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Abstract

We investigate the direct-sum problem in the context of differentially private PAC learning:
What is the sample complexity of solving k learning tasks simultaneously under differential
privacy, and how does this cost compare to that of solving k learning tasks without privacy?
In our setting, an individual example consists of a domain element x labeled by k unknown
concepts (c1, . . . , ck). The goal of a multi-learner is to output k hypotheses (h1, . . . , hk)
that generalize the input examples.

Without concern for privacy, the sample complexity needed to simultaneously learn k
concepts is essentially the same as needed for learning a single concept. Under differential
privacy, the basic strategy of learning each hypothesis independently yields sample com-
plexity that grows polynomially with k. For some concept classes, we give multi-learners
that require fewer samples than the basic strategy. Unfortunately, however, we also give
lower bounds showing that even for very simple concept classes, the sample cost of private
multi-learning must grow polynomially in k.

Keywords: Differential privacy, PAC learning, Agnostic learning, Direct-sum

1. Introduction

The work on differential privacy (Dwork et al., 2006b) is aimed at providing useful analyses
on privacy-sensitive data while providing strong individual-level privacy protection. One
family of such analyses that has received a lot of attention is PAC learning (Valiant, 1984).
These tasks abstract many of the computations performed over sensitive information (Ka-
siviswanathan et al., 2011).

We address the direct-sum problem – what is the cost of solving multiple instances of
a computational task simultaneously as compared to solving each of them separately? –
in the context of differentially private PAC learning. In our setting, individual examples
are drawn from domain X and labeled by k unknown concepts (c1, . . . , ck) taken from a
concept class C = {c : X → {0, 1}}, i.e., each example is of the form (x, y1, . . . , yk), where
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x ∈ X and yi = ci(x). The goal of a multi-learner is to output k hypotheses (h1, . . . , hk)
that generalize the input examples while preserving the privacy of individuals.

The direct-sum problem has its roots in complexity theory, and is a basic problem for
many algorithmic tasks. It also has implications for the practical use of differential privacy.
Consider, for instance, a hospital that collects information about its patients and wishes to
use this information for medical research. The hospital records for each patient a collection
of attributes such as age, sex, and the results of various diagnostic tests (for each patient,
these attributes make up a point x in some domain X) and, for each of k diseases, whether
the patient suffers from the disease (the k labels (y1, . . . , yk)). Based on this collection of
data, the hospital researchers wish to learn good predictors for the k diseases. One option
for the researchers is to perform each of the learning tasks on a fresh sample of patients,
hence enlarging the number of patient examples needed (i.e. the sample complexity) by a
factor of k, which can be very costly.

Without concern for privacy, the sample complexity that is necessary and sufficient for
performing the k learning tasks is actually fully characterized by the VC dimension of the
concept class C – it is independent of the number of learning tasks k. In this work, we set
out to examine if the situation is similar when the learning is performed with differential
privacy. Interestingly, we see that with differential privacy the picture is quite different,
and in particular, the required number of examples can grow polynomially in k.

Private learning. A private learner is an algorithm that is given a sample of labeled
examples (x, c(x)) (each representing the information and label pertaining to an individual)
and outputs a generalizing hypothesis h that guarantees differential privacy with respect
to its examples. The first differentially private learning algorithms were given by Blum
et al. (2005) and the notion of private learning was put forward and formally researched by
Kasiviswanathan et al. (2011). Among other results, the latter work presented a generic
construction of differentially private learners with sample complexity O(log |C|).

In contrast, the sample complexity of (non-private) PAC learning is Θ(VC(C)), which
can be much lower than log |C| for specific concept classes. This gap led to a line of work
examining the sample complexity of private learning, which has revealed a significantly more
complex picture than there is for non-private learning. In particular, for pure differentially
private learners, it is known that the sample complexity of proper learning (where the learner
returns a hypothesis h taken from C) is sometimes higher than the sample complexity of
improper learners (where h comes from an arbitrary hypothesis class H). The latter is
characterized by the representation dimension of the concept class C, which is generally
higher than the VC dimension (Beimel et al., 2014; Chaudhuri and Hsu, 2011; Beimel et al.,
2013a; Feldman and Xiao, 2014). By contrast, a sample complexity gap between proper
and improper learners does not exist for non-private learning. In the case of approximate
differential privacy no such combinatorial characterization is currently known. It is however
known that the sample complexity of such learners can be significantly lower than that of
pure-differentially private learners and yet higher than the VC dimension of C (Beimel
et al., 2013a,b; Feldman and Xiao, 2014; Bun et al., 2015; Alon et al., 2018). Furthermore,
there exist (infinite) PAC-learnable concept classes for which no differentially private learner
(pure or approximate) exists.
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Private multi-learning. In this work we examine the sample complexity of private multi-
learning. Our work is motivated by the recurring research theme of the direct-sum, as well
as by the need to understand whether multi-learning remains feasible under differential
privacy, as it is without privacy constraints.

At first glance, private multi-learning appears to be similar to the query release problem,
the goal of which is to approximate the average values of a large collection of predicates on
a dataset. One surprising result in differential privacy is that it is possible to answer an
exponential number of such queries on a dataset (Blum et al., 2013; Roth and Roughgarden,
2010; Hardt and Rothblum, 2010). For example, Blum et al. (2013) showed that given a
dataset D and a concept class C, it is possible to generate with differential privacy a dataset
D̂ such that the average value of c on D approximates the average of c on D̂ for every c ∈ C
simultaneously (this returned database D̂ is called a sanitized database, and the algorithm
computing D̂ is called a sanitizer). The sample complexity required, i.e., the size of the
database D, to perform this sanitization is only logarithmic in |C|. Results of this flavor
suggest that we can also learn exponentially many concepts simultaneously. However, we
give negative results showing that this is not the case, and that multi-learning can have
significantly higher sample complexity than query release.

1.1. Our results

Prior work on privately learning the simple concept classes POINTX (of functions that eval-
uate to 1 on exactly one point of their domain X and to 0 otherwise) and THRESHX (of
functions that evaluate to 1 on a prefix of the domain X and to 0 otherwise) has demon-
strated a rather complex picture, depending on whether learners are proper or improper,
and whether learning is performed with pure or approximate differential privacy (Beimel
et al., 2014, 2013a,b; Bun et al., 2015). We analyze the sample complexity of multi-learning
of these simple concept classes, as well as general concept classes. We also consider the class
PARd of parity functions, but in this case we restrict our attention to uniformly selected ex-
amples. We examine both proper and improper PAC and agnostic learning under pure and
approximate differential privacy. For ease of reference, we include tables with our results in
Section 1.3, where we omit the dependency on the privacy and accuracy parameters.

Techniques for private k-learning. Composition theorems for differential privacy show
that the sample complexity of learning k concepts simultaneously is at most a factor of k
larger than the sample complexity of learning one concept (and may be reduced to

√
k

for approximate differential privacy). Unfortunately, privately learning one concept from a
concept class C can sometimes be quite costly, requiring much higher sample complexity
than VC(C) which is needed to learn non-privately. Building on techniques of Beimel et al.
(2015), we show that the multiplicative dependence on k can always be reduced to the
VC-dimension of C, at the expense of producing a one-time sanitization of the dataset.

Theorem 1 (Informal) Let C be a concept class for which there is pure differentially
private sanitizer for C⊕ = {f ⊕ g : f, g ∈ C} with sample complexity m. Then there is a
pure differentially private agnostic k-learner for C with sample complexity O(m+k ·VC(C)).
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Similarly, if C⊕ has an approximate differentially private sanitizer with sample com-
plexity m, then there is an approximate differentially private agnostic k-learner for C with
sample complexity O(m+

√
k ·VC(C)).

The best known general-purpose sanitizers require sample complexitym = O(VC(C) log |X|)
for pure differential privacy (Blum et al., 2013) and m = O(log |C|

√
log |X|) for approxi-

mate differential privacy (Hardt and Rothblum, 2010). However, for specific concept classes
(such as POINTX and THRESHX), the sample complexity of sanitization can be much lower.

In the case of approximate differential privacy, the sample complexity of k-learning
can be even lower than what is achievable with our generic learner. Using stability-based
arguments, we show that point functions and parities under the uniform distribution can be
PAC k-learned with sample complexity O(VC(C)) – independent of the number of concepts
k (see Theorems 40 and 39).

Lower bounds. In light of the above results, one might hope to be able to reduce the
dependence on k further, or to eliminate it entirely (as is possible in the case of non-private
learning). We show that this is not possible, even for the simplest of concept classes. In
the case of pure differential privacy, a packing argument (Feldman et al., 2009; Hardt and
Talwar, 2010; Beimel et al., 2014) shows that any non-trivial concept class requires sample
complexity Ω(k) to privately k-learn (Theorem 52). For approximate differential privacy, we
use fingerprinting codes (Boneh and Shaw, 1998; Bun et al., 2014) to show that unlike points
and parities, threshold functions require sample complexity Ω̃(k1/3) to PAC learn privately
(Corollary 46). Moreover, any non-trivial concept class requires sample complexity Ω̃(

√
k)

to privately learn in the agnostic model (Theorem 47). In the case of point functions, this
matches the upper bound achievable by our generic learner.

We highlight a few of the main takeaways from our results:

A complex answer to the direct sum question. Our upper bounds show that solv-
ing k learning problems simultaneously can require substantially lower sample complexity
than solving the problems individually. On the other hand, our lower bounds show that a
significant dependence on k is generally necessary.

Separation between private PAC and private agnostic learning. Non-privately,
the sample complexities of PAC and agnostic learning are of the same order (differing only
in the dependency in the accuracy parameters). Beimel et al. (2015) showed that this is also
the case with differentially private learning (of one concept). Our results on learning point
functions show that private PAC and agnostic multi-learning can be substantially different
(even for learning up to constant error). In the case of approximate differential privacy,
O(1) samples suffice to PAC-learn multiple point functions. However, Ω̃(

√
k) samples are

needed to learn k points agnostically.

Separation between improper learning with approximate differential privacy
and non-private learning. Bun et al. (2015) and Alon et al. (2018) showed that the
sample complexity of approximate-private learning can be asymptotically larger than that of
non-private learning, but this separation is very mild. Specifically, they showed that learning
one threshold function over a domain X requires sample complexity at least Ω(log∗ |X|) with
approximate differential privacy, as opposed to O(1) without privacy. An interesting open
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question is whether there are cases in which a stronger separation exists, or is it the case
that the extra costs in the sample complexity of approximate private learning can always
be reduced to O(log∗ |X|). While we do not address this question directly, we exhibit a
strong separation for multi-learning. In particular, learning k thresholds with approximate
differential privacy requires Ω̃(k1/3) samples, while O(1) samples suffices non-privately.

