
Journal of Machine Learning Research 20 (2019) 1-62 Submitted 5/18; Revised 8/19; Published 8/19

Deep Exploration via Randomized Value Functions

Ian Osband iosband@google.com
DeepMind

Benjamin Van Roy bvr@stanford.edu
Stanford University

Daniel J. Russo djr2174@gsb.columbia.edu
Columbia University

Zheng Wen zwen@adobe.com

Adobe Research

Editor: Peter Auer

Abstract

We study the use of randomized value functions to guide deep exploration in reinforcement
learning. This offers an elegant means for synthesizing statistically and computationally
efficient exploration with common practical approaches to value function learning. We
present several reinforcement learning algorithms that leverage randomized value functions
and demonstrate their efficacy through computational studies. We also prove a regret
bound that establishes statistical efficiency with a tabular representation.

Keywords: Reinforcement learning, exploration, value function, neural network

1. Introduction

Reinforcement learning might provide the basis for an artificial intelligence that can manage
a wide range of systems and better serve the needs of society. To date, its potential has
primarily been assessed through learning in simulated systems, where data generation is
relatively unconstrained and algorithms are routinely trained over millions to trillions of
episodes. Real systems, where data collection is costly or constrained by the physical
context, call for a focus on statistical efficiency. A key driver of statistical efficiency is how
the agent explores its environment.

The design of reinforcement learning algorithms that efficiently explore intractably large
state spaces remains an important challenge. Though a substantial body of work addresses
efficient exploration, most of this focusses on tabular representations in which the number
of parameters learned and the quantity of data required scale with the number of states.
Despite valuable insights that have been generated through design and analysis of tabular
reinforcement learning algorithms, they are of limited practical import because, due to the
curse of dimensionality, state spaces in most contexts of practical interest are enormous.
There is a need for algorithms that generalize across states while exploring intelligently to
learn to make effective decisions within a reasonable time frame.

In this paper, we develop a new approach to exploration that serves this need. We build
on value function learning, which underlies the most popular and successful approaches to
reinforcement learning. In common value function learning approaches, the agent maintains

©2019 Ian Osband, Benjamin Van Roy, Daniel J. Russo and Zheng Wen.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/18-339.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/18-339.html

Osband, Van Roy, Russo, Wen

a point estimate of a function mapping state-action pairs to expected cumulative future
reward. This estimate typically takes a parameterized form, such as a linear combination
of features or a neural network, with parameters fit to past observations. The estimate
approximates the agent’s prevailing expectation of the true value function, and can be used
to guide action selection. As actions are applied and new observations gathered, parameters
are adapted to fit the growing data set. The hope is that this process quickly converges
on a mode in which the agent selects near optimal actions and new observations reinforce
prevailing value estimates.

In using the value function estimate to guide actions, the agent could operate according
to a greedy policy, which at any given state, applies the action that maximizes estimated
value. However, such a policy does not investigate poorly-understood actions that are
assigned unattractive point estimates. This can forgo enormous potential value; it is worth-
while to experiment with such an action since the action could be optimal, and learning
that can provide cumulating future benefit over subsequent visits to the state. Thoughtful
exploration can be critical to effective learning.

The simplest and most widely used approaches to exploration perturb greedy actions
with random dithering. An example is ε-greedy exploration, which selects the greedy ac-
tion with probability 1 − ε and otherwise selects uniformly at random from all currently
available actions. Dithering induces the experimentation required to learn about actions
with unattractive point estimates. However, such approaches waste much exploratory ef-
fort because they do not “write-off” actions that are known to be inferior. This is because
exploratory actions are selected without regard to the level of uncertainty associated with
value estimates. Clearly, it is only worth experimenting with an action that is expected to be
undesirable if there is sufficient uncertainty surrounding that assessment. As we will discuss
further in Section 4, this inefficiency can result in learning times that grow exponentially
with the number of states.

A more sophisticated approach might only experiment with an action when applying
the action will reveal useful information. We refer to such approaches as myopic, since they
do not account for subsequent learning opportunities made possible by taking an action.
Though myopic approaches do “write off” actions where dithering approaches fail to, as
we will discuss in Section 4, myopic exploration can also require learning times that grow
exponentially with the number of states or even entirely fail to learn.

Reliably efficient reinforcement learning calls for deep exploration. By this we mean
that the exploration method does not only consider immediate information gain but also
the consequences of an action on future learning. A deep exploration method could, for
example, choose to incur losses over a sequence of actions while only expecting informative
observations after multiple time periods. Dithering and myopic approaches do not exhibit
such strategic pursuit of information.

In this paper, we develop a new approach to deep exploration. The idea is to apply
actions that are greedy with respect to a randomly drawn statistically plausible value func-
tion. Roughly speaking, we aim to sample from a proxy of the posterior distribution over
value functions. Such randomized value functions incentivize experimentation with actions
of highly uncertain value, since this uncertainty translates into variance in the sampled value
estimate. This randomness often generates positive bias and therefore induces exploration.

2

Deep Exploration via Randomized Value Functions

There is much more to be said about the design of algorithms that leverage randomized
value functions, and we cover some of this ground in Section 5. It is worth mentioning
here, though, that this concept is abstract and broadly applicable, transcending specific
algorithms. Randomized value functions can be synthesized with the multitude of useful
algorithmic ideas in the reinforcement learning literature to produce custom approaches for
specific contexts.

To provide insight into the efficacy of randomized value functions, in Section 6, we
establish a strong bound on the Bayesian regret of a tabular algorithm. This is not the first
result to establish strong efficiency guarantees for tabular reinforcement learning. However,
previous algorithms that have been shown to satisfy similar regret bounds do not extend
to contexts involving generalization via parameterized value functions. In this regard, the
approach we present is the first to satisfy a strong regret bound with tabular representations
while also working effectively with the wide variety of practical value function learning
methods that generalize over states and actions.

Section 7 presents computational results guided by randomized value functions that
synthesize efficient exploration with generalization. Experiments with a family of simple
toy examples demonstrate dramatic efficiency gains relative to dithering approaches for
exploration and that our randomized approaches are compatible with linearly parameterized
generalizing value functions. We also consider a cart-pole balancing problem that requires
both deep exploration and generalization. We address this problem through a combination
of randomization and deep learning, with value functions represented by neural networks.

2. Literature review

The Bayes-optimal policy serves as a gold standard for statistically efficient exploration in
reinforcement learning (RL). Given a prior distribution over Markov decision processes, one
can formulate a problem to maximize expected cumulative reward by taking an action at
each future time contingent on the prevailing posterior distribution. A policy that attains
this maximum is Bayes-optimal, and to do this it must explore judiciously. Unfortunately,
for problems of practical interest, computing a Bayes-optimal policy is intractable; the com-
putational requirements grow exponentially in the problem parameters (Szepesvári, 2010).
We introduce an approach based on randomized value functions that offers a computa-
tionally tractable approach to statistically efficient reinforcement learning. Exploration via
randomized value functions is not generally Bayes-optimal but, as we will argue, offers a
practical approach to deep exploration, which common exploration schemes fail to address,
sometimes at enormous cost to statistical efficiency.

There is a substantial body of work on simultaneously computationally and statisti-
cally efficient exploration in tabular RL. This begins with the seminal work of Kearns and
Singh (Kearns and Singh, 2002), which identified the necessity of multi-period exploration
strategies – for which we adopt the term deep exploration – to polynomial-time learning
and established a polynomial-time learning guarantee for a particular tabular algorithm.
Subsequent papers proposed and analyzed alternative tabular algorithms that carry out
deep exploration with varying degrees of efficacy (Brafman and Tennenholtz, 2002; Auer
and Ortner, 2006; Strehl et al., 2006; Jaksch et al., 2010; Osband et al., 2013; Dann and
Brunskill, 2015; Azar et al., 2017). None of these algorithms are Bayes-optimal, but they do

3

Osband, Van Roy, Russo, Wen

bound the level of sub-optimality by some polynomial function of states and/or planning
horizon. By contrast, popular schemes such as ε-greedy and Boltzmann exploration can
require learning times that grow exponentially in the number of states and/or the planning
horizon (see, e.g., Kakade (2003); Strehl (2007)). We discuss this phenomenon further in
Section 4.

The design and analysis of tabular algorithms has generated valuable insights, but the
resultant algorithms are of little practical importance since, for practical problems the state
space is typically enormous (due to the curse of dimensionality). To learn effectively, prac-
tical RL algorithms must generalize across states to make effective decisions with limited
data. The literature offers a rich collection of such algorithms (e.g. Bertsekas and Tsit-
siklis (1996); Sutton and Barto (2018); Szepesvári (2010); Powell and Ryzhov (2011) and
references therein). Though algorithms of this genre have achieved impressive outcomes,
notably in games such as backgammon (Tesauro, 1995), Atari arcade games (Mnih et al.,
2015), and go (Silver et al., 2016, 2017), they use naive exploration schemes that can be
highly inefficient. Possibly for this reason, these applications required enormous quantities
of data. In the case of Silver et al. (2016), for example, neural networks were trained over
hundreds of billions to trillions of simulated games.

The design of reinforcement learning algorithms that efficiently explore intractably large
state spaces remains an important challenge. Model learning algorithms exploit gener-
alization in an underlying model of the environment (Kearns and Koller, 1999; Abbasi-
Yadkori and Szepesvári, 2011; Ibrahimi et al., 2012; Ortner and Ryabko, 2012; Osband and
Van Roy, 2014a,b; Gopalan and Mannor, 2015). However, these are typically restricted to
simple model classes and become statistically or computationally intractable for problems
of practical scale. Policy learning algorithms, and the closely-related ‘evolutionary’ algo-
rithms identify high-performers among a set of policies (Kakade, 2003; Wierstra et al., 2008;
Deisenroth et al., 2013; Plappert, 2017). These algorithms can perform well, particularly
when the space of possible optimal policies is parameterized to be small. However, in a typ-
ical problem the space of policies is exponentially large; existing works either entail overly
restrictive assumptions or do not make strong efficiency guarantees.

Value function learning has the potential to overcome computational challenges and
offer practical means for synthesizing efficient exploration and effective generalization. A
relevant line of work establishes that efficient reinforcement learning with value function
generalization reduces to efficient “knows what it knows” (KWIK) online regression (Li and
Littman, 2010; Li et al., 2008). However, it is not known whether the KWIK online regres-
sion problem can be solved efficiently. In terms of concrete algorithms, there is optimistic
constraint propagation (OCP) (Wen and Van Roy, 2013), a provably efficient reinforce-
ment learning algorithm for exploration and value function generalization in deterministic
systems, and C-PACE (Pazis and Parr, 2013), a provably efficient reinforcement learning
algorithm that generalizes using interpolative representations. These contributions repre-
sent important developments, but OCP is not suitable for stochastic systems and is highly
sensitive to model misspecification, and generalizing effectively in high-dimensional state
spaces calls for methods that extrapolate.

In this paper, we leverage randomized value functions to explore efficiently while general-
izing via parameterized value functions. Algorithms of the kind we consider, which we refer
to collectively as randomized least-squares value iteration (RLSVI), were first introduced in

4

Deep Exploration via Randomized Value Functions

Wen (2014). Prior reinforcement learning algorithms that generalize via parameterized value
functions require, in the worst case, learning times exponential in the number of model pa-
rameters and/or the planning horizon. RLSVI aims to overcome these inefficiencies. While
RLSVI operates in a manner similar to well-known approaches such as least-squares value
iteration (LSVI) and SARSA (see, e.g. Sutton and Barto (2018)), what fundamentally
distinguishes RLSVI is exploration through randomly sampling statistically plausible value
functions. Alternatives such as LSVI and SARSA are typically applied in conjunction with
action-dithering schemes such as Boltzmann or ε-greedy exploration, which lead to highly
inefficient learning.

This paper aims to establish the use of randomized value functions as a promising
approach to tackling a critical challenge in reinforcement learning: synthesizing efficient ex-
ploration and effective generalization. The only preceding work that advocates exploration
through random samples of the value function comes from Dearden et al. (1998). This paper
proposes a tabular algorithm that resamples every timestep and so does not perform deep
exploration. A preliminary version of part of this work appeared in a short conference paper
(Osband et al., 2016b). While that paper proposed a specific algorithm that is compatible
with linear function approximation, this paper develops the concept of deep exploration
via randomized value functions in much greater depth and generality. We provide a gen-
eral template for building algorithms that perform randomized value function learning and
propose several specific instantiations of this idea. These algorithms are evaluated in en-
tirely new simulations experiments, including an example in which neural networks are used
for function approximation. While a proof sketch for a regret bound was given in (Osband
et al., 2016b), this paper gives a full and careful proof and develops new recursive stochastic
dominance arguments that simplify the analysis. Following (Osband et al., 2016b), several
papers have proposed adaptations to neural network function approximation via bootstrap
sampling (Osband et al., 2016a), linear final layer approximation (Azizzadenesheli et al.,
2018) or variational inference (Lipton et al., 2018; Fortunato et al., 2018).

The mathematical analysis we present in Section 6 establishes a bound on expected
regret for a tabular version of RLSVI applied to an episodic finite-horizon problem, where
the expectation is taken with respect to a particular uninformative distribution. We view
this result as a sanity check that, although it is designed for exploration with generalization,
RLSVI recovers state-of-the-art efficiency guarantees in the simple tabular setting. Our
bound is Õ(H

√
SAHL), where S and A denote the cardinalities of the state and action

spaces, L denotes the number of episodes elapsed, and H denotes the episode duration. The
lower bound of Jaksch et al. (2010) can be adapted to the episodic finite-horizon context to
produce a Ω(H

√
SAL) lower bound that applies to any algorithm. This differs from our

upper bound by a factor of
√
H, though this is not an apples-to-apples comparison, since

the lower bound applies to a maximum over Markov decision processes and may not hold for
the expectation over Markov decision processes, taken with respect to a prior distribution
we posit. Follow up work by Russo (2019) shows that RLSVI also satisfies worst-case regret
bounds in tabular environments.

