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Abstract

A new support vector machine (SVM) variant, called CS++-SVM, is presented combining
multiclass classification and anomaly detection in a single-step process to create a trained
machine that can simultaneously classify test data belonging to classes represented in the
training set and label as anomalous test data belonging to classes not represented in the
training set. A theoretical analysis of the properties of the new method, showing how it
combines properties inherited both from the conic-segmentation SVM (CS-SVM) and the
1-class SVM (to which the method described reduces to in the case of unlabelled training
data), is given. Finally, experimental results are presented to demonstrate the effectiveness
of the algorithm for both simulated and real-world data.
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1. Introduction

Supervised multiclass classification involves the construction of a machine (mathematical
function) capable of discriminating between multiple types of object (classes), where for
each class there exists a corresponding set of training examples (the training set) that
are assumed to be representative of the characteristics of the relevant class. By contrast,
anomaly detection involves the construction of a machine that is capable of discriminating
between objects that are in some way similar to the examples contained in the (typically
unlabelled) training set and “anomalous” examples that are assessed as unlikely to belong
to the set of objects represented by the training set.

Typically problems are divided into one category or the other. However in many (or
even most) real-world applications what is actually required is a combination of classification
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and anomaly detection. We refer to this as the combined classification/anomaly detection
problem (combined problem for short), viz.:

Given a training set containing training examples from n distinct classes, con-
struct a machine (rule) capable of (a) correctly classifying unseen examples from
each class and (b) correctly labelling examples that do not belong to any of the
represented classes as anomalous.

For clarity, it is important to note that we assume that there are no anomalies present in
the training data; however we must account for their presence when the trained machine
is applied in-situ. Examples of this include facial recognition systems that seek to identify
a small subset of people (for example known criminals) while discarding other faces; and
computer network intrusion detection where a system must both identify normal traffic and
known attacks (classes) and flag anomalous traffic that may represent new threats.

A related extension of the standard classification problem is the classification with a
reject option problem (Bartlett and Wegkamp, 2008; Chow, 1970; Grandvalet et al., 2009;
Kwok, 1999; Fumera and Roli, 2002). Classification with a reject option extends classifica-
tion by applying an additional label (reject) to those examples whose label is sufficiently
uncertain - that is, those examples whose the probability of lying in a given class is suffi-
ciently close to 1/2 - while classifying other points in the usual manner. Both the combined
classification /anomaly detection problem and classification with a reject option introduce an
additional class (anomaly in the first case, reject in the latter) to apply to examples whose
classification is in some sense uncertain. However, the motivations for the two approaches
are quite different, which leads to very different methodologies. In particular, it may be
noted that classification with reject option is concerned with detecting rejecting points for
which the label indicates close to 50 — 50 odds of lying in either class, while our method
(like other anomaly detection methods) actively aims to set aside regions of input space
which are sparsely populated by training vectors (not at populated at all) as anomalous
regions on the basis that, lacking nearby training vectors, such regions cannot be validly
said to belong to any particular class represented in the training set. We also note that,
while a number of papers have considered binary SVMs classification with a reject option
(Bartlett and Wegkamp, 2008; Grandvalet et al., 2009; Kwok, 1999; Fumera and Roli, 2002)
none have extended this to the multiclass SVM case (Grall-Mags et al. (2006) comes closest,
while for example Pillai et al. (2013) considers the multi-label case instead).

Another potential application of this multiclass anomaly detector is in the Internet of
Things (IoT) domain (Gubbi et al., 2013). The realization of IoT, which enables a wide
range of physical objects and environments to be monitored in fine spatial and temporal
detail, presents us with the problem of dealing with extremely large and complex evolving
data streams. A challenge is to automate the interpretation of such data streams, and
the volume of data makes manual inspection impractical. Moreover, at any time, new or
previously unseen events may emerge in the data. Classifiers, such as traditional binary and
multi-class SVMs (Scholkopf and Smola, 2001) trained using known patterns are unable to
identify new emerging patterns in the data and will simply mislabel such events. Hence, a
new SVM algorithm is required that can both classify the multiple types of known classes
in the data accurately, and simultaneously identify new emerging anomaly classes - that is,
tackle the combined classification/anomaly detection problem.
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The approach to solving this problem presented in this paper is called the CS++-SVM,
being an amalgam of the conic-segmentation support vector machine (CS-SVM) (Shilton
et al., 2012) and the 1-class SVM (Schoélkopf et al., 2001; Manevitz and Yousef, 2001; Shilton
et al., 2015; Erfani et al., 2016). The CS-SVM is a novel SVM based true-multiclass! clas-
sifier combining the standard max-margin, minimum empirical risk trade-off heuristic and
the novel concept of target-space segmentation via generalised vector inequalities (Boyd and
Vandenberghe, 2004). Reduction to binary (Allwein et al., 2000) (for example one-versus-
all (1vsA) and voting (1vsl)) and the single-machine SVM (Weston and Watkins, 1999;
Crammer and Singer, 2001) are special cases of our CS-SVM corresponding to particular
choices of target space segmentation (Shilton et al., 2012). The 1-class SVM is a popular
anomaly detection technique that maps the data to a higher dimensional space (using the
kernel trick) and fits a smooth surface to the majority of the data (normal data), leaving
the anomalous data on the other side of the smooth surface. The CS++-SVM combines
these approaches by incorporating an additional (anomaly) class into the geometry of the
CS-SVM and then adding a term to the primal training problem, motivated by the 1-class
SVM, that “pushes the edges” of the anomaly region to fill as much space as possible with-
out encroaching into the regions of “known” classification. A shortened summary of our
CS++-SVM was previously published in Shilton et al. (2013).

It may be argued that the combined problem can be solved using a combination of the
classifier and an anomaly detector (in a non-integrated way). This is referred to as the
hybrid method in the present paper and is shown to be sub-optimal for two main reasons:

1. Training two separate machine learning algorithms is more computationally intensive
than training a single algorithm of comparable complexity.

2. In the hybrid method, while the classifier is trained using all available information on
the training set, the training data for the anomaly detector does not include class-
data (that is, the class to which each training vector belongs) as this does not fit
the context of the traditional anomaly detection problem. However, this class data
contains valuable clues regarding potential clusters within the training set, as training
vectors for individual classes are likely to form localised clusters within the overall
training set. The CS++-SVM uses all available information (including class-data) to
solve the combined problem in a single step. As is observed in the experimental results
Section 6, this allows the CS++-SVM to outperform the hybrid method considered
in all experiments.

The remainder of the paper is arranged as follows. Section 2 introduces notational
conventions used in the paper. Section 3 presents relevant background material, describing
both the CS-SVM and the 1-class SVM. Section 4 presents the CS++-SVM in both primal
and dual forms. The theoretical properties of the CS+-+-SVM, both as a multiclass classifier
and as an anomaly detector, are discussed in Section 5. Finally some experimental results
on the CS++-SVM are presented in Section 6, and conclusions presented in Section 7.

1. In-so-far as it does not rely on combining multiple binary SVMs to obtain multiclass classification
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2. Mathematical Notation

This paper follows the notational conventions of Shilton et al. (2012). Sets are written
A,B,.... The sets of reals, positive reals, negative reals, natural numbers (including 0),
integers, positive integers and negative integers are denoted, respectively, R, R™, R~ N, Z,
Z* and Z~. The integers modulo h € ZT are denoted Z;, = {0,1,...,h —1}.

Implicit index ranges ¢, j, k,l € Zn, m € Zq,., q,7 € Zq, and s,t € Z, are used, where
N is the size of the training set, dx and dp the dimension of feature space and target space,
respectively, and n is the number of classes. The number of training vectors in a particular
class s is denoted V.

Column vectors are denoted Ei,g e R4 (d € Z1), with elements denoted ap, by, where
h € Z4. The zero vector is denoted 0, and a vector of all ones I. In the special case of
column vectors in target space the notation a,b € R is used. Transposition is indicated
by a superscript 7.

A cone (Boyd and Vandenberghe, 2004) is defined to be a set A C R? (d € ZT)
for which \@ € A Va@ € A,A € RT U {0}. A proper cone is a cone that is convex,
closed, solid and pointed. The dual cone of the proper cone A is the proper cone A* =
{E’ € Rd‘ cla>0vae A} (Boyd and Vandenberghe, 2004). The (non-strict) generalised
vector inequality (Boyd and Vandenberghe, 2004; Ben Tal and Nemirovski, 2001; Ne-
mirovski, 2005) defined by the proper cone A is denoted >4 and the strict generalised
inequality >4, where:

drpbiffd—beA
@-pbiff @—beint(A)

(1)

and int (A) denotes the interior of A.

3. Background

We first present our conic-segmentation SVM (CS-SVM) below, and then formulate our
proposed CS++-SVM.

3.1 Multiclass Classification and the CS-SVM

The multiclass (n class) classification problem may be stated as follows: given a training set
O = {(z;,u:)|i € Zn}, where 2; € X is the i*" input vector and y; € Z, its classification,
construct a classifier h : X — Z, that captures the pair-wise relationship between input
space and classification sampled by the training set.

