Journal of Machine Learning Research 20 (2019) 1-41 Submitted 12/18; Revised 3/19; Published 5/19

High-Dimensional Poisson Structural Equation Model
Learning via /;-Regularized Regression

Gunwoong Park GW.PARK23@QGMAIL.COM
Department of Statistics

University of Seoul

Seoul, 02504, South Korea

Sion Park ROCKGOAT95@GMAIL.COM
Department of Statistics

University of Seoul

Seoul, 02504, South Korea

Editor: Qiang Liu

Abstract

In this paper, we develop a new approach to learning high-dimensional Poisson structural
equation models from only observational data without strong assumptions such as faithful-
ness and a sparse moralized graph. A key component of our method is to decouple the or-
dering estimation or parent search where the problems can be efficiently addressed using ¢;-
regularized regression and the moments relation. We show that sample size n = Q(d> log’ p)
is sufficient for our polynomial time Moments Ratio Scoring (MRS) algorithm to recover
the true directed graph, where p is the number of nodes and d is the maximum indegree.
We verify through simulations that our algorithm is statistically consistent in the high-
dimensional p > n setting, and performs well compared to state-of-the-art ODS, GES, and
MMHC algorithms. We also demonstrate through multivariate real count data that our
MRS algorithm is well-suited to estimating DAG models for multivariate count data in
comparison to other methods used for discrete data.

Keywords: Bayesian Networks, Directed Acyclic Graph, Identifiability, Structure Learn-
ing, ¢1-Regularization, Multivariate Count Distribution

1. Introduction

Directed acyclic graphical (DAG) models, also referred to as Bayesian networks, are popular
probabilistic statistical models to analyze and visualize (functional) causal or directional
dependence relationships among random variables.(see e.g., Kephart and White, 1991; Fried-
man et al., 2000; Doya, 2007; Peters and Bithlmann, 2014). However, learning DAG models
from only observational data is a notoriously difficult problem due to non-identifiability and
exponentially growing computational complexity. Prior works have addressed the question
of identifiability for different classes of joint distribution P(G). Frydenberg (1990) and Heck-
erman et al. (1995) show the Markov equivalence class (MEC) where graphs that belong
to the same MEC have the same conditional independence relations. Spirtes et al. (2000),
Chickering (2003), Tsamardinos and Aliferis (2003) and Zhang and Spirtes (2016) show
that the underlying graph of a DAG model is recoverable up to the MEC under faithfulness
or related assumptions that can be very restrictive (Uhler et al., 2013).
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Also well studied is how learning a DAG model is computationally non-trivial due to the
super-exponentially growing size of the space of DAGs in the number of nodes. Hence, it is
NP-hard to search DAG space (Chickering et al., 1994; Chickering, 1996), and many existing
algorithms such as PC (Spirtes et al., 2000), Greedy Equivalence Search (GES) (Chickering,
2003), Min-Max Hill Climbing (MMHC) (Tsamardinos et al., 2006) and Greedy DAG Search
(GDS) (Peters and Bithlmann, 2014), take greedy search methods that may not guarantee
to recover the true MEC.

Recently, a number of fully identifiable classes of DAG models have been introduced
(Shimizu et al., 2006; Hoyer et al., 2009; Peters et al., 2011; Peters and Biihlmann, 2014;
Park and Raskutti, 2015, 2018; Ghoshal and Honorio, 2018; Park and Park, 2019). In
addition, some of these models can be successfully learned from high-dimensional data
by decomposing the DAG learning problem into ordering estimation and skeleton estima-
tion (Shimizu et al., 2011; Bithlmann et al., 2014; Ghoshal and Honorio, 2017b; Drton et al.,
2018). The main reasoning is that if ordering is known or recoverable, learning a directed
graphical model is as hard as learning an undirected graphical model or Markov random
field (MRF). Meinshausen and Biihlmann (2006), Wainwright et al. (2006), Ravikumar
et al. (2011) and Yang et al. (2015) show that sparse undirected graphs can be estimated
via ¢1-regularized regression in high-dimensional settings under suitable conditions.

In this paper, we focus on learning Poisson DAG models (Park and Raskutti, 2015,
2018) for multivariate count data in high-dimensional settings since large-scale multivariate
count data frequently arises in many fields, such as high-throughput genomic sequencing
data, spatial incidence data, sports science data, and disease incidence data. Like learning
the Poisson undirected graphical model or MRF introduced in Yang et al. (2015), where
the sample bound is Q(d?, log®p), it is not surprising that Poisson DAG models can be
learned in high dimensional settings when the indegree of the graph d is bounded. Park
and Raskutti (2018) establishes the consistency of learning Poisson DAG models with the
sample bound n = Q(max{d? log'?p,log’*t?p}) where d,, is the maximum degree of the
moralized graph and d is the maximum indegree of a graph. This huge sample complexity
difference between directed and undirected graphical models is induced mainly for three
reasons: (i) nonexistence ordering, (ii) the known parametric functional form (the standard
log link) for the dependencies, and (iii) the restrictive non-positive parameter space in
Poisson MRFs (see details in Yang et al., 2015).

The main objective of this work is to propose a new milder identifiability assumption
for Poisson DAG models, and to develop a new polynomial time approach, called Moments
Ratio Scoring (MRS), for learning a high-dimensional Poisson structural equation models
(SEM), that is a Poisson DAG model where the parametric functional form for the de-
pendencies is known while the parameters are unbounded and unknown. We address the
question of learning high-dimensional Poisson SEMs under the causal sufficiency assump-
tion that all relevant variables have been observed. However, we do not require the sparse
moralized graph and faithfulness assumption that might be restrictive (Uhler et al., 2013).

The MRS algorithm combines the idea of the mean-variance (moments) relation for
recovering an ordering, and the sparsity-encouraging ¢;-regularized regression in finding
the parents of each node. We provide its sufficient conditions and sample complexity n =
Q(d?1og? p) under which the MRS algorithm recovers the Poisson SEM with a high proba-
bility in the high-dimensional p > n setting. The sample complexity of n = Q(d? log? p) is
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close to the information-theoretic limit of Q(dlog p) for learning sparse DAG models with
any exponential family distributions (Ghoshal and Honorio, 2017a). We point out that the
sample complexity does not depend on the maximum degree of the moralized graph, d,,,
but on the indegree of a DAG, d. Since a sparse directed graph does not necessarily lead to
the sparse moralized graph (e.g., a star graph in Fig. 2), to the best of our knowledge, the
proposed algorithm is the most efficient and probable for learning sparse Poisson SEMs.

We demonstrate through simulations and a real baseball data application involving mul-
tivariate count data that our MRS algorithm performs better than state-of-the-art OverDis-
persion Scoring (ODS) (Park and Raskutti, 2015), GES (Chickering, 2003), MMHC (Tsamardi-
nos et al., 2006), and Poisson MRF learning (PMRF) algorithms (Yang et al., 2015), on
average, in terms of the both run-time and accuracy of recovering a graph structure and its
MEC. In our simulation study, we consider both the extremely sparse (d = 1) and sparse
(d = 10) high-dimensional settings. Our real data example involving MLB player statistics
for 2003 season shows that our MRS algorithm is applicable to multivariate count data
while the PMRF algorithm finds too many edges, and the MMHC algorithm tends to select
very few edges when variables represent counts. We also investigate the accuracy of our
MRS algorithm when samples are generated from general Poisson DAG models and (trun-
cated) Poisson MRFs. The simulation results empirically verify that the MRS algorithm
can consistently recover the true edges.

1.1. Our Contributions

We summarize the major contributions of the paper as follows:

e We introduce a milder identifiability condition for Poisson DAG models for multivari-
ate count data.

e We develop the reliable and scalable lasso-based MRS algorithm which learns sparse
high-dimensional Poisson SEMs.

e We provide the more realistic conditions for learning Poisson SEMs in Section 3.2.

e We also provide the sample complexity n = Q(d?log” p) under which the MRS algo-
rithm recovers the Poisson SEM. We emphasize that our theoretical result does not
depend on the degree of the moralized graph d,,, and hence, the MRS algorithm can
recover a graph with hub nodes in the high dimensional setting.

To the best of our knowledge, our MRS algorithm is the only provable and realistic
method that applies for the high-dimensional multivariate count data when samples are
from Poisson SEMs with hub nodes. We must point out that such improved assumptions
and sample complexity are not only from our new identifiability condition, but from the
additional constraints on the standard log link function for the dependencies.

The remainder of this paper is structured as follows. Section 2.1 summarizes the neces-
sary notations and problem settings, Section 2.2 discusses the Poisson DAG model and its
new identifiability condition, and Section 2.3 provides a detailed comparison between Pois-
son DAG models and MRFs. In Section 3, we introduce our polynomial-time DAG learning
algorithm, which we refer to as the Moments Ratio Scoring (MRS). Section 3.1 discusses
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computational complexity of our algorithm, and Section 3.2 provides statistical guarantees
for learning Poisson SEMs via the MRS algorithm. Section 4 empirically evaluates our
methods, compared to state-of-the-art ODS, GES, and MMHC algorithms using synthetic
data, and confirms that our algorithm is one of the few DAG-learning algorithms that per-
forms well in terms of statistical and computational complexity in low and high-dimensional
settings. In addition, we investigate how well the MRS algorithm learns general Poisson
DAG models and (truncated) Poisson MRF's using synthetic data. Section 5 compares our
MRS algorithm to the Poisson MRF and MMHC algorithm by analyzing a real 2003 season
MLB multivariate count data. Lastly, Section 6 discusses some future works.

2. Poisson DAG Models

We first introduce some necessary notations and definitions for DAG models. Then, we
give a detailed description of previous work on learning Poisson DAG models (Park and
Raskutti, 2015), and we propose a strictly milder identifiability condition. Lastly, we discuss
how Poisson DAG models and MRF's (Yang et al., 2015) are related.

2.1. Problem Set-up and Notations

A DAG G = (V, E) consists of a set of nodes V' = {1,2,--- ,p} and a set of directed edges
E C V x V with no directed cycles. A directed edge from node j to k is denoted by (j, k)
or j — k. The set of parents of node k, denoted by Pa(k), consists of all nodes j such that
(j,k) € E. If there is a directed path j7 — --- — k, then k is called a descendant of j,
and j is an ancestor of k. The set De(k) denotes the set of all descendants of node k. The
non-descendants of node k are Nd(k) := V' \ ({k}UDe(k)). An important property of DAGs
is that there exists a (possibly non-unique) ordering @ = (m1,....,m,) of a directed graph
that represents directions of edges such that for every directed edge (j,k) € E, j comes
before k in the ordering. Hence, learning a graph is equivalent to learning the ordering and
the skeleton that is the set of directed edges without their directions.