In recent years there has been significant interest in alternative methods to incentivize
exploration. One popular method uses a density model or “pseudocount” to assign a bonus
to states that have been visited infrequently (Bellemare et al., 2016; Tang et al., 2016).
These methods can perform well, but only when the generalization of the density model

5

Osband, Van Roy, Russo, Wen

is aligned with the task objective. Crucially, this generalization is not learned from the
task and, unlike the optimal value function, “counts” are generated by the agent’s choices
so there is no single target function to learn. Further, these approaches add uncertainty
bonus that is uncoupled across states, which can lead to a substantial negative impact on
statistical efficiency, as discussed in (Osband and Van Roy, 2017; O’Donoghue et al., 2017).

Exploration via randomized value functions is inspired by Thompson sampling (Thomp-
son, 1933; Russo et al., 2018). In particular, when generating a randomized value function,
the aim is to approximately sample from the posterior distribution of the optimal value
function. There are problems where Thompson sampling is in some sense near-optimal
(Agrawal and Goyal, 2012, 2013a,b; Russo and Van Roy, 2013, 2014a; Gopalan and Man-
nor, 2015). Further, the theory suggests that “well-designed” upper-confidence-bound-based
approaches, which appropriately couple uncertainties across state-action pairs, but are of-
ten computationally intractable, are similarly near-optimal (statistically) and competitive
with Thompson sampling in such contexts (Russo and Van Roy, 2013, 2014a). On the
other hand, for some problems with more complex information structures, it is possible
to explore much more efficiently than do Thompson sampling or upper-confidence-bound
methods (Russo and Van Roy, 2014b). As such, for some RL problems and value function
representations, the randomized value function approaches we put forth will leave substan-
tial room for improvement.

At a high level, randomized value functions replaces a point estimate of the value func-
tion by a distribution of plausible value functions. Recently, another approach called “dis-
tributional RL” also suggests replacing a scalar value estimate by a distribution (Bellemare
et al., 2017). Although both might reasonably claim to offer a distributional perspective on
reinforcement learning, the meaning and utility of the two distributions are quite distinct.
Randomized value functions aim to sample from a distribution that captures the Bayesian
uncertainty in the unknown optimal value function; this concentrates around the true value
function as more data is gathered. By contrast, “distributional RL” fits a distribution to
the realized value under stochastic outcomes. For efficient exploration of unknown rather
than stochastic outcomes, it is important to use the correct notion of “distributional RL”.

3. Reinforcement learning problem

We consider a reinforcement learning problem in which an agent interacts with an unknown
environment over a sequence of episodes. We model the environment as a Markov decision
process, identified by a tuple M = (S,A,R,P, ρ). Here, S is a finite state space, A is a
finite action space, R is a reward model, P is a transition model, and ρ ∈ S is an initial state
distribution. For each s, ρ(s) is the probability that an episode begins in state s. For any
s, s′ ∈ S and a ∈ A, Rs,a,s′ is a distribution over real numbers and Ps,a is a sub-distribution
over states. In particular, Ps,a(s

′) is the conditional probability that the state transitions
to s′ from state s and action a. Similarly, Rs,a,s′(dr) is the conditional probability that the
reward is in the set dr. By sub-distribution, we mean that the sum can be less than one.
The difference 1−∑s′∈S Ps,a(s

′) represents the probability that the process terminates upon
transition.

We will denote by r`t , s
`
t, a

`
t the state, action, and reward observed at the start of the

tth time period of the `th episode. In each `th episode, the agent begins in a random

6

Deep Exploration via Randomized Value Functions

state s`0 ∼ ρ and selects an action a`0 ∈ A. Given this state-action pair, a reward and
transition are generated according to r`1 ∼ Rs`0,a

`
0,s

`
1

and s`1 ∼ Ps`0,a
`
0
. The agent proceeds

until termination, in each tth time period observing a state s`t, selecting an action a`t, and
then observing a reward r`t+1 and transition to s`t+1. Let τ` denote the random time at
which the process terminates, so that the sequence of observations made during episode `
is O` = (s`0, a

`
0, r

`
1, s

`
1, a

`
1, . . . , s

`
τ`−1, a

`
τ`−1, r

`
τ`
).

We define a policy to be a mapping from S to a probability distribution over A, and
denote the set of all policies by Π. We will denote by π(a∣s) the probability that π assigns
to action a at state s. Without loss of generality, we will consider states and actions to
be integer indices, so that S = {1, . . . , ∣S∣} and A = {1, . . . , ∣A∣}. As such, we can define a
substochastic matrix whose (s, s′)th element is ∑a∈A π(a∣s)Ps,a(s

′). We make the following
assumption to ensure finite episode duration:

Assumption 1 For all policies π ∈ Π, if each action at is sampled from π(⋅∣st), then the
MDP M almost surely terminates in finite time. In other words, limt→∞ P tπ = 0, where Pπ
is the matrix whose (s, s′)th element is ∑a∈A π(a∣s)Ps,a(s

′).

For any MDP M and policy π ∈ Π, we define a value function V π
M ∶ S ↦ R by

V π
M(s) = EM,π [

τ

∑
t=1

rt ∣ s0 = s] ,

where rt, st, at, and τ denote rewards, states, actions, and termination time of a generic
episode, and the subscripts of the expectation indicate that actions are sampled according
to at ∼ π(⋅∣st) and transitions and rewards are generated by the MDP M. Further, we
define an optimal value function:

V ∗
M(s) = max

π∈Π
V π
M(s).

The agent’s behavior is governed by a reinforcement learning algorithm alg. Immediately
prior to the beginning of episode L, the algorithm produces a policy πL = alg(S,A,HL−1)

based on the state and action spaces and the history HL−1 = (O` ∶ ` = 1, . . . , L − 1) of ob-
servations made over previous episodes. Note that alg may be a randomized algorithm, so
that multiple applications of alg may yield different policies.

In episode `, the agent enjoys a cumulative reward of ∑
τ`
t=1 r

`
t . We define the regret over

episode ` to be the difference between optimal expected value and the expected value under

algorithm alg. This can be written as EM,alg [V ∗(s`0) − V
π`(s`0))], where the subscripts

of the expectation indicate that each policy π` is produced by algorithm alg and state
transitions and rewards are generate by MDP M. Note that this expectation integrates
over all initial states, actions, state transitions, rewards, and any randomness generated
within alg, while the MDP M is fixed. We denote cumulative regret over L episodes by

Regret(M,alg, L) =
L

∑
`=1

EM,alg [V ∗
(s`0) − V

π`
(s`0))] .

We will generally refer to cumulative regret simply as regret.

7

Osband, Van Roy, Russo, Wen

When used as a measure for comparing algorithms, one issue with regret is its depen-
dence onM. One way of addressing this is to assume thatM is constrained to a pre-defined
set and to design algorithms with an aim of minimizing worst-case regret over this set. This
tends to yield algorithms that behave in an overly conservative manner when faced with
representative MDPs. An alternative is to aim at minimizing an average over representative
MDPs. The distribution over MDPs can be thought of as a prior, which captures beliefs of
the algorithm designer. In this spirit, we define Bayesian regret:

BayesRegret(alg, L) = E [Regret(M,alg, L)] .

Here, the expectation integrates with respect to a prior distribution over MDPs.
It is easy to see that minimizing regret or Bayesian regret is equivalent to maximiz-

ing expected cumulative reward. These measures are useful alternatives to expected cu-
mulative reward, however, because for reasonable algorithms, Regret(M,alg, L)/L and
BayesRegret(alg, L)/L should converge to zero. When it is not feasible to apply an op-
timal algorithm, comparing how quickly these values diminish and how that depends on
problem parameters can yield insight.

To denote our prior distribution over MDPs, as well as distributions over any other
randomness that is realized, we will use a probability space (Ω,F,P). With this notation,
the probability that M takes values in a set M is written as P(M ∈ M). In fact, the
probability of any measurable event E is written as P(E).

4. Deep exploration

Reinforcement learning calls for a sophisticated form of exploration that we refer to as
deep exploration. This form of exploration accounts not only for information gained upon
taking an action but also for how the action may position the agent to more effectively
acquire information over subsequent time periods. We will use the following simple example
to illustrate the critical role of deep exploration as well as how common approaches to
exploration fall short on this front.

Example 1 (Deep-sea exploration)
Consider an MDP M= (S,A,R,P, ρ) with ∣S∣ = N2 states, each of which can be thought of
as a square cell in an N ×N grid, as illustrated in Figure 1. The action space is A = {1,2}.
At each state, one of the actions represents “left” and the other represents “right,” with the
indexing possibly differing across states. In other words, for a pair of distinct states s, s′ ∈ S,
action 1 could represent “left” at state s and “right” at state s′. Any transition from any
state in the lowest row leads to termination of the episode. At any other state, the “left”
action transitions to the cell immediately to the left, if possible, and below. Analogously,
the “right” action transitions to the cell immediately to the right, if possible, and below.
The agent begins every episode in the upper-left-most state (where her boat sits). Note that,
given the dynamics we have described, each episode lasts exactly N time periods.

From any cell along the diagonal, there is a cost of 0.01/N incurred each time the “right”
action is chosen. No cost is incurred for the left action. The only other situation that leads
to an additional reward or cost arises when the agent is in the lower-right-most cell, where
there is a chest. There is an additional reward of 1 (treasure) or cost of 1 (bomb) when the

8

Deep Exploration via Randomized Value Functions

Figure 1: Deep-sea exploration: a simple example where deep exploration is critical.

“right” action is selected at that cell. Conditioned on the M, this reward is deterministic,
so once the agent discovers whether there is treasure or a bomb, she knows in subsequent
episodes whether she wants to reach or avoid that cell. In particular, given knowledge ofM,
the optimal policy is to select the “right” action in every time period if there is treasure and,
otherwise, to choose the “left” action in every time period. Doing so accumulates a reward
of 0.99 if there is treasure and 0 if there is a bomb. It is interesting to note that a policy that
randomly explores by selecting each action with equal probability is highly unlikely to reach
the chest. In particular, the probability such a policy reaches that cell in any given episode
is (1/2)N . Hence, the expected number of episodes before observing the chest’s content is
2N . Even for a moderate value of N = 50, this is over a quintillion episodes.

Let us now discuss the agent’s beliefs, or state of knowledge, about the MDP M, prior
to the first episode. The agent knows everything about M except:

• Action associations. At each state, the agent does not know which action index is
associated with “right” or ”left”, and assigns equal probability to either association.
These associations are independent across states.

• Reward. The agent does not know whether the chest contains treasure or a bomb and
assigns equal probability to each of these possibilities.

Before learning action associations and rewards, the distribution over optimal value at the
initial state is given by P(V ∗

M(s0) = 0.99) = P(V ∗
M(s0) = 0) = 1/2. Because the MDP is

deterministic, when an agent transitions from any state, she learns the action associations
for that state, and when the agent selects the “right” action at the lower-right-most state,
she learns whether there is treasure or a bomb.

9

Osband, Van Roy, Russo, Wen

Note that the reinforcement learning problem presented in this example is easy to ad-
dress. In particular, it is straightforward to show that the minimal expected time to learn
an optimal policy is achieved by an agent who chooses the “right” action whenever she
knows which action that is, and otherwise, applies a random action, until she discovers the
content of the chest, at which point she knows an optimal policy. This algorithm identifies
an optimal policy within N episodes, since in each episode, the agent learns how to move
right from at least one additional cell along the diagonal. Further, the expected learning
time is (N + 1)/2 episodes, since whenever at a state that has not previously been visited,
the agent takes the wrong action with probability 1/2. Unfortunately, this algorithm is
specialized to Example 1 and does not extend to other reinforcement learning problems.
For our purposes, this example will serve as a sanity check and context for illustrating flaws
and features of algorithms designed for the general reinforcement learning problem.

To facilitate our discussion, it is useful to define a couple of concepts. The first is that
of an optimal state-action value function, defined by Q∗

M(s, a) = EM [r + V ∗
M(s′)], where

r and s′ represent the reward and transition following application of action a in state s.
Second, for any Q ∶ S × A ↦ R, the greedy policy with respect to Q selects an action that
maximizes Q, sampling randomly among alternatives if there are multiple:

(4.1) a ∼ unif(argmax
α∈A

Q(s,α)) .

Note that the greedy policy with respect to Q∗
M is optimal for the MDP M. This policy

depends on the random MDPM, and therefore can not be applied in the process of learning.
The first reinforcement learning algorithm we consider is pure-exploitation and aims

to maximize expected reward in the current episode, ignoring benefits of active exploration.
This algorithm estimates a “best guess” MDP M̂L based upon the data it has gathered up
until episode L. To offer a representative approach, we will take M̂L to be the MDP with
rewards and transition probabilities given by their expectations conditioned on the data.
The pure-exploitation algorithm then follows the policy that would be greedy with respect
to Q̂L = Q∗

M̂L
during episode L. While this algorithm is applicable to any reinforcement

learning problem, its behavior in Example 1 reveals severe inefficiencies. Note that the
algorithm is indifferent about finding the chest, since the expected reward associated with
that is 0. Further, since moving toward the chest incurs cost, the algorithm avoids that,
and therefore never visits the chest. As such, the algorithm is unlikely to ever learn an
optimal policy.

Dithering approaches explore by selecting actions that randomly perturb what a pure-
exploitation algorithm would do. As an example, one form of dithering, known as Boltzmann
exploration selects actions according to

(4.2) at ∼ multinomial
⎛

⎝

exp (Q̂(st, ⋅)/η)

∑a∈A exp (Q̂(st, a)/η)

⎞

⎠
.

Here, η represents a “temperature” parameter. As η approaches zero, actions become the
same as those that would be selected by a pure-exploitation algorithm. As η increases, the
selection becomes noisier, eventually converging to a uniform distribution over actions. In
Example 1, a dithering algorithm is biased against moving toward the chest because of the

10

Deep Exploration via Randomized Value Functions

associated cost. Only the random perturbations can lead the agent to the chest. As such,
the expected learning time is Θ(2N).1

It is well known that dithering can be highly inefficient, even for bandit learning. A
key shortcoming is that dithering algorithms do not write-off bad actions. In particular,
even when observations make clear that a particular action is not worthwhile, dithering
approaches can sample that action. Despite this understanding, dithering is the most widely
used exploration method in reinforcement learning. The primary reason for this has been
lack of computationally efficient approaches that adequately address the complex problems
that arise in practical contexts. This paper aims to fill that need.

