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Abstract

Generalized additive models (GAMs) are regression models wherein parameters of proba-
bility distributions depend on input variables through a sum of smooth functions, whose
degrees of smoothness are selected by Lo regularization. Such models have become the
de-facto standard nonlinear regression models when interpretability and flexibility are re-
quired, but reliable and fast methods for automatic smoothing in large data sets are still
lacking. We develop a general methodology for automatically learning the optimal degree
of Ly regularization for GAMs using an empirical Bayes approach. The smooth functions
are penalized by hyper-parameters that are learned simultaneously by maximization of a
marginal likelihood using an approximate expectation-maximization algorithm. The latter
involves a double Laplace approximation at the E-step, and leads to an efficient M-step.
Empirical analysis shows that the resulting algorithm is numerically stable, faster than the
best existing methods and achieves state-of-the-art accuracy. For illustration, we apply it
to an important and challenging problem in the analysis of extremal data.

Keywords: Automatic Lo Regularization, Empirical Bayes, Expectation-maximization
Algorithm, Generalized Additive Model, Laplace Approximation, Marginal Maximum Like-
lihood

1. Introduction

State-of-the-art machine learning methods achieve impressive accuracy, but their opacity
can make them unattractive when their results contradict intuition or lack a ready ex-
planation. Methods that are interpretable by humans and easy to diagnose and debug
are needed for difficult decision-making problems in healthcare, legal settings, finance, risk
management, and many other areas. One possibility is the use of generalized additive mod-
els, a class of interpretable data-driven models used in smooth regression (Duvenaud et al.,
2011; Ba et al., 2012; Tsang et al., 2018; Mutny and Krause, 2018).

Generalized additive models (GAMs) are a class of supervised learning tools that de-
scribe the relationship between output variables and inputs using a sum of smooth functions
(Hastie et al., 2009, Chapter 9). They were introduced by Hastie and Tibshirani (1986), who
represented the smooth functions by scatterplot smoothers and trained them sequentially
by backfitting (Breiman and Friedman, 1985). The corresponding R (R Core Team, 2019)
package gam implements the methods in Hastie and Tibshirani (1990), which select the level
of smoothness by stepwise regression using approximate distributional results. Backfitting

(©2019 Yousra El-Bachir and Anthony C. Davison.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/18-659.html.


https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/18-659.html

EL-BACHIR AND DAVISON

allows smooth terms to be represented by local regression smoothers (Cleveland et al., 1993),
but inference based on the resulting fit is awkward. Yee and Wild (1996) later proposed
modified vector backfitting, whereby several smooth functions are learned simultaneously.
Their method, embodied in the R package VGAM, first learns the linear components and then
learns the nonlinear part by training a vector additive model on the resulting partial resid-
uals. In the R package gamlss, Rigby and Stasinopoulos (2005) learn the smooth functions
sequentially by combining backfitting with two algorithms, which optimize the penalized
likelihood of the regression weights. The first algorithm generalizes that of Cole and Green
(1992), whereas the second generalizes that of Rigby and Stasinopoulos (1996) and is prefer-
able when the parameters of the distribution are orthogonal with respect to the information
matrix. All these approaches invoke backfitting, which dissociates learning of the regression
model from that of the smoothing hyper-parameters. This may be statistically inefficient,
and accuracy may be increased by learning the appropriate degree of smoothing as part of
the regression training. An alternative representation of the smooth functions that enables
automatic smoothing is via basis function expansion using reduced rank smoothing; this is
the foundation upon which we build our methodology.

1.1. Model Set-up

We suppose that independent observations come from a probability distribution whose
parameters depend on generalized additive models. Let Y; denote a random variable with
realized value y; and probability distribution function F;(y;; ;) that depends on a parameter
vector 6; = (051), . ,H(P)) € R”; so for the training set y = (y1,...,%n)’, the full parameter

(2
vector is @ = (61,...,08,)T € R™ with sub-vectors 8% = (Ggp), . ’97(117))7’ € R" for p =
1,...,P. In the Gaussian model for example, P = 2, (1) = p is the mean and 0? =g is
the standard deviation, and we have 8 = (1,01, ..., fin, 0n)" .

For a probability distribution with P parameters, each 0®) has an additive structure,
which we now describe. Let X Ep )" denote the i-th row of a feature matrix corresponding
to a regression weight vector w®” that includes an offset. The superscript * refers to an
intermediate notation for the regression elements that will become clear when we define the
full feature matrices corresponding to the untransformed input variables and the smooth
functions. Let g, > 0 denote the number of unknown smooth functions f;p ) contributing
to 0(p), and let 1, xo, ... denote the vectors of input variables. In spatio-temporal settings
for example, 1 may denote the spatial location of a site and @2 may denote the time. The
components 92@ ) of 0@ are represented using the additive structure

4dp
Hl(p) :Xip) w(p)*—i—ZfJ(p)(mzl,ng,), 1=1,...,n. (1)
j=1

Each of the f](p ) can be a function of one or more inputs, and is parametrized by an expansion

of basis functions b,(cp ) (x),

K
1) =3 aPb? (@) = P 60 (2), (2)
k=1
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where @) = (fu?gp), fu?g))

€ R¥ is the column vector of unknown regression weights
that expand f](p), and b?) (z) = {b p)( ), - .,bgg)(a:)}T € RE is a K-dimensional vector
of basis functions selected from a dictionary of readily-available functions, such as cubic
regression splines. The basis dimension K is chosen manually, and typically is allowed to
grow slowly with the size n of the training set. We assume that the smooth functions are

subject to a sum-to-zero identifiability constraint

Z 7 (@iy) 3)

which leads to good coverage for confidence intervals (Nychka, 1988). In this setting, the
components of 8 in (1) become Ggp) = Xgp)w(p), where w®) € R% denotes the regression
weights including their parametric part indicated with superscript * and smooth part indi-
cated by a tilde in (2), and X (P) € R™dr denotes the corresponding feature matrix. We
assume that some of the columns of X ) have been centered to absorb the identifiability
constraint (3) on the smooth functions before training.

