
Journal of Machine Learning Research 20 (2019) 1-26 Submitted 6/18; Revised 4/19; Published 11/19

Embarrassingly Parallel Inference for Gaussian Processes

Michael Minyi Zhang mz8@cs.princeton.edu
Department of Computer Science
Princeton University
Princeton, NJ 08544, USA

Sinead A. Williamson sinead.williamson@mccombs.utexas.edu

Department of Statistics and Data Science

Department of Information, Risk and Operations Management

The University of Texas at Austin

Austin, TX 78712, USA

Editor: Manfred Opper

Abstract

Training Gaussian process-based models typically involves an O(N3) computational bottle-
neck due to inverting the covariance matrix. Popular methods for overcoming this matrix
inversion problem cannot adequately model all types of latent functions, and are often not
parallelizable. However, judicious choice of model structure can ameliorate this problem.
A mixture-of-experts model that uses a mixture of K Gaussian processes offers modeling
flexibility and opportunities for scalable inference. Our embarrassingly parallel algorithm
combines low-dimensional matrix inversions with importance sampling to yield a flexible,
scalable mixture-of-experts model that offers comparable performance to Gaussian process
regression at a much lower computational cost.

Keywords: Gaussian process, parallel inference, machine learning, Bayesian non-parametrics.

1. Introduction

Gaussian processes (GPs) provide a flexible family of distributions over functions, that have
been widely adopted for problems including regression, classification and optimization due
to their ease of use in modeling latent functions. Additional flexibility can be achieved
using mixture-of-experts models (Gramacy and Lee, 2008; Rasmussen and Ghahramani,
2002; Meeds and Osindero, 2006), which use a mixture of Gaussian processes. Different
mixture components can have different covariance patterns, allowing for non-stationarity in
the resulting function without resorting to explicitly non-stationary covariance functions.

Unfortunately, the flexibility of Gaussian processes and related models comes at a cost.
Inference in GP models with N observations involves repeated inversion of an N × N
matrix, which typically scales O

(
N3
)
. Mixture-of-experts models fare slightly better

since, conditioned on the partition, we are inverting a block-diagonal matrix; however the
computational savings are tempered by the cost of averaging over partitions, typically using
MCMC. This computational bottleneck has thus far prevented Gaussian processes and
mixtures-of-experts from being used in so-called “big data” situations.

c©2019 Michael Minyi Zhang and Sinead Williamson.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/18-374.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/18-374.html

Zhang and Williamson

Two main approaches have been proposed to ameliorate the computational complexity
for inference in the simple Gaussian process regression setting: sparse methods, that aim
to reduce the size of the matrix to be inverted, and local methods, that aim to simplify
its structure. Unfortunately, both methods exhibit key failure modes as we reduce the
computational cost: local methods can miss long-range correlations, and sparse methods
tend to miss short-range fluctuations. Further, methods of these types are not typically
parallelizable to run efficiently on a distributed architecture.

In this paper, we propose a novel inference algorithm for fitting mixtures of partitioned
Gaussian processes that is flexible and easily distributed. The “Importance Sampled
Mixture of Experts” (IS-MOE) uses importance sampling to average over Gaussian processes
with block-diagonal covariance matrices. A location-based distribution over partitions
allows us to capture non-stationarity. We learn, in parallel, multiple partitioned Gaussian
processes sampled from the conditional distribution over partitions given the input locations
thereby allowing us to take advantage of the lower inversion cost of a block-diagonal
matrix. Minibatch-based stochastic approximations reduce the size of these blocks further,
while maintaining competitive performance. Importance weights are also calculated in a
distributed manner, with the only global communication occurring when the importance-
weighted samples are combined. The resulting posterior predictive distribution has a more
expressive expected covariance matrix than a single block-diagonal matrix, avoiding edge
effects common with local methods and allowing for an expressive covariance structure that
can model both long- and short-range covariance as well as non-stationary behavior in the
latent function.

We start in Section 2 by reviewing the Gaussian process and describing existing methods
for scaling inference. We then describe our approach in Section 3, before presenting detailed
experimental evaluation in Section 4 to showcase its efficacy versus existing methods. Further
extensions and applications are discussed in Section 5.

2. Background

2.1. Gaussian processes and related models

A Gaussian process is a distribution over functions f : RD → R, parametrized by some mean
function m(x), typically taken as zero, and a covariance function Σ(x, x′). For a given m
and Σ, a GP is a unique distribution over functions f such that for any finite set of points,
x1, . . . , xN ∈ RD, the function evaluated at those points is multivariate normally distributed
with mean and covariance given by m and Σ evaluated at these inputs.

This distribution over functions can be used in a variety of applications, including
regression, classification and optimization (see for example Rasmussen and Williams, 2006;
Snoek et al., 2012; Wang et al., 2005). For simplicity, we focus here on the regression setting,
where a function f ∼ GP(0,Σ) maps our inputs X = (xi)

N
i=1 to our outputs Y = (yi)

N
i=1,

such that yi ∼ N(f(xi), σ
2).

In this setting, the posterior distribution of f given X, Y and Σ is analytically tractable,
and the inference challenge reduces to inferring the hyperparameters, Θ, that control the
form of the covariance function. Optimizing or sampling these hyperparameters involves
inverting the covariance matrix Σ obtained by evaluating Σ(·, ·) at the inputs x1, . . . , xN .
In general, the computational cost of inverting this matrix is O(N3).

2

Embarrassingly Parallel Inference for Gaussian Processes

Mixture-of-experts models (Jacobs et al., 1991) are a hierarchical extension of Gaussian
processes, that model each output yi using a mixture of Gaussian processes. This mixture
can be specified either by a distribution over partitions of the input space (Rasmussen and
Ghahramani, 2002; Gramacy and Lee, 2008; Yuan and Neubauer, 2009) or on the joint space
of inputs and outputs (Meeds and Osindero, 2006). This offers two advantages over a single
Gaussian process. First, each composite Gaussian process can have a separate covariance
function, allowing us to capture different behaviors in different regions. Second, conditioned
on the partition we have K independent Gaussian processes with average size N/K, reducing
the computational cost of matrix inversion.

Unfortunately, this computational advantage is counterbalanced by the computational
cost of inferring the distribution over partitions, which is done using either MCMC (Ras-
mussen and Ghahramani, 2002; Gramacy and Lee, 2008; Meeds and Osindero, 2006) or
variational methods (Yuan and Neubauer, 2009). As a result, mixture of expert models are
typically not considered “scalable”. Performing MCMC-based inference over partitions can
be expensive and while variational methods are generally faster, the Markovian relationship
between samples precludes direct parallelization.

2.2. Scalable inference methods for Gaussian processes

Most scalable inference approaches focus on reducing the O(N3) cost of covariance matrix
inversion. Two broad classes of methods have been proposed: “sparse” methods which
parametrize the covariance based on M << N inducing inputs, and “local” methods that
replace the dense N ×N covariance matrix with a block-diagonal matrix.