Bandit learning can be thought of as a special case of reinforcement learning for which
actions bear no delayed consequences. The bandit learning literature offers sophisticated
methods that overcome shortcomings of dithering. Such methods write-off bad actions,
only selecting an action when it is expected to generate desirable reward or yield useful
information or both. A naive way of applying such an algorithm to a reinforcement learning
problem involves selecting an action at only if the expected value Q̂L(st, at) is large or the
observed reward and/or transition are expected to provide useful information. We call this
approach myopic exploration, since it incentivizes exploration over a single timestep.
However, applying this approach to Example 1 would once again avoid moving toward the
chest as soon as it had learned the action associations in the initial state. This is because
there is a cost to moving right, but once the action associations are learned, there is no
immediate benefit to applying the “right” action. As such, myopic exploration is unlikely
to ever learn an optimal policy.

Myopic exploration does not adequately address reinforcement learning because, in re-
inforcement learning, there is an additional motivation that should not be overlooked: an
action can be desirable even if expected to yield no value or immediate information if the
action may place the agent in a state that leads to subsequent learning opportunities. This
is the essence of deep exploration; the agent needs to consider how actions influence down-
stream learning opportunities. Viewed in another way, when considering how to explore,
the agent should probe deep in his decision tree.

Optimism serves as another guiding principle in much of the bandit learning literature
and can provide a basis for deep exploration as well. In Example 1, if the agent takes most
optimistic plausible view, it would assume that the chest offers treasure rather than a bomb,
so long as this hypothesis has not been invalidated. In each Lth episode, the agent follows a
greedy policy with respect to a value function QL that assigns to each state-action pair the
maximal expected value under this assumption. When at a cell along the diagonal of the
grid, this policy selects the “right” action whenever the agent knows which that is. Hence,
this optimistic algorithm learns the optimal policy within N episodes.

The optimistic algorithm attains its strong performance in Example 1 through carrying
out deep exploration. In particular, by assuming treasure rather than a bomb, the agent is
incentivized to move right whenever it can, since that is the only way to obtain the posited
treasure. This exploration strategy is deep since the agent does not seek only immediate
information but also a learning opportunity that will only arise after consecutively moving
right over multiple time periods.

1. A similar observation holds true for another popular dithering strategy: ε-greedy. This approach selects
random actions according to probability ε and greedy (pure-exploitation) otherwise.

11

Osband, Van Roy, Russo, Wen

There are reasonably effective optimistic algorithms that apply to reinforcement learning
problems with small (tractably enumerated) state and action spaces. However, the design of
such algorithms that adequately address reinforcement learning problems of practical scale
in a computationally tractable manner remains a challenge.

An alternative approach studied in the bandit learning literature involves randomly
sampled instead of optimistic estimates. A focus of this paper is to extend this approach
– known as Thompson sampling – to accommodate deep exploration in complex reinforce-
ment learning problems. Applied to Example 1, this randomized approach would sample
before each episode a random estimate Q̃L from the agent’s posterior distribution over Q∗

M,
conditioned on observations made over previous episodes, or an approximation of this pos-
terior distribution. Before the agent’s first visit to the chest, she assigns equal probability to
treasure and a bomb, and therefore, the sample Q̃L has an equal chance of being optimistic
or pessimistic. The agent selects actions according to the greedy policy with respect to
Q̃L and therefore on average explores over half of the episodes in a manner similar to an
optimistic algorithm. As such, the randomized algorithm can expect to learn the optimal
policy within 2N episodes.

As applied to Example 1, there is no benefit to using a randomized rather than opti-
mistic approach. However, in the face of in complex reinforcement learning problems, the
randomized approach can lead to computationally tractable algorithms that carry out deep
exploration where the optimistic approach does not.

Table 1 summarizes our discussion of learning times of various exploration methods
applied to Example 1. The minimal time required to learn an optimal policy, which is
achieved by an agent who moves right whenever she knows how to, is Θ(N) episodes.
The pure-exploitation algorithm avoids any active exploration and requires Θ(2N) episodes
to learn. Dithering does not help for our problem. Though more sophisticated, myopic
approaches do not carry out deep exploration, and as such, still require Θ(2N) episodes.
Optimistic and randomized approaches require only Θ(N) episodes.

exploration method expected episodes to learn

optimal Θ(N)

pure exploitation ∞

myopic ∞

dithering Θ(2N)

optimistic Θ(N)

randomized Θ(N)

Table 1: Expected number of episodes required to learn an optimal policy for Example 1.

5. Algorithms

The field of reinforcement learning has produced a substantial body of algorithmic ideas
that serve as ingredients to mix, match, and customize in tailoring solutions to specific
applications. Such ideas are well-summarized in the textbooks of Bertsekas and Tsitsiklis
(1996) and Sutton and Barto (2018), among others. The aim of this paper is to contribute
to this corpus a new approach to exploration based on randomized value functions, with

12

Deep Exploration via Randomized Value Functions

the intention that this additional ingredient will broadly enable computationally efficient
deep exploration.

Much of the literature and most notable applications build on value function learning.
This involves fitting a parameterized value function to observed data in order to estimate
the optimal value function. The algorithms we present will be of this genre. As a starting
point, in Section 5.2, we will describe least-squares value iteration (LSVI), which is perhaps
the simplest of value function learning algorithms. In Section 5.3, we consider modifying
LSVI by injecting randomness in a manner that incentivizes deep exploration. This gives
rise to a new class of algorithms, which we will refer to as randomized least-squares value
iteration (RLSVI), and which offer computationally tractable means to deep exploration.

LSVI plays a foundational role in the sense that most popular value function learning
algorithms can be interpreted as variations designed to improve computational efficiency
or robustness to mis-specification of the parameterized value function. The reinforcement
learning literature presents many ideas that address such practical considerations. In Sec-
tion 5.4, we will discuss how such ideas can be brought to bear in tandem with RLSVI.

5.1. Value function learning

Before diving into specific reinforcement learning algorithms, let us discuss general concepts
that apply to all of them. Value function learning algorithms make use of a family Q of
state-action value functions indexed by θ ∈ Rd. Each Qθ ∶ S ×A ↦ R identifies a state-action
value function.2 As a simple example of such a family, consider representing value functions
as linear combinations of fixed features. In particular, if φ(s, a) ∈ Rd is a vector of features
designed to capture salient characteristics of the state-action pair (s, a), it is natural to
consider the family of functions taking the form Qθ(s, a) = θ

⊺φ(s, a), with θ ∈ Rd.
Algorithm 1 (live) provides a template for reinforcement learning algorithms we will

consider. It operates over an endless sequence of episodes, accumulating observations,
learning value functions, and applying actions. We use a Pythonic pseudocode, with an
object-oriented division into agent and environment. We use

transition = NamedTuple(old state,action,reward,new state,timestep),

to describe the evolution of the system. Where convenient, we will alternatively write
transition = (st, at, rt, s

′
t, t). We highlight three key methods the agent must implement:

• act – select actions given its internal value estimates, (e.g. greedy action selection).
• update buffer – incorporate observations to its memory buffer, (e.g. append to list).
• learn from buffer – update value estimate given the data in the buffer, (e.g. LSVI).

The agents that we discuss will be distinguished through their implementation of these
methods, which we will now outline.

The simplest form of act is given by the greedy strategy act greedy. An agent
that uses this approach will select actions that maximize its estimated state-action value.
If multiple actions attain the maximum, one is sampled uniformly from among them.3

2. We adopt notation that for all Q, parameter θ0 = null indicates Qθ0 ≡ 0.
3. We might also consider action selection via act epsilon greedy or act boltzmann, as described in

Section 4. As we saw before, these dithering approaches do not perform deep exploration and thus can
lead to exponentially slower learning.

13

Osband, Van Roy, Russo, Wen

Algorithm 1 live

Input: agent methods act,update buffer,learn from buffer

environment methods reset,step

1: for ` in (1,2, . . .) do
2: agent.learn from buffer()
3: transition ← environment.reset()
4: while transition.new state is not null do
5: action ← agent.act(transition.new state)
6: transition ← environment.step(action)
7: agent.update buffer(transition)

Similarly, the simplest form of update buffer is to simply accumulate all observed data
update buffer queue. Our next two sections will investigate agents that store all observed
data and take greedy actions; we investigate the effects of learn from buffer and explain
why training least-squares value iteration on randomly perturbed versions of the data can
offer a computationally tractable means to deep exploration.

5.2. Least-squares value iteration

Given an MDP M, one can apply the value iteration algorithm (Algorithm 2) to compute
an arbitrarily close approximation to Q∗. The algorithm takesM and a planning horizon H
as input and computes Q∗

H , the optimal value over the next H time periods of the episode
as a function of the current state and action. The computation is recursive: given Q∗

h,
the algorithm computes Q∗

h+1 by taking the expected sum of immediate reward and Q∗
h,

evaluated at the next state, maximized over actions. Under Assumption 1, the mapping from
Q∗
h to Q∗

h+1 is a weighted-maximum-norm contraction mapping (Bertsekas and Tsitsiklis,
1996), and as such, Q∗

h converges to Q∗ at a geometric rate. Hence, for any M satisfying
Assumption 1 and sufficiently large H, the greedy policy with respect to Q∗

H is optimal.

Algorithm 2 vi

Input: M= (S,A,R,P, ρ) MDP
H ∈ N planning horizon

Output: Q∗
H optimal value function for H-period problem

1: Q∗
0 ← 0

2: for h in (0, . . . ,H − 1) do
3: Q∗

h+1(s, a) ← ∑s′∈S Ps,a(s
′) (∫ rRs,a,s′(dr) +maxa′∈AQ

∗
h(s

′, a′)) ∀s, a ∈ S ×A

4: return Q∗
H

Value iteration offers an idealized approach to evaluating Q∗, given knowledge of the
underlying MDP M and the necessary computational power. Least-squares value iter-
ation (LSVI) adapts vi to an RL setting with imperfect statistical knowledge and lim-
ited computation. For a value function family Q = {Qθ ∶ S × A → R}, observed data
D = {(st, at, rt, s

′
t, t)} and target parameters θ− we define the empirical temporal difference

14

Deep Exploration via Randomized Value Functions

(TD) loss:

(5.1) L(θ; θ−,D) ∶= ∑
t∈D

(rt +max
a′∈A
Qθ−(s

′
t, a

′
) −Qθ(st, at))

2

.

Note that, if Q spans the true value function Q∗ and the data D matches the distribution
of M then the minimizer of L matches the solution of Algorithm 2; for more information
see Sutton and Barto (2018).

Algorithm 3 (learn lsvi) describes the learn from buffer method for LSVI, whcih
approximates the operations carried out by value iteration. The algorithm successively
minimizes the empirical temporal difference loss (5.1) plus a regularization term:

(5.2) R(θ; θp) ∶=
v

λ
∥θp − θ∥2

2.

Here θp can be interpreted as a prior for θ and v
λ determines the strength of the regular-

ization coefficient. In a linear system these correspond to a prior belief θ ∼ N(θp, λI) with
observations yt = xtθ+zt for zt ∼ N(0, v). Similarly to vi, learn lsvi computes a sequence
of value functions (Qθh ∶ h = 0, . . . ,H), reflecting optimal expected rewards over an expand-
ing horizon. However, while value iteration computes optimal values using full knowledge of
the MDP, LSVI produces estimates based only on observed data. In each iteration, for each
observed transition (s, a, r, s′), learn lsvi regresses the sum of immediate reward r and
the value estimate maxa′∈AQθ̃h(s

′, a′) at the next state onto the value estimate Qθ̃h+1(s, a)
for the current state-action pair.

Algorithm 3 learn lsvi

Agent: L(θ= ⋅ ; θ−= ⋅ ,D=⋅) TD error loss function
R(θ= ⋅ ; θp= ⋅) regularization function
buffer memory buffer of observations
prior prior distribution of θ
H ∈ N planning horizon

Updates: θ̃ agent value function estimate

1: θ̃0 ← null
2: Data D̃ ← buffer.data()
3: Prior parameter θ̃p ← prior.mean()
4: for h in (0, . . . ,H − 1) do
5: θ̃h+1 ← argmin

θ∈RD
(L(θ; θ̃h, D̃) +R(θ; θ̃p))

6: update value function estimate θ̃ ← θ̃H

In the event that the parameterized value function is flexible enough to represent every
function mapping S ×A to R, it is easy to see that, for any θ and any positive λ and v, as
the observed history grows to include an increasing number of transitions from each state-
action pair, value functions Qθ̃H produced by LSVI converge to Q∗

H . However, in practical
contexts, the data set is finite and the parameterization is chosen to be less flexible in order
to enable generalization. As such, Qθ̃H and Q∗

H can differ greatly.

15

Osband, Van Roy, Russo, Wen

In addition to inducing generalization, a less flexible parameterization is critical for
computational tractability. In particular, the compute time and memory requirements of
value iteration scale linearly with the number of states, which, due to the curse of dimen-
sionality, grows intractably large in most practical contexts. LSVI sidesteps this scaling,
instead requiring compute time and memory that scale polynomially with the dimension
of the parameter vector θ̃, the number of historical observations, and the time required to
maximize over actions at any given state.

An LSVI agent may also be paired with some dithering strategy for exploration, such as
ε-greedy or Boltzmann exploration (4.2) in place of act greedy. As discussed in Section 4,
randomly perturbing greedy actions – or dithering – does not achieve deep exploration and
so can lead to exponentially poor performance. Our next subsection introduces randomized
value function estimates as an alternative.

5.3. Randomized least-squares value iteration

At a high level, the idea is to randomly sample an imagined optimal parameter θ̃ according
to the probability that it is optimal. This approach is inspired by Thompson sampling,
an algorithm widely used in bandit learning (Thompson, 1933). In the context of a multi-
armed bandit problem, Thompson sampling maintains a belief distribution over models that
assign mean rewards to arms. As observations accumulate, this belief distribution evolves
according to Bayes rule. When selecting an arm, the algorithm samples a model from this
belief distribution and then selects the arm to which this model assigns largest mean reward.

