
Journal of Machine Learning Research 20 (2019) 1-47 Submitted 8/18; Revised 6/19; Published 8/19

Logical Explanations for Deep Relational Machines Using
Relevance Information

Ashwin Srinivasan ashwin.srinivasan@wolfson.oxon.org
Department of Computer Sc. & Information Systems
BITS Pilani, K.K. Birla Goa Campus, Goa, India

Lovekesh Vig Lovekesh.Vig@tcs.com
TCS Research, New Delhi, India

Michael Bain m.bain@unsw.edu.au

School of Computer Science and Engineering

University of New South Wales, Sydney, Australia.

Editor: Luc De Raedt

Abstract

Our interest in this paper is in the construction of symbolic explanations for predictions
made by a deep neural network. We will focus attention on deep relational machines
(DRMs: a term introduced in Lodhi (2013)). A DRM is a deep network in which the input
layer consists of Boolean-valued functions (features) that are defined in terms of relations
provided as domain, or background, knowledge. Our DRMs differ from those in Lodhi
(2013), which uses an Inductive Logic Programming (ILP) engine to first select features (we
use random selections from a space of features that satisfies some approximate constraints
on logical relevance and non-redundancy). But why do the DRMs predict what they do?
One way of answering this was provided in recent work Ribeiro et al. (2016), by constructing
readable proxies for a black-box predictor. The proxies are intended only to model the
predictions of the black-box in local regions of the instance-space. But readability alone
may not be enough: to be understandable, the local models must use relevant concepts
in an meaningful manner. We investigate the use of a Bayes-like approach to identify
logical proxies for local predictions of a DRM. As a preliminary step, we show that DRM’s
with our randomised propositionalization method achieve predictive performance that is
comparable to the best reports in the ILP literature. Our principal results on logical
explanations show: (a) Models in first-order logic can approximate the DRM’s prediction
closely in a small local region; and (b) Expert-provided relevance information can play the
role of a prior to distinguish between logical explanations that perform equivalently on
prediction alone.

Keywords: Explainable AI, Inductive Logic Programming, Deep Relational Machines

1. Introduction

In Stewart (1994) a contrast is presented between theories that predict everything, but
explain nothing, and those that explain everything, but predict nothing. Both are seen as
having limited value in the scientific enterprise, which requires models with both predictive

c©2019 Ashwin Srinivasan and Lovekesh Vig and Michael Bain.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/18-517.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/18-517.html

Srinivasan, Vig and Bain

and explanatory power. Michie and Johnston (1984) add a further twist to this by suggest-
ing that the limitations of the human brain may force a “window” on the complexity of
explanations that can be feasibly understood, even if they are described in some readable
form like a natural or a symbolic formal language.

Complexity limits notwithstanding, it is often assumed that that predictive and explana-
tory assessments refer to the same model. But this does not have to be so: early results in
the Machine Learning (ML) literature on behavioural cloning point to areas where people
perform predictive tasks using sub-symbolic models, for which entirely separate symbolic
explanations were constructed by machine (Michie, 1986). It is not therefore inevitable that
machine learning models be either purely sub-symbolic or purely symbolic.

There are, of course, problems for which one or the other is much better suited. Promi-
nent recent examples of successful sub-symbolic learning abound with the use of deep neu-
ral networks in automatic caption learning (“woman in a white dress standing with tennis
racquet”: Karpathy and Li (2015)), speech-recognition (Siri, Google Now) and machine
translation (Google Translate). It is equally evident that for learning recursive theories,
program synthesis, and learning with complex domain-knowledge, symbolic techniques like
Inductive Logic Programming (ILP) have proved to be remarkably effective. But there
are also a number of problems that could benefit from an approach that requires not one
or the other, but both forms of learning (in his book “Words and Rules”, Steven Pinker
conjectures language learning as one such task).

Our interest here therefore is in investigating the use of separate models for prediction
and explanation. Specifically, we examine the use of a neural model for prediction, and a
logical model for explanation. But in order to ensure that the models are about the same
kinds of things, the models are not constructed independent of each other. The neural
model is constructed in terms of features in (first-order) logic identified by a simple form
of propositionalization methods developed in ILP. In turn, the predictions of the neural
model are used to construct logical models in terms of the features.1 Figure 1 shows how
the various pieces we have just described fit together.

Having two separate models would appear to be an extravagance that could be ill-
afforded if the neural model wasn’t a very good predictor, or if the logical model wasn’t a
very good explainer.

In this paper, we are concerned with the analysis of relational data. That is, a data
instance is described not just by values of some pre-defined attributes, but also by by pre-
defined relations. A good example of such a data instance is a molecule known to target a
malarial parasite. Such a molecule not only has attributes like its molecular weight, solu-
bility, hydrophobicity and so on, but also has connected ring-structures, functional groups,
and the like. For predictions on data like these, we use a specific form of neural models
called deep relational machines or DRMs. The term, originally introduced in Lodhi (2013),
can be broadly understood as a class of neural models in which the inputs include Boolean
features defined using known relations. For example, a Boolean feature for molecular data
may be TRUE if the molecule has “a 7-member ring connected to a lactone ring with a
peroxide bridge” and FALSE otherwise. Here definitions of relations like a 7-member ring,
lactone ring, and a peroxide bridge are known. In its original formulation, a DRM relied

1. We restrict ourselves in this paper to queries of the form: “What is the class of instance x?”, but the
ideas extend straightforwardly to tasks other than classification.

2

Logical Explanations for Deep Relational Machines Using Relevance Information

Figure 1: What this paper is about. N is a deep neural network, and S is a symbolic learner.
B is domain-specific background knowledge; L language constraints; E a set of
training examples. N is used to construct a predictive model M . Explanations of
why M predicts the class of a test instance x are to be obtained as a logical model
that uses features, that are pre-defined in B or “invented”. Correctly, B and L
on the right are augmentations of those on the left; and the S’s on right and
left are different instantiations of a first-order symbolic learner that is capable of
producing definitions of features (left), or explanations (right).

on selection of Boolean features using Inductive Logic Programming (Muggleton and De
Raedt, 1994). More recently, it has been shown in an extensive empirical study that DRMs
with stochastic selection of relational features can achieve predictive accuracies that are
often better than the state-of-the-art (Dash et al., 2018). We will therefore take this form
of a DRM as the basis for prediction. Using the DRMs as predictors, our interest is in
developing symbolic explanations for the predictions. Specifically:

• We present a method for extracting local symbolic explanations in terms of the input
features of the DRM by employing a Bayes-like trade-off of predictive-fit and prior
preference. The latter is obtained using domain-knowledge of relevance of predicates
used in the explanations.

The combination of using prediction with relational features and relevance information ex-
tends the techniques proposed in Ribeiro et al. (2016) in the direction of making explanations
both more expressive (since the features are definitions in first-order logic) and meaningful
(by incorporating domain-specific preferences into explanations). We will demonstrate the
use of combining predictive performance and relevance on real-life biochemical problems for
which we have the necessary relevance information. However, the approach we propose can

3

Srinivasan, Vig and Bain

prove useful to any relational learning task in which there is at least a partial-ordering over
domain-predicates. These applications could be as diverse as recommender systems (for
example, movies directed by certain directors may be more relevant to recommendations
for a particular genre), classification (for example, when paper citations are to be classi-
fied as being the same, it may be equally relevant to check similarities in title, or the list
of authors, but less relevant to examine the paper’s keywords), or function-prediction (for
example, when predicting gene-function using relations in the Gene Ontology, predicates
with evidence-codes based on experimental evidence may be more relevant than those based
on computational evidence). It may not be necessary to have prior knowledge for this —
recent work suggests that it may be possible, for any relational learning task, to derive such
a partial-ordering automatically from data, using a probabilistic definition of the generality
of domain-predicates.2 A decision-theoretic technique for determining relevant predicates
for general relational learning tasks was proposed earlier in Srinivasan (2001).

The rest of the paper is organised as follows. In Section 2 we describe the DRMs we
use for prediction. Section 3 describes the notion of explanations as used in this paper.
Selection amongst several possible explanations is in Section 4, which introduces the use
of a relevance-based prior in Section 4.1. Section 5 presents an empirical evaluation of the
predictive and explanatory models, using some benchmark datasets. Appendix C contains
details of the domain-specific relevance information used in the experiments.

2. A Deep Relational Machine for Prediction

One of the most remarkable recent advances in the area of Machine Learning is a resurgence
of interest in neural networks, resulting from the automated construction of “deep networks”
for prediction. Simplistically, Deep Learning is using neural networks with multiple hidden
layers. Mathematically speaking, it is a composition of multiple simple non-linear functions
trying to learn a hierarchy of intermediate features that most effectively aid the global
learning task. Learning such intermediate features with neural networks has been made
possible by three separate advances: (a) mathematical techniques that allow the training
of neural networks with very large numbers of hidden layers; (b) the availability of very
large amounts of data that allow the estimation of parameters (weights) in such complex
networks; and (c) the advanced computational capabilities offered by modern day GPUs
to train deep models. Despite successes across a wide set of problems, deep learning is
unlikely to be sufficient for all kinds of data analysis problems. The principal difficulties
appear to lie in the data and computational requirements to train such models. This is
especially the case if many hidden layers are needed to encode complex concepts (features).
For many industrial processes, acquiring data can incur significant costs, and simulators
can be computationally very intensive.

Some of this difficulty may be alleviated if knowledge already available in the area
of interest can be taken into account. Consider, for example, a problem in the area of
drug-design. Much may be known already about the target of interest: small molecules
that have proved to be effective, what can and cannot be synthesized cheaply, and so
on. If these concepts are relevant to constructing a model for predicting good drugs, it
seems both unnecessary and inefficient to require a deep network to re-discover them (the

2. See: https://www.doc.ic.ac.uk/∼shm/Papers/relevance18.pdf

4

Logical Explanations for Deep Relational Machines Using Relevance Information

problem is actually worse — it may not even be possible to discover the concepts from
first-principles using the data available). It is therefore of significant practical interest to
explore ways in which prior domain-knowledge could be used in deep networks to reduce
data and computational requirements.

Deep Relational Machines, or DRMs, proposed in Lodhi (2013), are deep neural networks
with first-order Boolean functions at the input layer (“function F1 is true if the instance x
is a molecule containing a 7-membered ring connected to a lactone ring” — definitions of
relations like 7-membered and lactone rings are expected to be present in the background
knowledge).

We note that DRMs are one example of a much broader class of neural-symbolic models,
which are surveyed in Besold et al. (2017). In ILP, pioneering work on the combination
of neural-networks and symbolic features has been done by d’Avila Garcez and Zaverucha
(1999) and extended in França et al. (2014, 2015). For the purposes of this paper, we will
use the term “DRM” to mean a neural network with multiple hidden layers, and an input
layer with values for first-order Boolean functions. We will further assume that the function
definitions employ predicates that are defined as part of domain- or background-knowledge.
In this sense, the neural networks in França et al. (2015) for example are DRMs, and
the definitions and techniques for constructing explanations employed here apply without
change to those models.

2.1. Input Features for a DRM

Ideally, we would like the inputs for a DRM to consist of all possible relational features, and
let the network’s training process decide on the features that are actually useful (in the usual
manner: a feature that has 0 weights for all out-going edges is not useful). The difficulty
with this is that the number of such features in first-order logic can be very large, often
impractical to enumerate completely. In Lodhi (2013) the functions are learned using an
Inductive Logic Programming (ILP) engine3. This follows a long line of research, sometimes
called propositionalization, in which features constructed by ILP have been used by other
learning methods like regression, decision-trees, SVMs, topic-models, and multiplicative
weight-update linear threshold models, and neural-network models. In each of these, the
final model is constructed in two steps: first, a set of features is selected, and then, the final
model is constructed using these features, possibly in conjunction with other features already
available. Usually the models show significant improvements in predictive performance when
an existing feature set is enriched in this manner.

In Lodhi (2013), deep networks with ILP-features are shown to perform well, although
the empirical evidence is limited. Recently, a simple approach for stochastic selection of
relational features was introduced in Vig et al. (2018) in the context of evaluating embed-
dings. This form of randomised feature-selection has since been evaluated extensively in
Dash et al. (2018) and found to give predictive performance better than the state-of-the-art
for classification problems.

In this paper, we will use this form of stochastic selection of relational features as inputs
for a DRM. For completeness, we clarify first what we mean by a relational instances and
feature.

3. Terminology from Logic Programming and ILP is defined in Appendix A.

5

Srinivasan, Vig and Bain

Definition 1 Relational Examples for Classification. The set of examples provided
can be defined as a binary relation Class which is a subset of the Cartesian product X ×Y,
where X denotes the set of relational instances (for simplicity, and without loss of generality,
we will take each instance to be a ground first-order term), and Y denotes the finite set
of class labels. Any single element of the set of relational examples will be denoted by
Class(a, c) where a ∈ X and c ∈ Y.

Definition 2 Relational Features. A relational feature is a unary function Fi : X 7→
{TRUE ,FALSE} defined in terms of a conjunction of predicates Cpi(x). Each predicate in
Cpi(x) is defined as part of domain- or background-knowledge B. That is, Fi(x) 7→ TRUE
iff Cpi(x) 7→ TRUE and FALSE otherwise. We will represent each relational feature as a
single definite clause ∀x (Fi(x) ← Cpi(x)) in a logic program, relying on the closed-world
assumption for the complete definition of Fi. We will sometimes call the relational feature
Fi simply the feature Fi, and the definite-clause definition for Fi the feature-definition for
Fi. If the feature-definition of Fi is in B, we will sometimes say “feature Fi is in B.” We
will usually denote the set of features in B as FB or simply F .

In terms of the classes of features identified in Saha et al. (2012), our definition corresponds
to the least constrained class of features (Fd) in that paper. The relational features selected
by an ILP engine in Lodhi (2013) are from this class, and those in França et al. (2014, 2015)
are from the class of independent features (Fi) in Saha et al. (2012).

Definition 3 Classification clause. A clause for classifying a relational example Class(a, c)
is a clause ∀x(Class(x, c) ← Cp(x)), where Cp(x) is a conjunction of predicates. Each
predicate in Cp(x) is defined as part of domain- or background-knowledge B.

It is evident from the definitions that some or all of a classification clause can be converted
into relational features.

Example 1 The trains problem. The figure below shows a well-known synthetic problem
in the ILP literature, Michalski’s “Trains” problem, originally posed in Michalski (1983):

6

Logical Explanations for Deep Relational Machines Using Relevance Information

There are two sets of trains: Eastbound and Westbound. Descriptors for the trains
include: number, shape and lengths of the car, shape of load, and so on. The task is to
determine classification rules to distinguish Eastbound trains from Westbound ones.

For this problem each relational example is a pair, consisting of a ground first-order
term and a class label. The ground term represents the train (for example Train(Car(Long,
Open,Rect, 3), Car(Short, Closed, Triangle, 1), . . .)) and the label denotes whether or not
it is Eastbound.