Sparse GP approximations parameterize the covariance matrix of the GP model with M
pseudo-inputs, where M << N . The pseudo-input locations are chosen so that the posterior
function evaluated at these points is a good approximation to the true posterior, for example
by maximum likelihood optimization (Snelson and Ghahramani, 2005) or variational inference
(Titsias, 2009). The computational saving comes from replacing an N ×N covariance matrix
with an M ×M matrix. In the regression case, this reduces the training cost to O(NM2).
Further computational savings can be obtained by using stochastic variational inference
(SVI) to update the inducing points by calculating necessary gradients based only on size-B
subsets of the N datapoints, reducing computational cost to O

(
M2 min {M,B}

)
(Hensman

et al., 2013). While sparse methods can yield impressive speed-ups, they tend to have a
decreased ability to model high-frequency fluctuations in the function, since the number of
inducing points limits the amount of variation we can capture. Additionally, as with the
full-covariance GP it approximates, the sparse GP cannot naturally model non-stationary
data without resorting to a non-stationary kernel.

Local Gaussian process methods make local approximations to the dense covariance
matrix so that a low-rank representation of the covariance matrix is inverted instead of the
full-rank matrix. Mixture-of-experts models, described above, fall under this framework,
since conditioned on the partition we have a block-diagonal covariance matrix; however
the cost of averaging over partitions means these are not generally seen as scalable models.
Product-of-experts models (Tresp, 2000; Cao and Fleet, 2014; Ng and Deisenroth, 2014;
Deisenroth and Ng, 2015) avoid this by using a single partition, and avoid edge effects by
multiplying the predictions of the local Gaussian processes. Conditioned on the partitioning,

3

Zhang and Williamson

inference in the local GP scales approximately as O(N3/K2), since we need to invert K
matrices of average size N

K ×
N
K . Park et al. (2011) also use a block-diagonal approximation,

and use a boundary value function to ensure continuity between regions.

Taking a different perspective, Kaufman et al. (2008) applies a “tapering” function to
the covariance matrix so that observation pairs with low correlation are set to zero and
provides theorems for estimator consistency when the covariance function used is a Matérn
kernel. Gramacy and Apley (2015) try to learn the local approximation by taking the
n-nearest neighbors of a predictive value X∗ to the data X and learns both the function
hyperparameters and predictive distribution jointly by iteratively increasing the size of the
nearest neighbors until a stopping criteria is satisfied for all predictive inputs.

As noted in Low et al. (2015), local methods will be good at capturing short-range
correlations, where the correlation structure is well approximated. Further, if a block-
diagonal covariance is used, they allow us to use different covariance hyperparameters in
different blocks, capturing behavior which is locally approximately stationary, but where the
lengthscale varies across the input space (Tresp, 2000; Rasmussen and Ghahramani, 2002).
This is in contrast with sparse methods, where the number of inducing points limits the
ability to learn very short-range correlations, and which can only capture non-stationarity if
we use an explicitly non-stationary covariance function.

The disadvantage of the local methods, however, is that they risk ignoring important
correlations. For example, the block-diagonal approaches assume zero correlation between
different blocks in the partition. If the data points are partitioned based on location, this
means that long-range correlations will be ignored; if they are partitioned randomly, the
model will tend to perform poorly if the number of observations in some region of RD is
low. Moreover, Liu et al. (2018) show that local methods like the RBCM will systematically
produce overconfident predictions which violates one of the major benefits of using Bayesian
methods in the first place–that being proper uncertainty quantification.

2.3. Distributed inference for Gaussian processes

The sparse and local approximations described above aim to reduce the overall computational
burden by reducing the size of matrices to be inverted. When run on a single machine, this
reduction in computational cost leads directly to faster inference. However, we may also be
interested in distributing computation cost across multiple threads or machines. Even if the
total computational cost is the same, we can reduce total time by distributing computation
onto multiple parallel threads. Alternatively, if we increase the computational budget then
we may be able to improve our posterior estimate by running multiple samplers in parallel
and then combining the results without increasing the time budget.

Local partition-based GP methods that do not average over partitions, such as product-
of-experts models are well suited to this sort of parallelism. They split a single GP problem
into K independent problems whose parameters can be inferred in parallel. We only need to
communicate between the K subproblems at the end when we combine their predictions.
This type of algorithm, where global communication occurs only once after all the local
computation is complete, is known as “embarrassingly parallel”. Ng and Deisenroth (2014)
exploit these independences, in a weighted product-of-experts model, to obtain a distributable
algorithm appropriate for large datasets.

4

Embarrassingly Parallel Inference for Gaussian Processes

2.4. Fast Bayesian inference via stochastic approximations

When performing Bayesian inference on large datasets, much of the computational cost is
due to calculating functions of the data – for example, gradients or likelihoods. One way to
reduce computational costs is to approximate these functions using noisy estimates based
on much smaller subsets of the data. The intuition here is that much of the data at hand is
“redundant” for learning the posterior so it is more efficient from a computational and memory
perspective to perform Bayesian inference on a subset of the data. For example, stochastic
variational inference (Hoffman et al., 2013) uses minibatches of data to approximate gradients
in a variational context. Stochastic gradient MCMC methods (Ma et al., 2015; Welling
and Teh, 2011) perform a similar approximation in a gradient-based MCMC setting. In
a Gaussian process context, as mentioned in Section 2.2, SVI has been used to speed up
inference in sparse Gaussian processes from O(NM2) to O

(
M2 min {M,B}

)
, where B is

the minibatch size.

An alternative is to use a minibatch to approximate the full posterior. Several em-
barrassingly parallel MCMC methods combine noisy posterior estimates obtained using
subsets of the data (Minsker et al., 2014). Srivastava et al. (2015) show that such stochastic
approximation of sub-posteriors is strongly consistent. The Bayesian coresets approach aims
to learn the posterior based on a reweighted posterior (Huggins et al., 2016). While not
directly equivalent (since it uses a single subset), Banerjee et al. (2008) approximates a full
Gaussian process model using a smaller subset of the data to form a prediction of the entire
model.

3. Embarrassingly parallel inference with importance sampled mixture of
experts

We now introduce our novel method of fitting mixtures of Gaussian processes. We assume
our covariates X = {x1, . . . , xN} are distributed according to a Dirichlet mixture of K
Gaussian components,

xi ∼ Normal(µzi ,Γzi), (µk,Γk) ∼ Normal-Inv. Wishart(µ0, λ,Ψ, ν)

zi ∼ Categorical(π), π ∼ Dirichlet(α).
(1)

The outputs are then assumed to be generated by K independent Gaussian processes,

{yi : zi = k}| ({xi : zi = k},Θk) ∼ GP(0,ΣΘk
), (2)

where ΣΘk
is the covariance matrix between {xi : zi = k} parametrized by Θk. Conditioned

on the zi, we have a simple local GP with block diagonal structure, of the sort considered in
Section 2.2. Rather than invert the N ×N covariance matrix, we only need invert the K
blocks. These can be inverted in parallel using K threads, each costing O(N3/K2).