To address a reinforcement learning problem, one could in principle apply Thompson
sampling to value function learning. This would involve maintaining a belief distribution
over candidates for the optimal value function. Before each episode, we would sample
a function from this distribution and then apply the associated greedy policy over the
course of the episode. This approach could be effective if it were practically viable, but
distributions over value functions are complex to represent and exact Bayesian inference
would likely prove computationally intractable.

Randomized least-squares value iteration (RLSVI) is modeled after this Thompson sam-
pling approach and serves as a computationally tractable method for sampling value func-
tions. RLSVI was first introduced in Wen (2014), and subsequent work has examined
variations of RLSVI and their performance with both linear and nonlinear function approx-
imation (Osband et al., 2016b,a; Osband, 2016). RLSVI does not explicitly maintain and
update belief distributions and does not optimally synthesize information, as a coherent
Bayesian method would. Regardless, as we will later establish through computational and
mathematical analyses, RLSVI can offer an effective approach to deep exploration.

5.3.1. Randomization via Gaussian noise

We first consider a version of RLSVI that induces exploration through injecting Gaussian
noise into calculations of the form carried out by LSVI. To understand the role of this noise,
let us first consider a conventional linear regression problem. Suppose we wish to estimate a
parameter vector θ ∈ RD, with N(θ, λI) prior and data D = ((xn, yn) ∶ n = 1, . . . ,N), where
each “feature vector” xn is a row vector with K components and each “target value” yn
is scalar. Given the parameter vector θ and feature vector xn, the target yn is generated

16

Deep Exploration via Randomized Value Functions

according to yn = xnθ + wn, where wn is independently drawn from N(0, v). Conditioned
on D, θ is Gaussian with

(5.3) E[θ∣D] = argmin
θ∈RD

(
1

v

N

∑
n=1

(yn − xnθ)
2
+

1

λ
∥θ − θ∥2

) = (
1

v
X⊺X +

1

λ
I)

−1

(
1

v
X⊺y +

1

λ
θ)

and

Cov[θ∣D] = (
1

v
X⊺X +

1

λ
I)

−1

,

whereX ∈ RN×D is a matrix whose nth row is xn and y ∈ Rn is a vector whose nth component
is yn.

One way of generating a random sample θ̃ with the same conditional distribution as θ
is simply to sample from θ̃ ∼ N(E[θ∣D],Cov[θ∣D]). An alternative construction is given by

(5.4) θ̃←argmin
θ∈RD

(
1

v

N

∑
n=1

(yn+zn−xnθ)
2
+

1

λ
∥θ̂−θ∥2

)=(
1

v
X⊺X+

1

λ
I)

−1

(
1

v
X⊺

(y+z)+
1

λ
θ̂),

where θ̂ ∼ N(θ, λI) and zn ∼ N(0, v) are sampled independently. To see why this θ̃ takes
on the same distribution, first note that θ̃ is Gaussian, since it is affine in θ and z. Further,
θ̃ exhibits the appropriate mean and covariance matrix, since

E[θ̃∣D] = (
1

v
X⊺X +

1

λ
I)

−1

(
1

v
X⊺

(y +E[z∣D]) +
1

λ
E[θ̂∣D]) = E[θ∣D],

and

Cov[θ̃∣D] = (
1

v
X⊺X +

1

λ
I)

−1

(
1

v2
X⊺E[zz⊺∣D]X +

1

λ2
E[θ̂θ̂⊺∣D])(

1

v
X⊺X +

1

λ
I)

−1

= (
1

v
X⊺X +

1

λ
I)

−1

(
1

v
X⊺X +

1

λ
I)(

1

v
X⊺X +

1

λ
I)

−1

= Cov[θ∣D].

Equation (5.4) is signficant, since it allows us to understand Bayesian linear regression
through a purely computational perspective. For the linear setting, we see that training a
least-squares solution on perturbed versions of the data is equivalent to conjugate Bayesian
posterior. This suggests that, in order to generate approximate posterior samples for Q∗ we
can replace the least-square computation of Algorithm 3 with an alternative value iteration
that trains on randomly perturbed versions of the data. We call this algorithm randomized
least-squares value iteration, which we now outline.

17

Osband, Van Roy, Russo, Wen

Algorithm 4 learn rlsvi

Agent: L(θ= ⋅ ; θ−= ⋅ ,D=⋅) TD error loss function
R(θ= ⋅ ; θp= ⋅) regularization function
buffer memory buffer of observations
prior prior distribution of parameters
H ∈ N planning horizon

Updates: θ̃ agent value function estimate

1: θ̃0 ← null
2: Data D̃ ← buffer.sample perturbed data()

3: Prior parameter θ̃p ← prior.sample()
4: for h in (0, . . . ,H − 1) do
5: θ̃h+1 ← argmin

θ∈RD
(L(θ; θ̃h, D̃) +R(θ; θ̃p))

6: update value function estimate θ̃ ← θ̃H

Note that learn rlsvi is identical to learn lsvi except that the optimization happens
over randomized versions of the underlying data and prior. For correspondence with the
Gaussian derivation above we would implement:

(5.5) buffer.sample perturbed data()∶=[(st,at,rt+zt,s
′
t,t) ∀t∈buffer, zt∼N(0,v)].

We call this version of RLSVI with additive Gaussian noise learn grlsvi, indicating the
specific choice of data randomization and prior θ ∼ N(0, λI). In Section 6 we prove that
this method recovers a polynomial regret bound when used with linear value functions and
tabular representation. This is significant, because LSVI with any dithering action selection
scheme can not recover such a bound (Section 4). Before we jump to analysis, we provide
some intuition for how this simple modification can lead to deep exploration.

5.3.2. How does RLSVI drive deep exploration?

To understand the role of injected noise and how this gives rise to deep exploration, let us
discuss a simple example, involving an MDP M with four states S = {1,2,3,4} and two
actions A = {up,down}. Let H be a list of all transitions we have observed, and partition
this into sublists Hs,a = ((s̃, ã, r, s′) ∈ H ∶ (s̃, ã) = (s, a)), each containing transitions from
a distinct state-action pair. Suppose that ∣H(4,down)∣ = 1, while for each state-action pair
(s, a) ≠ (4,down), ∣Hs,a∣ is virtually infinite. Hence, we are highly uncertain about the
expected immediate rewards and transition probabilities at (4,down) but can infer these
quantities with extreme precision for every other state-action pair.

Given our uncertainty aboutM, Q∗
H for each planning horizon H is a random variable.

Figure 2 illustrates our uncertainty in these values. Each larger triangle represents a pair
(s, h), where h is the horizon index. Note that these triangles represent possible future
states, and h represents the number of periods between a visit to the state and the end
of the planning horizon. Each of these larger triangles is divided into two smaller ones,
associated with up and down actions. The dotted lines indicate plausible transitions, except
at (4,down), where we are highly uncertain and any transition is plausible. The shade of

18

Deep Exploration via Randomized Value Functions

each smaller triangle represents our degree of uncertainty in the value of Q∗
h(s, a). To be

more concrete, take our measure of uncertainty to be the variance of Q∗
h(s, a).

Figure 2: Illustration of how learn grlsvi achieves deep exploration.

For the case of h = 1, only immediate rewards influence Q∗
1 , and as such we are only

uncertain about Q∗
1(4,down). Stepping back to h = 2, in addition to being highly uncertain

about Q∗
2(4,down), we are somewhat uncertain about Q∗

2(4,up) and Q∗
2(3,down), since

these pairs can transition to (4,down) and be exposed to the uncertainty associated with
that state-action pair. We are not as uncertain about Q∗

2(4,up) and Q∗
2(3,down) as we are

about Q∗
2(4,down) because from (4,up) and (3,down), there is reasonable chance that we

will never see (4,down). Continuing to work our way leftward in the diagram, it is easy to
visualize how uncertainty propagates as h increases.

Let us now turn our attention to the variance of samples Qθ̃H(s, a) generated by
learn grlsvi, which, for reasons we will explain, tend to grow and shrink with the vari-
ance of Q∗

H(s, a). To keep things simple, assume λ = ∞ and that we use an exhaustive
– or “tabular” – representation of value functions. In particular, each component of the
parameter vector θ ∈ R∣S∣×∣A∣ encodes the value Qθ(s, a) of a single state-action pair. This
parameterized value function can represent any mapping from S ×A to R.

Under our simplifying assumptions, it is easy to show that

Qθ̃h+1
(s, a) =

1

∣H̃s,a∣
∑

(s̃,ã,r,s′,z)∈H̃s,a
(r +max

a′∈A
Qθ̃h

(s′, a′) + z) .

The right-hand-side is an average of target values. Recall that, for any (s, a) ≠ (4,down),
∣H̃s,a∣ is so large that any sample average is extremely accurate, and therefore, Qθ̃h+1(s, a) is
essentially equal to EM[rt+1 +maxα∈AQθ̃h(st+1, α)∣st = s, at = a]. For the distinguished case

of (4,down), ∣H̃4,down∣ = 1, and the average target value may therefore differ substantially
from its expectation E[r + maxa′∈AQθ̃h(s

′, a′)∣θ̃h,M]. Notably, the noise term z does not

19

Osband, Van Roy, Russo, Wen

average out as it does for other state-action pairs and should contribute variance v to the
sample Qθ̃h+1(4,down).

Based on this observation, for the case of h = 1, for (s, a) ≠ (4,down), Qθ̃1(s, a) is
virtually equal to Q∗

1 , while for Qθ̃1(4,down) exhibits variance of at least v. For h = 2,
Qθ̃2

(4,down) again exhibits variance of at least v, but unlike the case of h = 1, Qθ̃2(4,up)
and Qθ̃2(3,down) also exhibit non-negligible variance since these pairs can transition to
(4,down) and therefore depend on the noise-corrupted realization of Qθ̃1(4,down). Working
leftward through Figure 2, we can see that noise propagates and influences value estimates
in a manner captured by the shading in the figure. Hence, samples Qθ̃h(s, a) exhibit high
variance where the variance of Q∗

h(s, a) is large.

This relationship drives deep exploration. In particular, a high variance sampleQθ̃H(s, a)
will be overly optimistic in some episodes. Over such episodes, the agent will be incentivized
to try the associated action. This is appropriate because the agent is uncertain about the
optimal value Q∗

H(s, a) over the planning horizon. Note that this incentive is not only driven
by uncertainty concerning the immediate reward and transition. As illustrated in Figure 2,
uncertainty propagates to offer incentives for the agent to pursue information even if it will
require multiple time periods to arrive at an informative observation. This is the essence of
deep exploration.

It is worth commenting on a couple subtle properties of learn grlsvi. First, given
θh and H, θh+1 is sampled from a Gaussian distribution. However, given the inputs to
learn grslvi, the output θ̃ is not Gaussian. This is because at each step θh+1 depends
nonlinearly on θh due to the maximization over actions in the TD loss (5.1). Second, it
is important that learn grlsvi uses the same noise samples z in across iterations of the
for loop in line 5. To see why, suppose learn grlsvi used independent noise samples in
each iteration. Then, when applied to the example of Figure 2, in some iterations, we
would be optimistic about the reward at (4,down), while in other iterations, we would
be pessimistic about that. Now consider a sample Qθ̃H(1,up) for large H. This sample
would be perturbed by a combination of optimistic and pessimistic noise terms influencing
assessments at (4,down) to the right. The resulting averaging effect could erode the chances
that Qθ̃H(1,up) is optimistic.

5.3.3. Randomization via statistical bootstrap

With learn grlsvi, the Gaussian distribution of noise serves as a coarse model of errors
between targets r + maxa′∈AQθ̃h(s

′, a′) and expectations E[r + maxa′∈AQθ̃h(s
′, a′)∣θ̃h,M].

The statistical bootstrap4 offers an alternative approach to randomization which may often
more accurately capture characteristics of the generating process. In its classic form, the
bootstrap takes a dataset D of size N and generates a sampled dataset D̃ also of size N
drawn uniformly with replacement from D (Efron and Tibshirani, 1994). The bootstrap
serves as a form of data-based simulation and, in certain cases, recovers strong convergence
guarantees (Bickel and Freedman, 1981; Fushiki, 2005).

4. We are overloading the term bootstrap here. In reinforcement learning, bootstrapping is commonly used
to refer to the calculation of a state-action value estimate based on value estimates at states to which
the agent may transition. Here, we refer to the statistical bootstrap of data-based simulation. The
most common form of statistical bootstrap uses the sample data as an approximation to its generating
distribution (Efron, 1982).

20

Deep Exploration via Randomized Value Functions

learn brlsvi is a version of RLSVI that makes use of the bootstrap in place of additive
Gaussian noise. This algorithm follows learn rlsvi (Algorithm 4) and implements

(5.6) buffer.sample perturbed data()∶=bootstrap sample(buffer.data()).

Bootstrap sampling for value function randomization may present several benefits over
additive Gaussian noise. First, most bootstrap resampling schemes do not require a ‘noise
variance’ as input, which simplifies the algorithm from a user perspective. Related to this
point, the bootstrap can effectively induce a state-dependent and heteroskedastic random-
ization which may be more appropriate in complex environments. More generally, we can
consider bootstrapped RLSVI as a non-parameteric randomization for the value function
estimate and this opens a wide range of potential bootstrap variants and prior mechanisms
that could be employed with RLSVI (Osband and Van Roy, 2015).

Eckles and Kaptein (2019) were the first to propose using bootstrap samples as an
approximation to the posterior samples used in the Thompson sampling algorithm. Unfor-
tunately, bootstrapping does not provide meaningful uncertainty estimates in early periods.
If applied without modification, the algorithms in Eckles and Kaptein (2019) incur regret
that scales linearly in the time horizon. Value function estimates in learn brlsvi are in-
stead randomized not just through bootstrap sampling, but through regularizing toward a
random prior sample. The effect of the random prior sample vanishes as diverse data is
collected, but it is critical to driving exploration in early periods.

