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We present a theoretical analysis framework for relational ensemble models. We show that
ensembles of collective classifiers can improve predictions for graph data by reducing errors
due to variance in both learning and inference. In addition, we propose a relational en-
semble framework that combines a relational ensemble learning approach with a relational
ensemble inference approach for collective classification. The proposed ensemble techniques
are applicable for both single and multiple graph settings. Experiments on both synthetic
and real-world data demonstrate the effectiveness of the proposed framework. Finally, our
experimental results support the theoretical analysis and confirm that ensemble algorithms
that explicitly focus on both learning and inference processes and aim at reducing errors
associated with both, are the best performers.

Keywords: Ensemble learning, relational ensemble, collective classification, collective
inference, bias-variance decomposition, relational machine learning, theoretical framework

1. Introduction

Ensemble methods have been widely studied as a means of reducing classification error by
combining multiple base models for prediction. These methods have been used successfully
for many practical applications and real-world systems. Despite the fundamental impor-
tance of these techniques, most existing work has focused on i.i.d. data where objects are in-
dependent and models use exact inference techniques. The few works that have investigated
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ensembles for relational data (Hefl and Kushmerick, 2004; Preisach and Schmidt-Thieme,
2008) have a number of limitations: (a) the techniques reduce only one type of error; due
to learning, (b) techniques are designed for networks with multiple relation types, and (c)
there is no theoretical analysis to show the mechanism by which the ensembles reduce model
error in relational data.

In this paper, we formulate a theoretical analysis framework to compare the errors made
by different relational ensembles and demonstrate theoretically the reason why some meth-
ods perform better than others. Moreover, we also present a relational ensemble framework
that combines a relational ensemble learning approach with a relational ensemble inference
approach. The first approach, for learning the ensemble, focuses on reducing error due to
variance in learning whereas the second approach, that applies the ensemble for inference,
focuses on reducing the error due to variance in inference. The combination of these meth-
ods is shown to offer the largest improvement in classification accuracy compared to the
baseline approaches on both synthetic and real-world data. Furthermore, the proposed ap-
proach is applicable in both single- and multi-graph settings (i.e., where there are multiple
graphs with the same nodes but different link types).

The different ensemble design choices are shown in Figure 1. Ensembles for i.i.d. data
have mainly considered design choices including methods for input data treatment shown in
Figure 1a and methods for aggregating the output of the models shown in Figure 1d. The
goal of input data treatment is to ensure a variety among the learned models, e.g., bag-
ging approaches use resampling to generate multiple bootstraps of the input data to learn
the models and then aggregate predictions from them Breiman (1996a), while boosting ap-
proaches construct the models in a coupled fashion such that their weighted vote provides
a good fit to the data Schapire et al. (1997); Quinlan (1996); Freund and Schapire (1996).
For more complex relational data, different design choices must be considered. First, the
treatment of input data must consider the relational data characteristics. Second, relational
or collective inference models can be used as the base component models of the ensemble
since they have been shown to improve predictions for relational data. For example, some
recent work Natarajan et al. (2012) proposed using boosting for learning relational depen-
dency networks (RDNs) to reduce the bias component of error. Third, instead of running
the base models independently for inference, and aggregating the predictions to obtain the
final predictions, this work takes advantage of the collective inference process and allows
a prediction made by one model to influence the prediction made for the same node by
another model (Figure 1c). This notion of across-model inference aggregation facilitates
an additional reduction of variance due to inference (called inference variance) on top of
the traditional learning variance reduction achieved by the final step of output aggregation
(Figure 1d).

The goal of this work is to theoretically analyze the error components of relational
ensembles to better understand the mechanisms by which different approaches reduce clas-
sification error. Ensemble methods for non-relational data have been shown to reduce clas-
sification error by reducing learning variance (e.g., bagging Breiman (1996a)) or reducing
bias (e.g., boosting Freund and Schapire (1996)). Previous ensembles that reduce variance
have focused on reducing one type of variance called learning variance. This is the variance
due to learning the models from different training data sets. On the other hand, collective
inference models applied to relational data have been shown to have additional sources of
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Figure 1: Design dimensions for ensembles

error due to variance in the inference process Neville and Jensen (2008). We refer to the
variance in predictions made by the same model given different subsets of true labels for
nodes in the test set, as the inference variance. This paper focuses on reducing variance in
both learning and inference.

We propose a theoretical analysis framework for analyzing the error reduction of re-
lational ensembles models. We extend relational bias/variance decomposition Neville and
Jensen (2008) for the ensemble setting to consider not only a single collective inference
model, but an ensemble of collective inference models. We theoretically analyze two classes
of ensemble models: (i) a relational ensemble model that uses the component classifiers
independently for inference and aggregates the final predictions, and (ii) an across-model
approach that uses the component models simultaneously for collective inference and ag-
gregates the intermediate predictions across the models during inference. The aim of the
theoretical analysis is to decompose the errors associated with each ensemble and show how
the different ensemble approaches are able to reduce the error of a single model. Specifi-
cally, we show that the interleaved across-model ensemble produces the greatest reduction
in error due to its ability to reduce learning and inference error without an increase in bias.
To our knowledge this is the first theoretical analysis of error for relational ensembles.

1.1. Summary of Main Contributions

The main contributions of this work are as follows:

e Theoretical analysis framework for relational ensembles that extends bias/variance de-
composition to not only consider a single model but an ensemble of collective inference
models (Section 3.1).

e Theoretical analysis of the reduction in error offered by different relational ensemble
models (Section 3.2). This is the first theoretical analysis of relational ensembles.

e A relational ensemble framework that combines a relational ensemble learning ap-
proach with a relational ensemble inference approach to reduce both learning and
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inference error due to variance (Section 4). For the relational ensemble learning, we
propose a relational subgraph resampling approach called RSR (Section 4.1) whereas
for the relational ensemble inference approach we propose CEC (Section 4.2).

e Empirical evaluation on real and synthetic data that demonstrates the effectiveness
of the proposed framework as it achieves significant performance gains compared to
alternative ensembles (Section 5).

1.2. Organization of this Article

This article is organized as follows. Section 2 begins with preliminaries. Section 3 proposes
an error analysis framework for theoretical analysis of relational ensembles. Section 4 pro-
poses a relational ensemble framework that reduces error due to variance in both learning
(Section 4.1) and inference (Section 4.2). Section 5 demonstrates the effectiveness of the
proposed techniques empirically using both real-world and synthetic graph data. Section 6
discusses the related work. Finally, Section 7 concludes.

2. Preliminaries

2.1. Collective classification

The general relational learning and collective classification problem are defined as follows.
Note collective classification consists of relational learning and collective inference.

Relational learning: Given a fully-labeled training set composed of a graph Gy =
(Vir, Eyy) with nodes Vi, and edges Ej. along with observed features Xy, and observed
class labels Y}, the goal is to learn a model f defining a joint probability distribution over
the labels of V4, conditioned on the observed attributes and graph structure in Gg,.

Collective inference: Given a partially-labelled test set composed of a graph Gi =
(Vie, Ete) with nodes Vi and edges Ej along with observed features X and partially-
observed class labels fﬁ;e C Y, the learned model f is applied for collective inference to
output a set of marginal probability distributions P (i.e., predictions) for each unlabeled
node in V. In this work, the Gy, used for learning is different from the G, used for collective
inference. Further, we also focus primarily on node classification (i.e., predicting labels for
the nodes), though the techniques are more generally applicable for other relational learning
tasks such as link classification.

2.2. Relational ensembles

The general relational ensemble classification problem is defined as follows. Given a fully-
labeled training set graph Gy, = (Vi Ey.) with nodes V;, and edges Ey, along with observed
features X and observed class labels Y., the first step is to generate a set of m sample
graphs {Gyy,, . .., Gy, } from Gy, which we refer to as pseudosamples. Next, a set of models
F ={f1,..., fm} are learned from {Gy,,...,Gy,, } using a relational learning algorithm
(i.e., one model is learned for each pseudosample graph). During prediction, each learned
model f; € F is applied for collective inference on Gy = (Vie, Fie) to output a set of marginal
probability distributions P; (i.e., predictions) for each unlabeled node in V;.. Finally, the
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predictions P4y, ..., P, from the m models are aggregated and the final predictions P are
generated for nodes in G.

3. Theoretical Analysis

This section describes an error analysis framework for relational ensembles. In particular,
we extend bias/variance decomposition for relational ensembles and use it to theoretically
analyze different relational ensembles. We use squared loss as a measure of classification
performance and show the error reduction offered by the different types of ensembles. To
our knowledge, this is the first theoretical exploration of classification error for relational
ensembles.

