices of the blocks, define a matrix as B̂t,0

b := ηtbI for each block b and t, where the
constant ηtb for t > 0 is given by

ηtb :=
(vt̂bb )T r̂t̂bb

‖r̂t̂bb ‖2
, (7)

where t̂b is the last time index before step t that block b is updated, i.e., the largest element
of Tb before step t. The matrix B̂t,0

b is the initial approximate for the Hessian inverse

associated with block xb. The approximate matrix B̂t
b is computed by updating the initial

matrix B̂t,0
b using the last s pairs of curvature information {vub , r̂ub }

t̂b
u=t̂b−s+1

.

We define the approximate Hessian inverse B̂t
b = B̂t,s

b corresponding to block xb at step
t as the outcome of s recursive applications of the update

B̂t,u+1
b = (Ẑt̂b−s+u+1

b )T B̂t,u
b (Ẑt̂b−s+u+1

b ) + ρ̂t̂b−s+u+1
b (vt̂b−s+u+1

b ) (vt̂b−s+u+1
b )T , (8)
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where the matrices Ẑt̂b−s+u+1
b and the constants ρ̂t̂b−s+u+1

b in (8) for u = 0, . . . , s − 1 are
defined as

ρ̂kb =
1

(vkb )T r̂kb
and Ẑkb = I− ρ̂kb r̂kb (vkb )T . (9)

The block-wise oLBFGS update defined by (6) - (9) is summarized in Algorithm 2. The
computation cost of B̂t

b in (8) is in the order of O(p2
b), however, for the update in (5) the

descent direction d̂tb := B̂t
b∇xb

f(xt,Θt
i) is required. Liu and Nocedal (1989) introduced an

efficient implementation of product B̂t
b∇xb

f(xt,Θt
i) that requires computation complexity

of order O(spb). We use the same idea for computing the descent direction of ARAPSA for
each block. Therefore, the computation complexity of updating each block for ARAPSA is in
the order of O(spb), while RAPSA requires O(pb) operations. On the other hand, ARAPSA
accelerates the convergence of RAPSA by incorporating the second order information of
the objective function for the block updates, as may be observed in the numerical analyses
provided in Section 6.

For reference, ARAPSA is also summarized in algorithmic form in Algorithm 3. Steps
2 and 3 are devoted to assigning random blocks to the processors. In Step 2 a subset of
available blocks It is chosen. These blocks are assigned to different processors in Step 3. In
Step 5 processors compute the partial stochastic gradient corresponding to their assigned
blocks ∇xb

f(xt,Θt
i) using the acquired samples in Step 4. Steps 6 and 7 are devoted to

the computation of the ARAPSA descent direction d̂ti. In Step 6 the approximate Hessian
inverse B̂t,0

b for block xb is initialized as B̂t,0
b = ηtbI which is a scaled identity matrix using

the expression for ηtb in (7) for t > 0. The initial value of ηtb is η0
b = 1. In Step 7 we

use Algorithm 2 for efficient computation of the descent direction d̂tb = B̂t
b ∇xb

f(xt,Θt
i).

The descent direction d̂tb is used to update the block xtb with stepsize γt in Step 8. Step
9 determines the value of the partial stochastic gradient ∇xb

f(xt+1,Θt
i) which is required

for the computation of stochastic gradient variation r̂tb. In Step 10 the variable variation vtb
and stochastic gradient variation r̂tb associated with block xb are computed to be used in
the next iteration.

4. Asynchronous Architectures

Up to this point, the RAPSA method dictates that distinct parallel processors select blocks
bti ∈ {1, . . . , B} uniformly at random at each time step t as in Figure 1. However, the
requirement that each processor operates on a common time index is burdensome for parallel
operations on large computing clusters, as it means that nodes must wait for the processor
which has the longest computation time at each step before proceeding. Remarkably, we
are able to extend the methods developed in Sections 2 and 3 to the case where the parallel
processors need not to operate on a common time index (lock-free) and establish that
their performance guarantees carry through, so long as the degree of their asynchronicity
is bounded in a certain sense. In doing so, we alleviate the computational bottleneck in the
parallel architecture, allowing processors to continue processing data as soon as their local
task is complete.

8
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Algorithm 4 Asynchronous RAPSA at processor i

1: while t < T do
2: Processor i ∈ {1, . . . , I} at time index t executes the following steps:
3: Select block bti uniformly at random from set of blocks {1, . . . , B}
4: Choose a set of realizations Θt

i for the block xb, b = bti

5: Compute stochastic gradient : ∇xb
f(xt,Θt

i) =
1

L

∑
θ∈Θt

i

∇xb
f(xt,θ) [cf. (3)]

6: Update the coordinates of the decision variable xt+τ+1
b = xt+τb − γt+τ∇xb

f(xt,Θt
i)

7: Send updated parameters xt+τ+1
b associated with block b = bti to shared

memory
8: If another processor is also operating on block bti at time t, randomly overwrite
9: end while

4.1. Asynchronous RAPSA

Consider the case where each node operates asynchronously. In this case, at an instanta-
neous time index t, only one processor executes an update, as all others are assumed to be
busy. If two processors complete their prior task concurrently, then they draw the same time
index at the next available slot, in which case the tie is broken at random. Suppose pro-
cessor i selects block bti ∈ {1, . . . , B} at time t. Then it grabs the associated component of
the decision variable xtb and computes the stochastic gradient ∇xb

f(xt,Θt
i) associated with

the samples Θt
i. This process may take time and during this process other processors may

overwrite the variable xb. Consider the case that the process time of computing stochastic
gradient or equivalently the descent direction is τ . Thus, when processor i updates the
block b using the evaluated stochastic gradient ∇xb

f(xt,Θt
i), it performs the update

xt+τ+1
b = xt+τb − γt+τ ∇xb

f(xt,Θt
i) b = bti. (10)

Thus, the descent direction evaluated based on the available information at time index t is
used to update the variable at time t+τ . Asynchronous RAPSA is summarized in Algorithm
4. Note that the delay comes from asynchronous implementation of the algorithm and the
fact that other processors are able to modify the variable xb during the time that processor
i computes its descent direction. We assume the the random time τ that each processor
requires to compute its descent direction is bounded above by a constant ∆, i.e., τ ≤ ∆ –
see Assumption 4.

Despite the minimal coordination of the asynchronous random parallel stochastic algo-
rithm in (10), we may establish the same performance guarantees as that of RAPSA in
Section 2. These analytical properties are investigated at length in Section 5.

Remark 1 One may raise the concern that there could be instances that two processors or
more work on a same block. Although, this event is not very likely since I � B, there is
a positive chance that it might happen. This is true since the available processor picks the
block that it wants to operate on uniformly at random from the set {1, . . . , B}. We show
that this event does not cause any issues and the algorithm can eventually converge to the
optimal argument even if more than one processor work on a specific block at the same time

9
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Algorithm 5 Asynchronous Accelerated RAPSA at processor i

1: while t < T do
2: Processor i ∈ {1, . . . , I} at time index t executes the following steps:
3: Select block bti uniformly at random from set of blocks {1, . . . , B}
4: Choose a set of realizations Θt

i for the block xb, b = bti

5: Compute stochastic gradient : ∇xb
f(xt,Θt

i) =
1

L

∑
θ∈Θt

i

∇xb
f(xt,θ) [cf. (3)]

6: Compute the initial Hessian inverse approximation: B̂t,0
b = ηtbI

7: Compute descent direction:

d̂tb = ARAPSA Step
(
B̂t,0
b , ∇xb

f(xt,Θt
i), {vub , r̂ub }

t̂b
u=t̂b−s+1

)
8: Update the coordinates of the decision variable xt+τ+1

b = xt+τb − γt+τ d̂tb

9: Compute updated stochastic gradient: ∇xb
f(xt+τ+1,Θt

i) =
1

L

∑
θ∈Θt

i

∇xb
f(xt+τ+1,θ)

10: Update variations vtb = xt+τ+1
b − xtb and r̂tb = ∇xb

f(xt+τ+1,Θt
i)−∇xb

f(xt,Θt
i)

11: Overwrite the oldest pairs of vb and r̂b in local memory by vtb and r̂tb, respectively.
12: Send updated parameters and {vtb, r̂tb} to shared memory.
13: If another processor is operating on block bti, choose to overwrite with probability

1/2.
14: end while

– see Section 5.2. Functionally, this means that if one block is worked on concurrently by
two processors, the memory coordination requires that the result of one of the two processors
is written to memory with probability 1/2. This random overwrite rule applies to the case
that three or more processors are operating on the same block as well. In this case, the result
of one of the conflicting processors is written to memory with probability 1/C where C is
the number of conflicting processors.

4.2. Asynchronous ARAPSA

In this section, we study the asynchronous implementation of accelerated RAPSA (ARA-
PSA). The main difference between the synchronous of implementation ARAPSA in Section
3 and the asynchronous version is in the update of the variable xtb corresponding to the block
b. Consider the case that processor i finishes its previous task at time t, chooses the block
b = bti, and reads the variable xtb. Then, it computes the stochastic gradient ∇f(xt,Θt

i)
using the set of random variables Θt

i. Further, processor i computes the descent direction

B̂t
b ∇xb

f(xt,Θt
i) using the last s sets of curvature information {vub , r̂ub }

t̂b
u=t̂b−s+1

correspond-

ing to block b as shown in Algorithm 1. If we assume that the required time to compute
the descent direction B̂t

b ∇xb
f(xt,Θt

i) is τ , processor i updates the variable xt+τb as

xt+τ+1
b = xt+τb − γt+τ B̂t

b∇xb
f(xt,Θt

i) b = bti. (11)

Note that the update in (11) is different from the synchronous version in (5) in the time
index of the variable that is updated using the available information at time t. In other
words, in the synchronous implementation the descent direction B̂t

b ∇xb
f(xt,Θt

i) is used to

10
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update the variable xtb with the same time index, while this descent direction is executed
to update the variable xt+τb in asynchronous ARAPSA.

Note that the definitions of the variable variation vtb and the stochastic gradient variation
r̂tb are different in asynchronous setting and they are given by

vtb = xt+τ+1
b − xtb, r̂tb = ∇xb

f(xt+τ+1,Θt
i)−∇xb

f(xt,Θt
i). (12)

This modification comes from the fact that the stochastic gradient ∇xb
f(xt,Θt

i) is already
evaluated for the descent direction in (11). Thus, we define the stochastic gradient variation
by computing the difference of the stochastic gradient ∇xb

f(xt,Θt
i) and the stochastic

gradient associated with the same random set Θt
i evaluated at the most recent iterate

which is xt+τ+1
b . Likewise, the variable variation is redefined as the difference xt+τ+1

b − xtb.
The steps of asynchronous ARAPSA are summarized in Algorithm 5.

5. Convergence Analysis

We show in this section that the sequence of objective function values F (xt) generated by
RAPSA approaches the optimal objective function value F (x∗). We further show that the
convergence guarantees for synchronous RAPSA generalize to the asynchronous setting. In
establishing this result we define the set St corresponding to the components of the vector
x associated with the blocks selected at step t defined by indexing set It ⊂ {1, . . . , B}.
Note that components of the set St are chosen uniformly at random from the set of blocks
{x1, . . . ,xB}. With this definition, due to convenience for analyzing the proposed methods,
we rewrite the time evolution of the RAPSA iterates (Algorithm 1) as

xt+1
i = xti − γt ∇xif(xt,Θt

i) for all xi ∈ St, (13)

while the rest of the blocks remain unchanged, i.e., xt+1
i = xti for xi /∈ St. Since the

number of updated blocks is equal to the number of processors, the ratio of updated blocks
is r := |It|/B = I/B.

The key steps in our analysis are as follows. First, we establish that the random selection
of block coordinates St in (13) may be characterized by a ratio of binomial random variables
(see Lemma 2) which cancel out to a common constant factor r = I/B ∈ (0, 1]. Then, this
reduces the stacked update in expectation over St to a factor of r multiplied by the usual
stochastic gradient. The result of the analysis is conducted wielding this modified stochastic
descent direction. In particular, using standard smoothness and convexity properties, we
can construct a decrement relationship of the objective in conditional expectation. From this
descent lemma, we can establish almost sure convergence through the appropriate definition
of a supermartingale difference sequence under choice of diminishing step-sizes. Further,
from this descent lemma, computing total expectations, we can then derive convergence
rates under different step-size selections and glean how the ratio of updated blocks r figures
into the algorithm performance.