5.4. Practical variants of RLSVI

In this section, we will present variants of RLSVI designed to address the important prac-
tical considerations of computational efficiency and robustness to mis-specification of the
parameterized value function. There are many ideas in the reinforcement learning literature
that can be brought to bear for these purposes, and we will by no means cover an exhaustive
list. Rather, we will present a mix of ideas that lead to a particular algorithm that effec-
tively addresses a broad range of complex problems. This algorithm also serves to illustrate
the many degrees of freedom in mixing and matching ingredients from the reinforcement
learning literature when randomized value functions are part of the recipe.

5.4.1. Finite buffer experience replay

The use of a buffer of past observations to fit a value function is sometimes referred to
as experience replay. The algorithms we have presented so far use an infinite buffer and
thus require memory and compute time that grow linearly in the number of observations.
For complex problems that require substantial learning times, such a requirement becomes
onerous. To overcome this, we can restrict the buffer to some finite size, treating it as a
FIFO queue.

Computational requirements aside, there can be other substantial benefits to using a
finite buffer. In particular, the agent may learn to make more effective decisions within fewer
episodes (Adam et al., 2012). This is likely due to model mis-specification. In particular,
if Q∗ can not be represented by Qθ for any θ, it is helpful to restrict attention to the most
relevant data when regressing, as this focusses on minimizing errors at relevant states and
actions. Restricting the buffer to recent observations may serve as a reasonable heuristic

21

Osband, Van Roy, Russo, Wen

here. Recent work has also demonstrated benefit from more sophisticated prioritization of
data for storage in a finite buffer (Schaul et al., 2015).

5.4.2. Discounted TD and incremental learning

Both LSVI and RLSVI take a planning horizonH ∈ N as an argument. These approaches can
be wasteful in that they compute separate estimates θ̃h for each h = 1, ..,H. Further, these
algorithms are “batch,” in the sense that they require computation over all observed data
at the start of each episode; this leads to computational costs that grow with time. In this
subsection we introduce a discounted formulation that admits an incremental computational
approach.

Let γ ∈ (0,1) be a discount factor that induces a time preference over future rewards.
A discount γ approximates an effective planning horizon H ≃ 1

1−γ , but affords a solution to

the discounted Bellman equation Q∗
γ(s, a) = EM [R(s, a) + γmaxa′ Q

∗
γ(s

′, a′)] (Blackwell,
1965). Inspired by this relationship we define the γ-discounted empirical TD loss:

(5.7) Lγ(θ; θ−,D) ∶= ∑
t∈D

(rt + γmax
a′∈A
Qθ−(s

′
t, a

′
) −Qθ(st, at))

2

.

Algorithm 5 (learn online lsvi) presents an incremental variant of LSVI. Rather than
recompute θ̃ from scratch each episode, learn online lsvi updates its previous estimate
by gradient descent over a subset of the data. This algorithm is a form of temporal differ-
ence learning (Sutton, 1988) and, at a high level, this approach broadly describes famous
approaches such as TD-gammon (Tesauro, 1995) and DQN (Mnih et al., 2015). For more
background and discussion of this family of algorithms we refer to Sutton and Barto (2018).

Algorithm 5 learn online lsvi

Agent: θ̃ parameter estimate

θ̃p prior mean of parameter estimate
Lγ(θ= ⋅ ; θ

−= ⋅ ,D=⋅) TD error loss function
R(θ= ⋅ ; θp= ⋅) regularization function
buffer memory buffer of observations
α learning rate

Updates: θ̃ agent value function estimate

1: Data D̃ ← buffer.sample minibatch()

2: δ ← buffer.minibatch size / buffer.size
3: θ̃ ← θ̃ − α∇θ∣θ=θ̃ (Lγ(θ; θ̃, D̃) + δR(θ; θ̃p))

5.4.3. Randomization via ensemble sampling

Algorithm 5 (learn online lsvi) presents an incremental version of LSVI. However, RLSVI
in its purest form calls for an estimate trained on randomly perturbed data at the begin-
ning of each episode l = 1,2, ..; this is not immediately amenable to such an incremental
algorithm. Instead, our solution approximates the effects of RLSVI in an online algorithm
via ensemble sampling.

22

Deep Exploration via Randomized Value Functions

Ensemble sampling approximates the distribution induced by RLSVI through an en-
semble of K ∈ N estimates trained in parallel (θ̃1, .., θ̃K) (Osband and Van Roy, 2015; Lu
and Van Roy, 2017). At the start of any episode l, we can approximate the distribution of
θ̃ under RLSVI via a sample of θ̃k for k ∼ Unif(1, ..,K). Figure 3 presents an illustration of
such a system.

(a) learning a single value function (b) learning multiple value functions in parallel

Figure 3: RLSVI via ensemble sampling, each member produced by LSVI on perturbed data.

One method to maintain K estimates in parallel is to implement an ensemble mem-
ory buffer ensemble buffer. An ensemble buffer should function similarly to buffer, but
maintain K distinct perturbations of the observed data D̃k, each associated with their ap-
propriate ensemble value estimate θ̃k. We use a Pythonic notation that ensemble buffer[k]

is a buffer for each k = 1, ..,K; although in a practical implementation it will be sensible to
share appropriate parts of the memory requirements. For an online variant of learn grlsvi

(additive Gaussian noise) we can store K distinct samples of additive noise, as described
in Algorithm 6. Similarly, for an online approximation to bootstrap sampling we might use
“double-or-nothing” sampling per Algorithm 7 (Owen and Eckles, 2012).

Algorithm 8 (learn ensemble rlsvi) presents the ensemble RLSVI algorithm. An
agent that employs learn ensemble rlsvi maintains ensemble parameter estimates θ̃1, .., θ̃K
with random prior samples θ̃p1, .., θ̃

p
K . The regulatization effects of R(θ; θ̃pk) can play an im-

portant role in exploration. Although we have suggested a particular form in (5.2), we
would consider alternative approaches based on prior observations as studied in off-policy
learning (Precup et al., 2001) and transfer learning (Taylor and Stone, 2009).

We note that, when used off-policy, minimizing the TD loss may lead to unstable learning
and even cause the value function estimate to diverge (Tsitsiklis and Van Roy, 1997). This
instability can be exacerbated by algorithms such as learn ensemble rlsvi, which may
lead to value estimates computed from data more off-policy than a single value estimate. In
this context, it may be beneficial to replace the naive TD loss with an alternative designed
for off-policy learning (Sutton et al., 2009; Munos et al., 2016).

Algorithm 6 ensemble buffer.update gaussian noise(⋅)

Input: transition (st, at, rt, s
′
t, t)

Agent: v noise variance
Updates: ensemble buffer replay buffer of K-parallel perturbed data

1: for k in (1, . . . ,K) do
2: ensemble buffer[k].enqueue((st, at, rt + z

k
t , s

′
t, t)) where zkt ∼ N(0, v)

23

Osband, Van Roy, Russo, Wen

Algorithm 7 ensemble buffer.update bootstrap(⋅)

Input: transition (st, at, rt, s
′
t, t)

Updates: ensemble buffer replay buffer of K-parallel perturbed data

1: for k in (1, . . . ,K) do
2: if mk

t ∼ Unif({0,1}) = 1 then
3: ensemble buffer[k].enqueue((st, at, rt, s

′
t, t))

Algorithm 8 learn ensemble rlsvi

Agent: θ̃1, .., θ̃K ensemble parameter estimates

θ̃p1, .., θ̃
p
K prior samples of parameter estimates

Lγ(θ= ⋅ ; θ
−= ⋅ ,D=⋅) TD error loss function

R(θ= ⋅ ; θp= ⋅) regularization function
ensemble buffer replay buffer of K-parallel perturbed data
α Learning rate

Updates: θ̃ agent value function estimate

1: for k in (1, . . . ,K) do
2: Data D̃k ← ensemble buffer[k].sample minibatch()
3: δ ← buffer.minibatch size / buffer.size
4: θ̃k ← θ̃k − α∇θ∣θ=θ̃k (Lγ(θ; θ̃k, D̃k) +R(θ; θ̃pk))

5: update θ̃ ← θ̃j for j ∼ Unif(1, ..,K)

6. Regret bound

This section provides a regret analysis of RLSVI in a particularly simple type of decision
problem (Section 3). We consider an RLSVI agent with an infinite buffer, greedy actions
and learn grlsvi (Algorithm 4 with additive Gaussian noise (5.5)) and a tabular repre-
sentation.5 The bound we establish applies to a tabular time-inhomogeneous MDP with
transition kernel drawn from a Dirichlet prior. This stylized setting provides rigorous confir-
mation that RLSVI is capable of performing provably efficient deep exploration in tabular
environments. In addition, we hope this analysis provides a framework for establishing
more general guarantees – for example those applying to RLSVI with linearly parameter-
ized value functions. Several intermediate lemmas used in the analysis hold under much
less restrictive assumptions, and could be useful beyond the setting studied here.

6.1. Formulation of a time-inhomogenous MDP

We consider a class of finite-horizon time-inhomogeneous MDPs. This can be formulated as
a special case the paper’s general formulation as follows. Assume the state space factorizes
as S = S0 ∪ S1 ∪ S2 ∪ ⋯ ∪ SH−1 where the state always advances from some state st ∈ St
to st+1 ∈ St+1 and the process terminates with probability 1 in period H. For notational
convenience, we assume each set S0, ...,SH−1 contains an equal number of elements. This

5. A tabular representation for RLSVI means that Qθ = θ ∈ R
∣S∣×∣A∣ and Qθ(s, a) = θs,a.

24

Deep Exploration via Randomized Value Functions

is stated formally in the next assumption, which is maintained for all statements in this
section.

Assumption 2 (Finite-horizon time-inhomogeneous MDP)
The state space factorizes as S = S0 ∪ S1 ∪ S2 ∪ ⋯ ∪ SH−1 where ∣S0∣ = ⋯ = ∣SH−1∣ < ∞. For
any MDP M= (S,A,R,P, ρ),

∑
s′∈St+1

Ps,a(s
′
) = 1 ∀t ∈ {0, ...,H − 2}, s ∈ St, a ∈ A,

and

∑
s′∈S
Ps,a(s

′
) = 0 ∀s ∈ SH−1, a ∈ A.

Each state s ∈ St can be written as a pair s = (t, x) where t ∈ {0, ...,H − 1} and x ∈ X =

{1, ..., ∣S0∣}. Similarly, a policy π ∶ S → A can be viewed as a sequence π = (π0, ..., πH−1)

where πt ∶ x ↦ π((t, x)). Our notation can be specialized to this time-inhomogenous prob-
lem, writing transition probabilities as Pt,x,a(x

′) ≡ P(t,x),a((t + 1, x′)) and reward probabil-
ities as Rt,x,a,x′(r) ≡ R(t,x),a,(t+1,x′)(r). For consistency, we also use different notation for
the optimal value function, writing

V π
M,t(x) ≡ V

π
M((t, x))

and define V ∗
M,t(x) ∶= maxπ V

π
M,t(x). Similarly, we can define the state-action value function

under the MDP at timestep t ∈ {0, ...,H − 1} by

Q∗
M,t(x, a) = E[rt+1 + V

∗
M,t+1(xt+1) ∣ M, xt = x, at = a] ∀x ∈ X , a ∈ A.

This is the expected reward accrued by taking action a in state x and proceeding optimally
thereafter.

Upon choosing an action, the algorithm observes a pair o = (x′, r) consisting of a state
transition and a reward. We will refer to this pair o as an outcome of the decision. Assump-
tions about the distribution of rewards and state-transitions can be more compactly written
as an assumption about outcome distributions. We study the regret of RLSVI under the
following Bayesian model for the MDPM. This assumption is not required for some of the
results in this section, and we will specify when it is needed.

Assumption 3 (Independent Dirichlet prior for outcomes)
Rewards take values in {0,1} and so the cardinality of the outcome space is ∣X ×{0,1}∣ = 2∣X ∣.
For each, (t, x, a) ∈ {0, ...,H −2}×X ×A, the outcome distribution is drawn from a Dirichlet
prior

P
O
t,x,a(⋅) ∼ Dirichlet(α0,t,x,a)

for α0,t,x,a ∈ R
2∣X ∣
+ and each POt,x,a is drawn independently across (t, x, a). Assume there is

β ≥ 3 such that 1Tα0,t,a,x = β for all (t, x, a).

25

Osband, Van Roy, Russo, Wen

6.2. Bayesian regret bound

The following theorem is the main result of this section, and establishes a polynomial bound
on the Bayesian regret of RLSVI.

Theorem 1 (Bayesian regret bound for RLSVI)
Consider an RLSVI agent with an infinite buffer, greedy actions and learn grlsvi with
tabular representation.6 Under Assumption 3 with β ≥ 3, if this version of RLSVI is applied
with planning horizon H, and parameters v = 3H2, θ̄ =H1 and v/λ = β, then for all L ∈ N,

(6.1) BayesRegret(RLSVIθ̄,v,λ, L) ≤ 6H2
√
β∣X ∣∣A∣L log+(1 + ∣X ∣∣A∣HL) log+ (1 +

L

∣X ∣∣A∣
) ,

and

BayesRegret(RLSVIθ̄,v,λ, L) ≤ 5βH3
∣X ∣∣∣A∣

√
log+(1 + ∣X ∣∣A∣HL) log+ (1 +

L

∣X ∣∣A∣
)(6.2)

+2H2
√

6∣X ∣∣A∣L log(∣X ∣∣A∣)

where log+(x) = max{1, log(x)}.

Let us focus on the first bound given in equation (6.1). The parameter β governs the relative
strength of prior mean θ̄ in the Q-functions sampled by RLSVI. We typically think of β as a
constant, reflecting situations with weak prior knowledge of the optimal value function that
does not grow with variables H,S,A,L. In this case, this regret bound is Õ(H2

√
∣X ∣∣A∣L)

where Õ ignores poly-logarithmic factors. Note that since ∣S0∣ = ... = ∣SH−1∣ = ∣X ∣ then
∣S∣ = ∣X ∣H and for T = LH denoting the number of periods,

BayesRegret(RLSVIθ̄,v,λ, L) = Õ(H
√

∣S∣∣A∣T).