3.1. Theoretical Framework

We formalize the collective classification task in order to describe the setting we use for this
analysis. Let D be a population of attributed graphs G.! Each sample D = [G=(V, E), Xy, Yv/]
is drawn from D, where V is the set of nodes (instances) and F is the set of links. Let
f = P(Y|X,G) represent a model of the joint distribution over class labels Y of nodes in
a graph G, given attributes of the nodes X. Let Dy € D be a training graph. Let Dy € D
be a partially labeled test graph where 7 C V7 is the set of labeled nodes in Gy. Let Y
be the set of known labels available to the inference process. We also use t* to denote the
true label of an unlabeled node v;. For this analysis, we assume that Dy and D are drawn
independently from D. Further, we assume the train and test graph are generated by the
same underlying mechanism.

The goal is to learn f from the training set D; and apply it to the test set Dj to
collectively predict class labels for each unlabeled node v; € Vp\ 7

yy = f(vi, D1, T) = P(Y'=t/|YT,X,Gy) (1)

Since relational models that use collective inference have an additional source of error due
to the inference process, we need to isolate the errors due to learning from the errors due
to inference. To achieve this, we also consider the performance of an ezxact inference model,
which does not use collective inference and simply makes a prediction for v; conditioned on
the set of Bayes-optimal values for all instances except v;. Below, we use ?Vz\vi to refer to
the Bayes-optimal prediction for all instances in the dataset Dy except v;. A model that
uses ?Vl\vi to make a prediction for an instance v; is referred to as an exact inference model
and we will use it to isolate errors due to learning from the errors due to collective inference.

3.1.1. MODEL DEFINITIONS

We consider four models in our analysis: the “true” model (f,), a single collective inference
model (fs), a simple relational ensemble model (f.), and a interleaved collective inference
model (f.). We define each of these models below.

True model: We define f, as the “true” model for the population D, where P, is the
“true” joint distribution, which can be estimated as the expected model f; that will be

1. In attributed graphs, every node is assigned attributes and possibly a label.
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learned over samples drawn from D:

fe=P(Y|X,G)=E[f = > foxp(Dr) (2)

DreD

Single collective inference model: Let f; be a single collective inference model learned
from a sample Dy, € D, which estimates P;. The model fs is then used to make predictions
for each unlabeled node v; in a partially labeled dataset < Dy, T >:

Yy, = fs(vi, D1, T)
= P(Y'=t'|Y7,X,Gr) (3)

Simple relational ensemble model: Let F' = {f,,,..., fs,.} be a set of m collective
inference models learned from {Dy,,..., Dy, } generated from Dy. Each fs gives a differ-
ent estimate of the true joint distribution P,. See Section 3.2.6 for a description of how
{Dr,,...,Dr,, } are generated from a given Dy.

Let f. be a simple relational ensemble model that aggregates predictions from F' =
{fsys--+s fs,}, where each fs € F uses n Gibbs iterations independently for inference. A
prediction yjfe for a node v; is then calculated by averaging the final predictions for node v;
from all m models F' = {f,,..., fs,, }. Each base model makes its predictions as described
for the single collective inference model above.?

. 1 &
v = — > fu(wi D1 T)
k=1

1 & o
= > P(Y'=t'[Y7,X,G) (4)
k=1

Interleaved ensemble model: As described above, let F' = {f,,..., fs,,} be a set of m
collective inference models learned from {Dy,,,..., Dy, } generated from Dy. Then let f. be
an interleaved model that aggregates predictions by taking the average of the probabilities
from the m collective inference base models in F, at each Gibbs iteration j € {1,...,n}.
At each iteration j, predictions made by all the base models are aggregated and used to
make a prediction for each model k € {1,...,m}.> These predictions are for Vj 7. For the
instances in 7, we use the true labels. The final prediction for a node v; is estimated from
the average of the component models’ predictions at the last inference iteration n. This
defines the interleaved model f. = f;.m

PR R
?/i:,jZEE fr (i, D1, T)
k=1

1 & o R
T m Z Po (Y=Y 7, Y0y (00,0, X5 G1)
k'=1
Y5, = Ukn (5)
2. At the final Gibbs iteration, a prediction is made for a node using the inferred probability distribution.

3. Note the interleaved ensemble model is a Collective Ensemble Classification (CEC) model. For more
details, see Section 4.2.
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3.1.2. ERROR DECOMPOSITION

We decompose error of collective classification models into bias, variance and noise com-
ponents based on the work of Neville and Jensen (2008). Here we consider squared loss as
a measure of classification performance. The loss for model f on node v; is defined as the
expected squared loss for prediction y} given v;’s true label of ¢

7 =Bt~y (6)

where F refers to the total expectation taken over the training sets (D € D) used to
learn the model f and subsets of true labels T available for inference. For readability, the
superscript ¢ and subscript f are dropped whenever it is clear from context. Note that in
conventional settings, the expectation E would refer to aspects of learning and represent the
effect of training sets on models/predictions. However, in collective inference settings the
relational inference process introduces another source of error (Neville and Jensen, 2008).
Thus, to reason about the performance of different relational ensembles, we need to make
a distinction between the expectation over learning and the expectation over inference and
the expectation over both. We define these expectations below.

To analyze performance differences, loss can be decomposed into bias, variance, and
noise components, and compared across models. For squared loss, the decomposition is
additive:

L=V+B+N (7)

We show the decomposition and define each component below.

E[L] = E[(t — y)?]
= B[t? — 2ty + 7]
= Ely’] - 2E[t]E[y] + E[t’]
= E[y’] - 2E[t|Ely] + E[t*] + Ely)* — Ely]?
=V + E[y)*> — 2E[t|E[y] + E[t?]
=V + E[y]* — 2E[t]E[y] + E[t}] + E[t]* — E[t]?
]

=V + (E[t] — E[y))? — E[t]* + E[t}]

Variance defined as V=F [(E [y] — y)Q] is the average loss incurred by all predictions y,
relative to the mean prediction E[y].

Bias defined as B = (E[t] — E[y])? is the loss incurred by the mean prediction, relative to
the Bayes-optimal value for node v;: E[t] (the expected value of the true label).

Noise defined as N = E[(t — E[t])?] is the loss incurred due to noise in the labels of the
data, which is independent of the learning algorithm.
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3.1.3. EXPECTATIONS

We define the three types of expectations that will be used in the proofs—expectations over
learning, inference, and total. Note these expectations are defined for the predictions that
will be made by the single model f; for a test data set Dj.

Expected learning prediction: This is the expectation over learning, where the pre-
diction for a node v; is estimated using ezact inference based on the set of Bayes-optimal
predictions for the rest of the graph, YVI\U.3

ELly} |Di] = Y P(Y'=t|Yv,, . X,Gy)*p(Dr)
D;eD

= P, (YZ :ti|?VI\ui , X, G[) (8)

Expected inference prediction: This is the expectation over inference, where the pre-
diction for a node v; is estimated using the model fPr learned from a single training set
Dy

Erly},|Dr, £P7) = Po(Y =t'|Y7, X, G1) # p(YT)
T
:Ps(Yi:ti|X7G1) (9)

Expected total prediction: This is the total expectation over learning and inference,
where the prediction for a node v; reflects the prediction that would be made from the true
distribution:

Erly},|D1] = Eviy},|Dr)

=> p(Y7) Y P(Y'=t'|Y7,X,Gr) *p(Dy)
T DreD

= P.(Y'=t'|X,Gr) (10)

Note that all possible learning scenarios is covered by all possible training graphs, therefore
the expectation is over all possible training graphs in (8). On the other hand, all possible
inference scenarios is covered by all possible/alternative (partial) labelings provided on the
test set, therefore the expectation is over all possible labelings in (9).

3.2. Analysis

Given the framework described above, we compare the performance of the ensemble models
to the single model and show that the ensembles reduce total loss. Specifically, we decom-
pose the error of the single collective inference model fg, the relational ensemble model f.,
and the interleaved ensemble model f.. Our analysis shows that the interleaved ensemble
results in the greatest reduction in error, through its reduction of both learning and inference
variance.

We refer to ys as an arbitrary prediction from a single collective inference model fs, y. as
an arbitrary prediction from a relational ensemble f., and y. as an arbitrary prediction from
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an interleaved ensemble model f.. The proofs below make use of the following assumptions.

Noise equivalence: The noise component of error is dependent upon the data set, and is
independent of the classification algorithm. Therefore:

N, =N, = N, (11)

Dataset independence: The data graph samples {Dy, }s=1 .., used for learning the m
models and Dy used for inference are drawn independently from D. When the datasets
are independent, the total expectation can be computed from the learning and inference
expectations as follows:

Er[] = Ef[EL[]] (12)

Predictions from relational ensemble: In the simple relational ensemble f., when
the number of base models m approaches oo, the ensemble prediction yjce approaches the
expected prediction of the single model fs, when the expectation is over learning (i.e.,
EL[yl]). Since the predictions from f. are conditioned on a single labeling 7", the ensemble
prediction does not approach the total expected prediction of the single model (i.e., it does
not reflect the variation over inference).

lim ye = EL[yS] = P*(Yi:ti‘YV[\v. , X, GI) (13)
mM—00 i

Predictions from interleaved relational ensemble: In the interleaved relational en-
semble f., when both the number of base models m and the number of inference iterations n
approach oo, the interleaved prediction y}c approaches the expected prediction of the single
model fs, where the expectation is over both learning and inference (i.e., Ep[yt]). This is
because the interleaving process, which conditions on Yp N TUw,}d At each inference iteration
j, simulates draws from alternative labelings T over the course of inference.

lim y. = Erlys| = P.(Y'=t'|X,Gr) (14)

m,n—00

This is discussed further in Section 3.2.6.