A GAM is characterized by the additivity of its functions of inputs and by their smooth-
ness. The latter is controlled by penalizing the curvature of the functions, using roughness
penalties on the fj(p ) of the form

2
PEN(AP) = AP / { f}m"(t)} dt € R, (4)

(p)

where the regularization hyper-parameter A;” > 0 controls the degree of smoothness, and
the integral is taken over the input range values. If the basis functions are twice differen-
tiable, the element-wise integration

T
Sg.p) :/b(p)”(x)b(p)” (z)dz

defines a known symmetric and semi-positive definite smoothing matrix Sg-p ) ¢ REXK The
penalty in (4) thus becomes quadratic,

PEN(AP)) = AP @) §P)y(®),

On defining analogous quantities for any of the parameter vectors oW, ...,0") and
stacking the regression weights and the smoothing hyper-parameters to form w € R? and
A € R? with d = 25:1 d, and ¢ = 25:1 ¢p, the full functional parameter vector and
curvature penalties are parametrized by

0., = Xw e R’ PEN(A ZZPEN AP = w'Srw e R, (5)
p=1 j=1

where the i-th row block of the full feature matrix X € R*F*d ig

X, = diag (x§1>, . ,XE”) e R4,

3
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and the full smoothing matrix

. 1) o1
S, = diag (A§ sV Ag§>sgg>) e R4 (6)
is block diagonal.

Learning the regression weights involves balancing the conflicting goals of providing a
good fit to the data and avoiding overfitting. For a given A, this is achieved by maximizing
the penalized log-likelihood for w,

1
lp(w;y, A) = {1, (0w y) — 5 w!' S w, (7)

where the log-likelihood /1, may be written equivalently in terms of @ or of w. Let
Up(w;y) € R and Hy,(w;y) € R4 or UL (0;y) € RP™ and Hy,(0;y) € RP™F" denote
the gradient and negative Hessian of ¢, with respect to w or to 8. The corresponding
penalized quantities are

Up(w;y,A) =Up(w;y) — Shw, Hp(w;y,\) = Hy,(w;y) + Sx, (8)
= X"UL(6;y) — Sxw, = XTH(0;y)X + Sa.

The negative Hessian is used to compute standard errors and confidence intervals. For
simplicity we sometimes suppress the dependence upon y and A from the notation. Maxi-
mization of the penalized log-likelihood (7) provides an estimate for w for a given value of
the smoothing hyper-parameters A. In Section 1.2 we briefly summarize the main classical
optimization methods for embodying learning of A in that of the regression weights.

1.2. Classical Optimization

The two learning strategies for generalized additive models are performance iteration (Gu,
1992) and outer iteration (O’Sullivan et al., 1986), and optimize a criterion for the smooth-
ing hyper-parameters whilst updating the regression weights. The updating step in per-
formance iteration consists of one iteration for the regression weights, often performed by
iterative least squares (Nelder and Wedderburn, 1972), followed by one full optimization
for the smoothing hyper-parameters. Since the smoothness selection is applied to an in-
termediate estimate of the regression model, its score changes from iteration to iteration
and convergence of the overall optimization is not guaranteed, as shown by Wood (2008,
2011). The updating step in outer iteration comprises one update for the smoothing hyper-
parameters followed by one full optimization for the regression weights. Since the former
are obtained from a converged and so a fixed regression model, the convergence of outer
iteration is guaranteed, but each updating step is computationally more expensive, and the
dependence between the regression weights and the smoothing hyper-parameters makes the
calculations much more challenging.

Once the strategy for automatic smoothing is chosen, the classical approach for learning
its regularization hyper-parameters is to minimize measures of prediction error such as the
Akaike or Bayesian information criteria (AIC or BIC), or the generalized cross validation
(GCV) criterion. The first criteria tend to overfit, and GCV can generate multiple min-
ima and unstable estimates that may lead to substantial underfitting (Reiss and Ogden,
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2009; Wood, 2011). Use of marginal likelihood overcomes these limitations but involves
intractable integrals. Despite the widespread use of GAMs, automatic learning of their
smoothing hyper-parameters remains an open problem. The reliable method (Wood, 2011)
and its generalization (Wood et al., 2016), implemented in the R package mgcv, combine
the advantages of the marginal likelihood approach with the good convergence of outer
iteration. However, these approaches are challenging to set up, difficult to extend to new
families of distributions, and computationally expensive for large samples. Methods specif-
ically designed for large (Wood et al., 2015) and big (Wood et al., 2017) data sets are based
on performance iteration, and so offer no guarantee of convergence to a local optimum. In
this paper we overcome these limitations by presenting an approach that is simpler, faster
and achieves state-of-the-art accuracy.

The rest of the paper is organized as follows. Section 2 introduces our proposed au-
tomatic smoothness selection procedure, which is based on an approximate expectation-
maximization algorithm. Section 3 assesses its performance with a simulation study. Sec-
tion 4 provides a real data analysis on extreme temperatures, and Section 5 closes the paper
with a discussion.

2. Automatic Smoothing

The Bayesian perspective provides an interpretation for the roughness penalty that underlies
the weighted Lo regularization in the penalized log-likelihood (7), as we now describe. Let
S, denote the generalized inverse of S, and suppose that the regression weights have
an improper N (0, Sy ) multivariate Gaussian prior density (Kimeldorf and Wahba, 1970;
Silverman, 1985),

m(w; A) = (2m) "2 18,5V exp (—;wTSAw>, (9)

where m is the number of zero eigenvalues of S, and | S|+ is the product of its positive
eigenvalues. With f here denoting the density of the data, the log-posterior density for w
is

Uwly;A) = log {f(y|w;X) m(w;X)} —log f(y; A)

Tog (27) —log f(y; ). (10)

2

1
— fp(wiy.A) + 5log|Sal, -

The roughness penalty in (5) now appears as the key component of the logarithm of the
prior (9), and the penalized log-likelihood (7) appears as the log-posterior (10) (up to a
constant depending upon A but not upon w). The smoothing hyper-parameters can hence
be learned from the last term on the right of (10), the marginal density of y,

Ln(hy) = F(y:\) = / F(y,w; A) duw = / £y | w; A) 7(w; A) daw.

This integral is equivalent to Ly (A;Y) = Ergwa){f(y | w; A)}, which is the expectation of
the likelihood function under the prior density of the regression weight vector.