This Section describes the conic-segmentation SVM (CS-SVM) originally presented
in Shilton et al. (2012). The key characteristics of the CS-SVM are:

e The trained machine is selected using the principles of structural risk minimisation.

e The trained machine maps from feature space to dp-dimensional target space rather
than onto the real line.

e Target space is divided into proper-conic class regions, allowing the training con-
straints to be written in the form of generalised inequalities.
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e The dual training problem uses the kernel trick to circumvent the curse of dimension-
ality.

The CS-SVM classifier has the form:

X 2y Réx B, R 2 7, 2)

h=cogo@d

where X is input space, @ : X — R is the feature map, R is feature space, g : R4 — RIT
is the trained machine, R is target space, o : R¥ — 7, is the classing function, and Z,, is
the set of class labels. Both the feature map and the classing function are selected a-priori.
The trained machine is a linear vector-valued function:

g (@) =2, Wmnamn +b (3)

where the weight vectors w,, € RIT (m € Zg, throughout) and bias vector b € R are
selected during training. The generalised SVM multiclass decision function is therefore:

h(z) =0 (X, Wmem () +b)

where ¢, : X — R is the m'" element of the feature map @ : X — R . Note that if dp = 1,
n =2 and o = sgn then (2) reduces to the standard binary SVM classifier.

As usual, the feature map is defined implicitly using the usual kernel trick. To define the
classing function each class s (s,t € Z, throughout) is associated with a proper conic subset
G, C RI7 of target space known as a class region such that the set of all class regions forms
an almost-everywhere (Cohn, 1980) non-intersecting target-space covering (Munkres, 1999;
Armstrong, 1979). The classing function labels points in target space on the basis of which
class region they fall into. As the class regions are proper cones the classing function may
be written in terms of generalised inequalities (Boyd and Vandenberghe, 2004) as follows:

o(a) =sla>g, 0 (4)

or, equivalently, as o (a) = s|a € int (Gy).

Figure 1 shows an example of the operation of the CS-SVM classifier (2) for the case
X = R?, di = dr = 2. Examples in input space (left) are mapped to feature space (centre)
using the feature map ¢ and from there to target space (right) by the trained machine g.
The class regions are fixed in target space while their pre-images @s = g 1(Gy) in feature
space and 95’_1(@3) in input space are defined by the trained machine g and the feature
map .

The trained machine g : R4 — R is found by minimising the regularised risk function
subject to the separability conditions (Shilton et al., 2012) (the primal CS-SVM training
problem):

min  R=1> wlw, + % > u;‘ZEZ

wm,b,§;
such that: > Wipom (2;) +b =g, uy, —§; Vi ()
E’i tGyi 0 VZ
where the class centres ug, uy, ... are defined a-priori such that us € int (G5 N G}) for all s

(equivalently us >, 0 and ug == 0 for all s) as described in Section 3.2. The constraints
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Figure 1: Input, feature and target space for the CS-SVM. Points in input space (left)
are mapped to feature space (centre) by the pre-defined non-linear feature map
J. The trained machine g then maps points from feature space to target space
(right). The class regions Gs and their boundaries M are fixed in target space,
while their pre-images Gs = g~ ! (G;) and My = g=! (M) in feature space are
defined by the trained machine g.

in (5) ensure that h(x;) = y; for all ¢ for which the associated slack vector &; is zero.
Note that the first term in R is inversely proportional to a lower bound on the margin
of separation? (Shilton et al., 2012), while the second term is a measure of empirical risk
(training error), making R a trade-off between margin-maximisation and empirical risk
minimisation (ERM) like the standard SVM primal. If C' is large then ERM will tend to
dominate, whereas if C' is small then margin maximisation will come to the fore.
It is convenient to re-write the CS-SVM training problem in dual form, namely (Shilton

et al., 2012):

Hgg}l Q=33 Kjala; -3 aluy,

such that: %uyi =Gy, Qi =Gy, 0 Vi (6)

2@ =0

where K;j = K (x5, ;) and K : X x X — R is the Mercer kernel (Mercer, 1909; Cochran,
1972) associated with the feature map ¢. The trained machine may be written (Shilton
et al., 2012):

g(f(x) =2, K (z,z;) i +b

As usual, through use of the kernel trick (Herbrich, 2002; Cristianini and Shawe-Taylor,
2005; Shawe-Taylor and Cristianini, 2004; Steinwart and Christman, 2008) it is possible to
train and use the CS-SVM without explicit reference to feature space or the feature map.
The dual is a convex quadratic programming problem with no non-global minima. The
recursive division form of the dual reduces to the standard (binary) SVM dual if d7 = 1
and n = 2 (though class labels are 0,1 in this case rather than —1,+1).

2. The margin of separation is defined as the minimum perpendicular distance between the image @ (x;) of

a training vector z; in feature space and the boundary bd(Gy, ) of the relevant class region inverse image
Gy, = g ' (Gy,) in feature space.
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Figure 2: Binary (n = 2) and ternary (n = 3) class regions (in target space) for the recur-
sive division class regions. In the binary case class centres u),p and u(y),; are
represented as M and », respectively, and in the ternary case u(s),o, u(z),; and
u(3);2 are shown as W, » and X.

3.2 Class Region Selection

The CS-SVM provides a very flexible framework for multiclass classification. By appropriate
selection of the class regions and centres it may be shown (Shilton et al., 2012) that both the
max-wins SVM (Weston and Watkins, 1999; Crammer and Singer, 2001) and the reduction
to binary SVM (Allwein et al., 2000), which encompasses 1vsA (Vapnik, 1995), 1vsl (Hastie
and Tibshirani, 1998), error-correcting output-coding ECOC (Diehl and Cauwenberghs,
2003) and minimum output coding (MOC) (Suykens et al., 2002), are derivable as special
cases of the CS-SVM.

The present paper will focus exclusively on the recursive division form of the CS-
SVM (Shilton et al., 2012). Under this scheme the class centres are defined to be the
vertices of a regular (n — 1)-simplex in dp = n — 1 dimensional target space. The class
regions are derived from the class centres using the max-projection principle (Shilton et al.,
2012), namely:

G&?;s = {a| ua);sa > u%;);ta Vit # s} (7)

and moreover it may be shown that the dual class regions are given by:

GRD* — {a| _u@);tazow;&s} (8)

(n);s

where the class centres are defined recursively by (Shilton et al., 2012):

Um0 = { 0 ] € Rér

—1
e/ (n =2 9
Unygl = 77 { I " } € R Y
ugo = [ 1], ugu=[+1]

(g,r € Zgq, throughout, dr = n—1 in the case of recursive division) where the subscript (n)
is used to indicate the number of classes the particular class centre vector is intended for
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use with. The binary and ternary class regions for the this scheme are shown in Figure 2.
Note that (Shilton et al., 2012):

Un)sMmit =1 — 1 otherwise

n—1

(10)

For the recursive division case the dual CS-SVM training problem (6) reduces to:
. 1
D&mQ =2 Zza Kijalaj -3, a?u(n);yi

11
T) a; <0Vi,s #y; (1)

. 1
such that: - (n):s

>

and moreover the trained machine may be written:

h(z) = arginax {u(Tn);s O K (z,25) oy + b)} (12)

C
N=u
=0

3.3 Anomaly Detection and the 1-class SVM

The anomaly detection problem may be stated as follows: assuming that the training vectors
xo, T1, ... are generated from a distribution P, find a trained machine h : X — {—1,+1}
that is negative for most points generated from P and positive elsewhere.?
Several 1-class SVM approaches have been proposed for anomaly detection (Schoélkopf
et al., 2001; Tax and Duin, 2004; Laskov et al., 2004; Wang et al., 2006; Shilton et al., 2015).
As with most SVM methods, the general approach of these is to first (implicitly) map the
data vectors from the input space to the feature space by means of a non-linear function. A
smooth surface or boundary is found in the feature space that separates the image vectors
into normal and anomalous measurements. By using kernel trick, the data vectors are
implicitly mapped to a higher dimensional inner product space without knowledge of the
mapping function. The boundaries found in the implicit feature space usually yield a non-
linear boundary in input space (Schélkopf and Smola, 2002).
The 1-class SVM of (Scholkopf et al., 2001; Manevitz and Yousef, 2001) formulates the
problem as one of quadratic programming, specifically:*
i R 4Tk - AT
such that: > wmpm (x;) < p—& Vi (13)
& <0Vi

or, in dual form:
; 1 Cveeys
II&I.I]Q =3 2. Kijoua;
1

) ) (14)
such that: —-% <a; <0Vi

diai=—1

3. Normally the 1-class SVM uses the reverse sign convention - +1 for points generated by P, —1 for
anomalies - but this will cause inconvenience later and for that reason is not used in the present paper.