3.2.1. VARIANCE REDUCTION

When squared loss is decomposed, the variance component is Vr = Ep [(Erly] — y)?]. Here
we consider the expected total error, over both learning and inference. We now show that
a simple relational ensemble reduces the variance of a single model, and an interleaved en-
semble reduces the variance of a relational ensemble.

Theorem 1 Let fs be a single collective inference model. Let Vg be the expected variance
over fs obtained from randomly drawing train and test sets. Let f. be a simple relational
ensemble. Let V. be the expected variance over f. obtained from randomly drawing train
and test set. Let f. be an interleaved ensemble model. Let V. be the expected variance over

fe. Then Vi > Ve > V.
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Proof of Theorem 1.1

Vi—V. = Er [(Brlys|—vs)?] — Bt [(Er(ye] —ye)?]
= Eq(Erlys)*—2ys Erlys|+v3] — Er[Brlye)> —2ye Erlye) + v ]
= Erlys)* —2Er[ys|*+ Er(yi] - Erlye)* +2Er [y — Er[y?]
= —Brlys)*+ Erlyf)+ Erlye)’ — Erly?]

= —Brlys]*+Er[y?)+ Br [Erlys)]*— Er [Er[ys)?] (by 13)
= —E([ELys])*+ Erly2)+ Er[ELlys)]” — Br [Evlys]?] (by 12)
= Erly)—Br[Er[ys)’]
= Er[ELly ] —Er [Brys)?] (by 12)
= Er[BLly]—ELlys)’]
>0 (EL[y?]—EL[ys)* > 0 by Jensen’s Inequality)
[
Proof of Theorem 1.2
Vo—Ve =E7 [(Erlye)—ve)?] — Er [(Erlye] —ye)?]
=Er{Erlye]” =2y Erlyel + 2] — Er[Erlye)* —2yc Brlye) + v
=Er(ye]* —2Er[ye]* + Br(y] — Erlyc)* +2Er(yc)* — Er[y?)
= —Erlye)*+ Br(yl) + Erlyc)* — Erly?]
= —Br |[Erlys|]*+Br [Erlys|*] +Erlyc) ET[yc] (by 13)
= —Er [BELlys|*+Er [ELlys)’]) +EBr ET ysl*—Er [Erlys)’] (by 14)
= —Er [Erlys)]*+Er [ELys]?] +Erlys)®— Brlys)?
= —E; |ELlys|)*+E; [ELlys 2] (by 12)
= Ey [ELlys]’] —E; [ELys))?
>0 (by Jensen’s Inequality)
[

Single collective models fs have two sources of variance in their predictions—variance due
to learning the models from different training graphs, and variance due to applying the
model for inference given different labeled subsets of the test graph. Relational ensembles
fe average model predictions from different learned models and reduce the variance due to
learning. Thus, Vi > V..

Similar to relational ensembles, interleaved ensembles f. reduce the variance due to
learning. Moreover, interleaving predictions across the base models during each collective
inference iteration simulates draws from alternative labeled subsets of the inference graph,
and prevents any of the base models from converging to extreme state. This allows an
additional reduction of the inference variance. Thus, V., > V.

10
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3.2.2. BIAS REDUCTION

When squared loss is decomposed, the bias component is By = (Er[t] — Er[y])?. We con-
sider the expected total error, over both learning and inference. We now show that the two
relational ensembles have the same bias as the single model. Since bias depends on how
well the models can approximate the true model, it is not corrected by the relational or
interleaved ensemble.

Theorem 2 Let fs be a single collective inference model with bias Bs, fe be a relational
ensemble with bias Be, and f. be an interleaved ensemble model with bias B.. Then Bs; =
B. = B..

(2.1) By— Be =0
(2.2) Be—B.=0
Proof of Theorem 2.1
B — B. = (Er[t] — Erly])? — (Er[t] — Brlye))
= (Er[t] — Erlys))* — (Erlt] — Er [ELlys]])” (by 13)
= (Br[t] — Erlys)® — (Br(t] — Brlys))?
=0 ]
Proof of Theorem 2.2
Be — B, = (Er[t] — Brlys)*—(Er[t] — Eryc])
= (Er[t]— Er [ELlys]))* — (Br[t]— Br [ETys]])? (by 13, 14)
= (Er[t] — Erlys))® — (Er[t] — Brlys))®
=0 ]

3.2.3. LOSS REDUCTION

Given the reduction in variance and equivalent bias, we can analyze the reduction in error
that the ensembles offer. Recall that we define total loss as the expected error over learning
and inference L = Ep|[(t' — y})z] and this decomposes into variance, bias and noise compo-
nents: L =V + B+ N. We now show that a relational ensemble reduces the loss of a single
model, and an interleaved ensemble reduces the loss of a relational ensemble.

Corollary 1 Let fs be a single collective inference model with loss L, f. be a relational
ensemble with loss Le, and f. be an interleaved ensemble model with loss L.. Then Lg >
L.>L..

(1.1) Ly—Le>0
(1.2) Le—Le>0

11



ELDARDIRY, NEVILLE AND ROSSI

Proof of Corollary 1.1

Ls_Le:(Vs‘i‘Bs‘f'Ns)_(V;a‘i‘Be"‘Ne)

= (Vs + Bs + Ng) — (Ve + Bs + Ny) (by 11, Thm. 2)

=V —Ve

>0 (by Thm. 1.1)
[

Proof of Corollary 1.2

Le_Lc:(‘/;+Be+Ne)_(‘/c"i‘Bc“‘Nc)

= (Ve + Bs + Ng) — (Ve + Bs + Ny) (by 11, Thm. 2)

=Ve—Ve

>0 (by Thm. 1.2)
[ |

Following the results of Theorems 1 and 2, and according to the definition of noise, it
is straightforward to make the above conclusion about reduction in error. A relational
ensemble model will reduce the error of a single collective inference model by reducing the
learning variance, and an interleaved ensemble will reduce the error even further by reducing
both learning variance and inference variance.

3.2.4. LEARNING VARIANCE REDUCTION

In Section 3.2.1, we presented the reduction of total variance component of error of the
two ensemble models. Total variance can be decomposed in learning and inference variance
components. Next, we analyze the learning and inference variance components of the en-
semble models, to show how they reduce total variance.

Learning variance: Here learning variance, V;, = EL[(EL[y] — y)?] is the average loss
incurred by all predictions y, relative to the mean learning prediction Ef[y]. This measures
the variance in predictions made for the same instances by models learned from different
training datasets.

Theorem 3 Let f. be a relational ensemble with learning variance Vi, and f. be an
interleaved ensemble model with learning variance V.. Then in the limit, as the number
of base models m approaches oo, both f. and f. are able to eliminate learning variance
components Vi, and Vi, .

(3.1) Vi, =0
(3.2) Vi, =0

Proof of Theorem 3.1

V. =EL [(EL [ye] _ye)Q]

12
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= EL[ELlye)® —2ye ELlye] +v2]

= Erlye]* —2EL[y]* + EL[y?]

= — Erlye]*+EL[y?]

= — EL [Erlys)*+EL [Eplys)?] (by 13)
= — B[y + EL[ys)?

Proof of Theorem 3.2

Vi, = Er [(Erlye] —ye)’]
= Er[ELlye]* —2ycELlyel +v?)
= Brlye)* —2EL[yc] + EL[y’]
= — Erly)*+ELly?)
= — Er [Epilys]]*+Er (ErLrlys)?] (by 14)
= — Erilys)*+Eriys)
=0 |

Learning variance measures the variation in predictions due to learning the models from
different training graphs. Both relational ensembles f. and interleaved ensembles f. average
model predictions from different learned models to eliminate learning variance. Thus in the
limit, Vi, > Vi, = V..

3.2.5. INFERENCE VARIANCE REDUCTION

Inference variance: Here inference variance is defined as V; = o — 8, where a =
Eri[(ELly) — y)?] is the average loss incurred by all predictions y relative to the mean
learning prediction Ep[y|, while 8 = Ep[(ELr[y] — y)?] is the average loss incurred by the
predictions for y that use exact inference (using Bayes-optimal predictions for all other
instances in the data), relative to the overall mean prediction Er;[y]. Inference variance
measures the variation in predictions made for the same node by the same model given
different labeled subsets of the test graph. Inference variance can also be defined as the
difference between total variance and learning variance.