We assume also that we have access to domain (or background) knowledge B that al-
lows us to access aspects of the relational instance such as Has Car(Train(. . .), Car(. . .)),
Closed(Car(. . .)) and so on. Then a clause for classifying Eastbound trains is (we leave
out the quantifiers for simplicity):

Class(x,East)← Has Car(x, y), Short(y), Closed(y)

Here Cp(x) = Has Car(x, y) ∧ Short(y) ∧Closed(y). The following relational features
can be obtained from this classification clause:

F1(x)← Has Car(x, y), Short(y)

and:
F2(x)← Has Car(x, y), Closed(y)

The classification clause could now be written as:

Class(x, c)← F1(x), F2(x)

Clauses like the last one in the example above will be called feature-clauses. Somewhat
informally:

Definition 4 Feature-clause. A feature-clause is a clause in which all negative literals
are relational features.

We note that “propositionalization” of relational data is simply a conversion of a relational
instance into a vector-form, using relational features.

Definition 5 Feature Vector of a Relational Instance. For a set of relational features
F ordered in some canonical sequence (F1, F2, . . . , Fd) we obtain a Boolean-vector represen-
tation x′ ∈ {0, 1}d of a relational instance x ∈ X using the function FV : X → {0, 1}d,
where the ith component FV i(x) = 1 if Fi(x) 7→ TRUE, and 0 otherwise. We will some-
times say a′ is the feature-space representation of relational instance a.

In this paper, the components for predicting the class-label of a relational instance a
using a DRM M are shown in Fig. 2. This is a 2-step process: (1) The feature-vector
representation a′ of a is obtained using the feature-definitions found during the training
stage; and (2) a′ is provided as input to the model M found during training, which then
computes the class-label (Fig. 3).
Although we are only concerned with DRMs in this paper, the logical explanations we
construct apply more broadly to black-box models that use a feature-vector represent ion
of relational instances in the sense defined in Defn. 5.

7

Srinivasan, Vig and Bain

Figure 2: More details on the training component in Fig. 1. L denotes language constraints
on the relational features, and DrawFeatures is the stochastic feature construc-
tion procedure described in Vig et al. (2018). Features are used to represent
(“propositionalize”) each relational instance in the training data as a feature-
vector. FV(E) denotes the feature-vectors of all relational instances E in the
training data. Model M is a DRM. The optimiser finds the best structure and
parameters for the DRM using FV(E).

Figure 3: Prediction of the class of a relational instance a by a DRM. The inputs fi are
the component values of the feature-vector FV i(a). The shaded inputs denote a
feature-value of 1. With a DRM, there is more to fi = 1 than just an assignment
of 1 to feature: it also means that some conjunction of background predicates
Cpi(a) is TRUE for the relational instance a. The shaded circles in hidden layers
denote activated nodes. The shaded output node denotes the prediction of the
relational instance is East.

8

Logical Explanations for Deep Relational Machines Using Relevance Information

3. Logical Explanations using Feature-Clauses

We introduce first a more general notion of a logical explanation.

Definition 6 Logical Explanation. We assume a set of relational instances X , and a
finite set of classes Y. Given a relational instance a ∈ X and a label c ∈ Y, the statement
Class(a, c) will denote that the class of a is c. Let e = Class(a, c). Then given background
knowledge B, a logical explanation for e is a set of clauses H s.t. B ∪H |= e.

An explanation using feature-clauses is a special case of a logical explanation.

Example 2 An explanation in the trains problem. One logical explanation H = {C}
for the first train in the left column of in Example 1 is the feature-clause:

C : Class(t1, East)← F1(t1), F2(t1), F3(t1)

where B contains:
∀x(F1(x)← ∃y(Has Car(x, y), Short(y)))

∀x(F2(x)← ∃y(Has Car(x, y), Closed(y)))

∀x(F3(x)← ∃y(Has Car(x, y), Long(y)))

Here t1 is used as short-form for a structured term, describing the train, and, as before, let
us assume that appropriate definitions exist in B for predicates like Has Car, Long, Short,
and Closed to succeed (or fail) on terms like t1.

We will now restrict attention to explanations consisting of feature-clauses. It is useful
for this paper to consider such explanations in two categories: those consisting of a single
feature-clause, and those consisting of multiple feature-clauses.

3.1. Single-Clause Explanations

Assume we have a set of d features F with corresponding feature-definitions in the back-
ground knowledge B. We will first consider the case where explanation H consists of a single
feature-clause. That is, H = {C}, where C is a definite clause ∀x (Class(x, c) ← Body).
Here Body is a conjunction of Fi/1 literals, each of which is defined in B. The ILP prac-
titioner will recognise that finding a single feature-clause explanation for Class(a, c) is an
instance of the “Single example clause, single hypothesis clause” situation identified in Mug-
gleton (1994), which forms the basis of Explanation-Based Learning (EBL – see Mitchell
et al., 1986).

One explanation for e = Class(a, c) can be obtained immediately as follows. Con-
sider the set Fa = {Fi : Fi ∈ F s.t. FV i(a) = 1} (let us call these the set of ac-
tive features for a). By definition, if FV i(a) = 1 then Fi(a) 7→ TRUE . For simplic-
ity, let us suppose that Fa = {F1, . . . Fk} is the set of active features for a, and let
C : Class(a, c)← F1(a), F2(a), . . . , Fk(a). Assuming the Fi are defined in B, H = {C} is
an explanation for e.4 Algorithm 1 is a simple procedure to construct a single-clause expla-
nation C ′ that relies on the result that if C ′ �θ C, then C ′ |= C. Therefore, if B∪{C} |= e,

4. ILP practitioners will recognise C as being analogous to the most-specific clause in Muggleton (1995),
and we will call it the most-specific feature-clause for e, given F and B.

9

Srinivasan, Vig and Bain

then evidently B ∪ {C ′} |= e. That is, {C ′} will also be an explanation for e. For reasons
that will be apparent, we will call {C ′} an “unstructured” explanation.5

Algorithm 1: A non-deterministic procedure for identifying a single-clause unstruc-
tured explanation.

1 Algorithm ConstructUnstruct(e,B,F)
Input: A relational instance e; background knowledge B; and a set of features F with

definitions in B.
Output: A single feature-clause explanation H s.t. B ∪H |= e.

2 Let e = Class(a, c)
3 Let a′ = FV (a)
4 Let F ′ be the set of features that map to TRUE in a′

5 Let H be the subset-lattice of F ′
6 Let F ′′ be any non-empty subset in H
7 Let C ′ = ∀x(Class(x, c)← Body)
8 where Body is the conjunction of features Fi(x) for Fi ∈ F ′′,
9 return {C ′}

Example 3 ConstructUnstruct for the trains problem. Let the background knowledge
B contain the relational features:

∀x(F1(x)← ∃y(Has Car(x, y), Short(y)))

∀x(F2(x)← ∃y(Has Car(x, y), Closed(y)))

∀x(F3(x)← ∃y(Has Car(x, y), Long(y)))

∀x(F4x)← ∃y(Has Car(x, y), Long(y), Closed(y)))

Then, for ConstructUnstruct(Class(t1, East), B, {F1, F2, F3, F4}) (where t1 denotes the
first train on the left in Example 1):

1. a′ = [1, 1, 1, 0];

2. F ′ = {F1, F2, F3};

3. F ′′ can be any non-empty subset of {F1, F2, F3} (for example, F ′′ = {F1, F3}); and

4. C ′ is the clause ∀x(Class(x,East)← Body) where Body is the conjunction of literals
Fi(x) where Fi ∈ F ′′ (for example, C ′ = ∀x(Class(x,East)← F1(x), F3(x)))

In practice, we will need some way of searching the space of subsets of F ′. A fidelity-
measure introduced later allows us to compare unstructured explanations, and forms the
basis for guiding a search strategy.

5. In practice, in Algorithm 1 the lattice in Step 5 would be represented by a graph, and finding an
element of the lattice in Step 6 will involve some form of optimal graph-search to find an optimal (or
near-optimal) solution. More on this later.

10

Logical Explanations for Deep Relational Machines Using Relevance Information

3.2. Multi-Clause Explanations

We now extend explanations to a restricted form of multi-clause explanation, able to use
features not all of which are defined in background knowledge B. These “invented” features
will be required to be (re-)expressible in terms of features already defined in B. In this
paper we will require structured and unstructured explanations to be related by the logic-
program transformation operations of folding and unfolding . That is, given an unstructured
explanation H and a structured explanation H1, H can be derived from H1 using one or
more unfolding transformations; and H1 can be derived from H using one or more folding
transformations. We describe the transformations, along with the conditions that ensure
that the computable answers do not change when the transformation is applied.

Definition 7 (One-Step) Unfolding of a clause (Hogger, 1990). Given a set of defi-
nite clauses P , w.l.o.g. let C ∈ P s.t. C = Head ← L1, . . . , Li, . . . , Lk (k ≥ 1). Let C ′ ∈ P
be a clause L′i ← Body ′ s.t. Li and L′i unify with m.g.u. θ. Then the (one-step) unfolding of
C w.r.t. Li using P is the clause Unfold(C) : (Head ← L1, . . . , Li−1,Body ′, Li+1, . . . , Lk)θ

Definition 8 (One-Step) Folding of a clause (Hogger, 1990). Given a set of definite
clauses P , w.l.o.g. let C ∈ P s.t. C = Head ← L1, . . . , Li−1,Body i, Li+1, . . . , Lk, where
Body i is some literals B1, B2, . . . , Bj (j, k ≥ 1). Let C ′ be a clause L′i ← Body ′ s.t. there
is a substitution θ that satisfies: (a) Body i = Body ′iθ; (b) Every existentially quantified
variable y in C, yθ is a variable that occurs only in Body i and nowhere else; (c) For any
pair of distinct existential variables y, z in C yθ 6= zθ; and (d) C ′ is the only clause in P
whose positive literal unifies with L′iθ. Then the (one-step) folding of C w.r.t. Body i using
P is the clause Fold(C) : (Head ← L1, . . . , Li−1, L

′
iθ, Li+1, . . . , Lk).

Remark 1 Correctness of Transformations. In Petterossi and Proietti (1998) the
unfold and fold transformations defined above are shown to be correct as replacement rules
w.r.t. the minimal-model (MM) semantics. That is, if P is a definite-clause program and
C ∈ P , then MM(P) = MM((P − {C}) ∪ Trans(C)), where Trans(C) is Fold(C) or
Unfold(C).

We can use this to construct structured explanations that are correct, in the computational
sense just identified. That is, a structured explanation can replace an unstructured expla-
nation without altering the minimal model of the (program containing) the unstructured
explanation. It will be convenient to define the notion of an “invented” feature.

Definition 9 Invented Feature. Given background knowledge B, a feature F is said
to be an invented feature if: (1) F is not defined in B; and (2) The definition of F is a
feature-clause C whose body contains features in B only; or is a clause that unfolds to a
feature-clause C containing features only in B. We will sometimes denote C as UFC(F)
(short for “unfolded feature-clause for F”).

That is, UFC(F) unfolds the definition of F only to the extent that the result is a feature-
clause (that is, all literals in the definition are features defined in the background knowledge).

11

Srinivasan, Vig and Bain

Example 4 Invented features in the trains problem. The features F1,1 and F1,2 below
are invented features:

F1,1(x)← F2(x), F1,2(x)
F1,2(x)← F4(x), F9(x)

where the Fi are features defined in background knowledge:

F2(x)← Has Car(x, y), Short(y)
F4(x)← Has Car(x, y),Wheels(y, 3)
F9(x)← Has Car(x, y), Load(y, triangle)

Then UFC(F1,1) is:

F1,1,(x)← F2(x), F4(x), F9(x)

and UFC(F1,2) is identical to the definition of F1,2.

We distinguish between unstructured and structured definitions based on the presence or
absence of invented features.

Definition 10 Unstructured and structured explanations. Let a ∈ X and Y be a set
of class labels, with c ∈ Y. Let N : <d → Y be a predictive model such that N(FV (a)) = c.
Given background knowledge B, let H be an explanation for Class(a, c) containing the
feature-clause C : ∀x(Class(x, c) ← Body). Let Body consist of features FC . Let FC be
partitioned into: (a) FC,old, consisting of features defined in B; and (b) FC,new, consisting
of features defined in H −B.

We will call H an unstructured explanation iff: (1) FC contains only old features (that
is, FC,new = ∅); and (2) H = {C}.

We will call H a structured explanation iff: (1) FC contains only invented features
(that is, FC,old = ∅); and (2) H = {C} ∪ InvF , where InvF only contains clauses defining
invented features in FC,new; (3) For each feature F in FC,new there is a single clause defi-
nition in InvF s.t. F unfolds to a unique feature-clause defined using features in B only;
and (4) At least one F ∈ FC,new unfolds to a feature-clause that contains at least 2 features
from B (that is, there is at least one invented feature that is not a trivial rewrite of features
in B).6

That is, a structured explanation is a set of clauses containing a classification clause C
along with definitions of invented features (and thus is a case of the “single example clause,
multiple hypothesis clauses” situation in Muggleton (1994)).

Example 5 Unstructured and structured explanations for the trains problem.
Suppose we are given an instance a ∈ X , and a set of features F , each defined by feature-
definitions in background B. Then we will call the following an unstructured explanation (x
is universally quantified):

C : Class(x,East)← F2(x), F3(x), F4(x), F9(x)

6. If required, for a structured explanation containing a clause C with a F ∈ FC,new defined by a feature-
clause whose clause body contains exactly one feature F ′ ∈ FC,old, a more compact “semi-structured”
explanation can be obtained by a one-step folding. See the example that follows.

12

Logical Explanations for Deep Relational Machines Using Relevance Information

The following is a structured explanation H1:

Class(x,East)← F1,1(x), F1,2(x)
F1,1(x)← F2(x), F3(x)
F1,2(x)← F4(x), F9(x)

where, as usual, the features F2,3,4,9 are defined as background knowledge:

F2(x)← Has Car(x, y), Short(y)
F3(x)← Has Car(x, y), Closed(y)
F4(x)← Has Car(x, y),Wheels(y, 3)
F9(x)← Has Car(x, y), Load(y, triangle)

Note that H1 unfolds to H. Another structured explanation that also unfolds to H is H2

below:

Class(x,East)← F1,1(x), F1,2(x)
F1,1(x)← F1(x), F4(x)
F1,2(x)← F3(x), F9(x)

We will assume that explanations of the form Class(x,East)← F1,1(x), F3(x), F9(x) will be
represented as H2. Also, by definition, the following is not a structured explanation, since
all new features are trivial rewrites of existing ones:

Class(x,East)← F1,1(x), F1,2(x)
F1,1(x)← F1(x)
F1,2(x)← F3(x)

But this is a structured explanation:

Class(x,East)← F1,1(x), F1,2(x)
F1,1(x)← F1(x)
F1,2(x)← F3(x), F9(x)

It is obvious enough that every structured explanation allows the derivation by unfolding
of a correct unstructured explanation.

