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Abstract

We consider the problem of supervised learning with summary representations of topological
features in data. In particular, we focus on persistent homology, the prevalent tool used in
topological data analysis. As the summary representations, referred to as barcodes or per-
sistence diagrams, come in the unusual format of multi sets, equipped with computationally
expensive metrics, they can not readily be processed with conventional learning techniques.
While different approaches to address this problem have been proposed, either in the context
of kernel-based learning, or via carefully designed vectorization techniques, it remains an
open problem how to leverage advances in representation learning via deep neural networks.
Appropriately handling topological summaries as input to neural networks would address
the disadvantage of previous strategies which handle this type of data in a task-agnostic
manner. In particular, we propose an approach that is designed to learn a task-specific
representation of barcodes. In other words, we aim to learn a representation that adapts
to the learning problem while, at the same time, preserving theoretical properties (such
as stability). This is done by projecting barcodes into a finite dimensional vector space
using a collection of parametrized functionals, so called structure elements, for which we
provide a generic construction scheme. A theoretical analysis of this approach reveals
sufficient conditions to preserve stability, and also shows that different choices of structure
elements lead to great differences with respect to their suitability for numerical optimization.
When implemented as a neural network input layer, our approach demonstrates compelling
performance on various types of problems, including graph classification and eigenvalue
prediction, the classification of 2D/3D object shapes and recognizing activities from EEG
signals.

Keywords: Topological data analysis, persistent homology, topological summary, super-
vised learning, deep learning

c©2019 Christoph D. Hofer, Roland Kwitt, Marc Niethammer.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/18-358.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/18-358.html


Hofer, Kwitt and Niethammer

1. Introduction

Over the past decade, concepts from the field of algebraic topology have evolved into
computationally efficient algorithms to analyze data. Methods from this field are now
succinctly summarized under the term topological data analysis (TDA) (Carlsson, 2009) and
have found a broad range of applications, ranging from studying activity patterns of the
visual cortex (Singh et al., 2008), breast cancer (Nicolau et al., 2011), the manifold of natural
image patches (Carlsson et al., 2008), to analyzing brain artery trees (Bendich et al., 2016),
3D surfaces (Reininghaus et al., 2015; Li et al., 2014; Hofer et al., 2017b), clustering (Chazal
et al., 2013b) and the recognition of 2D object shapes (Turner et al., 2014b). Arguably,
the most prevalent method used in practice is persistent homology (see Edelsbrunner et al.,
2002; Zomorodian and Carlsson, 2004) which offers a concise summary representation of
topological features in data. In short, persistent homology tracks topological changes as we
analyze data at multiple “scales”. As the scale changes, topological features (i.e., connected
components, holes, etc.) appear and disappear. Persistent homology associates a lifespan
to these features, resulting in a multi set of (birth, death) tuples, typically visualized as
a barcode or a persistence diagram. These topological signatures can offer complementary
information that is not easily extractable by other methods. This opens up novel pathways
to address learning problems based on topological information.

Despite the advantages of TDA in capturing topological invariants of data, the field is
still largely disconnected from recent developments in machine learning. With respect
to persistent homology, this can be attributed to the unusual data structure underlying
topological signatures, that is, multi sets, and the associated (computationally intensive)
metrics in that space. In fact, Mileyko et al. (2011) and Turner et al. (2014a) have investigated
the theoretical properties of this metric space and shown that it is not easily amenable
to statistical computations (for example, there is no unique Fréchet mean), or machine
learning for that matter. Nevertheless, several works (see Section 3) have recently shown
advances towards bridging the gap between machine learning and TDA; either in the context
of kernel-based learning, or via suitable vectorization techniques for persistence diagrams /
barcodes, based on algebraic ideas. However, both strategies typically come at the cost of
computational complexity. In case of vectorization techniques, computational bottlenecks
typically arise when computing the vectorization itself. In case of kernels, it is well-known
that kernel-based learning (such as SVMs) scales poorly with sample size and sometimes
even the kernel computation itself can be computationally challenging. Importantly, both
strategies rely on an a-priori fixed representation of topological signatures.

With respect to the latter issue, the success of deep neural networks in vision (see Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), or natural language processing (see
Graves, 2013; Sutskever et al., 2014), has shown that it is preferable to learn task-specific
representations, instead of hand-crafting them. While neural networks exhibit remarkable
performance on many types of problems, input data with strong geometric structure, such as
graphs or manifold-valued objects, pose considerable algorithmic and theoretical challenges.
Topological summaries fall exactly into this category because of their nature as multi sets
and the associated metrics. This has, so far, largely prevented principled approaches to use
barcodes as input(s) to neural networks.
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Figure 1: Illustration of learnable, task-specific vectorizations of barcodes. Inputs are bar-
codes Dji , obtained by (1) constructing a simplicial complex K from data object oi
and (2) computing persistent homology (PH) of a filtration of K. The superscript
j in Dji denotes that we can have multiple barcodes per oi, e.g., considering ho-
mology groups of different dimension, or from multiple filtrations. Each barcode is
a multi set, fed to one (or more) parametrized (by θj) input layers that implement
a mapping Vθj to RN . These vectorizations are then fed to a neural network
implementing, e.g., a discriminant classifier.

Contributions. This work extends Hofer et al. (2017a), where we introduced a neural
network layer that can handle barcodes in a principled manner. The core idea is to
project points in a barcode by a collection of parametrized functionals, so called structure
elements. The parametrization is learned during training and allows to obtain a task-specific
vectorization of barcodes (see Figure 1). In this work, we conduct an in-depth theoretical
analysis of this approach. In particular, we prove that such a construction leads to an
induced mapping of barcodes that is continuous with respect to the p-Wasserstein distance,
although it cannot be stable with respect to p-Wasserstein for p > 1. This complements
a similar recent result of Reininghaus et al. (2015) in the context of kernels. Further, we
show that the original strategy of Hofer et al. (2017a) to enforce the required conditions
on structure elements has limitations and present an alternative allowing a broader range
of functional families to be considered. This then enables us to introduce new structure
elements with desirable properties for learning. Finally, we present experiments on a variety
of problems, including graph classification, eigenvalue prediction of (normalized) graph
Laplacian matrices, 2D/3D shape recognition and the classification of EEG signals.

Organization. Section 2 introduces the required background material on persistent ho-
mology. Section 3 reviews related work on machine learning with topological signatures
and highlights connections to our approach. Section 4 presents our main analysis of the
construction scheme and Section 5 discusses its practical and theoretical aspects. Finally,
Section 6 presents experimental results and Section 7 concludes the paper with a discussion
of the most relevant points.
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2. Background

For brevity, we only provide a brief overview of the mathematical concepts relevant to this
work and refer the reader to Hatcher (2002) or Edelsbrunner and Harer (2010) for details.

Homology. The key idea of homology theory is to study the properties of some object X
by means of (commutative) algebra. In particular, we assign to X a sequence of modules
Cn which are connected by homomorphisms ∂n, that is,

· · · ∂3−−−−−→ C2
∂2−−−−−→ C1

∂1−−−−−→ C0
∂0−−−−−→ 0

with
∂n : Cn → Cn−1 such that im ∂n ⊆ ker ∂n−1 .

A structure of this form is called a chain complex and by studying its homology groups

Hn = ker ∂n/ im ∂n+1

we can derive properties of X.

A prominent example of a homology theory is simplicial homology. Throughout this work, it
is the used homology theory and hence we will now concretize the already presented ideas.
Let K be a simplicial complex and Kn its n-skeleton. Then, we set Cn(K) as the vector
space generated (freely) by Kn over Z/2Z1. The connecting homomorphisms

∂n : Cn(K)→ Cn−1(K)

are called boundary operators. For a n-simplex σ = [x0, . . . , xn] ∈ Kn, we define them as

∂n(σ) =
n∑
i=0

[x0, . . . , xi−1, xi+1, . . . , xn]

and linearly extend this to Cn(K), that is, ∂n(
∑
σi) =

∑
∂n(σi).

Persistent homology. Let K be a simplicial complex. A sequence of simplicial complexes,
(Ki)mi=0, such that

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km = K

is called a filtration of K. If we use the extra information provided by the filtration of K,
we obtain the following sequence of chain complexes

· · · C1
2 C1

1 C1
0 0

· · · C2
2 C2

1 C2
0 0

· · · Cm2 Cm1 Cm0 0

∂3

ι

∂2

ι

∂1

ι

∂0

∂3

ι

∂2

ι

∂1

ι

∂0

∂3 ∂2 ∂1 ∂0

1. Simplicial homology is not specific to Z/2Z, but it’s a typical choice, since it allows us to interpret
n-chains as sets of n-simplices.
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where Cin = Cn(Ki
n), ι denotes the inclusion and 0 is the trivial group. To illustrate this

more conveniently, we provide a simple example:

K1

A

B

⊆ K2

C

D

E

⊆ K3

F

G

H I

v2

v1

v3 v4

The chain groups in this example are as follows:

For K1

C1
0 = [[v1], [v2]]Z2

C1
1 = 0

C1
2 = 0

For K2

C2
0 = [[v1], [v2], [v3]]Z2

C2
1 = [[v1, v3], [v2, v3]]Z2

C2
2 = 0

For K3

C3
0 = [[v1], [v2], [v3], [v4]]Z2

C3
1 = [[v1, v3], [v2, v3], [v3, v4]]Z2

C3
2 = 0

This then leads to the concept of persistent homology groups, defined by

H i,j
n = ker ∂in/(im ∂jn+1 ∩ ker ∂in) for i ≤ j .

The ranks, βi,jn = rankH i,j
n , of these homology groups (that is, the n-th persistent Betti

numbers), capture the number of homological features of dimensionality n (for example,
connected components for n = 0, holes for n = 1, etc.) that persist from i to (at least) j.
In fact, according to (Edelsbrunner and Harer, 2010, Fundamental Lemma of Persistent
Homology), the quantities

µi,jn = (βi,j−1n − βi,jn )− (βi−1,j−1n − βi−1,jn ) for i < j (1)

encode all the information about the persistent Betti numbers of dimension n. Before we
continue to introduce barcodes, we take a short detour and discuss the concept of multi sets,
a data structure that appears naturally when encoding information captured by persistent
homology.

Multi sets. We focus on multi sets over a fixed domain. Informally, multi sets extend the
concept of ordinary sets by allowing elements to occur more than once. For example, in
the multi set M = {1, 1, 2}, the element 1 is contained 2 times. For multi sets over a fixed
domain, D, this concept can be formalized by following the idea that ordinary sets over a
fixed domain can be represented by their indicator function. Analogously, we can represent a
multi set by its multiplicity function. Hence, a multi set M can be interpreted as a function

M : D → N∞0 = N ∪ {0,∞} ,
where M(x) = n denotes that x is contained in M n-times. However, we will write

multM (x) instead of M(x)

to address the multiplicity of x in M , since it is not common to write sets as functions.
Based on this representation, we introduce the multi set operations needed in the subsequent
parts of this work.
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Definition 1 Let M,N be multi sets and A an ordinary set over the domain D. We adhere
to the following conventions:

(M1) supp(M) = supp(multM ) = {x ∈ D : multM (x) > 0} Support

(M2) x ∈M ⇔ x ∈ supp(M) Set membership

(M3) |M | = ∑x∈supp(M) multM (x) Cardinality

(M4) (M ]N)(x) = multM]N (x) = multM (x) + multN (x) Union

(M5) (M ∩A)(x) = multM∩A(x) = multM (x) · 1A(x) Intersection with set

(M6) (M \A)(x) = multM\A(x) = multM (x) · 1D\A(x) Difference to set

(M7) Let f : D → Rn; then,
∑
x∈M

f(x) =
∑

x∈supp(M)

multM (x) · f(x) Function evaluation

If necessary, we can always interpret an ordinary set as a multi set, since the characteristic
function can be interpreted as a multiplicity function with values in {0, 1}.
Topological signatures. A typical way to obtain a filtration of a simplicial complex K is
to consider sub level sets of a real valued function, f : K → R , defined on K such that for
ρ ∈ K and the corresponding boundary operator, ∂, it holds that

f(σ) ≤ f(ρ) for σ ∈ ∂(ρ) .