Corollary 2 Let Vi, Vi, and Vi be the total, learning, and inference variance, respectively.
Then Vi =Vp — V.

Proof of Corollary 2

Vi=a—-8
= ELi[(ELly] — v)?] — ELl(ELily] — v)?]

13
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= ELi[(ELly)® — 2yELly) + v°] — ELl(BLily])® — 2yELily] + v°)
= (ELly])? — 2ELi[YELly] + ELtly®] — (ELily])® + 2EL[yELily] — ELl(y)?]

= (Brily?] = (Ev1ly])?*) = (BLl(y)*] = (BLly)?)
=Vr -V [

Theorem 4 Let f. be a simple relational ensemble with inference variance Vi, and f. be an
interleaved ensemble model with inference variance Vi,. Then in the limit, as the number
of base models m and the number of inference iterations n both approach oo, f. can not
eliminate inference variance Vi, while f. can eliminate inference variance Vi,.

(4.2) V. =0

Proof of Theorem 4.1

Vi, =Vr, = VL,
= (EL1[(Brrlyel — ve)?]) — (BLl(BLlye] — ve)?)
= (Er1[y?] — (Erilye))?) — (Brl(ve)’] — (Eilye])?)
= Eri[y?] — (Erilye))? — Brl(ve)’] + (ELlye])?
= Er1ly?] — (Erilye])? — ELl(ELlys))?] + (EL[Er[ys]))? (by 13)
= Err[y?] — (Brilye))? — (Brlys)® + (ELlys))?
= Err[yZ] — (Erilye))?
= Evi{(ELlys)?®] — (Evi[ELlys)])? (by 13)
>0 (by Jensen’s Inequality)
[ |
Proof of Theorem 4.2
Vi, =Vr, = VL,
= (Eri[y?] — (Brilye))®) — (Erl(ye)’] — (ELlye))?)
= Eri[y?) — (Brilye)® — Erl(ye)?] + (Brlyc)?
= Eri[y) — (Brilye)® — Erl(Errlys)®] + (EL[Errlys)])? (by 14)
= Evi[y?) — (Brilye)? — (Evtlys)® + (Brilys))?
= Eri1ly?] — (Brilye))®
= Er1[(Errlys)®] — (Bri[Brilys))? (by 14)
= (Evtlys)® = (Brilys))?
=0 |

Inference variance measures the variation in predictions due to applying the model given
different labeled subsets of the test graph. Interleaved ensembles f. eliminate inference

14
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variance by interleaving predictions across the base models during each collective inference
iteration, which simulates draws from alternative labeled subsets of the inference graph,
and prevents any of the base models from converging to extreme state. However, simple
relational ensembles f. can not achieve this inference variance elimination because they only
average the predictions of the models after the inference process is complete.

3.2.6. ENSEMBLE LEARNING

The error analysis presented above holds for ensembles constructed from either i.i.d. resam-
pling where instances are sampled independently with replacement or relational subgraph
resampling (RSR shown in Algorithm 2). As the number of pseudosamples m approaches
00, the bootstrap samples approximate the true population distribution D and the models
in F' approximate P, Breiman (1996a). This indicates that for the ensemble model fe,
Eq. 13 holds regardless of the learning approach. In other words, in expectation the ensem-
ble prediction y}e approaches the expected prediction of the single model fs over learning

(i.e., Br[yl]) for both resampling methods:

. S .
Jim = lim P = B[y (15)

Furthermore, y/*% converges faster than y//? since pseudosamples from RSR (Algorithm 2)
more accurately reflect the correlations in relational data. Thus, given a finite ensemble size
m, predictions made by models learned from RSR pseudosamples will capture and reduce
more learning variance (due to RSR more accurately capturing the increased variance in
network data). The same argument applies to f.. Thus, Eq. 14 holds regardless of the
resampling approach, but in finite ensemble sizes, RSR pseudosamples will capture and
reduce more variance.

Our analysis illustrates the errors due to different phases of an ensemble algorithm. This
understanding points to an additional way of reducing error due to variance in learning. In
particular, the better the set of training samples can approximate the true population vari-
ance, the more reduction in learning variance the final model aggregation can achieve. Using
RSR can more accurately capture the increased variance in relational data, specifically using
a small number of bootstrap samples. Following this observation, we propose to use RSR
to enable the final predictions aggregation to reduce more learning variance. We combine
the use of RSR with the interleaved inference aggregation (i.e., CEC) to additionally reduce
inference variance. We outline the algorithmic details in the next section.

4. Relational Ensemble Framework

In this section, we describe the relational ensemble framework. Given a training dataset,
the proposed relational ensemble framework uses a resampling approach (such as RSR in
Algorithm 2) to generate m bootstrap pseudosamples to learn an ensemble of m models
(Section 4.1). The models are applied for collective inference on a single test set using
CEC, which iteratively interleaves the inferences across the m models (Section 4.2). After
inference is finished, the predictions given by each base model are aggregated for each node
independently as in traditional ensembles.

15
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4.1. Ensemble Learning

We propose two alternative approaches for learning the base models of the ensemble, de-
pending on the network setting. The first method is suitable for networks composed of
a single graph (Section 4.1.1), while the second method is for multi-graph networks (Sec-
tion 4.1.2). Using either of these methods reduces the error due to variance in learning.

4.1.1. ENSEMBLE LEARNING FROM A SINGLE GRAPH

Given a single graph Gy = (Vir, By, the goal is to generate multiple training graphs to
learn an ensemble of base models. We use the bagging approach in which the psuedosamples
used for learning are networks sampled with replacement from the training graph. However,
instead of sampling node instances independently with replacement as typically done in
bagging, we propose a relational subgraph resampling approach to generate m bootstrap
pseudosamples for learning an ensemble of m models.

The ensemble learning approach using bootstrap sampling is summarized in Algorithm 1
and demonstrates how an ensemble of m models is constructed. A pseudosample G; =
(Vj, Ej) is generated by resampling from Gy, (line 3) and a model F} is learned from G;
(line 4). Fj is a joint probability distribution over the labels of Vj, conditioned on the
observed attributes and graph structure in G;. The ensemble set M of m learned models
is returned (line 6). Note that the two main components needed for an implementation of
Algorithm 1 are a resampling algorithm (line 3) and a learning algorithm (line 4).

Algorithm 1 Ensemble Learning: EL(Gy= (Vi By ), m)
Set M «+ ()

1

2 forj=1,...,mdo

3 Gj = RESAMPLE(GY,.) > Construct pseudosample of Gy,
4+ F; = LEARNMODEL(G}) > Learn model Fj from pseudosample
5 M=MU{F;} > Add model F; to ensemble M

6 return ensemble of relational models M

Resampling. In this work, we propose Relational Subgraph Resampling (RSR) for re-
sampling relational data to accurately capture the increased variance due to linkage and
autocorrelation. However, any resampling approach can be used instead. RSR samples
subgraphs with replacement instead of the typical independent sampling technique that
samples instances (i.e., nodes) with replacement.

The proposed RSR approach is shown in Algorithm 2. Given a relational data graph
G = (V, E), it returns a pseudosample data graph Gps = (Vpgs, Eps). A set of Ng = (l—‘g']
subgraphs of size b are sampled with replacement from G. Each of the Ng subgraphs are
sampled using a breadth-first search (BFS) from a randomly selected seed node. As a node
v is added to the sampled subgraph node set Vg, the neighbors of v are added to a queue
@, from which the next node v is popped. This continues until the subgraph size b is
reached. Note that the sampling is with replacement from the graph, so a node may appear

4. Autocorrelation is the statistical dependency of the same attribute on related (neighboring) node in-
stances Leenders (2002); Xiang et al. (2010).

16



ENSEMBLE LEARNING FOR RELATIONAL DATA

Algorithm 2 Relational Subgraph Resampling: RSR(G = (V, E), b)

1 Vps 0, Epg+ 0 > Initialize pseudosample node and edge set
2 fors=1,..., (%-\ do > For each sampled subgraph s
3 Set Vs« 0, Es<+0,Q<« 0

4 Select v uniformly at random from V'

5 Vs « Vs U{v} > Add node v to the set of Vg sampled nodes
6 Q@ < Q U neighbors of v > Add neighbors of v to the queue @Q (for BFS step)
7 while (|[Vg| <b) A (|Q| > 0) do > Add at most b — 1 nodes to Vg via BFS
8 v = pop(Q) > Set next node in Q to v and remove v from Q
9 Vs + Vs U{v} > Add v to the sampled node set Vg of subgraph s
10 Q@ < @ U neighbors of v > Add neighbors of v to the end of Q
11 Eg ={ei; € E s.t. v;,v; € Vg} > All edges in E with both endpoints in Vg

12 Set Vpg + Vps U Vg and Epg < Eps U Eg
13 return a pseudosample Gps = (Vps, Eps)

in multiple subgraphs, one subgraph, or none. The pseudosample node set (Vpg) consists
of all the nodes selected in the subgraphs (suitably relabeled so multiple copies of the same
original node are distinguishable for the learning algorithm). The pseudosample edge set
(Epg) consists of all the edges within the selected subgraphs. Note sets are assumed to be
multisets and therefore can contain multiple instances of the same element.