We consider a set of random variables X := (X;)jey with a probability distribution
taking values in a sample space Ay over the nodes in GG. Suppose that a random vector X
has a joint probability density function P(G) = P(X1, X», ..., X}). For any subset S of V/,
let Xg:={X;:5€ S5 CV}and Xg := XjcgX; where &; is a sample space of X;. For
any node j € V, P(X; | Xg) denotes the conditional distribution of a variable X; given a
random vector Xg. Then, a DAG model has the following factorization (Lauritzen, 1996):

P(G) = P(X1, X3, ... X,) = [[ P(X; | XPaj))» (1)
=1

where P(X; | XPa(j)) is the conditional distribution of X, given its parents variables
XPa(j) ={Xy:kePa(j) CV}

We suppose that there are n independent and identically distributed samples X" :=
(X(i))?:1 from a given graphical model where X () .= X1(Z;)7 = (X{i), Xéi), e ,X]gi)) is a p-
variate random vector. The notation =~ denotes an estimate based on samples X '". We also
accept the causal sufficiency assumption that all important variables have been observed.
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2.2. Poisson DAG Model and its Identifiability

The definition of Poisson DAG models in Park and Raskutti (2015) is that each conditional
distribution given its parents X | XPa(j) is Poisson such that

X | XPa(j) ~ Poisson(gj(XPa(j))), (2)

where for any arbitrary positive link function g; : XPa(j) — R*. Hence using the factoriza-
tion in Equation (1), the joint distribution is as follows:

fa(X) = H fi(X; | XPa(j))- (3)
jev
where f; is the probability density function of Poisson.

A Poisson structural equation model (SEM) is a special case of a Poisson DAG model
where the link functions g;’s in Equation (2) are the standard log link function for Pois-
son generalized linear models (GLMs), i.e., gj(XPa(j)) =exp(f; + ZkePa(j) 0k X)) where
(Ojk) kePa(j) represents the linear weights. Using factorization (1), the joint distribution of
a Poisson SEM can be written as:

FX1, X, Xp) = exp( 300X+ 30 05X X0 — Y log X! — Y 7 uePay ),
JEV (k.j)EE JEV JEV
(4)

Poisson DAG models have a useful moments relation for the identifiability:

Proposition 1 Consider a Poisson DAG model (3) with non-degenerated rate parameter
functions (gj(XPa(j)))j6V~ Then, for any node j € V, and any set S; C Nd(j), the following
moments relation holds:

E(X?)

E[E(X, | Xs,) + E(X; | X5.)7] — (5)

Equivalently,
E(Var(E(X; | X pg;y) | Xs;)) 2 0.

The equality only holds when S; contains all parents of j, that is, Pa(j) C S;.

We include the proof in Section A. Proposition 1 claims that when all parents of j,
Pa(j), contribute to its rate parameter, the moments ratio in Equation (5) is equal to 1
if a condition set S; contains all parents of j, Pa(j) C Sj, otherwise greater than 1. In
Poisson SEMs, it is clear that the non-degenerated rate parameter function assumptions
are equivalent to the non-zero coefficients conditions, |0;;] > 0 for all k& € Pa(j) since
95(Xpags) = exp(0; + > kcpagy) 0inXn)-

Now, we briefly explain how Poisson DAG models are identifiable from the moments ratio
in Proposition 1 using the bivariate Poisson DAG models illustrated in Fig. 1: G : Xj ~
Poisson (A1), Xo ~ Poisson(A2), where X; and Xy are independent; Go : X7 ~ Poisson(A)
and X | X1 ~ Poisson(g2(X1)); and Gs : Xo ~ Poisson(A2) and X; | X5 ~ Poisson(g;(X2))
for arbitrary non-degenerated positive functions g1, go : NU {0} — R*.
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Gy Ga Gs
Figure 1: Bivariate directed acyclic graphs of G1, Go, and Gs.

By Proposition 1, we can see that E(XJQ) =E(X;) +E(X;)? for all j € {1,2} in G;. In
G2, we can also see that

E(X?) =E(X;) +E(X1)?, and E(X3) > E(Xs) +E(X2)2

Similarly, in G3, we have E(X?) > E(X;) +E(X;)?, while E(X3) = E(X3) +E(X2)?. Hence,
we can determine the true graph based on the moments ratio IE(XJQ)/(IE(X]) + E(X;)?).

This idea of a moments relation in Proposition 1 can easily apply to general p-variate
Poisson DAG models, and hence, the models are identifiable by testing whether the moments
ratio in Equation (5) is equal to 1 or greater than 1.

Theorem 2 Consider a Poisson DAG model (3) with rate parameters (gj(XPa(j)))jEV‘

If for any j € V, rate parameter g;(-) is non-degenerated, the Poisson DAG model is
identifiable.

We include the proof in Section 3.2. Theorem 2 claims that any Poisson DAG model is
identifiable if all parents of node j contribute to its rate parameter. Hence, Theorem 2 shows
that any Poisson SEM is identifiable under the non-zero coefficients condition, |#;;| > 0 for
all k& € Pa(j). This condition is also commonly assumed in (Gaussian) linear structural
equation models for the model identifiability (Spirtes, 1995; Ghoshal and Honorio, 2017b,
2018; Loh and Biihlmann, 2014; Peters and Biithlmann, 2014; Park and Park, 2019). We
believe that it is a natural condition that is in accordance with the intuitive understanding
of relationships among variables.

Our identifiability condition is strictly milder than the previous identifiability result in
Park and Raskutti (2015) that is equivalent to Var(E(X; | XPa(j)) | Xs; =x) > 0forallx €
Xs; when Pa(j ) ¢ Sj . For a better comparison, we consider a fully connected graph where
X1 ~ Poisson()\), X3 | X1 ~ Poisson(A+ X1), and X3 | X1, X2 ~ Poisson(A+ X21(X; # 0))
where A is a positive constant and 1(-) is an indicator function. In this case, we can see
Var(E(X3 | X1,X2) | X1 = 0) = 0, and hence, the identifiability condition in Park and
Raskutti (2015) is not satisfied, while our condition is satisfied.

In a Poisson SEM, the identifiability assumption in Park and Raskutti (2015) is also
satisfied under the non-zero coefficients condition. However, in the finite sample setting,
the difference of both assumptions gets more crucial. For a positive constant ¢, Park and
Raskutti (2015) requires Minge v, Var(E(X; | XPa(j)) | Xs;, = x)) > ¢, while we need
E(Var(E(X; | Xpy;) | Xs;)) > c. Hence, our new identifiability assumption makes learn-
ing Poisson SEMs easier. We discuss this more in Section 3.2.

2.3. Comparison to Poisson MRF

In this section, we compare Poisson DAG models and MRFs where the conditional distri-
butions of each node given its parents and neighbors are Poisson, respectively. To simplify
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the comparison, we consider the joint distribution of a Poisson SEM in Equation (4). This
is a form similar to the joint distribution of Poisson MRF's in Yang et al. (2015), where the
joint distribution has the following form:

F(X1, Xo, s X —exp(ZHX + 30X - Y log X — A( )) (6)

JjeEV (k,j)EE JEV

where A(6) is the log of the normalization constant. The key difference between a Poisson
SEM and a Poisson MRF is the normalization constant A(f) in Equation (6), as opposed

to the term ) ..y, eeﬁzkePa(ﬂ Oin X in Equation (4), which depends on variables.

Yang et al. (2015) proves that a Poisson MRF (6) is normalizable if and only if all
(0jx) values are less than or equal to 0. This means Poisson MRFs only capture negative
dependency relations. In addition, Yang et al. (2015) addresses the learning Poisson MRF's
when the functional form of dependencies is X | Xy ; ~ Poisson(exp(6; + > sy 0ixXk))
where N (j) denotes the neighbors of a node j in the graph.

While Poisson MRFs have strong restrictions on the functional form for dependencies
and the parameter space, they can be successfully learned in the high-dimensional settings
with less restrictive constraints of sparsity. Yang et al. (2015) shows that Poisson MRFs
can be recovered via f1-regularized regression if n = (d?n log® p), where d,,, is the degree
of the undirected graph. In contrast, Park and Raskutti (2018) shows that Poisson DAG
models can be learned via the ODS algorithm if n = Q(max{d2, log'? p,log®*? p}) where d,,
is obtained by the moralized graph and d is the maximum indegree of the graph. This big
difference in the sample complexity primarily comes from the unknown functional form for
the dependencies in Poisson DAG models. In the next section, we will show that a significant
advantage can be achieved by assuming the parametric function for the dependencies in
terms of recovering the graphs.

3. Algorithm

Here, we present our Moments Ratio Scoring (MRS) algorithm for learning the identifiable
Poisson SEM (4). Our algorithm alternates between an element-wise ordering search using
the (conditional) moments ratio, and a parent search using ¢;-regularized GLM. Hence,
the algorithm chooses a node for the first element of the ordering, and then determines its
parents. The algorithm iterates this procedure until the last element of the ordering and
its parents are determined.

Without loss of generality, assume that 7 = (1,2,---,p) is the true ordering. Then
Poisson SEMs (4) have the conditional distribution of X; given that all variables before j
in the ordering are reduced to the following Poisson GLM:

P(Xj | Xl:(j—l)) = eXp{Qij + Z ijXka + long! — exp <¢9j + Z ijXk> },
kel:(j—1) kel:(j—1)
(7)

where 0, € R represents the influence of node £ on node j. For ease of notation, let 6(j)
be a set of parameters related to Poisson GLM (7). Then 6(j) = (6;,6,;) € R x RI~! where

0\; = (Ojk)keq1,2,..j—1} 15 a zero-padded vector with non-zero entries if k € Pa(j).
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Our MRS (Algorithm 1) involves learning the ordering by comparing moments ratio
scores of nodes using the following equations:

S . B
) B+ B

E(X?)
)+ E(Xj ‘ Xﬁl:(mfl))2)
(8)

where 71, = (Rl oo T}, B(X;) = 1507 Xj@, and E(E(X; | Xs)) :%Z;’:lexp(ajs +
Sres 05:X4)), and E(E(X; | X5)2) = L300 exp(205 +23,,065.X,”) where fs(j) =

~,

@5 , 6@) is the solution of the following ¢;-regularized GLM:

and S(m,j) =

E(E(X; | Xz 7

1:(m—1)

n

~ 1 i i i
0s(j) := argmmﬁz [—X]()<9j —1—29ij£)) —|—exp(9j —l—ZijX,g))} +/\jZ\9jk|.

i=1 kes kes kes
(9)

This score is an estimator of the moments ratio relation in Equation (5). Hence, the
correct element of the ordering has a score of 1, otherwise strictly greater than 1 in pop-
ulation. The ordering is determined one node at a time by selecting the node with the
smallest score. Similar strategies of element-wise ordering learning can be found in many
existing algorithms (e.g., Shimizu et al., 2011; Ghoshal and Honorio, 2017b, 2018; Drton
et al., 2018).

The novelty of our algorithm is learning an ordering by testing which nodes have the
smallest moments ratio in Equation (5) using the ¢;-regularized GLM. By substituting the
estimation of parameters 0(j) for an estimation of the conditional mean, we gain significant
computational and statistical improvements compared to the previous works in Park and
Raskutti (2015, 2018) where the method of moments is used for estimating the conditional
mean and variance.

