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Abstract

Determinantal point processes (DPPs) are specific probability distributions over clouds of
points that are used as models and computational tools across physics, probability, statis-
tics, and more recently machine learning. Sampling from DPPs is a challenge and therefore
we present DPPy, a Python toolbox that gathers known exact and approximate sampling
algorithms for both finite and continuous DPPs. The project is hosted on GitHub® and
equipped with an extensive documentation.#
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1. Introduction

Determinantal point processes (DPPs) are distributions over configurations of points that
encode diversity through a kernel function K. They were introduced by Macchi (1975) as
models for beams of fermions, and they have since found applications in fields as diverse as
probability (Soshnikov, 2000; Konig, 2004; Hough et al., 2006), statistical physics (Pathria &
Beale, 2011), Monte Carlo methods (Bardenet & Hardy, 2019), spatial statistics (Lavancier
et al., 2012), and machine learning (ML, Kulesza & Taskar, 2012).

In ML, DPPs are mainly used as models for diverse sets of items, as in recommendation
(Kathuria et al., 2016; Gartrell et al., 2016) or text summarization (Dupuy & Bach, 2018).
Consequently, MLers mostly use finite DPPs, which are distributions over subsets of a
finite ground set of cardinality M, parametrized by an M x M kernel matrix K. Routine
inference tasks such as normalization, marginalization, or sampling have complexity O(M?)
(Gillenwater, 2014). Like other kernel methods, when M is large, O(M?) is a bottleneck.

In terms of software, the R library spatstat of Baddeley & Turner (2005), a general-
purpose toolbox on spatial point processes, includes sampling and learning of continuous
DPPs with stationary kernels, as described by Lavancier et al. (2012). Complementarily, we
propose DPPy, a turnkey Python implementation of known general algorithms to sample
finite DPPs. We also include algorithms for non-stationary continuous DPPs, e.g., related
to random covariance matrices or Monte Carlo methods, which are also of interest for MLers.

The DPPy project, hosted on GitHub,O is already being used by the cross-disciplinary
DPP community (Burt et al., 2019; Kammoun, 2018; Poulson, 2019; Dereziniski et al., 2019;
Gautier et al., 2019). We use Travis® for continuous integration and Coveralls™= for test
coverage. Through ReadTheDocs® we provide an extensive documentation, which covers
the essential mathematical background and showcases the key properties of DPPs through
DPPy objects and associated methods. DPPy thus also serves as a tutorial on DPPs.
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2. Definitions

A point process is a random subset of points X = {X;,..., Xy} C X, where the number of
points N is itself random. We further add to the definition that N should be almost surely
finite and that all points in a sample are distinct. Given a reference measure p on X, a point
process is usually characterized by giving its k-correlation functions py for all k, where

k
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see Moller & Waagepetersen (2004, Section4). The functions pj describe the interaction
among points in X by quantifying co-occurrence of points at a set of locations.

A point process X on (X, p) parametrized by a kernel K : X x X — C is said to be
determinantal, denoted as X ~ DPP(K), if its k-correlation functions satisfy

pr(z1,. .., xx) = det [K(xi,xj)]ﬁjzl , Vk>1.

In ML, most DPPs are in the finite setting where X = {1,..., M} and p = Zf\il 0;. In this
context, the kernel function becomes an M x M matrix K, and the correlation functions
refer to inclusion probabilities. DPPs are thus often defined as X ~ DPP(K) if

P[S C X] = detKg, VS CX, (1)

where K¢ denotes the submatrix of K formed by the rows and columns indexed by S. The
kernel matrix K is commonly assumed to be real-symmetric, in which case the existence
and uniqueness of the DPP in Equation 1 is equivalent to the condition that the eigenvalues
of K lie in [0,1]. The result also holds for general Hermitian kernel functions K with
additional assumptions (Soshnikov, 2000, Theorem 3). We note that there are also DPPs
with nonsymmetric kernels (Borodin et al., 2010; Gartrell et al., 2019).

Oftentimes, ML practitioners favor a more flexible definition of a DPP in terms of a
likelihood kernel L, which only requires L > 0,

- deie[;IfL]' )
This avoids defining a correlation kernel 0 <= K < I. Yet, the L parametrization makes
Equation 1 less interpretable and does not cover important cases such as fixed-size DPPs,
which correspond to projection kernels K. Kulesza & Taskar (2012, Section5) countered
that with k-DPPs, which can be understood as DPPs parametrized by a likelihood kernel,
further conditioned to have exactly k elements. However, in general, k-DPPs are not DPPs.
The main interest in DPPs in ML is that they model diversity while being tractable.
Compared to independent sampling with the same marginals, Equation 1 entails

PI{i,j} € X] = KiKy; — KK, = P[{i} € X] x P[{j} € X] — K2, (3)

P[X = §]

In particular, the larger K;;, the less likely items 7 and j co-occur. If K;; models the
similarity between items ¢ and j, DPPs are thus random diverse sets of elements.