Let

a1 < · · · < am with m = |f(K)|
be the sorted sequence of values of f(K). Then, we obtain (Ki)mi=0 by setting

K0 = ∅ and Ki = f−1
(
(−∞, ai]

)
for 1 ≤ i ≤ m .

If we construct a multi set such that, for i < j, the point (ai, aj) is inserted with multiplicity

µi,jn , see Eq. (1), we effectively encode the persistent homology of dimension n with respect
to the sub level set filtration induced by f .

Definition 2 (Barcode) Let Ω = {(b, d) ∈ R2 : d > b} the upper-diagonal part of the real
plane. A barcode, D, is a multi set, over the domain Ω. We denote by D the set of all
barcodes with finite cardinality.

Remark 3 While, in theory, barcodes are not necessarily finite, in any practical setup where
data is analyzed, we deal with barcodes of finite cardinality. Thus, in all subsequent parts of
this work, we assume D ∈ D.

For a given complex K of dimension nmax and a function f (of the discussed form), we can
interpret persistent homology (PH) as a mapping

(K, f)
PH7−−→ (D0, . . . ,D nmax−1) ,

where Di is the barcode of dimension i and nmax is the dimension of K.

6



Learning Representations of Persistence Barcodes

Equipping D with a metric structure, allows studying the sensitivity of PH to perturbations
in K or f . Before we can give the definitions of the metrics usually used for this purpose,
we have to introduce the concept of relative bijective matchings between two multi sets.

Definition 4 (∆-relative bijective matchings between finite multi sets) Let M,N
be finite multi sets over the domain D. Further, let ∆ ⊂ D such that

supp(M) ∩∆ = ∅ and supp(N) ∩∆ = ∅ .

A ∆-relative bijective matching between M , N is a multi set, ϕ, over D ×D such that

(C1) supp(ϕ) ∩ (∆×∆) = ∅ ,

(C2) ∀x ∈ supp(M) :
∑

(x,y)∈supp(ϕ)
multϕ

(
(x, y)

)
= multM (x), and

(C3) ∀y ∈ supp(N) :
∑

(x,y)∈supp(ϕ)
multϕ

(
(x, y)

)
= multN (y) .

Intuitively, multϕ
(
(x, y)

)
= n means that x is matched to y n-times. Condition (C1) ensures

that there are no matchings from ∆ to ∆, while (C2) and (C3) ensure that x, y are used in
a matching exactly as often as they are contained in M , N .

Definition 5 (Bottleneck, Wasserstein distance) Let (R2, δ) be a metric space and let

∆ = {(x, y) ∈ R2 : x = y}

be the diagonal of the real plane. For two barcodes D, E ∈ D, the Bottleneck (wδ
∞) and

Wasserstein (wδ
p) distances (with respect to the metric δ) are defined by

wδ
∞(D, E) = inf

ϕ
sup

(x,y)∈supp(ϕ)
δ(x, y)

and

wδ
p(D, E) = inf

ϕ

 ∑
(x,y)∈supp(ϕ)

multϕ
(
(x, y)

)
· δ(x, y)p

 1
p

with p ∈ [1,∞) ,

where the infimum is taken over all ∆-relative bijective matchings ϕ between D and E.

Remark 6 In the case where δ is the metric induced by the q-norm, ‖ · ‖q, we write w∞

for w
‖·‖∞
∞ and wq

p for w
‖·‖q
p .

We also remark that introducing the Wasserstein distances as in Definition 5, using ∆-
relative bijective matchings, deviates from the original formulation in Cohen-Steiner et al.
(2007). However, this variant simplifies any of our subsequent analyses of stability/continuity
properties involving those metrics. We refer the reader to (Cohen-Steiner et al., 2007, 2010;
Chazal et al., 2009) for a selection of existing stability results in a broader context and
further details.

Remark 7 By setting µi,∞n = βi,mn − βi−1,mn , we extend Eq. (1) to features which never
disappear, also referred to as “essential”. This change can be lifted to D by setting Ω =
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{(b, d) ∈ R× (R ∪ {∞}) : d > b}. However, if the filtration of K is defined by the sub level
sets of a function f , a more pragmatic way of handling essential features is to map their
death time to the maximum of the function f . In many cases, for example height filtrations,
this has a more natural interpretation (see Section 6.3).

3. Related work

In order to deal with the practical inconveniences associated to a (direct) handling of
barcodes in machine learning problems, several strategies have been proposed over the last
couple of years. On a high level, these approaches can be categorized into (1) kernel-based
techniques and (2) approaches that aim for a vectorization. Next, we summarize these
techniques, draw connections between them, and elaborate on how they relate to our work.
We additionally discuss related research on learning with (multi) set data structures and
highlight important differences to our approach.

Kernel-based techniques. In short, the idea of kernel-based learning techniques (Schölkopf
and Smola, 2001) is to rely on a positive-definite kernel function k : X ×X → R that realizes
an inner product 〈φ(x), φ(y)〉G = k(x, y), for x, y ∈ X , in a Hilbert space G for some (possibly
unknown) feature mapping φ : X → G. A kernel can either be constructed by (1) defining a
function k that captures some notion of similarity between two input objects and showing
its positive-definiteness, or (2) by explicitly constructing φ and using the inner product in G
as a kernel (that is positive-definite by construction). Both strategies have found application
in the context of kernel-based learning with topological signatures.

As a representative of the latter strategy, Reininghaus et al. (2015) introduced the persistence
scale-space (PSS) kernel. The construction is based on first representing a diagram as a sum
of Dirac deltas and then using this representation as the initial condition of a heat-diffusion
process with a Dirichlet boundary condition on the diagonal ∆. The solution of this partial
differential equation (at time t) resides in L2(Ω) and serves as an explicit feature mapping.
The inner-product in L2(Ω) is then used as a kernel function. A different, yet conceptually
similar approach is taken by Bubenik (2015) to construct persistence landscapes, that is,
functions of the form λ : N× R→ R ∪ {+∞,−∞}. Upon the definition of a suitable norm
‖·‖p on N×R, landscapes map barcodes into a (separable) Banach space Lp(N×R). Notably,
for p = 2, we get the Hilbert space L2(N×R) which then facilitates to use the inner-product
again to define a kernel. In Kwitt et al. (2015), it is further shown that under some mild
restrictions on the barcodes (that is, birth-death boundedness and an upper-bound on the
multiplicities of points), an exponentiated version of the persistence scale-space kernel is
universal2 (Steinwart and Christmann, 2008, Def. 4.52). A similar argumentation would
give a universal kernel constructed from persistence landscapes, for p = 2. When working in
this setting, statistical computations (see Gretton et al., 2012) become feasible, although, for
landscapes many theoretical properties for statistics have already been developed (Chazal
et al., 2013a, 2014; Fasy et al., 2014).

2. that is, the RKHS associated to the kernel is dense in the space of continuous functions D → R.
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A different kernel-based technique is introduced by Kusano et al. (2016), where the authors
leverage the theory of reproducing kernel Hilbert space (RKHS) embeddings of probability
measures (see Berlinet and Thomas-Agnan, 2004). Different to Reininghaus et al. (2015),
a diagram is represented as a weighted measure, that is, a weighted sum of Dirac deltas,
centered at each point of the diagram. The weighting function accounts for the different
persistence of each point. Notably, the authors show stability of the kernel-induced distance
between barcodes with respect to the Hausdorff distance (for two compact metric spaces
embedded in the same metric space). Essentially, this is achieved via the aforementioned
weighting function. Contrary to that, Reininghaus et al. (2015) achieve stability by enforcing
the Dirichlet boundary condition on the diagonal. In the latter case, this only leads to
stability of the kernel-induced distance with respect to wq

1 and it is shown that no kernel for
which k(F ] G,D) = k(F ,D) + k(G,D) holds (with F ,G,D ∈ D), is stable with respect to
wq
p for p > 1.

The recently proposed kernel approach of Carriére et al. (2017) follows the strategy of
directly defining k, instead of explicitly constructing a feature map φ. While there is strong
indication (via counterexamples) that the negative of the wq

p distance cannot be used in a
construction of the form k(F ,G) = exp(−wq

p(F ,G)), as wq
p is not negative semi-definite, the

authors circumvent this problem by introducing the sliced Wasserstein distance which can
be shown to be negative semi-definite. The distance induced by the resulting kernel, termed
the sliced Wasserstein kernel, is strongly equivalent to w∞1 .

Vectorization techniques. A conceptually different line of developments is to “coordina-
tize” the barcode space which allows vectorization. In (Adcock et al., 2016), for example,
the authors define a ring of algebraic functions on the space of barcodes. A similar approach
with appealing properties is based on tropical algebraic geometry (Kalĭsnik Verovs̆ek, 2018).
In particular, the coordinatizations in the latter work are stable with respect to wq

p and
w∞ (which is not the case for the approach by Adcock et al. (2016)) and facilitates the
development of sufficient statistics for barcodes (Monod et al., 2017). While this presents a
promising approach, the challenge is to construct suitable polynomials in a computationally
efficient manner.

Another instance of a vectorization technique is presented in Adams et al. (2017), where
barcodes are mapped to so-called persistence surfaces. This is done by computing a weighted
sum of normalized (isotropic) Gaussians, evaluated at each point in the diagram. Upon
discretization of this persistence surface, one obtains the persistence image that can then be
vectorized and fed to, for example, a linear SVM. Notably, a similar approach, motivated
from a statistical point of view, was introduced by Chen et al. (2015) based on earlier
ideas presented in Edelsbrunner et al. (2012). Similar to Kusano et al. (2016), stability of
persistence images (with respect to w∞1 ) is achieved via a continuous piecewise-differentiable
weighting function that evaluates to zero on the diagonal ∆. By taking a measure-theoretic
point of view, Chazal and Divol (2018) have recently shown that, in a wide range of situations,
the persistence surface is a kernel density estimator for the expected barcode.

A different vectorization scheme is presented by Bendich et al. (2016), where the authors
obtain a fixed-dimensional representation of barcodes by extracting the N longest bars.
Based on this representation, it is then possible to apply standard statistical techniques, for
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example, PCA, or a discriminant classifier. However, it is unclear how the hyper-parameter
N should be chosen appropriately, a choice that will most likely depend on the application.

In summary, most vectorization and kernel-based techniques retain certain stability properties
of persistence diagrams / barcodes with respect to the common metrics in the field of
persistent homology. Yet, they also share one common drawback : the mapping of the
topological signatures to a representation that is compatible with existing learning techniques
is pre-defined. While this is, a-priori, not a disadvantage for statistical computations, it can
be undesirable for learning, as the representation is agnostic to the learning task. In fact, the
success of deep neural networks (see Krizhevsky et al., 2012; He et al., 2016) has shown that
learning representations is a preferable approach. It is worth pointing out that algebraic
constructions (Adcock et al., 2016; Kalĭsnik Verovs̆ek, 2018; Monod et al., 2017) might be
amenable to learning task-specific representations, but it is unclear if this is computationally
feasible. Furthermore, techniques based on kernels, such as (Reininghaus et al., 2015; Kwitt
et al., 2015; Kusano et al., 2016; Carriére et al., 2017), additionally suffer scalability issues
as training kernel SVMs scales poorly with the number of samples (Chapelle, 2007) and
even evaluating the kernel function itself can be computationally challenging. In the spirit
of end-to-end training, we therefore aim for a computationally efficient approach that allows
to learn a task-specific representation.