In principle, the number of conditional variances exponentially grows in the number of
conditioning variables. Hence, if a conditioning set contains d-variables with 10 possible
outcomes, then the number of possible computations is 10%. In other words, the minimum
sample size for the ODS algorithm to be implemented is possibly 10, otherwise, none of
conditional variances can be estimated.

As we discussed, the problem of a learning directed graph structure is the same as the
problem of an learning undirected graph structure if the ordering is known. Hence, given the
estimated ordering, the parents of each node j can be learned via ¢;-regularized GLM (see
details in Meinshausen and Biihlmann, 2006; Wainwright et al., 2006; Ravikumar et al.,
2011; Yang et al., 2015). Therefore, we determine the estimated parents of a node j as

1/35(]') ={keS: @Sk # 0} where S = 7;,(;_1) and é\s(j) is the solution to Equation (9).

3.1. Computational Complexity

The computational complexity for the MRS algorithm involves the ¢;-regularized GLM
algorithm (Friedman et al., 2009) where the worse-case complexity is O(np) for a single
f1-regularized regression run. More precisely, the coordinate descent method updates each
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Algorithm 1: Moments Ratio Scoring (MRS)
Input : nii.d. samples, X" R
Output: Estimated ordering 7 = (71, ..., 7p) and an edge structure, E C V x V

Set g = 0;

for m ={1,2,--- ,p} do

Set S = {%1, e ,%mfl};

for j €{1,2,---,p}\ S do
Estimate 55( J) for £;-regularized generalized linear model (9);
Calculate scores S(m, j) using Equation (8);

end

The m*" element of the ordering, 7,, = arg min; §(m,j);

The parents of the m*" element of the ordering, f’;(%m) ={kes| «/9\%1 p 7 0}
end

Return: Estimate the edge set, E = Upey{(k,7m) | k € Igzx(%m)}

gradient in O(p) operations. Hence, with d non-zero terms in the GLM, a complete cycle
costs O(pd) operations if no new variables become non-zero, and costs O(np) for each new
variable entered (see details in Friedman et al., 2010). Since our algorithm has p iterations
and there are p—j+1 regressions with j—1 features for the jth iteration, the total worst-case
complexity is O(np?).

The estimation of a Poisson MRF also involves a node-wise ¢1-regularized GLM over
all other variables, and hence the worse-case complexity is O(np?) if the coordinate de-
scent method is exploited. The addition of estimation of ordering makes p times more
computationally inefficient than the standard method for learning Poisson MRFs.

Learning a DAG model is NP-hard in general (Chickering et al., 1994). Hence, many
state-of-the-art MEC and DAG learning algorithms, such as PC (Spirtes et al., 2000),
GES (Chickering, 2003), and MMHC (Tsamardinos et al., 2006), are inherently greedy
search algorithms. In the numerical experiments in Section 4, we compare MRS to greedy
hill-climbing search-based GES and MMHC algorithms in terms of run time, and show that
MRS has a significantly better computational complexity.

3.2. Theoretical Guarantees

In this section, we provide theoretical guarantees on the MRS algorithm for learning Poisson
SEMs (4). The main result is expressed in terms of the triple (n, p,d), where n is a sample
size, p is a graph node size, and d is the indegree of a graph.

3.2.1. ASSUMPTIONS

We begin by discussing the assumptions we impose on Poisson SEMs. Since we apply
{1-regularized regression for the parent selection, most assumptions are similar to those
imposed in Wainwright et al. (2006), Ravikumar et al. (2011), Yang et al. (2015) and Park
and Raskutti (2018) where ¢1-regularized regression was used for graphical model learning.
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Important quantities are the Hessian matrices of the negative conditional log-likelihood
of a node j given some subsets of the nodes in the ordering, S; € {{m}, {m1,m2},..., {m1, ...

,mj—1}}. Let Q9% = V2€ (0%(4); X1™) where

HAOBSOEEDY [ ( + 365 xy ) +exp<9jsj +3 92;)(,9)],
i=1 keS; keS;
(10)

Hi‘gj(j) = argminE[—Xj <9§j + Z Qf,ng) —|—exp<l9;gj + Z Hf,ng)] (11)

kGSj kESj

For ease of notation, we define a set for the non-zero elements of 9§j (4),

Tyi={keS; |0 #0 where 65 (j) = (67,65} (12)

We note that if S; contains all parents of j, Pa(j) C S;, then T; = Pa(j). Lastly, for
simplicity, we let Agg denote the |S| x |S| sub-matrix of the matrix A corresponding to
variables Xg.

Assumption 1 (Dependence Assumption) Foranyj €V and any S; € {{m}, {m,m2},
A, o1} ), there exist positive constants pmin and pmax such that

n
o (OFS . 1 (i) (i) T
5%1‘1/1 Amin (QT].]J“].) = Pmin, and I]nea{;( Amax (n ;XP(Z(J) (XP(I(])) ) < Pmaxs
where Tj is in Equation (12), Amin(A) and Amax(A) are the smallest and largest eigenvalues
of the matriz A, respectively.

Assumption 2 (Incoherence Assumption) Foranyj € V and any S; € {{m1}, {m1, m},
AT, mi—1}}, there exists a constant o € (0, 1] such that

j:Sj —1 <1-—
rjngxrgg%HQ (QTjTj) h<1-a,

where Tj is in Equation (12).

Assumption 1 ensures that the parent variables are not too dependent. In addition,
Assumption 2 ensures that parent and non-parent variables are not highly correlated. These
two assumptions are standard in all neighborhood regression approaches to variable selection
involving /;-regularized based methods, and these conditions have imposed in proper works
for both high-dimensional regression and graphical model learning.

To control the tail behavior of likelihood functions, we require a bounded sample as-
sumption which is also imposed in the standard ¢;-regularized Poisson regression (e.g., Jia
et al., 2017).

10
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Assumption 3 (Bounded Sample Assumption) For any i € {1,2,...,n}, j € V, and
for all Sj € {{m},{m1,m2},....{m1,...,mj—1}}, the samples are bounded:

ma_X{Xj(i)} < Cylog(max{n,p}) and max{exp(6; + E H;legi))} < Cylog(max{n, p}).
17.7 Z?]
kESj

where Cy > 2 is a positive constant.

Assumption 3 is closely related to the rate parameters. For instance, the rate parameter
of X j@ is exp(6] + 2 pepagj) O5rX. Igz)) by the definition of Poisson SEMs. Hence, Assump-
tion 3 can be understood that too large rate parameters, that leads to a large value of a
sample, are not allowed for all conditional distributions.

In fact, Assumption 3 is satisfied with a high probability when ( ;k) are negative. Since
the second condition in Assumption 3 is directly satisfied with negative (G;k), we discuss
the first condition: Using the union bound,

o Eew(X))
~ iy (max{n,p})@e—?

P x> o1 < E(GXP(X;i)))
n}gx j 2Cg og(max{n,p}) | < n.pHZl%XW

In addition, the moment generating function is bounded when (H;k) are negative.

E(exp(X;)) < E(E(exp(X;) | Xpy;)) < E(exp(6; + ) 05.X4)) < exp(d).

Hence, given the negative (9;‘

least 1 — max; exp(#;)/(max{n,p})

Lastly, we require a stronger version of the moments ratio relation in Equation (5),
because we move from the population to the finite samples. This assumption only involves
learning the ordering of a graph.

) assumption, Assumption 3 is satisfied with probability at
Cz—2

Assumption 4 For all j € V and S; € {{m},{m,m2},....{m1,...,mj_1}}, there exists an
Mpnin > 0 such that

E(X?) > (1 + Muni)E[E(X; | Xs,) + E(X; | Xg,)%].

Now, we compare Assumptions 1, 2, 3, and 4 to the assumptions for learning Poisson
MRFs and DAG models. As discussed, our assumptions are similar to the assumptions in
Yang et al. (2015) and Park and Raskutti (2018) since all methods exploit the ¢;-regularized
GLM. However, the assumptions in Yang et al. (2015) only involve neighbors of node j,
that is, S; = V \ j. While our assumptions involve some subsets of parents, that is,
S; e {{m},{m,m},....,{m,...,mj—1}} due to the unknown ordering. In addition, they do
not assume the bounded sample assumption. However, they assume the restricted negative
parameter space 6, < 0 due to the normalizability issue. As we explained, if all parameters
are negative in a Poisson SEM, the moment generating function is bounded, and hence, the
bounded sample assumption is satisfied with a high probability. Lastly, Yang et al. (2015)
does not have the moments ratio assumption, since it is only used for recovering the ordering.

We compare the required assumptions for the MRS and ODS algorithms in Park and
Raskutti (2018). A major difference is that the MRS algorithm directly estimates the
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graph, while the ODS algorithm estimates the moralized graph to reduce the search space
of DAGs, and then, estimates the graph. Hence, our assumptions involve some parents of
node j, while their assumptions involve not only parents, but neighbors of node j, that is,
S; = {{m,...,mj—1},V\j}. In addition, they require a sparse moralized graph and adjacent
faithfulness that are also known to be restrictive. We note that the sparse moralized graph
assumption can be very strong since a sparse moralized graph is not implied by a sparse
graph. For instance, consider a star graph where X; — X for all j € {2,3,...,p} in Fig. 2.
This star graph has the maximum degree of the moralized graph is p— 1, while the maximum
indegree is 1.

Another major difference is in the moments ratio assumption. More precisely, Park and
Raskutti (2015, 2018) assume Var(E(X; | Xg = z)) > ¢ for all z € X5 when Pa(j) ¢ 5,
while we require E(Var(E(X; | Xs = z))) > ¢. To emphasize the difference, we consider
a 3-node graph X; — X9 — X3 where X ~ Poisson(\), Xy | X1 ~ Poisson(exp(61X1)),
and X3 | X9 ~ Poisson(exp(62X2)). Then, for j =3 and S = 1, we have

Var(E(X3 | X2) | X1) = Var(exp(62X3) | X1) < E(exp(262X5) | X1) = exp(ef X1 (22 — 1)),

Hence, for some constants 61,605 and ¢, if X; < %(log log ¢ —log(e?2 —1)), their assumption
is not satisfied, while Assumption 4 holds. .

7
Payj)
ditional variance estimation, Var(Xj | XPa(j))' In principle, it can be 2d by assuming all
variables are binary. Hence when d is not so sparse, the ODS algorithm often fails to be
implemented. In Section 4, we empirically verify that it can be a critical issue for the ODS
algorithm when a graph is not so sparse (d = 5). Therefore, we believe that the assumptions
for the MRS algorithm are more realistic.

Although our assumptions are standard in the previous works of ¢1-regularized Poisson
regressions, we have to note that the assumptions cannot be confirmed from data and they
could be restrictive. However, they are not strong for ¢;-regularized regression when samples
are from Gaussian SEMs (see e.g., Ravikumar et al., 2011). Hence, we conjecture that our
assumptions can be satisfied with a high probability under mild conditions, and leave this
to future study.

Lastly, the ODS algorithm requires at least two distinct element of X for a con-

3.2.2. MAIN RESULT

Putting together Assumptions 1, 2, 3, and 4, we have the following main result that a
Poisson SEM can be recovered via our MRS algorithm in high-dimensional settings. The
theorem provides not only sufficient conditions, but also the probability that our method
recovers the true graph structure.