Most point processes that encode diversity are not tractable, in the sense that effi-
cient algorithms to sample, marginalize, or compute normalization constants are not avail-
able. However, DPPs are amenable to these tasks with polynomial complexity (Gillenwater,
2014). Next, we focus on the sampling task, which is the core of DPPy.
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3. Sampling determinantal point processes

We henceforth assume that K is real-symmetric and satisfies suitable conditions (Soshnikov,
2000, Theorem 3), so that its spectral decomposition is available

T,y) = Z)\i¢i(1')¢i(y)a with /Xdﬁi(%')qﬁj(x)u(dx) = bij-

1=
Note that, in the finite case, the spectral theorem is enough to eigendecompose K. Hough
et al. (2006, Theorem 7) proved that sampling DPP(K’) can be done in two steps:

1. draw B; ~ Ber(\;) independently and denote {i1,...,in} ={i: B; = 1},
2. sample from the DPP with kernel K (z,y) = 27]:[:1 &i, ()i, (y).

In other words, all DPPs are mixtures of projection DPPs, i.e., DPPs parametrized by an
orthogonal projection kernel. In a nutshell, Step 1 selects a component of the mixture and
Step 2 generates a sample of the projection DPP(IN(). Hough et al. (2006, Algorithm 18)
provide a generic projection DPP sampler that we briefly describe. First, the projection
DPP with kernel K has exactly NV = rank K points, p-almost surely. Then, the sequential
aspect of the chain rule applied to sample (X1, ..., Xy) with probability distribution

~ N
det [K (2, )] N H2 distance” (®(z,), span {@(xp)}n_l)

pn=t LG N p=t
N! gﬂ(dxn) B 71;[2 N—(n—1) p(dzy,),
~ (4)
can be discarded to get a valid sample {Xj,..., Xy} ~ DPP(K). To each z € X we
associate a feature vector ®(x) = (¢, (), ..., diy(z)), so that K(x,y) = ®(z)T®(y).

A few remarks are in order. First, the LHS of Equation 4 defines an exchangeable proba-
bility distribution. Second, the successive ratios that appear in the RHS are the normalized
conditional densities (w.r.t. ) that drive the chain rule. The associated normalizing con-
stants are independent of the previous points. The numerators can be written as the ratio of
two determinants and further expanded with Woodbury’s formula. They can be identified
as the incremental posterior variances in Gaussian process regression with kernel K (Ras-
mussen & Williams, 2006, Equation 2.26). Third, the chain rule expressed in Equation 4 has
a strong Gram-Schmidt flavor since it actually comes from a recursive application of the
basexheight formula. In the end, DPPs favor configuration of points whose feature vectors
®(x1),...,P(zy) span a large volume, which is another way of understanding repulsiveness.
The previous sampling scheme is exact and generic but, except for projection kernels, it
requires the eigendecomposition of the underlying kernel.

In the finite setting, this corresponds to an initial O(M?) eigendecomposition cost, fol-
lowed by an average complexity of order O(M E[|X|]*) (see, e.g., Gillenwater, 2014; Trem-
blay et al., 2018). Besides, there exist some alternative exact samplers. Poulson (2019) and
Launay et al. (2018) use a O(M3) Cholesky-based chain rule on sets; each item in turn is
decided to be excluded or included in the sample. Dereziniski et al. (2019) first sample an in-
termediate distribution and correct the bias by thinning the intermediate sample (with size
smaller than M) using a carefully designed DPP. In certain regimes, this procedure may be
more practical with an overall O(M poly(E[|X|]) polylog(M)) cost. In the continuous case,
sampling exactly each conditional that appears in the right-hand side of Equation 4 can be
done using rejection sampling with a tailored proposal, see, e.g., Gautier et al. (2019).
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In applications where the cost of exact sampling becomes a bottleneck, users rely on
approximate sampling. Research has focused mainly on kernel approximation (Affandi
et al., 2013) and MCMC samplers (Anari et al., 2016; Li et al., 2016; Gautier et al., 2017).