The intuition behind sampling subgraphs with replacement is that when autocorrelation
is high (i.e., neighbor labels are correlated), the effective sample size is going to be closer to
the number of “groups” of correlated instances than the number of nodes in the network. To
account for this, RSR attempts to sample these “groups” instead of single instances, thus
it more accurately approximates the effective sample size of the data. Moreover, sampling
subgraphs preserves the local relational dependencies among instances in the subgraph
so the relational model is better able to utilize the interrelated attribute dependencies
to improve classification. In the traditional independent sampling technique, a node in the
pseudosample will not necessarily have its neighbors from the original sample, and therefore
the model will be less capable of exploiting the link structure.

4.1.2. ENSEMBLE LEARNING FROM MULTIPLE LINK GRAPHS

Consider the problem of collective node classification in domains where a single set of objects
(i.e., V) is connected through multiple link graphs (i.e., G1 = (V, E1), G2 = (V, E»), ...). For
instance, a friendship graph in an online social network consists of links connecting users
listed as friends, a message graph connects users that communicate via messages, and a
photo graph can also be constructed where a photo-tag link connects users that tag one
another in photos. For these types of networks with different types of relations (link types),
each graph provides complementary information about the same set of objects and can thus
be viewed as a different “source” of link information. For predicting a single class label
Y (e.g., political views) over the set of nodes V' given multiple types of links among V/,
the goal is to combine the link sources to improve the quality of inferences produced from
collective classification. There are two primary ways to combine the various link sources to
improve prediction—either by combining the sources before learning and then learning a
joint model across all graphs, or by combining the sources after learning, which can be done
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by learning an ensemble of models, one from each source. As discussed previously, in order
to reduce the prediction error due to variance (particularly due to the collective inference
process), this work focuses on the latter.

For learning an ensemble in the multi-graph setting, each base model is learned in-
dependently from one link graph using an arbitrary relational learning (RL) method. The
resulting models comprise a set of joint probability distributions over the labels of the nodes
of the training network. This is analogous to learning a set of ensemble models by using
different feature subsets Cunningham and Carney (2000), but in this case link types are
treated as features. For the Facebook example, this will correspond to learning one model
from each of the friendship, message exchange, and photo-tagging graphs. This method of
ensemble learning uses the complete set of nodes in the training network for learning each
model, as opposed to the proposed bootstrap sampling approach described in Section 4.1
that learns models from subsets of a single graph.

4.1.3. RELATIONAL LEARNING

For learning a set of models (line 4 in Algorithm 1) given psuedosamples from a single
training graph (Section 4.1.1) or a set of graphs with different link types (from Section 4.1.2),
we can use any arbitrary relational learning (RL) method. For the experiments in Section 5,
we use relational dependency network (RDN) Neville and Jensen (2007) models as the
component collective classification models. RDNs are selective models based on decision
trees and therefore exhibit the instability that typically works well in bagged ensembles.
They use pseudolikelihood estimation to efficiently learn a full joint probability distribution
over the labels of the data graph and use Gibbs sampling for collective inference. As an
aside, the full joint distribution over the test data does not need to be estimated for accurate
inference and it is sufficient to accurately estimate the per instance conditional likelihoods,
which is easy to do with Gibbs sampling and has been shown to converge within 500-2000
Gibbs iterations Neville and Jensen (2007).

4.2. Ensemble Inference

In this section, we propose an across-model collective classification method where inferences
are propagated across the models of the ensemble during collective inference (See Figure 2).
The proposed method is called Collective Ensemble Classification (CEC) and is outlined
in Algorithm 3. Given a test network G with partially labeled nodes V' and m base mod-
els I, Fy, ..., F,, learned using either approaches described previously in Section 4.1, the
models are applied simultaneously to collectively predict the values of unknown labels (lines
5-11). First, the labels are randomly initialized (lines 1-4). In particular, line 3 selects a
node v; with an unknown label and line 4 initializes the label of v; randomly. Next, at
each collective inference iteration, the model Fj is used to infer a label for each node v
conditioned on the current labels of the neighbors of v (line 8). This corresponds to a
typical collective inference iteration. Then instead of using the prediction from F; directly
for the next round, it is averaged with the inferences for v made by each other model Fj
s.t. 7 # i (line 9). This interleaves inferences across the component models and pushes
the variance reduction gains into the collective inference process itself. At the end, the
predictions are calculated for each model based on the stored prediction values from each
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Algorithm 3 Collective Ensemble Classification (CEC)
CEC(Fy, F, ..., F,, G=(V,E),X,Y, F,=P(Y;|G,X,Y))

/* initialize labels for each model */

1 fori=1,...,m do
2 Set Y=Y and Yi =0
3 for each node v; with unobserved label do
4 Randomly initialize g); and set Yi=Y*U {g);}
5 repeat
/* inference within each model */
6 fori=1,...,m do
7 for each node v; with unobserved label do
/* use F' to infer label of v; conditioned on current neighbor labels */
8 gimew = label inferred from F' := Pi(Yj|X},XiR,Y{1) where R = {v, : ¢;, € E;}
/* merge predictions across models */
9 g;agg — % Z;TL:l :l);new
/* store merged prediction */
10 Set V¥ =Y\ {gi} U{g;"’} and Yi = Y U {5}

11 until terminating condition is satisfied

/* make predictions for each model */
12 fori=1,...,mdo
13 Compute predictions P* (for all nodes with unobserved labels) using Y.

/* combine predictions across models (voting models outputs) */
u P=10
15 for each node v; with unobserved label do
16 pj= > pandset P=PU{p;}

17 return P

collective inference iteration (lines 12-13). Finally, model outputs are averaged to produce
the final predictions (lines 15-16).

The manner that CEC uses inferences from other models (for the same node) provides
more information to the inference process that is not available if the collective inference
processes are run independently on each base model. Since each collective inference process
can experience error due to variance from approximate inference, the ensemble averaging
during inference can reduce these errors before they propagate throughout the network.
This results in significant reduction of inference variance, which is achieved solely by CEC.
CEC assumes a collective classification model as the base component of the ensemble. In
this work, we use RDNs, though any collective classification model can be used instead.
However, our analysis shows that the approach will work particularly well for models that
exhibit learning and/or inference variance.

For the multi-graph network setting, the CEC approach shown in Algorithm 3 can be
used directly since in this case the m base models Fi, Fb, ..., F}, from the ensemble learning
(Section 4.1) correspond to m different graphs with the same nodes but different link types
(multi-graph setting).
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Model 1 Model 2 Model 3

Figure 2: Model interleaving aggregates predictions for the same nodes across the models.

4.3. Complexity Analysis

Let m denote the number of models in the ensemble and let the runtime complexity of the
general relational learning (RL) algorithm be C, then the worst-case time complexity of
CEC is O(m(C)). Further, let the time complexity of inference using the general collective
classification (CC) algorithm be C;. Algorithm 3 uses CC m times to learn m models and
aggregates over m predictions. Therefore, the time complexity of CEC is O(mC;). Since
m is a small constant, CEC is computationally efficient with a time complexity that is
comparable to a single relational model. As an aside, since the proposed relational ensemble
framework can leverage any RL and CC algorithm, we use C; and C; above to denote their
runtime complexity, respectively. Suppose, the RL and CL algorithms have a worst-case
time complexity that is linear in the number of edges, then the proposed relational ensemble
approach is also linear in the number of edges since k is typically a small constant.

5. Experimental Evaluation

We evaluate the ensemble method on both synthetic and real world data. Furthermore, we
demonstrate the effectiveness of the proposed methods for two different network settings:
(i) the single graph setting (Section 5.1) and (ii) the multi-graph setting where there are
multiple graphs available with different link types (Section 5.2).

5.1. Results for single graph setting

This section compares the proposed ensemble methods for the single graph setting that
assumes there is only a single training graph available for learning a relational ensemble.
This is in contrast to Section 5.2 that leverages multiple graphs that all have the same
nodes but with different link types. The single graph setting is the most common and
general setting for learning graph-based ensembles. We refer the reader to Section 4 for
more details on the differences and technical details.
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5.1.1. BASELINE APPROACHES

We use a number of baseline methods to compare our proposed model to alternative ap-
proaches while controlling for model representation.