To proceed with the analysis of RAPSA, we require the following assumptions.

Assumption 1 The instantaneous objective functions f(x,θ) are differentiable and the
average function F (x) is strongly convex with parameter m > 0.

11
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Assumption 2 The average objective function gradients ∇F (x) are Lipschitz continuous
with respect to the Euclidian norm with parameter M , i.e., for all x, x̂ ∈ Rp, it holds that

‖∇F (x)−∇F (x̂)‖ ≤ M ‖x− x̂‖. (14)

Assumption 3 The variance of the stochastic gradient ∇f(x,θ) is uniformly bounded
above for all x, i.e., there exists a constant K such that for all variables x, it holds

Eθ

[
‖∇f(x,θ)−∇F (x)‖2

]
≤ K. (15)

Notice that Assumption 1 only enforces strong convexity of the average function F , while
the instantaneous functions fi may not be even convex. Further, notice that since the in-
stantaneous functions fi are differentiable the average function F is also differentiable. The
Lipschitz continuity of the average function gradients ∇F is customary in proving objective
function convergence for descent algorithms. The restriction imposed by Assumption 3 is a
standard condition in stochastic approximation literature (Robbins and Monro, 1951), its
intent being to limit the variance of the stochastic gradients (Nemirovski et al., 2009).

5.1. Convergence of RAPSA

We turn our attention to the random parallel stochastic algorithm defined in (3)-(4) in
Section 2, establishing performances guarantees in both the diminishing and constant al-
gorithm step-size regimes. Our first result comes in the form of a expected descent lemma
that relates the expected difference of subsequent iterates to the gradient of the average
function.

Lemma 2 Consider the random parallel stochastic algorithm defined in (3)-(4). Recall the
definitions of the set of updated blocks It which are randomly chosen from the total B blocks.
Define F t as a sigma algebra that measures the history of the system up until time t. Then,
the expected value of the difference xt+1 − xt with respect to the random set It given F t is

EIt
[
xt+1 − xt | F t

]
= −rγt ∇f(xt,Θt). (16)

Moreover, the expected value of the squared norm ‖xt+1 − xt‖2 with respect to the random
set It given F t can be simplified as

EIt
[
‖xt+1 − xt‖2 | F t

]
= r(γt)2

∥∥∇f(xt,Θt)
∥∥2
. (17)

Proof See Appendix A.1.

Notice that in the regular stochastic gradient descent method the difference of two
consecutive iterates xt+1 − xt is equal to the stochastic gradient ∇f(xt,Θt) times the
stepsize γt. Based on the first result in Lemma 2, the expected value of stochastic gradients
with respect to the random set of blocks It is the same as the one for SGD except that
it is multiplied by the fraction of updated blocks r. Expression in (17) shows the same
relation for the expected value of the squared difference ‖xt+1 − xt‖2. These relationships
confirm that in expectation RAPSA behaves as SGD which allows us to establish the global
convergence of RAPSA.

12
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Proposition 3 Consider the random parallel stochastic algorithm defined in (3)-(4). If
Assumptions 1-3 hold, then the objective function error sequence F (xt)− F (x∗) satisfies

E
[
F (xt+1)− F (x∗) | F t

]
≤
(

1− 2mrγt
(

1− Mγt

2

))(
F (xt)− F (x∗)

)
+
rM(γt)2K

2
.

(18)

Proof See Appendix A.2.

Proposition 3 leads to a supermartingale relationship for the sequence of objective func-
tion errors F (xt)−F (x∗). In the following theorem we show that if the sequence of stepsize
satisfies standard stochastic approximation diminishing step-size rules (non-summable and
squared summable), the sequence of objective function errors F (xt) − F (x∗) converges to
null almost surely. Considering the strong convexity assumption this result implies almost
sure convergence of the sequence ‖xt − x∗‖2 to null.

Theorem 4 Consider the random parallel stochastic algorithm defined in (3)-(4) (Algo-
rithm 1). If Assumptions 1-3 hold true and the sequence of stepsizes are non-summable∑∞

t=0 γ
t = ∞ and square summable

∑∞
t=0(γt)2 < ∞ and for all t ≥ 0 we have γt ≤ 1/M ,

then sequence of the variables xt generated by RAPSA converges almost surely to the optimal
argument x∗,

lim
t→∞
‖xt − x∗‖2 = 0 a.s. (19)

Moreover, if stepsize is defined as γt := γ0T 0/(t + T 0) and the stepsize parameters are
chosen such that mrγ0T 0 > 1, then the expected average function error E

[
F (xt)− F (x∗)

]
converges to null at least with a sublinear convergence rate of order O(1/t),

E
[
F (xt)− F (x∗)

]
≤ C

t+ T 0
, (20)

where the constant C is defined as

C = max

{
rMK(γ0T 0)2

2(rmγ0T 0 − 1)
, T 0(F (x0)− F (x∗))

}
. (21)

Proof See Appendix A.3.

The result in Theorem 4 shows that when the sequence of stepsize is diminishing as
γt = γ0T 0/(t + T 0), the average objective function value F (xt) sequence converges to
the optimal objective value F (x∗) with probability 1. Further, the rate of convergence in
expectation is at least of O(1/t).1

Notice that the only required condition for the stepsize parameters γ0 and T0 is to satisfy
the inequalities mrγ0T 0 > 1 and γ0 ≤ 1/M . Indeed, properly choosing the constants γ0

1. The expectation on the left hand side of (20), and throughout the subsequent convergence rate analysis,
is taken with respect to the full algorithm history F0, which all realizations of both Θt and It for all
t ≥ 0.
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and T0 can reduce the value of C in (21). However, to optimally choose these constants
prior knowledge of the optimal objective function value F (x∗) is required.

Diminishing stepsizes are useful when exact convergence is required, however, for the
case that we are interested in a specific accuracy ε the more efficient choice is using a
constant stepsize. In the following theorem we study the convergence properties of RAPSA
for a constant stepsize γt = γ.

Theorem 5 Consider the random parallel stochastic algorithm defined in (3)-(4) (Algo-
rithm 1). If Assumptions 1-3 hold true and the stepsize is constant γt = γ ≤ 1/M , then a
subsequence of the variables xt generated by RAPSA converges almost surely to a neighbor-
hood of the optimal argument x∗ as

lim inf
t→∞

F (xt)− F (x∗) ≤ γMK

2m
a.s. (22)

Moreover, if the constant stepsize γ is chosen such that mrγ < 1 then the expected average
function value error E

[
F (xt)− F (x∗)

]
converges linearly to an error bound as

E
[
F (xt)− F (x∗)

]
≤ (1−mγr)t (F (x0)− F (x∗)) +

γMK

2m
. (23)

Proof See Appendix A.4.

Notice that according to the result in (23) there exits a trade-off between accuracy
and speed of convergence. Decreasing the constant stepsize γ leads to a smaller error
bound (γMK)/(2m) and a more accurate convergence, while the linear convergence con-
stant (1−mγr) increases and the convergence rate becomes slower. Further, note that the
error of convergence (γMK)/(2m) is independent of the ratio of updated blocks r, while
the constant of linear convergence 1−mγr depends on r. Therefore, updating a fraction of
the blocks at each iteration decreases the speed of convergence for RAPSA relative to SGD
that updates all of the blocks, however, both of the algorithms reach the same accuracy.

To achieve accuracy ε the sum of two terms in the right hand side of (23) should be
smaller than ε. Let’s consider φ as a positive constant that is strictly smaller than 1, i.e.,
0 < φ < 1. Then, we want to have

γMK

2m
≤ φε, (1−mγr)t (F (x0)− F (x∗)) ≤ (1− φ)ε. (24)

Therefore, to satisfy the first condition in (24) we set the stepsize as γ = 2mφε/MK. Apply
this substitution into the second inequality in (24) and consider the inequality a+ln(1−a) <
0 for 0 < a < 1, to obtain that

t ≥ MK

2m2rφε
ln

(
F (x0)− F (x∗)

(1− φ)ε

)
. (25)

The lower bound in (25) shows the minimum number of required iterations for RAPSA to
achieve accuracy ε.
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Remark 6 (Convergence Dependence on Processing Architecture)

Suppose RAPSA is run with a diminishing step-size of the form γt = γ0T 0/(t+ T 0)
with γ0 = 1/M and T0 = 2M/(mr) so as to obtain the simplified expression for the constant

C in (20): C = max{2MK
rm2 ,

2M(F (x0)−F (x∗))
mr }. In this case, we observe that C scales

inversely with r = I/B, the proportion of blocks updated per iteration. This means that
to improve C, one must make r larger. Then, for a fixed number of blocks B, one may
make the constant C smaller by making 1/r = B/I smaller, which may be accomplished by
increasing the number of processors I. Thus, (20) yields an explicit dependence between the
learning constant C and the parallel computing architecture.

For the constant stepsize case, similar to the diminishing step-size exact convergence
setting of (20), when we fix γt = γ < 1/(mr) as in (23), the choice of r does not affect
the radius of convergence. However, unlike the attenuating step-size case, it does effect the
rate of convergence. Specifically, when we run the algorithm with a constant step-size, we
obtain linear convergence to a neighborhood with rate ρ = 1 −mγr. Note that ρ closer to
null means that convergence happens more quickly, which may be obtained by increasing the
term mγr. Piggybacking on the analysis which presents the number of iterations needed to
achieve a fixed accuracy ε in (25), again we observe that the right-hand side is inversely
proportional to r, and based on the definition of r = I/B, for a fixed B, we obtain that
the number of iterations required to attain a specific accuracy decreases linearly with the
number of processors I.

These two observations show that by increasing the number of active processors we can
achieve linear speed up in both constant and diminishing step-size scenarios.

5.2. Convergence of Asynchronous RAPSA

In this section, we study the convergence of Asynchronous RAPSA (Algorithm 4) developed
in Section 4 and we characterize the effect of delay in the asynchronous implementation.
To do so, the following condition on the delay τ is required.

Assumption 4 The random variable τ which is the delay between reading and writing for
processors does not exceed the constant ∆, i.e.,

τ ≤ ∆. (26)

The condition in Assumption 4 implies that processors can finish their tasks in a time
that is bounded by the constant ∆. This assumption is typical in the analysis of asyn-
chronous algorithms.

To establish the convergence properties of asynchronous RAPSA recall the set St con-
taining the blocks that are updated at step t with associated indices It ⊂ {1, . . . , B}.
Therefore, the update of asynchronous RAPSA can be written as

xt+1
i = xti − γt ∇xif(xt−τ ,Θt−τ

i ) for all xi ∈ St, (27)

and the rest of the blocks remain unchanged, i.e., xt+1
i = xti for xi /∈ St.

Note that the random set It and the associated block set St are chosen at time t− τ in
practice; however, for the sake of analysis we can assume that these sets are chosen at time
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t. In other words, we can assume that at step t − τ processor i computes the full (for all
blocks) stochastic gradient ∇f(xt−τ ,Θt−τ

i ) and after finishing this task at time t, it chooses
uniformly at random the block that it wants to update. Thus, the block xi in (27) is chosen
at step t. This new interpretation of the update of asynchronous RAPSA is only important
for the convergence analysis of the algorithm and we use it in the proof of following lemma
which is similar to the result in Lemma 2 for synchronous RAPSA.