Marginalizing over the zi in Equation 1 to give a mixture-of-experts model avoids the
key limitation of the local GP methods: that they ignore correlation between the fixed
blocks. In a setting like ours, where the inputs are clustered based on location, this means we
ignore long-range correlation. Conversely, a mixture-of-experts approach allows long-range
correlations and yields a dense expected covariance matrix.

5

Zhang and Williamson

The typical mixture of experts approach of marginalizing over partitions using MCMC
is expensive (due to slow mixing) and difficult to parallelize. Instead, we use a trivially
parallelizable importance sampling scheme. In short, we independently sample J partitions
of the input space, conditioned on the covariates X, by sampling from a Dirichlet mixture
of K Gaussians, conditioned on the inputs X and ignoring the outputs Y ,

P (zi = k|−) ∝ πkP (Xi|µk,Σk),

where the mixture parameters are drawn from the prior distribution P (µ,Σ), which we
assume is Normal-Inverse Wishart.

We then fit independent Gaussian processes to each of the K partitions of each of the
J samples. We then (independently) calculate the appropriate importance weights, and
use these weights to combine the J samples. If our we assume the latent function we are
modeling is generated from a mixture of GP functions, then our proposed method is an
exact algorithm for fitting the model and calculating the marginal likelihood. However, if
the latent function is a single GP then our algorithm is a fast approximation of the full GP
and its marginal likelihood.

To further reduce memory and computational constraints, we can sample size B << N
minibatches of the data without replacement and approximate the full likelihood by raising
it to the N/B power. We detail these steps below in Sections 3.2 and 3.3, and provide a
summary of the process in Algorithm 1.

Algorithm 1: Importance Sampled Mixture of Experts (IS-MOE)

for j = 1, . . . , J in parallel do
Draw partition with K clusters of data from P (Z|X)
Fit K independent GP models on the partitioned data.
Predict new observations on each importance sample with

P (f∗j |Zj ,−) =

K∑
k=1

P (f∗j |Z∗j ,−)P (Z∗j |−).

Obtain weights wj =
∏K

k=1 P (Yk,j |Xk,j , Zj).

Normalize weights, wj := wj/
∑J

j=1wj .

Average predictions using importance weights: P (f̄∗|−) =
∑J

j=1wjP (f∗j |Zj ,−)

3.1. Design choices

Our proposed method makes a number of design choices, each of which carries important
consequences for the performance of our algorithm which we will discuss in this section. In
Equation 2, we assume that each GP has its own set of hyperparameters, Θk. This allows us
to capture a degree of non-stationarity and heteroscedasticity, for minimal additional cost.
Alternatively, if we believe the model is stationary, we can share hyperparameters across
partitions.

6

Embarrassingly Parallel Inference for Gaussian Processes

The Gaussian likelihood in Equation 1 is a design choice that is chosen to be appropriate
in a wide range of settings. A mixture of Gaussians allows us to exploit correlations in the
input location, and encourages preservation of short-range covariances though alternative
likelihoods could also be used. In Section 4.1.2, we will show that placing structure on the
input space produces better results than simple uniform partitioning of the data or, at the
very least, produces results that are not different than uniform partitioning when there is no
structure in the input space. We consider the general setting where each GP has its own set
of hyperparameters, Θk.

To avoid explicitly selecting the number of mixtures, K, to use to model our input
space, we may instead draw partitions from the Dirichlet process mixture model (DPMM)
instead, as seen in Rasmussen and Ghahramani (2002); Meeds and Osindero (2006); Yuan
and Neubauer (2009) and control the number of partitions via the concentration parameter,
α. We choose a finite mixture model for two reasons. First, a Dirichlet distribution with
α > 1 avoids the rich-get-richer behavior of the Dirichlet process, encouraging similarly
sized clusters rather than one very large cluster. Second, a finite mixture model allows us to
explicitly investigate the effect of increasing the number of clusters on the performance of
our algorithm. However, the issue of selecting K is vital in practice. To address this problem,
we could fit a mixture model on the data (or a subset, in “big data” cases) beforehand and
empirically estimate K from this mixture model’s posterior. Or, we could adopt a more
systematic method of selecting K by using a Bayesian optimization method (Snoek et al.,
2012, for example) to explore the optimal number of partitions.

3.2. Importance sampling

We wish to capture posterior uncertainty about the partition and the associated covariance
function Σ, while ensuring our algorithm can be distributed. Importance sampling allows
us to estimate the posterior expectations E[g(f)] of some functional of f , such as the
posterior predictive distribution, using an appropriately weighted collection of samples from
some simpler distribution. Unlike MCMC, these samples can be collected independently,
facilitating distributed computing.

We choose our proposal distribution over partitions to be the posterior distribution
P (Z|X) under the Gaussian mixture model given in Equation 1 conditioned on the input
valuesX, ignoring the output values Y . We obtain approximate samples from this distribution
by drawing mixture locations randomly from the prior, P (θk,Γk) and assign data to clusters
from P (zi = k|−). After fitting the local GPs derived from this partition, we then weight
these particles using self-normalized importance sampled weights 1

wj ∝
p(Z|X,Y)

p(Z|X)
,

where
∑

j wj = 1 and p(Z|X,Y) ∝ P (Y,X|Z)P (Z) is the cluster assignments using output
and input data (as opposed to only input data in P (Z|X)). We can then obtain an

1. Since we are working with self-normalized weights, the estimate has a bias of O(1/J) (Kong, 1992), but
will often have a lower variance than the unbiased estimate obtained with wj = p(Z|X,Y)/p(Z|X), which
involves calculating an intractable normalizing constant.

7

Zhang and Williamson

asymptotically unbiased estimate µ̂ to E[g(f)] as

µ̂ =
J∑

j=1

wjg(fj).