A fully Bayesian approach would involve choosing a prior density for A and integrating
out over it, but instead we take an empirical Bayes approach and transform the smoothness
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selection problem to an optimization problem, where the optimal A maximize the log-
marginal likelihood

1
fixiy) = logLu(xiy) = jlog[Sal, +log [explp(wip Ndw, (1)

where = indicates equality up to a constant not depending upon A. The multidimen-
sional integral over w is generally intractable, and its accurate and efficient computation is
challenging. The two classical strategies for this are stochastic integration methods based
on importance sampling, and deterministic methods based on quadrature or the Laplace
method. Importance sampling is a Monte Carlo integration technique under which the inte-
gral is treated as an expectation, but its performance relies on the choice of the distribution
from which to sample, and its accuracy increases only with the number of samples. Quadra-
ture involves a discretization of the integrand over the domain of integration, and amounts
to calculating a weighted sum of the values of the integrand. Both methods perform well
when the dimension d of the regression weight vector w is small, but become computa-
tionally infeasible when d becomes large (Vonesh et al., 2002). The most commonly used
deterministic integration method is Laplace approximation, which yields an analytical ex-
pression for (11) by exploiting a quadratic Taylor expansion of the log-integrand around
the maximum penalized likelihood estimate,

1 R 1 . _
(Ny) = 3 log |[Sal, + fp(Wa;y, A) — glogdet Hp(x;y,A) +0(n "), (12)

where w) denotes the maximizer of fp for a given A. However, optimization of the re-
sulting approximate log-marginal likelihood (12) is awkward. Each updating step includes
intermediate maximizations, involves unstable terms that need careful and computationally
expensive decompositions, and requires the fourth derivatives of the log-likelihood to obtain
the Hessian matrix of the log-marginal likelihood in the Newton—Raphson method (Wood,
2011; Wood et al., 2016). These difficulties make Laplace approximation computationally
demanding for smoothness selection, and limit its extension to complex models. In Section
2.1 we present a simpler alternative that is easier to implement, faster and very accurate.

Although we illustrate our ideas on generalized additive models, our automatic smooth-
ing method extends to the general setting of Lo regularization if we replace the smoothing
matrices with identity matrices. Hyper-parameter optimization based on marginal likeli-
hood in other contexts is a long-standing problem addressed by MacKay (1992, 1999), Neal
(1996), Tipping (1999, 2001), Faul and Tipping (2001), Qi et al. (2004), McHutchon and
Rasmussen (2011) and many others.

2.1. Approximate Expectation-maximization

We directly maximize the log-marginal likelihood (11) with respect to the smoothing hyper-
parameters using the expectation-maximization (EM) algorithm (Dempster et al., 1977;
McLachlan and Krishnan, 2008), which circumvents evaluation of the objective function.
The EM algorithm is an iterative method for computing maximum likelihood estimators for
difficult functions, by alternating between an expectation step, the E-step, and its maximiza-
tion, the M-step, at every iteration until convergence. Ignoring the constant term, taking
conditional expectations of expression (10) with respect to the posterior m(w | Y = y; Ax)
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at the best estimate Ay at iteration k yields
On(Asy) = QA Ak) — K(X; Ap),

where = indicates equality up a constant, and

1
Q(A, Ak) = E7r(w|Y;)\k) {EP(w; Y, A) + ilog ’S)\|+} ) (13)
K(}\, Ak) = Eﬂ(w|Y;)\k) {E(’w | Y: A)} = Eﬂ(w|Y;)\k) {IOgﬂ'(w ‘ Y; A)} :

The E-step corresponds to the analytic calculation of the function ), which is maximized
with respect to A at the M-step to provide A1, as input for the next EM iteration. Jensen’s
inequality implies that K (X; Ax) < K(Ag; Ag) for all A, and since Q(Ak11; Ak) = Q(Ak; Ak),
we have Oni(Agps1;Y) = u(Ak;y). The EM algorithm thus transfers optimization of the
log-marginal likelihood #j; to that of (), and ensures that f); increases after every M-step.
Under mild conditions, the algorithm is guaranteed to reach at least a local maximum
(Dempster et al., 1977). We first construct the function @) used at the E-step.

2.2. E-step

Applying Bayes’ rule to the posterior for w, the non-trivial element of the function @ in
(13) is

ETr(w|Y;)\k.) {gP(w; Ya A)} = /EP(w; Yy, )‘) ﬂ—(w | Y = Y; Ak) dw

/fp('w;y,k) exp lp(w;y, A) dw

(14)
/GXPEP(W; Y, Ag) dw

Both integrals are intractable. Since fp may not be positive, the numerator cannot be
expressed as the integral of an exponential function, so direct Laplace approximation is
impracticable. Tierney et al. (1989) overcome this by approximating similar ratios using
the moment generating function, since (14) is the expectation of a scalar function, ¢p, of the
regression weights, which are here treated as random variables with joint probability density
proportional to exp ¢p(w;y, A), the posterior density conditional on y as seen from (10).
For any w, let

L(w;y, A, Ag) = tlp(w;y, A) + lp(w;y, Ag), tER
The conditional moment generating function of fp(w; Y, A) is thus

Jexp {tlp(w;y,A)} f(y, w; X) dw
[ Fy,w; A) dw

[ exp titwiy A dw

M(t) = Er(w|y:ag) [exp {tﬁp(w;Y,A)}} —

/ exXp KO(w7 Y, A, )‘k> dw
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Expression (15) is a ratio of two intractable integrals, each of which can be approximated
using the Laplace method. Let

Wy = arg max £ (w; y, A\, Ag), Wi = argmax/lp(w;y, Ax) = argmax lo(w; y, X, A)
w w w

denote the maximizers of /;(w;y, A, A\;) and ¢p(w;y, Ax), and write the negative Hessian
matrix as Hy(w; X\, A;) = tHp(w;\) + Hp(w; Ax), where Hp is given in (8). Second-
order Taylor expansion of /;(w;y, A, A\;) around b, yields the following approximation for
the numerator of (15),

1
/expﬁt(w;y,/\,)\k)dw exp U (We; Y, Ay Ag) /exp {—Q(w — wt)THt(wt;/\,/\;g)(w — wt)} dw {1+ O(n—l)}

= 2m)Y2det Hy (i A, Ap) ™% exp (e 5, A, M) {1 + O(n~ )},

where the determinant is well-defined because H(; X\, Ag) is positive definite at con-
vergence. On similarly applying Laplace approximation to the denominator of (15), the
conditional moment generating function becomes

det H (w¢; A, A’“)_l/Qfl +0(n~%)}, (16

M(t) = ©exp 14 (ﬁ) ;yvAvAk) - éP(ﬁ’k;y’/\k)
{ e } deth(wk;Ak)_l/Q !

where the relative approximation error is O(n~2) rather than O(n~!) because the error
terms in the numerator and denominator almost cancel (Tierney et al., 1989, Theorem 1).
The conditional expectation (14) is obtained by differentiating (16) with respect to ¢ and
evaluating the result at ¢t = 0.