4. In addition to reversing the usual sign convention and labelling anomalous vectors +1 the sign of the
slack variables &; is also reversed here for consistency with the CS4++-SVM introduced in Section 4.
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where v € (0,1) is a constant selected a-priori. The trained machine is then:

h(z) = sgn (32 i (2,2) — p)

where h () = 41 implies that x is an anomaly.
To understand the geometry underlying the 1-class SVM assume a radial kernel:

K (z,y) = s (lz —yl)

This corresponds to a feature map ¢ that maps input space X onto a hypersphere of radius

x(0) centred at the origin in feature space (Schélkopf and Smola, 2001). The 1-class SVM
separates the images of all training vectors on this hypersphere from the origin, maximising
the separation between this hyperplane and the origin, thereby minimising the size of the
fraction of the hypersphere labelled —1 (not anomalous). In input space X this may be
visualised as a a set of “islands” of class —1 (centred on the support vectors) rising above
an anomalous “ocean”. As shown in Section 5.3, our method emulates this approach in a
more general manner.

It should be noted that the variable p in the 1-class SVM performs a role directly
analogous to the bias term b in the standard binary SVM. Indeed the primal training
problem (13) may be obtained (Shilton and Palaniswami, 2008) from the standard binary
SVM by:

1. Substituting b = —p and C = %
2. Labelling all examples as (nominally) class y; = —1.

3. Removing the constant 1 in the first constraint in the primal training set, so:

Yi(Q o Wmpm (i) +0) > 1-¢;

is replaced by:
Zm Winm(xi) < p— &

4. Adding a bias forcing term p to the primal, so:
R= %megn_ %szz

becomes:
R=353Ywh— o5 2iki+p

Considering the parameter v € (0, 1), it may be shown that if p > 0 then, after train-
ing (Scholkopf et al., 2001):

e v is an upper bound on the fraction of outliers (training vectors x; for which h (z;) =
+1).

e v is a lower bound for the fraction of support vectors (training vectors z; for which
a; < 0).

e If the distribution P does not contain discrete components then asymptotically, with
probability 1, v equals both the fraction of outliers and the fraction of support vectors.
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3.3.1 RELATED WORK

Anomaly detection has become an important challenge in many applications. Surveys,
such as Ruff et al. (2020); Chandola et al. (2009); Chalapathy and Chawla (2019); Pang
et al. (2020); Bulusu et al. (2020); O’Rielly et al. (2014); Rajasegarar et al. (2008), provide
good analysis on the latest trends in different domains. One class methods are one of the
popular methods used for anomaly detection. Here we briefly review a number of alternative
variations on the 1-class SVM methods proposed in the literature. Campbell and Bennett
(2001) formulated a linear programming approach for the one-class SVM when used with a
radial basis function (RBF) kernel. This formulation is based on attracting the hyperplane
towards the average of the image data distribution, rather than minimising the maximum
norm distance to the bounding hyperplane from the origin as in Schélkopf et al. (2001).
Shilton et al. (2015) proposed an incremental /decremental learning based 1-class SVM.

Tax and Duin (2004) formulated the one-class SVM using a hypersphere. In this ap-
proach, a minimal radius hypersphere is fixed around the majority of the image vectors in
the feature space. The data that falls outside the hypersphere are identified as anomalous.
This hypersphere formulation requires quadratic programming optimisation. Wang et al.
(2006) formulated the one-class SVM using hyper-ellipsoids with minimum effective radii
around a majority of the image vectors in the feature space. This hyper-ellipsoidal formula-
tion involves two phases. First the image vectors are partitioned into a number of distinct
clusters using Ward’s linkage algorithm (Ward, 1963). Second, the image vectors in each
cluster are fixed with a hyper-ellipsoid that encapsulates a majority of the image vectors
in that cluster. The image vectors that do not fall within any of the hyper-ellipsoids are
identified as anomalous. This problem is formulated as a second order cone programming
optimisation problem.

Laskov et al. (2004) have observed the one-sidedness of the data distribution in many
practical applications, and exploited this property to develop a special type of SVM called
a one-class quarter-sphere SVM (QSSVM). This is extended from the hypersphere-based
one-class SVM approach proposed by Tax and Duin (2004). The QSSVM finds a minimal
radius hypersphere centred at the origin that encapsulates a majority of the image vectors
in the feature space (Laskov et al., 2004). Data vectors that fall outside the quarter sphere
are classified as anomalies. This problem is formulated as a linear programming problem.

The above methods have focused on the one class detection problem, and do not incor-
porate the multiclass detection within the framework. Below, a multiclass anomaly detector
is proposed that combines the 1-class SVM and the CS-SVM.

4. The CS++4+-SVM

The combined multiclass (n — 1 class) classification and anomaly detection problem (the
combined problem) is thus: given a training set © = {(z;,y;)|i € Zn}, where x; € X is the
i input vector and y; € Z,_1 is its classification, and assuming that training samples for
each class 0, 1, ..., n — 2 are generated from distributions Py, Py, ..., P,_o, respectively,
construct a trained machine that can correctly label most points generated from Py as class
0, Py asclass 1, ..., P,_9 as class n — 2, and label most other points (those points probably
not generated by Py, Py, ..., P,_2) as class n — 1, which is defined to be the anomaly class.

10
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n =3 (CS-SVM) n = 3 (CS++SVM)

Figure 3: Comparison of class regions and centres (in target space) for the CS-SVM (left)
and CS++-SVM (right) for the case n = 3. In this figure u(s),p, u(z),; and
u(3). (U(3),0 and Uz),; only in the CS++-SVM case) are shown as B, » and X,
respectively. Note that the modified class centres in the CS++-SVM case have
been shifted to lie on the boundary of the anomaly class n — 1.

As noted in the introduction, examples that fit this problem model include face-in-
a-crowd detection where only a small subset of faces are of interest,; computer network
intrusion detection where a system should be able to both recognise normal traffic and
known attacks and also flag anomalous traffic that may represent new, novel attacks; and
emerging loT applications where it is probable that new classes will emerge as time passes.

4.1 The CS++-SVM Primal

The basis of the CS++-SVM method is as follows: beginning with the CS-SVM formula-
tion (5) for the recursive division case, following the heuristic basis of the 1-class SVM as
explained in Section 3.3:

1. Replace the class centres u(,).; of the CS-SVM with shifted class centres 0., that
remove any separation between class n — 1 (the anomaly class) and all other classes
0,1, ..., n—2, as shown in Figure 3.

2. Add a bias-forcing term, —Cu%;t),n_lb, analogous to the p term in the 1-class SVM
primal.

3. Reserve the class label n — 1 for anomalies (that is, no training vectors in class n—1).

4. Add class-wise scaling factors to the empirical risk to ensure that each class is equally
affected by the bias-forcing term when the number of training vectors in each class
differs.

11
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The CS++4-SVM primal is:

min R= %ZW Wm"i‘C(lzN Zun)yl i u%jrz);n—lt)
szb7 i $ lylis

such that: Z Wipm () + b i((;,(RD Uy —&; Vi
52' EGRD 0 V'L

where:
e N, is the number of training vectors in class s € Z,,_1.
e v € (0,1] and C € R are training constants.

e Class regions GE“B,S and class centres ()., are defined by recursive division (7), (9).

e For all s € Z,,_1 (using (10)):

= U(n);s T (n)in—1

Uip)s =
(n); Hlu(n);sn"tli(n)mflu (16)
= 7\ i3 (Wyss + Uyin-1)

are defined to be the shifted class centres, where it may be seen that 0(,).s =gro 0

(n);s
for all s € Zp,_1.

Note that the CS++-SVM primal training problem (15) reduces to the 1-class SVM primal
training problem (13) in the case n =2, C = 1.

The influence of the training constants v and C' are investigated in Section 5. It is shown
that v acts, independently of C, as an upper bound on the class-wise average fraction of
exceptional outliers and a lower bound on the class-wise average fraction of exceptional
support vectors, and is asymptotically equal to both under certain assumptions. The con-
stant C' performs the same task here as in the CS-SVM, namely controlling the trade-off
between empirical risk minimisation (vis-a-vis misclassification of training examples) and
regularisation. Thus v controls the anomaly detection characteristics of the CS+4-SVM
while C' controls the classification characteristics.

4.2 The CS++4-SVM Dual

As is usually the case with SVM methods it is infeasible to solve the CS++-SVM primal
training problem (15) directly due to the curse of dimensionality if dx is large (or infinite).
To overcome this the problem must be re-written in dual form.