Remark 2 Deriving an Unstructured Explanation from a Structured Explana-
tion. Let H = {C ′}∪InvF be a structured explanation for a relational example Class(a, c)
given background knowledge B. W.l.o.g. from Defn. 10, C ′ is a clause Class(x, c) ←
{F ′1(x), F ′2(x), . . . , F ′k(x)} s.t. each F ′i unfolds using InvF to a unique feature-clause
F ′i(x) ← Fi,1(x), . . . , Fi,ni(x), where the Fi,· are defined in B. From Defn.7, unfolding C ′

w.r.t. the F ′i using InvF results in the clause C : Class(x, c) ← F1,1, . . . , Fk,nk
. From

Remark 1, the minimal model of B ∪H will be unchanged by replacing C ′ with C. It fol-
lows that H = {C} is an unstructured explanation for Class(a, c) that is computationally
equivalent to H ′. Here “computationally equivalent” means that the structured explanation
computes the same set of answers under the minimal model semantics as the unstructured
explanation (see Hogger, 1990).

One or more correct structured explanations follow from an unstructured explanation if the
conditions in Defn. 8 hold. Constraints on the invented features can ensure this.

13

Srinivasan, Vig and Bain

Remark 3 Deriving Structured Explanations from an Unstructured Explana-
tion. Let H = {C} be an unstructured explanation for a relational example Class(a, c)
given background knowledge B. W.l.o.g. from Defn. 10, C is a clause Class(x, c) ←
{F1(x), F2(x), . . . , Fn(x) s.t. each Fi is defined in B. Let InvF consist of k features
F ′1, . . . , F

′
k s.t. each F ′i is uniquely defined by features in a block of a k-partition of

F1, . . . , Fn. Let C ′ be the clause Class(x, c) ← F ′1(x), F ′2(x), . . . , F ′k(x). Then H ′ =
{C ′} ∪ InvF is a structured explanation for Class(a, c) that is computationally equivalent
to B ∪ {C} ∪ InvF . This follows since the conditions (a)–(d) in Defn. 8 are trivially satis-
fied (condition (a) follows with θ being a simple renaming substitution; (b)–(c) follow since
there are no existential variables in the definitions of the F ′i; and (d) since there is a single
clause definition for each feature in InvF).

Remark 3 suggests a straightforward non-deterministic procedure to construct a correct
structured explanation (Algorithm 2).

Algorithm 2: A non-deterministic procedure for obtaining a structured explanation from

an unstructured explanation, by inventing k features. The condition in Step 5 is not required

by Remark 3, but prevents inventing features that are trivial rewrites of existing features (see

Defn. 10).

1 Algorithm ConstructStruct(H, k)
Input: An unstructured explanation H; and a number k (≥ 2).
Output: A structured explanation H ′ that is computationally equivalent to H.

2 Let H = ∀x(Class(x, c)← Body).
3 Let F be the set of features in Body.
4 Let Pk be a set s.t. one of the following is true:
5 Either (a) Pk is a k-partition of F s.t. at least one block in Pk contains 2 or more

elements;
6 Or (b) Pk = ∅ (if no such k-partition exists).
7 if Pk = ∅ then
8 return ∅
9 end

10 else
11 Let Pk consist of blocks b1, b2, . . . , bk.
12 for each block bi ∈ Pk do
13 Construct a new feature F ′i with definition Ci = ∀x(F ′i(x)← Bodyi), where

Bodyi is the conjunction of the features in bi.
14 Let C0 = ∀x(Class(x, c)← Body0) where Body0 is the conjunction of the

F ′1, F
′
2, . . . , F

′
k.

15 Let H ′ =
⋃k

i=0 Ck.

16 end

17 end
18 return H ′

Example 6 ConstructStruct for the trains problem. Let H be the clause ∀x(Class(x,East)←
F2(x), F3(x)F4(x), F9(x)) where F2,3,4,9 are defined in the background knowledge B. Then
for ConstructStruct(H, 2):

14

Logical Explanations for Deep Relational Machines Using Relevance Information

1. P2 can be any 2-partition of {F2, F3, F4, F9} s.t. at least one block of P2 contains more
than 1 element. (for example, P2 = {[F2, F4], [F3, F9]})

2. Feature-clauses C1 and C2 are are constructed using the set of features in each block
(for example, C1 = F ′1(x)← F2(x), F4(x) and C2 = F ′2(x)← F3(x), F9(x))

3. A classification clause C0 is constructed using the new feature-definitions (for example,
C0 = ∀x(Class(x,East)← F ′1(x), F ′2(x))

4. A structured explanation H ′ = {C0, C1, C2} is returned

In practice, we will need some way of searching the space of 2-partitions (in general, k-
partitions). A partial-ordering introduced later allows us to compare structured explanations,
and forms the basis for guiding a search strategy.

All explanations so far have only referred to a single relational instance. What is to
be done when we seek explanations for more than one instance? It suffices to consider the
case of 2 instances e1 and e2. Then, an explanation H for both instances is simply an
explanation for e1 ∧ e2 (that is, B ∪H |= (e1 ∧ e2)). We use this to formulate a notion of
“locally consistent” explanations.

3.3. Locally Consistent Explanations

Recent research called LIME (“Local Interpretable Model-agnostic Explanations” – see
Ribeiro et al., 2016) proposes producing readable proxies “on-demand”, for any kind of
black-box predictor. The key feature is that a LIME-style explanatory model is constructed
only when a prediction for an instance is sought, and the explanation is required to be
faithful to the black-box’s predictions for the instance and its near-neighbours. The principal
intuition underlying LIME is this: a single comprehensible model may not be possible for the
black-box’s predictions over all instances but, nevertheless, it may be possible to construct
multiple readable proxies, each of which is consistent with the predictions for groups of
similar (“local”) instances.

However, the requirement of having to be consistent with only local instances results
in a different kind of problem. Since the set of near-neighbours of an instance may be
quite small, there may be insufficient constraints, in data-theoretic terms, to narrow down
a unique (or even a small number of) explanations. So, how then is an explanation to be
selected? In LIME, this is left to the loss-function. In Bayesian terms, this means defining
an appropriate prior to guide selection when the data are insufficient.

We draw on specific situations described in Muggleton (1994) to clarify what is meant
by a local explanation, and its data-theoretic evaluation. Later we will introduce a domain-
dependent prior to develop a Bayes-like selection of explanations.

The explanations we seek are for predictions of relational instances that are “close”
to each other. Readers familiar with the ILP literature will recognise that the task of
finding such an explanation corresponds to either the “Multiple examples, single hypothesis
clause” or the “Multiple examples, multiple hypothesis clauses” situations in Muggleton
(1994), depending on whether unstructured or structured explanations are constructed. We
note first that if a logical explanation is extracted for the full DRM in the manner done

15

Srinivasan, Vig and Bain

by França et al. (2015), then alternate explanations for an instance e = Class(a, c) can be
provided in terms of the rules that can be used to derive e. Each such explanation would
be an unstructured explanation in the terminology of this paper. This does not alter the
notion that follows of finding the best local explanation.

We have seen how to construct the most-specific feature-clause for e = Class(a, c) from
the set of active features for a. We now seek explanations that are not only consistent with
a predictive model on an instance x, but also are consistent with predictions made by the
predictive model in a local neighbourhood of x.

Definition 11 Neighbourhood. Given relational instance a ∈ X , and a set of d features
F , and given some ε ∈ <, we denote the neighbourhood of a as Nbd(a) = {x : x ∈
X and Dist(FV (a), FV (x)) ≤ ε}. Here Dist is some appropriate distance measure defined
over d-dimensional vectors.

In practice the dimensionality d can be quite large, and since the standard Euclidean dis-
tance is known to be problematic in high-dimensional spaces (Aggarwal et al., 2001) we will
use an alternative measure.

Definition 12 Locally Consistent Explanations. Given relational instance a ∈ X ,
and a predictive model N , let N(FV (a)) = c. We define the following subsets of Nbd(a):
E+(a) = {b : b ∈ Nbd(a) and N(FV (b)) = c)} and E−(a) = {b : b ∈ Nbd(a) and N(FV (b)) 6=
c}. Then an explanation H for Class(a, c) given B is a locally consistent explanation if:
(1) for each a′ ∈ E+(a) H is an explanation for Class(a′, c) (that is, B∪H |= Class(a′, c));
and (2) for each a′ ∈ E−(a) B ∧H ∧ ¬Class(a′, c) 6|= 2.

Example 7 Locally consistent explanation for the trains problem. For simplicity,
we consider the situation where E− = ∅. Suppose we now know that the local neighbourhood
of the first train (t1) in the left column of Example 1 only contains the second train (t2)
in that column. Let us assume that F consists just of the functions defined in Example 2.
With those definitions, and a predictive model N , let N(FV (t1)) = N(FV (t2)) (= East,
say). Then E+(t1) = {t1, t2}.

The most-specific feature-clause for Class(t1, East) given F and B is:

C1 : Class(t1, East)← F1(t1), F2(t1), F3(t1)

and for Class(t2, East) is:

C2 : Class(t2, East)← F1(t2), F2(t2)

where the function definitions are as before. Then a locally consistent explanation for
Class(t1, East) is the least-general-generalisation (or Lgg) of C1 and C2:

Lgg(C1, C2) : ∀x(Class(x,East)← F1(x), F2(x))

In general, E− 6= ∅, and results from ILP tell us that it may not be possible to find
a single clause that is locally consistent. We next describe a simple, qualitative form of
Bayes Rule that combines likelihood of the data, with a relevance-based prior preference
over explanations.

It is useful before we proceed further to have a numerical measure of the extent to which
an explanation is locally consistent.

16

Logical Explanations for Deep Relational Machines Using Relevance Information

Definition 13 Fidelity. Let a ∈ X . Given a predictive model N , let N(FV (a)) = c
and E+(a), E−(a) as before. Let D = (E+, E−) and H be an explanation for Class(a, c)
given background knowledge B. Let: (1) AgreePos(H) = {b : b ∈ E+(a) and B ∧ H |=
Class(b, c)}; and (2) AgreeNeg(H) = {b : b ∈ E−(a) and B ∪ H ∧ ¬Class(b, c) 6|= 2}.
Then Fidelity(H|D,B) = FH,a = |AgreePos(H)|+|AgreeNeg(H)|

|E+(a)|+|E−(a)| .

We note that AgreePos(H) and AgreeNeg(H) are the same as true positives and true
negatives in the classification literature, and so fidelity is a localized form of accuracy
(in Ribeiro et al. (2016) the term “local fidelity” is used for a localized form of error).
If the predictor allows a probabilistic prediction, then a finer-grained weighted fidelity is
computable.

Remark 4 Structuring preserves fidelity. Let H ′ = {C ′}∪InvF be a structured expla-
nation derived as in Remark 3 from an unstructured explanation H = {C} for a relational
example Class(a, c), given definite clauses B and a predictor N s.t. N(FV (a)) = c. Let
E+(a) and E−(a) denote relational examples obtained from the neighbourhood of a as be-
fore, and D = (E+(a), E−(a)). Then, Fidelity(H ′|D,B) = Fidelity(H|D,B).

Let S be any finite set of ground Class/2 facts and MM (P) be the minimal model of a
definite clause program P . Since InvF is a set of definite clauses containing only definitions
of invented features, S ∩MM (B ∪ {C}) = S ∩MM (B ∪ {C} ∪ InvF). Now:

AgreePos(H) = {Class(a′, c) : Class(a′, c) ∈ (E+(a) ∩MM (B ∪H)}
AgreeNeg(H) = {Class(a′, c) : Class(a′, c) ∈ (E−(a)− (E−(a) ∩MM (B ∪H)}.

Since E+(a) and E−(a) are finite sets of ground Class/2 facts, and H = {C}:

AgreePos(H) = {Class(a′, c) : Class(a′, c) ∈ (E+(a) ∩MM (B ∪ {C} ∪ InvF)}
AgreeNeg(H) = {Class(a′, c) : Class(a′, c) ∈ (E−(a)− (E−(a) ∩MM (B ∪ {C} ∪ InvF)}.

From Remark 3, MM (B∪{C}∪InvF) = MM (B∪{C ′}∪InvF). Since H ′ = {C}∪InvF , it
follows immediately that AgreePos(H) = AgreePos(H ′) and AgreeNeg(H) = AgreeNeg(H ′)
and therefore Fidelity(H|D,B) = Fidelity(H ′|D,B). 2

Example 8 (Fidelity-preserving structuring for the trains problem). The follow-
ing is a structured explanation H1:

Class(x,East)← F1,1(x), F1,2(x)
F1,1(x)← F2(x), F3(x)
F1,2(x)← F4(x), F9(x)

Since there are no new existentially quantified variables in feature-clauses, and there is a
single clause defining each of F1,1 and F1,2, H1 will unfold uniquely (see Gabbay et al.
(1998)) to the unstructured explanation H:

Class(x,East)← F2(x), F3(x), F4(x), F9(x)

That is, the minimal-models of H and H1 will contain the same ground instances of Class(x,East)
(Hogger (1990)). Given the data D and background knowledge B it follows that the AgreePos(H) =
AgreePos(H1) and AgreeNeg(H) = AgreeNeg(H1). Consequently, Fidelity(H|D,B) =
Fidelity(H1|D,B).

17

Srinivasan, Vig and Bain

From now on, we will take the black-box predictor to be a DRM, although what follows
continues to apply to any black-box predictor that uses relational feature values as inputs.
In the following section we address selecting a local explanation, but first we draw attention
to some general issues for local fidelity.

Remark 5 Determination of local fidelity. The fidelity measure can be seen, roughly,
as a degree of equivalence between two theories, one predictive and the other explanatory,
taken as an average of the local fidelities over a set of neighbourhoods of instances. However,
this tells us nothing about a strategy to sample the instances to be explained. This must be
based on the objectives for the explanation, which may vary considerably between applica-
tions. One strategy in LIME (Ribeiro et al., 2016), for example, is to select, or “pick” test
instances that are diverse yet cover well the space of representable features. Since a human
user is assumed to have only finite time to inspect explanations, a fixed number of instances
is generated using a weighted coverage optimisation algorithm, maximising the use of im-
portant features (according to feature weights in the explanatory models) while minimising
redundancy between instances. In Section 5.2 of this paper, however, a different strategy is
adopted, due to differing assumptions regarding users.

4. Selecting a Local Explanation

Given a relational instance a ∈ X , let the prediction of a by a DRM N be c. But, for a
definition of a neighbourhood, there may be several explanations for Class(a, c) with the
same maximal fidelity. How then should we select a single explanation? Provided we have
some reasonable way of specifying prior-preferences, Bayes rule trades-off the fit to the data
(likelihood) against prior preference (in Ribeiro et al. (2016), LIME’s minimisation of the
sum of a loss and a regularisation term can be seen as implementing a form of Bayesian
selection).

A general approach for selecting amongst logical formulae is provided by labelled deduc-
tive systems (LDS – see Gabbay, 1996), in which logical formulae are extended with labels
and an associated algebra. For our purposes, it is sufficient simply to consider labelled
explanations.

Definition 14 Labelled Explanation. Given a relational example e = Class(a, c), and
background knowledge B, α : H is a labelled explanation for e given B if: (a) H is an
explanation for e given B; and (b) α is a element of a partially-ordered set of ground first-
order terms ∆. ∆ consists of annotations of all explanations for e given B.