This bound reveals that RLSVI requires a number of episodes that is just linear in the
number of states to reach near optimal performance. Indeed, it is possible to guarantee
cumulative Bayesian regret less than Lε with a value of L that scales with ∣X ∣/ε2. In general,
at least order ∣X ∣2 samples are required to learn the transition kernel Pt,x,a. Therefore, for
large ∣X ∣ we prove that RLSVI learns to make near-optimal decisions using fewer samples
than would be required to learn the transition dynamics of the MDP.

It is interesting to compare this Bayesian regret bound with bounds that have been
established for other tabular reinforcement learning algorithms. The results of Bartlett and
Tewari (2009) and Jaksch et al. (2010) are not directly comparable to the bound established
for RLSVI, as they develop bounds on minimax, rather than Bayesian regret, and study
classes of MDPs satisfying recurrence assumptions, rather than episodic MDPs. However,
it is worth noting that because these algorithms attempt to represent each transition prob-
ability Pt,x,a(x

′) accurately, applying their analysis to our problem yields a regret bound of

Õ(H2∣X ∣
√

∣A∣L), which has is larger dependence on ∣X ∣.
The second bound given in equation (6.2) reveals the dependence of regret on β more

precisely. This bound is Õ(βH3∣X ∣∣A∣ +H2
√

∣X ∣∣A∣L). The first term in this regret bound

6. learn grlsvi is learn rlsvi (Algorithm 4) with additive Gaussian reward noise of variance v (5.5).
A tabular representation for RLSVI means that Qθ = θ ∈ R

∣S∣×∣A∣ and Qθ(s, a) = θs,a.

26

Deep Exploration via Randomized Value Functions

can roughly be thought of as a bound on the regret incurred throughout an initial phase
of the algorithm, during which it gathers data that overwhelms the prior mean. When the
number of episodes L is large, the dominant term is the second one, which is Õ(H2

√
∣X ∣∣A∣L)

and has no dependence on β.

6.3. Stochastic Bellman operators

Any state-action value function Q ∈ R∣X ∣∣A∣ induces a value function V (x) = maxa∈AQ(x, a)
that maps each state to a real number. To simplify the analysis, it is useful to introduce
nonstandard notation for the value function over outcomes o = (r, x).

Definition 2 (Induced value function)
For a state-action value function Q ∈ R∣X ∣∣A∣ define the corresponding value function VQ ∈

R2∣X ∣ over outcomes by VQ(r, x
′) ∶= r +maxa∈AQ(x′, a) for all x′ ∈ X and r ∈ {0,1}.

It is useful to also keep notation for the empirical distribution over observed outcomes. Let

D`−1(t, x, a) = {(rkt+1, x
k
t+1) ∶ k < `, x

k
t = x, a

k
t = a}

be the set of data observed up to episode ` when action a was chosen in (t, x), and set
n`(t, x, a) = ∣D`−1(t, x, a)∣ to be number of past observations of the triple (t, x, a). For ease
of notation we will write y for the timestep, state, and action y ∶= (t, x, a). Denote by
P̂O`,y(r

′, x′) the empirical distribution over outcomes (r′, x′) in the dataset D`−1(y).

This section introduces the Bellman operator underlying the MDP M and a notion of
a Bellman operator that underlies the recursion defining RLSVI. Due to the randomness in
M under Assumption 3 and the Gaussian noise added by RLSVI iterations both of these
can be viewed as stochastic Bellman operators, as applying one of these operators to a state
action value function Q ∈ R∣X ∣∣A∣ generates a random state-action value function as output.

True Bellman Operator. For Q ∶ X × A → R the true Bellman operator at timestep t
applied to Q is defined by

FM,tQ(x, a) = E[rt+1 +max
a′∈A

Q(xt+1, a
′
) ∣ M, xt = x, at = a]

= E[VQ(rt+1, xt+1) ∣ M, xt = x, at = a]

= V T
Q P

O
t,x,a.

Applying FM,t backward in time produces a sequence of optimal state-action value functions
satisfying Q∗

M,H = 0 and the Bellman equation Q∗
M,t = FM,tQ

∗
M,t+1 for t < H. Under

Assumption 3, this can be viewed as a randomized Bellman operator due to the randomness
in the MDP M.

Under Assumption 3, the posterior transition probabilities are distributed as

P
O
y (⋅)∣H`−1 ∼ Dirichlet(α`,y)

where

(6.3) α`,y = α0,y + n`(y)P̂
O
`,y ∈ R

2∣X ∣

27

Osband, Van Roy, Russo, Wen

for any triple y = (t, x, a). These determine the posterior mean of POy as a weighted linear
combination of the prior and the empirical observations:

E[P
O
y ∣ H`−1] =

α0,y + n`(y)P̂
O
`,y

β + n`(y)
.

Bellman operator of RLSVI. In episode `, we can define a notion of a Bellman operator
underlying the recursion of RLSVI. Define

F`,tQ(x, a) ∶= σ2
` (t, x, a)

⎛
⎜
⎜
⎜
⎝

θ̄t,x,a

λ
+

1

v

⎛
⎜
⎜
⎜
⎝

∑
(r,x′)∈

D`−1(t,x,a)

r +max
a′∈A

Q(x′, a′)

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

+w`(t, x, a)

σ2
` (t, x, a) = (

1

λ
+
n`(t, x, a)

v
)

−1

=
v

n`(t, x, a) + v/λ

w`(t, x, a) ∣ H`−1 ∼ N(0, σ2
` (t, x, a))

where w`(y)/σ`(y) ∼ N(0,1) is drawn independently across episodes ` and triples y =

(t, x, a).

In episode ` RLSVI generates a sequence of state-action value functions Q`,1, ...,Q`,H
where Q`,H = 0 ∈ R∣X ∣∣A∣ consists of all zeros and for all t < H, Q`,t = F`,tQ`,t+1. RLSVI
chooses actions greedily with respect to this sequence of state-action value functions. Note
that because of the Gaussian sampling noise, the action arg maxa∈AQ`(x, a) is unique with
probability one for any x and `. Therefore the policy applied by RLSVI in an episode is
completely determined by the state-action value functions it samples.

We can also express the RLSVI Bellman update in a simple way using the empirical
distribution P̂O`,y over past outcomes resulting from y = (t, x, a). We have

∑
(r,x′)∈D`−1(y)

(r +max
a′∈A

Q(x′, a′)) = n`(y)V
T
Q P̂

O
`,y.

Direct calculation gives the following alternate expression

(6.4) F`,tQ(x, a) =
(v/λ)θ̄ + n`(y)V

T
Q P̂

O
`,y

(v/λ) + n`(y)
+w`(y) ∀y = (t, x, a).

This shows that the Bellman update of RLSVI differs from the empirical Bellman update
V T
Q P̂

O
`,y in two ways: there is slight regularization toward the prior mean θ̄, and more

importantly, RLSVI adds independent Gaussian noise to each update.

6.4. Optimism and regret decompositions

The next lemma forms a crucial element of the proof.

Lemma 3 (Planning Error to On Policy Bellman Error)
Let Q0,Q1,Q2, ...,QH ∈ R∣X ∣∣A∣ be any sequence with QH = 0 ∈ R∣X ∣∣A∣ and take π = (π0, π1, ..., πH−1)

28

Deep Exploration via Randomized Value Functions

to be a policy with πt(x) ∈ arg maxa∈AQt(x, a) for all x. Then for any MDP M and initial
state x ∈ X ,

Q0(x,π0(x)) − V
π
M,0(x) = EM,π [

H−1

∑
t=0

(Qt − FM,tQt+1)(xt, at) ∣ x0 = x] .

Remark 4 To interpret this lemma, consider an algorithm that generates a sequence of
state-action value functions Q0, ...,QH ∈ R∣X ∣∣A∣ and chooses actions greedily with respect to
this sequence. We can interpret Q0(x,π0(x)) to be the algorithm’s estimate of the value of
following this greedy policy throughout the episode from a starting state x, while V π

M,0(x)
denotes the true expected value. One can interpret Qt − FMQt+1 as the error in Bellman’s
equation at stage t. The right hand side of of the equation in Lemma 3 measures Bellman
error on policy, i.e. at the states and actions that the agent is expected to sample by following
the policy throughout the episode. This lemma says that the prediction Q0(x,π0(x)) can be
far from the true value function only when on policy Bellman error is large.

Lemma 3 is a powerful tool for studying the regret of optimistic algorithms. The regret
of the policy π in Lemma 3 incurred in a single episode can always be decomposed as

V ∗
M,0(x) − V

π
M,0(x) = (max

a∈A
Q∗
M,0(x, a) −max

a∈A
Q0(x, a)) + (max

a∈A
Q0(x, a) − V

π
M,0(x)) ,

where we have used the fact that V ∗
M,0(x) = maxa∈AQ

∗
M,0(x, a). The second term in

this decomposition can be rewritten using Lemma 3. In particular, for any sequence
Q0, ...,QH ∈ R∣X ∣∣A∣ with QH = 0 and policy π = (π0, ..., πH−1) under which actions πt(x) =
arg maxa∈AQt(x, a) are chosen greedily with respect these Q–functions, regret can be de-
composed as follows:

V ∗
M,0(x) − V

π
M,0(x) = maxa∈AQ

∗
M,0(x, a) −maxa∈AQ0(x, a) (pessimism of Q0)

+ EM,π [∑
H−1
t=0 (Qt − FM,tQt+1)(xt, at) ∣ x0 = x] (on policy Bellman error).(6.5)

If the function Q0 is optimistic at an initial state x, in the sense that maxaQ0(x, a) ≥

maxaQ
∗
M,0(x, a), then regret in the episode is bounded by on policy Bellman error under

(Q0, ...,QH).
One can apply this regret decomposition to study RLSVI by taking (Q0, ...,QH) to be

the sequence (Q`,0, ...,Q`,H) generated by RLSVI in some episode `. On policy Bellman
error can be simplified further by plugging in Q`,t = F`,tQ`,t+1. The next corollary of Lemma
3 then follows by taking expectations on both sides of equation (6.5).

Corollary 5 (Optimistic regret bounds)
For any episode ` ∈ N, if

(6.6) E [max
a∈A

Q`,0(x
`
0, a)] ≥ E [max

a∈A
Q∗
M,0(x

`
0, a)]

then

E [V ∗
M,0(x

`
0) − V

π`
M,0(x

`
0)] ≤ E [

H

∑
t=0

(F`,tQ`,t+1 − FM,tQ`,t+1)(x
`
t, a

`
t)] .

Corollary 5 forms the core of our analysis. The next section establishes that (6.6) holds
in every episode ` ∈ N. We then complete the proof by bounding the cumulative on policy
Bellman error throughout L episodes.

29

Osband, Van Roy, Russo, Wen

6.5. Stochastic optimism

Our goal is to show equation 6.6 holds when RLSVI is applied with appropriate parameters.
We will instead prove that under Assumption 3 the stronger condition that

E [max
a∈A

Q`,0(x
`
0, a) ∣ H`−1] ≥ E [max

a∈A
Q∗
M,0(x

`
0, a) ∣ H`−1]

holds for any history H`−1. By the tower property of conditional expectation, this clearly
implies equation (6.6).

As highlighted in Subsection 6.3, both Q`,0 = F`,0⋯F`,H−10 and Q∗
M,0 = FM,0⋯FM,H−10

are calculated through recursive backward application of stochastic Bellman operators. The
distributions of Q`,0 and Q∗

M,0 generated in this fashion is complicated and difficult to study
directly. Instead, we study properties of the stochastic Bellman operators themselves. We
establish a strong sense in which F`,t generates random Q-functions F`,tQ that are optimistic
compared to those generated by applying FM,t to Q. We then show this optimism is
preserved under recursive application of the stochastic Bellman operators, which will imply
the optimism of the final iterate Q`,0. This strong notion of optimism is defined below.

Definition 6 (Stochastic optimism)
A random variable X is stochastically optimistic with respect to another random variable
Y , written X ⪰SO Y , if for all convex increasing functions u ∶ R→ R

(6.7) E[u(X)] ≥ E[u(Y)].

This definition closely mirrors that of “second order stochastic dominance”, which is
widely used in decision theory (Hadar and Russell, 1969). A random payout X is second
order stochastically dominant with respect to Y if (6.7) holds for all concave increasing
function u. This means that any rational risk-averse agent prefers X to Y , while X ⪰SO Y
implies that any rational risk-loving agent prefers X to Y . Intuitively, this requirement
means that draws of X generate payouts that are larger and noisier than Y . Our goal then
is to show if RLSVI is applied with appropriate parameters, it generates iterates that are
larger and noisier than the true Q − functions.

Example 2 (Stochastic optimism in Gaussian random variables)
If X ∼ N(µX , σ

2
X) and Y ∼ N(µY , σ

2
Y) then X ⪰SO Y if and only if µX ≥ µY and σ2

X ≥ σ2
Y .

The following observation is key to our analysis.

Lemma 7 (Preservation of optimism under convex operations)
For any two collections (X1, ...,Xn) and (Y1, ..., Yn) of independent random variables with
Xi ⪰SO Yi for each i ∈ {1, ...n} and any convex increasing function f ∶ Rn → R,

f(X1, ...,Xn) ⪰SO f(Y1..., Yn).

Two special cases of Lemma 7 imply that the partial ordering of stochastic optimism is
preserved under convolution and maximization. In particular, for any independent random

30

Deep Exploration via Randomized Value Functions

variables (X,Y,Z) if X ⪰SO Y we can conclude7 X + Z ⪰SO Y + Z. For two pairs of
independent random variables (X1,X2) and (Y1, Y2) with X1 ⪰SO Y1 and X2 ⪰SO Y2,

max{X1,X2} ⪰SO max{Y1, Y2}.

This implies the following monotonicity property of the Bellman operator F`,t underlying
RLSVI. This will later enable us to show that if initial iterates of RLSVI are stochastically
optimistic, then this optimism is preserved under recursive application of the stochastic
Bellman operators F`,0⋯F`,H−1.