Define Lagrange multiplier vectors o, ~y; zgyRiD* 0 for the first two constraint sets in

(15), respectively. The Lagrangian may be written:

:%Zm wm+C’ ZzN u () & - C’u(n)nlb—,,,
- Zi,m aTWmcpm (xl) Z azT Z a u(n Zz azng .. (17)
- Zz 'YZT€¢

12



MuLticLASS ANOMALY DETECTOR: THE CS+-+-SVM

Applying optimality conditions:
73&% = Wiy = 2 0o (7)) = 0Vm
o = ~CUmyn-1— 20 =0

of. ZJ\%Z.U'(”);% —Yi— =0V

it may be seen that:
Wi = D 0 (25) Vm
Ei Q@ = _Cu(n);n—l
1 C

VN, M)y ZERD: Vi

and hence the dual CS++-SVM training problem is:
min Q = 335, ; Kijog o — 3 ol Uy,
H ?
such that: %Ngyiu(")%yi EGIZD* o EG&D* 0Vi (18)
Zi Q@ = _Cu(n);n—l

or, explicitly, using (9):
. 1 T T
H&nQ =52, Kija o =3 o Uy,
4 %

19
such that: —1-1- Cy < ua).sai <O0Vi,s #yi "

Zi o = _Cu(n);n—l

Note that (19) reduces to the 1-class SVM dual training problem (14) in the special case
n=2 C=1.
As for the CS-SVM, the trained machine may be written:

g(F(@)=>,K (z,7;)c; +b

and hence using (9):
h (z) = argmax {u%’;),s O K (x,25) oy + b)}

recalling that class n — 1 is used to label anomalies and classes 0, 1, ..., n — 2 are known
classes. Note that, like the CS-SVM, the CS++4-SVM may be both trained and used
without reference to the primal weight vectors wo, wi,... € R4 or the explicit feature
map @ : X — R allowing the use of very high or even infinite dimensional feature maps.
Note also that the dual training problem is a convex quadratic programming problem with
generalised constraints and hence has no non-global minima.

5. Properties of the CS++-SVM

In this section the theoretical properties of the CS++-SVM are investigated. These may be
loosely broken into properties relating to the operation of the CS++-SVM as a multiclass
classifier and properties relating to its operation as an anomaly detector. Finally, some
comparisons are made with the 1-class SVM.

13
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5.1 Classification Properties

The aim of this section is to extend the concepts of separability, the margin of separation
to the CS4++-SVM, and the connection between regularisation and maximising the margin
of separation from the standard SVM framework to the CS++-SVM. After the underlying
definitions have been clarified it will be shown that the CS++-SVM maximises the margin
of separation (suitably defined) on all class boundaries except the boundary of the anomaly
class, which will in fact be minimised (in line with the 1-class SVM).

As in the previous section, let © be a training set containing examples from classes
0,1,...,n — 2 but not class n — 1.

Definition 1 A training set © is said to be strictly separable under feature map @ if there
exists wg, w1, ... and b such that:

8 (i) = X Wmpm (2i) +b =grn 0V (20)
Moreover wg, Wi, ... and b are said to strictly separate a training set © if the above

condition is met.

Definition 2 A training set © is said to be intra-class separable under feature map @ if
there exists wg, w1, ... and b such that:

g (@) = > Wmem (2i) + b EG}’;BU_ U(n)y; Vi (21)
Moreover wq, Wi, ... and b are said to intra-class separate a training set © if the above

condition is met.

These two definitions of separability are not equivalent. Combining (16), (10) and (7)
it may be seen that U, EG?% 0 but u,) %Gfu; 0 for s € Z,—1 and hence (21) does not

imply (20). Indeed, using (7), it may be seen that (using the notation of Figure 1):

e If a training set © is strictly separated by wi,wa,...,b then all images & (z;) of
training vectors x; in feature space will lie in the interior of the relevant class region
pre-image G?n?‘yi = gfl(G&?_yi) in feature space.

e If a training set O is intra-class separated by wi, wa,...,b then all images @ (z;) of
training vectors x; in feature space will lie in the interior of the relevant class region

pre-image G?n]?,yi = g_l(Gf}g,yi) in feature space or on the boundary between G?;B,yi
and GRD

(n)n—1

That is, intra-class separation allows ¢ (z;) to lie on the boundary of the anomaly class
whereas strict separation does not. Note that the training constraints of the CS++-SVM
primal (15) reduce to the intra-class separation constraints (21) if & = 0 for all i. It
follows that, in this case, the training set © is intra-class separated and the empirical risk
component of the primal is zero, and the margin of separation for the CS++-SVM may be
defined:

14
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Definition 3 The intra-class margin of separation Ay for a given wq, w1, ..., b intra-class
separating the training set © with &, = 0 for all i under feature map g is the minimum
distance between the image G(x;) of any tmining vector x; in feature space and any point on
the boundary of the class region pre-image G(n) = g_l(G(n) ) in feature space excluding
points on the boundary between class y; and class n—1

Definition 4 The extra-class margin of separation Ag for a given wg, w1, ..., b intra-
class separating the training set © with §; = 0 for all i under feature map @ is the minimum
distance between the image @(x;) of any training vector x; in feature space and any point
on the boundary between class y; and class n — 1.

It can be shown (Shilton et al., 2012) (Appendix B) that the distance from any point
ae G(n) = _I(G(n) ,) inside class region s to the boundary of that class region is:®

d (a:) = min v’(l:ﬂ :s, t(z wmaerb)

22
tlt#s \/Zw V(n)is,tViny; St)wm (22)

where each unit vector v(;)., ; defines the separating hyperplane between class regions G(n) i,

and GF)t in target space (so va);svta > 0 for all t # s,a € mt(((}&[));s)). Explicitly, in the
recursive division case:

U(n)ss —U(n);
Veussit = Tas cuenal, = vV " (W~ W) (23)
It may be seen from (22) that for all n > 2:5

n (n) Yi,s (Z WWn‘P'm(-T'L)JFb)
7’5|S7éy1737£n 1 \/ZW V(n)iy;,s (n)y S)Wm

Ap =

(n) y;,m— 1(2 Wm‘Pm(l‘i)'i‘b)
\/ZW v(")ynl(n)ynl)

Ag = mln

Following the method of Shilton et al. (2012) let W, = ||Wy |, Wi for all m. Using
the training constraints of the primal CS++-SVM training problem (15) in the separable
case &; = 0 for all 4, applying Holder’s inequality (Gradshteyn and Ryzhik, 2000), recalling
that v ()., are unit vectors by definition and using (23), (16) and (10):

i T
min v
AI > Svt‘5¢n—1,t¢n—1,s;ﬁt‘ (n);s,t . %\/72 =0
N \/z<w5wm> ﬁ(wwm)
m m
Ap > s|s§¥lf1lva);s,n—1ﬁ(n);s
E Z =

5. In Shilton et al. (2012) the notation vs,¢;¢ is used, where ¢ € Zq, , and 1 < ds,+ = dt,s < dr for all all s, t.
For the recursive division class regions, however, ds; = 1 for all s, ¢, rendering the ¢ index unnecessary.
6. Ay is ill-defined if n = 2.
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It may be seen from this that minimising the first term Y, w2l w,, in the primal CS++-
SVM training problem (15) subject to the constraints will maximise a lower bound on the
intra-class margin of separation A; but not the extra-class margin of separation Ap. Like-
wise minimising the second term in (15) will tend to minimise the empirical risk (training
error) associated, with the trade-off between the two factors controlled by the parameter
C € R" in the usual manner. Thus the CS++-SVM, like the CS-SVM, applies a form of
structural risk minimisation to the classification component of the combined problem by
trading off empirical risk minimisation and margin maximisation.

5.2 Anomaly Detection Properties
The aim of this section is to investigate the influence the training parameter v on the

anomaly detection properties of the CS++4-SVM.

Definition 5 A training vector x; is called a support vector (SV) if the corresponding
Lagrange multiplier vector oy is non-zero. Support vectors are further divided into the
following (non-exclusive) sub-categories:

o Intra-SV (ISV): ua),sai <0,s#n—1,5s#y.
o Extra-SV (ESV): ua),n_lai < 0.

An error vector (EV) is a support vector z; for which ua);sai = f%ﬁ% for some s # y;.

Error vectors are further divided into the following (non-exclusive) sub-categories:

o Intra-EV (IEV): ua);sai = _%ﬁjvcyi ,s#n—1,5#y;.

‘H

c
Ny, *

3

e Extra-EV (EEV): ua)m_lai = -

R =

3
—

Definition 6 A training vector x; is called an anomaly vector (AV) if the image G (x;) of
x; in feature space lies in the anomaly class region inverse image G%g,n_l in feature space.
Anomaly vectors are further divided into:

e Boundary-AV (BAV): g (z;) € bd(@&?m—l)‘

o Interior-AV (IAV): @ (z;) € int(@&?m_l)-

The number of support vectors is denoted Ngy, the number of anomaly vectors Nay
and so on for ISVs etc. Likewise, the number of support vectors in class s # n—1 is denoted
Ngy.s etc. The following theorem clarifies the connection between these definitions:

Theorem 7 If x; is an extra error vector but not an intra error vector then x; is an anomaly
vector. If x; is an extra support vector but not an extra error vector or an intra error vector
then x; is a boundary anomaly vector.
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- Extra-support vectors

Class 2
(anomalies)

- Extra-error vectors

- Intra-error vectors

- Intra-support vectors

Figure 4: Placement of intra/extra support vectors and intra/extra error vectors in a 2-
dimensional feature space in the case n = 3.