Theorem 3 Consider a Poisson SEM (4) with parameter vector (6(j));jev and the maxi-
mum indegree of the graph d. Suppose that the reqularization parameter (9) is chosen, such
that
AC2V3(2 — ) log? (max{n, p}) _ | _ s
! k1(n,p) =7 7 10202(2 — @) prmaxd log? (max{n, p})’

max{n,p}). Suppose also that

for any a = (0,1], and k1(n,p) > 4\/5'10223'(270‘)2 Z‘;‘f"‘dlog4(

Assumptions 1, 2, 8 and 4 are satisfied and the values of the parameters in Equation (4) are

12
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sufficiently large such that ming; e |05x] > %\/&)\j. Then, for any € > 0, there exists a

positive constant C. such that if the sample size is sufficiently large n > Cc(r1(n, p))?logp,
then the MRS algorithm uniquely recovers the graph with a high probability:

PG=G)>1—c

Detailed proof is provided in Appendices C and D. Appendix C provides the error prob-
ability that ¢;-regularized regression recovers the true parents of each node given the true
ordering, and Appendix D provides the error probability that ¢1-regularized regression re-
covers the ordering. The key technique for the proof is that the primal-dual witness method
used in sparse regularized regressions and related techniques (Meinshausen and Biihlmann,
2006; Wainwright et al., 2006; Ravikumar et al., 2011; Yang et al., 2015). Theorem 3 in-
tuitively makes sense because neighborhood selection via the ¢1-regularized regression is a
well-studied problem, and its bias can be controlled by choosing the appropriate regular-
ization parameter \;. Hence, our moments ratio scores can be sufficiently close to the true
scores to recover the true ordering.

Theorem 3 claims that if n = Q(d?log? p), our MRS algorithm recovers an underlying
graph with a high probability. Hence, our MRS algorithm works in a high-dimensional
setting, provided that the indegree of a graph d is bounded. This sample bound result
shows that our method has much more relaxed constraints on the sparsity of the graph
than the previous work in Park and Raskutti (2018), where the sample bound is n =
Q(max{d?, log*? p,log’*t¥ p}). Moreover, it also shows that learning Poisson DAG models
may require more samples than the learning Poisson MRF's in Yang et al. (2015), where the
sample bound is n = Q(d2, log® p)) due to the existence of the ordering and the unrestricted
parameter space.

3.2.3. PoissoN SEM WITH A STAR GRAPH EXAMPLE

In this section, we discuss the validity of our assumptions using a special Poisson SEM
with the star graph in Fig. 2 where X ~ Poisson()), X; | X1 ~ Poisson(exp(6X1)), for
j €{2,3,...p}. This consists of a single hub node connected to the rest of nodes. With this
star graph, we show that our assumptions can be satisfied with positive (6;).

In order to discuss the validity of Assumptions 1, 2, 3, and 4 in this particular example,
we first calculate the expectation of the Hessian matrix of Equation (10): For any j €

{2,3,...p},

2
E(X2exp(6X,)) = %E(exp(@Xl)) = Xexp(A(exp(0) — 1) 4+ 6)(Aexp(0) + 1),

E(X1Xjexp(0X1)) = %E(exp(%)ﬁ)){j) = %E(GXP(HXQE(XJ- | X1))
= (%E(exp(QHXl)) = 2Aexp()\(exp(20) _ 1) + 2(9)

Hence, the population version of Assumption 1 is reduced to
Pmin < Aexp(A(exp(f) — 1) +0)(Nexp(0) +1) and A+ A? < prax.
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Figure 2: Star graph example

It can be satisfied with some positive values of 8. For A = 2, ppin = 0.01 and ppax = 10,
Assumption 1 is satisfied if 6 > —3.426. In addition, for A = 5, ppin = 0.01 and ppax = 50,
it is also satisfied if 6§ > —2.205.

In addition, the population version of Assumption 2 can be written as

1 1 _ 2-exp(Xexp(0)(exp(0) — 1) +0)

E(Q}")E =
jg/%?l}te‘gl\%}lijﬂ (Q1)E(Q1) )] Aexp(6) + 1

<1-

This condition is also satisfied with positive values of . For A = 2 and o = 0.01, a
simple algebra yields that Assumption 2 is satisfied if § < 0.141. In addition, for A = 5 and
a = 0.01, the assumption is satisfied if 8 < 0.165.

In terms of Assumption 3, we also claim that it can be satisfied with some positive 6.
Since the moment generating function of X is exp(A(e — 1)), we have,

E(exp(X}”)) _ exp(A(e - 1))
max{n, p}Ce max{n,p}Cs

P(X{i) > O, log(max{n,p})) <

where C, > 2 is a positive constant in Assumption 3.
For other nodes j € {2,3,...,p}, we have,

E(E(exp(X() | X)) E(exp(exp(0XP)(e — 1))

P(X](i) > C, log(max{n,p})) < max(n.p}C = A

For 6 < log X{i)/Xl(i), we have,

E(exp(X}” (e — 1)) _ exp(A(e™! — 1))

( ;> Cy log(max{n, p})) < max{n,p}c”” max{n,p}(jm

Hence, for 6 < log(C, log(max{n,p}))/Cylog(max{n,p}) that is the lower bound of
log X Y)/ X fi) given X fi) < Cyplog(max{n,p}), Assumption 3 is satisfied with a high proba-
bility:
exp(A(e! — 1))

max{n,p}C=—2 "

1,3 o

P <max Xj(»i) > Cy log(max{n,p})> <
Now, we discuss Assumption 4. A simple calculation shows that, for any j € {2,3, ..., p},
E(X;) = exp(A(exp(d —1))), and IE(XJQ) = exp(A(exp(20) — 1)) + exp(A(exp(f) — 1)).
Hence, Assumption 4 is equivalent to the constraint,

exp(A(exp(20) — 1)) > Mpinexp(A(exp(0) — 1)) + (1 + Mopin)exp(2A(exp(0) — 1)).
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This condition is also satisfied with some positive . For A\ = 1 and M,,;,, = 0, as we
discussed in Proposition 1, Assumption 2 is always satisfied with any value of 6 # 0. For
A =2 and M,,;,, = 0.001, Assumption 2 is satisfied if |#] > 0.033. Lastly, for A = 5 and
M nin, = 0.001, Assumption 2 is satisfied if |#] > 0.021. Therefore, we show that for this
particular star graph, Assumption 1, 2, 3, and 4 can be satisfied with a high probability by
allowing positive 6.

Finally, we emphasize that the sample complexity of the MRS algorithm, n = Q(d?log? p),
does not rely on the maximum degree of the moralized graph, d,,,, while many DAG learning
algorithms using the sparsity of the moralized graph or Markov blanket inevitably depend
on d,. For the star graph with d = 1 and d,, = p — 1, the MRS algorithm requires
n = Q(log? p) to recover the graph in high dimensional settings, while the ODS algorithm
may fail since its sample complexity is Q(d2, log!? p). This fact implies that, unlike the
ODS algorithm, the MRS algorithm can recover a sparse graph containing hub nodes in
high dimensional settings.

4. Numerical Experiments

In this section, we provide simulation results to support our main theoretical results of
Theorem 3 and the computational complexity in Section 3.1: (i) the MRS algorithm recovers
the ordering and edges more accurately as sample size increases; (ii) the required sample size
n = Q(d*log® p) depends on the number of nodes p and the complexity of the graph d; (iii)
the MRS algorithm accurately learns the graphs in high-dimensional settings (p > n); and
(iv) the computational complexity is O(np?) at worst. We also show that the MRS algorithm
performs favorably compared to the ODS (Park and Raskutti, 2015), GES (Chickering,
2003), and MMHC (Tsamardinos et al., 2006) algorithms. In addition, we investigate how
sensitive our MRS algorithm is to deviations from the assumption about the link functions
by using the identity link function in Equation (3). Lastly, we also investigate how well
the MRS algorithm recovers undirected edges when samples are generated by Poisson and
truncated Poisson MRF's (Yang et al., 2013, 2015; Inouye et al., 2017).

4.1. Random Poisson SEMs

We conducted simulations using 200 realizations of p-node Poisson SEMs (4) with the
randomly generated underlying DAG structures while respecting the indegree constraints
d € {1,5,10}. A graph with d = 1 is a special case where there is no v-structure, and
therefore, the corresponding MEC is completely undirected. The set of non-zero parameters
6,0, € R in Equation (4) was generated uniformly at random in the range 6; € [1,3],
6, € [-1.5,—0.5] U [0.5,1.5] for d = 1, and 0, € [-1,—0.1] U [0.1,1] for d = 5,10, which
helps the generated values of samples to avoid either all zeros or from going beyond the
maximum possible value of the R program ( > 103%?). Nevertheless, if some samples were
beyond the maximum possible value, we regenerated the parameters and samples.

The MRS and ODS algorithms were implemented using ¢;-regularized likelihood where
we used five-fold cross validation to choose the regularization parameters. Where mean
squared error was within two standard error of the minimum mean squared error, we chose
the minimum value for the moments ratio scores and the largest value for parent selection.
That was because a less biased estimator is preferred for the score calculation, and we
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Figure 3: Comparison of the MRS algorithm to the oracle, ODS, GES and MMHC algo-
rithms in terms of precision and recall for Poisson SEMs with p € {20,200} and
d € {1,10}.

preferred a sparse graph containing only legitimate edges. We acknowledge that the level
of sparsity can be adjusted according to the importance of precision or recall.

In Fig. 3, we compare the MRS algorithm to state-of-the-art ODS, GES and MMHC
algorithms for graph node size p = {20,200}, varying sample size n € {25,50,...,250} for
d = 1 and n = {100,200, ...,1000} for d = 10, and provide two results: (i) the average

s # of correctly estimated edges \. /:- # of correctly estimated edges
precision (= o edges — ) (ii) the average recall ( 7 of true odges ). As

discussed, the both GES and MMHC algorithms only recover the partial graph by leaving
some arrows undirected. Therefore, we also provide average precision and recall for the
estimated MECs in Fig. 4. Lastly, we provide an oracle, where the true parents of each
node are used, while the ordering is estimated via f;-regularized GLM. Hence, we can
see where the errors come from between the ordering estimation or parent selection. We
considered more parameters (05, n,p,d), but for brevity, we focus on these settings.

As we can see in Fig. 3, the MRS algorithm more accurately recovers the true directed
edges as sample size increases. In addition, the MRS algorithm is more precise for small
sparse graphs than for large-scale or dense graphs, given the same sample size. Hence it
confirms that the MRS algorithm is consistent, and the sample bound n = (d? log® P)
depends on p and d.

The MRS algorithm significantly outperforms state-of-the-art GES and MMHC algo-
rithms in terms of both precision and recall, on average, except for cases p = 20,d = 1,n <
50. It is worth noting that the GES and MMHC algorithms are not consistent, because
the recall for any tree graph must be zero in population, whereas the recall from GES
and MMHC increases as sample size increases. Hence, we can conclude that the GES and
MMHC algorithms find correct directed edges by finding incorrect v-structures. It is an ex-
pected result because the comparison methods only work with a non-faithful distribution,
which rarely arises in finite sample settings (Uhler et al., 2013).