As a concrete example, the posterior predictive distribution is approximated as

p̂(f∗|x∗, X, Y) =
J∑

j=1

wjp(f
∗
j |Zj , x

∗, X, Y),

where Zj is the partition associated with the jth sample.
Calculating the wj involves integrating over the covariance parameters Θ,

wj ∝
p(Z|X,Y)

p(Z|X)
∝ p(X,Y |Z)p(Z)

p(X|Z)p(Z)
= p(Y |X,Z) =

∫
p(Y |X,Z,Θ)p(Θ)dΘ. (3)

where p(Θ) is the prior over the covariance parameters. If we are allowing separate hyperpa-
rameters, Θj,k, for each partition, we assume that p(Θ) =

∏
k p(Θk), so

wj ∝
K∏
k=1

p({yi : zj,i = k}|{xi : zj,i = k}) (4)

=
K∏
k=1

∫
p({yi : zj,i = k}|{xi : zj,i = k},Θk)p(Θk)dΘk (5)

We must approximate the intractable integral. Depending on our accuracy/speed trade-
off, we can obtain an unbiased estimate of the wj using a sample-based approximation; we
can perform a Laplace approximation about the MAP solution Θ̂; or we can directly use the
MAP approximation p(Y |X,Z) ≈ p(Y |X,Z, Θ̂). In our experiments, we choose to directly
use the MAP solution, obtained using gradient descent; while this is not as accurate as
sampling hyperparameters it is significantly faster, and mirrors the choices made by our
comparison methods.

Calculating the MAP approximation of Θ (or indeed, inferring the hyperparameters
using MCMC or another method) requires calculating the marginal likelihood p(Y |X,Z, Θ̂).
This means there is no additional cost involved in calculating the importance weights, up
to a normalizing constant. Independence between each importance sample means that
the samples and their normalizing constants can be obtained in parallel. The only global
communication required is at the end of the procedure, when the importance weights are
normalized and the samples are combined to give our predictive distribution (or other desired
expectation). In the regression scenario, we can obtain the exact marginal likelihood to fit
mixtures of GPs due to the tractability of the classic regression model. However, we can
show that in Section 4.2.3 it is possible to use an approximation to the marginal likelihood
as an importance weight to fit classification IS-MOE models that obtain good performance.

The overall computational cost of the IS-MOE, using J importance-weighted samples
and K blocks, is therefore O(JN3/K2). In Table 1, we compare this with the overall
computational cost of the full GP, sparse approximations (FITC, DTC and SVI), the

8

Embarrassingly Parallel Inference for Gaussian Processes

Bayesian treed GP (BTGP), and the robust Bayesian committee machine (RBCM). While
the O(JN3/K2) cost is O(J) higher than sparse methods and local methods based on a
fixed partition such as RBCM, we note that the J samples can be performed and weighted in
parallel—meaning the time taken is comparable if we are willing to sacrifice computational
resources.2 In this procedure, the only communication between processors occurs at the
end of the prediction step when we normalize the weights, wj , and obtain the importance
averaged predictions, f̄∗. This is vital in any distributed computation algorithm due to
the high overhead cost of inter-processor communication. We can also make use of the
independence of the K partitions to parallelize further, using JK threads each taking
O(N3/K3). As shown in Table 1, this leads to an equivalent wall-time cost comparable with
the distributed RBCM. As we will see in Section 4, the extra computational cost required to
ensure a full posterior predictive distribution yields improved performance over methods
that are based on a fixed partition.

However, importance sampling has inherent issues that can hinder practical performance
for inference and prediction. First, importance samplers have a tendency to produce weights
where one proposal completely dominates the rest of the proposals and obtains an importance
probability of nearly one. To this end, we could smooth out the importance weights with a
Pareto distributed smoother in order to obtain more stable estimates from our importance
sampler (Vehtari et al., 2015). Additionally, choosing a good proposal distribution is critical
to the performance of the importance sampler but it is not obvious how to select the best
distribution. Kahn and Marshall (1953) show that the optimal distribution which minimizes
the estimator variance is |g(f)|p(f) for the expectation µ =

∫
g(f)p(f)/q(f) df though

practically speaking we may not be able to easily sample from this distribution or calculate
importance weights.

3.3. Minibatched importance samples

Although we can obtain significant computational and memory saving advantages using
our low-rank approximation, we still may encounter major bottlenecks from attempting
to approximate the covariance matrix of the full training set. To overcome this issue, we
propose a “minibatching” solution, where each importance sample is obtained and weighted
based only on a subset of size B << N sampled uniformly without replacement. Given a
random subset B of observations, we can approximate p(Θ|X,Y, Z) with the subset posterior
p(Θ|Xmb, Y mb, Z) evaluated on a size-B minibatch (Xmb, Y mb). Such a posterior estimate is
strongly consistent, but will tend to underestimate the posterior variance (Srivastava et al.,
2015). To achieve realistic credible intervals, we can assume we have seen each pair (xi, yi)
in our minibatch N/B times; mathematically, this corresponds to raising the contribution of
the likelihood to the subset posterior to the (N/B)-th power.

We use this stochastic approximation trick to estimate the posterior distribution over
parameters for each importance sample, allowing us to reduce our overall complexity from
O(JN3/K2) to O(JB3/K2). Empirical results in Section 4 will show that this stochastic
approximation performs favorably on large datasets in comparison with both the non-SA
IS-MOE method and other scalable GP inference methods.

2. In general, a sparse model with M inducing points obtains comparable accuracy to a local method with
N/K local GPs, and has equivalent computational complexity.

9

Zhang and Williamson

Table 1: Comparison of inference complexity. N is the number of data points, K is the
number of experts or local GPs, and M = N/K is the number of inducing points. For the
Monte Carlo based methods, J is the number of MCMC iterations or importance samples.

Full GP Sparse SVI

Complexity N3 NM2 M2 min(M,B)

RBCM BTGP IS-MOE SA IS-MOE

Complexity N3/K2 JN3/K2 JN3/K2 JB3/K2

Comp/thread N3/K3 × N3/K3 B3/K3

4. Experimental evaluation

To showcase the performance of our method, we compare it with a number of competing
methods on both synthetic and real data sets.

4.1. Evaluation on synthetic data

4.1.1. Comparison with competing methods

We begin by evaluating our method on synthetically generated data, in order to allow us to
explore and visualize a range of regimes, and to allow comparison with methods that do not
scale to our real-world dataset. In our studies, we will compare our Importance Sampled
Mixture of Experts approach (IS-MOE) against a full Gaussian process (GP); three sparse
approximations to this model: FITC (Snelson and Ghahramani, 2005), DTC (Seeger et al.,
2003), and SVI (Hensman et al., 2013); the Bayesian treed GP (Gramacy and Lee, 2008,
BTGP); and the robust Bayesian committee machine (Deisenroth and Ng, 2015, RBCM). All
models use a squared exponential covariance matrix. Our IS-MOE code uses the Gaussian
process modules in GPy in Python with parallelization executed through mpi4py (Dalćın
et al., 2005).3 We ran the full GP, FITC, DTC and SVI implementations also through GPy,
BTGP in tgp, and RBCM in gptf.

We first consider three data settings, the first two were generated on a linearly spaced
grid of values on [−1, 1] and the last one has more data generated in the center of the
range [−1, 1] in order to test how our method approach works when data are not uniformly
generated. For these experiments we did not use minibatching in IS-MOE.