1.2. Related work

Differential privacy was defined in (Dwork et al., 2006b) and the relaxation to approximate
differential privacy is from (Dwork et al., 2006a). Most related to our work is the work
on private learning and its sample complexity (Blum et al., 2005; Kasiviswanathan et al.,
2011; Chaudhuri and Hsu, 2011; Dwork et al., 2010; Beimel et al., 2013a,b, 2014, 2015,
2019; Kaplan et al., 2019; Feldman and Xiao, 2014; Bun et al., 2015; Alon et al., 2018)
and the early work on sanitization (Blum et al., 2013). That many “natural” learning
tasks can be performed privately was shown in the early work of Blum et al. (2005) and
Kasiviswanathan et al. (2011). A characterization for the sample complexity of pure-private
learners was given by Beimel et al. (2013a), in terms of a new combinatorial measure – the
Representation Dimension, that is, given a class C, the number of samples needed and
sufficient for privately learning C is Θ(RepDim(C)). Building on (Beimel et al., 2013a),
Feldman and Xiao (2014) showed an equivalence between the representation dimension
of a concept C and the randomized one-way communication complexity of the evaluation
problem for concepts from C.

The problem of learning multiple concepts simultaneously (without privacy) has been
considered before. Motivated by the problem of bridging computational learning and rea-
soning, Valiant (2006) also observed that (without privacy) multiple concepts can be learned
from a common dataset in a data efficient manner.

1.3. Tables of results

The following tables summarize the results of this work. In the tables below C is a class
of concepts (i.e., predicates) defined over domain X. Sample complexity upper and lower
bounds is given in terms of |C| and |X|. Note that for POINTX , THRESHX , and PARd we have
|C| = Θ(|X|).

Where not explicitly noted, upper bounds hold for the setting of agnostic learning and
lower bounds are for the (potentially easier) setting of PAC learning. Similarly, where not
explicitly noted, upper bounds are for proper learning and lower bounds are for the (less
restrictive) setting of improper learning. For simplicity, these tables hide constant and
logarithmic factors, as well as dependencies on the learning and privacy parameters.

Multi-learning with pure differential privacy.

Upper bounds:
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PAC learning and agnostic learning
C proper improper References

POINTX k + log |C| k Thm. 31, Cor. 33

THRESHX k + log |C| Thm. 31

General min{k log |C|, kVC(C) + log |X|VC(C)} Thm. 31

PARd (uniform) k log |C| Thm. 31

Lower bounds:

PAC learning and agnostic learning
C proper improper References

POINTX k + log |C| k Thm. 52, (Beimel et al., 2014)

THRESHX k + log |C| Thm. 52, (Beimel et al., 2014)
(Feldman and Xiao, 2014)

PARd (uniform) k log |C| Thm. 55

Multi-learning with approximate differential privacy.

Upper bounds:

PAC learning Agnostic learning
C (proper and improper) (proper and improper)

POINTX 1 (Thm. 40)
√
k (Cor. 37)

THRESHX 2log
∗ |X| +

√
k (Cor. 38)

General C
min{

√
k log |C|,

√
kVC(C) + log |X|VC(C),

√
kVC(C) +

√
log |X| log |C|}

(Thm. 31)

PARd (uniform) log |C| (Thm. 39)
√
k log |C| (Thm. 31)

Lower bounds:

PAC learning Agnostic learning
C (proper and improper) (proper and improper) References

POINTX 1
√
k Cor. 50

THRESHX log∗ |X|+ k1/3 log∗ |X|+
√
k

Cor. 46, Cor. 50,
(Bun et al., 2015),
(Alon et al., 2018)

PARd (uniform) log |C|
√
k + log |C| Cor. 50

2. Preliminaries

We recall and extend standard definitions from learning theory and differential privacy.

2.1. Multi-learners

In the following X is some arbitrary domain. A concept (similarly, hypothesis) over domain
X is a predicate defined over X. A concept class (similarly, hypothesis class) is a set of
concepts.
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Definition 2 (Population Error) Let P ∈ ∆(X × {0, 1}) be a probability distribution
over X × {0, 1}. The population error of a hypothesis h : X → {0, 1} w.r.t. P is defined as
errorP(h) = Pr(x,y)∼P [h(x) 6= y].

Let D ∈ ∆(X) be a probability distribution over X and let c : x → {0, 1} be a concept.
The population error of hypothesis h : X → {0, 1} w.r.t. c and D is defined as errorD(c, h) =
Prx∼D[h(x) 6= c(x)]. If errorD(c, h) ≤ α we say that h is α-good for c and D.

Definition 3 (Multi-labeled database) A k-labeled database over a domain X is a
database S ∈ (X × {0, 1}k)∗. That is, S contains |S| elements from X, each concatenated
with k binary labels.

Let A :
(
X × {0, 1}k

)n → (
2X
)k

be an algorithm that operates on a k-labeled database
and returns k hypotheses. Let C be a concept class over a domain X and let H be a hy-
pothesis class over X. We now give a generalization of the notion of PAC learning (Valiant,
1984) to multi-labeled databases (the standard PAC definition is obtained by setting k = 1):

Definition 4 (PAC Multi-Learner) Algorithm A is an (α, β)-PAC k-learner for concept
class C using hypothesis class H with sample complexity n if for every distribution D over
X and for every tuple (c1, . . . , ck) from C, given a k-labeled database as an input S =
((xi, c1(xi), . . . , ck(xi)))

n
i=1 where each xi is drawn i.i.d. from D, algorithm A outputs k

hypotheses (h1, . . . , hk) from H satisfying

Pr

[
max
1≤j≤k

(errorD(cj , hj)) > α

]
≤ β.

The probability is taken over the random choice of the examples in S according to D and
the coin tosses of the learner A. If H ⊆ C then A is called a proper learner; otherwise, it
is called an improper learner.

Definition 5 (Agnostic PAC Multi-Learner) Algorithm A is an (α, β)-PAC agnostic
k-learner for C using hypothesis class H and sample complexity n if for every distribution
P over X × {0, 1}k, given a k-labeled database S = ((xi, y1,i, . . . , yk,i))

n
i=1 where each k-

labeled sample (xi, y1,i . . . , yk,i) is drawn i.i.d. from P, algorithm A outputs k hypotheses
(h1, . . . , hk) from H satisfying

Pr

[
max
1≤j≤k

(
errorPj (hj)−min

c∈C

(
errorPj (c)

))
> α

]
≤ β,

where Pj is the marginal distribution of P on the examples and the jth label. The probability
is taken over the random choice of the examples in S according to P and the coin tosses
of the learner A. If H ⊆ C then A is called a proper learner; otherwise, it is called an
improper learner.

2.2. The Sample Complexity of Multi-Learning

Without privacy considerations, the sample complexities of PAC and agnostic learning are
essentially characterized by a combinatorial quantity called the Vapnik-Chervonenkis (VC)
dimension. We state these characterizations in the context of multi-learning.
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2.2.1. The Vapnik-Chervonenkis Dimension

Definition 6 Fix a concept class C over domain X. A set {x1, . . . , xd} ∈ X is shattered
by C if for every labeling b ∈ {0, 1}d, there exists c ∈ C such that b1 = c(x1), . . . , bd = c(xd).
The Vapnik-Chervonenkis (VC) dimension of C, denoted VC(C), is the size of the largest
set which is shattered by C.

The Vapnik-Chervonenkis (VC) dimension is an important combinatorial measure of a
concept class. Classical results in statistical learning theory show that the population error
of a hypothesis h and its empirical error (observed on a large enough sample) are similar.

Definition 7 (Empirical Error) Let S = ((xi, yi))
n
i=1 ∈ (X×{0, 1})n be a labeled sample

from X. The empirical error of a hypothesis h : X → {0, 1} w.r.t. S is defined as errorS(h) =
1
n |{i : h(xi) 6= yi}|.

Let D ∈ Xn be a (unlabeled) sample from X and let c : x → {0, 1} be a concept. The
empirical error of hypothesis h : X → {0, 1} w.r.t. c and D is defined as errorD(c, h) =
1
n |{i : h(xi) 6= c(xi)].

Theorem 8 (VC-Dimension Generalization Bound, e.g. (Blumer et al., 1989)) Let
D and C be, respectively, a distribution and a concept class over a domain X, and let c ∈ C.
For a sample S = ((xi, c(xi)))

n
i=1 where n ≥ 64

α (VC(C) ln(64α ) + ln( 8
β )) and the xi are drawn

i.i.d. from D, it holds that

Pr
[
∃h ∈ C s.t. errorD(h, c) > α ∧ errorS(h) ≤ α

2

]
≤ β.

This generalization argument extends to the setting of agnostic learning, where a hy-
pothesis with small empirical error might not exist.

Theorem 9 (VC-Dimension Agnostic Generalization Bound, e.g. (Anthony and
Bartlett, 2009; Anthony and Shawe-Taylor, 1993)) Let H be a concept class over
a domain X, and let P be a distribution over X × {0, 1}. For a sample S = ((xi, yi))

n
i=1

containing n ≥ 64
α2 (VC(H) ln( 6

α) + ln( 8
β )) i.i.d. elements from P, it holds that

Pr
[
∃h ∈ H s.t.

∣∣errorP(h)− errorS(h)
∣∣ > α

]
≤ β.

Using theorems 8 and 9, an upper bound of O(VC(C)) on the sample complexity of
learning a concept class C follows by reduction to the empirical learning problem. The goal
of empirical learning is similar to that of PAC learning, except accuracy is measured only
with respect to a fixed input database. Theorems 8 and 9 state that when an empirical
learner is run on sufficiently many samples, it is also accurate with respect to a distribution
on inputs.

Definition 10 (Empirical Learner) Algorithm A is an (α, β)-accurate empirical k-learner
for a concept class C using hypothesis class H with sample complexity n if for every col-
lection of concepts (c1, . . . , ck) from C and database S = ((xi, c1(xi), . . . , ck(xi)))

n
i=1 ∈

(X × {0, 1}k)n, algorithm A outputs k hypotheses (h1, . . . , hk) from H satisfying

Pr

[
max
1≤j≤k

(
errorS|j (hj)

)
> α

]
≤ β,
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where S|j = ((xi, cj(xi)))
n
i=1. The probability is taken over the coin tosses of A.

Definition 11 (Agnostic Empirical Learner) Algorithm A is an agnostic (α, β)-accurate
empirical k-learner for a concept class C using hypothesis class H with sample complexity
n if for every database S = ((xi, y1,i, . . . , yk,i))

n
i=1 ∈ (X × {0, 1}k)n, algorithm A outputs k

hypotheses (h1, . . . , hk) from H satisfying

Pr

[
max
1≤j≤k

(
errorS|j (hj)−min

c∈C

(
errorS|j (c)

))
> α

]
≤ β,

where S|j = ((xi, yj,i))
n
i=1. The probability is taken over the coin tosses of A.

Theorem 12 Let A be an (α, β)-accurate empirical k-learner for a concept class C (resp.
agnostic empirical k-learner) using hypothesis class H. Then A is also a (2α, β + β′)-
accurate PAC learner for C when given at least max{n, 32α (VC(H⊕C) log(32/α)+log(8/β′))}
samples (resp. max{n, 64

α2 (VC(H) log(6/α) + log(8k/β′)) samples). Here, H ⊕C = {h⊕ c :
h ∈ H, c ∈ C}.