Lemma 7 Consider the asynchronous random parallel stochastic algorithm (Algorithm 4)
defined in (10). Recall the definitions of the set of updated blocks It which are randomly
chosen from the total B blocks. Define F t as a sigma algebra that measures the history of
the system up until time t. Then, the expected value of the difference xt+1−xt with respect
to the random set It given F t is

EIt
[
xt+1 − xt | F t

]
= −γ

t

B
∇f(xt−τ ,Θt−τ ). (28)

Moreover, the expected value of the squared norm ‖xt+1 − xt‖2 with respect to the random
set St given F t satisfies the identity

EIt
[
‖xt+1 − xt‖2 | F t

]
=

(γt)2

B

∥∥∇f(xt−τ ,Θt−τ )
∥∥2
. (29)

Proof: See Appendex B.1. �

The results in Lemma 7 is a natural extension of the results in Lemma 2 for the lock-
free setting, since in the asynchronous scheme only one of the blocks is updated at each
iteration and the ratio r can be simplified as 1/B. This is the case, assuming that no two
processors begin computation at the exact same time, and if this happens we break ties
randomly. Thus, each processor operates on a distinct subset of coordinates at each step.
Since this coordinate subset could be any subset, we assume that it is only one block, since
we can reduce more complicated cases to this case by changing the total number of blocks
B and the block size pi. We use the result in Lemma 7 to characterize the decrement in the
expected sub-optimality in the following proposition.

Proposition 8 Consider the asynchronous random parallel stochastic algorithm defined in
(10) (Algorithm 4). If Assumptions 1-3 hold and the sequence γt is decreasing, then for
any arbitrary ρ > 0 we can show that the sequence of iterates generated by asynchronous
RAPSA satisfies

E
[
F (xt+1)− F (x∗) | F t−τ

]
≤
(

1− 2m

(
γt

B
− ρMγt

2B

))
E
[
F (xt)− F (x∗) | F t−τ

]
+
τ2MγtK(γt−τ )2

2ρB2
+
M(γt)2K

2B

+
M2(γt)2

B
(F (xt−τ )− F (x∗)) +

τ∑
s=1

τM2γt(γt−s)2

ρB2
(F (xt−τ−s)− F (x∗)) (30)

Proof: See Appendix B.2. �

We proceed to use the result in Proposition 8 to prove that the sequence of iterates
generated by asynchronous RAPSA converges to the optimal argument x∗ defined by (2).
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Theorem 9 Consider the asynchronous RAPSA defined in (10) (Algorithm 4). Suppose
Assumptions 1-4 hold and the stepsize is defined as γt := γ0T 0/(t + T 0) and the stepsize
parameters are chosen such that

γ0 ≤ min

{
B

2m
,

m

64M2
,

√
Bm

128∆2M3

}
, T 0 ≥ 4∆, γ0T 0 >

4B

3m
, (31)

then the expected average function error E
[
F (xt)− F (x∗)

]
converges to null at least with

a sublinear convergence rate of order O(1/t),

E
[
F (xt)− F (x∗)

]
≤ Q

t+ T 0
, (32)

where the constant C is defined as

Q = max

{
(F (xt)− F (x∗))T 0,

2MKB(γ0T 0)2 + 16∆2M2K(γ0)3(T 0)2

B(3mγ0T 0 − 4B)

}
(33)

Proof: See Appendix B.3. �

Theorem 9 establishes that the RAPSA algorithm when runs on a lock-free computing
architecture, still yields convergence to the optimal argument x∗ defined by (2). Moreover,
the expected objective error sequence converges to null as O(1/t). These results, which
correspond to the diminishing step-size regime, are comparable to the performance guaran-
tees (Theorem 4) previously established for RAPSA on a synchronous computing cluster,
meaning that the algorithm performance does not degrade significantly when implemented
on an asynchronous system. This point is explored numerically in Section 6.

6. Numerical analysis

In this section we study the numerical performance of the doubly stochastic approximation
algorithms developed in Sections 2-4 by first considering a linear regression problem. We
then use RAPSA to develop a visual classifier to distinguish between distinct hand-written
digits.

6.1. Linear Regression

We consider a setting in which observations zn ∈ Rq are collected which are noisy linear
transformations zn = Hnx + wn of a signal x ∈ Rp which we would like to estimate, and
w ∼ N (0, σ2Iq) is a Gaussian random variable. For a finite set of samples N , the optimal

x∗ is computed as the least squares estimate x∗ := argminx∈Rp(1/N)
∑N

n=1 ‖Hnx − zn‖2.
We run RAPSA on LMMSE estimation problem instances where q = 1, p = 1024, and
N = 104 samples are given. The observation matrices Hn ∈ Rq×p, when stacked over all n
(an N × p matrix), are generated from a matrix normal distribution whose mean is a tri-
diagonal matrix. The main diagonal is 2, while the super and sub-diagonals are all set to
−1/2. Moreover, the true signal has entries chosen uniformly at random from the fractions
x ∈ {1, . . . , p}/p. Additionally, the noise variance perturbing the observations is set to
σ2 = 10−2. We assume that the number of processors I = 16 is fixed and each processor
is in charge of 1 block. We consider different number of blocks B = {16, 32, 64, 128}. Note
that when the number of blocks is B, there are p/B = 1024/B coordinates in each block.
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(b) Excess Error F (xt)− F (x∗) vs. feature p̃t

Figure 2: RAPSA on a linear regression (quadratic minimization) problem with signal di-
mension p = 1024 for N = 103 iterations with mini-batch size L = 10 for different
number of blocks B = {16, 32, 64, 128} initialized as 104 × 1. We use constant
step-size γt = γ = 10−2. Convergence is in terms of number of iterations is
best when the number of blocks updated per iteration is equal to the number of
processors (B = 16, corresponding to parallelized SGD), but comparable across
the different cases in terms of number of features processed. This shows that
there is no price paid in terms of convergence speed for reducing the computation
complexity per iteration.

6.1.1. Synchronous Setting

We first consider the performance of RAPSA (Algorithm 1) when using a constant step-size
γt = γ = 10−2. The size of mini-batch is set as L = 10 in the subsequent experiments.
To determine the advantages of incomplete randomized parallel processing, we vary the
number of coordinates updated at each iteration. In the case that B = 16, B = 32, B = 64,
and B = 128, in which case the number of updated coordinates per iteration are 1024, 512,
256, and 128, respectively. Notice that the case that B = 16 can be interpreted as parallel
SGD, which is mathematically equivalent to Hogwild! (Recht et al., 2011), since all the
coordinates are updated per iteration, while in other cases B > 16 only a subset of 1024
coordinates are updated.

Fig. 2(a) illustrates the convergence path of RAPSA’s objective error sequence defined
as F (xt) − F (x∗) with F (x) = (1/N)

∑N
n=1 ‖Hnx − zn‖2 as compared with the number

of iterations t. In terms of iteration t, we observe that the algorithm performance is best
when the number of processors equals the number of blocks, corresponding to parallelized
stochastic gradient method. However, comparing algorithm performance over iteration t
across varying numbers of blocks updates is unfair. If RAPSA is run on a problem for
which B = 32, then at iteration t it has only processed half the data that parallel SGD,
i.e., B = 16, has processed by the same iteration. Thus for completeness we also consider
the algorithm performance in terms of number of features processed p̃t which is given by
p̃t = ptI/B.

In Fig. 2(b), we display the convergence of the excess mean square error F (xt)−F (x∗) in
terms of number of features processed p̃t. In doing so, we may clearly observe the advantages
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Figure 3: RAPSA on a linear regression problem with signal dimension p = 1024 for N =
103 iterations with mini-batch size L = 10 for different number of blocks B =
{16, 32, 64, 128} using initialization x0 = 104 × 1. We use hybrid step-size γt =
min(10−1.5, 10−1.5T̃0/t) with annealing rate T̃0 = 400. Convergence is faster with
smaller B which corresponds to the proportion of blocks updated per iteration r
closer to 1 in terms of number of iterations. Contrarily, in terms of number of
features processed B = 128 is slightly better than the other choices of B. This
shows that updating less features/coordinates per iterations can lead to faster
convergence in terms of number of processed features.

of updating fewer features/coordinates per iteration. Specifically, the different algorithms
converge in a nearly identical manner, but RAPSA with I << B may be implemented
without any communication bottleneck in the dimension of the decision variable p (also the
dimension of the feature space).

We observe a comparable trend when we run RAPSA with a hybrid step-size scheme
γt = min(ε, εT̃0/t) which is a constant ε = 10−1.5 for the first T̃0 = 400 iterations, after
which it diminishes as O(1/t). We again observe in Figure 3(a) that convergence is fastest
in terms of excess mean square error versus iteration t when all blocks are updated at each
step. However, for this step-size selection, we see that updating fewer blocks per step is
faster in terms of number of features processed. This result shows that updating fewer
coordinates per iteration yields convergence gains in terms of number of features processed.
This advantage comes from the advantage of Gauss-Seidel style block selection schemes
in block coordinate methods as compared with Jacobi schemes. In particular, it’s well
understood that for problems settings with specific conditioning, cyclic block updates are
superior to parallel schemes, and one may respectively interpret RAPSA as compared to
parallel SGD as executing variants of cyclic or parallel block selection schemes. We note
that the magnitude of this gain is dependent on the condition number of the Hessian of the
expected objective F (x).

We now study the benefits of incorporating approximate second-order information about
the objective F (x) into the algorithm in the form of ARAPSA (Algorithm 3). We first run
ARAPSA for the linear regression problem outlined above when using a constant step-size
γt = γ = 10−2 with fixed mini-batch size L = 10. Moreover, we again vary the number
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(b) Excess Error F (xt)− F (x∗) vs. feature p̃t

Figure 4: ARAPSA on a linear regression problem with signal dimension p = 1024 for
N = 103 iterations with mini-batch size L = 10 for different number of blocks
B = {16, 32, 64, 128}. We use constant step-size γt = γ = 10−1 using initialization
104×1. Convergence is comparable across the different cases in terms of number
of iterations, but in terms of number of features processed B = 128 has the best
performance and B = 16 (corresponding to parallelized oL-BFGS) converges
slowest. We observe that using fewer coordinates per iterations leads to faster
convergence in terms of number of processed elements of x.

of blocks as B = 16, B = 32, B = 64, and B = 128, corresponding to updating all, half,
one-quarter, and one-eighth of the elements of vector x per iteration, respectively.

Fig. 4(a) displays the convergence path of ARAPSA’s excess mean-square error F (xt)−
F (x∗) versus the number of iterations t. We observe that parallelized oL-BFGS (I = B)
converges fastest in terms of iteration index t. On the contrary, in Figure 4(b), we may
clearly observe that larger B, which corresponds to using fewer elements of x per step,
converges faster in terms of number of features processed. The Gauss-Seidel effect is more
substantial for ARAPSA as compared with RAPSA due to the fact that the argmin of the
instantaneous objective computed in block coordinate descent is better approximated by its
second-order Taylor-expansion (ARAPSA, Algorithm 3) as compared with its linearization
(RAPSA, Algorithm 1).

We now consider the performance of ARAPSA when a hybrid algorithm step-size is
used, i.e. γt = min(10−1.5, 10−1.5T̃0/t) with attenuation threshold T̃0 = 400. The results
of this numerical experiment are given in Figure 5. We observe that the performance
gains of ARAPSA as compared to parallelized oL-BFGS apparent in the constant step-size
scheme are more substantial in the hybrid setting. That is, in Figure 5(a) we again see
that parallelized oL-BFGS is best in terms of iteration index t – to achieve the benchmark
F (xt) − F (x∗) ≤ 10−4, the algorithm requires t = 100, t = 221, t = 412, and t > 1000
iterations for B = 16, B = 32, B = 64, and B = 128, respectively. However, in terms of
p̃t, the number of elements of x processed, to reach the benchmark F (xt) − F (x∗) ≤ 0.1,
we require p̃t > 1000, p̃t = 570, p̃t = 281, and p̃t = 203, respectively, for B = 16, B = 32,
B = 64, and B = 128.
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Figure 5: ARAPSA on a linear regression problem with signal dimension p = 1024 for
N = 104 iterations with mini-batch size L = 10 for different number of blocks
B = {16, 32, 64, 128}. We use hybrid step-size γt = min(10−1.5, 10−1.5T̃0/t) with
annealing rate T̃0 = 400. Convergence is comparable across the different cases
in terms of number of iterations, but in terms of number of features processed
B = 128 has the best performance and B = 16 has the worst performance.
This shows that updating less features/coordinates per iterations leads to faster
convergence in terms of number of processed features.