Whereas Tierney et al. (1989) and Steele (1996) suggest numerical computation of
such derivatives, we shall calculate them analytically. We need df;(d; A, Ag)/dt and
ddet H(y; A, Ax)/dt, both evaluated at ¢ = 0. To simplify the notation we use dg - /dt to
denote d - /dt |¢=o, and similarly for dy - /Ot.

Calculation of doly(we; X, Ag)/dt.
Since w; depends upon ¢,
Als (e y, X, M) 0w, Olp(wi;y, N) N Ow; Olp(Wi; Y, Ak)
dt ot ow ot dw ’

where - denotes the scalar product. Since w; = Wy, at t = 0, and Wy, maximizes p(w;y, Ag),
we obtain

= ep(’lbt; Y, )‘) +1

dole(e; Y, A, Ak)
dt
Calculation of do det H(wy; A, A)/dt.
This requires dy;/dt, which we obtain by implicit differentiation of £;(w;y, A, Ag). At
w = by, we have 90y (w; Y, A\, Ap)/OW |, = 0q € R?, so differentiating with respect to ¢
and setting t = 0 yields

= EP(wkSyv)‘)' (17)

Oowy

Up(wi; N) — Hp(Wg; Ag) - TS

04. (18)
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As Up(lf)k;)\) == Up(’lbk; )\k) + S)\kwk - S)ﬂf)k = (S)\k — SA) lf)k, we get from (18) that
Oowy
ot

Let 6; = Xw; € R"P and 0), = Xy Using the chain rule and (19), the derivative of the
negative Hessian H,; of the unpenalized log-likelihood corresponding to a data-point y; is

= Hp' (Wi Ag) (Sx, — Sa) Wy (19)

dOI_IL i et )05 yz

()8H é .
LZ((k)wyl), i=1,....n (20)

80wt
- Sp o

Applying Jacobi’s formula to ddet H(w; A, A;)/dt and evaluating the result at ¢ = 0
yields

do det H (¢ A, Ag)
dt

= detHP(’lﬁk;}\k) x Tr [HEl(wk,Ak) {Hp(’lf)k;}\) + dO;;[L(’lth)}] s (21)

where the last derivative term can be computed using (20).
On inserting (21) and (17) into the derivative of (16) with respect to ¢t and evaluating
the result at t = 0, we find after a little algebra that

QA Ag) = ;10g|5>\|++{ 5 Ir [HP (W5 k) {HP(wk;A) + W}] +€P(ﬁ’k;y7)\)} {1 + O(n_Q)}-

The order O(n~2) of the relative error in @ over the usual O(n~!) error for Laplace approx-
imation may suggest that the approximate E-step provides a potentially better approxima-
tion to the function to be maximized for the smoothing hyper-parameters. We discuss this
further in Appendix A.

The proposed approach is clearly an outer iteration optimization, since () is defined in
terms of the maximizer wj; rather than its intermediate estimate, as in the performance
iteration optimization; see Section 1.2. As we shall see, this approximate E-step greatly
simplifies the M-step; the crux is that @, depends on A; alone, and not on A.

2.3. M-step

The M-step entails the calculation of the gradient and Hessian matrix of ) with respect to
the smoothing hyper-parameters A. We first show that the derivative of dpw;/0t in (19)
with respect to A equals 0wy /0. As Wy is the solution to the equation Up (g; Ax) = 04,
taking the derivative with respect to the j-th component Ay ; of A; yields

Oy, 00y,
= —Hp' (W M\p)Sjiy, =
6Ak7] P (wka k) jWEk 8)\38157

since 98y, ,/OAk; = Sj = 0Sx/0A;. Combining (22) with (20) yields

(22)

0doH1,:(0:4; 1) ) 0w OHy (01 i)  OHy (01 i)

— x® =
ON;dt pZ: kg g Oy
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and

ddoH, _  OH5
axdt YT aAk,j(“”“)' (23)

Let u"),(j ) denote the block of Wy, corresponding to S; and the smooth function f;. Using (23),
the components of the gradient of the function @) at the E-step are

0Q(M; A 1 _
Gi(N ) = WZQ{%(SASJ‘)—%J} (24)

where

o OH
ey = S0 + T | Hp (s M) {sj + ka,(wk)} €R.
7-]

By construction in (6), S is a block-diagonal matrix whose blocks are of the general form
S = \;S;, which implies that Tr(S, S;) = rank(S;)/A;, and yields the closed form

Aot = %, J=1...,q (25)
de‘
where ¢ ; > 0 by positivity of the smoothing hyper-parameters. The Hessian matrix of
@ is therefore diagonal with negative elements —rank(S;)/ (2)\?) < 0, so (25) are always
maximizers. The components of A are positive, so it might be thought necessary to set p =
log A component-wise before the approximate EM optimization, and then back-transform
afterwards. This would have led to finding the roots of

~ 9Q(exp p; exp py,)
Gi(p;py) = o, u
J

= Gj(A; Ag) exp pj,

which are also the roots of G; in (24), with Hessian components —(cy j exp p;)/2 < 0, so the
positivity constraint need not be explicitly included. The diagonality of the Hessian matrix
of @ allows embarrassingly parallel computation of the M-step, which provides substantial
speedup when ¢, the number of smooth functions, is large.

Overall, the k-th iteration of the approximate EM algorithm consists in

1. using the current best estimate A; to maximize the penalized log-likelihood (7) to get
W;

2. computing Ag1, possibly in parallel, using (25);
3. updating k + 1 to k.

Learning of the regression weights is incorporated into Step 1, which is based on the Newton—
Raphson algorithm. Given the trial value w;, each iteration involves

a) making Hp(w;; A;) positive definite;

10
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b) evaluating the updating step

wip = w +ad, Ay = Hp' (wi; \)Up(wi; Ag),

where « is the learning rate. At step a), the positive definiteness of Hp(w;; A ) is guaranteed
by increasing eigenvalues smaller than a certain positive tolerance to that tolerance. The
stability of the algorithm is ensured by successively halving « at Step b) until the penalized
log-likelihood increases.