Lemma 8 (Monotonicity)
Fix two random Q functions Q1,Q2 ∈ R∣X ∣∣A∣. Suppose that conditioned on H`−1, for each
i = 1,2 the entries of Qi(x, a) are drawn independently across x, a, and drawn independently
of the RLSVI noise terms w`(t, x, a). Then

Q1(x, a) ∣ H`−1 ⪰SO Q2(x, a) ∣ H`−1 ∀(x, a) ∈ X ×A

implies

F`,tQ1(x, a) ∣ H`−1 ⪰SO F`,tQ2(x, a) ∣ H`−1 ∀(x, a) ∈ X ×A, t ∈ {0, ...,H − 1}.

Proof Conditioned on H`−1,

F`,tQ(x, a) =
σ2
` (t, x, a)θ̄t,x,a

λ
+
σ2
` (t, x, a)

v

⎛
⎜
⎜
⎜
⎝

∑
(r,x′)∈

D`−1(t,x,a)

r +max
a′∈A

Q(x′, a′)

⎞
⎟
⎟
⎟
⎠

+w`(t, x, a)

is a convex function of (Q(x′, a′))x′∈X ,a′∈A convolved with the independent noise term
w`(t, x, a). The result therefore follows by Lemma 7.

Consider the random variable Y = P TV where V ∈ Rn and P ∼ Dirichlet(α). Then, Y
has mean V Tα/1Tα. The size of its fluctuations depends on how concentrated P is around
its mean, captured by the pseudocount 1Tα = ∑

n
i=1 αi, and spread of the elements in V ,

captured by Span(V) ≡ maxi Vi −minj Vj . The next lemma shows that a Gaussian random
variable large enough mean and variance is stochastically optimistic with respect to Y . This
result is established in the appendix.

Lemma 9 (Gaussian vs Dirichlet optimism)
Let Y = P TV for V ∈ Rn fixed and P ∼ Dirichlet(α) with α ∈ Rn+ and ∑ni=1 αi ≥ 3. Let

X ∼ N(µ,σ2) with µ ≥
∑ni=1 αiVi
∑ni=1 αi

, σ2 ≥ 3 (∑
n
i=1 αi)

−1 Span(V)2, then X ⪰SO Y .

With Lemma 9 in place, we can now establish a sense in which the Bellman operator
underlying RLSVI is stochastically optimistic relative to the true Bellman operator. Recall
definition 2, which defines the value over outcomes (r, x′) under Q by VQ(r, x

′) ≡ r +
maxa′∈AQ(x′, a′).

7. This follows from Lemma 7 by looking at the pairs (X,Z) and (Y,Z) and taking f ∶ R2
→ R to be

f(x1, x2) = x1 + x2.

31

Osband, Van Roy, Russo, Wen

Lemma 10 (Stochastically optimistic operators)
Suppose Assumption 3 holds and RLSVI is applied with parameters (θ̄, v, λ) satisfying
(v/λ) = β. Then for any episode ` with history H`−1, time t ∈ {0, ...,H − 1}, and pair
(x, a) ∈ X ×A,

F`,tQ(x, a) ∣ H`−1 ⪰SO FM,tQ(x, a) ∣ H`−1

for any fixed Q ∈ R∣X ∣∣A∣ such that v ≥ 3Span(VQ)
2 and maxx∈X VQ(x) ≤ mint,x,a θt,x,a.

Remark 11 When Q(x, a) ≥ 0 for all (x, a), Span(VQ) ≤ ∥VQ∥∞ ≤ ∥Q∥∞ + 1. Therefore it
suffices that v ≥ 3(1 + ∥Q∥∞)2 and miny θ̄y ≥ ∥Q∥∞ + 1.

Proof Recall the Bellman update of Q under the true MDP M is

FM,tQ(x, a) = V T
Q P

O
t,x,a

For each y = (t, x, a), POy ∣H`−1 ∼ Dirichlet(α`,y) with α`,y = α0,y+n`(y)P̂
O
`,y ∈ R

2∣X ∣. Similarly,
for each y = (t, x, a), plugging in β = v/λ we have

F`,tQ(x, a) ∣ H`−1 ∼ N(µy, σ
2
y)

where

µy ≡
βθ̄y + n`(y)V

T
Q P̂

O
`,y

β + n`(y)
σ2
y ≡

v

n`(y) + β
.

The result follows from Lemma 9 if we establish σ2
y ≥ (1Tα`,y)

−1Span(VQ)
2 and µy ≥

V T
Q α`,y/1

Tα`,y. We have

3 ⋅ Span(VQ)
2

1Tα`,y
=

3 ⋅ Span(VQ)
2

β + n`(y)
≤ σ2

y

because of the assumption that v ≥ 3 ⋅ Span(VQ)
2. Next we have

V T
Q α`,y

1Tα`,y
=
V T
Q α0,y + n`(y)V

T
Q P̂

O
y

β + n`(y)
≤
βmaxx∈X VQ(x) + n`(y)V

T
Q P̂

O
y

β + n`(y)
≤ µy

because of the assumption that VQ(x) ≤ miny θ̄y for all x.

Lemmas 8 and 10 together imply the stochastic optimism of the state-action value functions
Q`,0 generated by RLSVI.

Corollary 12 If Assumption 3 holds and RLSVI is applied with parameters (θ̄, v, λ) satis-
fying (v/λ) = β, v ≥ 3H2 and miny θ̄y ≥H,

Q`,0(x, a) ∣ H`−1 ⪰SO Q
∗
M,0(x, a) ∣ H`−1

for any history H`−1 and state-action pair (x, a) ∈ X ×A.

32

Deep Exploration via Randomized Value Functions

Proof To reduce notation, we prove this for episode ` = 1, but the proof follows identi-
cally for general ` by conditioning on the history H`−1 at every step. Recall that Q1,0 =

F1,0F1,1⋯F1,H−10 and Q∗
M,0 = FM,0FM,1⋯FM,H−10.

By Lemma 10,

(F1,H−10)(x, a) ⪰SO (FM,H−10)(x, a) ∀x, a.

Proceeding by induction, suppose for some t ≤H − 1

(F1,t+1F1,t+2⋯F1,H−10) (x, a) ⪰SO (FM,t+1FM,t+2⋯FM,H−10) (x, a) ∀x, a.

Combining this with Lemma 8 shows

F1,t (F1,t+1F1,t+2⋯F1,H−10) (x, a) ⪰SO F1,t (FM,t+1FM,t+2⋯FM,H−10) (x, a)

⪰SO FM,t (FM,t+1FM,t+2⋯FM,H−10) (x, a)

where the final step uses Lemma 10 combined with the fact that for any t ∈ {0, ..,H − 1},

Q ≡ FM,t+1FM,t+2⋯FM,H−10

satisfies 3 ⋅ Span(VQ) ≤ 3H ≤ v and Q ≤ θ̄.

6.6. Analysis of on-policy Bellman error: proof of Theorem 1

The proof relies on the following bound. For standard Gaussian random variables X1, ...,Xn,
a basic Gaussian maximal inequality implies E[maxiXi] ≤

√
2 log(n). The next lemma is a

generalization of this result, which can be seen by taking J = arg maxjXj . This lemma is
implied by Proposition A.1. of (Russo and Zou, 2015).

Lemma 13 Let (X,J) be jointly distributed random variables where X ∈ Rn follows a
multivariate Gaussian distribution with Xj ∼ N(0, σ2

j) and J ∈ {1, ...n} is a random index.
Then

E[XJ] ≤

√

2 log(n)E[σ2
J].

Applying this leads to two bounds that are used in our analysis. The first bounds the
noise terms w`(t, xt, at) of RLSVI at the state and action visited by RLSVI, and the second
bounds the norm of the value function sampled by RLSVI.

Corollary 14 For each t ≤H and ` ≤ L

E[w`(t, xt, at)] ≤
√

2 log(∣A∣∣X ∣)E[σ`(t, xt, at)2].

Corollary 15 If RLSVI is applied with parameters (λ, v, θ̄) with v/λ = β ≥ 3 , v = 3H2 and
θ̄ =H1,

E[max
`≤L,t<H

∥VQ`,t+1∥∞] ≤ 2H +H2
√

2 log(1 + ∣X ∣∣A∣HL).

33

Osband, Van Roy, Russo, Wen

A proof of this corollary is provided in the appendix. We now complete the regret analysis
of RLSVI and establish Theorem 1.
Proof Set

∆` = V
∗
M,0(x

`
0) − V

π`
M,0(x

`
0).

By Corollary 5 and Corollary 12,

E [
L

∑
`=1

∆`] ≤ E [
L

∑
`=1

H−1

∑
t=0

(F`,tQ`,t+1 − FM,tQ`,t+1)(x
`
t, a

`
t)] .

The posterior-mean Bellman update of Q under M is

E[FM,tQ(x, a)∣H`−1] = V
T
Q E[P

O
t,x,a∣H`−1].

Recall as well that for each y = (t, x, a), POy ∣H`−1 ∼ Dirichlet(α`,y) with

α`,y = α0,y + n`(y)P̂
O
`,y ∈ R

2∣X ∣.

Since the prior over POt,x,a(⋅) is distributed independently across states and actions (t, x, a),
and (t, x, a) cannot be visited prior to period t in any episode, we have also that

P
O
t,x,a∣H`−1, x

`
0, a

`
0, .., x

`
t, a

`
t ∼ Dirichlet(α`,y).

As a result

E[FM,tQ(x, a)∣H`−1, x
`
0, a

`
0, .., x

`
t, a

`
t] = E[FM,tQ(x, a) ∣ H`−1]

=
V T
Q α0,y + n`(y)V

T
Q P̂

O
`,y

β + n`(y)

≥
−β∥VQ∥∞
β + n`(y)

+
n`(y)V

T
Q P̂

O
`,y

β + n`(y)
.

By equation (6.4), we find

F`,tQ(x, a) −E[FM,tQ(x, a)∣H`−1, x
`
1, a

`
1, .., x

`
t, a

`
t] ≤

β(∥θ̄∥∞ + ∥VQ∥∞)

β + n`(y)
+w`(y).

Then,

E [∆`] ≤ E [
H−1

∑
t=0

(F`,tQ`,t+1 − FM,tQ`,t+1)(x
`
t, a

`
t)]

= E [
H−1

∑
t=0

((F`,tQ`,t+1)(x
`
t, a

`
t) −E[FM,tQ`,t+1(x

`
t, a

`
t) ∣ H`−1, x

`
1, a

`
1, .., x

`
t, a

`
t])]

≤ E [
H−1

∑
t=0

β(∥θ̄∥∞ + ∥VQ`,t+1∥∞)

β + n`(t, x
`
t, a

`
t)

+w`(t, x
`
t, a

`
t)]

where the second inequality uses that Q`,t+1 and FM,t are independent conditioned on H`t.
Summing over episodes ` ∈ {1, .., L} implies

E
L

∑
`=1

∆` ≤ E
⎡
⎢
⎢
⎢
⎢
⎣

β (∥θ̄∥∞ + max
`≤L,t<H

∥VQ`,t+1∥∞) ∑
t<H,`≤L

1

β + n`(t, x
`
t, a

`
t)
+ ∑
`≤L,t≤H

w`(t, x
`
t, a

`
t)

⎤
⎥
⎥
⎥
⎥
⎦

.

34

Deep Exploration via Randomized Value Functions

Each term can be bounded separately. By Corollary 14

E ∑
`≤L,t<H

w`(t, x
`
t, a

`
t) ≤ E ∑

`≤L,t<H
σ`(t, x

`
t, a

`
t)
√

2 log(∣X ∣∣A∣) = E ∑
`≤L,t<H

¿
Á
ÁÀ 2v log(∣X ∣∣A∣)

β + n`(t, x
`
t, a

`
t)

(a)
≤ 2

√
2vH2∣X ∣A∣L log(∣X ∣∣A∣)

= 2H2
√

6∣X ∣A∣L log(∣X ∣∣A∣)

where the second to last inequality is proved in Lemma 16, provided below. The other term
can be bounded as,

E
⎡
⎢
⎢
⎢
⎢
⎣

β (∥θ̄∥∞ + max
`≤L,t≤H

∥VQ`,t+1∥∞) ∑
t≤T,`≤L

1

β + n`(t, x
`
t, a

`
t)

⎤
⎥
⎥
⎥
⎥
⎦

(b)
≤ β (∥θ̄∥∞ +E [max

`≤L,t≤H
∥VQ`,t+1∥∞])H ∣X ∣∣A∣ log(1 +

L

∣X ∣∣A∣
)

(c)
≤ β (H + 2H +H2

√
2 log(1 + ∣X ∣∣A∣HL))H ∣X ∣∣A∣ log(1 +

L

∣X ∣∣A∣
)

≤ 5βH3
∣X ∣∣∣A∣

√
log+(1 + ∣X ∣∣A∣HL) log(1 +

L

∣X ∣∣A∣
)

where the bound on the sum in inequality (b) is from Lemma 16 (proof in the Appendix),
and inequality (c) applies Corollary 15.

Lemma 16 If β ≥ 2 then with probability 1,

∑
`≤L
∑
t≤H

1

β + n`(t, x
`
t, a

`
t)

≤H ∣X ∣∣A∣ log(1 +
L

∣X ∣∣A∣
)

and

∑
`≤L
∑
t≤H

√
1

β + n`(t, x
`
t, a

`
t)

≤ 2
√
H2∣X ∣∣A∣L.

Together, the calculations above yield the regret bound

E
L

∑
`=1

∆` ≤ 5βH3
∣X ∣∣∣A∣

√
log+(1 + ∣X ∣∣A∣HL) log(1 +

L

∣X ∣∣A∣
) + 2H2

√
6∣X ∣A∣L log(∣X ∣∣A∣).

Unfortunately, this alone does not yield the desired bound of order Õ(H2
√

∣X ∣∣A∣L). To
complete the proof, we consider two cases. First suppose L ≥ 25βH2∣X ∣∣A∣. Then

E
L

∑
`=1

∆` ≤ H2
√

∣X ∣A∣L log+(1 + ∣X ∣∣A∣HL)(2
√

6 + 5βH
√

∣X ∣∣A∣/L log(1 +
L

∣X ∣∣A∣
))

≤ H2
√

∣X ∣∣A∣L log+(1 + ∣X ∣∣A∣HL)(2
√

6 +
√
β log+ (1 +

L

∣X ∣∣A∣
))

(∗)
≤ 6H2

√
β∣X ∣∣A∣L log+(1 + ∣X ∣∣A∣HL) log+ (1 +

L

∣X ∣∣A∣
)

35

Osband, Van Roy, Russo, Wen

which is the desired bound. When L ≤ 25H2∣X ∣∣A∣, we use the naive bound

E
L

∑
`=1

∆` ≤HL ≤H
√
L
√

25H2∣X ∣∣A∣ = 5H2
√
β∣X ∣∣A∣L,

which is also less than the term in (∗). This completes the proof of Theorem 1.