1. Stationary, long-range correlations generated with inverse length scale γ = 15.

2. Stationary, short-range correlations generated with inverse length scale γ = 5000.

3. Non-stationary generated piecewise with fast and slow moving periodic functions.

In examples 1 and 2, we generated data from a GP with zero mean squared exponential
covariance kernel with amplitude ν = 1. For all examples we added Gaussian noise σ2 = 1

3. The code is available at https://github.com/michaelzhang01/ISMOE.

10

https://github.com/michaelzhang01/ISMOE

Embarrassingly Parallel Inference for Gaussian Processes

to the observed outputs. We generated a training data set with 1,000 observations and a
test set with 100 observations.

For fitting the stationary data, we restrict the hyperparameters on our IS-MOE method to
be the same on allK blocks. For (3), we allowed each mixture to have its own hyperparameters
in order to model the non-stationarity of the data. In all methods except BTGP we infer
hyperparameters through the MAP estimate via gradient descent optimization, and for
BTGP we infer the hyperparameters through MCMC sampling. For the sparse methods, we
used M = 100 inducing points, and for the local methods (including the IS-MOE) we used
K = 10 partitions to have a comparable level of computational complexity. For the BTGP
we ran the MCMC sampler for 10 iterations; for the IS-MOE we used J = 10 independent
importance-weighted samples. Figures 2, 3, and 4 shows the posterior predictive results
and predictive intervals obtained using the five methods, and Tables 2a and 2b show the
corresponding test set log likelihoods and mean squared errors.

We first consider the one-dimensional stationary examples. Recall that, in general,
sparse methods perform well when the covariance structure is dominated by longer-range
correlations, and local methods perform well when we have significant local variation in our
function. For these results, we deliberately set J to a small number to see how IS-MOE
performs when there is “not enough” importance samples as a difficult scenario in comparison
to the other methods. Looking at the results on the dataset with long-range correlations
(Figure 2), we see that the IS-MOE can capture the predictive variance unlike RBCM which
is over-confident in its predictions, and only performs slightly worse than the full GP and
the sparse approximations, again due to a small number of importance samples.

If we look at the dataset with short-range correlation (Figure 3), we see the sparse methods
struggle to learn the function–with a small number of inducing points, it is impossible to
capture the high-frequency variation. Looking at the quantitative results in Tables 2a and
2b, we see that the IS-MOE outperforms the RBCM because our method is capable of
learning the proper predictive variance whereas the RBCM is over-confident in its results.
The BTGP likely produces poor predictive performance is because of lack of convergence of
the MCMC chain: the underlying model is fairly complex and will tend to mix slowly and
at a comparable level of computational complexity in this evaluation, does not have enough
MCMC iterations to converge.

We can also see that the full GP struggles in this scenario between assuming the function
is one that exhibits high noise in the data or that the function exhibits short-range correlation.
Figure 1 shows an example of this multimodal structure in the marginal GP likelihood. Here,
if we randomly initialize the hyper-parameter values from the distribution Gamma(1, 4) for
the full GP we can see that the optimizer can get stuck in suboptimal modes. Monte Carlo
methods like importance sampling generally do not suffer from converging to suboptimal
local optima as much as gradient descent methods or MCMC would because importance
samplers will independently explore different parts of the marginal likelihood surface and
place more weight on particles in more optimal modes than less optimal ones.

Finally, consider the non-stationary example, which combines known failure modes of
local and sparse GPs. We have a combination of slowly varying behavior (which is poorly
captured by local methods) and fast-varying behavior (which is poorly captured by sparse
methods). The full GP, RBCM and sparse methods, fitted with stationary kernels, obviously
cannot account for the non-stationary components in the data, and by assuming a stationary

11

Zhang and Williamson

Figure 1: Multiple instantiations of full Gaussian process fits to short lengthscale data. The
true latent function is plotted in red with the predictive mean in black with 95% credible
intervals in black dashed lines. The observed data is plotted in blue dots.

12

Embarrassingly Parallel Inference for Gaussian Processes

Figure 2: Posterior mean and 95% predictive intervals on Synthetic 1 (stationary, long length
scale).

Figure 3: Posterior mean and 95% predictive intervals on Synthetic 2 (stationary, short
length scale).

covariance they give poorer test-set performance. The BTGP does a reasonable job at
capturing the function; again its performance is likely to be hampered by slow mixing and
lack of convergence. Figure 4 shows that the IS-MOE is able to capture the function, and
Tables 2a and 2b show that it can provide confident predictions at all regions of the function.

13

Zhang and Williamson

Figure 4: Posterior mean and 95% predictive intervals on Synthetic 3 (non-stationary).

Table 2: Test set performance on synthetic datasets

(a) Log likelihood

Data IS-MOE GP FITC DTC SVI RBCM BTGP

Long Lengthscale -152.41 -143.52 -143.39 -143.81 -156.51 -5207.89 -231.84
Short Lengthscale -157.16 -172.32 -172.26 -172.26 -173.38 -251.50 -212.61
Non-stationary -158.21 -181.40 -181.30 -181.30 -198.00 -910.54 -256.73

(b) MSE

Data IS-MOE GP FITC DTC SVI RBCM BTGP

Long Lengthscale 1.20 1.03 1.02 1.02 1.30 1.03 2.07
Short Lengthscale 1.35 1.83 1.83 1.83 1.87 1.06 2.46
Non-stationary 1.39 2.18 2.17 2.17 2.12 1.00 2.64

Table 3: Predictive log likelihood, MSE and total run time for the non-stationary example,
J = 6000

Log Likelihood MSE Wall time (s.)

IS-MOE -154.79 1.28 61.16
BTGP -145.71 1.04 1116.75
RBCM -910.55 1.01 13.08

14

Embarrassingly Parallel Inference for Gaussian Processes

Figure 5: Posterior mean and 95% predictive intervals on Synthetic 3 (non-stationary),
J = 6000.

To provide a deeper comparison with the treed Gaussian process, we then run the
non-stationary example with the local methods (IS-MOE, BTGP and RBCM, as these
methods are the only ones considered in the experiments that can model non-stationary
data) when there is sufficient computational resources for the MCMC chain in the BTGP to
converge (or in other words, when we set J = 6000). In Figure 5, we see that BTGP learns
a much smoother latent function that the one in Figure 4 while the results for IS-MOE and
RBCM still largely remain the same. Table 3 shows the predictive and timing comparisons
between the three methods. We see that BTGP obtains the best predictive log likelihood
and RBCM obtains the best MSE and fastest run time. However, our method, IS-MOE,
produces the best compromise between BTGP and RBCM as we obtain only slightly worse
predictive log likelihood results than BTGP while being more than eighteen times as fast.
Thus, we can understand our method as being a fast, parallelizable, approximate variant of
the BTGP. Though IS-MOE is slower and less accurate (with respect to MSE) than RBCM
in this experiment, we obtain far better uncertainty quantification of our predictions as
reflected in the poor log likelihood results of the RBCM.