Learning with sets. As mentioned earlier, learning with barcodes requires to appropriately
handle multi sets and to respect the topology induced by the metrics. In the context of
deep learning, using multi sets as input has gained limited attention so far, except for
approaches where the multi set is the prediction target (Welleck et al., 2017). On the other
hand, learning with sets as input to neural networks has spawned considerable research
interest recently. In Qi et al. (2017a,b), for instance, the authors primarily focus on handling
point clouds in a way that is permutation invariant with respect to the points. Zaheer et al.
(2017) present a characterization theorem for valid set functions that allow the design of
appropriate neural networks layers. In particular, it is shown that if set elements are from
a countable domain, a necessary condition for a function to be a valid set function is to
have a decomposition of the form ρ(

∑
x∈S φ(x)), for a suitable choice of ρ and φ. In the

uncountable case, this was only shown to hold for sets of fixed size, but it is conjectured
that the previous characterization holds even for sets of arbitrary size. In this work, we are
exactly in the latter setting, as we consider multi sets over an uncountable subset of R2 as
input. Moreover, the fact that we are dealing with multi sets and a topology induced by the
metrics in Definition 5 is crucial. It is, for example, straightforward to show (see Section 4.2)
that blind application of the approach in Zaheer et al. (2017) does neither lead to a stable
representation, nor is it clear how to appropriately handle points with higher multiplicities.
Our construction scheme is specifically designed to avoid these problems.

4. Learning vectorizations of barcodes

This section is divided into two major parts. In the first part, we develop the intuition of the
proposed (learnable) vectorization technique. Our intention is to give the reader a deeper
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insight into the core ideas that motivate the construction scheme which we then introduce
and analyze in the second part.

Motivation. As mentioned in Section 2, barcodes are multi sets residing over the upper
diagonal part of the real plane, Ω. From both a computational and an implementation
perspective, the handling of (multi) sets poses considerable challenges, simply because there
is no notion of order.

While many previous works have resorted to a mapping of barcodes to function spaces (with
linear structure) in order to facilitate learning techniques, our strategy is to construct a
learnable vectorization V : D → RN which operates on (finite) barcodes and respects the
topology induced by the metrics in Definition 5.

4.1. Vectorization of multi sets

We start with a rather basic strategy to handle multi sets and then refine this idea through
an analysis of the desired properties in the context of barcodes. First, consider a multi set
M over some fixed domain D. Then, a natural finite vectorization is to fix a finite subset of
D, say {µ1, . . . , µN}, and set

V(M) =
(
multM (µ1), . . . ,multM (µN )

)
.

While possible, such a strategy is undesirable for multiple reasons. First, it is a rather
strict representation, as for a multi set M where M ∩ {µ1, . . . , µN} = ∅, we would obviously
get V(M) = (0, . . . , 0). Second, and possibly more fundamental, such a mapping would be
inherently discontinuous, as it can not capture continuous changes of the points in M (if D
is equipped with a topology). This is easy to see by considering the example of D = R. In
that case, we have

V({µ1, µ1 + ε}) = (1, 0, . . . , 0) for ε > 0

if (µ1 + ε) /∈ {µ1, . . . , µN}, however,

V({µ1, µ1}) = (2, 0, . . . , 0) .

At first sight, given the obvious drawbacks of V, continuing along this direction does not
seem promising. However, the basic problem essentially resides in the (rigorously local) way
of how elements of the multi set are represented by the multiplicity function. It is therefore
interesting, to study a relaxed (that is, less local) version of this idea. In particular, consider
a functional such that, for some metric δ residing on D,

sµi : D → [0, 1] , sµi(µi) = 1 and lim
δ(µi,x)→∞

sµi(x) = 0 (2)

for 1 ≤ i ≤ N . Under this functional, we get multM (µi) =
∑

x∈M sµi(x) as a boundary
case. By further requiring that sµi is continuous with respect to δ and by controlling the
convergence speed of

sµi(x)→ 0 as δ(µi, x)→∞ (3)

11



Hofer, Kwitt and Niethammer

we can reformulate a relaxed, but continuous3 version of V as

V(M) =

(∑
x∈M

sµ1(x), . . . ,
∑
x∈M

sµN (x)

)
. (4)

Revisiting our initial example, we now obtain a more reasonable mapping of {µ1, µ1} and
{µ1, µ1 + ε} as

V({µ1, µ1}) = (2, ε2, . . . , εN ) for εi > 0

and
V({µ1, µ1 + ε}) = (2− ε′1, ε′2, . . . , ε′N ) for ε′i > 0 ,

respectively4. In other words, the mapping changes continuously with respect to the points
in M . However, this comes at the cost of precision with respect to the multiplicity function.

4.2. From multi sets to barcodes

So far, we have introduced a first strategy for vectorizing multi sets which could already be
applied to barcodes. However, D is not simply a collection of multi sets, but a metric space
(with respect to, for example, wδ

∞ or wδ
p) and hence has a topological structure. By keeping

in mind that typical stability results in persistent homology are formulated with respect
to those metrics, it seems imperative that the mapping V should be stable to at least a
selection of those metrics. To highlight this, consider the following sequence of barcodes

Dj = {xj} with xj ∈ Ω and lim
j→∞

xj ∈ ∆ .

For every choice of the proposed barcode distances, the empty barcode, ∅, is the limit of
this sequence. A vectorization, V, of the proposed form and continuous with respect to the
metrical structure of the barcodes, D, should yield

V(Dj)→ (0, . . . , 0) = V(∅) for j →∞ .

Hence, in addition to continuity of s on Ω ∪∆, we should demand that

s(x) = 0 for x ∈ ∆ .

Remark 8 As mentioned in Section 3, a similar (multi) set vectorization method is intro-
duced in the “deep sets” approach of Zaheer et al. (2017) by setting5

V(M) =
∑
x∈M

φ(x) for M ⊂ Rm ,

where φ : Rm → Rn is a mapping implemented by a neural network (possibly through multiple
layers). We highlight that this approach does not intrinsically respect the topological structure
of D. The reason is that φ is not constrained (or constructed) to vanish on the diagonal
∆. Hence, we have no guarantee that the vectorization is continuous with respect to the
introduced metrics.

3. Continuity, at this point, is meant as continuity in the points of M .
4. For simplicity, we assume that the limit process in Eq. (3) is monotone.
5. In detail, we would have ρ(

∑
x∈M φ(x)), but ρ does not affect our argument.

12
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4.3. Learnable vectorizations

Until now, we have developed a first idea how a fixed vectorization V could be constructed.
However, most of the progress in supervised learning over the last years can be attributed
to the fact that state-of-the-art approaches (such as deep neural networks) do not rely
on fixed representations. Instead, they operate on a family of representations and aim to
find a task-specific one for the problem at hand. This is achieved by back-propagating
the error under a suitable loss function and adjusting the representation parameters to
minimize the loss. The sought-for vectorization V (as introduced in the previous section)
can be interpreted as such a representation. Hence, it seems beneficial to define a family of
mappings, Vθ, and let the learner determine a suitable parametrization θ. When learning
via gradient descent, this demands (sub-)differentiability in the parameters θ. If θ = (θi) for
a defined set of (real) parameters, we have to put an additional constraint on a practically
useful vectorization, that is, the existence of the partial (sub-)derivative with respect to θi,

∂

∂θi

(
sθ(D)

)
for D ∈ D .

4.4. Construction & Theoretical analysis

We propose a construction, based on parametrized functionals on Ω ∪∆, for a vectorization
that possesses the properties outlined in Sections 4.1 to 4.3. Our two main results, in
Theorems 12 and 13, establish sufficient conditions such that the induced vectorization is (1)
Lipschitz continuous with respect to wδ

1 (that is, stable in the sense of Cohen-Steiner et al.
(2010)) and (2) continuous with respect to wδ

p. Further, we show that stability with respect

to wδ
p for p > 1 is not possible. We begin by defining the notion of a structure element.

Definition 9 (Structure element) Let s be a family of continuous functionals, parametrized
over some parameter space Θ ⊂ Rd, that is,

Θ 3 θ s7→ sθ

such that
sθ : Ω ∪∆→ R with sθ(x) = 0 for x ∈ ∆ .

We call sθ a structure element over the parameter space Θ.

Now, we introduce a mapping of barcodes with respect to sθ.

Definition 10 (Induced mapping of barcodes) Let s be a family of functionals as in
Definition 9. Then, for each sθ, we define by

sθ : D→ R D 7→
∑
x∈D

sθ(x)

the sθ-induced mapping of barcodes.

The question is, if the induced mapping from Definition 10 allows to guarantee stability
with respect to the Wasserstein distances, or a subset of them. To answer this, we provide a
technical result (in Lemma 11) that allows us to shorten the proofs of Theorems 12 and 13.
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Lemma 11 Let D, E ∈ D and let ϕ be a ∆-relative bijective matching between D and E.
Further, let f : Ω ∪∆→ R with f(x) = 0 for x ∈ ∆. Then,∑

x∈D
f(x)−

∑
y∈E

f(y) =
∑

(x,y)∈supp(ϕ)

multϕ
(
(x, y)

)(
f(x)− f(y)

)
.

Proof see Appendix B.1

Theorem 12 (wδ
1 stability of the induced mapping) Let s be a family of functionals

as in Definition 9 and sθ such that

sθ is Lipschitz continuous w.r.t. δ and constant Ksθ .

Then, for two barcodes D, E ∈ D, it holds that

|sθ(D)− sθ(E)| ≤ Ksθ · wδ
1(D, E) . (5)

Proof Let ϕ be a ∆-relative bijective matching between D and E , realizing wδ
1(D, E). As

D, E are assumed to be of finite cardinality it holds that | supp(ϕ)| <∞. Thus,

|sθ(D)− sθ(E)| =

∣∣∣∣∣∣
∑
x∈D

sθ(x)−
∑
y∈E

sθ(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(x,y)∈supp(ϕ)

multϕ
(
(x, y)

)
·
(
sθ(x)− sθ(y)

)∣∣∣∣∣∣ (by Lemma 11)

≤
∑

(x,y)∈supp(ϕ)

multϕ
(
(x, y)

)
·
∣∣sθ(x)− sθ(y)

∣∣ (by the triangle inequality)

≤ Ksθ ·
∑

(x,y)∈supp(ϕ)

multϕ
(
(x, y)

)
· δ(x, y) (by Lipschitz continuity of sθ)

= Ksθ · wδ
1(D, E) .

Next, we show that the mapping induced by a structure element sθ can not achieve stability
for wδ

p with p > 1 (including p = ∞, that is, Bottleneck stability). Our argumentation is
similar to Reininghaus et al. (2015, Theorem 3), where the authors characterize kernels on
barcodes that cannot be stable with respect to wq

p for p > 1. To this end, let sθ be non-trivial,
that is, there is some x ∈ Ω such that sθ(x) > 0 and define a sequence of barcodes based on
D = {x} by

Dj =

j⊎
i=1

D with j ≥ 1 .

Now consider

|sθ(Dj)− sθ(∅)| =

∣∣∣∣∣∣
∑
x∈Dj

sθ(x)− 0

∣∣∣∣∣∣ = j ·
∣∣∣∣∣∑
x∈D

sθ(x)

∣∣∣∣∣ = j · |sθ(x)| (6)
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and observe that

wδ
p(Dj , ∅) =

{
p
√
j · wδ

p(D1, ∅), p <∞,
1 · w∞(D1, ∅), p =∞ .

(7)

As we can see from Eq. (6), the order of growth is linear. For Eq. (7), this only holds in
case p = 1. Hence, for p > 1, we cannot find a constant such that Eq. (6) is bounded from
above by Eq. (7). In particular,

|sθ(Dj)− sθ(∅)| > K · wδ
p(Dj , ∅)

for K ∈ R and j sufficiently large. While this is obviously a negative result, it does not
necessarily mean that this adversely effects us in a learning setting . Nevertheless, although
we cannot guarantee stability for p > 1, we can find sufficient conditions for a weaker
property, namely continuity with respect to wδ

p.