A comparison of labelled explanations follows simply from the partial ordering on the
labels. That is, α : H1 � β : H2 iff α � β. Here we will take the label of an explanation H to
be a pair 〈LH , PH〉, which allows several different kinds of comparisons, given background
knowledge B and data D:

Quantitative. This is appropriate when both LH and PH are on an interval scale (that
is, numeric values). Examples are: (a) the usual Bayesian comparison, using LH =
P (D|H,B) and PH = P (H|B); and 〈LH1 , PH1〉 : H1 � 〈LH2 , PH2〉 : H2 iff logLH1 +
logPH1 ≤ logLH2 + logPH2 ; (b) Good’s explicativity (Chapter 23 of Good (1983)),

18

Logical Explanations for Deep Relational Machines Using Relevance Information

which uses the same LH , PH , but uses the function logLH + γlogPH with 0 < γ < 1;
and (c) Likelihood-based, using LH = P (D|H,B) and PH is the uniform distribution.

Qualitative. Here both LH and PH are both on an ordinal scale (that is, only comparisons
of values are possible). Examples are: (a) The qualitative Bayesian comparison in the
manner proposed by Coletti and Scozzafava (1993). With some abuse of notation,
〈LH1 , PH1〉 : H1 � 〈LH2 , PH2〉 : H2 iff LH1 � LH2 and PH1 � PH2 . If it is not the
case that 〈LH1 , PH1〉 : H1 � 〈LH2 , PH2〉 : H2 or 〈LH2 , PH2〉 : H2 � 〈LH1 , PH1〉 : H1,
then the labelled explanations are not comparable; and (b) A dictionary-ordering,
in which 〈LH1 , PH1〉 : H1 � 〈LH2 , PH2〉 : H2 iff LH1 ≺ LH2 , or LH1 = LH2 and
PH1 � PH2 .7

Semi-Quantitative. Here, one of LH or PH is on an interval scale, and the other is on an
ordinal scale. The qualitative comparisons above can be adapted to this, by replacing
� and ≺ with ≤ and < for the numeric quantity.

We will use the semi-quantitative dictionary ordering with LH = Fidelity(H|D,B) in this
paper, and PH is an ordinal-valued prior based on an assessment of relevance. Using the
semi-quantitative setting and the dictionary ordering has some advantages:

(a) Quantitative selection based on a Bayesian score requires a definition of both P (D|H,B)
and P (H|B). While the first can be obtained easily enough, it is not obvious how to
specify a prior distribution over explanations. The usual approach of using a mathe-
matically convenient function like 2−|H|, where |H| is some measure of the size of H,
may not be an appropriate translation of prior assessment of relevance of explanations;
and

(b) A qualitative Bayesian approach as defined above usually ends up with many incom-
parable explanations. The dictionary ordering decomposes the task of identifying
explanations into two parts: the first part that maximises fidelity, and the second
part that maximises the prior amongst maximal fidelity explanations. Under some
circumstances (see the Appendix), maximising fidelity is equivalent to maximising log
likelihood. In those cases, the dictionary ordering uses the prior to select amongst
maximum likelihood explanations. Usefully, there is also an implementation benefit
that follows from the result in Remark 4: since structuring does not alter the fidelity,
the first part can simply examine unstructured explanations.

We turn now to prior information PH that captures some aspects of what constitutes a
comprehensible explanation.

4.1. A Relevance-Based Prior

In Srinivasan et al. (2003) the authors investigate the utility of including an expert assess-
ment of the relevance of relations included in the background knowledge.

7. This may not yield the same results as the qualitative Bayesian comparison above. Differences arise
when LH1 ≺ LH2 but PH2 � PH1 . Under the dictionary-ordering H2 would be preferred, but the
qualitative Bayesian approach would find H1 and H2 incomparable.

19

Srinivasan, Vig and Bain

Example 9 Relevance information in the trains problem. Suppose the background
knowledge B for the trains problem contains definitions of predicates like Has Car/2,
Short/1, Closed/1, Wheels/2 and Load/2. For the problem of classifying trains as east-
bound or west-bound, let us assume we are also given domain knowledge in the form
of the relevance level of (sets) of predicates as follows: r1 : {Wheels/2, Load/2}, r2 :
{Short/1, Closed/1}, and r1 ≺r r2. That is, Wheels and Load are less relevant to the
problem than Short and Closed.

We note that this is different to the notion of logical relevance of features (defined
in terms of the entailment relation, |=). Here, we are concerned with domain-relevance
of predicates used to define those features. This latter form of domain-specific relevance
information can also form the basis of a preference ordering over explanations. Here is the
view of the domain expert involved in Srinivasan et al. (2003):8

I think it is reasonable to argue that [a hypothesis using] more relevant prior background

knowledge is more probable. I think that what makes hypotheses more probable is also

a function of whether the predicates used are related to each other. Often you see

hypotheses that seem to mix apples and oranges together, which seems to make little

sense. Though of course this mixing of predicates may be because the ML system is

trying to express something not easily expressible with the given background predicates.

This suggests that relevance information can constitute an important source of prior knowl-
edge. One route by which this is exploited by ILP systems is in the form of search con-
straints (“hypotheses that do not contain oxygens connected to hetero-aromatic rings are
irrelevant”), or, as in the case of Srinivasan et al. (2003), in the incremental construction of
hypotheses. Our interest here is to extend this use of relevance to select amongst hypotheses,
by devising a relevance-based partial ordering over hypotheses.9

Definition 15 Relevance-assignments and orderings. We assume that for some set
of predicates P in background knowledge B, we have domain-specific relevance labels drawn
from a set R. A relevance assignment is a function R : P → R. We assume that there
is domain-knowledge in the form of a total ordering ≺r over the elements of R. Then, for
a, b ∈ R, a �r b iff a ≺r b or a = b. We will call ≺r a relevance ordering.

A relevance ordering naturally results in the concept of ordered intervals: [a, b] is an
ordered relevance interval (or simply a relevance interval) if a, b ∈ R and a �r b. The
ordering ≺r gives rise in turn to an ordering over relevance intervals.

Definition 16 Ordering over relevance intervals. Let I be the set of ordered relevance
intervals. Let [a, b] and [c, d] be intervals in I. Then [a, b] �i [c, d] iff a �r c and b �r d.

Remark 6 (�i is a partial ordering). Let I be the set of ordered relevance intervals.
Then: (a) Clearly for any interval [a, b] ∈ I, [a, b] �i [a, b]; (b) For [a, b] ∈ I and [c, d] ∈ I,

8. R.D. King: personal communication
9. We will often reuse the generic symbols � and ≺ to denote partial- and total-orderings. The context

will make it clear which sets these relations refer to.

20

Logical Explanations for Deep Relational Machines Using Relevance Information

let [a, b] �i [c, d] and [c, d] �i [a, b]. Then a �r c and c �r a and b �r d and d �r b. Since
�r is a partial order, it follows that a = c and b = d; (c) For [a, b] ∈ I, [c, d] ∈ I and
[e, f] ∈ I, let [a, b] �i [c, d] and [c, d] �i [e, f]. From a similar argument to (b), it follows
that [a, b] �i [e, f]. That is, �i is reflexive, anti-symmetric and transitive.

We will use the following, slightly more general ordering, than �i:

Definition 17 (Ordering over sets of relevance-intervals) Let S and S′ be sets of
relevance intervals. Then S �s S′ iff for every interval [a, b] in S there exists at least one
interval [c, d] in S′ s.t. [a, b] �i [c, d]. That is, a �r c and b �r d.

Remark 7 (�s is a quasi-ordering). Let S be the set whose elements are sets of relevance
intervals and �s as in Defn. 16. Then: (a) For S ∈ S, clearly S �s S; and (b) Let S1,2,3 ∈ S
s.t. S1 �s S2 and S2 �s S3. Then, from Defn. 16 for every interval [a, b] ∈ S1 there is an
interval [c, d] ∈ S2 s.t. [a, b] �i [c, d] and for every [c, d] ∈ S2 there is an interval [e, f] ∈ S3
s.t. [c, d] �i [e, f]. Since �i is a partial order (Defn. 6), it follows that for every [a, b] ∈ S1
there is an interval [e, f] ∈ S3 s.t. [a, b] �i [e, f]. That is S1 �s S3. So, �s is reflexive and
transitive, and therefore a quasi-order. However, �s is not anti-symmetric, as witnessed by
S1 = {[2, 5], [3, 6]} and S2 = {[3, 6]}, with the usual ordering on numbers. Here S1 �s S2
and S2 �s S1, but S1 6= S2.

We now construct, in stages, the relevance of an explanation.

Definition 18 Relevance of features. Given background knowledge B, let ≺r be a rele-
vance ordering over a set of relevance labels R, and let R : P → R be a relevance assignment
for some subset P of B. Let ∀x(F (x) ← Cp(x)) be the feature-definition for F/1 in which
Cp(x) is a conjunction containing predicates from P only. Then the relevance of the feature
F is Relev(F) = [l, h], where l is the minimum relevance of predicates in Cp(x) according
to ≺r and R, and h is maximum relevance of predicates in Cp(x) according to ≺r and R.

Example 10 (Relevance of features for the trains problem). Suppose we have the
following feature-definitions (omitting quantifiers for simplicity):

F2(x)← Has Car(x, y), Short(y)
F3(x)← Has Car(x, y), Closed(y)
F4(x)← Has Car(x, y),Wheels(y, 3)
F9(x)← Has Car(x, y), Load(y, triangle)

Assume we are given a set of relevance labels R = {r1, r2}, with r1 ≺r r2. Let us fur-
ther assume {(Wheels/1, r1), (Load/2, r1), (Short/1, r2), (Closed/1, r2)} is our relevance-
assignment. Then Relev(F2) = Relev(F3) = [r2, r2], Relev(F4) = Relev(F9) = [r1, r1].

Definition 19 Relevance of feature-clauses. Let F be a set of features. Let C be
a feature-clause. W.l.o.g. let the features in C be {F1, F2, . . . , Fk} where the Fi ∈ F .
Let Relev(Fi) = [li, hi]. Then Relev(C) = {[l∗, h∗]} where l∗ = min(l1, l2, . . . , lk) and
h∗ = max(h1, h2, . . . , hk).

21

Srinivasan, Vig and Bain

Example 11 (Relevance of a feature-clause for the trains problem). As before,
let there be 4 relational features F2, F3, F4, and F9, with Relev(F2) = Relev(F3) = [r2, r2],
Relev(F4) = Relev(F9) = [r1, r1]. Then, the relevance of the feature-clause C : F (x) ←
F2(x), F3(x), F4(x), F9(x) is RC = {[r1, r2]}.

The relevance of explanations is constructed from the relevance of the feature-clauses in
the explanation. We distinguish deliberately between unstructured and structured expla-
nations.

Definition 20 Relevance of an explanation Given background knowledge B, let H be
an explanation for Class(a, c) containing the clause C : ∀x(Class(x, c) ← Body). If H is
an unstructured explanation then Relev(H) = Relev(C). Otherwise, if H is a structured
explanation, then Relev(H) =

⋃
Fi∈Body Relev(UFC(Fi)).

From Defn. 20, the relevance of an explanation is a set of relevance intervals, and from
Remark 7, it follows that set of explanations can be quasi-ordered, using the �s relation
over the relevance of explanations.

Example 12 (Relevance of explanations for the trains problem). Suppose, as be-
fore, we have 4 relational features F2, F3, F4, and F9, with Relev(F2) = Relev(F3) = [r2, r2],
Relev(F4) = Relev(F9) = [r1, r1]. Suppose we have an unstructured explanation H :
Class(x,East) ← F2(x), F3(x), F4(x), F9(x). Then, from Example 11, RelevH = RH =
{[r1, r2]}.

On the other hand, suppose we have the structured explanation H1:

Class(x,East)← F1,1(x), F1,2(x)
F1,1(x)← F2(x), F3(x)
F1,2(x)← F4(x), F9(x)

F1,1, F1,2 6∈ F , and are therefore invented features. Let F2 = {F1,1, F1,2}. Then, Relev(H1) =
RH1 =

⋃
F∈F2

Relev(UFC(F))∪∅. Now Relev(UFC(F1,1)) = {[r2, r2]}, Relev(UFC(F1,2))
= {[r1, r1]} and RH1 = {[r1, r1], [r2, r2]}.

It is interesting that although a pair of structured explanations may unfold to the same
unstructured explanation (and therefore have the same fidelity), their relevance may not
be the same. Intuitively, structuring any unstructured explanation will split the relevance-
interval of the corresponding feature-clause into a set of intervals (see Defn. 20). In a “good
structuring” each interval in this set will be narrower than the unstructured relevance-
interval and will therefore be preferred under the relevance ordering (Defn. 17).

Remark 8 Structuring can increase relevance. Let H = {C} be an unstructured
explanation for Class(a, c), and let H ′ be a structured explanation containing a clause
C ′ : Class(x, c) ← Body that unfolds to C. Let PH = Relev(H) and PH′ = Relev(H ′).
Then PH �s PH′.
Let C contain the features {F1, . . . , Fl}, where Relev(Fi) = [li, hi] Since H is an unstructured
explanation, Relev(H) = {[l∗, h∗]}, where l∗ = min(l1, . . . , lk) and h∗ = max(h1, . . . , hk).

22

Logical Explanations for Deep Relational Machines Using Relevance Information

Let C ′ contain the invented features {F ′1, . . . , F ′j}. Since C ′ unfolds to C, each F ′i un-

folds to a clause containing some subset S′i of {F1, . . . , Fk}, and
⋃j
i=1 S

′
i = {F1, . . . , Fk}.

W.l.o.g. let h∗ = hk. By the constraint imposed on structured explanations, there must be at
least one invented feature F ′m that unfolds to a clause containing Fk. Let Relev(UFC(F ′m)) =
[l′m, h

′
m]. Clearly, l∗ � l′m and h∗ = h′m, and therefore [l∗, h∗] � [l′m, h

′
m]. Since [l′m, h

′
m] ∈

Relev(H ′), it follows from Defn. 17 that Relev(H) �s Relev(H ′).

Example 13 Comparing the relevance of explanations in the trains problem.
As before, suppose we have 4 relational features F2, F3, F4, and F9, with Relev(F2) =
Relev(F3) = [r2, r2], Relev(F4) = Relev(F9) = [r1, r1]. The unstructured explanation
H: Class(x,East)← F2(x), F3(x), F4(x), F9(x) has relevance RH = {[r1, r2]}.

The following structured explanation H1 unfolds to H:

Class(x,East)← F1,1(x), F1,2(x)
F1,1(x)← F2(x), F3(x)
F1,2(x)← F4(x), F9(x)

As we saw in Example 12, RH1 = {[r1, r1], [r2, r2]}. From Defn. 17, RH �s RH1.

But structuring is not guaranteed to increase relevance. The following structured expla-
nation H2 also unfolds to H:

Class(x,East)← F1,3(x), F1,4

F1,2(x)← F3(x), F4(x)
F1,4(x)← F2(x), F9(x)

Now RH2 = {[r1, r2]}, and RH 6�s RH2. Thus, although H1,2 both unfold to H, a selection
criterion that takes relevance into account would prefer H1 over H2 and H.

4.2. Other Relevance-Based Priors

Broadly speaking, priors can be categorised as theoretical (derived from domain knowledge),
or empirical (derived from data). A relevance ordering over predicates represents just one
form of a theoretical prior. Finer-grained theoretical priors based on relevance are possible.
For example, some specific combination of predicates may be especially important (say, the
presence of a lactone ring, connected to a 7-membered ring).