4.1.2. The importance of importance sampling

The IS-MOE falls under the “local” framework, much like the RBCM and the BTGP;
however it out-performs both methods. This can be attributed to importance sampling
a distribution over partitions. To demonstrate this, we consider our performance on a
synthetic dataset of 10,000 training observations, 2,000 test observations and 100 covariates.
The input data are sampled from a GMM on R100 with K = 50 mixture components. The
output, Y , is drawn from a GP model with zero mean and an RBF kernel with inverse
length scale .001, observation noise variance of .25 and amplitude of 2.

The RBCM uses a single, fixed partition. Conversely, the IS-MOE uses a distribution
over partitions, combined using importance sampling weights. Figures 6 and 7 show how
varying the number of importance samples, for a range of values of K and B (remember,
K = 1, B = N = 10, 000 corresponds to the full Gaussian process, and as K increases or B
decreases, we expect a drop in quality). In most cases, we see a similar pattern: there is a
clear improvement in performance between J = 1 to around J = 50, but beyond that the

15

Zhang and Williamson

Figure 6: Evaluation on synthetic data of the effect of the number of samples J on the test
set log likelihood of IS-MOE (with 95% confidence intervals), for various values of B and K.

improvements level off. This confirms that averaging over partitions improves performance,
but suggests that in this setting, we need relatively few samples to approximate the posterior.
In Figure 8, we can visualize why this is the case if we compare the resulting expected
covariance matrices in a product of expert type approach like the RBCM with a mixture of
expert approach like ours. We note that BTGP also averages over partitions and can achieve
high quality predictions as a result; however the slow mixing of the MCMC algorithm and the
inability to distribute inference means we get worse performance for the same computational
effort, and precludes the use of BTGP on large datasets.

The IS-MOE uses importance sampled weights to average over partitions. In the
minibatch setting, these weights and the samples themselves are obtained using a stochastic
approximation. It is reasonable to question whether either the calculation of importance
weights, or the up-weighting of the likelihood to obtain a stochastic approximation, affect
the performance. In other words – would we do as well using uniform weights or avoiding
the stochastic approximation? As we see in Table 4 (which uses the same synthetic dataset

16

Embarrassingly Parallel Inference for Gaussian Processes

Figure 7: Evaluation on synthetic data of the effect of the number of samples J on the test
set MSE of IS-MOE (with 95% confidence intervals), for various values of B and K.

as above, with J = 10, K = 10 and B = 1000), using importance samples with reweighted
likelihood minibatches results in better predictive performance than either not upweighting
the minibatched likelihood or using uniform weights to combine predictions.

A final difference from the RBCM is the choice of the distribution over partitions that
the IS-MOE is able to explore. The IS-MOE uses a distribution based on covariate location,
while the RBCM generates its single partition uniformly. To evaluate the impact of using
covariate location to guide the partitioning, we explore two variants of the IS-MOE model:
one that uses a Gaussian mixture model to partition data, and one which uses random,
uniform partitions. We tested these two methods on two synthetic datasets. The first was
the synthetic dataset described above, with 100-dimensional inputs sampled from a mixture
of 50 Gaussians. The second used the same kernel, but used 100-dimensional inputs with
each dimension sampled uniformly from a Uniform(−1, 1) distribution. For both cases, our

17

Zhang and Williamson

Figure 8: Dense, partitioned and averaged covariance matrices for a latent function with a
short lengthscale. “Dense Covariance” is the dense covariance matrix Σ(X,X ′). “Partitioned
Covariance” is one instance of a block diagonal covariance matrix. “Averaged Covariance”
is an averaging of several block diagonal partitioned covariance matrices.

Table 4: Test set log likelihood and MSE for various weighting schemes. Standard errors are
in parentheses

Setting LL MSE

IS with SA -354.96 (28.59) 0.096 (0.003)
IS without SA -423.93 (41.24) 0.097 (0.002)
Unif. with SA -726.67 (14.19) 0.19 (0.019)
Unif. without SA -842.88 (9.82) 0.25 (0.337)

IS-MOE model used J = 10, K = 10 and B = 1000; note that the number of clusters used
does not match the number of generating clusters. As we can see in Table 5, when the input
data exhibits clustering behavior, we perform better when we place structure in the input
clustering as opposed to purely random partitioning. When there is no structure (i.e. the
inputs are sampled from a uniform distribution) there is no significant difference between
the two models. This suggests that using a GMM is a reasonable default choice, since it can

Table 5: Test set log likelihood and MSE for two different covariate partitioning schemes
when the input space is generated according to a GMM, and where the inputs are i.i.d
Uniform. Standard errors are in parentheses.

Generating mechanism IS-MOE partitioning scheme LL MSE

GMM
GMM -429.19 (41.57) 0.14 (0.01)
Random Clusters -789.37 (37.43) 0.53 (0.02)

Uniform
GMM -2962.01 (6.45) 0.62 (0.01)
Random Clusters -2964.29 (7.00) 0.62 (0.01)

18

Embarrassingly Parallel Inference for Gaussian Processes

Figure 9: Wall clock time, predictive log likelihood and MSE results for large synthetic
dataset with increasing K. SVI, FITC and DTC obtain very similar predictive performances.

.

take advantage of any structure in the input space but does not degrade performance in the
absense of structure.

Lastly, we are interested to see how different GP methods compare with regards to
the total wall clock time for fitting the model. Using the same data set, with J = 128
and B = 1000 for SVI and IS-MOE, we evaluate the speed and predictive performance of
IS-MOE against the other methods compared in this paper. As seen in Figure 9, we can
see that IS-MOE is faster than all other methods (most notably, SVI) at low values of K
while maintaining good predictive log likelihood and MSE performance. Only RBCM can
outperform IS-MOE compared to the full GP in terms of MSE, but, as cited earlier, RBCM
will systematically produce overconfident predictions. Counter-intuitively, we would expect
local methods to perform faster with respect to wall time as K increases, but the results
of IS-MOE and RBCM show that increasing K actually can increase wall time. We claim
that the reason for this is because there is additional computational overhead involved with
increasing the number of experts, as we must increase the number of GP models instantiated,
whereas increasing K for sparse methods corresponds to reducing M , meaning there are less
parameters to fit in the sparse model.

4.2. Evaluation on real data

As seen in our experiments on synthetic data, the IS-MOE is applicable to many different
data regimes where other approximations may fail. Its inherently parallelizable nature
also makes it an appealing choice for larger, real-world datasets where use of a full GP is
computationally infeasible. To evaluate performance in this “big data” regime, we used an
empirical dataset consisting of 209,631 mid-tropospheric CO2 measurements over space and
time from the Atmospheric Infrared Sounder (AIRS)4. First, in Section 4.2.1, we use this
dataset to explore the sensitivity of our model to different parameter values, to show how
we can trade off between predictive accuracy and computational cost. Then, in Section 4.2.2
we compare its performance against competing approaches.