We turn to numerically analyzing the performance of Accelerated RAPSA and RAPSA
on the linear estimation problem for the case that parameter vectors x ∈ Rp are p = 500
dimensional for N = 104 iterations in the constant step-size case γ = 10−2. Both algorithms
are initialized as x0 = 103×1 with mini-batch size L = 10, and ARAPSA uses the curvature
memory level s = 10. The number of processors is fixed again as I = 16, and the number
of blocks is B = 64, meaning that r = 1/4 of the elements of x are operated on at each
iteration.

The results of this numerical evaluation are given in Figure 6. We plot the objective
error sequence versus iteration t in Figure 6(a). Observe that ARAPSA converges to within
10−4 of the optimum by t = 300 iterations in terms of F (xt) − F (x∗), whereas RAPSA,
while descending slowly, approaches within 10 of the optimum by t = 104 iterations. The
performance advantages of ARAPSA as compared to RAPSA are also apparent in Figure
6(b), which readjusts the results of Figure 6(a) to be in terms of actual elapsed time. We
see that despite the higher complexity of ARAPSA per iteration, its empirical performance
results in extremely fast convergence on linear estimation problems. That is, in about
3 seconds, the algorithm converges to within 10−4 of the optimal estimator in terms of
objective function evaluation.

6.1.2. Asynchronous Setting

We turn to studying the empirical performance of the asynchronous variant of RAPSA
(Algorithm 4) proposed in Section 4.1. The model we use for asynchronicity is modeled
after a random delay phenomenon in physical communication systems in which each local
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Figure 6: A numerical comparison of RAPSA and ARAPSA on the linear estimation prob-
lem stated at the beginning of Section 6.1 for N = 104 iterations with signal
dimension p = 500 with constant step-size γ = 10−2 when there are I = 16
processors and B = 64 blocks, meaning that one quarter of the elements of x
are updated per iteration. Observe that the rate of convergence for ARAPSA is
empirically orders of magnitude higher than RAPSA.

server has a distinct clock which is not locked to the others. Each processor’s clock begins
at time ti0 = t0 for all processors i = 1, . . . , I and selects subsequent times as tk = tk−1 +wik,
where wik ∼ N (µ, σ2) is a normal random variable with mean µ and variance σ2. The
variance in this model effectively controls the amount of variability between the clocks of
distinct processors.

We run Asynchronous RAPSA for the linear estimation problem when the parameter
vector x is p = 500 dimensional for N = 103 iterations with no mini-batching L = 1 for
both the case that the algorithm step-size is diminishing and constant step-size regimes for
the case that the noise distribution perturbing the collected observations has variance σ2 =
10−2, and the observation matrix is as discussed at the outset of Section 6.1. Further, the
algorithm is initialized as x0 = 1031. We run the algorithm for a few different instantiations
of asynchronicity, that is, wik ∼ N (µ, σ2) with µ = 1 or µ = 2, and σ = .1 or σ = .3.

The results of this numerical experiment are given in Figure 7 for both the constant and
diminishing step-size schemes. We see that the performance of the asynchronous parallel
scheme is comparable across different levels of variability among the local clocks of each
processor. In particular, in Figure 7(a) which corresponds to the case where the algorithm
is run with constant step-size γ = 10−2, we observe comparable performance in terms of the
objective function error sequence F (xt)−F (x∗) with iteration t – across the varying levels of
asynchrony we have F (xt)−F (x∗) ≤ 10 by t = 103. This trend may also be observed in the
diminishing step-size scheme γt = 1/t which is given in Figure 7(b). That is, the distance
to the optimal objective is nearly identical across differing levels of asynchronicity. In both
cases, the synchronized algorithm performs better than its asynchronous counterpart.
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Figure 7: Asynchronous RAPSA (Algorithm 4) on the linear estimation problem in the
constant (γ = 104, left) and diminishing (γt = 106/(t + 250), right) step-size
schemes with no mini-batching L = 1 for a binary training subset of size N = 103

with no regularization λ = 0 when the algorithm is initialized as x0 = 103 ×
1. Varying the asynchronicity distribution has little effect, but we find that
convergence behavior is slower than its synchronized counterpart, as expected.

6.2. Hand-Written Digit Recognition

We now make use of RAPSA for visual classification of written digits. To do so, let z ∈ Rp
be a feature vector encoding pixel intensities (elements of the unit interval [0, 1] with smaller
values being closer to black) of an image and let y ∈ {−1, 1} be an indicator variable of
whether the image contains the digit 0 or 8, in which case the binary indicator is respectively
y = −1 or y = 1. We model the task of learning a hand-written digit detector as a logistic
regression problem, where one aims to train a classifier x ∈ Rp to determine the relationship
between feature vectors zn ∈ Rp and their associated labels yn ∈ {−1, 1} for n = 1, . . . , N .
The instantaneous function fn in (1) for this setting is the λ-regularized negative log-
likelihood of a generalized linear model of the odds ratio of whether the label is yn = 1 or
yn = −1. The empirical risk minimization associated with training set T = {(zn, yn)}Nn=1

is to find x∗ as the maximum a posteriori estimate

x∗ := argmin
x∈Rp

λ

2
‖x‖2 +

1

N

N∑
n=1

log(1 + exp(−ynxT zn)) , (34)

where the regularization term (λ/2)‖x‖2 encodes a prior belief on the joint distribution of
(z, y) and helps to avoid overfitting. We use the MNIST dataset, in which feature vectors
zn ∈ Rp are p = 282 = 784 pixel images whose values are recorded as intensities, or elements
of the unit interval [0, 1]. Considered here is the subset associated with digits 0 and 8, a
training set T = {zn, yn}Nn=1 with N = 1.76× 104 sample points.

6.2.1. Synchronous Setting

We run RAPSA on this training subset for the cases that B = 16, B = 32, B = 64, and
B = 128, which are associated with updating p, p/2, p/4, and p/8 features per iteration. We
consider the use of RAPSA with both constant and hybrid step-size selections. In Figure
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Figure 8: RAPSA on MNIST data with constant step-size γt = γ = 10−.5 with no mini-
batching L = 1. Algorithm performance is best in terms of number of iterations
t when all blocks are used per step (parallelized SGD), but in terms of number
of features processed, the methods perform comparably. Thus RAPSA performs
as well as SGD while breaking the complexity bottleneck in p, the dimension of
decision variable x.
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Figure 9: RAPSA on MNIST data with hybrid step-size γt = min(10−3/4, 10−3/4T̃0/t), with
T̃0 = 300 and no mini-batching L = 1. As with the constant step-size selection,
we observe that updating all blocks per iteration is best in terms of t, but in terms
of elements of x updated, algorithm performance is nearly identical, meaning that
no price is paid for breaking the complexity bottleneck in p.

8, we display the results when we select a constant learning rate γt = γ = 10−.5 = 0.316.
In Figure 8(a) we plot the objective F (xt) versus iteration t, and observe that algorithm
performance improves with using more elements of x per iteration. That is, using all p
coordinates of x achieves superior convergence with respect to iteration t. However, as
previously noted, iteration index t is an unfair comparator for objective convergence since
the four different setting process different number of features per iteration. In Figure
8(b), we instead consider F (xt) versus the number of coordinates of x, denoted as p̃t, that
algorithm performance is comparable across the different selections of B. This demonstrates
that RAPSA breaks the computational bottleneck in p while suffering no reduction in
convergence speed with respect to p̃t.

We consider further the classification accuracy on a test subset of size Ñ = 5.88× 103,
the results of which are shown in Fig. 8(c). We see that the result for classification accuracy
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Figure 10: ARAPSA on MNIST data with constant step-size γt = γ = 10−2 and mini-batch
size L = 10, curvature memory τ = 10, and regularizer λ = 7.5 × 10−3. Algo-
rithm performance is comparable across different numbers of decision variable
coordinates updated per iteration t, but in terms of number of features processed,
ARAPSA performance best when using the least information per update.

on a test set is consistent with the results for the convergence of the objective function value,
and asymptotically reach approximately 98% across the different instances of RAPSA.

In Figure 9 we show the result of running RAPSA for this logistic regression problem
with hybrid step-size γt = min(10−3/4, 10−3/4T̃0/t), with T̃0 = 300 and no mini-batching
L = 1. In Fig. 9(a), which displays the objective F (xt) versus iteration t, that using full
stochastic gradients is better than only updating some of the coordinates in terms of the
number of iterations t. In particular, to reach the objective benchmark F (xt) ≤ 10−1, we
have to run RAPSA t = 74, t = 156, and t = 217, and t = 631 iterations, for the cases that
B = 16, B = 32, B = 64, and B = 128. We illustrate the objective F (xt) vs. feature p̃t
in Fig. 9(b). Here we recover the advantages of randomized incomplete parallel processing:
updating fewer blocks per iteration yields comparable algorithm performance.

We additionally display the algorithm’s achieved test-set accuracy on a test subset of
size Ñ = 5.88×103 in Fig. 9(c) under the hybrid step-size regime. We again see that after a
burn-in period, the classifier achieves the highly accurate asymptotic error rate of between
1 − 2% across the different instantiations of RAPSA. We note that the test set accuracy
achieved by the hybrid scheme is superior to the constant step-size setting.

We now run Accelerated RAPSA (Algorithm 3) as stated in Section 3 for this problem
setting for the entire MNIST binary training subset associated with digits 0 and 8, with
mini-batch size L = 10 and the level of curvature information set as τ = 10. We further
select regularizer λ = 1/

√
N = 7.5× 10−3, and consider both constant and hybrid step-size

regimes. As before, we study the advantages of incomplete randomized parallel processing
by varying the number of blocks B ∈ {16, 32, 64, 128} on an architecture with a fixed number
|It| = I = 16 of processors. This setup is associated with using all p entries of vector x at
each iteration as compared with 1/2, 1/4, and 1/8 of its entries.

Figures 10 the results of this algorithm run when a constant step-size γ = 10−2 is
used. Observe in Figure 10(a) that the algorithm achieves convergence across the differing
numbers of blocks B in terms of iteration t, with faster learning rates achieved with smaller
B. In particular, to reach the benchmark F (xt) ≤ 10−1, we require t = 145, t = 311, and
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0 100 200 300 400 500 600 700 800 900 1000

tL, number of feature vectors processed

10
-2

10
-1

10
0

10
1

10
2

F
(
x
t
)
=

1 N

∑
N n
=
1
f
n
(
x
t
)
,
O
b
je
c
t
iv
e

B=16
B=32
B=64
B=128

(a) Objective value vs. iteration t.

0 100 200 300 400 500 600 700 800 900 1000

p̃t, number of features processed

10
-2

10
-1

10
0

10
1

10
2

F
(
x
t
)
=

1 N

∑
N n
=
1
f
n
(
x
t
)
,
O
b
je
c
t
iv
e

B=16
B=32
B=64
B=128

(b) Objective value vs. feature p̃t.

0 100 200 300 400 500 600 700 800 900 1000

p̃t, number of features processed

0.8

0.85

0.9

0.95

1

P
(
Ŷ
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Figure 11: ARAPSA on MNIST data with hybrid step-size γt = min(10−1, 10−1T̃0/t), with
T̃0 = 500, mini-batch size L = 10, curvature memory τ = 10, and regularizer
λ = 7.5×10−3. Algorithm performance is comparable across different numbers of
decision variable coordinates updated per iteration t, but in terms of number of
features processed, RAPSA performance best when using the least information
per update.

t = 701 iterations for B = 16, B = 32, and B = 64, respectively, whereas the case B = 128
does not achieve this benchmark by t = 103. This trend is inverted, however, in Figure
10(b), which displays the objective F (xt) with p̃t the number of coordinates of x on which
the algorithm operates per step. Observe that using fewer entries of x per iteration is better
in terms of number of features processed p̃t. Furthermore, ARAPSA achieves comparable
accuracy on a test set of images, approximately near 98% across different selections of B,
as is displayed in Figure 10(c).