The machinery of comparing labelled explanations can be used without change if theo-
retically important features can be encoded as background predicates.

Example 14 (A theoretically important feature for the trains problem). Let as
assume we are given a set of relevance labels R = {r1, r2, r∗}, with r1 ≺r r2 and r2 ≺r
r∗. Assume as before, the following relevance-assignment: {(Wheels/1, r1), (Load/2, r1),
(Short/1, r2), (Closed/1, r2)}. Suppose we know that the existence of short, closed cars is
especially important. This can be encoded by the predicate in the background knowledge:

Short Closed(x)← Has Car(x, y), Short(y), Closed(y)

Augumenting the relevance-assignment with (Short Closed/1, r∗), we are now able to dis-
tinguish between the features:

23

Srinivasan, Vig and Bain

F1(x)← Has Car(x, y), Short(y)
F3(x)← Has Car(x, y), Closed(y)
F10(x)← Short Closed(x)

Now, Relev(F1) = Relev(F3) = [r2, r2], but Relev(F10) = [r∗, r∗]. We would expect any
explanation that uses F10 to be prefered over one that does not.

It may be possible to estimate empirically the relevance of features using data (for
example, a feature that occurs frequently in explanations is highly relevant). Incorporating
this kind of information will require changes to the definition calculating the relevance of
features. The comparison of labelled expressions then proceeds as before: we do not pursue
the use of empirical estimates of relevance in this paper.

4.3. Implementation

We finally have the pieces to define a label for an explanation, given data D and background
B. Each explanation H will now have the label 〈LH , PH〉, where LH = Fidelity(H|D,B)
and PH = Relev(H). Using a dictionary-ordering to compare labelled explanations allows us
to decompose the task of identifying explanations into two parts: the first that maximises
fidelity and the second that maximises the relevance. Further, as we have already seen
(Remark 4), structuring cannot increase fidelity, but can increase relevance (Remark 8).
Therefore, with a dictionary ordering on labels, it suffices to search first over the space of
unstructured explanations, and then over the space of structured explanations that unfold
to the unstructured explanations with maximal fidelity. Algorithm 3 extends the previous
procedure of finding any unstructured explanation (Algorithm 1) to obtain a maximal-
fidelity unstructured explanation.

Algorithm 3: Identifying an unstructured explanation with maximal fidelity. Here,

Clause(e, F) denotes the clause ∀x(Class(x, c) ← Body), where Body is a conjunction of

literals Fi(x) with Fi ∈ F . In practice, we will need to extend this procedure to return all

unstructured explanations with maximal fidelity.

1 Algorithm ConstructUnstructOpt(e,B,F , E+, E−)
Input: A relational example e; background knowledge B; a set of features F with

definitions in B; and E+, E− as defined in Defn. 12.
Output: A maximal fidelity unstructured explanation H s.t. B ∪H |= e.

2 Let e = Class(a, c).
3 Let a′ = FV (a).
4 Let F ′ be the set of features that map to TRUE in a′.
5 Let D = (E+, E−).
6 Let H be the subset-lattice of F ′.
7 Let F ′′ be any element in H s.t.
8 Body is the conjunction of features in F ′′,
9 C = ∀x(Class(x, c)← Body),

10 L = Fidelity({C}|D,B), and
11 There is no other element G in H s.t. Fidelity({Clause(e,G)}|D,B) > L.
12 return {C}

24

Logical Explanations for Deep Relational Machines Using Relevance Information

It is insufficient to simply get one maximal-fidelity explanation, and we will need to
modify the procedure in Algorithm 3 return the set of unstructured explanations with
maximal fidelity. For each element H in this set, Algorithm 4 extends ConstructStruct
in Algorithm 2 to return a structured explanation with higher-relevance than H, if one
exists. It is not hard to see that if Pk = ∅ then Pk+1 = ∅. Therefore, it is only needed to
call ConstructExpl with k = 2, 3, . . . until Pk = ∅. In experiments in this paper, we will
adopt the even simpler strategy of only considering k = 2. That is, we will only consider
2-partitions of the set of features constituting the unstructured explanation H (in effect,
seeking structured explanations with higher relevance than H, but using the minimum
number of invented features). The structured explanations in Example 5 are examples of
structures that can be obtained with k = 2.

Algorithm 4: A procedure for obtaining a structured explanation that is at least as relevant

as an unstructured explanation H.

1 Algorithm ConstructExpl(H,B, k)
Input: An unstructured explanation H; background knowledge B; and a number k

(≥ 2).
Output: An explanation H ′ s.t. Relev(H|B) � Relev(H ′|B).

2 Let H = ∀x(Class(x, c)← Body).
3 Let Relev(H) = RH = {[α, γ]}.
4 Let F be the set of features in Body.
5 Let Pk be a set s.t. one of the following is true:
6 Either (a) Pk is a k-partition of F that satisfies the following: at least one block in Pk

contains 2 or more elements, and there is at least one block in Pk whose elements
have a minimum relevance β and maximum relevance γ such that α ≺r β �r γ;

7 Or (b) Pk = ∅ (if no such k-partition exists).
8 if Pk = ∅ then
9 return H

10 end
11 else
12 Let Pk consist of blocks b1, b2, . . . , bk
13 for each block bi ∈ Pk do
14 Construct a new feature F ′i with definition Ci = ∀x(F ′i(x)← Bodyi), where

Bodyi is the conjunction of the features in bi.

15 end
16 Let C0 = ∀x(Class(x, c)← Body0) where Body0 is the conjunction of the

F ′1, F
′
2, . . . , F

′
k.

17 Let H ′ =
⋃k

i=0 Ck.

18 end
19 return {H ′}

The structured explanation is obtained by inventing k features, the definition of at least
one of which has a higher relevance than the unstructured explanation. Any process for
obtaining such a k-partition is acceptable. With k = 2, we use a simple greedy strategy
to identify a high-relevance block (one of the invented features). We start by selecting the
feature with the highest relevance in the unstructured explanation. We continue to add

25

Srinivasan, Vig and Bain

Figure 4: More details on the testing component in Fig. 1. E is the set of relational training
instances, a is a test instance, and M is a DRM. FV(Nbd(a)) denotes the feature-
vectors for relational in E that are within the neighbourhood of a. Pred(Nbd(a))
are the class predictions of instances in Nbd(a) by the DRM. NetEval evaluates
the model M on input data; FEval evaluates relational instances and returns
their feature-vectors; and REval constructs relational examples. We assume that
FEval has access to the feature-definitions found in the training stage.

features as long as the relevance of the corresponding invented feature is higher than that of
the unstructured explanation. The second (low-relevance) block then contains all features
from the unstructured explanation that are not in the high-relevance block.

Together, ConstructUnstruct and ConstructExpl are used to identify a local explana-
tion for a relational instance e (see Fig. 4).

5. Empirical Evaluation

In this section, we investigate the following:

Explanation. We conduct the following experiments:

Expt. 1: Fidelity. Can we construct a local symbolic explanations for an instance
with high fidelity to local predictions made by the DRM?

Expt. 2: Relevance. Does incorporating a prior preference based on relevance have
any effect?

Some clarifications are necessary here: (a) By a local symbolic explanation in Expt. 1 we
mean the use of a graph-search that returns the unstructured explanation with the highest
fidelity, described in Section 4.3; and (b) By prior-preference in Expt. 2, we mean the

26

Logical Explanations for Deep Relational Machines Using Relevance Information

relevance-based ordering over structured or unstructured explanations. In Expt. 2, we
confine ourselves to whether the use of the preference can change the explanation returned
(either from a unstructured to a structured one, or from one unstructured explanation to
another). We note that incorporation of a prior preference obtained from a human expert is
still not sufficient to ensure comprehensibility of explanations by the expert. Evidence for
this requires results in the form of cross-comparisons on the use of prior expert preference
on explanations against expert comprehensibility of explanations. However, this is outside
the scope of this paper.

It is useful, though not mandatory for the experiments here, that the models have good
predictive performance. To this end, we report in an Appendix for the following:

Prediction. We conduct the following experiment:

Expt. 3: Accuracy. Does the DRM constructed using randomly drawn features
have good predictive performance?

By randomly drawn features in Expt. 3, we mean the rejection-sampling method described
in Vig et al. (2018).

5.1. Materials

5.1.1. Data

We report results from experiments conducted using 7 well-studied real world problems
from the ILP literature. These are: Mutagenesis (King et al., 1996a); Carcinogenesis (King
and Srinivasan, 1996a); DssTox (Muggleton et al., 2008); and 4 datasets arising from the
comparison of Alzheimer’s drugs denoted here as Amine, Choline, Scop and Toxic (Srini-
vasan et al., 1996). Each of these have been shown to benefit from the use of a first-order
representation and domain-knowledge, but there is still room for improvement in predic-
tive accuracy. While good predictive performance is necessary, the principal motivation for
the selection of the problems here is that for each dataset we also have access to domain-
information about the relevance of predicates for the classification task considered.

Of these datasets, the first three (Mut188–DssTox) are predominantly relational in na-
ture, with data in the form of the 2-d structure of the molecules (the atom and bond struc-
ture), which are diverse and can be of varying sizes. Some additional bulk properties of
entire molecules obtained or estimated from this structure are also available. The Alzheimer
datasets (Amine–Toxic) are best thought of as being quasi-relational. The molecules have
a fixed template, but vary in number and kinds of substitutions made for positions on the
template. A first-order representation has still been found to be useful, since it allows ex-
pressing concepts about the existence of one or more substitutions and their properties.
The datasets range in size from a few hundred (relational) instances to a few thousands.
This is extremely modest by the usual data requirements for deep learning. We refer the
reader to the references cited for details of the domain-knowledge used for each problem.

5.1.2. Background Knowledge

For the relational datasets (Mut188–DssTox), background knowledge is in the form of
general chemical knowledge of ring-structures and some functional groups. Background-

27

Srinivasan, Vig and Bain

knowledge contains definitions used for concepts like: alcohols, aldehydes, halides, amides,
amines, acids. esters, ethers, imines, ketones, nitro groups, hydrogen donors and accep-
tors, hydrophobic groups, positive- and negatively-charged groups, aromatic rings and
non-aromatic rings, hetero-rings, 5- and 6-carbon rings and so on. These have been used
in structure-activity applications of ILP before (King et al., 1996b; King and Srinivasan,
1996b). However, we note that none of these definitions are specifically designed for the
tasks here. In addition, for Mut188 and Canc330, there are some bulk properties of the
molecules that are available. For the Alzheimer problems (Amine–Toxic) domain knowledge
consists of properties of the substituents in terms of some standard chemical measures like
size, polarity, number of hydrogen donors and acceptors and so on. Predicates are also
available to compare these values across substitutions. Again we refer the reader to the
relevant ILP literature for more details.

In addition to the domain-predicates just described, we will also have information in
the form of a relevance ordering as described in Srinivasan et al. (2003). That paper only
refers to the Mut188 and Canc330 datasets. The same information is obtained from the
domain-expert involved in that paper for the other problems in this paper. A complete
description of the relevance assignment of predicates for each problem is in Appendix C.

5.1.3. Algorithms and Machines

Random features were constructed on an Intel Core i7 laptop computer, using VMware
virtual machine running Fedora 13, with an allocation of 2GB for the virtual machine.
The Prolog compiler used was Yap. Feature-construction uses the utilities provided by
the Aleph ILP system (Srinivasan, 1999) for constructing most-specific clauses in a depth-
bounded mode language, and for drawing clauses subsuming such most-specific clauses.
No use is made of any of the search procedures within Aleph. The deep networks were
constructed using the Keras library with Theano as the backend, and were trained using an
NVIDIA K-40 GPU card.

5.2. Methods

The methods used for each of the experiments are straightforward

Explanation. Experiments 1 and 2 are concerned solely with the explanatory performance
of the local symbolic models.

For each dataset:

1. Construct a DRM using training data

2. For each test instance, obtain the local symbolic unstructured explanation(s)
with the highest fidelity;

3. Estimate the overall fidelity of the symbolic explanations (Expt. 1)

4. Estimate the effect of using the relevance-based prior in hypothesis selection
(Expt. 2)

28

Logical Explanations for Deep Relational Machines Using Relevance Information

Prediction. Experiment 3 (in the Appendix) is concerned solely with the predictive per-
formance of the DRM on the datasets in the paper.10

For each dataset:

1. Obtain a set of random features F ;

2. Compute the Boolean-value for each F ∈ F for the data;

3. Construct a DRM N using training data and obtain its predictions on test in-
stances;

4. Estimate the overall predictive performance of M (Expt. 1)

Some clarifications are necessary at this point:

• We use a straightforward Deep Neural Network (DNN) architecture. There are mul-
tiple, fully connected feedforward layers of rectified linear (ReLU) units followed by
Dropout for regularization (see Goodfellow et al. (2016) for a description of these
ideas). The model weights were initialized with a Gaussian distribution. The number
of layers, number of units for each layer, the optimizers, and other training hyper-
parameters such as learning rate, were determined via a validation set, which is part
of the training data. Since the data is limited for the datasets under consideration,
after obtaining the model which yields the best validation score, the chosen model is
then retrained on the complete training set (this includes the validation set) until the
training loss exceeds the training loss obtained for the chosen model during validation.

• We use the Subtle algorithm (Blockeel and Valevich, 2016) to perform the subsumption-
equivalence test used to determine redundant features.

• For all the datasets, 10-fold cross-validated estimates of the predictive performance
using ILP methods are available in the ILP literature for comparison. We use the
same approach. This requires constructing DRMs separately for each of the cross-
validation training sets, and testing them on the corresponding test sets to obtain
estimates of the predictive accuracy;

• We use the mode-language and depth constraints for the datasets that have been used
previously in the ILP literature. For the construction of features, the rejection-sampler
performs at most 10, 000 draws;

• We take explanatory fidelity to mean the probability that the prediction made by H
on a randomly drawn instance agrees with the prediction made by the corresponding
DRM. We use the same 10-fold cross-validation strategy for estimating this probability
(for efficiency, we use the same splits as those used to estimate predictive accuracy).

10. A note of clarification is in order here. The purpose of the Experiment 3 is to show that a DRM can
achieve predictive accuracies comparable to or better than the best reports in the literature for this data.
This is necessary to support the main experiments on assessment of the use of relevance information, i.e.,
to control for the possibility of deficiencies with the DRM being used. We direct the reader elsewhere to
an assessment of DRMs on large numbers of datasets, and against state-of-the-art prediction tools (Dash
et al., 2018).

29

Srinivasan, Vig and Bain

For a given train-test split Tri and Tei, we proceed as follows. We obtain a DRM
Ni using Tri. We start with a fidelity count of 0. For each instance x′j in Tei we
obtain the class predicted by Ni for x′j , and corresponding neighbourhood of x′j in
the training set Tri. This strategy ensures that all explanations are based only on
data the model was actually trained on, an important consideration in the biological
applications our datasets come from. The neighbourhood is partitioned into δ+(x′j)
and δ−(x′j) using the predictions by Ni and high-fidelity unstructured explanation(s)
Hij are obtained. This is done using a beam-search over the lattice described in
Algorithms 1 and 3. The size of the beam is 5 (that is, the top 5 unstructured
explanations are returned).