ITD-RE This model uses IID resampling for generating the training pseudosamples and
learns a relational model for each base classifier. 11D resampling works by sampling instances
independently at random from the network with replacement. A link in the original sample
will only appear in the pseudosample if both nodes it connects were selected. A simple
relational ensemble (RE) approach is then used for inference, where each base model is
applied independently for collective inference to produce a set of probability estimates for
nodes predictions. Then for each node, the base models’ predictions are averaged to get the
node’s final prediction. We compare to this approach to evaluate the combined improvement
achieved by using RSR for resampling and CEC for inference over a method that does not
use either approach. The goal is to show the total variance reduction offered by RSR and
CEC.

RSR-RE This baseline uses RSR for constructing the ensemble and RE for inference.
Comparing the performance of our proposed model to this approach allows us to evaluate
the improvement achieved by CEC for inference, while controlling for the resampling method
(RSR) used by our proposed approach.

IID-CEC This baseline uses IID resampling for ensemble construction and CEC for in-
ference. Comparing the performance of our proposed model to this approach allows us to
evaluate the improvement achieved by RSR for sampling, while controlling for the inference
method (CEC) used by our proposed approach.

SM A single model baseline is used to evaluate the improvement achieved by each ensemble
approach. Here, a collective classification model is learned from the original training sample
and applied once on the given test set. Note that all sampling based ensembles generate
the bootstrap pseudosamples from this original training sample, and use the same collective
classification algorithm as the base component model.

5.1.2. DATA SETS

We evaluate the methods on synthetic and real world network data. Synthetic data sets
are generated with a latent group model Neville and Jensen (2005). They are homogeneous
(i.e., with a single object type) data graphs with autocorrelation due to an underlying
(hidden) group structure. Each object has a boolean class label C' (that is determined by
the type of group to which it belongs), and three attributes. The class label C' has an
autocorrelation level of 0.75. We independently constructed five training and test pairs
of such data sets, each consisting of 500 objects. Further details including an algorithm
summarizes the synthetic generator is provided in Appendix A.

The Facebook dataset used in this work is a sample of Purdue University Facebook
network. We construct a friendship graph from the links between friends. Each user has
a boolean class label which indicates whether their political view is ‘Conservative’. In ad-
dition, we considered nine node features which record user profile information. We use 4
sampled networks of users (based on membership in various Purdue subnetworks): [Pur-
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due Alum’07, Purdue’08, Purdue’09, Purdue’10] with node sizes of: [921, 827, 1268, 1384]
respectively. Then we construct 4 different training and test pairs by testing on one subnet-
work and training on two subnetworks from the previous and preceding class networks. For
example we learn the model from Purdue Alum’07 and Purdue’09, and apply the model on
Purdue’08.

5.1.3. METHODOLOGY

The RSR algorithm uses a subgraph size b = 50 and b = 10 for the synthetic and Facebook
experiment, respectively. The methods described are learned and evaluated using RDNs
as the base collective classification model, using 450 — 500 Gibbs iterations for collective
inference. We use the following setting to compare the various approaches.

For each experiment, the proportion of the test set that is labeled before inference is
specified, and for each trial a random set of nodes is chosen to label. The random labeling
process is repeated 10 times. AUC ROC is measured to assess the prediction accuracy of
each model. The 10 trials are repeated for 4 training and test pairs, and the averages of the
10 x 4 = 40 AUC measurements from each approach are reported. Note that, all methods
are run on the same random labeling of the test set. From each training test set and for each
sampling approach, we construct 5 bootstrap pseudosamples and learn the ensemble models
(i.e., m = 5). This is repeated for 4 different labeling proportions (/) in each experiment.
Note | = {10%, 30%, 50%, 70%} denotes the x-axis in the figures, while the y-axis represents
AUC.

5.1.4. RESULTS

The results for the synthetic and Facebook experiments are shown in Figure 3 and Figure 4,
respectively. Overall, the proposed RSR-CEC approach is shown to achieve significantly
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Figure 3: Synthetic experiments comparing the methods using different proportions of
known labels in the test graph. The proposed RSR-CEC model is shown to
significantly outperform all other baselines across all percent labelings.
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higher classification accuracy than all other baseline methods for all percent labelings and
across both synthetic and Facebook experiments. The significance is measured using paired
t-tests and all significance reported here correspond to p < 0.0001 unless stated otherwise.
The superior performance of RSR-CEC can be explained by the combined benefit of learning
and inference variance reduction.
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Figure 4: Facebook experiments comparing the methods using different proportions of
known labels in the test graph. RSR-CEC is shown to significantly outperform
all other baselines across all percent labelings.

In addition, the accuracy of the single model baseline is significantly less than all the
ensemble models, at all percent labelings for both experiments. Moreover, IID-CEC signif-
icantly outperforms IID-RE at all percent labelings for both experiments. This is because
CEC reduces inference variance while RE only reduces learning variance. RE applies the
models independently for inference which does not reduce inference variance—since predic-
tion aggregation happens after inference, possibly after inference variance has propagated
through the graph. Furthermore, RSR-RE significantly outperforms IID-RE at all percent
labelings for both experiments, with p < 0.01 and p < 0.03 for the 50% and 70% synthetic
experiments. This is because RSR captures more variance in the data than IID resampling.
Therefore, RE can reduce more learning variance when used with RSR. Finally, IID-CEC
significantly outperforms RSR-RE at {10%, 30%, 50%} for the synthetic experiment. This
shows that CEC can reduce both learning and inference variance, even when combined with
IID resampling. To summarize the empirical findings:

e Ensembles using RSR outperform ensembles using IID resampling, since RSR reduces
more learning variance than IID resampling.

e Ensembles using CEC outperform ensembles using RE, since CEC reduces inference
variance which is not reduced by RE.

e Combining RSR with CEC results in significant gains in accuracy, since the combina-
tion reduces the largest amount of variance (due to learning and inference).
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5.2. Results on multi-source networks

We also evaluate the proposed collective ensemble classification (CEC) approach for the
multi-source network setting where each component model is learned from a different link
graph with the same nodes. The models are applied interdependently for inference to reduce
inference variance. As shown below, this significantly improves classification accuracy for
relational graph data where with multiple link types.

5.2.1. DATASETS

The first dataset is from a public University Facebook dataset. Three link sources describ-
ing different relationships between the same set of users are used. The friendship graph
has undirected friendship links. The wall graph has directed links extracted from users’
interactions through a public message board on their profile wall page. The photo graph
has directed links extracted from users tagging others in their profile photo page. Each
user has a boolean class label which indicates whether their political view is ‘Conservative’.
In addition, nine node features and two link features are considered. The object features
record user profile information. Wall links have one link feature that counts the number
of wall posts exchanged between any two users, while photo links have one link feature
that counts the number of photos shared between any two users. Further details about this
dataset are provided in Appendix B.

The second data set is from IMDb (Internet Movie Database), which contains movie
release information. Five link sources are used. The actors graph links movies that share
an actor. Similarly, the studios, producers, directors and editors graphs link movies that
share the corresponding aspect. Each movie has a boolean class label which indicates
whether the movie is a ‘Block buster’. See Appendix C for further details.

The third data set consists of synthetically generated relational data graphs, where
relational data characteristics (i.e., linkage and autocorrelation) can be varied. We generate
10 different link sources (for the same set of objects) with different link density structures
and link types. Each node has one binary class label. Further details including an algorithm
summarizes the synthetic generator is provided in Appendix A.

5.2.2. BASELINE APPROACHES

The following baseline methods are considered in order to compare the proposed approach
to related work, while controlling for model representation.

Relational Ensemble (RE): The RE baseline uses the same ensemble learning pro-
cedure of CEC, but applies each model independently for inference to produce a set of
probability estimates for nodes predictions. Then it averages the resulting set of predic-
tions for each node independently to get the final predictions P. This is used to evaluate
the improvement achieved by our proposed across-model inference approach (since RE uses
the same learning and final prediction averaging as CEC), and is intended to show that the
increase in accuracy of CEC cannot be achieved by a straightforward ensemble classifica-
tion that combines different relations, e.g., as described by Preisach and Schmidt-Thieme
(2006).
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The limitation of RE is that inference is applied independently on each base model,
so the availability of multiple predictions from the ensemble models is only utilized to
average the final ensemble predictions—after inference is done and after inference variance
has propagated through the graph. Our key insight is that collective classification offers
a unique opportunity to jointly utilize information from all the models during collective
inference.

Source 2 Source 3
(a) Link Sources

(b) Combined Relations (CR) Approach (c) Multiple Relations (MR) Approach

Figure 5: Merging multiple link sources on the same network of nodes.

Multiple Relations (MR): The MR baseline is a single model approach that learns one
model from the set of training graphs, using the multiple relation types as features in the
model. The learned model is applied collectively to the test graph, producing a single set of
predictions. This is used to evaluate the improvement achieved by the relational ensemble
approach, by comparing to just using a single model approach that uses the link types as
features for learning. MR is similar to methods mentioned in the related work (Section 6)
that combine multiple data sources into a single network for learning. Figure 5(c) shows
an example merged graph using the MR approach on three example link sources shown in
Figure 5(a).