We now run Accelerated RAPSA when the learning rate is hand-tuned to optimize
performance via a hybrid scheme γt = min(10−1, 10−1T̃0/t), with attenuation threshold
T̃0 = 500. The results of this experiment are given in Figure 11. In particular, in Figure
11(a) we plot the objective F (xt) with iteration t when the number of blocks B is varied.
We see that parallelized oL-BFGS (I = B so that r = 1) performs best in terms of t: to
achieve the threshold condition F (xt) ≤ 10−1, we require t = 278, t = 522 iterations for
B = 16 and B = 32, respectively, whereas the cases B = 64 and B = 128 do not achieve
this benchmark by t = 103. However, the instance of ARAPSA with the fastest and most
accurate convergence uses the least coordinates of x when we compare the objective with
p̃t, as may be observed in Figure 11(b). This trend is corroborated in Figure 11(c), where
we observe that ARAPSA with B = 128 achieves 99% test-set accuracy the fastest, followed
by B = 64, B = 32, and B = 16.

We now compare the performance of RAPSA and its accelerated variant on the MNIST
digit recognition problem for a binary subset of the training data consisting of N = 105

samples. We run both algorithms on an I = 16 processor simulated architecture with
B = 64 blocks, such that r = 1/4 of the elements of x are operated upon at each step. We
consider the constant algorithm step-size scheme γ = 10−2 with mini-batch size L = 10.

The results of this online training procedure are given in Figure (12), where we plot
the objective optimality gap F (xt)− F (x∗) versus the number of feature vectors processed
tL (Figure 12(a)) and actual elapsed time (Figure 12(b)). We see ARAPSA achieves su-

26



A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning

0 1 2 3 4 5 6 7 8 9 10

tL, number of feature vectors processed ×10
4

10
-2

10
-1

10
0

10
1

10
2

F
(
x
t
)
=

1 N

∑
N n
=
1
f
n
(
x
t
)
,
O
b
je
c
t
iv
e

RAPSA

ARAPSA

(a) F (xt)− F (x∗) vs. iteration t.

0 5 10 15 20 25

Clock time in seconds

10
-2

10
-1

10
0

10
1

10
2

F
(
x
t
)
=

1 N

∑
N n
=
1
f
n
(
x
t
)
,
O
b
je
c
t
iv
e

ARAPSA

RAPSA

(b) F (xt)− F (x∗) vs. clock time (s).

Figure 12: A comparison of RAPSA and ARAPSA on the MNIST digit recognition problem
for a binary training subset of size N = 105 with mini-batch size L = 10 in the
constant step-size scheme γ = 10−2. The objective optimality gap F (xt) −
F (x∗) is shown with respect to the number of feature vectors processed tL
(left) and actual elapsed time (right). While the performance difference between
RAPSA and ARAPSA is not as large as in the linear estimation problem, we
still observe that ARAPSA substantially accelerates the convergence of RAPSA
for a standard machine learning problem.

perior convergence behavior with respect to RAPSA in terms of number of feature vectors
processed: to achieve the benchmark F (xt)− F (x∗) ≤ 10−1, ARAPSA requires fewer than
tL = 200 feature vectors, whereas RAPSA requires tL = 4 × 104 feature vectors. This
relationship is corroborated in Figure 12(b), where we see that within a couple seconds
ARAPSA converges to within 10−1, whereas after five times as long, RAPSA does not
achieve this benchmark.

6.2.2. Asynchronous Setting

We now evaluate the empirical performance of the asynchronous variant of RAPSA (Algo-
rithm 4) proposed in Section 4.1 on the logistic regression formulation of the MNIST digit
recognition problem. The model we use for asynchronicity is the one outlined in Section 6.1,
that is, each local processor has a distinct local clock which is not required coincide with
others, begins at time ti0 = t0 for all processors i = 1, . . . , I, and then selects subsequent
times as tk = tk−1 + wik. Here wik ∼ N (µ, σ2) is a normal random variable with mean
µ and variance σ2 which controls the amount of variability between the clocks of distinct
processors. We run the algorithm with no regularization λ = 0 or mini-batching L = 1 and
initialization x0 = 1.

The results of this numerical setup are given in Figure 13. We consider the expected
risk F (xt) in both both the constant (γ = 10−2, Figure 13(a)) and diminishing (γt = 1/t,
Figure 13(b)) algorithm step-size schemes. We see that the level of asynchronicity does not
significantly impact the performance in either scheme, and that the convergence guarantees
established in Theorem 9 hold true in practice. We again observe that the version of RAPSA
with synchronized computations converges at a faster rate than Asynchronous RAPSA.
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Figure 13: Asynchronous RAPSA on MNIST data in the constant (γ = 10−2, left) and
diminishing (γt = 1/t, right) step-size schemes with no mini-batching L = 1
for a binary training subset of size N = 103 with no regularization λ = 0 when
the algorithm is initialized as x0 = 1. The variability in local processor clocks
does not significantly impact performance in both the diminishing and constant
step-size settings; however, the synchronous algorithm converges at a faster rate.

7. Numerical Experiments on High-Performance Computing Cluster

In this Section, we report numerical experiments from a real high-performance computing
(HPC) cluster. We wrote the code in C++ and compiled using Intel C++ compiler (version
16.0.2). Each node was equipped with two Intel Xeon Processor E7. The communication
between nodes was achieved by MPI (we have used Intel’s MPI implementation).

7.1. Implementation Details

Before we present our numerical results, let us describe our implementation of synchronous
(Algorithm 3) and asynchronous (Algorithm 5) ARAPSA. In both implementations, we
partition blocks b ∈ {1, 2, . . . , B} across computing nodes. Let us denote {Pi}Ii=1 such a
partition. Then node i ∈ {1, 2, . . . , I} will ”own” blocks b· ∈ Pi. This means that the
node i can choose only blocks from partition Pi. We therefore can also store {(vub· , r

u
b·

)}
locally which will save a huge amount of storage and communication. Let us now briefly
discuss the differences between synchronous and asynchronous implementation (for detailed
comparisons and discussion about synchronous and asynchronous distributed algorithms see
e.g. Richtárik and Takáč (2016); Mareček et al. (2014)).

Synchronous ARAPSA. Synchronous implementations are more straightforward and
popular mainly because they are easy to implement and analyze and one can easily balance
local computation with communication (see e.g. Jaggi et al. (2014); Smith et al. (2017);
Yang (2013); Ma et al. (2017); Matsushima et al. (2017)). In our synchronous version of
the algorithm, we have a dedicated (master) node which holds the “current” state of the
optimization variable xt. This vector is broadcasted to the worker nodes. Afterward, each
worker node i ∈ {1, 2, . . . , I} selects a block bji ∈ Pi and a mini-batch Θt

i and computes
an update dtbji

. After each worker nodes finished its computation, a collective operation

28



A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning

“gather” is used, to send the updates {dtbji}
I
i=1 to the master node. Recall, that vectors

{(vub· , r
u
b·

)} are stored locally and hence they do not need to be communicated. After master
nodes gather all updates from workers, it applies them and forms vector xt+1 which is then
again broadcaster to the workers (see Figure 14 left).

Figure 14: Synchronous implementation (left) or ARAPSA and asynchronous implemen-
tation (right). In both implementations we partition blocks b ∈ {1, 2, . . . , B}
between workers and each worker is responsible for updating only its blocks.
This approach will save on communication, as workers do not need to send
(vub , r

u
b ) vectors to each other. In a synchronous implementation, a master node

first broadcast the current state of the optimization variable xt and afterward
each worker picks a block from its partition and sends the update dtb to master
node. Subsequently, master node applies all received updates and broadcasts a
new state of optimization variable. In an asynchronous implementation, each
worker is asking for a current state of x and sends updates dtb independently
from each other.

Asynchronous ARAPSA. Asynchronous parallel and distributed optimization algo-
rithms were studied deeply in late 80’s (Tsitsiklis et al. (1986)), but they became popular
more recently, when more and more researchers obtained access to large computing clusters
and clouds (see e.g. Recht et al. (2011); Dean et al. (2012); Mareček et al. (2014); Meng
et al. (2016)).

Our implementation closely follows an asynchronous Downpour SGD (Dean et al. (2012))
with the difference, that we do not partition data but rather we partition the blocks
b ∈ {1, 2, . . . , B} (see e.g. Ma and Takáč (2016)). We dedicate one server to be “the
parameter server,” which holds the current state of the optimization variable xt. Each
other computing nodes are “workers” which in each iteration request the current state of
the optimization variable from a parameter server, then they pick a random batch Θi, and
each worker computes an update dti. This update is subsequently sent to a parameter server,
which applies it to x (see Figure 14 right). Note that workers do not synchronize between
each others and work independently.
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Table 1: Basic characteristics of the datasets.

Dataset #Features #Samples Sparsity Size [MBs]

RCV-Test 47,236 677,399 0.15% 575
URL 3,231,961 2,396,130 0.0036% 3,198

KDDA 20,216,830 8,407,752 0.00018% 3,593

7.2. Experiments

In this Section, we perform numerical experiments on datasets with 0.6M-8.5M samples and
47k-20M features (see Table 1 for the basic characteristics of the datasets used). All datasets
are available for download at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

7.2.1. Evolution of Training Error

In Figures 15- 20 we show the evolution of training error as a function of iterations and
wall clock time for various values of I (number of workers used) for both synchronous and
asynchronous settings. In all Figures, the top row corresponds to the case when B = 64
and the bottom case corresponds to the case when B = 256.2 We run all algorithms
for 100 iterations only (to be precise for 100 · I block updates). Let us now comment
on interesting observations. First of all, for all datasets, we can observe that a smaller
number of blocks leads to faster convergence. Also, a larger number of nodes (bigger
I) leads to faster convergence. For RCV-Test there is no significant difference between
synchronous and asynchronous version. This is mostly because the size of messages is
small (p = 47k). However, we can observe that if more nodes are used, the speed of
the asynchronous algorithm is worse. This, however, is not surprising and can be simply
explained as follows: The computation takes typically longer than single communication. In
synchronous version, in a single iteration, the master node will receive at most p numbers
and will broadcast the current state of xt which is exactly p numbers. However, in an
asynchronous version of the algorithm, the parameter server also receives at most p numbers,
however, has to send a fresh state of xt I times. Moreover, when I becomes large, the
communication performed by parameter server will become a bottleneck. This could be
overcome if we use multiple parameter servers, each responsible for just a fraction of x.

We would like to also add that the results in Figures 15-20 highlight the speed-up
obtained by parallel computing. For instance, the plots in Figure 15 show that for both
cases of B = 64 and B = 256 by increasing the number of active processors I the training
error reduces faster in terms of number of iterations. Indeed, as the process is in parallel, by
increasing the number of active processors computation time per iteration does not increase,
and we observe the same speed-up in terms of overall elapsed time as well.

Moreover, when we look at a fix number of processors, we observe better performance
when B is smaller which leads to larger r. For instance, consider the plots in Figure 20 for
Asynchronous RAPSA with I = 2. As we observe both in terms of time and iteration when

2. We have chosen γ = 10−7 and size of mini-batch to be 10% of the whole dataset, so the local compu-
tation is not much smaller than the communication. We further partition data in such a way, that the
computational time for each block would be roughly the same.
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Figure 15: Evolution of training error for RCV-Test dataset for synchronous implementa-
tion for various values of B and I.
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Figure 16: Evolution of training error for RCV-Test dataset for asynchronous implementa-
tion for various values of B and I.
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Figure 17: Evolution of training error for URL dataset for synchronous implementation for
various values of B and I.
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Figure 18: Evolution of training error for URL dataset for asynchronous implementation
for various values of B and I.
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Figure 19: Evolution of training error for KDDA dataset for synchronous implementation
for various values of B and I.
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Figure 20: Evolution of training error for KDDA dataset for asynchronous implementation
for various values of B and I.
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Figure 21: Distribution of local computation and communication for RCV-Test dataset.
SB=Synchronous Balanced; SI=Synchronous Imbalanced, AB=Asynchronous Balanced; AI=Asynchronous Imbal-
anced.
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Figure 22: Distribution of local computation and communication for URL dataset.
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Figure 23: Distribution of local computation and communication for KDDA dataset.

we increase the number of blocks from B = 64 to B = 256, the convergence speed of the
algorithm becomes slower. This observation matches our result that in parallel settings a
larger ratio r = I/B leads to faster convergence.