Proof See appendix A. |

The placement of intra/extra support vectors and intra/extra error vectors is illustrated
in Figure 4. The following theorems are the key to understanding the role of the parameter
v in the CS++4-SVM. The first result represents an extension of the usual interpretation
of v for the 1-class SVM to the CS++-SVM context, while the second clarifies this in the
CS++-SVM context:

Theorem 8 The parameter v in the CS++-SVM training problem (15) has the following
properties:

1. v is an upper bound on the class-wise average fraction of extra-error vectors.
2. v is a lower bound on the class-wise average fraction of extra-support vectors.

3. If the distributions Py, Py, ..., Ph_2 do not contain discrete components then asymp-
totically, with probability 1, v equals both the class-wise average fraction of extra-error
vectors and the class-wise average fraction of extra-support vectors.

Proof Denote by frrv = ﬁ > $€Zp_1 N%,ESV;S the class-wise average fraction of extra-error

v .z Npsv . .
vectors, and likewise frgy = Til > s€Zpy1 E]\S,V’S the class-wise average fraction of extra-
- S

support vectors. Consider the dual CS++-SVM training problem (19). The constraint set
requires that ZZ ua),n_lai = —(C and ua),n_lai < 0 V4. Hence:

1. If fEEV > v then ZZ ug_lal- < —% fEEV < —C', which contradicts the constraints.

Hence v is an upper bound on the class-wise average fraction of extra-error vectors.
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2. If fESV < v then ), ug_lai > —% fEsv > —(C, which contradicts the constraints.
Hence v is a lower bound on the class-wise average fraction of extra-support vectors.

The following proof of part 3 is an extension of the proof presented in Scholkopf and
Smola (1998). Note (see appendix A) that the CS++-SVM classifier A may be written
in max-wins form (30), where each (s has the form of a standard SVM function (29). A
point @ in feature space that is an ESV but not an EEV must satisfy (s (@) — (,—1 (@) = 0,
where (5 — (,—1 again has the form of a standard SVM function. It follows from Scholkopf
and Smola (1998) (proof of theorem 1 part (iii)) that, asymptotically, under the conditions
described, the probability of a satisfying this constraint almost surely converges to 0, and
as the number of classes is finite it follows that the probability of a point being an ESV but
not an EEV almost surely converges to 0. Combining this with results 1 and 2 shows that
both the class-wise average fraction of ESVs and the class-wise average fraction of EEVs
almost surely converges to v. |

Theorem 9 v is an upper bound on the class-wise average fraction of anomaly vectors. If
there are no intra error vectors in the training set © and if the distributions Py, P, ...,
P,_o do not contain discrete components then asymptotically, with probability 1, v equals
the class-wise average fraction of anomaly vectors.

Proof By theorems 7 and 8, and extending the notation from the previous proof, fiav <
feev < v, proving the first part of the theorem. If there are no IEVs then by theorem 7 all
ESVs are AVs, and the second part of the proof follows from theorem 8. |

The implication of this is that, if all training vectors are either correctly labelled or
labelled as anomalous (i.e. there are no intra-error vectors) then v will control the class-
wise average fraction of training vectors which are labelled anomalous. If v is small then the
trained machine will be better able to classify the training vectors but may not correctly
detect anomalies, whereas if v is larger then the trained machine will be better able to detect
anomalies but may mistakenly classify non-anomalous vectors as anomalous. Furthermore,
in this case the v parameter acts independently to the C' parameter, allowing the user
to independently control both the risk minimisation/margin maximisation trade-off of the
classifier and the sensitivity to anomalies.

More generally the following theorem will hold true:

Theorem 10 v is an upper bound on the class-wise average fraction of anomaly vectors.
If there are no vectors in the training set © that are simultaneously intra- and extra-error
vectors, and if the distributions Py, Py, ..., Ph,—o do not contain discrete components,
then asymptotically, with probability 1, v equals the class-wise average fraction of anomaly
vectors.

Proof The proof follows by noting that the presence of intra-error vector will have no in-
fluence on the previous proof provided that such vectors are not simultaneously extra-error
vectors. |
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Class 0

Figure 5: Hlustration of the effect of regularisation on feature-space geometry for distance
based kernel functions for the case n = 3, dx = 2. Training vectors lie on the
hypersphere. Minimising %Zm wl w,, maximises Ay, thereby maximising the
proportion of the hypersphere labelled class 2 (anomalous).

In the most general case where we allow training vectors that are both intra- and extra-
error vectors the relationship will not be exact, as extra-error vectors that are also intra-error
vectors are not guaranteed to lie in class n — 1 in feature space and hence be labelled as
anomalous. However in this case v will continue to act as an upper bound on the fraction
of anomaly vectors.

5.3 Anomaly Detection Properties for Radial Kernels
This section considers the properties of the CS++-SVM for kernels of the form:

K (z,y) = £ ([le —yl)

The key feature of such kernels is that they map all input space vectors z € X onto the
surface of a hypersphere of radius y/k(0) centred at the origin in feature space (Scholkopf
and Smola, 2001). When using such kernels it is sensible to seek a trained machine which
labels as much of this hypersphere class n — 1 (anomalous) as possible.

Definition 11 The origin-anomaly distance A,,_1 for a trained CS++-SVM classifier given
by wg, W1, ..., b is defined to be the shortest distance between the origin and the boundary
of class region n — 1 in feature space.

As shown in Figure 5, maximising the origin-anomaly distance A,,_1 will help to ensure
that as much of the hypersphere as practical will be labelled anomalous. Moreover, it may
be seen from (22) that if b ~gro, 0 then:

T
A, 1 = min MOTS R

tlt#n—1 \/ng (V(n);n—l,tva);n_1,t>wm
m

(24)
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Class 0 (not anomalous)

Not anomalous

Class 1
(not anomalous)

Anomalous

Figure 6: Comparison of the origin-anomaly distance for the CS++-SVM (left) and the 1-
class SVM (right) trained on the same data set. In both cases the origin-anomaly
distance is maximised. Note however that the additional class structure of the
CS++-SVM allows more of the hypersphere onto which the data is mapped to
be classed as anomalous (in particular the empty region between the two classes)
than is possible with the 1-class SVM.

and hence:

min vZ . 1b
s#n—1 (n)is,n—

\/m >0 (25)

Minimising the bias-forcing term —Cu’. b in the primal CS++-SVM training problem

(n)n—1
(15) will help to ensure a solution for which b ~GRD, 0 (or, equivalently, u%;b) b > ua),sb

An—l 2

m—1
for all s € Z,,—1), while minimising the first term in the primal will maximise a lower bound
on the origin-anomaly distance A,_1.

This special case also provides a heuristic means of comparing the CS++-SVM with
the 1-class SVM in terms of anomaly detection ability. Let © be a multiclass training set
with examples from classes 0, 1, ..., n — 2 and let O be the same training class with labels
removed:

O = {x| (zi,y;) € O}

Let A,_1 be the origin-anomaly distance for a CS+-+-SVM trained with ©, and let A; be
the origin-anomaly distance for a 1-class SVM trained with 0. Suppose further that the
distributions Py, Pi, ..., P,_o are distributions with little or no overlap.

Under these conditions it is not difficult to imagine cases such as that shown in Figure 6
where the additional structure of the CS++-SVM decision boundary in feature space (mul-
tiple hyperplanes) compared to the 1-class SVM (single hyperplane), and the additional
cluster-identifying information available to the CS++-SVM (the class labels y; in the train-
ing set ©), will mean that A, > A and moreover the CS+-+-SVM will label a larger
portion of the hypersphere as anomalous than the 1-class SVM. Heuristically speaking, this
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implies that the CS++-SVM should be able to outperform a 1-class SVM on a pure anomaly
detection task when the training data is labelled. Our observations in Section 6 support
this hypothesis.

6. Experimental Methodology and Results

In this section the performance of the CS++-SVM on artificial and real data is compared
with several alternative schemes. In the first two experiments (artificial data and character
recognition) we compare with a hybrid scheme that combines a 1-class SVM (anomaly
detector) and a standard CS-SVM (multiclass classifier) as follows:

n—1 if By class (2) = +1
hcs—svMm ()  otherwise

Phybrid () = {

where hcs_svm is a CS-SVM classifier trained on the training set © given and hq_j.ss 1S a
1-class SVM trained on the training set ©, where:

O = {z| (zi,y;) € O}

In our third set of experiments we compare to both this method and also the classify with
reject option (Bartlett and Wegkamp, 2008; Chow, 1970; Grandvalet et al., 2009; Kwok,
1999; Fumera and Roli, 2002); and an alternative hybrid method which uses a hyperspherical
SVM (Tax and Duin, 2004) instead of a 1-class SVM.