Proof We begin with the non-agnostic case. Let A be an (α, β)-accurate empirical k-
learner for C. Let D be a distribution over the example space X. Let S be a random i.i.d.
sample of size m from D. The generalization bound for PAC learning (Theorem 8) states
that if m ≥ 32

α (d log(32/α) + log(8/β′))}, then

Pr[∃c ∈ C, h ∈ H : errorS(c, h) ≤ α ∧ errorD(c, h) > 2α] ≤ β′,

where d = VC(H ⊕C). The result follows by a union bound over the failure probability of
A and the failure of generalization.

Now we turn to the agnostic case. Let A be an agnostic (α, β)-accurate empirical k-
learner for C. Fix an index j ∈ [k], and let Pj be a distribution over X ×{0, 1}. Let S be a
random i.i.d. sample of size m from Pj . Then generalization for agnostic learning (Theorem
9) yields

Pr[∃h ∈ H : |errorS(h)− errorPj (h)| > α] ≤ β′

k

for m ≥ 64
α2 (VC(H) log(6/α) + log(8k/β′))}. The result follows by a union bound over the

failure probability ofA and the failure of generalization for each of the indices j = 1, . . . , k.

Applying the above theorem in the special case where A finds the concept c ∈ C that
minimizes the empirical error on its given sample, we obtain the following sample complexity
upper bound for proper multi-learning.

Corollary 13 Let C be a concept class with VC dimension d. There exists an (α, β)-
accurate proper PAC k-learner for C using O( 1

α(d log(1/α) + log(1/β)) samples. Moreover,
there exists an (α, β)-accurate proper agnostic PAC k-learner for C using O( 1

α2 (d log(1/α)+
log(k/β)) samples.
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Proof For the non-agnostic case, we simply let A be the (0, 0)-accurate empirical learner
that outputs any vector of hypotheses that is consistent with its given examples (one is
guaranteed to exist, since the target concept satisfies this condition). The claim follows
from Theorem 12 noting that VC(C ⊕ C) = O(VC(C)).

For the agnostic case, consider the algorithm A that on input S outputs hypotheses
(h1, . . . , hk) that minimize the quantities errorSj (hj). Applying the agnostic generaliza-
tion bound (Anthony and Bartlett, 2009), this is an (α/2, β/2)-accurate agnostic empirical
learner given O( 1

α2 (d log(1/α) + log(k/β)) samples. The claim then follows from Theorem
12.

It is known that even for k = 1, the sample complexities of PAC and agnostic learning
are at least Ω(VC(C)/α) and Ω(VC(C)/α2), respectively. Therefore, the above sample
complexity upper bound is tight up to logarithmic factors.

We define a few specific concept classes which will play an important role in this work.

POINTX : Let X be any domain. The class of point functions is the set of all concepts
that evaluate to 1 on exactly one element of X, i.e. POINTX = {cx : x ∈ X} where
cx(y) = 1 iff y = x. The VC-dimension of POINTX is 1 for any X.

THRESHX : Let X be any totally ordered domain. The class of threshold functions takes
the form THRESHX = {cx : x ∈ X} where cx(y) = 1 iff y ≤ x. The VC-dimension of
THRESHX is 1 for any X.

PARd: Let X = {0, 1}d. The class of parity functions on X is given by PARd = {cx : x ∈ X}
where cx(y) = 〈x, y〉 (mod 2). The VC-dimension of PARd is d.

In this work, we focus our study of the concept class PARd on the problem of learning par-
ities under the uniform distribution. The PAC and agnostic learning problems are defined
as before, except we only require a learner to be accurate when the marginal distribution
on examples is the uniform distribution Ud over {0, 1}d.

Definition 14 (PAC Learning PARd under Uniform) Algorithm A is an (α, β)-PAC
k-learner for PARd using hypothesis class H and sample complexity n if for every fixed
(c1, . . . , ck) from C, given a k-labeled database as an input S = ((xi, c1(xi), . . . , ck(xi)))

n
i=1

where each xi is drawn i.i.d. from Ud, algorithm A outputs k hypotheses (h1, . . . , hk) from
H satisfying

Pr

[
max
1≤j≤k

(errorUd
(cj , hj)) > α

]
≤ β.

Definition 15 (Agnostically Learning PARd under Uniform) Algorithm A is an (α, β)-
PAC agnostic k-learner for PARd using hypothesis class H and sample complexity n if for ev-
ery distribution P over {0, 1}d×{0, 1}k, with marginal distribution Ud over the data universe
{0, 1}d, given a k-labeled database S = ((xi, y1,i, . . . , yk,i))

n
i=1 where each k-labeled sample

(xi, y1,i . . . , yk,i) is drawn i.i.d. from P, algorithm A outputs k hypotheses (h1, . . . , hk) from
H satisfying

Pr

[
max
1≤j≤k

(
errorPj (hj)−min

c∈C

(
errorPj (c)

))
> α

]
≤ β,

where Pj is the marginal distribution of P on the examples and the jth label.

10
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2.3. Differential privacy

Two k-labeled databases S, S′ ∈ (X × {0, 1}k)n are called neighboring if they differ on a
single (multi-labeled) entry, i.e., |{i : (xi, y1,i, . . . , yk,i) 6= (x′i, y

′
1,i, . . . , y

′
k,i)}| = 1.

Definition 16 (Differential Privacy (Dwork et al., 2006b)) Let A :
(
X × {0, 1}k

)n →(
2X
)k

be an algorithm that operates on a k-labeled database and returns k hypotheses. Let
ε, δ ≥ 0. Algorithm A is (ε, δ)-differentially private if for all neighboring S, S′ and for all

T ⊆
(
2X
)k

,
Pr[A(S) ∈ T ] ≤ eε · Pr[A(S′) ∈ T ] + δ,

where the probability is taken over the coin tosses of the algorithm A. When δ = 0 we say
that A satisfies pure differential privacy, otherwise (i.e., if δ > 0) we say that A satisfies
approximate differential privacy.

Our learning algorithms are designed via repeated applications of differentially private
algorithms on a database. Composition theorems for differential privacy show that the price
of privacy for multiple (adaptively chosen) interactions degrades gracefully.

Theorem 17 (Composition of Differential Privacy (Dwork et al., 2006a; Dwork
and Lei, 2009; Dwork et al., 2010)) Let 0 < ε, δ′ < 1 and δ ∈ [0, 1]. Suppose an
algorithm A accesses its input database S only through m adaptively chosen executions of
(ε, δ)-differentially private algorithms. Then A is

1. (mε,mδ)-differentially private, and

2. (ε′,mδ + δ′)-differentially private for ε =
√

2m ln(1/δ′) · ε+ 2mε2.

2.4. Differentially Private Tools

The most basic constructions of differentially private algorithms are via the Laplace Mech-
anism as follows.

Definition 18 (The Laplace Distribution) A random variable has probability distribu-

tion Lap(b) if its probability density function is f(x) = 1
2b exp(− |x|b ), where x ∈ R.

Definition 19 (Sensitivity) The sensitivity of a function f : Xn → Rd is the smallest s
such that for every neighboring D,D′ ∈ Xn, we have ‖f(D) − f(D′)‖1 ≤ s. We use the
term sensitivity-s function to mean a function of sensitivity ≤ s.

Theorem 20 (The Laplace Mechanism (Dwork et al., 2006b)) Let f : Xn → Rd be
a function of sensitivity s. The mechanism A that on input D ∈ Xn adds independently
generated noise with distribution Lap( sε ) to each of the d output terms of f(D) preserves
ε-differential privacy.

We next describe the exponential mechanism of McSherry and Talwar (2007), which is
an important building block in many differentially private constructions. A quality function
q : X∗×F → N defines an optimization problem over the domain X and a finite solution set

11
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F : Given a database S ∈ X∗, choose f ∈ F that (approximately) maximizes q(S, f). The
exponential mechanism solves such an optimization problem by sampling a random f ∈ F
with probability ∝ exp (ε · q(S, f)/2∆q), where ∆q is the sensitivity of the quality function
q, defined as the maximum over all f ∈ F of the sensitivity of the function q(·, f).

Proposition 21 (Properties of the Exponential Mechanism (McSherry and Tal-
war, 2007))

1. The exponential mechanism is (ε, 0)-differentially private.

2. Let q be a quality function with sensitivity at most 1. Fix a database S ∈ Xn and let
OPT = maxf∈F{q(S, f)}. Let t > 0. Then exponential mechanism outputs a solution
f with q(S, f) ≤ OPT−tn with probability at most |F| · exp(−εtn/2).

We next describe algorithm Adist of Smith and Thakurta (2013). Our discussion follows
the treatment of (Beimel et al., 2013b). As before, a quality function q : X∗ × F → N
defines an optimization problem. Algorithm Adist privately identifies the exact maximizer
as long as it is sufficiently stable.

Algorithm 1 Adist

Input: Privacy parameters ε, δ, database S ∈ X∗, sensitivity-1 quality function q

1. Let f1, f2 ∈ F be the highest scoring and second-highest scoring solutions to q(S, ·),
respectively.

2. Let gap = q(S, f1)− q(S, f2), and ĝap = gap + Lap(1/ε).

3. If ĝap < 1
ε log 1

δ , output ⊥. Otherwise, output f1.

Proposition 22 (Properties of Adist (Smith and Thakurta, 2013))

1. Algorithm Adist is (ε, δ)-differentially private.

2. When run on a database S with gap > 1
ε log 1

δβ , Algorithm Adist outputs the highest
scoring solution f1 with probability at least 1− β.

2.5. Differentially Private Sanitization

Data sanitization is a fundamental task in differential privacy. Given a database D =
(x1, . . . , xn) ∈ Xn, the goal of a sanitizer is to privately produce a synthetic database D̂ ∈
Xm that captures the statistical properties of D. We are primarily interested in sanitization
for boolean-valued functions (equivalently referred to as counting queries). Given a function
c : X → {0, 1} and a database D = (x1, . . . , xn), we write c(D) = 1

n

∑n
i=1 c(xi).

Definition 23 (Sanitization) An algorithm A : Xn → Xm is an (α, β)-accurate sanitizer
for a concept class C if for every D ∈ Xn, the algorithm A produces a database D̂ ∈ Xm

such that
Pr[∃c ∈ C : |c(D)− c(D̂)| > α] ≤ β.

Here, the probability is taken over the coins of A.

12



Simultaneous Private Learning of Multiple Concepts

In an influential result, Blum et al. (2013) showed that any concept class C admits a
differentially private sanitizer with sample complexity O(VC(C) log |X|):

Theorem 24 (Blum et al. (2013)) For any concept class C over a domain X, there
exists an (α, β)-accurate and (ε, 0)-differentially private sanitizer A : Xn → Xm for C
when

n = O

(
VC(C) · log |X| · log(1/α)

α3ε
+

log(1/β)

αε

)
,

and m = O(VC(C) log(1/α)/α2).

When relaxing to (ε, δ)-differential privacy, the private multiplicative weights algorithm
of Hardt and Rothblum (2010) can sometimes achieve lower sample complexity (roughly
O(log |C|

√
log |X|)).