7.2.2. Effect of Imbalanced Blocks and Asynchronicity

In Figures 21, 22 and 23 we compare how the load-balancing of local computation affects
the communication both for Synchronous and Asynchronous ARAPSA. We have two block-
partitionings. One is Balanced, where the local computation for each block is very similar.
The second type of partitioning is Imbalanced. In this partitioning, we have created two
sizes of blocks. In each iteration, there is a 10% chance, that larger block is chosen. Let
us remark, that the larger block requires approximately 5x more work than smaller blocks.
In the first column on the plots, we can see the boxplots showing the computation time.
Observe that most of the computation took 0.1sec, 0.5sec, and 0.6sec for RCV-Test, URL
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and KDDA dataset respectively. The middle and last column show the boxplots for com-
munication time (as measured by workers). Note that in the synchronous implementation,
even if some of the nodes finish their tasks, we have to wait for the slowest worker and this
time is included in communication for all the workers. We can see that synchronous im-
plementation are usually much slower than asynchronous implementations by a few orders
of magnitude. This is however not the case for large value of I for KDDA dataset. Let us
remind that in this case, the parameter server is the bottleneck as the size of messages it
needs to send requires significantly more time than the duration of local computation.

8. Conclusions

We proposed the random parallel stochastic algorithm (RAPSA) proposed as a doubly
stochastic approximation algorithm capable of optimization problems associated with learn-
ing problems in which both the number of predictive parameters and sample size are huge-
scale. RAPSA is doubly stochastic since each processors utilizes a random set of functions
to compute the stochastic gradient associated with a randomly chosen sets of variable coor-
dinates. We showed the proposed algorithm converges to the optimal solution sublinearly
when the step-size is diminishing. Moreover, linear convergence to a neighborhood of the
optimal solution can be achieved using a constant step-size. We further introduced ac-
celerated and asynchronous variants of RAPSA, and presented convergence guarantees for
asynchronous RAPSA.

A detailed numerical comparison between RAPSA and parallel SGD for learning a linear
estimator and a logistic regressor is provided. The numerical results showcase the advantage
of RAPSA with respect to parallel SGD. Further empirical results illustrate the advantages
of ARAPSA with respect to parallel oL-BFGS, and that implementing the algorithm on a
lock-free parallel computing cluster does not substantially degrade empirical performance.
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Appendix A. Proof of Results Leading to Theorems 4 and 5

A.1. Proof of Lemma 2

Recall that the components of vector xt+1 are equal to the components of xt for the coor-
dinates that are not updated at step t, i.e., i /∈ It. For the updated coordinates i ∈ It we
know that xt+1

i = xti − γt∇xt
i
f(xt,θt). Therefore, B − I blocks of the vector xt+1 − xt are

0 and the remaining I randomly chosen blocks are given by −γt∇xt
i
f(xt,θt). Notice that

there are
(
B
I

)
different ways for picking I blocks out of the whole B blocks. Therefore, the

probability of each combination of blocks is 1/
(
B
I

)
. Further, each block appears in

(
B−1
I−1

)
of
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the combinations. Therefore, the expected value can be written as

EIt
[
xt+1 − xt | F t

]
=

(
B−1
I−1

)(
B
I

) (
−γt∇f(xt,Θt)

)
. (35)

Observe that simplifying the ratio in the right hand sides of (35) leads to(
B−1
I−1

)(
B
I

) =

(B−1)!
(I−1)!×(B−I)!

B!
I!×(B−I)!

=
I

B
= r. (36)

Substituting the simplification in (36) into (35) follows the claim in (16). To prove the
claim in (17) we can use the same argument that we used in proving (16) to show that

EIt
[
‖xt+1−xt‖2 | F t

]
=

(
B−1
I−1

)(
B
I

) (γt)2
∥∥∇f(xt,Θt)

∥∥2
. (37)

By substituting the simplification in (36) into (37) the claim in (17) follows.

A.2. Proof of Proposition 3

By considering the Taylor’s expansion of F (xt+1) near the point xt and observing the
Lipschitz continuity of gradients ∇F with constant M we obtain that the average objective
function F (xt+1) is bounded above by

F (xt+1) ≤ F (xt) +∇F (xt)T (xt+1 − xt) +
M

2
‖xt+1 − xt‖2. (38)

Compute the expectation of the both sides of (38) with respect to the random set It
given the observed set of information F t. Substitute the terms EIt

[
xt+1 − xt | F t

]
and

EIt
[
‖xt+1 − xt‖2 | F t

]
with their simplifications in (16) and (17), respectively, to write

EIt
[
F (xt+1) | F t

]
≤ F (xt)− rγt ∇F (xt)T∇f(xt,Θt) +

rM(γt)2

2

∥∥∇f(xt,Θt)
∥∥2
. (39)

Notice that the stochastic gradient ∇f(xt,Θt) is an unbiased estimate of the average func-
tion gradient ∇F (xt). Therefore, we obtain EΘt

[
∇f(xt,Θt) | F t

]
= ∇F (xt). Observing

this relation and considering the assumption in (15), the expected value of (39) with respect
to the set of realizations Θt can be written as

EIt,Θt

[
F (xt+1) | F t

]
≤ F (xt)− rγt

∥∥∇F (xt)
∥∥2

+
rM(γt)2

2

∥∥∇F (xt)
∥∥2

+
rM(γt)2K

2
.

(40)

Subtracting the optimal objective function value F (x∗) form the both sides of (40) implies
that

EIt,Θt

[
F (xt+1)− F (x∗) | F t

]
≤ F (xt)− F (x∗)− rγt

(
1− Mγt

2

)∥∥∇F (xt)
∥∥2

+
rM(γt)2K

2
.

(41)
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We proceed to find a lower bound for the gradient norm ‖∇F (xt)‖ in terms of the objective
value error F (xt) − F (x∗). Assumption 1 states that the average objective function F is
strongly convex with constant m > 0. Therefore, for any y, z ∈ Rp we can write

F (y) ≥ F (z) +∇F (z)T (y − z) +
m

2
‖y − z‖2. (42)

For fixed z, the right hand side of (42) is a quadratic function of y whose minimum argument
we can find by setting its gradient to zero. Doing this yields the minimizing argument
ŷ = z− (1/m)∇F (z) implying that for all y we must have

F (y) ≥ F (w) +∇F (z)T (ŷ − z) +
m

2
‖ŷ − z‖2

= F (z)− 1

2m
‖∇F (z)‖2. (43)

Observe that the bound in (43) holds true for all y and z. Setting values y = x∗ and
z = xt in (43) and rearranging the terms yields a lower bound for the squared gradient
norm ‖∇F (xt)‖2 as

‖∇F (xt)‖2 ≥ 2m(F (xt)− F (x∗)). (44)

Substituting the lower bound in (44) by the norm of gradient square ‖∇F (xt)‖2 in (41)
implies

EIt,Θt

[
F (xt+1)− F (x∗) | F t

]
≤
(

1− 2mrγt
(

1− Mγt

2

))
(F (xt)− F (x∗)) +

rM(γt)2K

2
.

(45)

and the claim in (18) follows.

A.3. Proof of Theorem 4

We use the relationship in (18) to build a supermartingale sequence. To do so, define the
stochastic process αt as

αt := F (xt)− F (x∗) +
rMK

2

∞∑
u=t

(γu)2. (46)

Note that αt is well-defined because
∑∞

u=t(γ
u)2 ≤

∑∞
u=0(γu)2 < ∞ is summable. Further

define the sequence βt with values

βt := 2mγtr

(
1− Mγt

2

)
(F (xt)− F (x∗)). (47)

Note that we further assume that for all t ≥ 0 we have γt ≤ 1/M and therefore βt ≥ 0. The
definitions of sequences αt and βt in (46) and (47), respectively, and the inequality in (18)
imply that the expected value αt+1 given F t can be written as

E
[
αt+1

∣∣F t] ≤ αt − βt. (48)
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Since the sequences αt and βt are nonnegative it follows from (48) that they satisfy the
conditions of the supermartingale convergence theorem – see e.g. Theorem E7.4 of Solo and
Kong (1994). Therefore, we obtain that: (i) The sequence αt converges almost surely to a
limit. (ii) The sum

∑∞
t=0 β

t <∞ is almost surely finite. The latter result yields

∞∑
t=0

2mγtr

(
1− Mγt

2

)
(F (xt)− F (x∗)) <∞. a.s. (49)

Further, we know that 1/2 ≤
(

1− Mγt

2

)
≤ 1 and hence we can write

∞∑
t=0

γt(F (xt)− F (x∗)) <∞. a.s. (50)

Since the sequence of step sizes γt is non-summable there exits a subsequence of sequence
F (xt) − F (x∗) which is converging to null. This observation is equivalent to almost sure
convergence of lim inf F (xt)− F (x∗) to null,

lim inf
t→∞

F (xt)− F (x∗) = 0. a.s. (51)

Based on the martingale convergence theorem for the sequences αt and βt in relation (48),
the sequence αt almost surely converges to a limit. Consider the definition of αt in (46).
Observe that the sum

∑∞
u=t(γ

u)2 is deterministic and its limit is null. Therefore, the
sequence of the objective function value error F (xt) − F (x∗) almost surely converges to a
limit. This observation in association with the result in (51) implies that the whole sequence
of F (xt)− F (x∗) converges almost surely to null,

lim
t→∞

F (xt)− F (x∗) = 0. a.s. (52)

The last step is to prove almost sure convergence of the sequence ‖xt − x∗‖2 to null, as a
result of the limit in (52). To do so, we follow by proving a lower bound for the objective
function value error F (xt)−F (x∗) in terms of the squared norm error ‖xt−x∗‖2. According
to the strong convexity assumption, we can write the following inequality

F (xt) ≥ F (x∗) +∇F (x∗)T (xt − x∗) +
m

2
‖xt − x∗‖2. (53)

Observe that the gradient of the optimal point is the null vector, i.e., ∇F (x∗) = 0. This
observation and rearranging the terms in (53) imply that

F (xt)− F (x∗) ≥ m

2
‖xt − x∗‖2. (54)

The upper bound in (54) for the squared norm ‖xt − x∗‖2 in association with the fact that
the sequence F (xt) − F (x∗) almost surely converges to null, leads to the conclusion that
the sequence ‖xt − x∗‖2 almost surely converges to zero. Hence, the claim in (19) is valid.
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The next step is to study the convergence rate of RAPSA in expectation. In this step we
assume that the diminishing stepsize is defined as γt = γ0T 0/(t+T 0). Recall the inequality
in (18) which is

E
[
F (xt+1)− F (x∗) | F t

]
≤
(

1− 2mrγt
(

1− Mγt

2

))(
F (xt)− F (x∗)

)
+
rM(γt)2K

2
.

(55)

Since we assume that for all t ≥ 0 we have γt ≤ 1/M , then we can replace
(

1− Mγt

2

)
in

(18) by its lower bound 1/2 to obtain

E
[
F (xt+1)− F (x∗) | F t

]
≤
(
1−mrγt

) (
F (xt)− F (x∗)

)
+
rM(γt)2K

2
. (56)

Substitute γt by γ0T 0/(t+ T 0) and compute the expected value of (18) given F0 to obtain

E
[
F (xt+1)− F (x∗)

]
≤
(

1− mrγ0T 0

(t+ T 0)

)
E
[
F (xt)− F (x∗)

]
+
rMK(γ0T 0)2

2(t+ T 0)2
. (57)

We use the following lemma to show that the result in (57) implies sublinear convergence
of the sequence of expected objective value error E

[
F (xt)− F (x∗)

]
.

Lemma 10 Let c > 1, b > 0 and t0 > 0 be given constants and ut ≥ 0 be a nonnegative
sequence that satisfies

ut+1 ≤
(

1− c

t+ t0

)
ut +

b

(t+ t0)2 , (58)

for all times t ≥ 0. The sequence ut is then bounded as

ut ≤ Q

t+ t0
, (59)

for all times t ≥ 0, where the constant Q is defined as Q := max{b/(c− 1), t0u0} .

Proof See Section 2 in (Nemirovski et al. (2009)).