• Assessments of fidelity require the definition of a neigbourhood. For each instance
x′j in Tei we say any instance x ∈ Tri is in the neighbourhood of x′ iff FV (x′) and
FV (x) differ in no more than k features. This is just the Hamming distance between
the pair of Boolean vectors. That is, the neighbourhood of a test instance x′ consists of
training instances x’s whose feature-vector representation are within a k-bit Hamming
distance of x′. We will consider k = 5 and k = 10 in the experiments.

• In all cases, estimates are obtained using the same 10-fold cross-validation splits re-
ported in the ILP literature for the datasets used. This will allow a cross-comparison
of the results from Expt.1 to those reports.

5.3. Results

Results of the empirical evaluation are tabulated in Fig. 5. Results on the predictive ac-
curacy of the DRM are in Fig. 10 in Appendix D, with appropriate discussion. Some
supplementary results are in Fig. 7. The principal observations that can be made from the
main tabulations in Fig. 5 are these: (1) High-fidelity symbolic explanations can be ob-
tained for local predictions made by the DRM; and (2) In 6 of the 7 problems, introducing
a prior-preference based on relevance does affect the selection of explanations.

Together, the results provide evidence for the following:

(a) It is possible to extract symbolic explanations for the prediction made by the DRM
for a randomly drawn (new) instance. The explanations are largely consistent with
the predictions of the network for that instance and its near-neighbours in the training
data examined before by the network; and

(b) It is possible to incorporate domain-knowledge in the form of expert assessment of
relevance of background predicates into a preference ordering for selecting amongst
explanations.

Note that if the inclusion of relevance does not make a difference to selecting an expla-
nation, we would expect values of 0.0 in Fig. 5(b). It is evident that the observed values
are clearly not 0, for all cases except DssTox. This exception is unsurprising, since all
predicates used for this problem have the same relevance (see Appendix C).

Before we examine some critical factors affecting the selection of local explanations, we
re-emphasise three important characteristics of explanations:

30

Logical Explanations for Deep Relational Machines Using Relevance Information

Problem Fidelity
Mut18 0.99(0.01)
Canc330 0.99(0.01)
DssTox 0.87(0.03)
Amine 0.98(0.01)
Choline 0.89(0.01)
Scop 0.89(0.02)
Toxic 0.94(0.02)

(a)

Problem 〈LH , RH〉 > 〈LH , ∅〉
Mut188 0.82(0.08)
Canc330 0.77(0.07)
DssTox 0.00(0.00)
Amine 0.38(0.15)
Choline 0.27(0.03)
Scop 0.27(0.06)
Toxic 0.24(0.14)

(b)

Figure 5: Experiments 1 and 2. (a) Mean fidelity of the explanatory (symbolic) model to
the predictive (neural) model. The number tabulated is a 10-fold cross-validation
estimate of the faithfullness of the symbolic model to a DRM’s prediction assessed
over the neighbourhood of a test instance. The entries are for the smallest neigh-
bourhood (H5: see the “Methods” section for how this is computed). The number
in parentheses are estimates of standard deviations. (b) Relative frequency es-
timates of how often we can expect incorporation of a relevance-based prior to
affect the selection of explanations. The tabulation is the proportion of expla-
nations for which a Bayes label using both fidelity and relevance (〈LH , RH〉) is
better than one that uses fidelity only (〈LH , ∅〉). The explanations are for the H5

neighbourhood. Again, the estimates are from the same 10-fold cross-validation
splits used elsewhere.

Network
Problem ≈ #Inputs #HL #Units/HL
Mut188 7100 3 15
Canc330 5400 3 6
DssTox 200 4 6
Amine 2200 3 12
Choline 2500 3 6
Scop 2400 4 13
Toxic 2300 3 14

Figure 6: Characteristics of DRM models. The numbers are averages across a 10-fold cross-
validation. For any fold, the number of input layers and the units in a layer are
automatically obtained in an optimisation step.

31

Srinivasan, Vig and Bain

1. Explanations are constructed to maintain fidelity to the DRM’s predictions in a local
region, and not to the actual class labels of the instances in the region. Fidelity
is agnostic therefore to the predictive accuracy of the DRM, and it is possible to
obtain high-fidelity explanations for a low predictive accuracy DRM. This occurs in
the results here on the Canc330 dataset, which is known to be more noisy than the
others. The DRM has low predictive accuracy on this dataset, but nevertheless we
are able to construct high-fidelity explanations for it.

2. Local explanations are not constructed for the model’s prediction on the entire in-
stance space, and focus instead on just a few (similar) instances. Although the net-
works can often contain 1000’s of input features (see Fig. 6), any single instance usually
consists of only a few “active” features. This allows the construction of compact local
explanations that only require the presence of a small number of features (more on
compactness below).

3. Since (local) fidelity is measured against the DRM’s predictions of instances in a
region and not against their actual class labels, any subset of instances that are close
to the test instance can be chosen. In our experiments, this region is selected from
the training set. This ensures that all explanations are based only on data the DRM
was actually trained on. An alternative could be by random generation, as is done in
Ribeiro et al. (2016), although this may pose some difficulty in ensuring instances are
drawn from an appropriate instance space (for biochemical tasks like the ones here,
for example, they have to be real molecules).

Unsurprisingly, two key factors affecting the selection of local explanations are the neigh-
bourhood size, and the relevance information provided. We consider each of these in turn.

5.3.1. The Role of the Neighbourhood

Neighbourhood size affects the local explanations constructed (see Fig. 7). In general, the
fewer the instances in the local neighbourhood, the less the constraints imposed on the
explanations. This leads to smaller explanations (fewer literals), and higher fidelity.

The high-fidelity values in Fig. 7 are not an artifact of instances being very similar
within a neighbourhood (that is, class distribution will be predominantly of the same value).
Figure 8 shows this is not the case. Although class-ratios are less skewed as the size of the
neighbourhood increases (from H5 to H10), it is not the case that high-fidelity can simply
be obtained by default. We believe this is because a 1-bit difference here can mean the
presence or absence of a non-trivial relational structure. A change of 5 such structural
features can therefore be a very substantial change.

Finally, structured explanations only appear to play role for larger neighbourhoods. We
suggest this is not so much to do with the size of the neighbourhood, as to the corresponding
increasing in the size of the explanations. In general, larger explanations (those with more
features) are likely to benefit from structuring.

5.3.2. The Role of Relevance

Broadly speaking, the relevance-ordering will prefer labelled explanations with higher rel-
evance. The tabulation in Fig. 5(b) tells us the problems for which we can expect this

32

Logical Explanations for Deep Relational Machines Using Relevance Information

Problem Nbd. Size
H5 H10

Mut188 5(1) 20(3)
Canc330 3(1) 27(4)
DssTox 19(3) 83(10)
Amine 9(1) 23(20
Choline 14(1) 53(3)
Scop 8(1) 26(2)
Toxic 12(2) 42(2)

(a)

Problem Fidelity
H5 H10

Mut188 0.99(0.01) 0.96(0.01)
Canc330 0.99(0.01) 0.92(0.02)
DssTox 0.87(0.03) 0.85(0.02)
Amine 0.98(0.01) 0.97(0.01)
Choline 0.89(0.01) 0.83(0.01)
Scop 0.89(0.02) 0.86(0.02)
Toxic 0.94(0.02) 0.90(0.03)

(b)

Problem Expl. Size
H5 H10

Mut188 1(1) 2(1)
Canc330 1(1) 3(1)
DssTox 3(1) 4(1)
Amine 2(1) 2(1)
Choline 2(1) 3(1)
Scop 2(1) 2(1)
Toxic 2(1) 3(1)

(c)

Problem Struc. Expl.
H5 H10

Mut188 0.00 0.04
Canc330 0.02 0.36
DssTox 0.00 0.00
Amine 0.00 0.00
Choline 0.00 0 00
Scop 0.00 0.00
Toxic 0.00 0.00

(d)

Figure 7: Effect of the neighbourhood. (a) Average numbers of neighbouring instances
for local explanations (rounded up); (b) Average fidelity of local explanations;
(c) Average number of literals in the maximal-fidelity explanations (rounded up);
and (d) Average proportion of structured explanations. All numbers are estimates
obtained from 10-fold cross-validation (the numbers in parentheses are estimates
of the standard deviation).

Problem Pos-to-Neg Ratio
H5 H10

Mut188 0.77 0.61
Canc330 0.63 0.46
DssTox 0.21 0.13
Amine 0.58 0.50
Choline 0.58 0.49
Scop 0.54 0.48
Toxic 0.43 0.33

Figure 8: Average class ratios in neighbourhoods.

33

Srinivasan, Vig and Bain

information to make a difference, in terms of the proportion of explanations for which we
can expect relevance to affect selection.

Since the relevance information provided is an ordering, it is possible, but perhaps un-
necessary, to correlate numerically the differences observed in Fig. 5(b) against the ranking.
Nevertheless, the specific result in the tabulation for DssTox points to an important issue
about the relevance ranking. There are clear differences between the role of the relevance
information amongst the datasets (significant effect in Mut188 and Canc330; minor effect
in the Alzheimer datasets; and no effect in DssTox). We conjecture the following condition
for relevance to have an effect on selection:

The larger the range of the relevance assignment, the more likely it is that relevance
will play a role in selection of explanations.

For the datasets here, the range of the relevance assignment has 1 value for DssTox;
2 values for the Alzheimer’s datasets; and 4 values each for Mut188 and Canc330. The
corresponding proportions of explanations where relevance plays a role in selection are: 0.0
(DssTox); 0.29 (Alzheimer datasets); and 0.80 (Mut188 and Canc330).

Finally, since explanations are generated “on-demand”, it is impractical to show the
explanations for all test instances. A snapshot is nevertheless useful, and one such is shown
in Fig. 9. The example is from the Canc330 problem. The unstructured explanation shown
has perfect fidelity. The alternate structured explanation shown in Fig. 9 is derived from
this unstructured explanation has the same fidelity (as expected), but higher relevance. In
effect, what the structuring achieves here is to group predicates with the Has property
relation, which has high-relevance; and separate out predicates that mix predicates with
low- and high-relevance. Some measure of the explanatory convenience provided by the
symbolic model is apparent if the reader keeps in mind that the corresponding prediction
by the DRM is based on around 2000 input features, about 400 of which are equal to 1 for
the test instance. It is interesting that the domain-expert could correctly identify the class
of the example when shown the symbolic explanation.

6. Other Related Work

We have already noted the key reference to LIME and to reports in the ILP literature of
immediate relevance to the work in this paper. Here we comment on other related work.
The landmark work on structured induction of symbolic models is that of Shapiro (1987).
In Shapiro’s work structuring was top-down, with machine learning being used to learn
sub-concepts identified by a domain-expert. The structuring is therefore hand-crafted,
and with a sufficiently well-developed tool, a domain-expert can, in principle, invoke a
machine learning procedure to construct sub-concepts using examples he or she provides.
The technique was shown to yield more compact models than an unstructured approach on
two large-scale chess problems, using decision-trees induced for sub-concepts.

Clearly the principal difficulty in the Shapiro-style of structured induction is the require-
ment for human intervention at the structuring step. The following notable efforts in ILP,
or closely related areas, have been directed at learning structured theories automatically:

34

Logical Explanations for Deep Relational Machines Using Relevance Information

Unstructured explanation:

Label: 〈LH = 1.0, PH = {[1, 4]}〉
Explanation H:
Class(x, c)← F537(x), F1196(x), F610(x), F611(x), F1657(x)

Structured explanation(s):

Label: 〈 LH1 = 1.0, PH1 = {[1, 4], [4, 4]}〉
Explanation H1:
Class(x, c)← F1,1(x), F1,2(x)
F1,1(x)← F1657(x)
F1,2 ← F537(x), F1196(x), F610(x), F611(x)

Feature-definitions:
F537(x)← Atm(x, y, h, 3, z), Gteq(z, 0.115) (Relev = [1,1])

F1196(x)← Atm(x, y, c, 22, z), Gteq(z,−0.111), Atm(x,w, c, 22, z) (Relev = [1,1])

F610(x)← Non ar hetero 6 ring(x, u), Has property(x, ames, p) (Relev = [2,4])

F611(x)← Has property(x, salmonella, n),
Has property(x,mouse lymph, p) (Relev = [4,4])

F1657(x)← Has property(x, cytogen ca, n), Has property(x,mouse lymph, p),
Has property(x, cytogen sce, p) (Relev = [4,4])

Figure 9: Example explanations for a test instance from the Canc330 domain. The un-
structured explanation H has perfect fidelity to the DRM’s local predictions.
The structured explanation H1 is obtained from H and preserves fidelity, but
predicates are grouped so that higher relevance is achieved.

35

Srinivasan, Vig and Bain

• Inverse resolution, especially in the Duce system (Muggleton, 1987) was explicitly
aimed at learning structured sets of rules in propositional logic. The sub-concepts are
constructed bottom-up;

• Function decomposition, using HINT (Zupan et al., 2001), which learns hierarchies of
concepts using automatic top-down function decomposition of propositional concepts;

• First-order theories with exceptions, using the GCWS approach (Bain, 1991), which
automatically constructs hiearchical concepts. Structuring is restricted to learning
exceptions to concepts learned at a higher level of the hierarchy;

• First-order tree-learning: an example is the TILDE system (Blockeel, 1999). In this,
the tree-structure automatically imposes a structuring on the models. In addition,
if each node in the tree is allowed a “lookahead”option, then nodes can contain con-
junctions of first-order literals, each of which can be seen as defining a new feature.
The model is thus a hierarchy of first-order features; and

• Meta-interpretive learning (Muggleton et al., 2015), which allows a very general
form of predicate-invention, by allowing an abduction step when employing a meta-
interpreter to use higher-order templates of rules that be used to construct proofs (in
effect, explanations) for data. In principle, this would allow us not just to construct
explanations on-demand, but also invent features on-demand. If the higher-order
templates can be specialised to the domain, then it should be possible to control the
feature-invention by relevance-information. Of course, this is unrelated to generating
explanations for the predictions of a black-box classifier.

• Propositionalisation (relational feature construction) (Kramer, 2001) in principle en-
ables the application of any propositional learner that can learn structured models,
such as in (Zelezny and Lavrac̃, 2006), to the task of learning structured first-order
models. More recently, propositionalization was applied in learning topic models,
a class of two-level structured probabilistic models (Srinivasan et al., 2012). ILP
propositionalization typically uses relational features constructed before learning com-
mences (Srinivasan and King, 1996). For construction of relational explanations “on-
demand”, e.g., for local neighbourhoods of a test instance, there have been a number
of approaches in ILP in which propositionalization occurs during the learning pro-
cess. This appears to have been described first by (Alphonse and Rouveirol, 2000)
where it was called “lazy propositionalization”. Following this were the approaches
of (Kramer, 2001), (Popescul and Ungar, 2004), and (Landwehr et al., 2006) in which
this was termed “dynamic propositionalization”.