Theorem 25 (Hardt and Rothblum (2010)) For any concept class C over a domain
X, there exists an (α, β)-accurate and (ε, δ)-differentially private sanitizer A : Xn → Xm

for C when

n = O

(
(log |C|+ log(1/β)) ·

√
log |X| · log(1/δ)

α2ε

)
,

and m = O(VC(C) log(1/α)/α2).

However, for specific concept classes, sanitizers are known to exist with much lower
sample complexity. For example, Bun et al. (2015) gave a sanitizer for threshold functions
with sample complexity roughly 2log

∗ |X| (improving on work of Beimel et al. (2013b)).

Proposition 26 (Bun et al. (2015)) There exists an (α, β)-accurate and (ε, δ)-differentially
private sanitizer for THRESHX with sample complexity

n = O

(
1

αε
· 2log

∗ |X| · log∗ |X| · log

(
log∗ |X|
εδ

)
· log(1/β) · log2.5(1/α)

)
.

2.6. Private learners and multi-learners

Generalizing on the concept of private learners (Kasiviswanathan et al., 2011), we say that
an algorithm A is (α, β, ε, δ)-private PAC k-learner for C using H if A is (α, β)-PAC k-
learner for C using H, and A is (ε, δ)-differentially private (similarly with agnostic private
PAC k-learners). We omit the parameter k when k = 1 and the parameter δ when δ = 0.

For the case k = 1, we have a generic construction with sample complexity proportional
to log |C|:

Theorem 27 (Kasiviswanathan et al. (2011)) Let C be a concept class, and α, β, ε >
0. There exists an (α, β, ε)-private agnostic proper learner for C with sample complexity

O
(
(log |C|+ log 1/β)(1/(εα) + 1/α2)

)
.

13



Bun and Nissim and Stemmer

A number of works (Beimel et al., 2014, 2013a,b; Feldman and Xiao, 2014; Bun et al.,
2015) have established upper and lower bounds for learning the specific concept classes
POINTX and THRESHX . In the case of pure differential privacy, POINTX requires Θ(log |X|)
samples to learn properly (Beimel et al., 2014), but can be learned improperly with O(1)
samples. On the other hand, the class of threshold functions THRESHX require Ω(log |X|)
samples to learn, even improperly (Feldman and Xiao, 2014). In the case of approximate
differential privacy, POINTx and THRESHx can be learned properly with sample complexities
O(1) (Beimel et al., 2013b) and Õ(2log

∗ |X|) (Bun et al., 2015), respectively. Moreover,
learning threshold functions requires sample complexity Ω(log∗ |X|) (Bun et al., 2015; Alon
et al., 2018).

2.7. Private PAC learning vs. Empirical Learning

We saw by Theorem 12 that when an empirical k-learner A for a concept class C is run on a
random sample of size Ω(VC(C)), it is also a (agnostic) PAC k-learner. In particular, if an
empirical k-learner A is differentially private, then it also serves as a differentially private
(agnostic) PAC k-learner.

Generalizing a result of (Bun et al., 2015), the next theorem shows that the converse
is true as well: a differentially private (agnostic) PAC k-learner yields a private empirical
k-learner with only a constant factor increase in the sample complexity.

Theorem 28 Let ε ≤ 1. Suppose A is an (ε, δ)-differentially private (α, β)-accurate (ag-
nostic) PAC k-learner for a concept class C with sample complexity n. Then there is an
(ε, δ)-differentially private (α, β)-accurate (agnostic) empirical k-learner Ã for C with sam-
ple complexity m = 9n. Moreover, if A is proper, then so is the resulting empirical learner
Ã.

Proof We give the proof for the agnostic case; the non-agnostic case is argued identically,
and is immediate from (Bun et al., 2015). To construct the empirical learner Ã, we use the
fact that the given learner A performs well on any distribution over labeled examples – in
particular, it performs well on the uniform distribution over rows of the input database to
Ã. Consider a database S = ((xi, y1,i, . . . , yk,i))

m
i=1 ∈ (X × {0, 1}k)m. On input S, define

Ã by sampling n rows from S (with replacement), and outputting the result of running A
on the sample. Let S denote the uniform distribution over the rows of S, and let Sj be
its marginal distribution which is uniform over S|j = ((xi, yj,i))

m
i=1. Then sampling n rows

from S is equivalent to sampling n rows i.i.d. from S. Hence, if (h1, . . . , hk) is the output
of A on the subsample, we have

Pr

[
max
1≤j≤k

(
errorS|j (hj)−min

c∈C

(
errorSj (c)

))
> α

]
= Pr

[
max
1≤j≤k

(
errorSj (hj)−min

c∈C

(
errorSj (c)

))
> α

]
≤ β.

To show that Ã remains (ε, δ)-differentially private, we apply the following “secrecy-of-
the-sample” lemma (Kasiviswanathan et al., 2011; Bun et al., 2015), which shows that the
sampling procedure does not hurt privacy.
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Lemma 29 Fix ε ≤ 1 and let A be an (ε, δ)-differentially private algorithm with sample
complexity n. For m ≥ 2n, the algorithm Ã described above is (ε̃, δ̃) for

ε̃ =
6εm

n
and δ̃ = 4 exp

(
6εm

n

)
· m
n
· δ.

3. Differentially Private Sanitization for Point Functions

We begin by presenting a new sanitizer for the class of point functions, which will be useful
for our constructions in the following sections. Our point sanitizer improves and simplifies
a result of Beimel et al. (2013b), and exhibits an essentially optimal sample complexity.

Proposition 30 There exists an (α, β)-accurate and (ε, δ)-differentially private sanitizer
for POINTX with sample complexity

n = O

(
log(1/αβδ)

αε

)
.

Proof
To give a (2α, β)-accurate sanitizer, it suffices to produce, for each point function cx, an

approximate answer ax ∈ [0, 1] with |ax− cx| ≤ α. This is because given these approximate
answers, one can reconstruct a database D̂ of size O(1/α) with |cx(D̂)− ax| ≤ α for every
x ∈ X.

The algorithm for producing the answers ax is as follows.

Algorithm 2 Query release for POINTX
Input: Privacy parameters (ε, δ), database D ∈ Xn

For each x ∈ X, do the following:

1. If cx(D) ≤ α
4 , release ax = 0

2. Let âx = cx(D) + Lap(2/εn)

3. If âx ≤ α
2 , release ax = 0

4. Otherwise, release ax = âx

First, we argue that Algorithm 2 is (ε, δ)-differentially private. Below, we write X ≈(ε,δ)

Y to denote the fact that for every measurable set S in the union of the supports of X and
Y , we have Pr[X ∈ S] ≤ eε Pr[Y ∈ S] + δ.

Let D ∼ D′ be adjacent databases of size n, with x ∈ D replaced by x′ ∈ D′. Then the
output distribution of the mechanism differs only on its answers to the queries cx and cx′ . Let
us focus on cx. If both cx(D) ≤ α/4 and cx(D′) ≤ α/4, then the mechanism always releases
0 for both queries. If both cx(D) > α/4 and cx(D′) > α/4, then ax(D) ≈(ε/2,0) ax(D′)
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by properties of the Laplace mechanism. Finally, if cx(D) > α/4 but cx(D′) ≤ α/4, then
cx(D′) = 0 with probability 1. Moreover, we must have POINTx(D) ≤ α/4 + 1/n, so

Pr[ax(D) = 0] ≥ Pr[Lap(2/εn) < α/4− 1/n] = 1− 1

2
exp(−εnα/8 + ε/2) ≥ 1− δ/2.

So in this case, ax(D) ≈(0,δ/2) ax(D′). Therefore, we conclude that overall ax(D) ≈(ε/2,δ/2)

ax(D′). An identical argument holds for ax′ , so the mechanism is (ε, δ)-differentially private.
Now we argue that the answers ax are accurate. First, the answers are trivially α-

accurate for all queries cx on which cx(D) ≤ α/4. For each of the remaining queries, it is
α-accurate with probability at least

Pr[|Lap(2/εn)| < α/2] = 1− exp(−εnα/4) ≥ 1− αβ

4
.

Taking a union bound over the at most 4/α queries with POINTx(D) > α/4, we conclude
that the mechanism is α-accurate for all queries with probability at least 1− β.

4. Upper Bounds on the Sample Complexity of Private Multi-Learners

4.1. Generic Construction

In this section we present the following general upper bounds on the sample complexity of
private k-learners.

Theorem 31 Let C be a finite concept class, and let k ≥ 1. There exists a proper agnostic
(α, β, ε)-private PAC k-learner for C with sample complexity

Oα,β,ε

(
k · log k + min

{
k · log |C| , (k + log |X|) ·VC(C)

})
,

and there exists a proper agnostic (α, β, ε, δ)-private PAC k-learner for C with sample com-
plexity

Oα,β,ε,δ

(√
k · log k + min

{√
k · log |C| , (

√
k + log |X|) ·VC(C) ,

√
k ·VC(C) +

√
log |X| · log |C|

})
.

The straightforward approach for constructing a private k-learner for a class C is to
separately apply a (standard) private learner for C for each of the k target concepts. Using
composition theorem 17 to argue the overall privacy guarantee of the resulting learner, we
get the following observation.

Observation 32 Let C be a concept class and let k ≥ 1. If there is an (α, β, ε, δ)-PAC
learner for C with sample complexity n, then

• There is an (α, kβ, kε, kδ)-PAC k-learner for C with sample complexity n.

• There is an (α, kβ,O(
√
k log(1δ )ε + kε2), O(kδ))-PAC k-learner for C with sample

complexity n.

Moreover, if the initial learner is proper and/or agnostic, then so is the resulting learner.
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In cases where sample efficient private PAC learners exist, it might be useful to apply
Observation 32 in order to obtain a private k-learner. For example, Beimel et al. (2014,
2013a) gave an improper agnostic (α, β, ε)-PAC learner for POINTX with sample complexity
Oα(1ε log 1

β ). Using Observation 32 yields the following corollary.

Corollary 33 There exists an improper agnostic (α, β, ε)-PAC k-learner for POINTX with
sample complexity Oα,β,ε(k log k).

For a general concept class C, we can use Observation 32 with the generic construction
of Theorem 27, stating that for every concept class C there exists a private agnostic proper
learner A that uses O(log |C|) labeled examples.

Corollary 34 Let C be a concept class, and α, β, ε > 0. There exists an (α, β, ε)-private
agnostic proper k-learner for C with sample complexity Oα,β,ε(k·log |C|+k·log k). Moreover,
there exists an (α, β, ε, δ)-private agnostic proper k-learner for C with sample complexity
Oα,β,ε,δ(

√
k · log |C|+

√
k · log k).

Example 1 There exists a proper agnostic (α, β, ε)-PAC k-learner for PARd with sample
complexity Oα,β,ε(kd+ k log k).