At convergence of the Newton—Raphson algorithm, @) = w;;1, and the identifiability
of the regression weights must be checked to ensure that Hp(wy; Ax) is invertible, since
this matrix is required for calculating the smoothing hyper-parameters. By definition, the
regression model is identifiable if and only if its weights are linearly independent, so we
deal with lack of identifiability by keeping only the r := rank {H p(Wp; )\k)} < d linearly
independent regression weights. An efficient and stable method to find these is QR de-
composition with column pivoting (Golub and Van Loan, 2013, Section 5.4.2). The QR
factorization finds a permutation matrix P € R%*? such that Hp(wy; A\x)P = QR, where
the first r columns of @ form an orthonormal basis for Hp. As the permutation matrix
tracks the moves of the columns of Hp, the r identifiable weights are the first  components
of the re-ordered vector PTapy,. Thus the remaining d — r weights are linearly dependent
and should be excluded from the model, together with the corresponding columns of X and
rows and columns of Sy, .

Steps 1-3 are iterated until the gradient of the approximate log-marginal likelihood is
sufficiently small. Oakes (1999) showed that this gradient can be written in terms of that
of @, as Ilnm(A;y)/OX = G(A; Ag)|a=x. Since G(Agt1;Ax) = 0, the convergence criterion
is equivalent to checking that for each j,

Gj(Akt1) = 5leng = crt14) <

where € is a small tolerance. Furthermore, the diagonality of the Hessian of @) allows one to
check convergence independently for each smoothing hyper-parameter, so that only uncon-
verged ones need be updated. In practice, the smoothing hyper-parameters may be large
enough that significant changes in some components of A yield insignificant changes in the
penalized log-likelihood, which suggests deeming convergence when there is no significant
change in ¢p. The full optimization is summarized in the three-step iteration, whose lead-
ing computational costs in the worst-case scenario are O(nd?) for the computation of the
Hessian of the log-likelihood, O(d?) for its inversion, and O(nd?) for its derivative.

The approximate EM algorithm provides an elegant and straightforward approach to
maximization of the log-marginal likelihood. We obtained an accurate E-step based on the
approximation of Tierney et al. (1989) with relative error O(n~2), and derived a closed
form for the M-step that circumvents evaluation of the expensive and numerically unstable
function ). This indirect approach leads to an important simplification of the learning pro-
cedure compared to the direct Laplace approach. Since the M-step is upward, no learning
rate tuning is required as in the Newton—Raphson algorithm: there is no need for intermedi-
ate evaluation of the log-marginal likelihood or its Hessian matrix. The former circumvents
inner maximizations of the penalized log-likelihood and evaluation of the log-generalized
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Figure 1: Original f; for j =1,...,3. Figure 2: Original f; for j =4,...,7.

determinant in (12), which is unstable when the components of A differ in magnitude. Fur-
thermore, avoiding evaluation of the Hessian matrix of ¢/y; bypasses computation of the
fourth derivatives of the log-likelihood /¢r,, which may be difficult to calculate, computation-
ally expensive and numerically unstable (Wood, 2011; Wood et al., 2016). Moreover, the
diagonality of the Hessian matrix of ) allows parallelization of the M-step and update of
the unconverged smoothing hyper-parameters only, giving an additional shortcut.

We assess the performance of the proposed methodology in Section 3.

3. Simulation Study

We generated R = 100 replicates of training sets of n = 25000 examples from a variety of
probability distributions with parameters that depend on smooth functions of inputs. Let
x1,...,x7 be independent vectors of n identically distributed standard uniform variables.
Figures 1 and 2 illustrate the seven smooth functions we considered,

filz) = 10%3(1—2)° {(1 — )t 4 20:,;8} . fo(z) = 2sin(nz), fa(z) = exp(2z),
fa(x) = 012%  fs(z) =sin(272)/2, fo(z) = —0.2—23/2, fr(x) = —2?/2 + sin(nx).

With the functional parameters

M-

fi(xij), &(xir) = fr(xir), i=1,...,n,

3
(i, wio, wiz) = Y fi@ig), 0@, i, ig) =
j=1 7j=4

we generated n training examples from the following models:

e Gaussian distribution with mean (1, €2, 3) and standard deviation exp{o (x4, x5, xs)/2},

12
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Poisson distribution with rate exp{u(x1,x2,x3)/6},

Exponential distribution with rate exp{u(x1, 2, x3)/6},

Gamma distribution with shape exp{u(x1, 2, x3)/6} and scale exp{—o (x4, T5,xs)},

Binomial distribution with probability of success 1/[1 + exp{—u(x1, x2, x3) + 5}/6],

Generalized extreme value (GEV) distribution with location p(x1, T2, 3), scale exp o (x4, 5, T¢)
and shape £(x7); see Section 4.1 for further details.

We fit the six models using cubic regression splines with evenly spaced knots in the input
range values. We used ten basis functions for each of the smooth functions f;. We computed
the integrated mean squared error between the true and learned functional parameters,
represented by hats, for each of the r replicates

MSE(@!) = lzn: <9Z(p>m _ él(p)[r})Q’

i

where é(p) is f1, & or f . Table 1 summarizes the results for the proposed approach, multgam,
and three state-of-the-art methods implemented in the R packages mgcv gam (Wood, 2011;
Wood et al., 2016) using the Newton—-Raphson method, mgcv bam (Wood et al., 2015),
and INLA (Rue et al., 2009). The routines used from mgcv are based on Version 1.8-22,
and those used from INLA are based on Version 18.07.12 run with eight threads, using log-
gamma, priors and the random walk parametrization of order two. We also tried both Stan
algorithms (Carpenter et al., 2017), a fully Bayesian approach with Markov chain Monte
Carlo sampling and an approximate variational Bayes approach, through the R package
brms (Burkner, 2017) Version 2.4.0, but a single replicate for a single functional parameter
model run with four cores took five and three hours respectively, so the full simulation
study would have taken more than four months, which is infeasible. Another widely-used
R package, VGAM, does not offer automatic smoothing, and choosing A manually for each
f; for each model would have been tedious and error-prone. Use of the R package gamlss
Version 5.1-0 turned out to be infeasible. Some results for the Gauss, Gamma and GEV
models are missing from Table 1 because the corresponding packages do not support them.
Moreover, multgam failed on 17 replicates for the GEV model, whereas mgcv gam failed on
46 replicates, so the values shown are based on 83 and 54 training sets respectively.