Combined Relations (CR): The CR baseline is another single model approach that
learns one model from the set of training graphs. However this method ignores the relation
types and just uses the single-source (i.e., attribute) features. The model is also applied
collectively on a single, merged test graph that contains all link source information but no
link type features, resulting in a single set of predictions. The goal of comparing to this
simple method which does not consider the various link types is to assess any gains achieved
by considering link types as features in MR. Figure 5(b) shows an example merged graph
using the CR approach on three example link sources shown in Figure 5(a).

Single Relation (SR): The SR baseline learns one model from a single link source and
applies the model collectively to the test network from the same source. One SR model
is learned and evaluated for each link source separately. The goal of comparing to this
method is to assess the intrinsic value of each relationship in the network when used for
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classification by itself. In the experimental results, the average performance of the set of
single models is reported.

5.2.3. METHODOLOGY

Each of the above methods are evaluated using relational dependency networks (RDNs) Neville
and Jensen (2007) as the collective classification model. RDNs use pseudolikelihood esti-
mation to efficiently learn a full joint probability distribution over the labels of the data
graph, and are typically applied with Gibbs sampling for collective inference. Note that the
full joint distribution over the test data need not be estimated for accurate inference and it
is sufficient to accurately estimate the per instance conditional likelihoods.

For each experiment, the proportion of the test set that is labeled before inference is
varied, and for each trial a random set of nodes is chosen to label. The labeling process
is repeated 5 times, then 5 rounds of inference are run for each random labeling. AUC is
measured to assess the prediction accuracy of each model. The 5x 5 = 25 trials are repeated
for 5 training and testing pairs, and the averages of the 125 AUC measurements from each
approach are reported. The robustness of the methods to missing labels (in the test set)
is evaluated by varying the proportion of labeled test data at 10% through 90%. For the
synthetic data experiment, results using 3 link sources, high autocorrelation, and low link
density setting are reported. For the Facebook dataset, 3 link sources are used: friendship,
wall, and photo graphs. For IMDB, 5 link sources are used: actor, studio, producer, director
and editor graphs.

The effect of increasing the number of link sources is tested by generating synthetic
data with 1, 3, 6 and 9 sources. When there is one source, this corresponds to the SR
baseline. In this evaluation, the reported results use 10% labeled nodes in the test set, high
autocorrelation, and low link density setting. Note that the same nodes are labeled across
all the link graphs, and therefore increasing the number of link graphs does not mean there
is more labeled data available, just that more link information is being considered.

Since collective inference in general, and the RDN specifically, have been shown to
exploit relational autocorrelation and linkage in relational data Neville and Jensen (2007),
the effects of increasing both levels are investigated. The autocorrelation level is varied at
low and high using 3 link graphs, each with low link density and 10% labeled test data.
Then the linkage level in the data is varied from low to high, using 3 sources, each with
high autocorrelation and 10% labeled test data.

5.2.4. RESULTS

Overall, we find that CEC consistently and significantly outperforms the baselines across
all experiments. We summarize the key findings below:

e CEC has significantly higher classification accuracy than all the baselines.

e CEC is the most robust to missing labels (due to its ability to best exploit the available
label information).

e CEC best exploits the information from additional sources, as well as information due
to higher linkage and autocorrelation.
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In Figures 6, 7(a) and 7(b), we observe that accuracy increases as a function of the
proportion of labeled nodes. Notably, CEC is the most robust technique to missing labels
across all data sets. Moreover, CEC significantly (p < 0.01) outperforms RE at all label
proportions on the synthetic and Facebook data sets, and on the IMDb at labeled pro-
portions through 50%. It is clear that CEC results in huge performance gains over other
methods with very few labeled instances. This is because when there is a limited number
of labeled neighbors available, CEC is able to best exploit the link information available
from the multiple sources to reduce inference error. Although the mean SR performance is
plotted, the CEC also outperforms the best SR, model. Furthermore, CEC is able to improve
performance even when the SR models do not have similar performance (e.g., when some
perform poorly).
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Figure 6: Synthetic experiments show significant accuracy improvement of proposed CEC
ensemble model at various proportions of available true labels in the test graph.

In Figure 8, the ensemble methods are shown to improve overall model performance as
more sources are considered. Furthermore, CEC significantly outperforms RE (p < 0.01).
On the other hand, the performance of the single model baselines (MR, CR) degrade. This
can be explained by the fact that an ensemble approach (RE) reduces the learning variance,
and that interleaving the collective inference processes (CEC) reduces the inference variance
on top of that. In contrast, the degradation in performance for the single model baselines
can be attributed to the increased variance in the learned model due to the increased number
of links and features in the merged graph.

Table 1 shows that the ensemble methods better exploit autocorrelation and link density
than the single model baselines. CEC again significantly outperforms RE at both low and
high levels of autocorrelation and link density (p < 0.01). The performance of SR models
improve as autocorrelation and link density increase, because RDNs use collective inference,
which exploits autocorrelation and link density to use predictions of related instances to
improve one another. As discussed briefly, RE aggregates those improved predictions and
hence improves the overall predictions accuracy. CEC improves node predictions even
further, using predictions made by other models simultaneously during collective inference.
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Figure 7: Facebook and IMDB experiments show significant accuracy improvement of pro-
posed CEC ensemble model at various proportions of available true labels in the
test graph.

10
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Figure 8: The accuracy of the CEC ensemble model improves as more link graphs are
considered by the ensemble.

While MR and CR also improve as autocorrelation and link density increase, they are not
able to achieve the same gains as the ensemble methods.

The difference between CEC and RE is due to the intermediate averaging of predictions
across the models that is used by CEC. We conjecture that this process reduces the error
due to inference variance and that the magnitude of the effect is related to the number
of models/sources that are averaged during the inference process. To investigate this, We
evaluate a hybrid version of RE and CEC—where an ensemble of 10 models is learned on
10 link sources, but vary the number of models that are interleaved during the collective
inference process. When 10 models are interleaved, it corresponds to CEC, and when 0
models are interleaved, it corresponds to RE. In between these two extremes, the hybrid
model performance shows the effect of propagating prediction information during inference.
The blue, dashed line in Figure 9 shows a smooth increment in the overall predictive per-
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Table 1: Experimental results for varying autocorrelation and linkage on synthetic data,
reporting AUC values.

Autocorrelation Linkage

Method Low High Low High

SR 0.51 0.58 0.58 0.63
CR 0.53 0.57 0.57 0.63
MR 0.52 0.56 0.56 0.68
RE 0.53 0.64 0.64 0.73

CEC 0.55 0.74 0.74 0.82

formance as the proportion of propagated predictions during inferences increases, which
illustrates the relationship between CEC and RE. The dotted red line shows the average
inference variance measured from the same set of experiments, indicating that the accuracy
improvement coincides with a similar reduction in inference variance.

6. Related work

Many studies have shown that ensembles of classifiers, including both bagging and boost-
ing methods, usually achieve higher accuracy than individual classifiers Dietterich (2000);
Bauer and Kohavi (1999); Breiman (1996b); Kohavi and Kunz (1997); Bauer and Kohavi
(1999); Maclin and Opitz (1997). These methods typically assume i.i.d. data and a sin-
gle information source, but some work has been done to extend ensemble techniques to
structured and/or multi-source settings. For example, Blum and Mitchell (1998) propose
multi-view learning for i.i.d. data, while Ganchev et al. (2008) propose multi-view learning
for structured data. However, none of these methods are suitable for collective classification
in a multi-source, relational domain—since they either assume i.i.d. data, multiple struc-
tured examples, or a single source. There are many machine learning methods that use
multiple information sources to improve classification—Dby either combining data sources at
the input to learning (Eldardiry et al., 2014), or by combining predictions at the output of
inference. Our method is the first to combine information during inference instead of after
inference.

Related to the approach we propose here, are methods that combine source informa-
tion before learning, including work on integrating multiple networks for label propagation
methods (Kato et al., 2008; Tsuda et al., 2005). Since these methods combine multiple
information sources and exploit relational structure to propagate inferences via label prop-
agation, they may seem similar to our work. However, in contrast to our method, these
approaches combine the source information before inference and focus on label propagation
to improve transductive inference within a single network—the methods do not learn com-
plex relational models to generalize to unseen networks, nor do they combine information
across networks during inference. There are several other works in this category (Allen and
Salzberg, 2005; Lanckriet et al., 2004; Xu et al., 2007).
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Figure 9: AUC and inference variance for a hybrid model that uses CEC on a limited
number of models. As more models are applied using CEC, accuracy increases
and inference variance decreases.

In statistical relational learning Getoor and Taskar (2007); De Raedt (2008), there
are general learning methods that treat heterogeneous information of multiple object and
link types as a single information source and use a single model approach for classifica-
tion (Getoor and Taskar, 2007; McGovern et al., 2003; Neville et al., 2005; Singh and
Gordon, 2008). There has also been some work that augments the observed relational data
with additional ‘sources’ of information to improve performance (Macskassy, 2007; Gal-
lagher et al., 2008). However, once again, the methods combine this information before
learning. The MR results presented here are intended to serve as a baseline to compare
to this broad class of methods, while controlling for model representation, since the MR
models combine all the source information before learning a single model.