All data in training sets has been pre-processed to normalise features. Non-categorical
features are normalised to give zero mean, unit variance for each feature. Categorical
features have been replaced with a binary representation using 1 bit per category.” Missing
non-categorical values have been replaced with 0 and missing categorical values with 0 for
all bits in the representation. All experiments were run using SVMHeavy (Shilton, 2001—
2020),8 which is an active-set based optimisation library written in C++ (see Shilton et al.
(2005) for details). Alternative optimisation libraries include Nandan et al. (2014); Claesen
et al. (2014).

For these experiments we have used the radial basis kernel and polynomial kernel func-
tions:

Kot (2,9) = exp (= 1o — y]?)
Kpoly (ZL‘, y) = (1 + <ZL‘, y>)d

where the kernel parameters are, respectively, 1072 < v < 102 and d € {1,2,3,4,5}. The
trade-off parameter C' was selected from 1072 < % < 102. Parameter selection of C' and d
or 7 (i.e. classification related training parameters) was carried out using a grid search to
minimise leave-one-out error measured on the training set.

6.1 Artificial Data

This experiment investigates the performance of the CS++-SVM (and the hybrid scheme)
using a 2-dimensional, 5-class data set designed for easy visualisation. The data set was

7. For example, a categorical feature with three possible values A, B or C will be replaced with a three-bit
binary representation where A is encoded 1,0, 0; B is encoded 0, 1,0; and C is encoded 0,0, 1
8. Code available at https://github.com/apshsh/SVMHeavy.
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_Jo 11 ]2 E [ 4 [5(A) |
0 961% | 0% | 191% | 0% 0% 1.99%
1] 0% | 95.9% | 015% | 0% 0% 3.95%
2| 478% | 0.7% | 90.41% | 0% 0.01% | 4.1%
s|o% 0% | 0% 95.43% | 0% 1.57%
ao% 0% | o% 0% 96.58% | 9.42%

Table 1: Test results for the CS++-SVM. Columns indicates assigned classification, row in-
dicates actual classification. The right column shows percentages labelled anoma-
lous.

Lo Jr J2 3 4 [5()
86.3% | 0% | 24% | 0% | 0% 11.3%
0% | 94.3% | 05% | 0.1% | 0.3% | 4.8%
3.9% |04% |596% | 0% | 0% | 36.1%
0% | 0% | 01% |92.6% |01% | 7.2%
0% | 0% |01% | 0% | 955% | 4.4%

= w N = O

Table 2: Test results for the hybrid scheme. Columns indicates assigned classification,
row indicates actual classification. The right column shows percentages labelled
anomalous.

generated from the distributions:

nen (][0 1)

[ 7 1.6253  3.0547
b= N(_ —7 ] ’ [ 3.0547 7.7347 D

P2={ reost e A (5,2.25) 0 c U

rsin 6

([ =27 [ 14393 —1.0607
Fs _N<_ ~12 ’[—1.0607 3.5607 D

P4:{ reost | e N(10,1),60 € U (5, 55) }

rsin @

~5:5)

where N is the normal distribution and ¢ the uniform distribution. 150 training vectors
were generated for each class, giving a total training set size of 750 training vectors. In
addition to this a testing set of 10000 vectors (2000 from each class) was generated. For
this experiment we have chosen the RBF kernel.

Representative results for the CS++-SVM and hybrid schemes are shown in Figure 7,
where v = 0.05, C = 1 and v = 10 (C and ~ selected to minimise leave-one-out error,
v selected arbitrarily). For completeness the 1-class SVM classifier and CS-SVM classifier
used to construct the hybrid result are also shown.

The classification accuracy of both the CS++-SVM and the hybrid method are sum-
marised in tables 1 and 2, which shows classification accuracy for the 10000 testing vectors
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Figure 7:

—10 -5 0 5 10 15 s -10 5 0 5 10 15

Results for the artificial training set. Top left shows the classification regions for
the CS++-SVM, and top right for the hybrid scheme. Bottom left shows the
anomaly detection regions for the 1-class SVM component of the hybrid scheme,
and bottom right shows the classification regions for the CS-SVM component of
the hybrid scheme. In all cases class 0 is shown in dark blue, class 1 in aqua, class
2 in green, class 3 in orange and class 4 in red. Points falling in the un-colored
region are classed as anomalous.
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(unseen during training). The CS++-SVM significantly outperforms the hybrid scheme for
all classes. In particular, the hybrid scheme mis-identifies 36% of testing vectors from class
2, as anomalous, whereas the CS++-SVM only mis-identifies 4.1% of class 2 testing vectors
as anomalous. To understand what is happening here consider Figure 7. We note that
the class regions found by the CS++-SVM tend to be more distinct than those found by
the hybrid scheme. In particular, under the hybrid scheme, class region 4 “blends into”
class regions 2 and 3, and likewise class region 3 “blends into” class regions 1, 2 and 4. By
contrast, the CS++-SVM leaves noticeable gaps between classes where there is little or no
overlap between the training points.

This result supports our hypothesis in Section 5.3 that the additional structure in the
decision surface allowed by the CS4++-SVM, and the presence of data-labels in the CS++-
SVM training set © that are absent from the 1-class SVM training set © in the hybrid
model, allow the CS++4-SVM to outperform the hybrid method. This view is supported by
the 1-class SVM in Figure 7, from where it may be seen that the 1-class SVM component
of the hybrid scheme is unable to clearly distinguish between the clusters of data-points
representing the 5 classes present in the data.”

With regard to training complexity, in this example both schemes took roughly the same
time to train (13 seconds in each case) where each code-base shared the same quadratic
optimisation routine.

Finally, while we explicitly assume that there are no anomalies in the training data in
this paper, it is none-the-less interesting to consider the effect of such anomalies. Anomalies
were generated from the distribution:

Pa = U (—15,15) x U (—20, 15)

10 anomalies were added to each class in the training set (giving 160 training vectors per
class) and the experiment repeated. The resulting classification regions for the CS++-SVM
and hybrid schemes are shown in Figure 8. It is interesting to note that the CS++-SVM
is virtually unaffected by the addition of anomalies,!’ whereas the hybrid scheme differs
significantly.

The reason for this becomes clear when the classification (CS-SVM) and anomaly detec-
tion (1-class SVM) components of the hybrid scheme for the original training set (Figure 7)
and the training set with anomalies (Figure 8, lower figures) are compared. It may be
seen that the classifiers are very nearly identical, while the anomaly detection results differ
significantly. Upon reflection this is unsurprising. By design:

1. SVM classifiers are intended to be insensitive to outliers (this is the function of the
”soft” margin). This is evident here in the insensitivity of the CS-SVM to the presence
or absence of a small number of anomalies (outliers) in the training data.

2. 1-class SVM anomaly detectors are intended to be highly sensitive to such outliers
(anomalies) and attempt to select the top v N such vectors to form a decision boundary.

9. In principle, a more advanced clustering algorithm could be used in place of the 1-class SVM to auto-
matically detect clustering in the data and thereby improve results. This is outside the scope of the
present paper. Note, however, that the impact of such increased complexity on the training time of the
hybrid scheme will be of some importance when comparing it with the CS++-SVM.

10. Of the 100 x 100 test grid points used to generate this graph, only 5 pixels differed from the corresponding
pixels in Figure 7
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Figure 8: Results for artificial training set plus anomalies. Top left shows the classification
regions for the CS++-SVM, and top right for the hybrid scheme. Bottom left
shows the anomaly detection regions for the 1-class SVM component of the hy-
brid scheme, and bottom right shows the classification regions for the CS-SVM
component of the hybrid scheme.

This is evident here in the sensitivity of the 1-class SVM to the presence or absence
of anomalies in the training data.

It is interesting that the behaviour of the CS++-SVM with regard to added anomalies
(outliers) more closely models the CS-SVM than the 1-class SVM. We surmise that this is
a result of the CS++-SVMs ability to use labels to aid in the clustering of data that is not
available to the 1-class SVM, as discussed in Section 5.3. We note that the fraction points
in the training set labelled anomalous is roughly the same for both the hybrid and CS++-
SVM methods (approximately vN), but that the hybrid method is significantly more likely
to (incorrectly) apply this label to points points not generated from Pjy.

6.2 Character Recognition

In this experiment the performance of the CS++-SVM and hybrid schemes were compared
using the UCI (Dua and Graff, 2017) Optical Recognition of Handwritten Digits Data Set
(DIG) (Kaynak, 1995; Alpaydin and Kaynak, 1998) for training and Kassel and Taskar’s
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OCR data set of handwritten lower-case characters (CHR) ' (Kassel, 1995; Taskar et al.,
2004) as our anomaly test set. Both data sets were resized to 8x8 pixel images with each
element normalised to lie in the range [0,1]. The DIG data set contains 3823 training
instances (of which we used 2000 due to memory restrictions) and 1797 testing instances
over 10 classes (digits 0-9); and the CHR data set contains 52152 instances over 26 classes
(characters a-z). The classifier (CS++-SVM or hybrid) was trained on the DIG training
set, and our aim was to compare performance both in terms of classification of the DIG
testing set (all known classes) and in terms of its ability to label examples from the CHR
set anomalous (not digits).