As we will see in Section 6, the bounds of Corollary 33 and Example 1 on the sample
complexity of k-learning POINTX and PARd are tight (up to logarithmic factors). That is,
with pure-differential privacy, the direct sum gives (roughly) optimal bounds for improperly
learning POINTX , and for (properly or improperly) learning PARd. This is not the case for
learning THRESHX or for properly learning learning POINTX .

In order to avoid the factor k log |C| (or
√
k log |C|) in Corollary 34, we now show how

an idea used in (Beimel et al., 2015) (in the context of semi-supervised learning) can be
used to construct sample efficient private k-learners. In particular, this construction will
achieve tight bounds for learning THRESHX and for properly learning learning POINTX under
pure-differential privacy.

Fix a concept class C, target concepts c1, . . . , ck ∈ C, and a k-labeled database S (we
use D to denote the unlabeled portion of S). For every 1 ≤ j ≤ k, the goal is to identify a
hypothesis hj ∈ C with low errorD(cj , hj) (such a hypothesis also has good generalization).
Beimel et al. (2015) observed that given a sanitization D̂ of D w.r.t. C⊕ = {f⊕g : f, g ∈ C},
for every f, g ∈ C it holds that

errorD(f, g) =
1

|D|
|{x ∈ D : (f⊕g)(x) = 1}| ≈ 1

|D̂|
|{x ∈ D̂ : (f⊕g)(x) = 1}| = errorD̂(f, g).

Hence, a hypothesis h with low errorD̂(h, cj) also has low errorD(h, cj) and vice versa.
Let H be a minimal subset of C such that for every c ∈ C, there exists f∗ ∈ H such that
f∗(x) = c(x) for every x ∈ D̂. Then in particular, for every j, there exists f∗j ∈ H that

agrees with cj on D̂, i.e., there exists f∗j ∈ H s.t. errorD̂(f∗j , cj) = 0, and hence errorD(f∗j , cj)

is also low. The thing that works in our favor here is that H is small – at most 2|D̂| ≤ 2VC(C)

– and hence choosing a hypothesis out of H is easy. Therefore, for every j we can use the
exponential mechanism to identify a hypothesis hj ∈ H with low errorD(hj , cj).
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Lemma 35 Let C be a concept class, and α, β, ε, δ > 0. There exists an (α, β, ε)-private
agnostic k-learner for C with sample complexity Oα,β,ε(VC(C)·log |X|+k ·VC(C)+k ·log k).
Moreover, there exists an (α, β, ε, δ)-private agnostic k-learner for C with sample complexity
Oα,β,ε,δ(min{VC(C) · log |X|, log |C| ·

√
log |X|}+

√
k ·VC(C) +

√
k · log k).

Lemma 35 follows from the following lemma.

Lemma 36 Let ε′ > 0 and let A be an (α5 ,
β
5 )-accurate (ε, δ)-private sanitizer for C⊕ with

sample complexity m. Then there is an (α, β)-PAC agnostic k-learner for C with sample
complexity

O

(
m+

VC(C)

α3ε′
log(

1

α
) +

1

αε′
log(

k

β
) +

1

α2
VC(C) log(

k

αβ
)

)
.

Moreover, it is both (ε+ kε′, δ) and (ε+
√

2k ln(1/δ)ε′ + 2kε′2, 2δ)-differentially private.

Using Lemma 36 with the generic sanitizer of Theorem 24 or Theorem 25 results in
Lemma 35.

Algorithm 3 GenericLearner

Input: Concept class C, privacy parameters ε′, ε, δ, and a k-labeled database S =
(xi, yi,1, . . . , yi,k)

n
i=1. We use D = (xi)

n
i=1 to denote the unlabeled portion of S.

Used Algorithm: An (α5 ,
β
5 )-accurate (ε, δ)-private sanitizer for C⊕ with sample complex-

ity m.

1. Initialize H = ∅.

2. Construct an (ε, δ)-private sanitization D̃ of D w.r.t. C⊕, where |D̃| =

O
(
VC(C⊕)
α2 log( 1

α)
)

= O
(
VC(C)
α2 log( 1

α)
)

.

3. Let B = {b1, . . . , b|B|} be the set of all points appearing at least once in D̃.

4. For every (z1, . . . , z|B|) ∈ ΠC(B) = {
(
c(b1), . . . , c(b|B|)

)
: c ∈ C}, add to H an

arbitrary concept c ∈ C s.t. c(b`) = z` for every 1 ≤ ` ≤ |B|.

5. For every 1 ≤ j ≤ k, use the exponential mechanism with privacy parameter ε′ to
choose and return a hypothesis hj ∈ H with (approximately) minimal error on the
examples in S w.r.t. their jth label.

Proof [Proof of Lemma 36] The proof is via the construction of GenericLearner (algo-
rithm 3). Note thatGenericLearner only accesses S via a sanitizer (on Step 2) and using the
exponential mechanism (on Step 5). Composition theorem 17 state that GenericLearner
is both (ε+kε′, δ)-differentially private and (ε+

√
2k ln(1/δ)ε′+ 2kε′2, 2δ)-differentially pri-

vate. We, thus, only need to prove that with high probability the learner returns α-good
hypotheses.

Fix a distribution P over X × {0, 1}k, and let Pj denote the marginal distribution of P
on the examples and the jth label. Let S consist of examples (xi, yi,1, . . . , yi,k) ∼ P. We use
D = (xi)

n
i=1 to denote the unlabeled portion of S, and use S|j = ((xi, yj,i))

n
i=1 to denote a
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database containing the examples in S together with their jth label. Define the following
three events:

E1 : For every f, h ∈ C it holds that |errorD(f, h)− error
D̃

(f, h)| ≤ 2α
5 .

E2 : For every f ∈ C and for every 1 ≤ j ≤ k it holds that |errorS|j (f)− errorPj (f)| ≤ α
5 .

E3 : For every 1 ≤ j ≤ k, the hypothesis hj chosen by the exponential mechanism is such

that errorS|j (hj) ≤
α
5 + minf∈H

{
errorS|j (f)

}
.

We first argue that when these three events happen algorithm GenericLearner returns
good hypotheses. Fix 1 ≤ j ≤ k, and let c∗j = argminf∈C{errorPj (f)}. We denote ∆ =
errorPj (c

∗
j ). We need to show that if E1 ∩E2 ∩E3 occurs, then the hypothesis hj returned

by GenericLearner is s.t. errorPj (hj) ≤ α+ ∆.
For every (y1, . . . , y|B|) ∈ ΠC(B), algorithm GenericLearner adds to H a hypothesis f

s.t. ∀1 ≤ ` ≤ |B|, f(b`) = y`. In particular, H contains a hypothesis h∗j s.t. h∗j (x) = c∗j (x)
for every x ∈ B, that is, a hypothesis h∗j s.t. error

D̃
(h∗j , c

∗
j ) = 0. As event E1 has occurred we

have that this h∗j satisfies errorD(h∗j , c
∗
j ) ≤ 2α

5 . Using the triangle inequality (and event E2)

we get that this h∗j satisfies errorS|j (h
∗
j ) ≤ errorD(h∗j , c

∗
j )+errorS|j (c

∗
j ) ≤ 3α

5 +∆. Thus, event
E3 ensures that algorithm GenericLearner chooses (using the exponential mechanism) a
hypothesis hj ∈ H s.t. errorS|j (hj) ≤

4α
5 + ∆. Event E2 ensures, therefore, that this hj

satisfies errorPj (hj) ≤ α+∆. We will now show E1∩E2∩E3 happens with high probability.
Standard arguments in learning theory state that (w.h.p.) the empirical error on a

(large enough) random sample is close to the population error. Specifically, by setting
n ≥ O( 1

α2 VC(C) log( k
αβ )), Theorem 9 ensures that Event E2 occurs with probability at

least (1− 2
5β).

Assuming that n ≥ m (the sample complexity of the sanitizer used in Step 5), with
probability at least (1− β

5 ) for every (h⊕ f) ∈ C⊕ (i.e., for every h, f ∈ C) it holds that

α

5
≥ |Q(h⊕f)(D)−Q(h⊕f)(D̃)|

=

∣∣∣∣∣ |{x ∈ D : (h⊕f)(x)=1}|
|D|

− |{x ∈ D̃ : (h⊕f)(x)=1}|
|D̃|

∣∣∣∣∣
=

∣∣∣∣∣ |{x ∈ D : h(x) 6=f(x)}|
|D|

− |{x ∈ D̃ : h(x)6=f(x)}|
|D̃|

∣∣∣∣∣
=

∣∣errorD(h, f)− error
D̃

(h, f)
∣∣ .

Event E1 occurs therefore with probability at least (1− β
5 ).

The exponential mechanism ensures that the probability of event E3 is at least 1−k|H| ·
exp(−ε′αm/10) (see Proposition 21). Note that log |H| ≤ |B| ≤ |D̃| = O

(
VC(C)
α2 log( 1

α)
)

.

Therefore, for n ≥ O
(
VC(C)
α3ε′ log( 1

α) + 1
αε′ log( kβ )

)
, Event E3 occurs with probability at least

(1− β
5 ).

All in all, setting n ≥ O
(
m+ VC(C)

α3ε′ log( 1
α) + 1

αε′ log( kβ ) + 1
α2 VC(C) log( k

αβ )
)

, ensures

that the probability of GenericLearner failing is at most β.
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Theorem 31 now follows by combining Lemma 35 and Corollary 34.

For certain concept classes, there are sanitizers with substantially lower sample com-
plexity than the generic sanitizers. Combining Lemma 35 with Proposition 30, we obtain:

Corollary 37 There is an (α, β)-PAC agnostic k-learner for POINTX with sample complex-
ity

O

(
log(1/αβδ)

αε
+

log(1/α)

α3ε′
+

log(k/β)

αε′
+

log(k/αβ)

α2

)
.

Moreover, it is both (ε+ kε′, δ) and (ε+
√

2k ln(1/δ)ε′ + 2kε′2, 2δ)-differentially private.

Similarly, combining Lemma 35 with Proposition 26, we obtain:

Corollary 38 There is an (α, β)-PAC agnostic k-learner for THRESHX with sample com-
plexity

O

2log
∗ |X| · log∗ |X| · log

(
log∗ |X|
εδ

)
· log(1/β) · log2.5(1/α)

αε
+

log(1/α)

α3ε′
+

log(k/β)

αε′
+

log(k/αβ)

α2

 .

Moreover, it is both (ε+ kε′, δ) and (ε+
√

2k ln(1/δ)ε′ + 2kε′2, 2δ)-differentially private.

4.2. Upper Bounds for Approximate Private Multi-Learners

In this section we give two examples of cases where the sample complexity of private k-
learning is of the same order as that of non-private k-learning (the sample complexity does
not depend on k). Our algorithms are (ε, δ)-differentially private, and rely on stability
arguments: the identity of the best k concepts, as an entire vector, is unlikely to change on
nearby k-labeled databases. Hence, it can be released privately.

4.2.1. Learning Parities under the Uniform Distribution

Theorem 39 For every k, d there exists an (α=0, β, ε, δ)-PAC (non-agnostic) k-learner for
PARd under the uniform distribution with sample complexity O(d log( 1

β ) + 1
ε log( 1

βδ )).