Fig. 3 shows that the MRS and ODS algorithms have similar performance in identifying
directed edges when the indegree is a small d = 1. It makes sense because the ODS

16



HiGH-DIMENSIONAL P0OI1SSON SEM LEARNING VIA /1-REGULARIZED REGRESSION

n 100 200 300 400 500 600 700 800 900 1000
p=20 199 175 107 64 1 0 0 0 0 0
p=250 200 200 200 199 192 179 151 140 99 86

Table 1: Number of failures in ODS algorithm implementations from among 200 sets of sam-
ples for different node sizes p € {20, 50}, and sample sizes n € {100, 200, ..., 1000},
when the indegree is d = 5.
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Figure 4: Comparison of the MRS algorithm to the oracle, ODS, GES, and MMHC algo-
rithms in terms of the precision and recall for the MECs of Poisson SEMs with
p € {20,100} and d € {1,10}.

algorithm recovers any Poisson DAG models if the moralized graph is sparse. In other
words, the accuracy of the ODS algorithm may be poor for the non-sparse graph. Moreover,
the ODS algorithm often fails to be implemented due to a lack of samples for the estimation
of conditional variance, that is, > ; 1(X él) =1z) < 2 for all z € Xg. Table 1 shows the
number of failures in the ODS algorithm implementations for node size p € {20,50} and
sample size n € {100,200, ...,1000} when the indegree is d = 5, and the degree of the
moralized graph is at most d,,, = p — 1. It empirically confirms that the ODS algorithm
requires a huge number of samples to be implemented when a true graph is not sparse.
Hence, we do not apply the ODS algorithm for the graphs with d = 10. It is consistent
with our main result that our method can learn the Poisson SEMs with some hub nodes
while the ODS algorithm might not.

Fig. 4 shows the analogous results for the recovery of MECs, in which the MRS and
all comparison algorithms consistently learn the true MECs. The performance of the MRS
algorithm gets better as sample size increases or node size decreases. In addition, we can
see that the MRS algorithm still recovers the MEC of the Poisson SEM better on average
than the comparison methods. However, it must be pointed out that our MRS algorithm
applies to Poisson SEMs (4), while the ODS algorithm accurately learns sparse Poisson
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Figure 5: Comparison of the MRS algorithm to the oracle, ODS, GES and MMHC al-
gorithms in terms of the precision and recall for Poisson DAG models with
p € {20,100}, d = 2, and the identity link function.

DAG models where arbitrary link functions are allowed. In addition, the GES and MMHC
algorithms apply to more general classes of DAG models.

4.2. Random Poisson DAG Models

When the data are generated by a random Poisson DAG model (2) where g; is not the
standard log link function, our MRS algorithm is not guaranteed to estimate the true
directed acyclic graph and its ordering. Hence, an important question is how sensitive our
method is to deviations from the link assumption. In this section, we empirically investigate
this question.

We generated the 200 samples with the same procedure specified in Section 4.1, but
with the indegree constraint d = 2, and except that identity link function g;(n) = n and
the range of parameters was 6, € [-1.5,—0.5] U [0.5,1.5]. We note that the link function
must be positive, but we allow the negative value of #;;, by randomly choosing 6; € [1, 10].
If any Poisson rate parameter is negative, we regenerated the parameters.

In Fig. 5, we compare the MRS to state-of-the-art ODS, GES and MMHC algorithms
for varying sample size n € {25, 50, ...,250}, and node size p € {20,100}. Fig. 5 shows that
the MRS algorithm consistently recovers the true graph, and hence, we can see that the
MRS algorithm is not so sensitive to deviations from the link assumption. Comparing it
to the ODS algorithm, the MRS algorithm shows slightly worse performance because the
ODS algorithm is designed to learn general Poisson DAG models with any type of link
functions. However, we can see that the MRS algorithm still performs better than the
greedy search-based methods in both average precision and recall.

4.3. Random Poisson and Truncated Poisson Markov Random Fields

When samples are generated by a Poisson or truncated Poisson MRF, our MRS algorithm
is not guaranteed to find the true dependence relationships of variables. Hence, it is also
important to investigate how well our algorithm recovers undirected edges when multivariate
count data is from an MRF'. In this section, we compare our MRS algorithm to state-of-the-
art Poisson MRF (PMRF) and truncated Poisson MRF learning (TMRF) algorithms (Yang
et al., 2013, 2015; Inouye et al., 2017) when multivariate count data is from Poisson MRFs
and truncated Poisson MRFs, respectively. We used the R package XMRF (Wan et al.,
2016) for truncated Poisson MRFs.
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Figure 6: Comparison of the MRS algorithm to the Poisson MRF learning (PMRF) and
truncated Poisson MRF learning (TMRF) algorithms in terms of the precision
and recall for undirected edges of random 20-nodes Poisson MRF's and truncated
Poisson MRFs with d,,, = 5, and R = 100.

We generated 100 samples of 20-nodes random Poisson MRF and truncated Poisson
MRF with the randomly generated underlying undirected graphs, respectively. For Poisson
MRFs, we set the maximum Markov blanket d,, = 5 and the non-zero parameters in
Equation (6) was generated uniformly at random in the range 6; € [1,2], but we fixed
i = —0.1 for all j € V. This is a similar setting used in Yang et al. (2015). For truncated
Poisson MRFs, we set d,, = 5, 0; = 0, 0, = 0.1, and the truncation level is R = 100,
meaning that all samples are less than 100 (see details in Equation 3 of Yang et al., 2013).
In terms of the choice of regularization parameters for the MRS and PMRF algorithms, we
used five-fold cross validation as we used in Section 4.1. For the TMRF algorithm, we set
the regularization parameters to 0.1 since this value seems to work well.

Fig. 6 compares the MRS algorithm to state-of-the-art PMRF and TMRF algorithms in
terms of recovering undirected edges by varying sample size n € {100, 200, ...,1000}. For a
fair comparison, we used the skeleton of the estimated MEC via the MRS algorithm, because
our algorithm returns a DAG. As we can see in Fig. 6, the MRS algorithm consistently finds
the true edges from both Poisson MRF and truncated Poisson MRF samples. Hence, we
empirically verify that the MRS algorithm can recover some dependence relationships of
variables even if samples are from Poisson or truncated Poisson MRFs.

Fig. 6 also shows that the MRS algorithm performs significantly worse than the com-
parison PMRF and TMRF algorithm, on average, when samples are from Poisson MRF's
and truncated Poisson MRFs, respectively. It is an expected result because the PMRF and
TMREF algorithms are for learning Poisson MRFs and truncated MRFs, while our algorithm
is for Poisson SEMs. However, it is worth noting that the TMRF algorithm seems not to
work on average when samples are from a Poisson MRF in our setting. It is mainly because
the TMRF algorithm is for learning truncated Poisson MRFs, not Poisson MRFs. We em-
phasize that, in another setting where 0, is fixed to 1, the TMRF algorithm works much
better. It is also worth noting that the PMRF algorithm seems not to recover any undi-
rected edges when samples are from a truncated Poisson MRF. It can be clearly explained
by the fact that the PMRF algorithm cannot capture the positive dependencies, however
all parameters are positive in our setting.
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Figure 7: Comparison of the MRS algorithm to the GES and MMHC algorithms in terms
of the running time with respect to node size p and sample size n

4.4. Computational Complexity

Fig. 7 compares the run-time of the MRS, GES, and MMHC algorithms for learning Poisson
SEMs with indegree d = 5 by varying sample size n € {100,200, ..., 1000} with fixed node
size p € {100,500}, and varying node size p € {10,20,...,200} with fixed sample size
n = 500. Fig. 7 supports the worst case computational complexity O(np?) discussed in
Section 3.1. In addition, it shows that the MRS algorithm is significantly faster than the
greedy search-based GES and MMHC algorithms when a sample size is large (n > 500).

5. Real Multivariate Count Data: MLB Statistics

We now apply the MRS algorithm and state-of-the-art ODS and MMHC algorithms to a
simple data set that involves multivariate count data that models baseball statistics for Ma-
jor League Baseball (MLB) players during the 2003 season. To the best of our knowledge,
our MRS algorithm is the only algorithm that provides a reliable and scalable approach
to non-sparse DAG learning with multivariate count data although it is under strong as-
sumptions. In particular, other approaches, such as PC, MMHC, and approaches based
on conditional independence testing, suffer severely from the fact that we are dealing with
count variables where the number of discrete states is potentially infinite. In addition,
ODS algorithm cannot deal with a non-sparse graph such as a graph containing hub nodes.
Lastly, both Poisson MRF and truncated Poisson MRF may provide an extremely compli-
cated graph because it connects all pairs of nodes having a common child like a moralized
graph.

Our original data set consists of 800 MLB player salary and batting statistics from the
2003 season (see R package Lahman in Friendly, 2017 for detailed information). The data
set contains 23 covariates: Salary, Number of: Games Played (G), At Bats (AB), Runs (R),
Hits (H), Doubles (X2B), Triples (X3B), Home Runs (HR), Runs Batted In (RBI), Stolen
Bases (SB), times Caught Stealing (CS), Bases on Balls (BB), Strikeouts (SO), Intentional
Walks (IBB), times Hit by Pitch (HBP), Sacrifice Hits (SH), Sacrifice Flies (SF), and times
Grounded into Double Plays (GIDP), plus Player ID, Year ID, Stint, Team ID, and League
ID. However, we eliminated Player ID, Year ID, Stint, Team 1D, and League ID because our
focus is to find the directional or causal relationships between salary and batting statistics.
In addition, we only considered players in the top 25% in terms of the number of games
played, because the baseball statistics relationships from players who played only a few
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Figure 8: MLB player statistics directed graph estimated by the MRS algorithm for Poisson
DAG models.

games could be uncertain. Therefore, the data set we considered contained 18 variables and
200 observations.

We assumed each node to a conditional distribution given its parents is Poisson because
most MLB statistics, except for salary, reflect the number of successes or attempts that
were counted during the season. Hence, we applied the MRS algorithm for Poisson DAG
models with leave-one-out cross validation to choose the tuning parameters, and we chose
the largest value where mean squared error is within 2.5 standard error of the minimum
mean squared error, because we prefer a sparse graph containing only legitimate edges.

Fig. 8 shows the directed graph estimated by our MRS algorithm. The estimated graph
reveals clear causal/directional relationships between batting statistics. This makes sense,
because players with larger numbers of HR, BB, RBI, and/or R have a better salary. The
more games played, or the more batting chances, the higher H, BB, SO, RBI, and other
statistics. Moreover, the higher the total number of hits, the more X2Bs, X3Bs, Rs and
the fewer SOs. Players with more home runs and base on balls get intentional walks more
frequently. Lastly, the more stolen bases are attempted, the more they are caught stealing,
because there is no success without failure.