However, specific DPPs admit efficient exact samplers that do not rely on Equation4,
e.g., uniform spanning trees (UST, Propp & Wilson, 1998, Figure1(c)) or eigenvalues of
random matrices. For instance, a S-ensemble is a set of N points of R with joint distribution

N
1

B
—_— Ty — T w(z,)dz,, where > 0.
pood | LR | EECN 5

op<n n=1
For some choices of the WZight function w, the -ensemble can be sampled by computing
the eigenvalues of simple tridiagonal (Dumitriu & Edelman, 2002) or quindiagonal random
matrices (Killip & Nenciu, 2004). In particular, (8 = 2)-ensembles correspond to projection
DPPs (Konig, 2004). They are therefore examples of continuous DPPs that can be sampled
exactly in O(N?) time, without rejection. Some of these ensembles are of direct interest to
MLers. The Laguerre ensemble, for instance, has w be a Gamma pdf, and corresponds to
the eigenvalues of the empirical covariance matrix of i.i.d. Gaussian vectors, see Figure 1(b).
Finally, we mention that DPPy also features an exact sampler of the multivariate extension
of the Jacobi ensemble, which has been central in recent results on faster-than-Monte Carlo
numerical integration (Bardenet & Hardy, 2019; Gautier et al., 2019; Mazoyer et al., 2019).

4. The DPPy toolbox

DPPy handles Python objects that fit the natural definition of the corresponding DPPs; see
also the documentation® and the corresponding Jupyter notebooks, which showcase DPPy
objects. For example, FiniteDPP (kernel_type="correlation”, #x{"K":K}) instantiates a
finite DPP(K). Its two main methods, .sample_exact () and .sample_mcme () implement the
different exact samplers and current state-of-the-art MCMC samplers. To sample k-DPPs,
the additional .sample_exact_k_dpp () and .sample_mcmc_k_dpp () methods are available.
A Laguerre -ensemble is instantiated as LaguerreEnsemble (beta=2) . When § € {1,2,4},
it can be sampled either with .sample_full_model (), as the eigenvalues of a random co-
variance matrix, or, more efficiently and for any 8 > 0, using a tridiagonal matrix with
.sample_banded_model (). Samples can be displayed via .plot () or .hist () to construct the
empirical distribution that converges to the Marc¢enko-Pastur distribution, see Figure 1(b).
DPPy can readily serve as research and teaching support. DPPy is also ready for other
contributors to add content and enlarge its scope, e.g., with procedures for learning kernels.
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(a) 2D Jacobi ensemble (b) B = 2-Laguerre ensemble (c) K kernel of UST

Figure 1: Some displays available in DPPy
4


https://github.com/guilgautier/DPPy/tree/master/notebooks

DPPy

Acknowledgments

We acknowledge funding by European CHIST-ERA project DELTA, the French Ministry
of Higher Education and Research, the Nord-Pas-de-Calais Regional Council, Inria and
Otto-von-Guericke-Universitdt Magdeburg associated-team north-European project Allo-
cate, and French National Research Agency project BoB (n.ANR-16-CE23-0003).

References

Affandi, R. H., Kulesza, A., Fox, E. B., and Taskar, B. Nystrom Approximation for Large-

Scale Determinantal Processes. In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2013.

Anari, N., Gharan, S. O., and Rezaei, A. Monte Carlo Markov Chain Algorithms for Sam-
pling Strongly Rayleigh Distributions and Determinantal Point Processes. In Conference
on Learning Theory (COLT), 2016. arXiv:1602.05242.

Baddeley, A. and Turner, R. spatstat : An R Package for Analyzing Spatial Point Patterns.
Journal of Statistical Software, 2005.

Bardenet, R. and Hardy, A. Monte Carlo with Determinantal Point Processes. Annals of
Applied Probability, in press, 2019. arXiv:1605.00361.

Borodin, A., Diaconis, P., and Fulman, J. On adding a list of numbers (and other one-
dependent determinantal processes). Bulletin of the American Mathematical Society,
2010. arXiv:0904.3740.

Burt, D., Rasmussen, C. E., and Wilk, M. V. D. Rates of Convergence for Sparse Variational
Gaussian Process Regression. In International Conference on Machine Learning (ICML),
2019. arXiv:1903.03571.

Derezinski, M., Calandriello, D., and Valko, M. Exact sampling of determinantal point pro-

cesses with sublinear time preprocessing. In Advances in Neural Information Processing
Systems (NeurIPS), 2019. arXiv:1905.13476.