Theorem 13 (wδ
p continuity of the induced barcode mapping) Let s be a family of

functionals as in Definition 9 such that sθ satisfies the growth condition

|sθ(x)| ≤ κsθ · δ(x, y)p for x ∈ Ω, y ∈ ∆ and κsθ > 0 . (8)

Then, the induced barcode mapping is continuous with respect to wδ
p.

Proof Let D ∈ D be arbitrary but fixed. Consider a sequence of barcodes, (Dj) ∈ D,
converging to D, that is,

lim
j→∞

wδ
p(D,Dj) = 0 .

We have to show that sθ(Dj)→ sθ(D) for j →∞. Let ϕj be a ∆-relative bijective matching
that realizes wδ

p(D,Dj). We get

lim
j→∞

wδ
p(D,Dj)p = lim

j→∞

∑
(xj ,yj)∈supp(ϕj)

multϕj
(
(xj , yj)

)
· δ(xj , yj)p = 0 . (9)

Thus, for (xj , yj) ∈ supp(ϕj), δ(xj , yj) converges to 0 for j →∞. In the following, we show
that for ε > 0 it holds that |sθ(D)− sθ(Dj)| ≤ ε. In particular, consider

|sθ(D)− sθ(Dj)| =

∣∣∣∣∣∣
∑
x∈D

sθ(x)−
∑
y∈Dj

sθ(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(xj ,yj)∈supp(ϕj)

multϕj
(
(xj , yj)

)
·
(
sθ(xj)− sθ(yj)

)∣∣∣∣∣∣ (by Lemma 11)

≤
∑

(xj ,yj)∈supp(ϕj)

multϕj
(
(xj , yj)

)
·
∣∣sθ(xj)− sθ(yj)∣∣ (triangle inequality)

= Cj .

To proceed, we split the matching ϕj into two disjoint parts, that is,

Aj = supp(ϕj) ∩
(
Ω× (Ω ∪∆)

)
and Bj = supp(ϕj) ∩

(
∆× (Ω ∪∆)

)
.
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Aj contains the matchings from D to either points in Dj or ∆, while Bj contains the
remaining matchings from ∆ to Dj . This allows us to represent Cj by Aj and Bj , that is,

Cj =
∑

(xj ,yj)∈Aj

multϕj
(
(xj , yj)

)
·
∣∣sθ(xj)− sθ(yj)∣∣︸ ︷︷ ︸

Dj

+

∑
(xj ,yj)∈Bj

multϕj
(
(xj , yj)

)
·
∣∣sθ(xj)− sθ(yj)∣∣︸ ︷︷ ︸

Ej

.

First, we see that

Dj ≤
∑

(xj ,yj)∈Aj

multϕj
(
(xj , yj)

)
· max
(xj ,yj)∈Aj

∣∣sθ(xj)− sθ(yj)∣∣
= |D| · max

(xj ,yj)∈Aj

∣∣sθ(xj)− sθ(yj)∣∣ (by (C2) of Definition 4)

≤ ε/2

for j sufficiently large, as δ(xj , yj)→ 0 and sθ is continuous on Ω (Definition 9). Second, to
bound Ej , we observe the following: it holds that

Ej =
∑

(xj ,yj)∈Bj

multϕj
(
(xj , yj)

)
·
∣∣0− sθ(yj)∣∣ (as xj ∈ ∆)

≤
∑

(xj ,yj)∈Bj

multϕj
(
(xj , yj)

)
· κsθ · δ(xj , yj)p (by Eq. (8))

≤ κsθ ·
∑

(xj ,yj)∈supp(ϕj)

multϕj
(
(xj , yj)

)
· δ(xj , yj)p (as Bj ⊂ supp(ϕj))

= κsθ · wδ
p(D,Dj)p (by Definition 5)

≤ ε/2 (by Eq. (9))

for j sufficiently large. Overall, we get

|sθ(D)− sθ(Dj)| ≤ Dj + Ej ≤ ε

for j sufficiently large, which concludes the proof.

Overall, our theoretical analysis of the proposed construction scheme shows that the induced
mapping of barcodes has favorable properties, as long as the discussed conditions on the
structure element are satisfied. Based on these developments, it is now straightforward
to introduce a neural network module that can handle barcodes as input and extend this
scheme to multiple families of functionals.
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Definition 14 (Neural network input layer) Let s be a family of functionals over the
parameter space Θ and θ = (θ1, . . . , θN ) a vector of parameter realizations in ΘN . Then,

Vs : ΘN → {f : D→ RN}
θ 7→ Vs,θ

with

Vs,θ : D→ RN

D 7→
(
sθ1(D), . . . , sθN (D)

)
gives a mapping that is implementable as a neural network (input) layer.

Notably, Lipschitz continuity of the input layer Vs,θ with respect to wδ
1 is a simple consequence

of Theorem 12.

In the following part of the paper, we take a closer look at the practical aspects of the
proposed construction scheme.

5. From theory to practice

In addition to the conditions on the structure elements, we now additionally require that the
elements are (sub-)differentiable in their parameter space to facilitate numerical optimization
in a gradient descent manner (see Section 4.3). In the context of neural networks, this allows
to learn a task-specific representation of barcodes via error backpropagation. Taking this
into consideration and setting δ = ‖ · ‖q, we arrive at the following conditions for a practical
structure element sθ:

(P1) sθ(x) = 0 for x ∈ ∆

(P2) sθ is Lipschitz continuous with respect to ‖ · ‖q
(P3) For D ∈ D, we require sθ(D), θ ∈ Θ, to be differentiable on the parameter space Θ

As shown in the previous section, conditions (P1) and (P2) suffice to guarantee that mapping
Vs,θ, stated in Definition 14, is stable6 with respect to wq

1. To develop structure elements
and to verify the conditions, it will be helpful to rearrange and transform the coordinate
axes of the barcode. We introduce this next.

5.1. Birth-lifetime coordinates

The intention of rearranging the coordinate axes to a birth-lifetime coordinate frame is to
facilitate a straightforward analytic construction of structure elements that fulfill requirements
(P1) to (P3). First, note that in the traditional notation we have (x0, x1) ∈ ∆⇔ x0 = x1.
Hence, the predicate for (x0, x1) to be contained in ∆ depends on both x0 and x1. Shifting
the coordinate system such that (x′0, x

′
1) lies in the shifted version of ∆⇔ x′1 = x1 − x0 = 0

6. For p > 1, to guarantee continuity with respect to wqp, the growth condition from Eq. (8) needs to hold.
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Figure 2: Stretching the lifetime axis of a birth-lifetime transformed (cf. Def. 15) barcode
via (a) the transform proposed in Eq. (10) and (b) the log-stretching previously
proposed by Hofer et al. (2017a). Different values of ν are marked by dashed lines.
While, the differences appear subtle, the stretching as in (a) allows to guarantee
Lipschitz continuity of all proposed structure elements (Section 5.4), whereas (b)
only works for exponential structure elements (Section 5.4.1).

results in a notable simplification. We summarize this step in the following definition of a
birth-lifetime coordinate transform, similar to (Adams et al., 2017).

Definition 15 (Birth-lifetime coordinate transform) We define

ρ : Ω ∪∆→ R× [0,∞) (b, d) 7→ (b, d− b) .

as the birth-lifetime coordinate transform of a barcode.

The transform ρ enables representing barcodes as multi sets over the upper half-plane of R2.

5.2. Rationally stretched birth-lifetime coordinates

Second, we introduce a transform, τ , on top of ρ, such that we can represent barcodes as
multi sets over R× (R ∪ {−∞}). We use the convention that for some function f : R→ R,
f(−∞) = limx→−∞ f(x), if the limit exists and it is not defined otherwise.
The advantage of splitting the structure element into a composition of ρ, τ and tθ is that
is allows to use parametrized functionals tθ defined on R× R as a starting point and then
require that tθ vanishes on R×{−∞} = τ ◦ ρ(∆). For example, most continuous probability
density functions are subject to this constraint. As a consequence, we can use the rich pool
of such functions to find possible candidates for t.

Definition 16 (Rationally stretched birth-lifetime transform) For 0 < ν, we define
the birth-lifetime transform

τν : R× [0,∞)→ R× (R ∪ {−∞})
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by

τν((x0, x1)) =


(x0, x1), x1 ∈ [ν,∞),

(x0, 2ν − ν2

x1
), x1 ∈ (0, ν),

(x0,−∞), x1 = 0 .

(10)

Note that τν is continuous on R2 as

lim
x→ν

x = ν = lim
x→ν

2ν − ν2

x
.

As a consequence, we can define a parametrized functional, say

t : Θ→ {f : R× (R ∪ {−∞})→ R} θ 7→ tθ ,

on R× (R ∪ {−∞}) such that

s = t ◦ τν ◦ ρ : Θ→ {f : Ω ∪∆→ R} θ 7→ sθ = tθ ◦ τν ◦ ρ

is a structure element iff t
(
(x0,−∞)

)
= 0. A visualization of the proposed birth-lifetime

transform is shown in Figure 2b, in comparison to the original (but limited) variant introduced
in Hofer et al. (2017a).

5.3. Lipschitz continuity

As we are especially interested in a stability preserving vectorization, we want to construct
structure elements which are Lipschitz continuous, see Section 4. While the transform
τν ◦ ρ facilitates the selection of t, it also comes at a price. A closer examination reveals
that τν is not continuous on ∆ and hence not Lipschitz continuous. As a consequence,
Lipschitz continuity of some functional t is not enough to guarantee that t◦ τν ◦ρ is Lipschitz
continuous. The core of the problem is that τν ◦ ρ diverges for (x0, x1)→ (x0, 0). In order
to preserve Lipschitz continuity, a chosen functional t has to converge rapidly enough to
dominate this divergence. In the following, we provide the essential argumentation to verify
the Lipschitz condition for t ◦ τν ◦ ρ. We start with two remarks to recall some properties of
Lipschitz continuous functions.

Remark 17 To show that a multivariate function f : RN → R is Lipschitz continuous with
respect to ‖·‖q , 1 ≤ q ≤ ∞, it is sufficient that Lipschitz continuity with respect to ‖·‖q holds
in each coordinate. The reason is that coordinate-wise Lipschitz continuity with respect to ‖·‖q
leads to Lipschitz continuity with respect to ‖ · ‖1 by taking the maximum of the coordinate-
wise Lipschitz constants. As all q-norms are equivalent, that is, c‖ · ‖q′ ≤ ‖ · ‖q ≤ C‖ · ‖q′
for 1 ≤ q ≤ q′ ≤ ∞ and 0 < c ≤ C, this is sufficient. Additionally, concatenation preserves
Lipschitz continuity, that is, if f, g are Lipschitz continuous with respect to to some metric,
so is f ◦ g.
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Our strategy to verify that a construction of the form t ◦ ρν ◦ τ is Lipschitz continuous will
be as follows: First, let ν > 0 and t : R× R→ R be Lipschitz continuous. Then, it suffices
to verify Lipschitz continuity of t ◦ τν on R× [0,∞), as ρ is trivially Lipschitz continuous.
Second, for all following variants of t in Section 5.4, it will be clear that R× [ε,∞), ε > 0
poses no problem and it remains to study the behavior of t ◦ τν on R× [0, ε). Now, as all
variants of t will also be Lipschitz continuous in the first coordinate, x0, only the second
coordinate, x1, needs to be considered (Remark 17) and our strategy boils down to show∣∣∣∣ ∂∂x1 t ◦ τν

∣∣∣∣ < C ∈ R on [0, ε) .

In all of the following cases, this will be equivalent to

lim
x→0

∣∣∣∣( ∂

∂x1
t ◦ τν

)
(x)

∣∣∣∣ < C ∈ R ,

as the partial derivative of t ◦ τν will be continuous on (0, ε).

5.4. Structure elements

Next, we use the previous ideas to introduce (radial) structure elements which result in
wq
1 stable vectorizations. In particular, we start with a structure element based on the

exponential function, analyze its properties, and then successively refine this element by
switching to rational functions for better numerical stability and compatibility of the
parameter gradients. Our main motivation is, to build structure elements that integrate
well into a deep learning framework.