Lemma 10 shows that if a sequence ut satisfies the condition in (58) then the sequence
ut converges to null at least with the rate of O(1/t). By assigning values t0 = T 0, ut =
E
[
F (xt)− F (x∗)

]
, c = mrγ0T 0, and b = rMK(γ0T 0)2/2, the relation in (57) implies that

the inequality in (58) is satisfied for the case that mrγ0T 0 > 1. Therefore, the result in
(59) holds and we can conclude that

E
[
F (xt)− F (x∗)

]
≤ C

t+ T 0
, (60)

where the constant C is defined as

C = max

{
rMK(γ0T 0)2

2(rmγ0T 0 − 1)
, T 0(F (x0)− F (x∗))

}
. (61)
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A.4. Proof of Theorem 5

To prove the claim in (22) we use the relationship in (18) (Proposition 3) to construct a
supermartingale. First note that since we assume that for all t ≥ 0 we have γt = γ ≤ 1/M ,

then we can replace
(

1− Mγt

2

)
in (18) by its lower bound 1/2 to obtain

E
[
F (xt+1)− F (x∗) | F t

]
≤ (1−mrγ)

(
F (xt)− F (x∗)

)
+
rMγ2K

2
. (62)

Define the stochastic process αt with values

αt :=
(
F (xt)− F (x∗)

)
× 1

{
min
u≤t

F (xu)− F (x∗)>
γMK

2m

}
(63)

The process αt tracks the optimality gap F (xt)−F (x∗) until the gap becomes smaller than
γMK/4m for the first time at which point it becomes αt = 0. Notice that the stochastic
process αt is always non-negative, i.e., αt ≥ 0. Likewise, we define the stochastic process
βt as

βt := γmr

(
F (xt)− F (x∗)− γMK

2m

)
× 1

{
min
u≤t

F (xu)− F (x∗) >
γMK

2m

}
, (64)

which follows γmr
(
F (xt)− F (x∗)− γMK/2m

)
until the time that the optimality gap

F (xt) − F (x∗) becomes smaller than γMK/2m for the first time. After this moment the
stochastic process βt becomes null. According to the definition of βt in (64), the stochastic
process satisfies βt ≥ 0 for all t ≥ 0. Based on the relationship (18) and the definitions of
stochastic processes αt and βt in (63) and (64) we obtain that for all times t ≥ 0

E
[
αt+1 | F t

]
≤ αt − βt. (65)

To check the validity of (65) we first consider the case that minu≤t F (xu) − F (x∗) >
γMK/(2m) holds. In this scenario we can simplify the stochastic processes in (63) and
(64) as αt = F (xt) − F (x∗) and βt = γmr

(
F (xt)− F (x∗)− γMK/(2m)

)
. Therefore,

according to the inequality in (18) the result in (65) is valid. The second scenario that
we check is minu≤t F (xu) − F (x∗) ≤ γMK/(2m). Based on the definitions of stochastic
processes αt and βt, both of these two sequences are equal to 0. Further, notice that when
αt = 0, it follows that αt+1 = 0. Hence, the relationship in (65) is true.

Given the relation in (65) and non-negativity of stochastic processes αt and βt we
obtain that αt is a supermartingale. The supermartingale convergence theorem yields: i)
The sequence αt converges to a limit almost surely. ii) The sum

∑∞
t=1 β

t is finite almost
surely. The latter result implies that the sequence βt is converging to null almost surely,
i.e.,

lim
t→∞

βt = 0 a.s. (66)

Based on the definition of βt in (64), the limit in (66) is true if one of the following events
holds: i) The indicator function is null after for large t. ii) The result that the limit
limt→∞

(
F (xt)− F (x∗)− γMK/(2m)

)
= 0 holds true. From any of these two events it is

implied that

lim inf
t→∞

F (xt)− F (x∗) ≤ γMK

2m
a.s. (67)
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Therefore, the claim in (22) is valid. The result in (67) shows the objective function value
sequence F (xt) almost sure converges to a neighborhood of the optimal objective function
value F (x∗).

We proceed to prove the result in (23). Compute the expected value of (62) given F0

to obtain

E
[
F (xt+1)− F (x∗)

]
≤ (1−mγr)E

[
F (xt)− F (x∗)

]
+
rMKγ2

2
. (68)

Notice that the expression in (68) provides an upper bound for the expected value of ob-
jective function error E

[
F (xt+1)− F (x∗)

]
in terms of its previous value E

[
F (xt)− F (x∗)

]
and an error term. Rewriting the relation in (68) for step t− 1 leads to

E
[
F (xt)− F (x∗)

]
≤ (1−mγr)E

[
F (xt−1)− F (x∗)

]
+
rMKγ2

2
. (69)

Substituting the upper bound in (69) for the expectation E
[
F (xt)− F (x∗)

]
in (68) follows

an upper bound for the expected error E
[
F (xt+1)− F (x∗)

]
as

E
[
F (xt+1)−F (x∗)

]
≤ (1−mγr)2 E

[
F (xt−1)−F (x∗)

]
+
rMKγ2

2
(1 + (1−mrγ)). (70)

By recursively applying the steps in (69)-(70) we can bound the expected objective function
error E

[
F (xt+1)− F (x∗)

]
in terms of the initial objective function error F (x0)−F (x∗) and

the accumulation of the errors as

E
[
F (xt+1)−F (x∗)

]
≤ (1−mγr)t+1 (F (x0)− F (x∗)) +

rMKγ2

2

t∑
u=0

(1−mrγ)u. (71)

Substituting t by t− 1 and simplifying the sum in the right hand side of (71) yields

E
[
F (xt)− F (x∗)

]
≤ (1−mγr)t (F (x0)− F (x∗)) +

MKγ

2m

[
1− (1−mrγ)t

]
. (72)

Observing that the term 1 − (1−mrγ)t in the right hand side of (72) is strictly smaller
than 1 for the stepsize γ < 1/(mr), the claim in (23) follows.

Appendix B. Proofs Leading up to Theorem 9

B.1. Proof of Lemma 7

Proof: Recall that the components of vector xt+1 are equal to the components of xt for
the coordinates that are not updated at step t, i.e., i /∈ It. For the updated coordinates
i ∈ It we know that xt+1

i = xti − γt∇xt
i
f(xt−τ ,θt−τ ). Therefore, B − 1 blocks of the vector

xt+1−xt are 0 and only one block is given by −γt∇xif(xt−τ ,θt−τ ). Since the corresponding
processor picks its block uniformly at random from the B sets of blocks we obtain that the
expected value of the difference xt+1 − xt with respect to the index of the block at time t
is given by

EIt
[
xt+1 − xt | F t

]
=

1

B

(
−γt∇f(xt−τ ,Θt−τ )

)
. (73)
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Substituting the simplification in (73) in place of (35) in the proof of Lemma 2 and simpli-
fying the resulting expression yields the claim in (28). To prove the claim in (29) we can
use the same argument that we used in proving (28) to show that

EIt
[
‖xt+1 − xt‖2 | F t

]
=

(γt)2

B

∥∥∇f(xt−τ ,Θt−τ )
∥∥2
, (74)

which completes the proof. �

B.2. Proof of Proposition 8

The Lipschitz continuity of gradients with constant M allows us to write

F (xt+1) ≤ F (xt) +∇F (xt)T (xt+1 − xt) +
M

2
‖xt+1 − xt‖2. (75)

Compute the expectation of the both sides of (75) with respect to the random indexing set
It ⊂ {1, . . . , B} associated with chosen blocks given the observed set of information F t.
Substitute EIt

[
xt+1 − xt | F t

]
and EIt

[
‖xt+1 − xt‖2 | F t

]
with their simplifications in (28)

and (29), respectively, to write

EIt
[
F (xt+1) | F t

]
≤ F (xt)− γt

B
∇F (xt)T∇f(xt−τ ,Θt−τ ) +

M(γt)2

2B

∥∥∇f(xt−τ ,Θt−τ )
∥∥2
.

(76)

Notice that the stochastic gradient ∇f(xt−τ ,Θt−τ ) is an unbiased estimate of the average
function gradient ∇F (xt−τ ). Therefore, we obtain E

[
∇f(xt−τ ,Θt−τ ) | F t

]
= ∇F (xt−τ ).

Observing this relation and considering the assumption in (15), the expected value of (76)
given the sigma algebra F t can be written as

E
[
F (xt+1) | F t

]
≤ F (xt)− γt

B
∇F (xt)T∇F (xt−τ ) +

M(γt)2

2B
‖∇F (xt−τ )‖2 +

M(γt)2K

2B
.

(77)

By adding and subtracting the term (γt/B)‖∇F (xt)‖2 to the right hand side of (77) we
obtain

E
[
F (xt+1) | F t

]
≤ F (xt)− γt

B
‖∇F (xt)‖2 +

γt

B

(
‖∇F (xt)‖2 −∇F (xt)T∇F (xt−τ )

)
+
M(γt)2

2B
‖∇F (xt−τ )‖2 +

M(γt)2K

2B
. (78)

Observe that the third term on the right-hand side of (78) is the directional error due to
the presence of delays from asynchronicity. We proceed to find an upper bound for the
expression ‖∇F (xt)‖2 −∇F (xt)T∇F (xt−τ ), which means that the error due to delay may
be mitigated. To do so, notice that we can write

‖∇F (xt)‖2 −∇F (xt)T∇F (xt−τ ) = ∇F (xt)T (∇F (xt)−∇F (xt−τ ))

≤ ‖∇F (xt)‖‖∇F (xt)−∇F (xt−τ )‖, (79)
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where for the inequality we have used the Cauchy–Schwarz inequality. Apply the fact
that the gradient of the objective function is M -Lipschitz continuous, which implies that
‖∇F (xt) −∇F (xt−τ )‖ ≤ M‖xt − xt−τ‖. Substituting the upper bound M‖xt − xt−τ‖ for
‖∇F (xt)−∇F (xt−τ )‖ into (79) we obtain

‖∇F (xt)‖2 −∇F (xt)T∇F (xt−τ ) ≤M‖∇F (xt)‖‖xt − xt−τ‖. (80)

The difference norm ‖xt−xt−τ‖ is equivalent to ‖
∑t−1

s=t−τ (xs+1−xs)‖ which can be bounded

above by
∑t−1

s=t−τ ‖xs+1 − xs‖ by the triangle inequality. Therefore,

‖∇F (xt)‖2 −∇F (xt)T∇F (xt−τ ) ≤M‖∇F (xt)‖
t−1∑
s=t−τ

‖xs+1 − xs‖. (81)

Substitute the upper bound in (81) for ‖∇F (xt)‖2−∇F (xt)T∇F (xt−τ ) into (78) to obtain

E
[
F (xt+1) | F t

]
≤ F (xt)− γt

B
‖∇F (xt)‖2 +

Mγt

B
‖∇F (xt)‖

t−1∑
s=t−τ

‖xs+1 − xs‖

+
M(γt)2

2B
‖∇F (xt−τ )‖2 +

M(γt)2K

2B
. (82)

Note that for any positive scalars a, b, and ρ the inequality ab ≤ (ρ/2)a2 + (1/2ρ)b2 holds.
If we set a := ‖∇F (xt)‖ and b :=

∑t−1
s=t−τ ‖xs+1 − xs‖ we obtain that

‖∇F (xt)‖
t−1∑
s=t−τ

‖xs+1 − xs‖ ≤ ρ

2
‖∇F (xt)‖2 +

1

2ρ

[
t−1∑
s=t−τ

‖xs+1 − xs‖

]2

≤ ρ

2
‖∇F (xt)‖2 +

τ

2ρ

t−1∑
s=t−τ

‖xs+1 − xs‖2, (83)

Now substituting the upper bound in (83) into (82) yields

E
[
F (xt+1) | F t

]
≤ F (xt)−

(
γt

B
− ρMγt

2B

)
‖∇F (xt)‖2 +

τMγt

2ρB

t−1∑
s=t−τ

‖xs+1 − xs‖2

+
M(γt)2

2B
‖∇F (xt−τ )‖2 +

M(γt)2K

2B
. (84)

Compute the expected value of both sides of (84) given the sigma-algebra F t−1 to obtain