Dumitriu, I. and Edelman, A. Matrix Models for Beta Ensembles. Journal of Mathematical
Physics, 2002. arXiv:math-ph/0206043.

Dupuy, C. and Bach, F. Learning Determinantal Point Processes in Sublinear Time.
In International Conference on Artificial Intelligence and Statistics (AISTATS), 2018.
arXiv:1610.05925.

Gartrell, M., Paquet, U., and Koenigstein, N. Low-Rank Factorization of Determinantal
Point Processes for Recommendation. In AAAI Conference on Artificial Intelligence,
2016. arXiv:1602.05436.

Gartrell, M., Brunel, V.-E., Dohmatob, E., and Krichene, S. Learning Nonsymmetric
Determinantal Point Processes. ArXiv e-prints, 2019. arXiv:1905.12962.


http://proceedings.mlr.press/v31/affandi13a
http://proceedings.mlr.press/v31/affandi13a
http://proceedings.mlr.press/v49/anari16
http://proceedings.mlr.press/v49/anari16
http://arxiv.org/abs/1602.05242
http://dx.doi.org/10.18637/jss.v012.i06
http://arxiv.org/abs/1605.00361
http://arxiv.org/abs/1605.00361
http://www.ams.org/journals/bull/2010-47-04/S0273-0979-2010-01306-9/S0273-0979-2010-01306-9.pdf
http://www.ams.org/journals/bull/2010-47-04/S0273-0979-2010-01306-9/S0273-0979-2010-01306-9.pdf
http://arxiv.org/abs/0904.3740
http://proceedings.mlr.press/v97/burt19a.html
http://proceedings.mlr.press/v97/burt19a.html
http://arxiv.org/abs/1903.03571
https://papers.nips.cc/paper/9330-exact-sampling-of-determinantal-point-processes-with-sublinear-time-preprocessing
https://papers.nips.cc/paper/9330-exact-sampling-of-determinantal-point-processes-with-sublinear-time-preprocessing
http://arxiv.org/abs/1905.13476
http://dx.doi.org/10.1063/1.1507823
http://arxiv.org/abs/math-ph/0206043
http://proceedings.mlr.press/v84/dupuy18a
http://arxiv.org/abs/1610.05925
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14657/14354
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14657/14354
http://arxiv.org/abs/1602.05436
http://arxiv.org/abs/1905.12962
http://arxiv.org/abs/1905.12962
http://arxiv.org/abs/1905.12962

GAUTIER, POLITO, BARDENET, AND VALKO

Gautier, G., Bardenet, R., and Valko, M. Zonotope hit-and-run for efficient sampling
from projection DPPs. International Conference on Machine Learning (ICML), 2017.
arXiv:1705.10498.

Gautier, G., Bardenet, R., and Valko, M. On two ways to use determinantal point processes
for Monte Carlo integration. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Gillenwater, J. Approximate inference for determinantal point processes. PhD thesis,
University of Pennsylvania, 2014.

Hough, J. B., Krishnapur, M., Peres, Y., and Virdg, B. Determinantal Processes and
Independence. In Probability Surveys, 2006. arXiv:math/0503110.

Kammoun, M. S. Monotonous subsequences and the descent process of invariant random
permutations. FElectronic Journal of Probability, 2018. arXiv:1805.05253.

Kathuria, T., Deshpande, A., and Kohli, P. Batched Gaussian Process Bandit Optimiza-
tion via Determinantal Point Processes. In Advances in Neural Information Processing
Systems (NIPS), 2016. arXiv:1611.04088.

Killip, R. and Nenciu, I. Matrix models for circular ensembles. International Mathematics
Research Notices, 2004. arXiv:math/0410034.

Konig, W. Orthogonal polynomial ensembles in probability theory. Probability Surveys,
2004. arXiv:math/0403090.

Kulesza, A. and Taskar, B. Determinantal Point Processes for Machine Learning. Founda-
tions and Trends in Machine Learning, 2012. arXiv:1207.6083.

Launay, C., Galerne, B., and Desolneux, A. Exact Sampling of Determinantal Point Pro-
cesses without Eigendecomposition. ArXiv e-prints, 2018. arXiv:1802.08429.

Lavancier, F., Mgller, J., and Rubak, E. Determinantal point process models and statistical
inference : Extended version. Journal of the Royal Statistical Society. Series B: Statistical
Methodology, 2012. arXiv:1205.4818.