Remark 18 This section iteratively refines the structure element originally proposed by
Hofer et al. (2017a), eventually resulting in the rational hat structure element of Section 5,
Definition 23. We choose this type of presentation, as it elucidates certain design choices.
However, those (intermediate) steps are not necessary to understand the final form of the
refined version and may be skipped.

5.4.1. Exponential structure element(s)

Exponential functions have been previously used by Reininghaus et al. (2015), Kusano
et al. (2016) and Adams et al. (2017) to weight points in barcodes. In (Reininghaus et al.,
2015), the exponential function arises as the solution of a heat-diffusion problem, whereas in
(Kusano et al., 2016) this is motivated by the idea of embedding measures into a reproducing
kernel Hilbert space. The crucial difference to these approaches is that our structure elements
are not at fixed locations (that is, one element per point of the particular barcode), but
their locations and scales are adjustable.

Definition 19 (Exponential structure element) We set Θ = R2 × R2 with
((µ0, µ1), (σ0, σ1)) = (µ, σ) ∈ Θ and define

texp : Θ→ {f : R× (R ∪ {−∞})→ R+}
(µ, σ) 7→ t

exp

(µ,σ)
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Figure 3: Illustration of an exponential structure element, centered at µ = (1, 2).

with

t
exp

(µ,σ) : R× (R ∪ {−∞})→ R+

(x0, x1) 7→ e−(σ
2
0(µ0−x0)2+σ2

1(µ1−x1)2) .

We call s
exp
µ,σ = t

exp
µ,σ ◦ τν ◦ ρ an exponential structure element.

Note that s
exp
µ,σ is well-defined, that is, it is a structure element in the sense of Definition 9.

This is obvious, as

sexpµ,σ(∆) = texpµ,σ ◦ τν ◦ ρ(∆) = texpµ,σ ◦ τν(R× {0}) = texpµ,σ(R× {−∞}) = {0}

holds by design. An illustration of an exponential structure element, centered at µ = (1, 2)
is shown in Figure 3. The following lemma establishes Lipschitz continuity of this element.

Lemma 20 s
exp

(µ,σ) is Lipschitz continuous with respect to ‖ · ‖q on Ω ∪∆.

Proof see Appendix B.2

With respect to the differentiability of s
exp

(µ,σ), it is easy to see that t
exp

(µ,σ)(x) is differentiable

in Θ for x ∈ R2. Therefore, so is s
exp

(µ,σ)(x) for x ∈ Ω ∪∆. As the differential operator is

additive, it follows that the induced barcode mapping,
∑

x∈D s
exp

(µ,σ)(x), is differentiable.

5.4.2. Rational structure element(s)

The second structure element is inspired by rational functions of the form (1 + x)−n. Our
main intention is to simplify sexp such that we circumvent the exponential dependency of
the diagram points. This is desirable in terms of numerical stability.

Definition 21 (Rational structure element) We set Θ = R2 × R2 × [1,∞) with
((µ0, µ1), (σ0, σ1), α) = (µ, σ, α) ∈ Θ and define

trat : Θ→ {f : R× (R ∪ {−∞})→ R+}
(µ, σ) 7→ trat(µ,σ,α)
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Figure 4: Illustration of a rational structure element for σ0,1 = 1 and various choices of α.

with

trat(µ,σ,α) : R× (R ∪ {−∞})→ R

(x0, x1) 7→
1(

1 + |σ0| · |x0 − µ0|+ |σ1| · |x1 − µ1|
)α .

We call srat(µ,σ,α) = trat(µ,σ,α) ◦ τν ◦ ρ a rational structure element.

Lemma 22 srat(µ,σ,α) is Lipschitz continuous with respect to ‖ · ‖q.
Proof see Appendix B.3

An illustration of a rational structure element, centered at location µ = (1, 2) is shown in
Figure 4. Similar to the exponential structure element, we see that srat(µ,σ,α) is differentiable
in µi and σi for i = 1, 2. However, in case of α, we have to introduce a slight restriction as
srat(µ,σ,α) is only differentiable for α ∈ (1,∞). Regarding the partial derivatives, it is worth
pointing out that

∂

∂α
srat(µ,σ,α)(x) and

∂

∂θ
srat(µ,σ,α)(x) for θ ∈ {σ0, σ1, µ0, µ1}

are scaled differently. More precisely, let f(µ, σ, x) denote the denominator, that is,

srat(µ,σ,α)(x) =
1

f(µ, σ, x)α
.

Then, we see that
∂

∂α
srat(µ,σ,α)(x) = ln

(
1

f(µ, σ, x)α

)
· 1

f(µ, σ, x)α

differs from

∂

∂θ
srat(µ,σ,α)(x) = −α · 1

f(µ, σ, x)α+1
· ∂
∂θ
f(µ, σ, x) for θ ∈ {σ0, σ1, µ0, µ1}

with respect to the order of growth, depending on f . This yields the conjecture that it may
be difficult to optimize both parameter groups {α} and {σ0, σ1, µ0, µ1} simultaneously. A
similar scaling of the parameter gradients is preferable, as it simplifies the optimization
process.
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5.4.3. Rational hat structure element(s)

A closer look at srat reveals that the purpose of the parameters σ and α is to control the
slope of srat(µ,σ,α) around µ. To obtain a similar effect and to reduce the number of parameters,
we gather this functionality into a single parameter r. We will see that this strategy yields
a more balanced gradient scaling behavior. In detail, the idea is to use a uniformly scaled
rational structure element and to subtract an antipode whose maximum is reached when
the distance of a point to µ is exactly r. This leads to the following definition.

Definition 23 (Rational hat structure element) We set Θ = R2 × R× N with
((µ0, µ1), r, q) = (µ, r, q) ∈ Θ, x = (x0, x1) ∈ R× (R ∪ {−∞}) and define

trat hat : Θ→ {f : R× (R ∪ {−∞})→ R}
(µ, r, q) 7→ trat hat

(µ,r,q)

with

trat hat
(µ,r,q) : R× (R ∪ {−∞})→ R

x 7→ 1

1 + ‖x− µ‖q
− 1

1 + | |r| − ‖x− µ‖q|
.

We call srat hat
(µ,σ,α) = trat hat

(µ,σ,α) ◦ τν ◦ ρ rational hat structure element.

To see that this structure element has the desired gradient behavior, lets consider the partial
derivatives with respect to r and µi, that is,

∂

∂r

(
trat hat
(µ,r,q) (x)

)
(r) =

sgn(|r| − ‖x− µ‖q|)
(1 + | |r| − ‖x− µ‖q|)2

· sgn(r)

and

∂
∂µi

(
trat hat
(µ,r,q) (x)

)
(µi) = (−1) ·

(
1

(1+‖x−µ‖q)2 −
sgn(|r|−‖x−µ‖q |)
(1+| |r|−‖x−µ‖q |)2

)
· ∂
∂µi

(‖x− µ‖q)(µi) .

We observe that both terms have similar order of growth in r and µi, respectively. However,
this comes at the price that we no longer have srat hat

(µ,σ,α) (µ) = 1. While this could be repaired
by a multiplicative scaling factor

cr =
1 + |r|
|r| ,

a closer look at
∂

∂r
cr(r) = −sgn(r)

|r|2

reveals that this should be avoided, as it would lead to an undesirable quadratic dependency
of the denominator with respect to r.

Lemma 24 trat hat
(µ,σ,α) is Lipschitz continuous with respect to ‖ · ‖q.
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Figure 5: Illustration of a rational hat structure element for ‖·‖2 and various choices of r.

We omit the proof for brevity, but note that it is similar to the proof of Lemma 22.
Furthermore, srat hat

(µ,σ,α) (D) is differentiable in its parameters. An illustration of this structure

element, centered at µ = (1, 2), for different parameter settings is shown in Figure 5.

Overall, the advantages of srat hat over sexp and srat in terms of (1) the scaling of the
derivatives and (2) its straightforward implementation, are particularly appealing for learning
in the context of neural networks. Consequently, we use this element in all experiments that
follow.

6. Experiments

We present a diverse set of experiments for supervised learning with different types of data
objects. In particular, we show results for 2D/3D shape recognition and the classification of
social network graphs, evaluated on standard benchmark data sets. Additionally, we present
two exploratory experiments for the problems of predicting the eigenvalue distribution of
normalized graph Laplacian matrices and activity recognition from EEG signals. These
experiments demonstrate the versatility and predictive power of persistent homology. Our
goal is not to necessarily outperform approaches that are specifically tailored to a problem, but
to demonstrate that persistent homology combined with deep learning delivers competitive
performance in a very generic setup.

All experiments were implemented in PyTorch7, using DIPHA8 (Bauer et al., 2014) and
Perseus9 (Mischaikow and Nanda, 2013) for persistent homology computations. Source
code to fully reproduce the experiments is publicly-available10.

6.1. Network architecture

We focus on a generic neural network architecture, shown in Figure 6, that only needs to be
slightly adjusted per experiment.

7. https://github.com/pytorch/pytorch

8. https://bitbucket.org/dipha/dipha

9. http://people.maths.ox.ac.uk/nanda/perseus

10. https://github.com/c-hofer/jmlr_2019.git
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Figure 6: Illustration of our generic network architecture. Building blocks that are hatched
are optional. One processing path (solid arrows) for handling S barcodes
D0,1
i , . . . ,D0,S

i from one input object oi are shown. In particular, D0,j
i denotes the

S-th 0-dimensional barcode for oi. Handling homology groups of higher dimension
simply requires more input layers. The hyperparameter N denotes the number of
structure elements per input layer.

For each filtration and homology dimension, we need one input layer. In Figure 6, an
example with S 0-dimensional barcodes, D0,1

i , . . . ,D0,S
i , obtained from one input object oi,

is illustrated. Each input layer can have a varying number, N , of structure elements. We
use the rational hat structure element (see Definition 23) for the following reasons: First,
we only need to learn two parameters per structure element, that is, µ and r. Second, the
gradients with respect to (µ, r) only differ by a linear term which we consider beneficial
for learning. Third, commonly used building blocks of neural networks, for instance, batch
normalization or rectified linear units (ReLU), expect both negative and positive inputs
which is a property that only the rational hat element possesses. Overall, the output of
one input layer is a vectorization in RN that is then concatenated with the output of
other input layers and fed into a multilayer perceptron (MLP). For optimization, we use
stochastic gradient descent (SGD) with momentum and cross-entropy loss (if not mentioned
otherwise). We additionally include a non-linearity φ : R→ R (in our case φ = tanh) after
the input layer(s) to squash values in situations where points occur with high multiplicity;
otherwise, φ = id. The parameter ν for the birth-lifetime transform of Definition 16 is
fixed to 0.01 over all experiments11. We refer the reader to Table 6 for a full specification
of the network configurations. Regarding initialization of the structure elements, we run
k-means++ (Arthur and Vassilvitskii, 2007) clustering on all points from diagrams in the
training portion of each dataset with k = N . The N cluster centers are then used to initialize
the position of the structure elements. The parameter r is set to 1/4 of the maximum
lifetime of barcode elements in the training corpus. Different initializations of r (within a
reasonable range) only had a negligible impact on our results.

6.2. Baselines & Competitors

In all experiments on benchmark data (Sections 6.3 to 6.5), we compare against two baselines.
First, we include a straightforward vectorization approach, following Bendich et al. (2016).

11. In principle, ν could be learned as well, but we did not explore that direction in this work.
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Figure 7: Some examples from the MPEG-7 (top) and Animal (bottom) 2D shape datasets.