4. Available in the R package FRK as AIRS 05 2003

19

Zhang and Williamson

4.2.1. Sensitivity to model settings

Figure 10: Evaluation on the AIRS dataset of the effect of B, K, and J on the test set log
likelihood of IS-MOE (with 95% confidence intervals).

Clearly, both the performance and the cost of inference of our model will depend on the
number of blocks K in our approximation, the number of importance samples J , and the
minibatch size B. On the one hand, inference scales as O(JB3/K2), so we can speed up
inference by decreasing J or B or by increasing K. On the other hand, a smaller number of
blocks will allow us to better approximate a dense covariance matrix; a larger number of
importance samples helps us explore the full posterior; larger minibatches reduce the noise
in our estimators.

In order to pick values for K, J and B, we must understand how they affect our overall
estimates. We trained the IS-MOE using a range of values for B, K and J , over 20 cross-
validation splits. As expected, we find that as we increase K or decrease J and B our
performance deteriorates. Figure 10 shows that as the B and J increases, the average
predictive log likelihood increases and the variance of the log likelihood decreases, and that
as K increases the quality of our inference method degrades. However, looking at Figure 10,
we see the deterioration in predictive likelihood is fairly gradual for most values: we only see
a dramatic degradation when we have both a small minibatch size and a large number of

20

Embarrassingly Parallel Inference for Gaussian Processes

Figure 11: Evaluation on the AIRS dataset of the effect of B, K, and J on the test set MSE
of IS-MOE (with 95% confidence intervals).

partitions. This suggests that the practitioner can modify B, J and K within a wide range
to achieve acceptable computational costs without a dramatic drop in quality.

4.2.2. Comparison with competing methods

Using the same CO2 dataset and squared exponential kernel as before, we compare the
IS-MOE with SVI – the only other method that would scale to this dataset.5 For IS-MOE,
we set J = 100 and B = 1000 and explored a range of values of K; for SVI we chose values
for inducing points that gave a comparable level of computational complexity. We evaluated
performance over 20 cross-validation splits. Our importance sampling method provides for
a richer predictive model due to the averaging over importance proposals, and we see the
benefit of this in our results. As Figure 12 shows, the IS-MOE typically performs comparably
to SVI at equal levels of computational complexity in predictive performances using both

5. While RBCM is designed to scale to large data, we were unable to run the available Python package
gptf due to memory issues.

21

Zhang and Williamson

Figure 12: Comparison of IS-MOE and SVI on AIRS dataset for various K, with J = 100
and B = 1000. SVI parameters chosen to have equivalent computational cost.

metrics until approximately 90 clusters, in which our method performs notably worse due to
the long range correlation present in this dataset.

4.2.3. Applications beyond regression

Finally, to highlight that our method is not limited to a specific GP model, we apply
our method on a binary classification task, using a Laplace approximation with a squared
exponential kernel. We compare with the full GP (Williams and Barber, 1998) and the
sparse GP (Hernández-Lobato and Hernández-Lobato, 2016) on three classification datasets
from the UCI repository: the Pima Indians diabetes dataset; the Parkinsons dataset; and
the Wisconsin diagnostic breast cancer (WDBC) dataset.6 As Table 6 shows, the IS-MOE
can approximate the full GP results very well, with comparable area under the curve (AUC)
scores and log likelihood to a full GP and a sparse approximation.

In addition, we also ran IS-MOE in comparison with the sparse variational GP (Hensman
et al., 2013) on a binary classification dataset to distinguish background processes from
Higgs-Boson particles. Our training data contains one million observations and 28 features
and a test set of 100,000 observations with J = 128, K = 20 and B = 1000. Figure 14 shows
the comparison of IS-MOE against SVI for this large scale classification task. We see that
IS-MOE obtains better predictive log likelihood and AUC scores, while performing slower in
comparison to SVI in terms of wall time. Given this fact, it may be possible that the latent
generating process for the Higgs-Boson data is non-stationary leading to better performance
for IS-MOE over SVI. On the other hand, SVI’s apparent superior performance in terms of
wall time but not predictive performance could be explained by the fact that there is a local
optima that SVI tends to converge to quickly which produces sub-optimal results, whereas
IS-MOE must spend more time exploring the posterior space but can find a better result.
Nevertheless, the fact that IS-MOE inference procedure can obtain a wall time of about six
minutes on a training set of size one million is still quite impressive and it does suggest that
IS-MOE can perform well with marginal likelihood approximations to the full model as well.

6. All empirical classification datasets are available in the UCI repository at
http://archive.ics.uci.edu/ml/.

22

Embarrassingly Parallel Inference for Gaussian Processes

Figure 13: Binary classification task: label probabilities obtained using the full GP and the
IS-MOE.

Table 6: Test set log likelihood and AUC on three classification datasets.

Log Likelihood AUC

Data Full GP IS-MOE FITC Full GP IS-MOE FITC

Pima -128.79 -135.09 -128.61 0.83 0.81 0.83
Parkinsons -17.00 -22.76 -28.42 0.86 0.93 0.88
WDBC -15.50 -12.62 -18.01 0.83 0.91 0.81

5. Summary and future work

While Gaussian processes provide a flexible framework for a wide variety of modeling scenarios,
their use has been limited in the “big data” regime, since most implementations scale cubically
with the number of data points. As discussed in Section 2, a number of approximations have
been proposed to reduce this cost but these approximations come with notable failure modes.
The IS-MOE avoids these pitfalls, using parallelizable importance sampling to explore a

Figure 14: Results for Higgs-Boson classification experiment.

23

Zhang and Williamson

mixture of block-diagonal, easily invertible matrices. However, importance sampling can
be a rather rudimentary approach to inference. For more sophisticated settings, we may
need to resort to particle filters or other sequential Monte Carlo techniques. Of course in
such inference methods, the proposal distribution is crucial for performance but difficult to
choose in practice. We are interested in investigating the theoretical behavior of proposal
distributions in this setting.

In this paper, we have focused on regression models using a Gaussian mixture model
on the covariates, but the scope of the IS-MOE is much broader. For example, we could
use alternative distributions over partitions, or embed the IS-MOE within a more complex
model–particularly in deep Gaussian process models and non-Gaussian likelihoods. We are
also interested in refinements to importance sampling to improve their inferential quality,
such as alternative proposal distributions. Another potential avenue for future research is to
explore whether we can achieve further speed-ups by using GPU-based computation (Dai
et al., 2014; Gramacy et al., 2014; Gramacy and Apley, 2015, for example). We leave such
explorations for future work.

Acknowledgments

Michael Zhang and Sinead Williamson were supported by NSF grant 1447721. Sinead
Williamson’s contribution was written before her employment at Amazon.