Li, C., Jegelka, S., and Sra, S. Fast Mixing Markov Chains for Strongly Rayleigh Measures,
DPPs, and Constrained Sampling. In Advances in Neural Information Processing Systems
(NIPS), 2016. arXiv:1608.01008.

Macchi, O. The coincidence approach to stochastic point processes. Advances in Applied
Probability, 1975.

Mazoyer, A., Coeurjolly, J.-F., and Amblard, P.-O. Projections of determinantal point
processes. ArXiv e-prints, 2019. arXiv:1901.02099.

Mgller, J. and Waagepetersen, R. P. Statistical inference and simulation for spatial point
processes. Chapman & Hall/CRC. 2004.

Pathria, R. K. and Beale, P. D. Statistical Mechanics. Academic Press. 2011.


http://proceedings.mlr.press/v70/gautier17a
http://proceedings.mlr.press/v70/gautier17a
http://arxiv.org/abs/1705.10498
http://papers.nips.cc/paper/8992-on-two-ways-to-use-determinantal-point-processes-for-monte-carlo-integration
http://papers.nips.cc/paper/8992-on-two-ways-to-use-determinantal-point-processes-for-monte-carlo-integration
https://repository.upenn.edu/edissertations/1285
http://dx.doi.org/10.1214/154957806000000078
http://dx.doi.org/10.1214/154957806000000078
http://arxiv.org/abs/math/0503110
http://dx.doi.org/10.1214/18-EJP244
http://dx.doi.org/10.1214/18-EJP244
http://arxiv.org/abs/1805.05253
http://papers.nips.cc/paper/6452-batched-gaussian-process-bandit-optimization-via-determinantal-point-processes
http://papers.nips.cc/paper/6452-batched-gaussian-process-bandit-optimization-via-determinantal-point-processes
http://arxiv.org/abs/1611.04088
http://dx.doi.org/10.1155/S1073792804141597
http://arxiv.org/abs/math/0410034
http://dx.doi.org/10.1214/154957805100000177
http://arxiv.org/abs/math/0403090
http://dx.doi.org/10.1561/2200000044
http://arxiv.org/abs/1207.6083
http://arxiv.org/abs/1802.08429
http://arxiv.org/abs/1802.08429
http://arxiv.org/abs/1802.08429
http://dx.doi.org/10.1111/rssb.12096
http://dx.doi.org/10.1111/rssb.12096
http://arxiv.org/abs/1205.4818
https://papers.nips.cc/paper/6182-fast-mixing-markov-chains-for-strongly-rayleigh-measures-dpps-and-constrained-sampling
https://papers.nips.cc/paper/6182-fast-mixing-markov-chains-for-strongly-rayleigh-measures-dpps-and-constrained-sampling
http://arxiv.org/abs/1608.01008
http://dx.doi.org/10.2307/1425855
http://arxiv.org/abs/1901.02099
http://arxiv.org/abs/1901.02099
http://arxiv.org/abs/1901.02099
http://dx.doi.org/10.1201/9780203496930
http://dx.doi.org/10.1201/9780203496930
http://dx.doi.org/10.1016/B978-0-12-382188-1.00020-7

DPPy

Poulson, J. High-performance sampling of generic Determinantal Point Processes. ArXiv
e-prints, 2019. arXiv:1905.00165.

Propp, J. G. and Wilson, D. B. How to Get a Perfectly Random Sample from a Generic
Markov Chain and Generate a Random Spanning Tree of a Directed Graph. Journal of
Algorithms, 1998.

Rasmussen, C. E. and Williams, C. K. I. Gaussian processes for machine learning. MIT
Press. 2006.

Soshnikov, A. Determinantal random point fields. Russian Mathematical Surveys, 2000.
arXiv:math/0002099.

Tremblay, N., Barthelme, S., and Amblard, P.-O. Optimized Algorithms to Sample Deter-
minantal Point Processes. ArXiv e-prints, 2018. arXiv:1802.08471.


http://arxiv.org/abs/1905.00165
http://arxiv.org/abs/1905.00165
http://dx.doi.org/10.1006/JAGM.1997.0917
http://dx.doi.org/10.1006/JAGM.1997.0917
http://www.gaussianprocess.org/gpml/
http://dx.doi.org/10.1070/RM2000v055n05ABEH000321
http://arxiv.org/abs/math/0002099
http://arxiv.org/abs/1802.08471
http://arxiv.org/abs/1802.08471
http://arxiv.org/abs/1802.08471

	Introduction
	Definitions
	Sampling determinantal point processes
	The DPPy toolbox