For each point (b, d) in a barcode D, we calculate its persistence d− b, sort the calculated
persistences by magnitude from high to low and take the first N values. Hence, for each
barcode, a vector of dimension N (if |D \∆| < N , we pad with zero) is obtained. Then, a
linear SVM (denoted as SVMlin) is trained with N determined by cross-validation on the
training portion of each dataset (we denote this as Baseline in all experiments). Second,
we include a baseline-like approach where the parametrization of the structure elements in
our approach is only initialized via k-means++ and then frozen during optimization. This
allows to assess the impact of learning the parametrization of the structure elements.

We additionally compare against the persistence images approach from Adams et al. (2017)
in two different variants. In its first incarnation, persistence images are computed on a
20× 20 grid, vectorized (as originally suggested) and fed to a linear SVM. We use Gaussians
centered at each point with the standard deviation determined via cross-validation (over
σ ∈ {0.1, 0.5, 1.0}). In its second incarnation, we compute persistence images for the three
choices of σ listed above and then use these images as a multi-channel input (that is, each σ
yields an input channel) to a convolutional neural network (NN) with one convolution layer
(using 3× 3 kernels and a stride of 2), followed by two fully-connected layers (interleaved
with ReLUs). This setup is similar to Cang and Wei (2017) where barcodes are vectorized
and fed to a 1D convolutional neural network. We use Adam (Kingma and Ba, 2014) for
optimization, train for 100 epochs with a batch size of 32, and use a learning rate of 0.01
(dropping to 0.001 after 50 epochs). This establishes a strong baseline and closely resembles
our approach. For fair comparison, the number of (trainable) parameters in this network is
comparable to the number of parameters in our architecture. We also found that including
additional convolution layers did not further improve the results (in fact, unlike natural
images, persistence images do not possess a compositional structure which would justify
multiple convolution layers).

Remark 25 It is interesting to note that the construction of persistence images, in par-
ticular the construction of the persistence surface, is conceptually similar to the feature
map constructed in the PSS kernel of Reininghaus et al. (2015). The key difference is
that the feature map in the PSS kernel evaluates to zero on the diagonal by mirroring the
Gaussians (placed on top of each point in the barcode), whereas persistence images use a
suitable weighting function to achieve this. From this perspective, feeding persistence images
to a convolutional neural network is akin to an approach that would feed a discretized (on a
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Figure 8: Height function filtration of a 2D shape from two directions, that is, ξ = (0, 1)
(left) and ξ′ = (0,−1) (right), with their corresponding 0-dimensional barcodes
(visualized as persistence diagrams).

grid) version of the PSS kernel feature map (or multiple feature maps, computed with varying
PSS kernel scale parameter).

6.3. Recognition of 2D shapes

We first test our approach on two different datasets of 2D object shape recognition: (1)
the Animal dataset, introduced by Bai et al. (2009), which consists of 20 different animal
classes, 100 samples each, and (2) the MPEG-7 dataset which consists of 70 classes of different
object/animal shapes, 20 samples each; see Latecki et al. (2000) for more details. For
illustration, Figure 7 shows a selection of 2D object shapes from both datasets.

Filtration. The requirements to use persistent homology on 2D shapes are twofold: First,
we need to assign a simplicial complex to each shape; second, we need to appropriately filter
the complex. While, in principle, we could analyze contour features, such as curvature,
and compute a sub level set filtration, such a strategy requires substantial preprocessing
of the discrete data (for example, smoothing). Instead, we choose to work with the raw
pixel data and leverage the persistent homology transform, introduced by Turner et al.
(2014b). The filtration in that case is based on sub level sets of the height function, computed
from multiple directions, illustrated in Figure 8. Practically, this means that we directly
construct a simplicial complex from the binary image. We set K0 as the set of all pixels
which are contained in the object. A 1-simplex [p0, p1] is in the 1-skeleton K1 iff p0 and p1
are 4–neighbors on the pixel grid. To filter the complex, we denote by β the barycenter of
the object and by r the radius of its bounding circle around β. For [p] ∈ K0 and ξ ∈ S1, the
filtration function is then given by

f([p]) =
1

r
· 〈p− β, ξ〉 ,

where 〈·, ·〉 denotes the inner product in R2. The filtration is lifted to K1 by taking the
maximum over the two vertices of each edge. Letting ξi denote 16 equidistantly distributed
directions in S1, starting from (1, 0), we get a vector of barcodes (D0,j)16j=1. Here, D0,j is
the barcode for 0-dimensional homology groups, obtained by filtration along ξj . As most
objects do not differ in homology groups of higher dimensions (> 0), we did not use the
corresponding barcodes. Furthermore, we only obtain one essential feature per direction, as
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MPEG-7 Animal

‡Skeleton paths (Bai et al., 2009) 86.7 67.9
‡Class segment set (Sun and Super, 2005) 90.9 69.7
†ICS (Bai et al., 2009) 96.6 78.4
†BCF (Wang et al., 2014) 97.2 83.4

Baseline (Bendich et al., 2016) SVMlin 82.3 50.0
PSS kernel (Reininghaus et al., 2015) SVMkernel 94.5 73.6
Persistence images (Adams et al., 2017) SVMlin 85.1 61.1
Persistence images (Adams et al., 2017) NN 92.3 69.4

Ours (init. only, via k-means++) NN 92.2 72.9
Ours (learned) NN 92.7 74.6

Table 1: Average cross-validation accuracies (in %) on the Animal and MPEG-7 benchmark
datasets, compared to the two best (†) and two worst (‡) results reported in Wang
et al. (2014), as well as different approaches that use persistent homology: our
baselines from Section 6.2 and the PSS kernel from Reininghaus et al. (2015).

all objects only have one connected component. For practical reasons, the death time of
those essential points is set to the maximum filtration value of the corresponding direction.
This has a natural geometric interpretation, as the persistence of these essential points is
the diameter of the object along a direction.

Network configuration/training. We use the architecture of Figure 6 with φ = id and
train with an initial learning rate of 0.01, a momentum of 0.9 and a batch size of 100 for
200 epochs. The learning rate is halved every 40-th epoch.

Results. Table 1 lists the average cross-validation accuracies over 10 random 90/10 splits.
Regarding approaches that also leverage information from persistent homology, we include
the approaches of Section 6.2, as well as the PSS kernel from Reininghaus et al. (2015).
For the PSS kernel, we train a kernel SVM using the averaged kernel matrices obtained for
each filtration direction. In case of persistence images, multiple filtration directions simply
increase the dimensionality of the vectorized input to the linear SVM, or the number of input
channels in the neural network variant, respectively. When using SVMs, the cost parameter
C is also determined via cross-validation on the training portion of each random split.
Regarding non-topological strategies, we report the two best (†) and two worst (‡) results
from Wang et al. (2014). While using topological signatures is below the top result on both
datasets, we remark that no specific data preprocessing is required. This is in contrast to
BCF or ICS which require contour extraction and are tailored to this type of data. Notably,
in case of MPEG-7, the PSS kernel actually performs better than our approach. This can be
attributed to the fact that the dataset is relatively small and we have to learn the parameters
of our structure elements for all 16 input layers. In comparison, on the larger Animal dataset,
learning a representation of barcodes already exhibits superior performance. We highlight
that the proposed architecture readily generalizes to 3D with the only difference that, in
this case, the filtration directions ξi are in S2. Finally, we observe that persistence images
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Figure 9: Left : Comparison, in terms of average cross-validation accuracy, of different
initialization schemes, as a function of the number of structure elements, N , for two
scenarios: (1) freezing the initial parameters and (2) learning the parametrization.
Middle: Example of the change in location of the rational hat structure elements
during training (for N = 25) and random initialization. Right : Training vs. testing
loss over the training epochs for the same setup.

combined with a convolutional neural network, perform better than simple vectorization
combined with a linear SVM. Also, initialization via k-means++ exhibits good performance
on MPEG-7, but is inferior to learning the parametrization of the input layer on the Animal

dataset.

6.3.1. Effect of learning a task-specific vectorization

On MPEG-7, we conduct a more detailed study on the impact of learning the parametrization
of the proposed input layer vs. different initialization schemes and no learning. This
means that we compare against a parametrization that is only initialized, frozen during
training, and only the classification part (that is, everything after the Concat layer in
Figure 6) of the network is trained. Notably, by construction, even a random initialization
outputs a vectorization that is 1-Wasserstein stable, however it is not optimized for the
learning task. We experimented with different numbers of structure elements N , as well as
two initialization schemes: (1) random initialization and (2) initialization via k-means++
clustering (our default choice with k = N) of the points from all training diagrams. Figure 9
(left) shows the average cross-validation accuracy on MPEG-7 as a function of the number
of structure elements. First, we observe that initialization via k-means++ is superior to
random initialization, no matter if the input layer is frozen or not. Second, we see that
learning consistently improves performance, although, on this dataset and for small N ,
k-means++ initialization exhibits performance that is superior to random initialization and
learning. This can be explained by the observation that random initialization typically
requires a substantial change with respect to location which might not be achievable due
to local minima in the energy landscape. Figure 9 (middle) shows an example of how the
centers of each rational hat structure element change over the training epochs for N = 25
and randomly initialized locations. Finally, Figure 9 (right) shows an example of training vs.
testing loss for the same parameter settings, revealing good generalization ability, as the
testing loss closely tracks the training loss.
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Figure 10: 3D surface meshes for one example object from the SHREC14 evaluation benchmark
(Pickup, D. et al., 2014). Vertices x are colored by the heat-distribution h(x, t)
at increasing values of t (from left to right). This relates to the scalar curvature
of x at scale t.

6.4. Recognition of 3D shapes

In this experiment, we consider the problem of 3D object recognition, based on features of
the object’s surface mesh. We use the real watertight 3D surface meshes that are part of
the SHREC14 benchmark and replicate the evaluation setup of Reininghaus et al. (2015). In
particular, this data set contains 400 watertight meshes, split into 40 classes with 10 samples
per class. Each class represents one human in different poses.

Filtration. For each mesh, we compute the heat-kernel signature (HKS) of Sun et al. (2009)
at 10 discrete time points ti, which captures the local heat distribution h(x, ti) at mesh
vertex x at scale ti. Figure 10 illustrates the heat-distribution for one example object of
the SHREC14 benchmark as ti increases (from left to right). Similar to Section 6.5, we lift
the heat-distribution function to higher-dimensional simplices by taking the maximum over
all faces and compute persistent homology of the sub level set filtration. Notably, in the
kernel-based approach of Reininghaus et al. (2015), the optimal choice of ti is determined
via cross-validation and only diagrams for homology groups of dimension 0 are used12. In
contrast, we use 0- and 1-dimensional homology and process the diagrams for each ti directly
via 20 parallel input layers (that is, 10 for dimension 0 and 10 for dimension 1). This is a
natural choice and allows the network to focus on information relevant to the learning task.

Network configuration/training. We use the generic architecture of Figure 6 with φ = id
and 20 input branches, that is, two input branches per HKS scale ti. The network is trained
for 300 epochs with a batch size of 20 and an initial learning rate of 0.5. The learning rate
is halved every 20-th epoch.

Results. Table 2 lists cross-validation accuracies in comparison to specifically-tailored
approaches, reported in Pickup, D. et al. (2014). We remark that results listed as APT,
supDLtrainR and R-BiHDM-s are obtained in a leave-one-out cross-validation setup using a
1-nearest neighbor classifier, due to the fact that Pickup, D. et al. (2014) assess retrieval

12. In particular, it is mentioned that 0- and 1-dimensional homology produced comparable results.
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SHREC14 (Real)

‡APT 84.5
‡supDLtrainR 79.3
‡R-BiHDM-s 68.5

Baseline (Bendich et al., 2016) SVMlin 41.3
†Persistence landscapes (Bubenik, 2015) SVMkernel 51.7
†PSS kernel (Reininghaus et al., 2015) SVMkernel 62.7
Sparse-TDA/Persistence images (Guo et al., 2018) SVMlin 68.8
Persistence images Adams et al. (2017) NN 69.0

Ours (init. only, via k-means++) NN 70.5
Ours (learned) NN 72.2

Table 2: Average cross-validation accuracies (in %) on SHREC14 (Real), compared to the
approaches discussed in Section 6.2, the best results (†) reported by Reininghaus
et al. (2015) and a recent Sparse-TDA approach by Guo et al. (2018). For reference,
we also list the top-3 approaches (‡) of Pickup, D. et al. (2014).

performance. This is obviously the extreme case of making maximum use of the training
data, as only one sample is left out per cross-validation run. In comparison, all other results
(using persistent homology) are averaged over 10 random 90/10 splits. While, leave-one-out
evaluation would be computationally impractical in a neural network regime, we expect that
our results could be better in such a setup due to an increased amount of available training
data. As we replicate the evaluation setup from Reininghaus et al. (2015), we list the (best)
results for the PSS kernel and persistence landscapes reported in this work. Additionally,
we compare against the approaches listed in Section 6.2 and the Sparse-TDA approach of
Guo et al. (2018) which is based on persistence images (Adams et al., 2017). Table 2 clearly
shows that learning a task-specific vectorization of barcodes is beneficial.