Table 1 shows that multgam is the only package which supports all the classical models,
and its small errors and low variances demonstrate the high accuracy and reliability of its
estimates. The proposed method is competitive with both methods in mgcv, whereas INLA
is less accurate. The new method is considerably better for the GEV model; it could fit 83
of the replicates, compared to 54 for mgcv gam, and the estimates themselves were more
accurate and less variable. The only model where all the methods give equally poor results
is the binomial.

Table 2 gives a timing comparison for training sets of different sizes generated from the
models described above. The computations were performed on a 2.80 GHz Intel i7-7700HQ
laptop using Ubuntu. The proposed method is always fastest, more so for large training
sets, and substantially outperforms mgcv gam and INLA. Moreover, it can fit the GEV
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Model Package [ & I3
Gauss multgam 2.479.93 0.040.01 —
mgcv gam 2.479.93 0.040.01 —
Poisson multgam 1.634.56 - -
mgcv gam 1.614.67 - -
mgcv bam 1.627.33 - -
INLA 9.917.48 — -
Exponential ~ multgam 3.67114.02 - -
mgcv gam 3.75115.26 — -

mgcv bam 3.69123.74 - -

INLA 11.95g87.06 — —
Gamma, multgam 1.789.27 0.020.01 —
Binomial multgam 38.51¢.99 — —

mgcv gam 38.51¢.99 — —
mgcv bam 38.51¢.99 — —

INLA 38.51¢.99 — —
GEV multgam 3.983.61 0.150.11 0.411 0¢
mgcv gam 3-638.56 0-2777.63 0.67336.54

Table 1: Means (x1072) over 100 replicates of the integrated mean squared errors of the
learned functional parameters for a variety of models and R packages. The vari-
ances (x107%) appear as subscripts.

model at sizes unmatched by existing software. The package INLA fails with a half-million
observations for all the models. Surprisingly, the proposed method is faster than mgcv bam,
which is specifically designed for large data sets and exploits parallel computing, whereas
multgam performs the M-step serially for fair comparison. Furthermore, the speed of mgcv
bam should be balanced by lack of reliability of the performance iteration algorithm; see
Section 1.2. Table 2 shows that speed and reliability need not be exclusive. One reason why
mgcv gam is slow is that it evaluates the fourth derivatives of the log-likelihood. Except
for the GEV model, these are not difficult to compute, but they can entail significant
computational overhead, shown by the difference in performance between multgam and
mgcv gam.

Overall, the new approach gives a large gain in speed with no loss in accuracy, and in
some cases, it is the sole approach feasible. In Section 4 we apply it to real data.

4. Data Analysis

We analyze monthly maxima of temperature, which are non-stationary. Using stationary
models to fit them could result in underestimation of risk, with serious potential conse-
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Model Package 2.54 15 5° Ry 54 Rys Rgs
Gauss multgam 3.38 17.40 33.92 1 1 1
mgcv gam 51.22 220.96 1269.16 15.15 12.70 37.42
brms MCMC x 359140000 38724209 X X X
brms VB x 384702090 39403109 x x x
Poisson multgam 0.33 4.05 16.39 1 1 1
mgcv gam 4.25 60.27 2157.61 12.88 14.88 131.64
mgcv bam 1.37 9.83 30.30 4.15 2.43 1.85
INLA 459.71 12077.35 X 1393.06 2982.06 X
Exponential multgam 0.71 5.03 19.89 1 1 1
mgcv gam 4.67 56.55 340.15 6.58 11.24 17.10
mgcv bam 1.49 6.83 33.13 2.10 1.36 1.67
INLA 466.77 X X 657.42 X X
Gamma multgam 2.67 30.75 97.04 1 1 1
Binomial multgam 0.38 7.90 19.27 1 1 1
mgev gam 3.33 58.51 463.46 8.76 7.41 24.05
mgcv bam 1.23 8.81 22.60 3.24 1.12 1.17
INLA 299.91 11543.32 X 789.24 1461.18 X
GEV multgam 8.24 440.22 X 1 1 X
mgcv gam 167.13 X X 20.28 X X

Table 2: Times (s) for a variety of models and three training set sizes n = 2.5 x 10%, 5 x 10,
5 x 10°. The times correspond to averages over 100 replicates when n = 2.5 x 10%.
The notation ¥ means z x 10¥. The notation t(*) means the computation failed to
converge after ¢ seconds, and x indicates failure to converge or that computations
turned out to be infeasible. The ratios R,y are with respect to multgam, which
does not benefit from the parallelization of the M-step.

quences. The generalized extreme-value distribution, widely used for modeling maxima
and minima, will serve as our underlying probability model.

4.1. Model

Let y1,...,yn be the maxima of blocks of observations from an unknown probability dis-
tribution. Extreme value theory (Fisher and Tippett, 1928; de Haan and Ferreira, 2006)
implies that as the block size increases and under mild conditions, each of the y; follows a
GEV (ui, 04, &;) distribution with parameters the location p; € R, the scale o; > 0 and the
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shape &; € R,

—1/&
exp [—¢14+& (yZ U"UJZ> , & #0,
(2

J’_

€Xp | —€xXp § — (yl _ Ml) ’ 57, = 07
g

F(yi; pi,04,&) =

where a4 = max(a,0). This encompasses the three classical models for maxima (Jenkinson,
1955): if & > 0, the distribution is Fréchet; if & < 0, it is reverse Weibull; and if §; = 0, it is
Gumbel. The shape parameter is particularly important since it controls the tail properties
of the distributions. The expectation of Y; is

MiJr%{F(l—&)—l}, & #0, & <1,

Wi + 03, & =0,
00, §i=>1,

E(Y;) = (26)

where «y is Euler’s constant. Non-stationarity of (26) could stem from changes in any of
the parameters, and as interpretability is priority in risk assessment, a GEV model with
functional parameters having flexible additive structure is well justified.