Recall that (even without privacy constraints) the sample complexity of PAC learning
PARd under the uniform distribution is Ω(d). Hence the sample complexity of privately
k-learning PARd (non-agnostically) under the uniform distribution is of the same order as
that of non-private k-learning.

For the intuition behind Theorem 39, let c1, . . . , ck denote the k target concepts, and con-
sider the quality function q(D, (h1, . . . , hk)) = max1≤j≤k{errorD(hj , cj)}. On a large enough
sample D we expect that q(D, (h1, . . . , hk)) ≈ 1

2 for every (h1, . . . , hk) 6= (c1, . . . , ck), while
q(D, (c1, . . . , ck)) = 0. The k target concepts can hence be privately identified (exactly)
using stability techniques.

In order to make our algorithm computationally efficient, we apply the “subsample and
aggregate” idea of Nissim et al. (2007). We divide the input sample into a small number
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Algorithm 4 ParityLearner

Input: Parameters ε, δ, and a k-labeled database S of size n = O(dε log( 1
βδ )).

Output: Hypotheses h1, . . . , hk.

1. Split S into m = O(1ε log( 1
βδ )) disjoint samples S1, . . . , Sm of size O(d) each. Initiate

Y as the empty multiset.

2. For every 1 ≤ t ≤ m:

(a) For every 1 ≤ j ≤ k try to use Gaussian elimination to identify a parity
function yj that agrees with the labels of the jth column of St.

(b) If a parity is identified for every j, then set Y = Y ∪ {(y1, ..., yk)}. Otherwise
set Y = Y ∪ {⊥}.

3. Use algorithm Adist with privacy parameters ε, δ to choose and return a vector of k
parity functions (h1, . . . , hk) ∈ (PARd)

k with a large number of appearances in Y .

of subsamples, use Gaussian elimination to (non-privately) identify a candidate hypothesis
vector on each subsample, and then select from these candidates privately.
Proof [Proof of Theorem 39] The proof is via the construction of ParityLearner (algo-
rithm 4). First note that changing a single input element in S can change (at most) one
element of Y . Hence, applying (the (ε, δ)-private) algorithm Adist on Y preserves privacy
(applying ParityLearner on neighboring inputs amounts to executing Adist on neighboring
inputs).

Now fix k target concepts c1, . . . , ck ∈ PARd and let S be a random k-labeled database
containing n i.i.d. elements from the uniform distribution Ud over X = {0, 1}d, each labeled
by c1, . . . , ck. Observe that (for every 1 ≤ t ≤ m) we have that St contains i.i.d. elements
from Ud labeled by c1, . . . , ck. We use Dt to denote the unlabeled portion of St. Standard
arguments in learning theory (cf. Theorem 8) state that for |St| ≥ Ω(d),

Pr

[
∃h, f ∈ PARd s.t. errorUd

(h, f) ≥ 1

4
∧ errorDt(h, f) ≤ 1

40

]
≤ 1

8
.

The above inequality holds, in particular, for every hypothesis h ∈ PARd and every target
concept cj , and hence,

Pr

[
∃h ∈ PARd and j s.t. errorUd

(h, cj) ≥
1

4
∧ errorDt(h, cj) ≤

1

40

]
≤ 1

8
.

Recall that under the uniform distribution, the only h ∈ PARd s.t. errorUd
(h, cj) 6= 1

2 is cj
itself, and hence

Pr

[
∃h ∈ PARd and j s.t. h 6= cj ∧ errorDt(h, cj) ≤

1

40

]
≤ 1

8
.

So, for every 1 ≤ t ≤ m, with probability 7/8 we have that for every label column j the
only hypothesis with empirical error less than 1

40 on St is the jth target concept itself (with
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empirical error 0). In such a case, step 2a (Gaussian elimination) identifies exactly the
vector of k target concepts (c1, . . . , ck). Since m ≥ O(log( 1

β )), the Chernoff bound ensures
that except with probability β/2, the vector (c1, . . . , ck) is identified in at least 3/4 of the
iterations of step 2. Assuming that this is the case, the vector (c1, . . . , ck) appears in Y
at least 3m/4 times, while every other vector can appear at most m/4 times. Provided
that m ≥ O(1ε log( 1

βδ )), algorithm Adist ensures that the k target concepts are chosen with
probability 1− β/2.

All in all, algorithm ParityLearner identifies the k target concepts (exactly) with prob-
ability 1− β, provided that n ≥ O(dε log( 1

βδ )).

4.2.2. Learning Points

We next show that the class of POINTX can be (non-agnostically) k-learned using constant
sample complexity, matching the non-private sample complexity.

Theorem 40 For every domain X and every k ∈ N there exists an (α, β, ε, δ)-PAC (non-
agnostic) k-learner for POINTX with sample complexity O( 1

αε log( 1
αβδ )).

The proof is via the construction of Algorithm 5. The algorithm begins by privately
identifying (using sanitization) a set of O(1/α) “heavy” elements in the input database,
appearing Ω(α) times. The k labels of such a heavy element can be privately identified
using stability arguments (since their duplicity in the database is large). The labels of a
“non-heavy” element can be set to 0 since a target concept can evaluate to 1 on at most
one such non-heavy element, in which case the error is small.

Notation. We use #S(x) to denote the duplicity of a domain element x in a database S.
For a distribution µ we denote µ(x) = Prx̂∼µ[x̂ = x].
Proof The proof is via the construction of PointLearner (algorithm 5). First note the
algorithm only access the input database using sanitization on step 1, and using algorithm
Adist on step 4. By composition theorem 17, algorithm PointLearner is (ε, δ)-differentially
private.

Let µ be a distribution over X, and let c1, . . . , ck ∈ POINTX be the fixed target concepts.
Consider the execution of PointLearner on a database S = (xi, yi,1, . . . , yi,k)

n
i=1 sampled

from µ and labeled by c1, . . . , ck. We use D to denote the unlabeled portion of S, D̂ for
the sanitization of D constructed on step 1, and write m = |D̂|. Define the following good
events.

E1 : For every x ∈ X s.t. µ(x) ≥ α it holds that 1
n#S(x) ≥ α/10.

E2 : For every x ∈ X we have that | 1m#D̂(x)− 1
n#S(x)| ≤ α/30.

E3 : Algorithm Adist returns a vector set V s.t. q(S, x,~vx) ≥ 1 for every x ∈ G.

We now argue that when these three events happen algorithm PointLearner returns
good hypotheses. First, observe that the set G contains every element x s.t. µ(x) ≥ α: Let
x be s.t. µ(x) ≥ α. As event E1 has occurred, we have that 1

n#S(x) ≥ α/10. As event E2

has occurred, we have that 1
m#D̂(x) ≥ α/15, and therefore x ∈ G.
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Algorithm 5 PointLearner

Input: Privacy parameters ε, δ, and a k-labeled database S = (xi, yi,1, . . . , yi,k)
n
i=1. We use

D = (xi)
n
i=1 to denote the unlabeled portion of S.

Output: Hypotheses h1, . . . , hk.

1. Let D̂ ∈ Xm be an ( ε2 ,
δ
2)-private ( α30 ,

β
4 )-accurate sanitization of D w.r.t. POINTX

(e.g., using Proposition 30).

2. Let G = {x ∈ X : 1
m#D̂(x) ≥ α/15} be the set of all “ α

15 -heavy” domain elements

w.r.t. the sanitization D̂. Note that |G| ≤ 15/α.

3. Let q be the quality function that on input a k-labeled database S, a domain element
x, and a binary vector ~v ∈ {0, 1}k, returns the number of appearances of (x,~v) in
S. That is, q(S, x, (v1, . . . , vk)) = |{i : xi = x ∧ yi,1 = v1 ∧ · · · ∧ yi,k = vk}|.

4. Use algorithm Adist with privacy parameters ε
2 ,

δ
2 to choose a set of vectors V =

{~vx ∈ {0, 1}k : x ∈ G} maximizing Q(S, V ) = min~vx∈V {q(S, x,~vx)}. That is, we use
algorithm Adist to choose a set of |G| vectors – a vector ~vx for every x ∈ G – such
that the minimal number of appearances of an entry (x,~vx) in the database S is
maximized.

5. For 1 ≤ j ≤ k: If the jth entry of every ~vx ∈ V is 0, then set hj ≡ 0. Otherwise, let
x be s.t. ~vx ∈ V has 1 as its jth entry, and define hj : X → {0, 1} as hj(y) = 1 iff
y = x.

6. Return h1, . . . , hk.

Note that if q(S, x,~v) ≥ 1 then the example x is labeled as ~v by the target concepts.
Thus, as event E3 has occurred, for every ~vx ∈ V it holds that ~vx = (c1(x), . . . , ck(x)). Now
let hj be the jth returned hypothesis. We next show that hj is α-good. If h 6≡ 0, then let
x be the unique element s.t. hj(x) = 1, and note that (according to step 5) the jth entry of
~vx is 1, and hence, cj(x) = 1. So hj = cj (since cj is a concept in POINTX).

If hj ≡ 0 then the jth entry of every ~vx ∈ V is 0. Note that in such a case hj only errs on
the unique element x s.t. cj(x) = 1, and it suffices to show that µ(x) < α. Assume towards
contradiction that µ(x) ≥ α. As before, event E1 ∩E2 implies that x ∈ G. As event E3 has
occurred, we also have that ~vx ∈ V is s.t. q(S, x,~vx) ≥ 1, and the example x is labeled as ~vx
by the target concepts. This contradicts the assumption that the jth entry of ~vx ∈ V is 0.

Thus, whenever E1 ∩ E2 ∩ E3 happens, algorithm PointLearner returns α-good hy-
potheses. We will now show E1 ∩ E2 ∩ E3 happens with high probability. Provided
n ≥ O( 1

αε log( 1
αδ )), event E2 is guaranteed to hold with all but probability β/4 by the

utility properties of the sanitizer used on step 1. See Proposition 30.

Theorem 8 (VC bound) ensures that event E1 holds with probability 1− β/4, provided
that n ≥ O( 1

α log( 1
αβ )). To see this, let z ≡ 0 denote the constant 0 hypothesis, and

consider the class C = POINTX ∪{z}. Note that VC(C) = 1. Hence, Theorem 12 states
that, with all but probability 1 − β/4, for every c ∈ POINTx s.t. errorµ(c, z) ≥ α it holds
that errorD(c, z) ≥ α/10. That is, with all but probability 1 − β/4, for every x ∈ X s.t.
µ(x) ≥ α it holds that 1

n#D(x) = 1
n#S(x) ≥ α/10.
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Before analyzing event E3, we show that if E2 occurs, then every x ∈ G is s.t. #S(x) ≥
α/30. Let x ∈ G, that is, x s.t. 1

m#D̂(x) ≥ α/15. Assuming event E2 has occurred, we
therefore have that 1

n#S(x) ≥ α/30. So every x ∈ G appears in S at least αn/30 times

with the labels (c1(x), . . . , ck(x)) , ~c(x). Thus, q(S, x,~c(x)) ≥ αn/30. In addition, for every
~v 6= ~c(x) it holds that q(S, x,~v) = 0, since every appearance of the example x is labeled by
the target concepts. Hence, provided that n ≥ O( 1

αε log( 1
βδ )), algorithm Adist ensures that

event E3 happens with probability at least 1− β/2.
Overall, E1 ∩ E2 ∩ E3 happens with probability at least 1− β.