We acknowledge that our proposed DAG model returns many errors due to restrictive
assumptions that are not completely satisfied by the real data. However, the benefit is best
seen by comparing MRS to other DAG learning approaches and an undirected graphical
model for multivariate count data. In particular, we applied Poisson undirected graphical
models (Yang et al., 2015) in which ¢;-regularized Poisson regressions are applied. We
provide the estimated undirected graph with the largest tuning parameter where mean
squared of error is within 2.5 standard error of the minimum mean squared error. The
estimated undirected graph in Fig. 9 (left side) shows that a lot of nodes are connected by
edges, that many edges are unexplainable, and that some legitimate edges are missing (e.g.,
[H, X3B], [SB, CS] are not connected), because the Poisson undirected graphical model only
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Figure 9: MLB player statistics undirected graph estimated by ¢;1-penalized likelihood re-
gression (left) and a directed acyclic graph estimated by the MMHC algorithm
(right).

permits negative conditional relationships, whereas most variables are positively correlated.
Hence, it may not be useful to understand the relationships between MLB statistics.

We also compared the MMHC algorithm. As discussed, the MMHC algorithm does
not guarantee to find a complete directed graph, and prefers a sparser graph when the
faithfulness assumption is violated, which often arises in finite sample settings (Uhler et al.,
2013). Hence, the estimated directed graph in Fig. 9 (right side) is extremely sparse,
with only four directed edges: [H, HR|, [SO, HR|, [HR, RBI], and [SF, RBI]. Lastly, ODS
algorithm failed to be implemented as expected because of some hub nodes such as the
number of games, at bats, and runs batted in.

Since our method is the first identifiability result for the strongly correlated count data
when variables are directional/causal relationships and there exist hub variables, to the best
of our knowledge, our method better identifies the directional/causal relationships between
MLB statistics. However, we acknowledge that, like most other DAG-learning approaches,
very strong assumptions, such as dependency, incoherence, are required for reliable recovery.

6. Future Works

Several topics remain for future works. Although our assumptions are similar to the assump-
tions in the previous works of ¢;-regularized Poisson regression, our assumptions could be
very restrictive. In addition, they cannot be confirmed from data. However, we conjecture
that the assumptions are satisfied with a high probability under mild conditions, and one
may be able to prove this. In addition, it is an important problem of finding the minimax
rate of the Poisson DAG models, and it should be investigated in the future. Lastly, it
would be also interesting to explore if our idea can be applied to other structural equation
models with Binomial, Negative Binomial, Exponential, and Gamma distributions. We be-
lieve that our node-wise ¢1-regularized based approach can be extended to the identifiable
linear SEMs under some suitable conditions.
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Appendix A. Proof for Proposition 1

Proof For a notational simplicity, we define a moments related function for Poisson,
f(p) = p+ p? for > 0. Then, for any node j € V, any non-empty set S; C Nd(j),

E(X7 185 = EEX] | Xpag) | Si) =E(F(EX; | Xpyg)) | 9)-
Using the Jensens inequality and f(-) is convex, we have,
E(f(E(X; | Xpagy)) | S5) = FEEX | Xpagy) | 55) = FEX; | S))).

Using the fact that E(X; | XPa(j)) = gj(XPa(j)) and it is non-degenerated by definition,
the equality only holds when S; contains all parents of j, Pa(j) C S; C Nd(j).
By restating the above inequality, we have,

E(X? | S5) —E(X; | 55) —E(X; | S;)* > 0.
In addition, by taking the expectations, we have,
E(X?) - E (E(X; | Xg,) + E(X; | Xg,)%) > 0.

Since j and S; are arbitrary, we complete the first part of the proof.
Now, we prove that IE(XJQ) > E (E(X; | Xs,) + E(X; | Xg,)?) is equivalent to E(Var (E(X; |
Pa(j)) | Xs;)) > 0. Using the total variance decomposition, we have,

E(Var(X; [ Xs;)) = E(E(Var(X; | Xpy;)) | Xs;)) + E(Var(E(X; | Xpyj)) | Xs;))-

Using the fact that the conditional distribution, Xj | XPa(j)’ is Poisson where its mean
and variance are equal, we have,

E(Var(E(X; | XPa(j)) | Xs,)) = E(Var(X; | Xg;)) — E(Xj).
Using the definition of the conditional variance, we have,
E(Var(X; | Xs,)) —E(X;) = E(X}) - E (E(X; | Xs;) + E(X; | X5,)?).

Therefore, we complete the proof. |

Appendix B. Proof for Theorem 2

Proof Without loss of generality, we assume the true ordering is unique, and 7 =
(m1,...,mp). For simplicity, we define X1.; = (Xz;, Xpp, -+, Xyr;) and Xy = 0. In ad-
dition, we define a moments related function, f(u) = u + p?.

We now prove identifiability of Poisson DAG models using mathematical induction:

Step (1) For the first step 71, using Proposition 1, we have E(X2 ) = E(f(E(Xx,))),
while for any node j € V'\ {m }: E(X?) > E(f(E(X}))).

Hence, we can determine m; as the first element of the causal ordering.
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Step (m-1) For the (m — 1)"* element of the ordering, assume that the first m — 1
elements of the ordering and their parents are correctly estimated.

Step (m) Now, we consider the m!" element of the causal ordering and its par-
ents. It is clear that m, achieves E(X2 ) = E(f(E(Xr, | X1.n-1)))). However, for
J € {mms1,- -, T}, IE(XJQ) > E(f(E(X; | X1:4m—1)))) by Proposition 1. Hence, we can

estimate a true mt"

component of the ordering my,.

In terms of the parent search, it is clear that by conditional independence relations
naturally encoded by factorization (1) E(X2 ) = E(f(E(Xx,, | Xi:(m-1)))) = E(f(E(Xx,, |
XPa(wm))))' Hence, we can also choose the minimum conditioning set from among X1.(,—1)
as the parents of m,, such that the above moments relation holds. By mathematical induc-
tion, this completes the proof.

Appendix C. Proof for Theorem 3: Parents Recovery

Proof We provide the proof for Theorem 3 using the primal-dual witness method that is
also used many other works (Meinshausen and Biihlmann, 2006; Wainwright et al., 2006;
Ravikumar et al., 2011; Yang et al., 2015). In this proof, we show in Appendix C, the error
probability for the recovery of the parents of a node 7; from among all the nodes given the
partial ordering (71,72, ...,mj—1) via {1-regularized regression. In Appendix D, the error
bounds for the recovery of the ordering both via ¢1-regularized regression.

Without loss of generality, let the true ordering be 7 = (1,2,...,p), and hence, 7.; =
(m1,m2,...,mj) = (1,2, ..., j). For ease of notation, [-|; and []g denote parameters correspond-
ing to variable X; and random vector Xg, respectively. In order to make the arguments
easier to understand, we restate the negative log likelihood (10) and related arguments.

First, we define a new parameter vector fg; € RI%| without parameter t; corresponding
to the node j since the node j is not penalized in regression problem (9). Then, the
conditional negative log-likelihood of the GLM for X given Xg; can be written as:

S, ” 1 < i i i
9055 X) 1= = 37 (=X 05, X)) + exp((0s,, XE))) ) (13)
=1

where (-, ) is an inner product.
We also define 05 € RI%! for Equation (11):

fg, = arg min E (—X;((0, Xs,)) + exp({0, X5,))) - (14)
' R/
We define a set non-zero elements index of 65 as in Equation (12), Tj := {k € 5; |

[ng] r 7 0} where ng is in Equation (14).
The main goal of the proof is to find the unique minimizer of the following convex
problem:

9\5]. :=arg min £;(6,);) = arg min {Esj (0; X1 4+ N1} (15)
ocr!S3 | per!Sil 7
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By setting the sub-differential to 0, @\5. satisfies the following condition:
Vaﬁ (Bs,, ) = Vef (05, X1) + 027 =0 (16)

where ZJSJ € RISl and [ij]t = sign([gsj]t) if t € T}, otherwise [273]},5 < 1.
Lemma 4 directly follows from the prior work (Yang et al., 2015), where each node’s
conditional distribution is in the form of a generalized linear model.

Lemma 4 (Uniqueness of Solution, Lemma 8 in Yang et al., 2015) Suppose that
\[ij]t| <1 fort ¢& Tj in Equation (16). Then, the solution 0g; of Equation (15) satisfies
[0s,]t = 0 for allt ¢ T;. Furthermore, if the sub-matriz of Hessian matriz Q%Tj is 1nvertible,

then Og; is unique.

The remainder of the proof is to show |[ ] | < 1forallt ¢ Tj. Note that the restricted
solutlon in Equation (22) is (95 , st) and the unrestricted solution in Equation (15) is
(93 L ) Equation (16) with the dual solution can be represented by

V2005, X1 (0s, — 05) =~ N2~ W + R (17)

where

(a) stj is the sample score function:

S * n
W= — 7 4;(05,; X7, (18)
(b) RJS’ = (Rfk)kes and R ' is the remainder term by applying the coordinate-wise mean

value theorem:
S S * n n
R = [0 (0%,; X1") — v% (0s,; X ™) E (05, — 05,)- (19)
Here 05 is a vector on the line between 05 and 6¢ ;> and [£ is the row of a matrix

correspondlng to variable Xj.

Then, the following proposition provides a sufficient condition to control 2 5,

Proposition 5 If max(||W; J||oo, | 12; ]||Oo) 4(2 a), then |[ ] | <1 forallt ¢ Tj.

Next, we introduce the following three lemmas under Assumptions 1, 2, and 3 to show
that conditions in Proposition 5 hold. For ease of notation, let n = max{n p}, O = [GSJ] T

5 5
ZS = [Zj ]Tj, 95c = [HSJ’]S]'\TJ'7 and Zsc = [Zj ]Sj\Tj'

Lemma 6 For any S; € {m,m.2,....,m;j—1} and A\; > 4036(2_a) ,jféig) for some a €
(0,1],

Wl @ n
P < >1-—2d- —_ .
( N Cag-ay) 2T ezp( m(n,p>2>

where k1(n,p) is an arbitrary function of n and p.
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Lemma 7 Suppose that for all S; € {m,71:2, ..., 71:j-1}, |]W]$j\|oo < %. Then, for A\; <
prznin
10C2 pmaxdlog® n’
~ 5
[0s — 052 < Vi),
Pmin
Lemma 8 Suppose that for all S; € {m1,m1.2,...,T1:5-1}, HW]-SjHoo < %. Then, for \; <

2
O[pmin
10005%(2foz)pmaxdlog2 n and o € <0’ 1]’

S,
1R} [loo o
)\j - 4(2—&)

The rest of the proof is straightforward using Lemmas 6, 7, and 8. Consider the choice of

. . 4/2C2(2— 2 4/2C4.10%2(2—)? pmax
regularization parameter \;o = V2C3(2-0) log?n V20; aOQ( @) ’;2‘ dlog*n

where k1(n,p) >

(0% /ﬂ(n,p) ? min
s 4C2\/2(2—a) log?n ) aphin — i
ensuring that - o) < Ao < 0202 (2o log” for any o = (0,1]. Hence, if
B 204 . (9__ 2 ..
we set k1(n,p) = Cmaxdlog?n where Chax = 4v2:10 gg (2—a) Pmax then all conditions for

min

Lemma 6, 7, and 8 are satisfied. Therefore,

S S
W oo 1R [loo
+
Aj Aj

<l-a)+5+%<1, (20

HZSC”OO < (1—&)—1—(2—04) 4 4

with a probability of at least 1 — 2d - exp <— =1-—2d-exp (—C

_n__ __n
k1(n,p)? 2axd?log®n )

Proposition 9 Suppose that, for any j € V, partial ordering (w1, ...,7;) is correctly esti-
mated. If mingeg[0%]; > pi%\/& Aj forallj €V,

supp(@s;) = Pa(j).