Most data analyses involving non-stationary extremes use a parametric or semi-parametric
form in the location and/or scale parameters while keeping the shape a fixed scalar (Chavez-
Demoulin and Davison, 2012, Section 4), even though it may be plausible that this varies.
Seasonal effects, for example, may stem from different physical processes with different ex-
tremal behaviors. Fixing the shape parameter in such cases is a pragmatic choice driven
by the difficulty of learning it from limited data in a numerically stable manner. Chavez-
Demoulin and Davison (2005) learn a functional shape parameter for the generalized Pareto
distribution, but their approach has some drawbacks. First, training is based on backfit-
ting, which does not allow automatic smoothness selection, and so involves manual tuning
of the smoothing hyper-parameters. Second, the optimization is in the spirit of performance
iteration, with one updating step for the regression model followed by one full optimization
for smoothing; limitations of this were discussed in Section 1.2. Third, optimization is se-
quential rather than simultaneous, by alternating a regression step for each smooth term
when there are several, and alternating backfitting steps for each functional parameter sep-
arately. Fourth, convergence may only be guaranteed when the functional parameters are
orthogonal, meaning that the methodology may not extend to more than two. Moreover,
the smoothing method is applied to orthogonalized distribution parameters that may be
awkward to interpret. We learn a functional shape in a generic and stable manner; this is

of separate interest for the modeling of non-stationary extremes.
(1)

)

) = &. Let Q and €y denote the partition of the support as

In our earlier general terms, 6

of the scale, and 91(3

Q = {yl ER:& >0,y > —expn/&} U {yZ ER:& <0,y < 1y —expn/&} ,
Q = {(vi,&): i eRE=0}.

= U, 952) = exp 7;, where 7; = log o; to ensure positivity

16



FAST AUTOMATIC SMOOTHING FOR GENERALIZED ADDITIVE MODELS

The corresponding log-likelihood is then

EL(IJﬁTvé‘ay) = 26%)(#«2:%,&,?/1)7
=1

where the individual contributions are

1
i —7i— |14+ = log(142) — 1+ z)" Y&, yeq,
fi)(ﬂiaﬂafi;yi) = ( fz’)

—7; —exp(—z) — zi, (yi: &) € Qo,

with
L J i —pGexp(=n), yi €,
(yi — pi) exp(—m),  (¥i,&) € Qo.

This log-likelihood becomes numerically unstable when & and z; are close to zero, while
overflow is amplified as the order of the derivatives increases. The proposed approximate
EM method requires the third derivatives of the log-likelihood, which involve terms like §;” 5,
When &; =~ 0, the threshold below which the absolute value of the shape parameter should
be set to zero is therefore troublesome. Its value should reflect the compromise between
stability of the derivatives and the switch from the general GEV form to the Gumbel
distribution. The numerical instability is even more problematic in the mgcv gam method,
which requires the fourth log-likelihood derivatives; the lower the order of the derivatives, the
fewer unstable computations. In our implementation, we set & = 0 whenever [£;]| < w3/10,
with w the machine precision. This sets the order of the threshold to 10~°, while allowing
negative exponents of & terms to grow up to 10?°, which is within the range of precision of
all modern machines.

4.2. Application

We analyze monthly maxima of the daily Central England Temperature (CET)! series from
January 1772 to December 2016. Figure 3 shows yearly maxima and suggests that the recent
years are the warmest, while panel a) in Figure 4 indicates that any increase is most apparent
at the end of the year. Figure 4 exhibits obvious seasonality, which we represent using 12
basis functions from cyclic cubic regression splines for each of the location, scale and shape
parameters of the GEV model; we use ten basis functions from thin plate splines (Wood,
2003) in the location for the trend visible in Figure 3. We initially included long-term trends
in the scale and shape, but they were not significant. We also tried more complex models
with larger basis dimensions, but these did not improve the accuracy of the estimates. To
our knowledge, this is the only paper modeling a variable shape parameter for this data
set. Neither of the algorithms in Stan (Carpenter et al., 2017) using the R package brms
(Burkner, 2017) converged, and the variational Bayes approach faced numerical instabilities.

Panel a) of Figure 5 shows annual variation of 11°C, similar to that seen in Figure 4,
and panel b) of Figure 5 shows a non-linear trend with a drop from 1772 to 1800 and a
sharp increase from the 1960s onwards. The pattern between is hard to discern in Figure 3,

1. The data can be downloaded at https://www.metoffice.gov.uk/hadobs/hadcet/data/download.html
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Figure 3: Annual maxima for the CET data.

but panel b) shows an overall increase of about 1.5°C from 1800 onwards and peaks over
the last few decades.

The scale and shape parameters in Figure 5, whose functional forms vary significantly
through the year, give insight into the seasonality. They are negatively correlated except
in mid-June to September, where the increase in the shape is much slower and weaker than
the drop in the scale. We can distinguish two cycles within the year, with similar patterns
but different intensities: the extended winter from September to April, and the extended
weak summer, from April to September. Each incorporates two antagonistic phases that
are negatively correlated, alternating between decrease and increase for the shape, and
vice-versa for the scale.

Figure 5 summarizes the influences of the scale and the shape parameters on the season-
ality of the CET data as follows: whether the temperature is increasing or decreasing seems
to be smoothly related to the direction of the shape in the winter, and to that of the scale
in the summer. Since the former controls the tail of the distribution and is always signifi-
cantly negative here, the temperature is bounded above throughout the year; the strongest
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Figure 4: Monthly maxima for the CET data. Left: annual cycles with the year coded by
color according to the scale to the right of the panel. Right: boxplots for monthly
maxima.

increase of the shape occurs in February to mid-April, early spring, stabilizing around its
highest values, —0.2 or so, in the summer. This stabilization and the negative correlation
between the scale and the shape explain why the sharper fluctuations of the scale have more
impact on the temperature in the summer than the near-constant shape. The rather nar-
row point-wise confidence intervals suggest that there is very strong evidence for seasonal
variation of the shape, and less strong but still appreciable evidence of such variation for
the scale. Davison and Ramesh (2000) fitted a local likelihood smooth model to the five
largest daily data (after declustering) for each year up to 1996, using linear polynomials for
the location and the scale parameters and a constant shape parameter. Their results are
consistent with ours in that the changes in the upper extremes are driven by the changes
in the scale parameter.