Another related line of research contains work that combines prediction information at
the output level. Preisach and Schmidt-Thieme (2006) learn a separate classifier from each
relational source then combine the classifiers using voting and stacking. This is similar to the
proposed CEC method since it uses an ensemble approach to combine multiple link sources.
However, their method is intended to reduce learning error, not inference error. The RE
results presented here are intended to serve as a baseline comparison to this straightforward
relational ensemble method. The work of Gao et al. (2009a,b) presents methods to maximize
consensus among the decisions of multiple models for heterogeneous data. These methods
are similar to our approach since they combine predictions from multiple models and use
label propagation for prediction. However, the label propagation is designed to maximize
consensus among the model outputs after inference, rather than during a collective inference
process over a relational network. In addition, the method is designed primarily for i.i.d.
learners where again, there will be no inference error. There are many other works in this

category (Chen et al., 2007; Sehgal et al., 2004; Zhilkin and Somorjai, 1996).
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Section 4.1 has focused on developing methods to improve resampling from network data
so bagging can reduce more learning variance. Although bagging has been shown to reduce
total classification error by reducing the error due to variance (Breiman, 1996a), existing
work has focused only on i.i.d. data. Therefore, i.i.d. resampling has been used to generate
bootstrap samples from which ensembles are learned. Graph data has an increased variance
due to linked object interdependencies. Unfortunately, i.i.d. resampling does not capture all
the variance present in the data. Moreover, the i.i.d. models that use exact inference assume
the only type of variance is due to learning error. Consequently, conventional bagging
approaches only reduce variance due to learning, and if the graph structure is ignored, their
ability to reduce learning variance may be limited. Our graph-based resampling method,
on the other hand, accounts for the increased variance of network data during ensemble
learning. We have evaluated the approach in the context of collective classification and
have shown that it significantly improves classification accuracy for network data.

Other related work on ensembles for collective classification contexts has considered
alternatives for creating multiple training samples and/or choice of base models. McDowell
and Aha (2012) uses a feature subset type approach to learn a set of models to combine in an
ensemble, but the models are developed for semi-supervised learning in a partially labeled
network (i.e., transductive classification). Llerena et al. (2012) also develop an ensemble
approach for transductive settings, where i.i.d. cross-validation is used to learn an ensemble
of models. There has also been related work that uses boosting to significantly reduce
error due to bias while learning relational dependency networks (Natarajan et al., 2012)
and in consensus-based relational models for use with multiple, non-overlapping sources of
information (Shi et al., 2012). These methods follow a conventional boosting approach in
that they reweight the examples/sources based on prediction errors made during estimation.
However, we note that the weights in (Natarajan et al., 2012) are computed individually
for each example, rather than jointly across the network of examples. Our experience with
relational resampling indicates that this may limit the amount of error reduction achieved
by the ensemble due to dependencies in relational data. In contrast, while the weights in
(Shi et al., 2012) are computed from a joint estimate of error, the method reweights the
information sources (i.e., based on utility) rather than individual examples.

In addition to learning error due to the estimation process, Neville and Jensen (2008)
showed that collective classification adds an additional source of error due to the inference
process. Straightforward implementations of bagging and boosting for relational models
only reduce errors due to learning, because they focus on parameter estimation and ignore
errors due to variation in the collective inference process. Other related work by Fast and
Jensen (2008) showed that relational stacking (Kou and Cohen, 2007) improves collective
classification by reducing inference bias. Their analysis only evaluated model performance in
single source relational datasets, but it is interesting to note that stacking reduces inference
bias, while our method reduces inference variance. A question for future work is whether
the combination of boosted RDNs (Natarajan et al., 2012) and stacking (Kou and Cohen,
2007) would reduce both learning and inference bias.

Finally, there is research related to the analytical characterizations we present in this
paper. Error analysis for ensemble classifiers and collective classification models, and work
on relational methods that reduce bias or variance. For error analysis, earlier work has
used conventional bias/variance analysis to evaluate model performance (Domingos, 2000;
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Friedman, 1997; Geman et al., 1992; James, 2003). However, the focus has been on single
models and on errors in learning. For error analysis of ensembles, Breiman (1996a) has
shown theoretically that bagging reduces total classification error by reducing the error
due to variance. However, the work is based on the assumption that the data is i.i.d.
and therefore the models run exact inference. Consequently, Breiman’s work has focused
on theoretical analysis for this type of models where the error is only associated with
the learning process. Other work has presented an analytical framework to quantify the
improvements in classification results due to combining or integrating the outputs of several
classifiers (Tumer and Ghosh, 1996). However the analysis by Tumer and Ghosh (1996)
is based on analysis of decision boundaries and is applied on linearly combined neural
classifiers. For error analysis of collective classification models, Neville and Jensen (2008)
have shown that collective classification introduces an additional source of error due to
variation in the inference process. More recent work by Xiang and Neville (2011), presented
another type of error decomposition for collective classification in single network domains,
by studying the propagation error in collective inference with maximum pseudolikelihood
estimation.

7. Conclusion

This work introduced a theoretical analysis framework for relational ensemble models. Us-
ing the framework, we demonstrated theoretically how ensembles of collective classifiers can
improve predictions for graph data. Furthermore, we showed that collective ensemble clas-
sification reduces errors due to variance in learning and more interestingly inference. Based
on the theoretical analysis, we proposed a relational ensemble framework that combines
a relational ensemble learning approach with a relational ensemble inference approach to
reduce error due to variance in both learning and inference. Experiments on both synthetic
and real-world data demonstrated the effectiveness of the proposed framework.
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Appendix A. Synthetic data

Synthetic datasets are generated with a latent group model (Neville and Jensen, 2005)
using the procedure described in Table A. The data graphs are homogeneous (i.e., single
object type) data graphs with autocorrelation due to an underlying (hidden) group struc-
ture. Each object has a boolean class label C' (that is determined by the type of group
to which it belongs), and two boolean attributes Xy and X;. The class label C' has an
autocorrelation level of 0.5 and the probabilities of intra- and inter-group linkage are 0.4
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and 0.004 respectively. The attribute X is correlated with C, and X; has no dependencies
(i.e., it is random).

Table 2: Algorithm for generating synthetic dataset with a relational group structure.

For each group g, 1 < g < (Ng = No/Gg):
Choose a value for group type t, from p(T).
For each object 7, 1 <17 < Np:
Choose a group g; uniformly in [1, Ng].
Choose a class value C; from p(C|Tg,).
Choose a value for Xy, from p(Xo|C).
Choose a values for Xi; from p(X7).
For each object j, 1 < j < Np:
For each object k, 7 < k < No:
Choose whether the two objects are linked from

p(E|Gj = Gy).

Appendix B. Facebook data

The facebook dataset used in this work is a sample of the Purdue University Facebook net-
work (www.facebook.com). Facebook is an online social network site where users maintain
a personal profile page and interact with ‘friends’. Four sampled networks of users (based on
users membership in various University subnetworks) were used in the experiments: [Uni-
versity Alum ’07, University '08, University 09, University '10] of sizes: [921, 827, 1268,
1384] users respectively.

We constructed three link graphs. The friendship graph has undirected friendship links.
The wall graph has directed links extracted from users’ interactions through a public mes-
sage board on their profile page called wall. The photo graph has directed links extracted
from users tagging others in their profile photo page. Each user has a boolean class label
which indicates whether their political view is ‘Conservative’. In addition, we considered
nine node features and two link features. The object features record user profile information:
“interested in”, “looking for”, “relation”,“gender”, “home state”, “home”, and boolean fea-
tures “profile public”, “friends public” and “christian”. Wall links have one link feature
that counts the number of wall posts exchanged between any two users, while photo links
have one link feature that counts the number of photos shared between any two users.

Appendix C. IMDB data

The IMDDb data set is drawn from the Internet Movie Database (www.imdb.com), which
contains movie release information. A sample of 1,382 movies released in the United States
between 1996 and 2007 was collected. In addition to movies, the data set contains objects
representing actors, directors, and studios. In total, this sample contains approximately
42,000 objects and 61,000 links. Five link graphs among movies were constructed. The
actors graph links movies that share an actor. Similarly, the studios, producers, directors
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and editors graphs were constructed. Seven networks of movies (based on movie release
years) were sampled: [2002, 2003, 2004, 2005, 2006, 2007] of sizes: [269, 253, 264, 314, 305,
249] movies respectively. Each movie has a boolean class label which indicates whether the
movie is a ‘Block buster’ (earnings > $60mil; inflation adjusted). The binary prediction
task for movies is to predict blockbuster movies.
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