Unsurprisingly, there has been a lot of research effort invested into extracting explanations
for the predictions made by a neural network (see d’Avila Garcez et al. (2002), Chapter 3
for a full description of this line of research). Most of this effort has been in the direction
of translating the network into a single logical model that guarantees correspondence to
the neural model (for example, see Thrun, 1994). Alternatively, a single symbolic model
can be learned that approximates the behaviour of the neural model over all inputs (for
example, Craven and Shavlik, 1994; França et al., 2015)). Although distinct in their aims,

36

Logical Explanations for Deep Relational Machines Using Relevance Information

both approaches still result in two separate models, one neural and the other symbolic. In
both cases the symbolic model is intended to be a readable proxy for the neural model,
which can then form a basis for an explanation of “why” questions. But there are some
inherent trade-offs:

• If we try to replicate exactly the behaviour of the neural network with a symbolic
model (as is done, say, in Thrun, 1994), then the resulting model may not be any
more comprehensible than the neural network; and

• If we try only to approximate the behaviour of the network using logical predicates (as
is done, say, in Craven and Shavlik, 1994), then we run the risk of not being able to
replicate the network’s behaviour sufficiently accurately over all instances, because of
inadequacies of the logical predicates available.

Both these issues are exacerbated for modern-day deep networks, with many hidden
layers and large numbers of inputs. One way to side-step these difficulties is simply to drop
the requirement—as is done here—of translating the entire network model into a single
symbolic model.

An entirely different, and much more sophisticated kind of hybrid model combining
connectionist and logical components has been proposed recently in the form of Lifted Re-
lational Neural Networks (LRNNs: Sourek et al., 2015)). In LRNNs, the logical component
is used to provide a template for ground neural network models, which are used to learn
weights on the logical formulae. While we have largely stayed within the confines of classical
ILP both for obtaining features and explanations, LRNNs are closely related to probabilis-
tic models for ILP. An area of common interest arises though in the use of the network
structure to invent new features (although in the LRNN case, this is not for local models
as we proposed here).

7. Concluding Remarks

The recent successes of deep neural networks on predictive tasks have not, to any large
extent, used either domain knowledge or representations significantly more expressive than
simple relations (usually over sequences). The price for this has been a requirement for very
large amounts of data, which provide the network with sufficient correlations necessary
to identify predictively useful models. This works for problems where large amounts of
data are being routinely generated automatically, and about which there may be little or
no domain knowledge. The situation with scientific data is quite the opposite: data are
sparse, but there is significant domain-knowledge, often built up over decades of painstaking
experimental work. We would like powerful predictive models in such domains, but for this,
the network would need a way of capturing what is known already, and be able to explain
its predictions, in a language that is sufficiently expressive.

In this paper the predictive models are knowledge-rich deep networks (DRMs), which
results suggest can achieve, and often exceed, the levels of predictivity reached by full first-
order learners. However, our interests extend beyond prediction. We want to construct
understandable models. For this we start with the approach taken in Ribeiro et al. (2016)
and propose the use of a proxy for the DRM that acts as a readable explanation. The

37

Srinivasan, Vig and Bain

proxy in this paper is in the form of a symbolic model for the predictions made by the
DRM, constructed using techniques developed in Inductive Logic Programming (ILP). But
there are at least three limitations we see arising from using the approach in Ribeiro et al.
(2016). First, the goal is to generate a readable proxy for the prediction made by a black-
box model. For us, the DRM is the black-box, but the approach here is sufficiently general
to construct logical explanations for any predictor that uses relational features as input. We
must emphasise that the logical explanation need not be the same as a readable proxy for the
(true-)value of the instance. Second, readability does not guarantee comprehensibility: in
Michie (1995) examples are shown of readable, but still incomprehensible, models. Thirdly,
an important quality normally required of good explanations, causality, does not explicitly
play a role. The first issue is inherent to the purpose of the model, and we have not
attempted to change it here. The incorporation of a semantic prior based on relevance
is a first attempt to address directly the second issue, and indirectly may address the
third partially (non-causal explanations should have low relevance). To construct causal
explanations correctly we will need more information than assigning relevance labels to
predicates. We will also need the explanation-generator to pose counterfactual queries to
the black-box, and the black-box to be able answer such queries with high accuracy. At
this point, there is some evidence that symbolic learning could be adapted to suggest new
experiments (see, for example, King et al., 2004), but it is not known how well DRMs
will perform if the distribution of input values is very different to those that were used to
train the network. So, at this point, we have restricted ourselves to constructing readable
explanations for predictions that take into account prior preferences.

In this paper we have proposed the use of DRMs and the results here are consistent with
previous work showing that such models are powerful predictors. However, it is important
to understand also what the experimental evidence presented does not tell us. It does not
tell us, for example, that a deep network without first-order features will not achieve the
same performance as those tabulated here. However, it is not immediately apparent how
this conjecture could be tested, since no more data are available for the problems. However
it may be possible to transfer features constructed by a network trained on other problems
with more data.

There are at least three separate directions in which we plan to extend the work here.
First, interactions with the domain-expert suggests that the relevance information we have
used here can be made much more fine-grained. It is possible, for example that certain
combinations of predicates may be more relevant than others (or, importantly, certain
combinations are definitely not relevant). None of this is accounted for in the current
feature-generation process, and we intend to investigate relevance-guided sampling in place
of the simple random sampling we use at present. Secondly, we would like to explore the
construction of causal explanations for DRMs, by combining counterfactual reasoning with
the use of a generative deep network capable of generating new instances. Thirdly, it is
necessary at some point in the future, to establish the link between local symbolic explana-
tions and human comprehensibility. For this, we would need to conduct a cross-comparison
of structured and unstructured explanations and ratings of their comprehensibility by a
domain-expert. Recently (Schmid et al., 2016) experiments have been reported in the ILP
literature on assessing comprehensibility, when invention of predicates is allowed. Similar

38

Logical Explanations for Deep Relational Machines Using Relevance Information

experiments will help assess the human-comprehensibility of local symbolic explanations for
black-box classifiers.

Acknowledgments

A.S. is a Visiting Professorial Fellow, School of CSE, UNSW Sydney. A.S. is supported by
the SERB grant EMR/2016/002766.

Appendix A. Some terminology from Logic Programming and ILP

In this section we cover only terminology used in the paper. For additional background and
further terminology see Chang and Lee (1973); Nilsson (1980); Lloyd (1987); Muggleton
and De Raedt (1994).

A language of first order logic programs has a vocabulary of constants, variables, function
symbols, predicate symbols, logical implication ‘←’, and punctuation symbols. A function or
predicate can have a number of arguments known as terms. Terms are defined recursively. A
constant symbol (or simply “constant”) is a term. A variable symbol (or simply “variable”)
is a term. If f is an m-ary function symbol, and t1, . . . , tm are terms, then the function
f(t1, . . . , tm) is a term. A term is said to be ground if it contains no variables. If p is
an n-ary predicate symbol, and t1, . . . , tn are terms, then the predicate p(t1, . . . , tn) is an
atom. Predicates with the same predicate symbol but different arities are distinguished by
the notation p/n where p is a predicate of arity n. We follow the standard Prolog syntax
conventions. Constant symbols are written as a lower-case letter followed by a string of
lower- or upper-case letters, digits or underscores (’ ’). Variables are written similarly,
except that the first letter must be upper-case. A literal is either an atom or the negation
of an atom. If a literal is an atom it is referred to as a positive literal, otherwise it is a
negative literal. A clause is a disjunction of the form A1 ∨ . . . ∨ Ai ∨ ¬Ai+1 ∨ . . . ∨ ¬Ak,
where each Aj is an atom. Alternatively, such a clause may be represented as an implication
(or “rule”) A1, . . . , Ai ← Ai+1, . . . , Ak. A definite clause A1 ← A2, . . . , Ak has exactly one
positive literal, called the head of the clause, with the literals A2, . . . , Ak known as the body
of the clause. A definite clause with a single positive literal is called a unit clause, and
a clause with at most one positive literal is called a Horn clause. A Horn clause with no
positive literal is called a goal clause. A set of Horn clauses is referred to as a logic program.
It is often useful to represent a clause as a set of literals.

A substitution θ is a finite set {v1/t1, . . . , vn/tn} mapping a set of n distinct variables vi,
1 ≤ i ≤ n, to terms tj , 1 ≤ j ≤ n such that no term is identical to any of the variables. A
substitution containing only ground terms is a ground substitution. For substitution θ and
clause C the expression Cθ denotes the clause where every occurrence in C of a variable
from θ is replaced by the corresponding term from θ. If θ is a ground substitution then Cθ
is called a ground clause. Since a clause is a set, for two clauses C, D, the set inclusion
Cθ ⊆ D is a partial order called subsumption, usually written C θ-subsumes D and denoted
by C � D. For a set of clauses S and the subsumption ordering �, we have that for every
pair of clauses C,D ∈ S, there is a least upper bound and greatest lower bound, called,
respectively, the least general generalisation (lgg) and most general unifier (mgu) of C and

39

Srinivasan, Vig and Bain

D, which are unique up to variable renaming. The subsumption partial ordering on clauses
enables the definition of a lattice, called the subsumption lattice.

Appendix B. Fidelity and Likelihood

The model for noisy data in McCreath and Sharma (1998) can be adapted to the construc-
tion of local explanations that are not completely consistent with local predictions (that is,
fidelity < 1).

Remark 9 (Bayesian Posterior McCreath and Sharma (1998)) Given a relational
instance a ∈ X , let N be predictive model s.t. N(FV (a)) = c for c ∈ Y. Let sets E+ and
E− denote the local neighbourhood of a and D = (E+, E−). Let H be a local explanation
for a (not necessarily consistent), using background knowledge B. Then, if θ(H) is the
proportion of all instances in X × Y covered by H, and ε is an estimate of inconsistency
(noise) allowed ε ∈ [0, 1]), the log posterior is given by McCreath and Sharma (1998):

logP (H|D,B) = logP (D|H,B) + logP (H|B)− log(D|B)

where P (H|B) denotes the prior probability, and:

logP (D|H,B) = |TP (H)|log

(
1− ε
θ(H)

+ ε

)
+|TN(H)|log

(
1− ε

1− θ(H)
+ ε

)
+|FPN(H)|log(ε)

is the log-likelihood. Here TP (H) is the set {e : e ∈ E+ and B ∧H |= e}; TN(H) is the set
{e : e ∈ E− and B ∧H ∧ ¬e 6|= 2}; and FPN(H) = D − (TP (H) ∪ TN(H)).

It is not hard to see that TP and TN correspond to AgreePos and AgreeNeg in Defn. 13.
In some cases, it is in fact sufficient to maximise fidelity, to maximise the log-likelihood.

Remark 10 (Fidelity and Log-Likelihood) Let H1,2 be local explanations for a rela-
tional example Class(a, c), given D,B. If θ(H1) = θ(H2), |TP (H2)| ≥ |TP (H1)| and
|TN(H2)| ≥ |TN(H1)| then: (a) Fidelity(H2|D,B) ≥ Fidelity(H1|D,B); and
(b) logP (D|H2, B) ≥ logP (D|H1, B).

For given D, B, from Defn. 9 the log-likelihood is log P (D|H,B). Then, from Defn. 13,

Fidelity(H1|D,B) = |TP (H1)|+|TN(H1)|
|D| , and Fidelity(H2|D,B) = |TP (H2)|+|TN(H2)|

|D| . Since

|TP (H2) ≥ |TP (H1)|, and |TN(H2)| ≥ |TN(H1)|, trivially we obtain Fidelity(H2|D,B) ≥
Fidelity(H1|D,B).

For any explanation H, s.t. 0 < θ)(H) < 1 and for a fixed ε s.t. 0 ≤ ε ≤ 1, the log-
multipliers k1,2(θ(H)) of |TP (H)| and |TN(H)| in the expression for log P (D|H,B) are
both positive; and the log-multiplier k3 of |FPN(H)| is at most 0. Therefore logP (D|H)
is k1(θ(H))|TP | + k2(θ(H))|TN | − k3(|D|) + k3(|TP | + |TN |). If θ(H1) = θ(H2), then
k1(θ(H1)) = k1(θ(H2)) = k1, say, and k2(θ(H1) = k2(θ(H2)) = k2, say. Then logP (D|H1)
is k1|TP (H1)| + k2|TN(H1)| − k3(|D|) + k3(|TP (H1)| + |TN(H1)|) and logP (D|H2) is
k1|TP (H2)|+k2|TN(H2)|−k3(|D|)+k3(|TP (H2)|+|TN(H2)|), Since |TP (H2) ≥ |TP (H1)|
and |TN(H2)| ≥ |TN(H1)|, and k1,2 > 0 and k3 ≥ 0 it follows trivially that logP (D|H2, B) ≥
logP (D|H1, B).

40

Logical Explanations for Deep Relational Machines Using Relevance Information

Accuracy
Problem OptILP Stat DRM DRM

Srinivasan and Ramakrishnan (2011) Saha et al. (2012) Lodhi (2013) (here)
Mut188 0.88(0.02) 0.85(0.05) 0.90(0.06) 0.91(0.06)
Canc330 0.58(0.03) 0.60(0.02) – 0.68(0.03)
DssTox 0.73(0.02) 0.72(0.01) 0.66(0.02) 0.70(06)
Amine 0.80(0.02) 0.81(0.00) – 0.89(0.04)
Choline 0.77(0.01) 0.74(0.00) – 0.81(0.03)
Scop 0.67(0.02) 0.72(0.02) – 0.82(0.06)
Toxic 0.87(0.01) 0.84(0.01) – 0.93(0.03)

Figure 10: Experiment 3. Estimated predictive accuracies of DRMs against some of the
best reported performances in the ILP literature. All estimates are from the
same 10-fold cross-validation splits in the reports cited.

Appendix C. Relevance Information

The following problem-specific relevance assignments for predicates in the background
knowledge were obtained from R.D. King, University of Manchester.

Problem Relevance Predicates
Mut188 1 Atoms and bonds

2 3-dimensional distance
3 Functional groups and rings
4 LUMO, hydrophobicity
5 Expert-identified indicator variables

Canc330 1 Atoms and bonds
2 Functional groups and rings
3 Carcinogenic alerts
4 Outcome of genetic tests

DssTox 1 Atoms and bonds
Alzh. 1 Substitutions at templates
Datasets 2 Hansch-type predicates (size, polarity etc.)

Appendix D. Predictive Accuracy of the DRM

The principal observations that can be made from the main tabulations in Fig. 10 are that
the predictive accuracy of the DRMs clearly compare favourably to the best reports in the
literature. Therefore the results provide evidence that a deep relational machine (DRM)
equipped with domain knowledge and randomly drawn first-order features can construct
good predictive models using (by deep-learning standards) very few data instances.

Quantitative assessments of the results are also possible, with the usual cautions associ-
ated with small numbers and multiple comparisons. The appropriate test for comparing the
predictive accuracy of the DRM is the Wilcoxon signed-rank test, with the null hypothesis
that the DRM’s accuracy is the same as the method being compared. This yields P -values
of < 0.05 for the comparisons against OptILP and Stat (we omit a comparison against the
DRM in Lodhi (2013), due to lack of data).