Figures 6 and 7 illustrate model fit diagnostics. Figure 6 shows that the true maxima
are within the range of those simulated from the learned model. Figure 7 represents the
predicted 0.95, 0.98 and 0.99 quantiles for monthly maxima. Based on the model for 1916,
only one value from previous years, 24.5°C in July 1808, exceeded the maximum of the 0.99
quantile curve, 24.4°C, in July; all other exceedances occur after 1916. The maximum of
the 0.99 quantile curve in 2016 occurred in July at 25.4°C, and no higher temperature has
been observed.

Overall, the model does not seem unrealistic, although it may underestimate slightly
the uncertainty, as it assumes independence of maxima in successive months. A possible
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Figure 5: Learned functional parameters, with 95% point-wise confidence intervals (dashes)
obtained from the Hessian of the penalized log-likelihood.
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Boxplot of maxima over years of simulated data
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Figure 6: Monthly maxima simulated from the learned GEV model.

improvement would be the use of dependent errors, but this is outside the scope of the
present paper.

5. Discussion

This paper makes contributions to optimal and automatic smoothing for generalized addi-
tive models using an empirical Bayes approach. The roughness penalty corresponds to a
weighted Lo regularization interpreted as a Gaussian prior on the regression weights, and the
penalized log-likelihood is the associated posterior. We maximize the resulting log-marginal
likelihood with respect to the smoothing hyper-parameters using an EM algorithm, made
tractable via double Laplace approximation of the moment generating function underlying
the E-step. The proposed approach transfers maximization of the log-marginal likelihood
to a function whose maximizer has a closed form, and avoids evaluation of expensive and
numerically unstable terms. The only requirement is that the log-likelihood has third deriva-
tives. The proposed method is stable, accurate and fast. Its stability is ensured both by the
EM algorithm and by its need for fewer derivatives, making the proposed method broadly
applicable for complex models. Its high accuracy is established theoretically by Tierney
et al. (1989), with an O(n~2) relative error in the Laplace approximation at the E-step, and
we show in Appendix A that this leads to an error of order O(n~3) in the learned smoothing
hyper-parameters. Its serial implementation is substantially faster than the best existing
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Figure 7: Superposition of the original data (grey) and quantiles of the GEV models, with
95% point-wise confidence intervals (dashes) obtained from the Hessian of the
penalized log-likelihood.

methods and achieves state-of-the-art accuracy. It can easily be parallelized, making it
appealing for extension to big-data settings, where no reliable method yet exists.

These advantages are balanced by potential difficulties. First, the EM algorithm can be
slow around the optimum, though the simulations of Section 3 required no more than fifty
iterations. Tests show that deceleration occurs when certain smoothing hyper-parameters
become so large that their corresponding smooth functions are linear, and their updates
no longer change the penalized log-likelihood. At that point, we declare convergence for
those components of A, though they may keep changing without affecting the regression
weights. Validating convergence for a portion of smoothing hyper-parameters and updating
the remainder is supported by the diagonality of the Hessian matrix of the function @) at
the E-step. Second, the EM algorithm is known to suffer from local optima, though we
found none in the data sets and the simulated models we analyzed, perhaps because the
log-likelihood is fairly quadratic for large samples.

The proposed method is implemented in a C4++ library that uses Eigen (Guennebaud
et al., 2018) for matrix decompositions, is integrated into the R package multgam through
the interface RcppEigen (Bates and Eddelbuettel, 2013), and makes addition of further
probability models straightforward.
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Appendix A. Approximation error of the smoothing hyper-parameters

We discuss the approximation error on the final estimate of the smoothing hyper-parameters
implied by the approximate E-Step in Section 2.2. Let ¢y;(\;y) denote the Laplace approx-
imation to the log-marginal likelihood /) (A; y) based on n independent observations. If we
write the relative error of the Laplace approximation for the corresponding density functions
as 1+ A(X;y)/n® + O(n=%"1) for some positive a, then on taking logs we obtain

ta(Xiy) = G y) + AN y) /n® + O™, (27)

where (p(A;y) and £5;(A; y) are each essentially sums of n terms, and thus are O(n), and
A(X;y) is O(1).

Now suppose that y(A;y) has two continuous derivatives and an invertible Hessian
matrix throughout an open convex subset O C R? surrounding the maximum likelihood
estimate X. Then for any A, A* € O, the mean value theorem implies that we can write

-'.
Olm(A; y) ohi(A*;y) EM(A(j); Y ) ;=
D . —_ * —_— 1 e
» y + A (A=A%), ) » 4,

where D{@EM(/\zj);y)/ﬁ)\j} € R? is a vector whose k-th element is 82£M(Agj);y)/@)\ja)\k,

Agj) = A+t;(A—=X*) for t; € [0,1], and - is the scalar product. If we put these equations

together in matrix form we can write

Un(Xiy) — Uu(A5y) = TAL ), X ) =A%),

1 (¢

where U (A;y) € RYis the vector whose j-th component is 0/\i(A; y)/0A;, and J(/\Erl), e )\Erq)) €

R9%9 is a matrix whose j-th row contains the vector D{@EM(/\Erj);y) /OA;} and is therefore

of order O(n) since each element is a sum of n log-likelihood derivatives.
The maximum likelihood estimate A and its counterpart A* based on the Laplace ap-
proximation satisfy

Un(Xiy) =0, Ui(A*y) =0,

On writing A(X;y) € R? for the vector of components dA(X;y)/d);, and denoting the
vector of error terms of order O(n=*!) by O(n=%"1) € R?, we deduce from (27) that

0, = USi(A%y) = Un(A5y) — A(A%y)/n" + O(n~"7),

which yields

~

DA=AY) = Un(hiy) - Un(A*y)
= —AA%y)/n"+0Mm ).
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Since J(S\gl), A S\Zq)) is O(n) and A()\; y) is O(1), we must have A== O(n—1).

In a conventional Laplace approximation, we would have a = 1, and then A=A =
O(n~2), but with the double Laplace approximation used in the proposed method we have
a =2, s0 A—A*= O(n~3). Thus the maximizers of the true log-marginal likelihood and
its Laplace approximation differ by much less than the ‘statistical variation’ of :\, which is
Op(n_l/ 2) away from the ‘true’ X. Hence the difference X — A* is statistically negligible,
and the same will apply to the corresponding values of [3', which are smooth functions of A.
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