Proposition 9 guarantees that ¢i-regularized likelihood regression recovers the parents
for each node with a high probability. Since there are p regression problems, for any
€ > 0, there exists a positive constant C. > 0 such that if n > Cc(k1(n,p)?logp) for
’il(nvp) > Cmaxdlog4 7,

P(@:G)Zde-exp <— > >1—2dp-exp(—Ceclogp) > 1 —e.

K1 (TL, p>2

Appendix D. Proof for Theorem 3: Ordering Recovery

Proof We begin by reintroducing some necessary notations and definitions to make the
proof concise. Without loss of generality, assume that the true ordering is unique and 7w =
(71, .., mp) = (1,2,...,p). For notational convenience, we define X1.; = (Xr,, Xy, -+, Xx;)
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= (X1, X2, ..., Xj) and X1 = (. We restate the moments ratio scores for a node k and the
jth element of the ordering:

Y

E(X}) and g(j, k) = E(X2)

S(]7 k) = E(f(E(Xk | Xl:(j—l)))) E(f( (Xk’ | X7r1 (O 1))))

where f() = i+ u2, E(X) | Xs,) = exp(6} + Yycs, 05,X0), and E(X | Xs,) = exp(f +
>tes, Ok Xt) where 05 = (07, 07,) and s, = (0, Ot) are the solutions of the problem (11)
and of the ¢;-regularized GLM (9), respectively. In addition, we use the unbiased method-
of-moment estimator for a marginal expgctation, IE(X,?) = %E?Zl(Xl?))z and fF':(f(IE(Xk |
Xs)) = L flexp(Or + yes, O X)),

We define the following necessary events: For each node j € V, S; € {71, m1.2, ..., T1.(j—1) }
and any e; > 0;

o= %?azlkf%?%p)sﬁ’”“ Sum] > 532},

@ = g e <o)

6 = {mvx E(f<E(XjIij)>)—E<f(E(Xj!ij)))(<61},
G o= {va E(f(mj|ij>))—E(f(E<Xj|ij>))\<61}-

We begin by proving that our algorithm recovers the ordering of a Poisson SEM in the
high-dimensional setting. The probability that ordering is correctly estimated from our
method can be written as

=)
S(1,m) < min S(1,7,),8(2,m) < min S(2,7;),..8(p—1,mp1) < S(p— 1,7rp)>

J=2,...,p Jj=3,....p

P
=P
.] 177p71k:]+177p

G
=P < min min ~ S(j, 1) — g(], i) > 0)
( _min_{(SG.m) - SGm)) - (SUGim) = SG.m)) + (SGmy) - 86w ) } > o)

min

2

P _min {(SU,mk) = S0 m5))} > Mmin , and j_max ‘S(J} ™) — S0, 7%)’ <

The first term in the above probability is always satisfied because S(j,m) — S(j, 7;) >
(14 Muyin) — 1 = My from Assumption 4. Hence, the lower bound of the probability that
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ordering is correctly estimated using our method is reduced to

~ . o M i
Pr=mn) > P< max  max S(],Wk)—S(],Trk)’ < mn)
]:1771)71 k:j77p 2

1—-P(G)
= 1-P(C ] ¢G5, Ca)P(C2, (3, Ca) — P(C1 | (G2, G35 Ca)) P((C2s €3, Ca))
> 1—P(C1 | C2,¢3,¢4) — P((C25C3,Ca)°)
> 1-=P(G | ¢, ¢3,0)— P(G) — P(¢5) — P(¢Y) - (21)

Lem 10 Lem 11

Next, we introduce the following two lemmas to show the lower bound of the probability
in (21) as a function of the triple (n,p, d):

Lemma 10 Given the sets (a,(3,(s and under Assumption 4, P((1 | (2,(3,C4) = 0 if for
some small €1 such that for any Sj € {71, T2, ..., T1.(j—1) },

i E(X?) Min Muin E(f (E(X; | Xs,)))?
S 2 (Mo £ 3) (M + 1) 6 E(X?) !

where f(u) = pu+ p?.

The condition in Lemma 10 implies that if ¢; is sufficiently small, the estimated score is
close to the true score value.
The second lemma shows the error bound for the consistency of the estimators.

Lemma 11 For any €1 > 0 and
2
(i) For Ga, P(G5) <1=2-p- eop{ i |

(ii) For (3, there exist some positive constants Cyax and Dpax such that

2
P(<3c) S 1-2- p- d: exp (_ Hl(gzp)2> -2 p-exp {_Dmazellog477} )

where k1(n,p) > Cmaxd log? n.
(11i) For (4, P((5) = 0.

Therefore, we complete the proof: our method recovers the true ordering at least of

n
P(7 = > 1 — . d - _ I
(r=m > Cip-d exp( Cy m(n,p)2>

for k1(n,p) > Cmaxdlog4 71, and some positive constants C1 and Co
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Appendix E. Proposition 12

We begin by introducing an important proposition to control the tail behavior for the
distribution of each node, which are required to prove the lemmas.

Proposition 12 For given j € V and S; € {m1,T1:2, ..., T1:(j—1) }, the solution ésj in Equa-
tion (15) satisfies

iiewp(@g, )>)<C logn.

where Cy > 2 is a constant in Assumption §

Proof By the first-order optimality condition of E (0, X L:n) in Equation (15), we have

>oxp = Zexp (bs,, X))
i=1

ZX;i)Xlii) _ ZeXp< 95 ’ ’)>X(Z)) + /\jsign([ésj]k).
i=1

By Assumption 3, we have

—Zexp(eg, )>) < Cplogn <— —ZX < Cylogn.
=1

Appendix F. Proof for Propositions 5 and 9
F.1. Proof for Proposition 5

Proof We note that fge = (0,0, ...,0)" € RISl in our primal-dual construction. To improve
readability, we let 65 = [0s,]7, esc = [0s,]s,\7, » and Ag = [A]7; and Age = [A7]g 1.

With these notations, Wg and Rg are sub-vectors of ij and R;-qj corresponding to variables
Xg, respectively.
We can restate condition (17) in block form as follows:

Qseslls —05] = Wse — A\jZse + Re,
Qsslfs — 05 = Ws—\;Zs + Rs.
Since (Qgg is invertible, the above equations can be rewritten as
Qs5Q55[Ws — A\jZs — Rs] = Wse — A\jZse — Rse.
Therefore,

[Wse — Rse] — QsesQgalWs — Rs] + \jQsesQgsZs = \j Zse.
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Taking the ¢ norm of both sides yields

7 _ Wsllso | [[Bs]lso [Wselloo | 1R3¢ lloo
Zgelloo < csQcdlloo | 1 .
[Zselloe < ||QsesQgsll] [ )y + X +1| + y + X

Recalling Assumption (2), we obtain |||QgsesQgsll|oc < (1 — @), and hence, we have

= Wsllss | [[Rslloo HWsclloo | Rse oo
Zselew < (1-— 1
N e T v Y
< (1-a)+(2-a) IV e + Il
B Aj Aj

If both ||[W; 5 ||loo and HR 7|lso are less than ﬁ, as assumed, then

= (67
1Zselloe < (1—a) + 5 < L.

F.2. Proof for Proposition 9

Proof To prove the support of és is not strictly subset the true support Xg, it is sufficient
to show that the maximum bias is bounded:
~ mingeg (03]

15 — 05| < eSS

From Lemma 7, we have, with a high probability,

105 — b5 lloc < 105 — O3]l2 <

5
Vd \j.
Pmin
Therefore, if minicg[6§]; > pi%\/;i Aj,

mingeg[0%]¢

105 — 05l < =5

Appendix G. Proof for Lemmas

G.1. Proof for Lemma 4

Proof This lemma can be proved by the same manner developed for the special cases (Wain-
wright et al., 2006; Ravikumar et al., 2011). In addition, this proof is directly from Lemma
8 in Yang et al. (2015). And, we restate the proof in our framework. The main idea of the
proof is the primal-dual-witness method which asserts that there is a solution to the dual
problem 93 = 95 if the following Karush-Kuhn-Tucker (KKT) conditions are satisfied.
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(a) We define 557. € Og,, where 5, = {0 € RISil : §gc = 0} is the solution to the following
optimization problem:

3 . S; . . Sin. v1:
05, := arg Grenel)gj L7(0,))) = arg erenérslj {6570 X + ;10111 }- (22)
(b) Define Z]S] to be a sub-differential for the regularizer || - ||; evaluated at gsj. For any

t € T} in Equation (12), [Z]SJ]t = sign([ggj]t).
(c) For any t ¢ Ty, [[Z;']:] < 1.

If conditions (a) to (c) are satisfied, 53]. = ggj meaning that the solution to unrestricted
problem (15) is the same as the solution to restricted problem (22) (See Ravikumar et al.,
2011 for details).

In addition, if the sub-matrix of the Hessian Q?S is invertible, restricted problem (22)
is strictly convex, and hence, fg; is unique. |

G.2. Proof for Lemma 6

Proof In order to improve readability, we omit the superscript S if it is understood (i.e.,
W; = ij ). Each entry of the sample score function W; in Equation (18) has the form
Wy = L0, W) for any t € § = {k € S; | [65 ] # 0}. In addition, Wj; = 0 for all
t ¢S, since [ng]t = 0 by the definition of S.

Hence simple calculation yields that, for any ¢t € S and i € {1,2,--- ,n},

Wi = XX — exp((03, X)X,

and (\W](Z ) )i, has mean 0 by the first-order optimality condition, E(X;) = E(exp((0%, Xs))).
Now, we show that Wj(f) is bounded with a high probability given Assumption 3 by
using Hoeffding’s inequality. The both terms are bounded above C? log? n by Assumption 3.
Therefore, |W](Z)\ is bounded by 2C2 log? 7.
Applying the union bound and Hoeffding’s inequality, we have

2n4?
P([[Wjloo > 6) < d'I?G%XPUth‘ > d) < 2d-exp <_40§10g477> .

o o 4(2—a) 2C2%1og?n .
Suppose that § = 4(27_a) and \; > o Vo) Then, we complete the proof:

( N iE—a) <2 (- e —apieregy) <2 Catp
(23)
|
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G.3. Proof for Lemma 7

Proof In order to establish error bound ||fg — 0%|| < B for some radius B, several works
(Meinshausen and Biihlmann, 2006; Wainwright et al., 2006; Ravikumar et al., 2011; Yang
et al., 2015; Park and Raskutti, 2018) already proved that it suffices to show F'(ug) > 0 for
all ug := 0g — 0% such that |ug|2 = B where

F(a) = 605 +a; X17) = (0% X) + A (105 + alls — 105]11)- (24)

More specifically, since ug is the minimizer of F' and F'(0) = 0 by the construction of
Equation (24), F(us) < 0. Note that F is convex, and therefore we have F(ug) < 0.