41

Srinivasan, Vig and Bain

Appendix E. Example Explanations

The following explanations are for a test-instance in the Canc330 problem (specifically, test-
instance 2 on the 3rd cross-validation split). This example was chosen since it illustrates a
number of interesting aspects: all explanations have perfect fidelity; structuring increases
relevance; and there are several structured explanations possible. The DRM has 2196
features, of which 397 are active for this instance. The DRM correctly predicts the instance
as belonging to the “positive” class. All the symbolic explanations below predict the same
class-values as the DRM for the test-instance and its neighbours.

Unstructured explanation:

Label: 〈LH = 1.0, PH = {[1, 4]}〉
Explanation H:
Class(x, c)← F537(x), F1196(x), F610(x), F611(x), F1657(x)

Structured explanation(s):

Label: 〈 LH1 = 1.0, PH1 = {[1, 4], [4, 4]}〉
Explanation H1:
Class(x, c)← F1,1(x), F1,2(x)
F1,1(x)← F1657(x)
F1,2 ← F537(x), F1196(x), F610(x), F611(x)

Label: 〈 LH2 = 1.0, PH2 = {[1, 4], [4, 4]}〉
Explanation H2:
Class(x, c)← F1,1(x), F1,2(x)
F1,1(x)← F611(x)
F1,2 ← F537(x), F1196(x), F610(x), F1657(x)

Label: 〈 LH3 = 1.0, PH3 = {[1, 4], [4, 4]}〉
Explanation H3:
Class(x, c)← F1,1(x), F1,2(x)
F1,1(x)← F1657(x), F611(x)
F1,2 ← F537(x), F1196(x), F610(x)

Feature-definitions:
F537(x)← Atm(x, y, h, 3, z), Gteq(z, 0.115) (Relev = [1,1])

F1196(x)← Atm(x, y, c, 22, z), Gteq(z,−0.111), Atm(x,w, c, 22, z) (Relev = [1,1])

F610(x)← Non ar hetero 6 ring(x, u), Has property(x, ames, p) (Relev = [2,4])

F611(x)← Has property(x, salmonella, n),
Has property(x,mouse lymph, p) (Relev = [4,4])

F1657(x)← Has property(x, cytogen ca, n), Has property(x,mouse lymph, p),
Has property(x, cytogen sce, p) (Relev = [4,4])

42

Logical Explanations for Deep Relational Machines Using Relevance Information

References

Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the surprising behavior
of distance metrics in high dimensional spaces. In Database Theory - ICDT 2001, 8th
International Conference, London, UK, January 4-6, 2001, Proceedings., pages 420–434,
2001.

E. Alphonse and C. Rouveirol. Lazy propositionalisation for Relational Learning. In
W. Horn, editor, ECAI-2000: Proc. 14th European Conf. on Artificial Intelligence, pages
256–260, 2000.

Michael Bain. Experiments in non-monotonic learning. In Proceedings of the Eighth In-
ternational Workshop (ML91), Northwestern University, Evanston, Illinois, USA, pages
380–384, 1991.

Tarek R. Besold, Artur S. d’Avila Garcez, Sebastian Bader, Howard Bowman, Pedro M.
Domingos, Pascal Hitzler, Kai-Uwe Kühnberger, Lúıs C. Lamb, Daniel Lowd, Priscila
Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon, and Gerson Za-
verucha. Neural-symbolic learning and reasoning: A survey and interpretation. CoRR,
abs/1711.03902, 2017.

H. Blockeel and S. Valevich. Subtle. Available at:
https://dtai.cs.kuleuven.be/software/subtle/, 2016.

Hendrik Blockeel. Top-down induction of first order logical decision trees. AI Commun.,
12(1-2):119–120, 1999.

C-L. Chang and R. C-T. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic
Press, London, 1973.

G. Coletti and R. Scozzafava. A coherent qualitative Bayes’ theorem and its application in
artificial intelligence. In Proc. 2nd Intl. Symp. Uncertainty Modeling and Analysis, pages
40–44, 1993.

Mark Craven and Jude W. Shavlik. Using sampling and queries to extract rules from
trained neural networks. In Machine Learning, Proceedings of the Eleventh International
Conference, Rutgers University, New Brunswick, NJ, USA, July 10-13, 1994, pages 37–
45, 1994.

Tirtharaj Dash, Ashwin Srinivasan, Lovekesh Vig, Oghenejokpeme Orhobor, and Ross King.
Large scale assessment of deep relational machines. In E. Bellodi F. Riguzzi and R. Zese,
editors, Proceedings of the 28th International Conference on Inductive Logic Program-
ming, volume 11105 of Lecture Notes in Computer Science, pages 22–37. Springer, 2018.

Artur S. d’Avila Garcez and Gerson Zaverucha. The connectionist inductive learning and
logic programming system. Appl. Intell., 11(1):59–77, 1999.

Artur S. d’Avila Garcez, Krysia B. Broda, and Dov M. Gabbay. Neural-Symbolic Learning
Systems: Foundations and Applications. Perspectives in Neural Computing. Springer,
2002.

43

Srinivasan, Vig and Bain

Manoel V. M. França, Gerson Zaverucha, and Artur S. d’Avila Garcez. Fast relational
learning using bottom clause propositionalization with artificial neural networks. Machine
Learning, 94(1):81–104, 2014.

Manoel Vitor Macedo França, Artur S. d’Avila Garcez, and Gerson Zaverucha. Relational
knowledge extraction from neural networks. In Proceedings of the NIPS Workshop on
Cognitive Computation: Integrating Neural and Symbolic Approaches co-located with the
29th Annual Conference on Neural Information Processing Systems (NIPS 2015), Mon-
treal, Canada, December 11-12, 2015., 2015.

D. Gabbay. Labelled Deductive Systems, volume 1. Clarendon Press, 1996.

Dov M. Gabbay, C.J. Hogger, and J.A. Robinson. Logic Programming. Vol. 5 of Handbook
of Logic in Artificial Intelligence and Logic Programming. Clarendon Press, Oxford, 1998.

I.J. Good. Good Thinking: The Foundations of Probability and its Applications. University
of Minnesota, Minneapolis, 1983.

Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning. Adaptive
computation and machine learning. MIT Press, 2016.

C.J. Hogger. Essentials of Logic Programming. Clarendon Press, Oxford, 1990.

Andrej Karpathy and Fei-Fei Li. Deep visual-semantic alignments for generating image
descriptions. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015, pages 3128–3137, 2015.

R. D. King and A. Srinivasan. Prediction of rodent carcinogenicity bioassays from molecular
structure using inductive logic programming. Environmental Health Perspectives, 104:pp.
1031–1040, Oct. 1996a.

R. D. King, S. H. Muggleton, A. Srinivasan, and M J Sternberg. Structure-activity rela-
tionships derived by machine learning: the use of atoms and their bond connectivities
to predict mutagenicity by inductive logic programming. Proceedings of the National
Academy of Sciences of the United States of America, 93(1):438–42, January 1996a.

R.D. King and A. Srinivasan. Prediction of rodent carcinogenicity bioassays from molecular
structure using inductive logic programming. Environmental Health Perspectives, 104(5):
1031–1040, 1996b.

R.D. King, S.H. Muggleton, A. Srinivasan, and M.J.E. Sternberg. Structure-activity rela-
tionships derived by machine learning: The use of atoms and their bond connectivities
to predict mutagenicity by inductive logic programming. Proc. of the National Academy
of Sciences, 93:438–442, 1996b.

Ross D. King, Kenneth E. Whelan, Ffion M. Jones, Philip G. K. Reiser, Christopher H.
Bryant, Stephen H. Muggleton, Douglas B. Kell, and Stephen G. Oliver. Functional
genomic hypothesis generation and experimentation by robot scientist. Nature, 427:247–
52, 2004.

44

Logical Explanations for Deep Relational Machines Using Relevance Information

S. Kramer. Demand-Driven Construction of Structural Features in ILP. In C. Rouveirol
and M. Sebag, editors, ILP 2001: Proc. 11th Intl. Conference on Inductive Logic Pro-
gramming, number 2157 in LNAI, Berlin, 2001. Springer.

N. Landwehr, A. Passerini, L. De Raedt, and P. Frasconi. K-Foil: Learning Simple Re-
lational Kernels. In Y. Gil and R. Mooney, editors, AAAI-2006: Proc. 21st National
Conference on Artificial Intelligence, pages 389–394, 2006.

J. W. Lloyd. Logic Programming, 2nd Edition. Springer-Verlag, Berlin, 1987.

Huma Lodhi. Deep relational machines. In Neural Information Processing - 20th Interna-
tional Conference, ICONIP 2013, Daegu, Korea, November 3-7, 2013. Proceedings, Part
II, pages 212–219, 2013.

Eric McCreath and Arun Sharma. LIME: A system for learning relations. In Algorith-
mic Learning Theory, 9th International Conference, ALT ’98, Otzenhausen, Germany,
October 8-10, 1998, Proceedings, pages 336–374, 1998.

R.S. Michalski. A theory and methodology of inductive learning. In R. Michalski, J. Car-
bonnel, and T. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach,
pages 83–134. Tioga, Palo Alto, CA, 1983.

D. Michie. The superarticulacy phenomenon in the context of software manufacture. Proc.
R. Soc. Lond. A, 405:185–212, 1986.

D. Michie and R. Johnston. The Creative Computer: Machine Intelligence and Human
Knowledge. Viking Press, 1984.

Donald Michie. Consciousness as an engineering issue, part 2. Journal of Consciousness
Studies, 2(1):52–66, 1995.

T.M. Mitchell, R.M. Keller, and S.T. Kedar-Cabelli. Explanation-Based Generalization: A
Unifying View. Machine Learning, 1(1):47–80, 1986.

S. Muggleton. Inductive Logic Programming: derivations, successes and shortcomings.
SIGART Bulletin, 5(1):5–11, 1994.

S. Muggleton. Inverse Entailment and Progol. New Gen. Comput., 13:245–286, 1995.

S. Muggleton and L. De Raedt. Inductive Logic Programming: Theory and Methods.
Journal of Logic Programming, 19(20):629–679, 1994.

S.H. Muggleton. Duce, an oracle based approach to constructive induction. In IJCAI-87,
pages 287–292. Kaufmann, 1987.

Stephen Muggleton, José Carlos Almeida Santos, and Alireza Tamaddoni-Nezhad. Toplog:
ILP using a logic program declarative bias. In Logic Programming, 24th International
Conference, ICLP 2008, Udine, Italy, December 9-13 2008, Proceedings, pages 687–692,
2008.

45

Srinivasan, Vig and Bain

Stephen H. Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad. Meta-interpretive
learning of higher-order dyadic datalog: predicate invention revisited. Machine Learning,
100(1):49–73, 2015.

N. J. Nilsson. Principles of Artificial Intelligence. Springer-Verlag, Berlin, 1980.

A. Petterossi and M. Proietti. Transformation of Logic Programs. In D. Gabbay. Hog-
ger and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic
Programming, Volume 5 - Logic Programming, pages 697–787. Clarendon Press, Oxford,
1998.

A. Popescul and L. Ungar. Dynamic Feature Generation for Relational Learning. In 3rd
International Workshop on Multi-Relational Data Mining, 2004.

Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should I trust you?: Ex-
plaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, August 13-17, 2016, pages 1135–1144, 2016.

Amrita Saha, Ashwin Srinivasan, and Ganesh Ramakrishnan. What kinds of relational
features are useful for statistical learning? In ILP, 2012.

Ute Schmid, Christina Zeller, Tarek R. Besold, Alireza Tamaddoni-Nezhad, and Stephen
Muggleton. How does predicate invention affect human comprehensibility? In Inductive
Logic Programming - 26th International Conference, ILP 2016, London, UK, September
4-6, 2016, Revised Selected Papers, pages 52–67, 2016.

A.D. Shapiro. Structured Induction in Expert Systems. Addison-Wesley, Wokingham, 1987.

Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezný, and Ondrej Kuzelka. Lifted rela-
tional neural networks. In Proceedings of the NIPS Workshop on Cognitive Computation:
Integrating Neural and Symbolic Approaches co-located with the 29th Annual Conference
on Neural Information Processing Systems (NIPS 2015), Montreal, Canada, December
11-12, 2015., 2015.

A. Srinivasan. The Aleph Manual. Available at http://www.comlab.ox.ac.uk/oucl/ re-
search/areas/machlearn/Aleph/, 1999.

A. Srinivasan and R. King. Feature construction with inductive logic programming: a
study of quantitative predictions of biological activity aided by structural attributes. In
S. Muggleton, editor, ILP’96: Proc. 6th Inductive Logic Programming Workshop, volume
LNAI 1314, pages 89–104, 1996.

A. Srinivasan, S. H. Muggleton, M. J. E. Sternberg, and R. D. King. Theories for mu-
tagenicity: A study in first-order and feature-based induction. Artif. Intell., 85(1-2):
277–299, 1996.

A. Srinivasan, R.D. King, and M.E. Bain. An empirical study of the use of relevance
information in Inductive Logic Programming. Machine Learning Research, 4(Jul):369–
383, 2003.

46

Logical Explanations for Deep Relational Machines Using Relevance Information

Ashwin Srinivasan. Extracting context-sensitive models in inductive logic programming.
Machine Learning, 44(3):301–324, 2001.

Ashwin Srinivasan and Ganesh Ramakrishnan. Parameter screening and optimisation for
ILP using designed experiments. Journal of Machine Learning Research, 12:627–662,
2011. URL http://portal.acm.org/citation.cfm?id=1953067.

Ashwin Srinivasan, Tanveer Faruquie, Indrajit Bhattacharya, and Ross King. Topic models
with relational features for drug design. In ILP, 2012.

Ian Stewart. The Ultimate in Anty-Particles. Scientific American, July, 1994.

Sebastian Thrun. Extracting rules from artifical neural networks with distributed repre-
sentations. In Advances in Neural Information Processing Systems 7, [NIPS Conference,
Denver, Colorado, USA, 1994], pages 505–512, 1994.

L. Vig, A. Srinivasan, M. Bain, and A. Verma. An investigation into the role of domain-
knowledge on the use of embeddings. In N. Lachiche and C. Vrain, editors, Inductive
Logic Programming. ILP 2017., volume 10759 of Lecture Notes in Computer Science,
Cham, 2018. Springer.

F. Zelezny and N. Lavrac̃. Propositionalization-based relational subgroup discovery with
RSD. Machine Learning, 62:33–63, 2006.

Blaz Zupan, Ivan Bratko, Marko Bohanec, and Janez Demsar. Function decomposition in
machine learning. In Machine Learning and Its Applications, Advanced Lectures, pages
71–101, 2001.

47

http://portal.acm.org/citation.cfm?id=1953067

	Introduction
	A Deep Relational Machine for Prediction
	Input Features for a DRM

	Logical Explanations using Feature-Clauses
	Single-Clause Explanations
	Multi-Clause Explanations
	Locally Consistent Explanations

	Selecting a Local Explanation
	A Relevance-Based Prior
	Other Relevance-Based Priors
	Implementation

	Empirical Evaluation
	Materials
	Data
	Background Knowledge
	Algorithms and Machines

	Methods
	Results
	The Role of the Neighbourhood
	The Role of Relevance

	Other Related Work
	Concluding Remarks
	Some terminology from Logic Programming and ILP
	Fidelity and Likelihood
	Relevance Information
	Predictive Accuracy of the DRM
	Example Explanations