Figure 9 shows the accuracy of the comparative methods with respect to the DIG test
set (non-anomalous) and CHR data set (anomalous) over a range of v values. The first
thing we note from this figure is that, while both methods have good accuracy on the DIG
data set alone, the CS++4-SVM is clearly better at labelling non-digits (anomalies) than
the hybrid method. This supports our hypothesis in Section 5.3 regarding the CS++-SVM
being able to take advantage of the label-information that is absent from the 1-class SVM
training set © in the hybrid model. Curiously the best overall performance for the CS-++-
SVM occurs when v is quite small, with a slight decrease in performance with respect to
both anomaly detection and classification accuracy when v is large.!?

Figures 9 shows which digits the two methods incorrectly assigned elements of the CHR,
data set to over a range of v values, while table 3 shows the confusion matrix for RBF kernel
with v = 0.1. We note from this that the most common error made here is the character ‘a’
being mislabelled as digit 4; characters ‘c’, ‘e’ and ‘z’ being mislabelled 8; and character ‘r’
being mislabelled 9. The confusion matrices for both methods show a similar pattern over
a range of v values.

Finally, Figure 10 shows the results for the linear (first order polynomial) kernel. The
performance of both methods in this case is hampered by the linearity of the kernel. How-
ever it is interesting to note that, while the hybrid method is almost entirely incapable of
detecting anomalies over the entire v range in this case, the CS++4-SVM is able to achieve
some improvement as v increases. We surmise that this is because the hybrid method
requires the anomalies (characters) to be linearly separable from the training data (dig-
its), whereas the CS++-SVM constructs a piecewise linear separating hyperplane for this
purpose.

Once again there was no appreciable difference between the training times for both the
CS++-SVM and hybrid methods.

6.3 Comparisons with Classify with Reject Option

In this section we compare our method with the classify with reject option approach
(Bartlett and Wegkamp, 2008). The essence of this approach is to classify points that
fall sufficiently close to the margin between classes as “reject”, indicating that the point
cannot be reliably classified by the classifier. To train such a classifier the empirical loss
term is replaced by an alternative loss function that applies a lower penalty to reject mis-

11. Available at http://ai.stanford.edu/~btaskar/ocr/.
12. Investigating this particular phenomena is left as future work. However note that, even in the large v
regime, the performance of the CS++-SVM remains superior to the hybrid method.
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Figure 9: Character recognition results for RBF kernel. Top left shows variation of the
classification error on the DIG (non-anomalous) data set as a function of v. Top
right shows variation of anomaly detection error on the CHR (anomalous) data
set as a function of v. The lower two graphs show the fraction of anomalous
(CHR) samples mis-classified into the 10 digit classes over a range of v for the
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ef 0 [ 1 ]2 ]3] 4 [5][6][7 ] 8 | 9 [©& ]
0.00%10.07%/0.00%10.12%|12.99%]1.59%0.10%|1.19%| 6.30% | 1.71% |75.93%
0.00%/0.00%0.00%0.00%| 0.31% |0.00%]0.23%]|0.00%| 0.00% | 0.00% |99.45%
0.19%10.00%|7.47%0.57%| 1.84% |3.17%0.57%0.47%|29.90%| 0.38% [55.44%
0.00%/0.00%/0.00%0.00%| 0.49% |0.00%]0.07%]|0.00%| 0.14% | 0.00% |99.31%
0.00%/0.12%|0.32%|0.04%| 8.68% |0.59%0.42%|0.16%|19.92%| 0.59% |69.16%
0.00%/0.22%0.00%0.00%| 0.43% |0.33%]0.00%|0.11%| 2.28% | 0.76% |95.87%
0.00%/0.00%0.04%0.00%| 0.65% |0.08%]0.04%|0.12%| 1.05% | 0.04% |97.98%
0.00%/0.00%0.00%0.00%| 0.12% |0.00%]0.23%|0.12%| 0.12% | 0.12% |99.30%
0.00%10.00%0.04%0.04%| 0.16% [0.22%0.04%|0.02%| 0.39% | 0.04% |99.04%
0.00%/0.00%0.00%0.00%| 0.00% |0.00%]|0.00%|0.00%| 1.06% | 0.53% |98.41%
0.00%/0.00%0.00%0.00%| 1.21% |0.11%]0.33%|0.11%| 0.88% | 0.00% |97.36%
0.00%10.00%0.32%10.22%| 0.13% |0.25%10.10%0.06%| 0.41% | 0.00% [98.50%
0.00%/0.00%0.00%0.00%| 5.74% |1.62%]0.00%|0.69%| 4.56% | 1.50% |85.89%
0.40%10.00%/0.00%10.06%| 4.74% |2.47%0.06%|1.41%| 1.00% | 4.62% [85.25%
0.36%/0.00%0.00%0.00%| 3.62% |0.03%]0.03%|0.13%| 4.11% | 0.08% |91.66%
0.00%/0.00%0.00%0.00%| 0.07% |0.00%]|0.00%|0.00%| 0.00% | 0.29% |99.64%
0.00%/0.00%0.00%0.00%| 0.59% |0.00%]|0.00%|0.00%| 0.00% | 0.00% |99.41%
0.11%/0.04%/0.07%/0.00%| 2.36% |4.15%]0.04%|0.07%| 9.39% [10.40%|73.36%
0.00%/0.00%/0.14%0.57%| 2.37% |0.93%]0.50%|0.43%| 6.81% | 1.29% |86.94%
0.00%/0.61%0.00%0.00%| 0.56% |0.09%]0.09%0.33%| 4.87% | 1.50% |91.95%
0.00%/0.00%0.00%0.27%| 1.87% |0.04%]|1.01%|9.45%| 0.78% | 0.00% |86.57%
0.00%/0.00%0.00%0.00%| 0.60% |0.00%]0.30%|1.36%| 0.75% | 0.00% |96.99%
0.00%10.00%/0.00%10.38%| 3.46% |0.38%10.77%6.35%| 1.92% | 0.00% [86.73%
0.00%/0.00%0.00%0.00%| 6.05% |0.00%]|0.00%|0.24%| 5.57% | 0.24% |87.89%
0.00%10.00%0.00%10.00%| 0.33% |0.00%0.00%0.49%| 0.74% | 0.08% [98.36%
0.00%/0.00%0.09%0.00%| 4.11% |0.00%]0.09%|0.18%|24.31%| 0.82% |70.38%

N<d < rmnr0o”gopBE —RFa =50/ -0 Ao T

Table 3: Test results for the CS++-SVM on CHR data set. Columns indicates assigned
classification, row indicates actual classification, rightmost column shows percent-
ages (correctly) labelled anomalous.
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Figure 10: Character recognition results for linear kernel. Top left shows variation of the
classification error on the DIG (non-anomalous) data set as a function of v. Top
right shows variation of anomaly detection error on the CHR (anomalous) data
set as a function of v. The lower two graphs show the fraction of anomalous
(CHR) samples mis-classified into the 10 digit classes over a range of v for the
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classification than other (non-reject) class classification - see (Bartlett and Wegkamp, 2008)
for details. While we treat the “reject” and “anomalous” labels as synonyms for the pur-
poses of this experiment, it is important to note that they are distinct in both motivation
and interpretation. We will discuss the distinction and its implications for this experiment
in more details shortly.

In this experiment we compare the CS++-SVM, classify with reject, the hybrid approach
described previously (Hybrid), and an alternative hybrid approach using a hyperspherical
anomaly detector (Tax and Duin, 2004) instead of a 1-class SVM (alt-Hybrid). For consis-
tency with previous experiments we have chosen v = 0.05 for our experiments. We have
considered three data sets from the UCI repository (Dua and Graff, 2017) here, namely
human activity recognition (HAR (Anguita et al., 2013)), which consists of accelerometry
and gyroscope sensor measurements collected from 30 subjects performing activities of daily
living (ADL), such as walking (upstairs, downstairs, normal), sitting, standing, and laying
carrying a waist-mounted smartphone; daily and sports activities (DSA (Altun et al., 2010;
Barshan and Yiiksek, 2014; Altun and Barshan, 2010)), which consists of motion sensor data
of 19 daily and sports activities each performed by 8 subjects in their own style for 5 min-
utes; and forest type mapping (forest (Johnson et al., 2012)), which contains data sourced
from a remote sensing study, which mapped different forest types based on their spectral
characteristics at visible-to-near infrared wavelengths, using ASTER satellite imagery.

For the HAR data set we use sitting and standing as our known classes and everything
else as anomalous. For the DSA data set we treat activities 1-5 as class “1” (known),
activities 6-11 as class “2” (known), and activites 12-19 as our unknown (anomaly) set;
where 5000 points from class 1 and 5000 points from class 2 were randomly selected for the
training set. Finally, for the forest data set we used classes ‘s’ (Sugi forest), ‘h’ (Hinoki
forest) and ‘d’ (Mixed deciduous forest) as our known training classes and class ‘o’ (other
forest land) as our unknown (anomaly) class.