Next we claim that [Jug|2 < B. In fact, if ug lies outside the ball of radius B, then
there exists v € (0,1) such that the convex combination v - ug + (1 — v) - 0 would lie on
the boundary of the ball. However it contradicts the assumed strict positivity of F' on the
boundary because, by convexity,

Flveug+(1—=2v)-0)<v-Flus)+(1—v)-0<0. (25)

Thus it suffices to establish strict positivity of F' on the boundary of the ball with radius
B .= MB)\j\/g where Mp > 0 is a parameter to be chosen later in the proof. Let ug € RI®|
be an arbitrary vector with ||ug|le = B. By the Taylor series expansion of F' in (24),

F(us) = (Ws) us + u§[7°4;(05 + vus; X)]us + A; (105 +usll — [05]1),  (26)

for some v € [0, 1].
The first term in Equation (26) has the following bound: applying [[Wgl|le < % by
assumption and ||jug||; < Vd||lus|2 < Vd- B,

M
(Ws)Tus| < [Wslsolluslh < [WslooVellusll2 < (A;Vd)* == 2.

The third term in Equation (26) has the following bound: Applying the triangle in-
equality,

(165 +uslls = 165]11) = =Allusls = =A\Vd|usllz = —Mp(\Vd)*.

Now we show the bound for the second term using the minimum eigenvalue of a matrix
sz]’(eg + UuS):

q" = Amin (V2€j(9§ + vus))

> min Amig (V245 (0%
2 min (V2;(0% + vus))

> Amin (VQKj(Qg)) — max Z exp 95‘ + vug, Xg)>)U£XgL)XS) (Xéi))T

ve(0,1]

2

— (4) T 5 (1) (4)
> Pmin vlél[%}i]yﬁz\?gx1nze)(p (05 +vus, Xg')) - (y' Xg ) ‘S |. (27)
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We first show the bound of the first term in Equation (27): Note that 0% + vug is a

linear (convex) combination of 8§ and fs. Hence, by Assumption 3 and Proposition 12, we
obtain

I ;
- Zexp((@fg + vug, Xé)>) < Cplogn.
i=1

Now, we bound the second term in Equation (27): Recall that ”Xg)Hoo < Cylogn for
all 4 by Assumption 3. Recall [ug]; = 0 for ¢t ¢ S by the primal-dual construction of (17).
Applying [lus|1 < Vd|us|ls < Vd- B,
b x$| < Colog(m)Vdllus|l2 < Culog(n) - MpAsd.
Lastly, it is clear that maxy:”y”Fl(yTX g ))2 < Pmax by the definition of the maximum
eigenvalue and Assumption 1. Together with the above bounds, we obtain

P (q* < Pmin — CgMBpmaxd)\j 10g2 77) < Mﬁ_2-

. Pmin Pmin 3 3 113
For \; < ST i pdlon”y’ W have ¢* > £5 with a high probability. Therefore,

1 .
F(u) = \vn)*{ = M + 2003 — Mg},
p?n'n

which is strictly positive for Mp = pi Therefore, for A; <

min

~ 5
[0s — 052 < pf\/@‘j'

G.4. Proof for Lemma 8
Proof To improve readability, we use Rg = [Rfj ]s where S := {k € S; | [ng]k # 0}.

Then, each entry of R;gj in Equation (19) has the form R;; = %Z?Zl Rglk) for any k € S,
and it can be expressed as

1< . . . T .
Ry, = EZ[Vzﬁj(9sj;X1' ) = 72405, X E)]J (B, — 05,)
=1

_ :LG; [exp (<e§,Xg)>) ~exp (<0‘S,X§>>)} [Xg)(Xg>)TE (55 B eg)

for fg, which is a point on the line between fg and 0% (ie., ég) =005+ (1—v)- 0% for
some v € [0,1]). The second equality holds because 0%. = fsc = (0,0, ...,0) € RI5°.
Applying the mean value theorem again, we have,

Rjj, = Tlli {eXp (<9:S, Xéi)>> ngi)}{v(gs — 05T x (X)) (05 — 9?)}
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for g, which is a point on the line between g, and 05, (ie., 0s, =v-0g, + (1 —v)- 05, for
velo,1]).

Note that g, is a linear (convex) combination of 65 and fs. Hence, from Assumption 3
and Proposition 12, we obtain,

— Zexp <<93 ,XS)>) < C;logn, and Irz;%xX;i) < Cylogn.

Therefore, we have |Rji| < pmaxC2 log? n|fs — 0%|3 for all j, k € V.

In Section G.3, we showed that ||0g — 05|12 <5 5 \fA for A; < 1002;)1)% There-

2
< p
fore, if \; 5. C'Ipmdxdlog 774(2 )y We obtain,

a Pmax 2
P oo > ———N\; | <P oo > 25C2NF (] =0.
(1751 > 1) < P (I > 25020225 10g?y ) =0

min

Therefore, we have,

o
I1Bsllo <

@)

G.5. Proof for Lemma 10

Proof Conditioning on the sets (2, (3, and (4, we provide the following results for different
two cases: E(X?)
(i) For any j € {1,2,...,p—1}, and Xs = Xj.(;_1), we have ij(s))) = 1. Therefore,

for k = m;, we have the following probability bound:

P (186.0) - S0 < M5 62,061 )
_ EXY)  EXD Mmin
- <E(f(E(Xk|X5))) E(f(E(Xk!Xs)))‘ 4""‘““)
> P GrEtn =3~ ETE ) < e o
E(/(E(Xe | Xs))  EUEX: | Xs) T2~ 2
>

E(f(E(X | X5)))Mmuin
P<61< 2 (Moin + 3) )

E(X32)Muin
> Ple < k
= (61 2(Momin + 3)(Monin + 1)>

(ii) For j € {1,2,...,p — 1}, k € {mj41, ..., mp} having parent 7;, and Xg = Xy.(;_1), we
have E(X?) > (14 Mmin)E(f(E(X) | Xs))) by Assumption 4. In addition, some elementary
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but complicated computations yield

Mmin

P <\§(j, k) — S5, k)| <

o)
b ( B E(f(E(X | Xs)))2Minin )
P AR(X2) 4+ 2E(F(E(Xy | Xs))) + 2E(f(E(Xy, | Xs))) Manin
j2) (6 < E(f(E(Xk ’ XS)))QMmin(l + Mmin) )
P AE(XY) (1t Mugin) + 2E(X7) + 2MiminE(X7)
E(f(E(Xk | XS)))QMmin(l + Mmin)
v ( < 6(1 + M) E(XD) >

SR{CES )

Y

v

>

Therefore P((; | (2,(3,C1) = 0 if €; is sufficiently small enough. For any node j, any set
S] € {7T17 T1:25 ...,71'1:(]‘_1)}, and k € {7Tj, Tj+1, "'77Tp}7

i { E(X2) Minin MminE(f(E(Xszj))F}
! 2(Mumin + 3)(Mmin + 1) 6 E(X?)

G.6. Proof for Lemma 11

The proof for Lemma 11 is closely related to the proof in Appendix C. Hence, for brevity,
we do not present the details of the proof already shown in Appendix C.

2
(i) P(¢S) < 2p- exp { i | -

Proof Using Hoeffding’s inequality given Assumption 3, for any ¢ > 0 and j € V,

p((E(XZ)—E(XZ)]>q)<2-exp o (28)
J J - 2C2log? n

Hence, using the union bound, we have

2
P ’EXZ—EX?‘> <9 L S
<I]n€a€( ( j) ( ]) €1 > ap-exp 20%10g27]

2
(ii) P(¢S5) <2p.d-exp (—W) + 2p - exp {_#ﬁ)g‘ln} for some constants Dy > 0.

Proof We restate the condition in the set (3 as
I, a i
|- FEX | X)) ~E(F(BL | Xs)))| <.
i=1
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In order to apply Hoeffding’s inequality, we first show the bound for E(Xj | Xs,).
Recall that [#*]gc and [f]se = (0,0,...,0) € RISl by the definition of S, and |S| < d.

2 . .
In Appendix G.3, we showed that HHS 05llz < 5 o \[)\ for \; < wC‘%piZW with
a high probability. Therefore, given Assumpmon 3, for all i € {1,2,...,n},

exp({fs,, X§)) = exp(Bs; — 0%, X$)) - exp((63,, X))

exp(||Bs — 05121 X5 |12)) - exp((6%, X$))
5C,d \j . o
exp{ 5Cad Ayt uoo} exp((93, XPY)

min

exp { 5Ced Xy log(n) } -Cylogn

Pmin

Pmin
< — 3. (1 .
= o { 2C% pmax logn } w08

IN

IN

IN

Therefore,

= 1) 7 Pmin Pmin
f(E(XJ( | Xéj))) < CF - exp { Co o } log®n + Cy - exp {QCachax} log 7.

Hence there exists a positive constant D; > 0 such that for all i € {1,2,...,n},
FEX; | X)) < Dilog?n.

Applying Hoeffding’s inequality,, for any €; > 0 and any j € V,

P ([B(rEC, | X)) - E(f(E(Xj\ij)))\xl)SZ-exp{—l%}- (29)

Hence, there exist some constants D« > 0 such that

P< a CC) <1—-2pd-e ( n > 2 { nei }
max —2pd-exp| ——— | —2p-exp ———— ¢ .
JjeV 3) = P P Kl(n7p)2 P P Dinax 10g477

(ii)) P(¢5) = 0.
Proof

We restate the condition in the set (4 as
[ (FEX | X))~ FEBOG | X)) | < e
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By the mean-value theorem, for some v € [0, 1],
FEX; | Xs,)) — fE(X; | Xs,))
= f'(VE(X; | Xs,) + (1 — v)E(X; | Xs,))(E(X; | Xs,) — E(X; | X5,))
= 2(vE(X; | Xs;) + (1 - 0)E(X; | Xg,) + 1/2)(E(X; | Xs;) —E(X; | Xs,)).

Therefore,
E(f(E(X; | Xs,)) — F(E(X; | Xs,)))
= f/(vE(X; | Xs,) + (1 —v)E(X; | Xs,))(E(X; | Xs,) — E(X; | Xs;))
=2(vE(X; | Xs,) + (1 - v)E(X; | Xs,) +1/2)(E(X; | Xs,) — E(X; | Xs,))
< max [2(vB(X; | X5,) + (1 - v)E(X; | Xs,) +1/2)| - E (B(X; | Xs,) ~ E(X; | X))
=0

In the same manner, E(f(E(X; | Xs,)) — f(IE(Xj | Xs,))) < 0. This completes the
proof.
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