E
[
F (xt+1) | F t−1

]
≤ E

[
F (xt) | F t−1

]
− γt

B

(
1− ρM

2

)
E
[
‖∇F (xt)‖2 | F t−1

]
+
τMγt

2ρB
E

[
t−1∑
s=t−τ

‖xs+1 − xs‖2 | F t−1

]
+
M(γt)2

2B
‖∇F (xt−τ )‖2 +

M(γt)2K

2B
, (85)
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Note that the last term of the sum E
[∑t−1

s=t−τ ‖xs+1 − xs‖2 | F t−1
]

can be bounded above

using the expression in (74) as

E
[
‖xt − xt−1‖2 | F t−1

]
=

(γt−1)2

B

(
‖∇F (xt−1−τ )‖2 +K

)
(86)

Hence, we can show that

E
[
F (xt+1) | F t−1

]
≤ E

[
F (xt) | F t−1

]
− γt

B

(
1− ρM

2

)
E
[
‖∇F (xt)‖2 | F t−1

]
+
τMγt

2ρB

t−2∑
s=t−τ

‖xs+1 − xs‖2

+
M(γt)2

2B
‖∇F (xt−τ )‖2 +

M(γt)2K

2B
+
τMγt(γt−1)2

2ρB2
‖∇F (xt−τ−1)‖2 +

τKMγt(γt−1)2

2ρB2

(87)

Follow the same argument for the remaining term of the sum to obtain

E
[
F (xt+1) | F t−τ

]
≤ E

[
F (xt) | F t−τ

]
− γt

B

(
1− ρM

2

)
E
[
‖∇F (xt)‖2 | F t−τ

]
+
M(γt)2

2B
‖∇F (xt−τ )‖2

+
M(γt)2K

2B
+

τ∑
s=1

τMγt(γt−s)2

2ρB2
‖∇F (xt−τ−s)‖2 +

τ∑
s=1

τKMγt(γt−s)2

2ρB2
(88)

Notice that the sequence of stepsizes γt is decreasing, thus the sum
∑t−1

s=t−τ (γs)2 can
be bounded above by τ(γt−τ )2. Applying this substutition and subtracting the optimal
objective function value F (x∗) from both sides of the implied expression lead to

E
[
F (xt+1)− F (x∗) | F t−τ

]
≤ E

[
F (xt)−F (x∗) | F t−τ

]
−
(
γt

B
− ρMγt

2B

)
E
[
‖∇F (xt)‖2 | F t−τ

]
+
M(γt)2

2B
‖∇F (xt−τ )‖2

+

τ∑
s=1

τMγt(γt−s)2

2ρB2
‖∇F (xt−τ−s)‖2 +

τ2MγtK(γt−τ )2

2ρB2
+
M(γt)2K

2B
. (89)

We make use of the fact that the average function F (x) is m-strongly convex in applying
the relation ‖∇F (xt)‖2 ≥ 2m(F (xt)− F (x∗)) to the expression (91). Therefore,

E
[
F (xt+1)− F (x∗) | F t−τ

]
≤
(

1− 2m

(
γt

B
− ρMγt

2B

))
E
[
F (xt)− F (x∗) | F t−τ

]
+
M(γt)2

2B
‖∇F (xt−τ )‖2

+
τ∑
s=1

τMγt(γt−s)2

2ρB2
‖∇F (xt−τ−s)‖2 +

τ2MγtK(γt−τ )2

2ρB2
+
M(γt)2K

2B
. (90)

44



A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning

Moreover, using M -smoothness of the function F (x) know that ‖∇F (xs)‖2 ≤ 2M(F (xs)−
F (x∗)). Therefore,

E
[
F (xt+1)− F (x∗) | F t−τ

]
≤
(

1− 2m

(
γt

B
− ρMγt

2B

))
E
[
F (xt)− F (x∗) | F t−τ

]
+
τ2MγtK(γt−τ )2

2ρB2
+
M(γt)2K

2B

+
M2(γt)2

B
(F (xt−τ )− F (x∗)) +

τ∑
s=1

τM2γt(γt−s)2

ρB2
(F (xt−τ−s)− F (x∗)) (91)

Hence, the result in Proposition 8 follows.

B.3. Proof of Theorem 9

Proof : We use the result in Proposition 8 to prove the claim. Begin by defining the
non-negative stochastic processes αt, βt, and ζt for t ≥ 0 as

αt := F (xt)− F (x∗), βt :=
2mγt

B

[
1− ρM

2

]
(F (xt)− F (x∗)),

ζt :=
MK(γt)2

2B
+
τ2MKγt(γt−τ )2

2ρB2
. (92)

According to the definitions in (92) and the inequality in (30) we can write

E
[
αt+1 | F t−τ

]
≤ E

[
αt | F t−τ

]
− 2mγt

B

(
1− ρM

2

)
E
[
αt | F t−τ

]
+
M2(γt)2

B
αt−τ

+
τ∑
s=1

τM2γt(γt−s)2

ρB2
αt−τ−s + ζt. (93)

Computing the expected value of both sides of (93) with respect to the initial sigma algebra
E
[
· | F0

]
= E [·] yields

E
[
αt+1

]
≤ E

[
αt
]
− 2mγt

B

(
1− ρM

2

)
E
[
αt
]

+
M2(γt)2

B
E
[
αt−τ

]
+

τ∑
s=1

τM2γt(γt−s)2

ρB2
E
[
αt−τ−s

]
+ ζt. (94)

Set ρ = 1/M and use the fact that γt ≤ γt−s for s ≥ 1 to obtain

E
[
αt+1

]
≤ E

[
αt
]
− mγt

B
E
[
αt
]

+
M2(γt)2

B
E
[
αt−τ

]
+

τ∑
s=1

τM3(γt−s)3

B2
E
[
αt−τ−s

]
+ ζt.

(95)

By setting γt = γ0T 0/(t+ T 0) in (95) and defining φt := E
[
αt
]

we obtain

φt+1 ≤
(

1− mγ0T 0

B(t+ T 0)

)
φt +

M2(γ0T 0)2

B(t+ T 0)2
φt−τ +

τ∑
s=1

τM3(γ0T 0)3

B2(t+ T 0 − s)3
φt−τ−s

+
MK(γ0T 0)2

2B(t+ T 0)2
+

τ2M2K(γ0T 0)3

2B2(t+ T 0 − τ)3
. (96)

45



Mokhtari, Koppel, Takáč, and Ribeiro

Next we use induction to prove that

φt ≤ Q

t+ T 0
, (97)

where Q is defined as

Q = max

{
φ0T 0,

2MKB(γ0T 0)2 + 8∆2M2K(γ0)3(T 0)2

B(3mγ0T 0 − 4B)

}
(98)

The base of induction for t = 0 indeed holds as φ0 ≤ Q
T 0 ≤ φ0T 0

T 0 = φ0. Next, assume that
the inequality in (97) holds for all t = k and we aim to show that it also holds for t = k+ 1.
Since (97) holds for all t ≤ k then we have

φt ≤ Q

t+ T 0
, (99)

for all t ≤ k. Next by setting t = k in (96) and using the upper bound in (99) we obtain
that

φk+1 ≤
(

1− mγ0T 0

B(k + T 0)

)
Q

k + T 0
+
M2(γ0T 0)2

B(k + T 0)2

Q

k − τ + T 0

+

τ∑
s=1

τM3(γ0T 0)3

B2(k + T 0 − s)3

Q

k − τ − s+ T 0
+
MK(γ0T 0)2

2B(k + T 0)2
+

τ2M2K(γ0T 0)3

2B2(k + T 0 − τ)3
. (100)

Note that we have also assumed that
(

1− mγ0T 0

B(k+T 0)

)
> 0 which holds since mγ0

B < 1
2 . In the

sum, replace s by its upper bound τ to obtain

φk+1 ≤
(

1− mγ0T 0

B(k + T 0)

)
Q

k + T 0
+
M2(γ0T 0)2

B(k + T 0)2

Q

k − τ + T 0
+

τ2M3(γ0T 0)3

B2(k + T 0 − τ)3

Q

k − 2τ + T 0

+
MK(γ0T 0)2

2B(k + T 0)2
+

τ2M2K(γ0T 0)3

2B2(k + T 0 − τ)3

≤
(

1− mγ0T 0

B(k + T 0)

)
Q

k + T 0
+

M2Q(γ0T 0)2

B(k − τ + T 0)3
+

τ2M3Q(γ0T 0)3

B2(k + T 0 − 2τ)4

+
MK(γ0T 0)2

2B(k + T 0)2
+

τ2M2K(γ0T 0)3

2B2(k + T 0 − τ)3
. (101)

Next, replace τ by its upper bound ∆ to obtain

φk+1 ≤
(

1− mγ0T 0

B(k + T 0)

)
Q

k + T 0
+

M2Q(γ0T 0)2

B(k −∆ + T 0)3
+

∆2M3Q(γ0T 0)3

B2(k + T 0 − 2∆)4

+
MK(γ0T 0)2

2B(k + T 0)2
+

∆2M2K(γ0T 0)3

2B2(k + T 0 −∆)3
. (102)

Further, since we assume that T 0 ≥ 4∆, we have

1

(k + T 0 − 2∆)4
≤ 1

(k + T 0/2)4
=

16

(2k + T 0)4
≤ 16

(k + T 0)4
(103)
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and also

1

(k + T 0 −∆)3
≤ 1

(k + 3T 0/4)3
≤ 1

(k + T 0/2)3
=

8

(2k + T 0)4
≤ 8

(k + T 0)3
(104)

Applying these substations into (102) implies that

φk+1 ≤
(

1− mγ0T 0

B(k + T 0)

)
Q

k + T 0
+

8M2Q(γ0T 0)2

B(k + T 0)3
+

16∆2M3Q(γ0T 0)3

B2(k + T 0)4

+
MK(γ0T 0)2

2B(k + T 0)2
+

4∆2M2K(γ0T 0)3

B2(k + T 0)3
. (105)

Further, we can show that if γ0 ≤ m
64M2 then for all k ≥ 0 we have

8M2Q(γ0T 0)2

B(k + T 0)3
≤ 1

8

mQγ0T 0

B(k + T 0)2
(106)

Further, if γ0 ≤
√

Bm
128∆2M3 then for all k ≥ 0 we have

16∆2M3Q(γ0T 0)3

B2(k + T 0)4
≤ 1

8

mQγ0T 0

B(k + T 0)2
(107)

Apply these substitutions into (108) to obtain

φk+1 ≤
(

1− 3mγ0T 0

4B(k + T 0)

)
Q

k + T 0
+
MK(γ0T 0)2

2B(k + T 0)2
+

4∆2M2K(γ0T 0)3

B2(k + T 0)3
. (108)

Moreover, since (T 0)3

(k+T 0)3
≤ (T 0)2

(k+T 0)2
we can simplify the last term and regroup the terms to

obtain

φk+1 ≤
(

1− 3mγ0T 0

4B(k + T 0)

)
Q

k + T 0
+
MKB(γ0T 0)2 + 8∆2M2K(γ0)3(T 0)2

2B2(k + T 0)2
. (109)

To simplify notation define a and b as

a :=
3mγ0T 0

4B
, b :=

MKB(γ0T 0)2 + 8∆2M2K(γ0)3(T 0)2

2B2
(110)

which allows us to write

φk+1 ≤
(

1− a

k + T 0

)
Q

k + T 0
+

b

(k + T 0)2
. (111)

Considering the definitions of a, b, and Q we can show that b
a−1 ≤ Q. Hence, we have

b ≤ (a− 1)Q which implies that

φk+1 ≤
(

1− a

k + T 0

)
Q

k + T 0
+

(a− 1)Q

(k + T 0)2

=
Q

k + T 0
− Q

(k + T 0)2

= Q

(
k + T 0 − 1

(k + T 0)2

)
≤ Q

(
1

k + 1 + T 0

)
(112)
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where the last inequality holds since (k+ T 0 + 1)(k+ T 0 − 1) ≤ (k+ T 0)2 − 1 < (k+ T 0)2.
Hence, the step of induction is complete and the inequality in (99) also holds for t = k+ 1.
The proof is complete. �
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