5. Approximate Privacy Lower Bounds from Fingerprinting Codes

In this section, we show how fingerprinting codes can be used to obtain poly(k) lower bounds
against privately learning k concepts, even for very simple concept classes. Fingerprinting
codes were introduced by Boneh and Shaw (1998) to address the problem of watermarking
digital content. The connection between fingerprinting codes and differential privacy lower
bounds was established by Bun et al. (2014) in the context of private query release, and
has since been extended to a number of other differentially private analyses (Bassily et al.,
2014; Dwork et al., 2014; Steinke and Ullman, 2015; Bun et al., 2015).

A (fully-collusion-resistant) fingerprinting code is a scheme for distributing codewords
w1, . . . , wn to n users that can be uniquely traced back to each user. Moreover, if any
group of users combines its codewords into a pirate codeword w′, then the pirate codeword
can still be traced back to one of the users who contributed to it. Of course, without any
assumption on how the pirates can produce their combined codeword, no secure tracing is
possible. To this end, the pirates are constrained according to a marking assumption, which
asserts that the combined codeword must agree with at least one of the pirates’ codeword
in each position. Namely, at an index j where wij = b for every i ∈ b, the pirates are
constrained to output w′ with w′j = b as well.

To illustrate our technique, we start with an informal discussion of how the original
Boneh-Shaw fingerprinting code yields an Ω̃(k1/3) sample complexity lower bound for multi-
learning threshold functions. For parameters n and k, the (n, k)-Boneh-Shaw codebook is
a matrix W ∈ {0, 1}n×k, whose rows wi are the codewords given to users i = 1, . . . , n. The
codebook is built from a number of highly structured columns, where a “column of type
i” consists of n bits where the first i bits are set to 1 and the last n − i bits are set to 0.
For i = 1, . . . , n − 1, each column of type i is repeated a total of k/(n − 1) times, and the
codebook W is obtained as a random permutation of these k columns. The security of the
Boneh-Shaw code is a consequence of the secrecy of this random permutation. If a coalition
of pirates is missing the codeword of user i, then it is unable to distinguish columns of type
i − 1 from columns of type i. Hence, if a pirate codeword is too consistent with a user i’s
codeword in both the columns of type i− 1 and the columns of type i, a tracing algorithm
can reasonably conclude that user i contributed to it. Boneh and Shaw showed that such a
code is indeed secure for k = Õ(n3).

To see how this fingerprinting code gives a lower bound for multi-learning thresholds,
consider thresholds over the data universe X = {1, . . . , |X|} for |X| ≥ n. The key obser-
vation is that each column of the Boneh-Shaw codebook can be obtained as a labeling of
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the examples 1, . . . , n by a threshold concept. Namely, a column of type i is the labeling of
1, . . . , n by the concept ci. Now suppose a coalition of users T ⊆ [n] constructs a database
S where each row is an example i ∈ T together with the labels wi1, . . . , wik coming from
the codeword given to user i. Let (h1, . . . , hk) be the hypotheses produced by running a
threshold multi-learner on the database. If every user has a bit b at index j of her code-
word, then the hypothesis produced by the learner must also evaluate to b on most of the
examples. Thus, the empirical averages of the hypotheses (h1, . . . , hk) on the examples can
be used to obtain a pirate codeword satisfying the marking assumption. The security of
the fingerprinting code, i.e. the fact that this codeword can be traced back to a user i ∈ T ,
implies that the learner cannot be differentially private. Hence, n samples is insufficient for
privately learning k = Õ(n3) threshold concepts, giving a sample complexity lower bound
of Ω̃(k1/3).

The lower bounds in this section are stated for empirical learning, but extend to PAC
learning by Theorem 28. We also remark that they hold against the relaxed privacy notion
of label privacy, where differential privacy only needs to hold with respect to changing the
labels of one example.

5.1. Fingerprinting Codes

An (n, k)-fingerprinting code consists of a pair of randomized algorithms (Gen,Trace). The
parameter n is the number of users supported by the fingerprinting code, and k is the length
of the code. The codebook generator Gen produces a codebook W ∈ {0, 1}n×k. Each row
wi ∈ {0, 1}k of W is the codeword of user i. For a subset T ⊆ [n], we let WT denote the set
{wi : i ∈ T} of codewords belonging to users in T . The accusation algorithm Trace takes
as input a pirate codeword w′ and accuses some i ∈ [n] (or ⊥ if it fails to accuse any user).

We define the feasible set of pirate codewords for a coalition T and codebook W by

F (WT ) = {w′ ∈ {0, 1}k : ∀j = 1, . . . , k ∃i ∈ S s.t. wij = w′j}.

The basic marking assumption is that the pirate codeword w′ ∈ F (WT ). We say column j
is b-marked if wij = b for every i ∈ [n].

Definition 41 (Fingerprinting Codes) For n, k ∈ N and ξ ∈ (0, 1], a pair of algorithms
(Gen,Trace) is an (n, k)-fingerprinting code with security ξ if Gen outputs a codebook W ∈
{0, 1}n×k and for every (possibly randomized) adversary AFP , and every coalition T ⊆ [n],
if we take w′ ←R AFP (WT ), then the following properties hold.

Completeness: Pr [w′ ∈ F (WT ) ∧ Trace(w′) = ⊥] ≤ ξ,

Soundness: Pr [Trace(w′) ∈ [n] \ T ] ≤ ξ,

Each probability is taken over the coins of Gen,Trace, and AFP . The algorithms Gen and
Trace may share a common state, which is hidden to ease notation.

5.2. Lower Bound for Improper PAC Learning

Our lower bounds for multi-learning follow from constructions of fingerprinting codes with
additional structural properties.
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Definition 42 Let C be a concept class over a domain X. An (n, k)-fingerprinting code
(Gen,Trace) is compatible with concept class C if there exist x1, . . . , xn ∈ X such that for
every codebook W in the support of Gen, there exist concepts c1, . . . , ck such that wij = cj(xi)
for every i = 1, . . . , n and j = 1, . . . , k.

Theorem 43 Suppose there exists an (n, k)-fingerprinting code compatible with a concept
class C with security ξ. Let α ≤ 1/3, β, ε > 0, and δ < 1−ξ−β

n −eεξ. Then every (improper)
(α, β)-accurate and (ε, δ)-differentially private empirical k-learner for C requires sample
complexity greater than n.

The proof of Theorem 43 follows the ideas sketched above.

Proof Let (Gen,Trace) be an (n, k)-fingerprinting code compatible with the concept class
C, and let x1, . . . , xn ∈ X be its associated universe elements. Let D = (x1, . . . , xn) and let
A be an (α, β)-accurate empirical k-learner for C with sample complexity n. We will use
A to design an adversary AFP against the fingerprinting code.

Let T ⊆ [n] be a coalition of users, and consider a codebook W ←R Gen. The adversary
strategy AFP (WT ) begins by constructing a labeled database S = (Si)

n
i=1 by setting Si =

(xi, wi1, . . . , wik) for each i ∈ T and to a nonce row for i /∈ T . It then runs A(S) obtaining
hypotheses (h1, . . . , hk). Finally, it computes for each j = 1, . . . , k the averages

hj(D) =
1

n

n∑
i=1

hj(xi)

and produces a pirate word w′ by setting each w′j to the value of aj rounded to 0 or 1.

Now consider the coalition T = [n]. Since the fingerprinting code is compatible with
C, each column (w1j , . . . , wnj) = (cj(x1), . . . , cj(xn)) for some concept cj ∈ C. Thus, if the
hypotheses (h1, . . . , hk) are α-accurate for (c1, . . . , ck) on S, then w′ ∈ F (WT ) = F (W ).
Therefore, by the completeness property of the code and the (α, β)-accuracy of A, we have

Pr [Trace(AFP (W )) 6= ⊥] ≥ 1− ξ − β.

In particular, there exists an i∗ for which

Pr [Trace(AFP (W )) = i∗] ≥ 1− ξ − β
n

.

On the other hand, by the soundness property of the code,

Pr [Trace(AFP (W−i∗)) = i∗] ≤ ξ.

Thus, A cannot be (ε, δ)-differentially private whenever

1− ξ − β
n

> eε · ξ + δ.
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Remark 44 If we additionally assume that there exists an element x0 ∈ X with c1(x0) =
c2(x0) = · · · = ck(x0), then we can use a “padding” argument to obtain a stronger lower
bound of n/3α. More specifically, suppose c1(x0) = · · · = ck(x0) = 0. We pad the database S
constructed above with (1/3α−1)n copies of the junk row (x0, 0, . . . , 0). Now if a hypothesis
h is α-accurate for a 0-marked column, it’s empirical average will be at most α. On the
other hand, an α-accurate hypothesis for a 1-marked column will have empirical average at
least 2α. Since there is a gap between these two quantities, a pirate algorithm can still turn
an accurate vector of k hypotheses into a feasible codeword.

As observed earlier, the (n, k)-Boneh-Shaw code is compatible with the concept class
THRESHX for any |X| ≥ n. Thus, instantiating Theorem 43 (and Remark 44) with the
Boneh-Shaw code yields a lower bound for k-learning thresholds.

Lemma 45 (Boneh and Shaw (1998)) Let X be a totally ordered domain with |X| ≥ n
for some n ∈ N. Then there exists an (n, k)-fingerprinting code compatible with the concept
class THRESHX with security ξ as long as k ≥ 2n3 log(2n/ξ).

Corollary 46 Every improper (α, β)-accurate and (ε = O(1), δ = o(1/n))-differentially
private empirical k-learner for THRESHX requires sample complexity min{|X|, Ω̃(k1/3/α)}.

Discussion. Compatibility with a concept class is an interesting measure of the complex-
ity of a fingerprinting code which warrants further attention. Peikert et al. (2003) showed
that structural constraints (related to compatibility) on a fingerprinting code give a lower
bound on its length beyond the general lower bound of k = Ω̃(n2) for arbitrary fingerprint-
ing codes. In particular, they showed that the length k = Õ(n3) of the Boneh-Shaw code
is essentially tight for the “multiplicity paradigm”, where a codebook is a random permu-
tation of a fixed set of columns, each repeated the same number of times. We take this
as evidence that our Ω̃(k1/3) lower bound for THRESHX cannot be improved via compatible
fingerprinting codes. However, closing the gap between our lower bound and the upper
bound of roughly

√
k remains an intriguing open question.