Before presenting our results, it is important to emphasise once more that classify-with-
reject is not designed to detect anomalies. In fact, classify-with-reject as per (Bartlett and
Wegkamp, 2008) is designed on the (until recently almost universal) implicit assuption that
all points that will be labelled by the trained machine belong to one of the classes with
which the machine was trained. Rather it is intended to detect and (label as) “reject” any
vectors that it cannot label with confidence, specifically those lying close to the margin
between classes. Other anomalies such as outliers lying well away from both the margin
and the main clusters of points in each class will not be detected. Thus it is unreasonable to
expect it to perform well in this scenario, so the results presented here should not be viewed
as showing that classify-with-reject is ineffective, but rather the unsurprising fact that it is
not well suited to the combined classification/anomaly detection domain for which it was
not designed. With this caveat in mind, results on the three data sets are given in table
4. Unsurprisingly the proposed CS++-SVM framework is able to outperform classify-with-
reject, and also the other baselines (in line with other experiments).

7. Conclusion

In this paper the CS++-SVM has been presented, which is a new form of SVM combin-
ing both multiclass classification and anomaly detection into a single step process. This
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y | CS++-SVM | Hybrid | alt-Hybrid [ Classify-with-Reject
HAR | 96.4%(99.5%) | 90.8%(99.5%) | 94.8%(1.0%) [ 94.8%(1.0%)

DSA | 90.3%(93.8%) | 69.0%(90.0%) | 76.5%(92.4%) | 96.7%(1.5%)
Forest | 87.8%(65.2%) | 1.4%(100%) | 83.2%(0%) | 72.8%(0%)

Table 4: Classification accuracy on test set for HAR, DSA and forest data sets. Results are
shown as NA%(A%), where NA% is the test error for non-anomaly classes and
A% is the test error for the anomaly class. Refer to text for further discussion.

addresses the combined classification/anomaly detection problem whereby not all samples
presented to the trained machine while in use are guaranteed to belong to one of the training
classes from which the machine was constructed, examples of which include facial recog-
nition, intrusion detection and data analysis for the IoT. The CS++-SVM is motivated
as a natural extension and combination of the CS-SVM (a multiclass classifier) and the
1-class SVM. Analysis of the properties of the CS++-SVM has considered the influence of
the various training parameters and also an intuitive explanation of how the CS++4-SVM
may outperform alternative schemes. The CS++-SVM has been experimentally compared
to a hybrid alternative for both artificial and real data and it has been shown that the
CS++4-SVM is both effective and efficient.
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Appendix A. A Proof of Theorem 7

In this appendix we give a full proof of theorem 7. Before proceeding some preliminary
results are required:

Theorem 12 For alln > 2, and assuming recursive division class centres, Y c7 W) =
0.

Proof Consider the class centres u(,).s, s € Zy, for the recursive division case. From (9)
it may be seen that:

ZSEZQ u(2)§3 =0

2sez, Wnyis = Zsezn_bu(n_l);s Vn > 2

and the desired result follows by induction. |
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Theorem 13 For all n > 2, s € Zy,, and assuming recursive division class centres,
{u(nyelt € Zn,t # s} spans target space RYT (where dp =n —1).

Proof Trivially, {us),} = {[—1]} spans R. For n > 2:

u q’qEZn 1}

(T3]l oes

will span R?~1 if {u(n_l);q| qE€ Zn_g} spans R" 2. Tt follows by induction that {umy4la €
Zp—1} spans R = R™! for all n > 2. The desired result follows from this by application
theorem 12. u

We now proceed to the prove the central result:

Theorem 7: If x; is an extra error vector but not an intra error vector then x; is an
anomaly vector. If x; is an extra support vector but not an extra error vector or an intra
error vector then x; is a boundary anomaly vector.

Proof We begin by re-deriving the dual CS++-SVM training problem in modified form.
In Section 4.2 the Lagrangian form of the CS++-SVM training problem was derived (17):

EZ%ZW Wm+0 ZZN 51 (n)n 1b :
- Zi,m aTngpm (:[;2) Z aTb + Z Oé u(n Z «; Sz
-2 ’Y;’F&

from which it was shown that, optimally:

Z oo () Ym
Z = _Cu(n) in—1

(n)yL 7GE{D)* (87 VZ

1c
v

Yi

Applying the first and third optimality conditions (but not the second) to the (17) gives
the semi-dual CS++-SVM training problem:

m&xr&in@ = %Zi,j Kijaz‘Taj > U‘(n) T 2 aTb + C’u(n) 1P
(26)

Y

such that: —%ﬁ]\? < u{n);sai <0Vi,s #y;

Next, define:

U= [u(n);o U(p):1 --+ Up)n—1 ] c Rdrx(dr+1)

Using (10) and recalling that n = dp + 1 for the recursive division case it may be seen that:

UTU = %T — diffT c R(dr+1)x(dr+1)
T T
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where T is the identity matrix and I a column vector whose every element is 1. Define

o, Ty o1 € RITTL and 3 € RITH! such that 177 = 0 for all i and 173 = 0; and let:
Qi =\ dr +1U d;lTH 25 U(n);sTiis Vi
b = dT+1 Uﬁ = dil 225 Un);shs

where it may be seen from theorems 12 and 13 that this does not restrict the range of o
or b. It follows that:

and hence:

(27)

Substituting back into semi-dual CS++-SVM training problem, (26) may be re-written:

: dr+1 dr+1
max min Q) = 5 Z K’LJTZ sTjs T Z Ti 563 - 1 d;Jrl Z (Ti,yi + Ti,n—l) +C T+ Bn—1

s Ti,s

7]5
such that: — dd+1%ﬁ s <0Vi,s#y;
Yo Tis =0Vi
Zsﬁs—o

(28)
which is the modified semi-dual CS++-SVM training problem. For reference note that the
trained machine may be re-written:

g (95( )) dT+1 Z n);sCS (l’)
where:
G (@) =22 K (2, 2) Tis + Bs (29)
and hence, noting that > (s (z) = 0 Vz it follows that:
ul) 8 (F (@) = /B (5 K (2,20) 75 + )

from which it may be seen that:

h(x)= argmax (s (2) (30)

We now apply Lagrangian techniques to the modified semi-dual CS++-SVM training
problem (28). To this end we define Lagrange multipliers u; and p for the second and third
constraint sets, respectively, in (28), and construct the Lagrangian:

dr+1 dr+1 dr+1
=3 Z Kz]Tz sTj,s + ZTz sBs — d;i_l ZTi,yi - d;i_l ZTi,nfl +C T+ Bn-1—
7.7 S 1 K3

cee T Z HiTis — Z /0/85
1,8 s
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Optimality conditions on 7; s and f, for all ¢, s are:

SO ifTLs:O

29 1 =0 i€ (=gt a0) vs £y,
>0 ifre=— djil%ﬁ]\/cyl
e =0
28 —o
where:

%‘i = 22 KijTjs + Bs — —u; Ys=n-—1y
e = 2 KijTjs + Bs — Vs#n—1,y
gy = 2iTin1 +Cy/ L —p

gﬁQS = Zz’ﬂ,s— Vs #£ 0

1

If x; is an ESV but not an EEV or an IEV then, using (27) and definition 5:
Ti7n_1 € <_ dTil

/ d O)
Ti,s © <_ \ d;lil n—

H

&

R = t\»—l

%J\%Z ]Vs;én—l

It follows that for optimality:

Hi = Z Kng],n 1+ Bn-1— dT+l

Hi = Z KUTJ Yi +Byz \/ g;—’—l

Wi = Z KZJTJ,S""/BS Vs;én—l,yl

and hence:

uf)., 8 (F(2) = uly 18 (5 (@)
u%;l);yz‘g (@ (xi)) > 11;1 58 (G (x;)) Vs#n—1,y;
uz;z);n 18 ((ﬁ(xl)) (n ,sg (95(1.1)) Vs #n—1,y
from which it may be seen from (7) that & (z;) € @yi NG, 1-ie. x;isa boundary anomaly
vector.

If z; is an EEV but not an IEV then, using (27) and definition 5:

) — _ dr 1_1 C

Tin—1 = drflvn-1N,,
: _,/4r 1 1 C _
Tis € ( dT+1un—1Nyi’0} Vs#n—1

It follows that for optimality:

pi <30 KigTjn—1+ Bno1 — 4/ %
drt1

i = 325 KijTjy + By — ) o1

pi > 3 KijTj s+ Bs Vs #n— 1,y
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and hence:
uly, 8 (8 (20) <l g (3 ()
ua);yig (# (i) > uﬂ);sg (B(z)) Vs#n—1y
uz;l);n—lg (@ (zi)) > w8 (B (i) Vs#n—1y

from which it may be seen from (7) that @ (z;) € int(G,_1) U (@yz NGp_q) - ie. z; is an
anomaly vector. |
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