6.5. Classification of social network graphs

Next, we consider the problem of classifying unlabeled and undirected graphs. A graph G is
given by G = (V,E), where V denotes the set of vertices and E denotes the set of edges.
This is already a valid simplicial complex. We evaluate our approach on the challenging
task of classifying social networks, using the two largest benchmark datasets from Yanardag
and Vishwanathan (2015), that is, reddit-5k (5 classes, ≈5k graphs) and reddit-12k (11
classes, ≈12k graphs). Each sample in these datasets represents a Reddit discussion graph
and the classes indicate subreddits (for example, worldnews, video, etc.).

Filtration. The construction of a simplicial complex from G = (V,E) is straightforward:
we set K0 = {[v] ∈ V } and K1 = {[v0, v1] : {v0, v1} ∈ E}. We choose a simple filtration
based on the vertex degree, that is, the number of incident edges to a vertex v ∈ V . Hence,
for [v0] ∈ K0, we get f([v0]) = deg(v0) and again lift f to K1 by taking the maximum. Note
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that chain groups are trivial13 for dimension > 1, hence, all features in dimension 1 are
essential. Figure 11 (top) shows an illustration of the basic filtration principle and three
exemplary sub level sets of a randomly selected sample from reddit-5k (bottom).

Network configuration/training. In this experiment, the network of Figure 6 has three
input branches: two for 0-dimensional features (non-essential and essential) and one for
essential 1-dimensional features. We use φ = tanh, as we observe many points with high
multiplicity, due to the fact that the filtration values are natural numbers. Empirically, using
tanh exhibits beneficial optimization behavior compared to, for example, normalizing the
filtration function by the maximum degree as in Hofer et al. (2017a). We train the network
for 300 epochs with a batch size of 100 and an initial learning rate of 0.5. The learning rate
is halved every 20-th epoch.

Results. Table 3 compares our strategy to various state-of-the-art approaches from the
literature. In particular, we compare against (1) the graphlet kernel (GK) and deep graphlet
kernel (DGK) results from Yanardag and Vishwanathan (2015), (2) the Weisfeiler-Lehmann
(WL) graph kernel (Shervashidze et al., 2011), (3) the Patchy-SAN (PSCN) results from
Niepert et al. (2016) and (4) a graph-feature + random forest approach (RF) from Barnett
et al. (2016). As we can see, using information from persistent homology in our proposed
setting considerably outperforms the current state-of-the-art on both datasets by a large
margin. This is an interesting observation, as PSCN (Niepert et al., 2016), for instance, also
relies on vertex degrees and an extension of the convolution operation to graphs. Regarding
approaches that use persistent homology, we compare against the PSS kernel and the
approaches of Section 6.2. Additionally, we evaluate our approach with and without using
essential features. The reason for this is to establish a fair comparison, as essential features
are typically discarded and it is unclear how to properly include them in other methods.
From a computational perspective, the PSS kernel did not terminate within a reasonable
time frame (< 1 day), due to the large number of points per barcode and the fact that the
computing one entry of the PSS kernel matrix scales with O(N ·M), where M,N denote the
cardinalities of the two multi sets involved. As multiple kernel matrices need to be computed
to cross-validate the PSS scale parameter, this becomes even more of a bottleneck. We
remark that the results reported in Table 3 for our approach without essential features are
different to (Hofer et al., 2017a); in fact, they are lower by ≈ 5 points. As, in practice, one
would use all available information (that is, including essential features), we focused on this
case in terms of network design. The same architecture was then used for the comparative
experiments (that is, without essential features), but could be adjusted to obtain results
similar to (Hofer et al., 2017a), in particular, 49% (reddit-5k) and 38.5% (reddit-12k).

6.6. Predicting the eigenvalue distribution of normalized graph Laplacians

As a first exploratory experiment, we investigate the problem of predicting the distribution of
eigenvalues from normalized graph Laplacian matrices. Technically, this problem is similar to
the social network classification experiment of Section 6.5, but differs in the type of learning
target. We consider this a practically relevant task, as for large graphs, exact computation

13. The reason for this is that there are no 2-simplices in this setting.
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reddit-5k reddit-12k

GK (Yanardag and Vishwanathan, 2015) 41.0 31.8
DGK (Yanardag and Vishwanathan, 2015) 41.3 32.2
PSCN (Niepert et al., 2016) 49.1 41.3
RF (Barnett et al., 2016) 50.9 42.7
WL graph kernel (Shervashidze et al., 2011) 47.7 38.5

Baseline (Bendich et al., 2016) SVMlin 45.2 31.6
PSS kernel (Reininghaus et al., 2015) SVMkernel n/a n/a

Persistence images (Adams et al., 2017) SVMlin 44.9 34.6
Persistence images (Adams et al., 2017) NN 46.7 35.1

Ours (w/o essential, learned) NN 44.5 34.1
Ours (w/ essential, init. only, via k-means++) NN 53.5 45.8
Ours (w/ essential, learned) NN 54.8 46.0

Table 3: Average cross-validation accuracies (in %) on the reddit-5k and reddit-12k

benchmark datasets. The middle/bottom part of the table lists approaches that
use persistent homology. For the PSS kernel, n/a denotes that computation of
the Gram matrices (required to cross-validate the PSS scale parameter) did not
terminate within a reasonable time window (< 1 day).

G = (V,E)

2 1

23

1

1

1 1

5

f−1((−∞, 2]) f−1((−∞, 5])f−1((−∞, 3])

1

Figure 11: Top: Principle of graph filtration by vertex degree on a toy graph. Simplices that
are added as the filtration value ai increases are marked in red. Bottom: one
real reddit 5k graph for filtration values ai ∈ {2, 5, 100} (from left to right).

of all eigenvalues is computationally intensive and time-consuming. A relevant question in
this context is, whether it is possible to learn on small graphs and predict on larger graphs.
Accurate prediction of the eigenvalue spectrum could constitute a lightweight approach to
assess the conformity of graph generation approaches with respect to real world data.
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Figure 12: Left : two exemplary results for predicting the distribution (discretized to 100
bins) of normalized graph Laplacian eigenvalues. Right : prediction results for
training on graphs of with |V | = 103 and |V | = 104 vertices and testing on
a graph with |V | = 5 · 104 vertices. HI denotes the value of the (symmetric)
histogram intersection metric.

Dataset. To explore this problem, we use the Pokec (Takak and Zabovsky, 2012) social
network graph that is part of the SNAP repository14. The full Pokec graph G(V,E) contains
|V | = 1, 632, 803 vertices with |E| = 30, 622, 564 edges. We extracted two collections of
subgraphs using breadth-first search (BFS), starting from randomly selected vertices of V
with the constraint that 1-hop neighbors of vertices are not picked as starting points for
BFS to reduce subgraph overlap. The first collection, S1 contains 5000 subgraphs with 103

vertices, the second collection, S2, contains 3000 subgraphs with 104 vertices. For both, S1
and S2 exact eigenvalue computation is time-consuming, but still possible. For exploration,
we also computed the eigenvalue spectrum for one subgraph, G∗, with 5 · 104 vertices in
the same manner (with computation time ≈ 1-2 days). Our goal is to predict a histogram
of normalized graph Laplacian eigenvalues λi (with λi ∈ [0, 2]). We chose a fixed binning
of the eigenvalues into 100 bins, based on the eigenvalues of the largest graph and the
Freedman-Diaconis rule for bin size (Freedman and Diaconis, 1981).

Filtration. The filtration is done as in Section 6.5, that is, by vertex degree. We only
consider 0-dimensional persistent homology without essential features. The reason for this is
that, due to the construction of the subgraphs (via BFS), we would only have one essential
feature in H0. Also, we were unable to handle 1-dimensional features, due to the vast number
of cycles produced and the memory limitations of our GPU(s). Also, we did not want to
introduce arbitrary thresholds for points in the barcode.

Network training/configuration. In this setup, we only have one input branch in the
network of Figure 6 and φ = tanh. Different to previous sections, the loss function needs
to be chosen differently. In particular, we decided to use the (symmetrized) histogram
intersection (HI) metric (with range [0, 1]) as a loss function. A value of 0 indicates no
overlap, a value of 1 indicates perfect overlap of two histograms.

Results. Three scenarios were evaluated: First, training on S1 and testing on S2, for which
we obtain an average HI score of 0.85. This indicates remarkable performance, considering
that the test set S2 contains graphs that are one magnitude larger (in terms of vertices) than

14. https://snap.stanford.edu/data/soc-pokec.html
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graphs in S1. Figure 12 (left) shows two example prediction results. Second, for comparison,
we trained on S2 and tested on S2 in a 90/10 cross-validation setup. In that case, the average
HI increases to 0.94, indicating the larger graphs contain more structure that is relevant to
the prediction task. When training on S1, or S2, respectively, and testing on G∗, we obtain
HI scores of 0.78 and 0.85, illustrated in Figure 12 (right). We consider this an encouraging
result, as computing the filtration as well as one forward pass through the trained model
only takes a fraction of the time required to compute the eigenvalues of G∗.

6.7. Recognizing activity from EEG signals

As a second exploratory experiment, we investigate the problem of recognizing human
activity, using recorded electroencephalography (EEG) signals. From an application point
of view, this is a challenging problem and a lot of effort is put into developing brain-
computer-interfaces (BCI) which rely solely on brain activity to, for example, facilitate
robotic assistance systems for people with disabilities.

Dataset. The dataset we use in this experiment was collected by the Department of
Neurology, Paracelsus Medical University Salzburg, Austria. It consists of 22 healthy
participants as well as 7 participants in need of a wheelchair after spinal chord injury. The
subjects were asked to execute 7 different tasks: moving of a hand/foot (2 tasks), imagining
to move a hand/foot (2 tasks), observing a movie showing movement of a hand/foot (2
tasks) and staying in a resting condition, that is, no movement at all (1 task). In terms of
recording the EEG signals, a geodesic sensor net with 256 channels was used. Consequently,
each data point in the dataset is a collection of 256 time-intensity curves in combination
with the corresponding task label. The EEG signal during each task was recorded over
25 trials where each trial was divided in 5 sub-runs, that is, repetitions of the given task.
In total the dataset contains ≈ 31k such curves (some of the patients had more than one
recording). Figure 13 shows example EEG signals of one sensor for three different actions.

Filtration. As persistent homology (partly) emerged from Morse theory, its application
on time-intensity curves is straightforward. In our case, we interpreted the time-intensity
sequences as a polyline, that is, edges are inserted between time-intensity points which are
neighbors on the time axis. As a preprocessing step, intensities were mean and standard-
deviation normalized. The resulting polylines were filtered along the intensity axis from top
and bottom, leading to two barcodes for each channel of the EEG signal. For computational
reasons, we used a sub-selection of 20 channels. This sub-selection represents a low-resolution
sensor configuration. As only homology groups of dimension 0 are non-trivial for this data,
we obtain two diagrams per sensor.