A natural avenue for obtaining stronger poly(k) lower bounds for private k-learning
is to identify compatible fingerprinting codes with shorter length. Tardos (2008) showed
the existence of an (n, k)-fingerprinting code of optimal length k = Õ(n2) (see Proposition
49). The construction of his code differs significantly from multiplicity paradigm: for each
column j of the Tardos code, a bias pj ∈ (0, 1) is sampled from a fixed distribution, and
then each bit of the column is sampled i.i.d. with bias pj . Hence, the columns of the Tardos
code are supported on all bit vectors in {0, 1}n. This means that for a concept class C to
be compatible with the (n, k)-Tardos code, it must be the case that VC(C) ≥ n. Thus,
the lower bound one obtains against k-learning C only matches the lower bound for PAC
learning C (without privacy). It would be very interesting to construct a fingerprinting
code of optimal length k = Õ(n2) with substantially fewer than 2n column types (and
hence compatible with a concept class of VC-dimension smaller than n).

5.3. Lower Bound for Agnostic Learning

In the agnostic learning model, a learner has to perform well even when the columns of
a multi-labeled database do not correspond to any concept. This allows us to apply the
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argument of Theorem 43 without the constraint of compatibility. The result is that any
fingerprinting code, in particular one with optimal length, gives an agnostic learning lower
bound for any non-trivial concept class.

Theorem 47 Suppose there exists an (n, k)-fingerprinting code with security ξ. Let C be a
concept class with at least two distinct concepts. Let α ≤ 1/3, β, ε > 0, and δ < 1−ξ−β

n −eεξ.
Then every (improper) agnostic (α, β)-accurate and (ε, δ)-differentially private empirical k-
learner for C requires sample complexity greater than n.

Proof The proof follows in much the same way as that of Theorem 43. Let (Gen,Trace)
be an (n, k)-fingerprinting code, and let x ∈ X be such that there exist c0, c1 ∈ C with
c0(x) = 0 and c1(x) = 1. Let A be an agnostic (α, β)-accurate empirical k-learner for C with
sample complexity n. Define a the fingerprinting code adversary AFP just as in Theorem
43. Namely, AFP constructs examples of the form (x,wi1, . . . , wij) with the available rows
of the fingerprinting code, runs A on the result, and returns the rounded empirical averages
of the k resulting hypotheses.

To show that A cannot be (ε, δ)-differentially private, it suffices to show that if A
produces accurate hypotheses h1, . . . , hk, then the pirate codeword produced by AFP is
feasible. To see this, suppose h1, . . . , hk are accurate, i.e.

max
1≤j≤k

(
errorS|j (hj)−min

c∈C

(
errorS|j (c)

))
≤ α.

Let column j of the codebook W be 0-marked, i.e. wij = 0 for all i ∈ [n]. Recall that
c0(x) = 0, and hence errorS|j (c0) = 0. Therefore, since hypothesis hj is α-accurate, we
have errorS|j (hj) ≤ α. This implies that bit w′j of the pirate codeword is 0. An identical
argument shows that the bits of the pirate codeword in the 1-marked columns are also 1.
Thus, if A produces accurate hypotheses, the pirate codeword produced by AFP is feasible.
The rest of the argument in the proof of Theorem 43 completes the proof.

Remark 48 Just as in Remark 44, a padding argument shows how to obtain a lower bound
of n/3α under some additional assumptions on C, e.g. if the distinct concepts also share a
common point x′ with c0(x

′) = c1(x
′).

Proposition 49 (Tardos (2008)) For n ∈ N and ξ ∈ (0, 1), there exists an (n, k)-
fingerprinting code with security ξ as long as k = O(n2 log(n/ξ)).

Corollary 50 Every improper agnostic (α, β)-accurate and (ε = O(1), δ = o(1/n))-differentially
private empirical k-learner for POINTX , THRESHX , PARd requires sample complexity min{|X|, Ω̃(k1/2)}.

The same proof yields a lower bound for agnostically learning parities under the uniform
distribution.

Proposition 51 Suppose there exists an (n, k)-fingerprinting code with security ξ. Let
α ≤ 1/6, β > 0 and d = log n. Then every (improper) agnostic (α, β, ε = O(1), δ = o(1/n))-
PAC k-learner for PARd requires sample complexity Ω(n).
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Proof [Proof sketch] By Lemma 28, it is enough to rule out a private empirical learner for
a database whose n examples are the distinct binary strings in {0, 1}d. To do so, we follow
the proof of Theorem 47, highlighting the changes that need to be made. First, we let c0
be the all-zeroes concept, and let c1 be an arbitrary other parity function. Second, AFP
instead constructs examples of the form (xi, wi1, . . . , wik) where xi is the ith binary string.
Finally, when converting the hypotheses (h1, . . . , hk) into a feasible codeword, we instead
set w′j to 0 if hj(D) ≤ α, and set w′j to 1 if hj(D) ≥ 1

2 − α. This works because, while
errorS|j (c0) = 0 with respect to 0-marked columns, any concept (and in particular, c1) has

error 1
2 with respect to 1-marked columns.

6. Examples where Direct Sum is Optimal

In this section we show several examples for cases where the direct sum is (roughly) optimal.
As we saw in Section 5, with (ε, δ)-differential privacy, every non-trivial agnostic k-learner
requires sample complexity Ω(

√
k). We can prove a similar result for ε-private learners,

that holds even for non-agnostic learners:

Theorem 52 Let C be any non-trivial concept class over a domain X (i.e., |C| ≥ 2). Ev-
ery proper or improper (α, β=1

2 , ε)-private PAC k-learner for C requires sample complexity
Ω(k/ε).

Beimel et al. (2014, 2013a,b) presented an agnostic proper learner for POINTX with sam-
ple complexity Oα,β,ε,δ(1) under (ε, δ)-privacy, and an agnostic improper learner for POINTX
with sample complexity Oα,β,ε,δ(1) under ε-privacy. Hence, using Observation 32 (direct
sum) with their results yields an (α, β, ε, δ)-PAC agnostic proper k-learner for POINTX
with sample complexity Õα,β,ε,δ(

√
k), and an (α, β, ε)-PAC agnostic improper k-learner for

POINTX with sample complexity Õα,β,ε(k). As supported by our lower bounds (Corollary 50
and Theorem 52), those learners have roughly optimal sample complexity (ignoring the
dependency in α, β, ε, δ and logarithmic factors in k).

Proof [Proof of Theorem 52] The proof is based on a packing argument (Hardt and Talwar,
2010; Beimel et al., 2014). Let x ∈ X and f, g ∈ C be s.t. f(x) 6= g(x). Let µ denote the
constant distribution over X giving probability 1 to the point x. Note that errorµ(f, g) = 1.
Moreover, observe that for every concept h, if errorµ(h, f) < 1 then h(x) = f(x), and
similarly with h, g.

Let A be an (α, β, ε)-private PAC k-learner for C with sample complexity n. For every
choice of k target functions (c1, . . . , ck) = ~c ∈ {f, g}k, let S~c denote the k-labeled database
containing n copies of the point x, each of which is labeled by c1, . . . , ck. Without loss
of generality, we can assume that on such databases A returns hypotheses in {f, g} (since
under µ we can replace an arbitrarily chosen hypothesis h with f if f(x) = h(x) or with g if
g(x) = h(x)). Therefore, by the utility properties of A, for every ~c = (c1, . . . , ck) ∈ {f, g}k
we have that PrA[A(S~c) = (c1, . . . , ck)] ≥ 1

2 . By changing the database S~c to S~c′ one row
at a time while applying the differential privacy constraint, we see that

Pr
A

[A(S~c) = (c′1, . . . , c
′
k)] ≥

1

2
e−εn.
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Since the above inequality holds for every two databases S~c and S~c′ , we get

1

2
≥ Pr
A

[A(S~c) 6= (c1, . . . , ck)] ≥ (2k − 1)
1

2
e−εn.

Solving for n, this yields n = Ω(k/ε).

Remark 53 The above proof could easily be strengthened to show that n = Ω( kαε), provided
that C contains two concepts f, g s.t. ∃x, y ∈ X for which f(x) 6= g(x) and f(y) = g(y).

The following lemma shows that the sample complexities of properly and improperly
learning parities under the uniform distribution are the same. Thus, for showing lower
bounds, it is without loss of generality to consider proper learners.

Lemma 54 Let α < 1/4. Let A be a (possibly improper) (α, β, ε, δ)-PAC k-learner for
PARd under the uniform distribution with sample complexity n. Then there exists a proper
(α′ = 0, β, ε, δ)-PAC k-learner A′ for PARd (under the uniform distribution) with sample
complexity n.

Proof The algorithm A′ runs A and “rounds” each hypothesis hj produced to the nearest
parity function. That is, it outputs (h′1, . . . , h

′
k) where h′j is a parity function that mini-

mizes Prx∼Ud
[h′j(x) 6= hj(x)]. Since this is just post-processing of the differentially private

algorithm A, the proper learner A remains (ε, δ)-differentially private.
Now suppose (h1, . . . , hk) is α-accurate for parity functions (c1, . . . , ck) on the uniform

distribution. Then for each j,

Pr
x∼Ud

[h′j(x) 6= cj(x)] ≤ Pr
x∼Ud

[h′j(x) 6= hj(x)] + Pr
x∼Ud

[hj(x) 6= cj(x)]

≤ 2 Pr
x∼Ud

[hj(x) 6= cj(x)]

≤ 2α.

Hence, errorUd
(h′j , cj) < 1/2. Since the error of any parity function from cj (other than cj

itself) is exactly 1/2 under the uniform distribution, we conclude that (h′1, . . . , h
′
k) is in fact

0-accurate for (c1, . . . , ck).

Theorem 55 Let α < 1
4 . Every (α, β=1

2 , ε)-PAC k-learner for PARd (under the uniform
distribution) requires sample complexity Ω(kd/ε).

As we saw in Example 1, applying direct sum for k-learning parities results in a proper
agnostic (α, β, ε)-PAC k-learner for PARd with sample complexity Oα,β,ε(kd + k log k). As
stated by Theorem 55, this is the best possible (ignoring logarithmic factors and the depen-
dency in α, β, ε).
Proof [Proof of Theorem 55] The proof is based on a packing argument (Hardt and Talwar,
2010; Beimel et al., 2014). Let A be an (α, β, ε)-PAC k-learner for PARd with sample
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complexity n. By Lemma 54, we may assume A is proper and learns the hidden concepts
exactly.

For every choice of k parity functions (c1, . . . , ck) = ~c ∈ (PARd)
k, let S~c denote a random

k-labeled database containing n i.i.d. elements from Ud, each labeled by (c1, . . . , ck). By
the utility properties of A we have that PrUd,A[A(S~c) = ~c] ≥ 1

2 . In particular, for every
~c ∈ (PARd)

k there exists a database D~c labeled by ~c s.t. PrA[A(S~c) = ~c] ≥ 1
2 . By changing

the database D~c to D~c′
one row at a time while applying the differential privacy constraint,

we see that

Pr
A

[A(D~c) = ~c′] ≥ 1

2
e−εn.

Since the above inequality holds for every two databases D~c and D~c′
, we get

1

2
≥ Pr
A

[A(D~c) 6= ~c] ≥ (| PARd |k − 1)
1

2
e−εn.

Solving for n, this yields n = Ω(kd/ε).
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