References

Sudipto Banerjee, Alan E. Gelfand, Andrew O. Finley, and Huiyan Sang. Gaussian predictive
process models for large spatial data sets. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 70(4):825–848, 2008.

Yanshuai Cao and David J. Fleet. Generalized product of experts for automatic and principled
fusion of Gaussian process predictions. In Modern Nonparametrics 3: Automating the
Learning Pipeline workshop at NIPS, 2014.

Zhenwen Dai, Andreas Damianou, James Hensman, and Neil D. Lawrence. Gaussian process
models with parallelization and GPU acceleration. arXiv preprint arXiv:1410.4984, 2014.

Lisandro Dalćın, Rodrigo Paz, and Mario Storti. MPI for Python. Journal of Parallel and
Distributed Computing, 65(9):1108 – 1115, 2005.

Marc P. Deisenroth and Jun Wei Ng. Distributed Gaussian processes. In International
Conference on Machine Learning, pages 1481–1490, 2015.

GPy. GPy: A Gaussian process framework in Python. http://github.com/SheffieldML/
GPy, 2012.

Robert B. Gramacy and Daniel W. Apley. Local Gaussian process approximation for large
computer experiments. Journal of Computational and Graphical Statistics, 24(2):561–578,
2015.

24

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

Embarrassingly Parallel Inference for Gaussian Processes

Robert B. Gramacy and Herbert K. H. Lee. Bayesian treed Gaussian process models with
an application to computer modeling. Journal of the American Statistical Association,
103(483):1119–1130, 2008.

Robert B. Gramacy, Jarad Niemi, and Robin M. Weiss. Massively parallel approximate
Gaussian process regression. SIAM/ASA Journal on Uncertainty Quantification, 2(1):
564–584, 2014.

James Hensman, Nicolo Fusi, and Neil D. Lawrence. Gaussian processes for big data. In
Uncertainty in Artificial Intelligence, 2013.

Daniel Hernández-Lobato and José Miguel Hernández-Lobato. Scalable Gaussian process
classification via expectation propagation. In Artificial Intelligence and Statistics, pages
168–176, 2016.

Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational
inference. The Journal of Machine Learning Research, 14(1):1303–1347, 2013.

Jonathan Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable Bayesian
logistic regression. In Advances in Neural Information Processing Systems, pages 4080–
4088, 2016.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive
mixtures of local experts. Neural Computation, 3(1):79–87, 1991.

Herman Kahn and Andy W. Marshall. Methods of reducing sample size in Monte Carlo
computations. Journal of the Operations Research Society of America, 1(5):263–278, 1953.

Cari G. Kaufman, Mark J. Schervish, and Douglas W. Nychka. Covariance tapering for
likelihood-based estimation in large spatial data sets. Journal of the American Statistical
Association, 103(484):1545–1555, 2008.

Augustine Kong. A note on importance sampling using standardized weights. Technical
Report 348, University of Chicago, Dept. of Statistics, 1992.

Haitao Liu, Jianfei Cai, Yi Wang, and Yew-Soon Ong. Generalized robust Bayesian committee
machine for large-scale Gaussian process regression. In International Conference on
Machine Learning, pages 3137–3146, 2018.

Kian Hsiang Low, Jiangbo Yu, Jie Chen, and Patrick Jaillet. Parallel Gaussian process
regression for big data: Low-rank representation meets Markov approximation. In AAAI
Conference on Artificial Intelligence, 2015.

Yi-An Ma, Tianqi Chen, and Emily Fox. A complete recipe for stochastic gradient MCMC.
In Advances in Neural Information Processing Systems, pages 2917–2925, 2015.

Edward Meeds and Simon Osindero. An alternative infinite mixture of Gaussian process
experts. In Neural Information Processing Systems, pages 883–890, 2006.

25

Zhang and Williamson

Stanislav Minsker, Sanvesh Srivastava, Lizhen Lin, and David B. Dunson. Scalable and
robust Bayesian inference via the median posterior. In International Conference on
Machine Learning, pages 1656–1664, 2014.

Jun Wei Ng and Marc P. Deisenroth. Hierarchical mixture-of-experts model for large-scale
Gaussian process regression. arXiv preprint arXiv:1412.3078, 2014.

Chiwoo Park, Jianhua Z. Huang, and Yu Ding. Domain decomposition approach for fast
Gaussian process regression of large spatial data sets. Journal of Machine Learning
Research, 12(May):1697–1728, 2011.

Carl E. Rasmussen and Zoubin Ghahramani. Infinite mixtures of Gaussian process experts.
In Neural Information Processing Systems, pages 881–888, 2002.

Carl E. Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning.
Gaussian Processes for Machine Learning, 2006.

Matthias Seeger, Christopher K. I. Williams, and Neil D. Lawrence. Fast forward selection
to speed up sparse Gaussian process regression. In Artificial Intelligence and Statistics,
2003.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs.
In Neural Information Processing Systems, pages 1257–1264, 2005.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian optimization of
machine learning algorithms. In Neural Information Processing Systems, pages 2951–2959,
2012.

Sanvesh Srivastava, Volkan Cevher, Quoc Dinh, and David B. Dunson. WASP: Scalable
Bayes via barycenters of subset posteriors. In Artificial Intelligence and Statistics, pages
912–920, 2015.

Michalis K. Titsias. Variational learning of inducing variables in sparse Gaussian processes.
In Artificial Intelligence and Statistics, volume 5, pages 567–574, 2009.

Volker Tresp. A Bayesian committee machine. Neural Computation, 12(11):2719–2741, 2000.

Aki Vehtari, Andrew Gelman, and Jonah Gabry. Pareto smoothed importance sampling.
arXiv preprint arXiv:1507.02646, 2015.

Jack M. Wang, David J. Fleet, and Aaron Hertzmann. Gaussian process dynamical models.
In Neural Information Processing Systems, 2005.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin
dynamics. In International Conference on Machine Learning, pages 681–688, 2011.

Christopher K.I. Williams and David Barber. Bayesian classification with Gaussian processes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342–1351, 1998.

Chao Yuan and Claus Neubauer. Variational mixture of Gaussian process experts. In
Advances in Neural Information Processing Systems, pages 1897–1904, 2009.

26

	Introduction
	Background
	Gaussian processes and related models
	Scalable inference methods for Gaussian processes
	Distributed inference for Gaussian processes
	Fast Bayesian inference via stochastic approximations

	Embarrassingly parallel inference with importance sampled mixture of experts
	Design choices
	Importance sampling
	Minibatched importance samples

	Experimental evaluation
	Evaluation on synthetic data
	Comparison with competing methods
	The importance of importance sampling

	Evaluation on real data
	Sensitivity to model settings
	Comparison with competing methods
	Applications beyond regression

	Summary and future work