Network configuration/training. We use the architecture of Figure 6 with two input
branches per sensor and φ = id. The network is trained for 100 epochs with a batch size of
300 and an initial learning rate of 0.1. The learning rate halved after every 10-th epoch.

Results. Table 4 lists the average cross-validation accuracies for 10 random 90/10 splits of
the dataset. We chose to compare against our Baseline, as well as a linear SVM trained on
mean and standard deviation normalized EEG sequences, reduced to 250 dimensions via
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Figure 13: Exemplary EEG signals from one (out of 256) sensor for three different actions.

PCA (250 components already cover > 99% of the variance). The number of samples in
this classification problem did not allow us to evaluate the PSS kernel within reasonable
computation time (< 1 day). For persistence images, concatenation of the discretized
persistence surface(s), even for a coarse 20 × 20 grid, leads to 16000 dimensional input
vectors, which also posed computational problems. Hence, only persistence images in
combination with a convolutional neural network (see Section 6.2) are included in Table 4
as a strong baseline. As we can see, the proposed approach exhibits considerably better
performance than all competitors and, most importantly, easily handles datasets of this size
with multiple parallel input paths.

EEG sequences

PCA SVMlin 30.5

Baseline (Bendich et al., 2016) SVMlin 21.1
PSS kernel (Reininghaus et al., 2015) SVMkernel n/a

Persistence images (Adams et al., 2017) SVMlin n/a

Persistence images (Adams et al., 2017) NN 30.4

Ours NN 37.4

Table 4: Average cross-validation accuracies (in %) on the EEG dataset, compared to a
non persistent homology approach (PCA + linear SVM), our Baseline, as well as
persistence images combined with a convolutional neural network, see Section 6.2.
Approaches marked as n/a did not finish within 1 day of computation time.

7. Discussion

We presented an in-depth theoretical analysis of a recently proposed (Hofer et al., 2017a)
approach to learn task-specific vectorizations of barcodes. This analysis has not only
highlighted shortcomings of the original concept, but also revealed alternatives to mitigate
these shortcomings. We summarize and discuss the main contributions next.

Learnable vectorizations. We started by studying the problem of how to vectorize multi
sets over R2 in a parametrized manner. This led to the concept of structure elements which
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induce a real-valued mapping of multi sets. In particular, N structure elements lead to an
N -dimensional vectorization upon concatenation. Different to existing approaches in the
context of machine learning compatible representations of persistence diagrams, this mapping
is not fixed a-priori, but can be optimized, for example, within a neural network regime. Our
experimental study on datasets from different domains confirms that learning a vectorization
of persistence diagrams is preferable over non-data driven approaches. Additionally, our
results demonstrate that topological features of data can be beneficial in many learning
tasks, not necessarily to replace existing inputs, but rather as a complementary source of
discriminative information.

Continuity properties. We subsequently introduced conditions on the structure elements
under which important continuity properties (such as stability) of persistence diagrams can
be retained by the induced mapping. Our analysis also revealed (1) that we cannot achieve
stability stronger than 1-Wasserstein (wδ

1), but (2) the induced mapping is continuous with
respect to wδ

p if a specific growth-condition is satisfied. We consider this particularly relevant,
as it might open up the path to learn a filtration for a given simplicial complex. For example,
in case of graphs, using the degree function is an ad-hoc choice. From a learning perspective,
one would rather favor a strategy that learns a task-specific mapping from vertex meta-data
x ∈ Rn to R which can then be used to compute sub level set filtration. This is certainly an
interesting research direction for future work.

Neural network integration. From a practical perspective, it is imperative that (1) the
required conditions on new structure elements can be verified easily and (2) that any new
layer integrates well into existing network architectures. To address the first issue, we studied
a decomposition of structure elements into a composition of two fixed coordinate transforms
(τν and ρ) and a function t defined on R2. This is beneficial, as new structure elements can
be easily constructed through different choices of t. Further, verifying wq

1-stability of the
induced mapping boils down to control the behavior of t ◦ τν on a small part of the domain.
Notably, this decomposition turned out to be equally beneficial for studying parameter
gradients, as one can focus on the parameters of t. Starting from the popular Gaussian
radial basis function (as our initial choice for t) and the observation that its parameter
gradients greatly differ in terms of scaling, we introduced two radial alternatives with fewer
parameters and gradients with comparable order of growth.

Open problems. While the proposed approach facilitates to leverage information from
persistent homology in deep learning, it is unclear how to appropriately choose the number
of structure elements. Although, empirically, we observe fairly stable performance with
a reasonable number of elements, it would be desirable to make this decision in a more
informed manner. Additionally, the particular functional form of the structure elements can
most likely be further improved (or simplified), possibly with even more linear parameter
gradients. Finally, we consider the problem of filtration learning to be of great interest,
especially in cases where a fixed simplicial complex (for example, a graph or mesh) is given
and the learner decides on an suitable filtration function for persistent homology.
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Appendix A. Notation

Symbol Meaning

∆ Diagonal ∆ = {(x0, x1) ∈ R2 : x0 = x1}
Ω Upper-diagonal part of R2, that is, Ω = {(x0, x1) ∈ R2 : x1 > x0}
Dn,ji Barcode of n-th homology group, i-th data object and j-th filtration
D Set of barcodes with finite cardinality
wq
p, w∞ p-Wasserstein distance (using ‖ · ‖q) and Bottleneck distance
〈x, y〉 Inner product in Rn for x, y ∈ Rn
Sn (n+ 1) dimensional unit sphere
Hn n-th homology group
[v0, . . . , vn] n-dimensional simplex
Kn n-skeleton of a simplicial complex K
G(V,E) Undirected graph with vertex set V and edge set E
[a, b], [a, b), (b, a], (a, b) Closed, left-open, right-open and open interval for a < b, a, b ∈ R

Table 5: Commonly used symbols used throughout the manuscript.

Appendix B. Proofs

B.1. Proof of Lemma 11

Proof To show this claim, we leverage the definition of a ∆-relative bijective matching (cf.
Definition 4) and a beneficial re-arrangements of the involved sums.

∑
x∈D

f(x)−
∑
y∈E

f(y) =
∑

x∈supp(D)

multD(x)f(x)−
∑

y∈supp(E)

multE(x)f(y)

=
∑

x∈supp(D)

 ∑
y∈supp(E)

ϕ(x, y)

 f(x)−
∑

y∈supp(E)

 ∑
y∈supp(D)

ϕ(x, y)

 f(y)

=
∑

(x,y)∈supp(D)×supp(E)

multϕ
(
(x, y)

)
f(x)−

∑
(y,x)∈supp(E)×supp(D)

multϕ
(
(x, y)

)
f(y)

=
∑

(x,y)∈supp(ϕ)

multϕ
(
(x, y)

)
f(x)−

∑
(x,y)∈supp(ϕ)

multϕ
(
(x, y)

)
f(y)

=
∑

(x,y)∈supp(ϕ)

multϕ
(
(x, y)

)(
f(x)− f(y)

)
. (as | supp(ϕ)| <∞)
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B.2. Proof of Lemma 20

Proof As t
exp

(σ,µ) is Lipschitz continuous on R×R, we follow the argumentation of Section 5.3.
That is, it suffices to show that

lim
x→0

∣∣∣∣( ∂

∂x1
t
exp

(σ,µ) ◦ τν
)

(x)

∣∣∣∣ < C (11)

holds for C ∈ R. Let x < ε < ν. We get

∣∣∣∣( ∂

∂x1
t
exp

(σ,µ) ◦ τν
)

(x)

∣∣∣∣ =

∣∣∣∣( ∂

∂x1
e−σ

2
0(x0−µ0)2−σ2

1(2ν−ν
2/x1−µ1)2

)
(x)

∣∣∣∣
= |c0| ·

∣∣∣∣( ∂

∂x1
e−σ

2
1(2ν−ν

2/x1−µ1)2
)

(x)

∣∣∣∣
= |c0| ·

∣∣∣∣e−σ2
1(2ν−ν

2/x−µ1)2 · 2 (−σ21)(2ν − ν2/x− µ1) · (−1)
ν2

x2

∣∣∣∣
= |c0| ·

∣∣∣∣c1 e(··· ) · 1

x2
+ c2 e

(··· ) · 1

x3
+ c3 e

(··· ) · 1

x2

∣∣∣∣
≤ 3 · |c0| ·max{|c1|, |c2|, |c3|} ·

∣∣∣∣e−σ2
1(2ν−ν

2/x−µ1)2 · 1

x3

∣∣∣∣
= c4 ·

∣∣∣∣∣ 1
x3

eσ
2
1(2ν−ν

2/x−µ1)2

∣∣∣∣∣︸ ︷︷ ︸
I

for x small enough (we aggregated constants into ci, 0 ≤ i ≤ 4 for readability). Applying
the de l’Hôpital’s rule iteratively on I yields I→ 0. Consequently, Eq. (11) is satisfied.

B.3. Proof of Lemma 22

Proof Similar to the proof of Lemma 20, we follow the argumentation of Section 5.3 and
note that trat(σ,µ,α) is Lipschitz continuous on R× R.

Let ε < ν and 2ν − ν2/ε < µ1. Then, for x < ε

∣∣∣∣2ν − ν2

x
− µ1

∣∣∣∣ = µ1 − 2ν +
ν2

x

and we circumvent the fact that | · | is not differentiable at 0. Now consider
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∣∣∣∣( ∂

∂x1
trat(µ,σ,α)

)
(x)

∣∣∣∣ =

∣∣∣∣∣
(

∂

∂x1

(
1 + |σ0| · |x0 − µ0|+ |σ1| ·

(
µ1 − 2ν +

ν2

x1

))−α)
(x)

∣∣∣∣∣
=

∣∣∣∣∣
(

∂

∂x1

(
c0 +

|σ1|ν2
x1

)−α)
(x)

∣∣∣∣∣
=

∣∣∣∣∣−α ·
(
c0 +

|σ1|ν2
x

)−α−1
· (−1)

|σ1|ν2
x2

∣∣∣∣∣
= c1 ·

∣∣∣∣∣
(
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|σ1|ν2
x

)−α−1
· 1

x2

∣∣∣∣∣
∗
≤ c1 ·

∣∣∣∣∣
(
c0 +

|σ1|ν2
x

)−1−1
· 1

x2

∣∣∣∣∣
= c1 ·

∣∣∣∣∣∣
1
x2(

c20 + 2 · c0 · |σ1|ν
2

x + |σ1|2ν4
x2

)
∣∣∣∣∣∣ x→0−−−→ c1

|σ1|2ν4

where we collapse constant terms into c0, c1 and (∗) holds for x ∈ (0, ε) small enough, as
y−(α+1) ≤ y−2 for α ≥ 1 and y large enough ⇒ the partial derivative is bounded on (0, ε).

Appendix C. Neural network configurations

Dataset H0 He
0 He

1 φ MLP

MPEG-7 N 150 - -
id

Blk[2400,600,0.3]

S 16 - - Blk[600,150,0.2]

Lin[150,70,0.1]

Animal-7 N 100 - -
id

Blk[1600,400,0.3]

S 16 - - Blk[400,100,0.2]

Lin[100,20,0.1]

Reddit-5k N 150 5 50
tanh

Blk[205,410,0.2]

S 1 1 1 Blk[410,104,0.2]

Blk[104,25,-]

Lin[25,5,-]

Reddit-12k N 150 5 50
tanh

Blk[205,410,0.2]

S 1 1 1 Blk[410,104,0.2]

Blk[104,25,-]

Lin[25,12,-]

Pokec N 100 - -
tanh

Blk[100,100,-]

S 1 - - Blk[100,100,0.2]

Lin[100,100,-]

SHREC 2014 N 40 - -
id

Blk[800,800,-]

S 10 - - Blk[800,200,-]

Lin[200,40,-]

Table 6: Configuration of the neural network in Figure 6 per experiment/dataset.
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