7. Computational studies

In Section 6 we established formal guarantees for a tabular version of RLSVI. This result
serves as a sanity check, demonstrating that RLSVI carries out efficient deep exploration,
but the tabular nature and prior structure of the setting limits the scope of our theoretical
results. Perhaps most importantly, the results do not apply when parameterized repre-
sentations are used to generalize across states and actions. In this section, we present
computational results that offer further assurances. In particular, we discuss results from a
series of experiments designed to enhance insight into the workings of RLSVI beyond the
scope of our theoretical analysis. The focus of these experiments is to improve understand-
ing, rather than to solve challenging problems. Nevertheless, we believe that observations
from these didactic examples will prove valuable toward the design of practical systems that
require the synthesis of efficient deep exploration with effective generalization.

7.1. Deep-sea exploration

We begin our computational experiments with an empirical study of the “deep-sea explo-
ration” problem from Example 1. This offers a simple illustration of the importance of deep
exploration. Although the associated MDP has only N2 states, dithering schemes require
a number of episodes that grows exponentially in N to effectively explore the environment.
Deep exploration approaches, on the other hand, can effectively explore the environment
within a sub-exponential number of episodes. Our results verify the efficacy randomized
value functions and that RLSVI carries out deep exploration.

7.1.1. Tabular representation

We begin with an investigation into RLSVI with a tabular representation. Our goal will be
to study the behavior of RLSVI in a simple setting similar to that addressed by Theorem
1. To do this, we generate random “deep-sea” environments according to Example 1 and
empirically evaluate performance over many simulations.

We apply RLSVI agent with infinite buffer, greedy actions and learn grlsvi8 with
a tabular representation. Specifically, each component of the parameter vector θ ∈ R∣S×A∣

provides a value estimate for one state-action pair. We set the tuning parameters to v =

H2/25, θ = 0, and λ = v. Note that, compared to the setting specified in Theorem 1
we rescaled v by a constant in order to accelerate learning in the deterministic deep-sea
environment. Further our prior parameter θ is not optimistic. This choice is not particularly
important in terms of performance on this task, in fact setting θ = H1 leads to almost

8. learn grlsvi is learn rlsvi (Algorithm 4) with additive Gaussian reward noise of variance v (5.5)

36

Deep Exploration via Randomized Value Functions

identical results. The reason we do not rely on an optimistic prior is to highlight the
practical efficacy of RLSVI even without optimistic prior. This will be important in later
sections where we study RLSVI in domains with generalization, for which the notion of an
universally ‘optimistic prior’ does not carry over from the tabular setting (Osband et al.,
2016b).

We compare the performance of RLSVI against two well-studied reinforcement learning
algorithms specifically designed to explore efficiently with tabular representations: UCRL2
(Jaksch et al., 2010) and PSRL (Osband et al., 2013). We similarly modify UCRL2 and
PSRL that accelerate learning in the deterministic deep-sea environment9. For each of the
algorithms our modifications reduce learning times but do not affect rates at which learning
times scale with problem size.

Figure 4: RLSVI is competitive with algorithms designed for tabular exploration (N = 10).

Figure 4 plots the average regret realized by RLSVI (specifically, learn grlsvi), UCRL2
and PSRL, over five seeds with a bomb and five seeds with treasure. Among the algorithms,
PSRL offers the lowest level of regret, followed by RLSVI, and then UCRL2. Hence, RLSVI
is competitive with these algorithms, which are designed to yield efficient exploration with
tabular representations.

One natural question is how this performance scales with the size N of the problem. To
answer this we study the “learning time,” defined to be the first episode where the average
regret per episode is less than 0.5. Formally,

(7.1) Learning time(M∗,alg) ∶= min{L > 1 ∣
Regret(M∗,alg, L)

L
≤ 0.5} ,

This quantity is random, as it depends on the realization of M∗. For an algorithm with
regret bound Regret(M∗,alg, L) ≤

√
BL we would expect the learning time to be Õ(B).

The results of Theorem 1 suggests an Õ(
√
H3SAL) average scaling when the envi-

ronment is drawn from a symmetric Dirichlet distribution. We can contrast this to ex-
isting performance guarantees for UCRL2 which, when adapted to this setting, provide a

9. Specifically, we update the confidence sets for PSRL and UCRL2 as if each observed transition (s, a, r, s′)
occured identically 10 times repeatedly. We also further rescale the confidence sets for UCRL2 to be 10
times smaller than prescribed by the analysis.

37

Osband, Van Roy, Russo, Wen

Õ(
√
H3S2AL) regret bound. For the deep-sea problem, H = N , S = N2 and A = 2, and

the bounds therefore suggests that learning times scale as Õ(N5) for RLSVI and Õ(N7)

for UCRL2. Figure 5 shows that observed performance to a large degree matches per-
formance suggested by these theoretical results. The best known bound for PSRL also
suggests a Õ(N5) scaling. However, recent work suggests that this bound is loose (Osband
and Van Roy, 2017, 2016), and the associated plot in Figure 5 strengthens the case for that
hypothesis.

Figure 5: Scaling with tabular learning.

7.1.2. Linearly parameterized value functions

Section 7.1.1 presents evidence of the efficacy of RLSVI with a tabular representation.
However, the value of RLSVI lies in its ability to function well with parameterized value
functions that generalize across states and actions. Model-based algorithms such as UCRL2
or PSRL do not accommodate this form of generalization.

In this subsection, we continue our investigation of the “deep-sea” environment, but now
using linear parameterized representations. To do this, we generate a random subspace of
dimension D that is specifically designed to include the true optimal value function of the
deep-sea environment irrespective of whether there is treasure or a bomb. We then generate
a random basis of D unit vectors φ1, . . . , φD ∈ R∣S∣∣A∣ that span the space. Each vector φd can
be thought of as representing a feature that assigns a numerical value to each state-action
pair. As such, the representation can be thought of as a linear combination of features,
with a dimensional parameter vector θ ∈ RD encoding feature weighs: Q̃θ = ∑

D
d=1 θdφd.

To facilitate efficient computation in the deep-sea problem we restrict theseD-dimensional
features so that each is nonzero only at state-action pairs corresponding to one row of the
grid of states. We only consider values of D that are multiples of N , and for each row assign
M = D/N features to generate nonzero values. With this representation, RLSVI learns a
separate M -dimensional representation for each row, avoiding a costly dimension D inver-
sion. Figure 6 plots realized regret generated by learn grlsvi with λ = 100, v = 0.01, and
N = 50. Once again, we simulate this problem for five random seeds with treasure and five
random seeds with a bomb and report the average regret. These results demonstrate that

38

Deep Exploration via Randomized Value Functions

per-episode regret vanishes much faster than any dithering method, which would expect at
least 250 ≃ 1015 episodes to even reach the chest!

Figure 6: Regret with N = 50 and M = 50

It is the cases with treasure rather than a bomb that bind regret and learning times.
For this reason we will only present results associated with the former case from here on
to save on computation. Figure 7(a) plots learning times as a function of N for different
numbers of features M per row. As one would expect, the learning time increases with the
number of features. Importantly, this scaling with chain length N is graceful and grows
much more slowly than even the lower bound for dithering methods O(2N). Figure 7(b)
plots the same data on a log-log scale to highlight this sub-exponential growth. We can see
empirically that the slope on this scale is approximately two, implying that learning time
scales approximately quadratically in N .

(a) Raw values (b) Log-log plot shows scaling

Figure 7: Effect of problem size N on learning time.

For another perspective on scaling, Figure 8 presents plots of learning times as a function
of the number of features M , for several values of N . In each case, the learning time appears
to grow linearly in the number of features up until some threshold and then increase much
more slowly beyond this point. The vertical dotted lines in Figure 8 appear at M = 2N .
Empirically, this seems to be the point beyond which the incremental learning time incurred
with additional features is small. Intuitively, one might speculate that this is reasonable
because 2N is equal to the maximum number of states-action pairs which can be observed
in any time period. Beyond this point, additional features must be linearly dependent.

39

Osband, Van Roy, Russo, Wen

Figure 8: Scaling with number of features.

7.1.3. Misspecified representations

Let us now consider a more realistic setting in which the value function representation is
mis-specified in the sense that Q∗ is not equal to Q̃θ for any vector θ. We experiment
with a setting completely analogous to that of the previous section, except we add to each
feature vector φd a random vector ηd ∈ R∣S∣∣A∣. The random vector ηd is nonzero only only at
state-action pairs associated with the feature φd. Each nonzero noise component is sampled
from N(0, ψI). Hence, we make use of a representation of the form Q̃θ = ∑

D
d=1 θd(φd + ηd).

As the parameter ψ increases, the representation becomes increasingly misspecified.

Figure 9 plots cumulative regret of learn grlsvi with varying numbers of features and
degrees of misspecification over 5000 episodes. Our results are the average of 20 seeds for
each value of the noise scale ψ. These results indicate that RLSVI remains robust to some
degree of misspecification. However, at some point the model-misspecification becomes too
severe as the value of ψ increases depending upon the number of basis functions M . The
power of the representation increases with the number of features, and this enables RLSVI
to tolerate larger values of ψ. In the case M ≥ 2N random basis functions will span the
true value function with high probability. As expected, we observe that for M = 40,N = 20
RLSVI performs similarly well irrespective of ψ.

Figure 9: Robustness to misspecification with N = 20.

40

Deep Exploration via Randomized Value Functions

7.1.4. Parameter tuning

The computational results we have present in Sections 7.1.2 and 7.1.3 make use of particular
settings for the prior and noise variance parameters λ = 100, v = 0.01. In this section, we
study the dependence of results on these parameter settings. The deep-sea problem we have
considered is in some sense degenerate because each problem instance is deterministic. In
order to offer a more representative set of results pertaining to variance parameter tuning, we
will also consider a modified version of the deep sea problem where all reward observations
are corrupted by some N(0,1) noise.

Figure 10 plots the cumulative average regret after 5000 episodes over 10 random seeds
for various choices of prior and noise variance with N = 20 and M = 10. In both settings
with and without stochastic rewards, and for all choices of noise randomization, we can see
that prior variance which is too small can prohibit learning. In this problem, where our
prior θ = 0 is not informative, choosing even very large λ does not degrade performance.

Figure 10: Robustness to prior and noise variance parameters.

Figure 11 takes the same data as Figure 10 but investigates the sensitivity of RLSVI to
the noise randomization, for the choice λ = 100. We see that choice of the best-performing
noise variance v is largely dependent upon the scale of the noise in the actual environment.
When the underlying environment is deterministic there is no benefit to adding noise and
low values of v perform best. However, when the environment is stochastic choosing v on
the order of the variance of the noise in the environment is necessary to not fall victim
to unlucky observations. In both settings, bootstrapping performs competitively with the
ex-ante “best” choice of v but does not need to be specified in advance.

Figure 11: Bootstrap is competitive with the best choice of v across levels of noise.

41

Osband, Van Roy, Russo, Wen

To gain some more intuition for this parameter tuning we take this same data as Figure
11 and present the realized regret by random seed in Figure 12. We see v smaller than the
noise in the problem can lead to premature and sub-optimal convergence that never opens
the chest (and so leads to linear regret). Choices of v which are too large lead to slower
learning and more exploration, but do not lead to linear regret. We note that RLSVI with
v > 0 does not seem to significantly degrade in performance for stochastic rewards with
variance up to v. Once again, we see that randomization by bootstrap is competitive with
the best ex-ante choice of v but with one fewer parameter to tune.

Figure 12: Higher v is more robust to stochastic environments but learns more slowly.

The bootstrap learns the “right” noise variance, and beyond that, can even learn how it
should vary over states and actions. Further, Figure 13 plot learning times from applying
the learn brlsvi in the same settings to which learn grlsvi was applied to generate
Figures 6 and 7. These results suggest that learning times of learn brlsvi scale similarly
to those of learn grlsvi. In general, our results suggest that bootstrapping offers a natural
approach to setting an appropriate form of randomizing noise without prior knowledge.

(a) Scaling with N (b) Scaling with number of features.

Figure 13: Performance of the bootstrap scales similarly to learn grlsvi.

7.2. Deep exploration with deep learning

The experiments of Section 7.1 are designed to highlight several key properties of RLSVI in
a simple setting. These results demonstrate that RLSVI can successfully synthesize efficient

42

Deep Exploration via Randomized Value Functions

exploration with generalization. However, the context was a “toy” example in that the un-
derlying system involved a tractable number of states. Further, the algorithms we evaluate
in that section are not practical for large-scale learning problems for two reasons. First,
they recompute the whole history of data each episode and so have computational costs that
grow with the amount of data collected. Second, their performance is highly reliant upon
an accurate linear basis for the value function whereas many of the recent breakthroughs in
the field have come from so-called “deep” RL that uses deep neural networks for function
approximation in RL.

In this section we present computational results for deep exploration with a practi-
cal variant learn ensemble rlsvi together with neural network function approximation.
We begin with more experiments on the “deep sea” problem and show that a parallel
RLSVI strategy can recover performance qualitatively similar to full batch resampling, but
at a dramatically lower computational cost. Next we investigate the scaling properties of
RLSVI with nonlinear neural network representations and find that the performance can
successfully synthesize exploration with generalization in this setting. Finally, we apply
these findings to a difficult task in continuous control. We find that learn ensemble rlsvi

successfully demonstrates deep exploration together with complex nonlinear generalization.

7.2.1. RLSVI via ensemble sampling

In this section we apply learn ensemble rlsvi (Algorithm 8) for K = 1,5,10,20,40 and
with an ensemble buffer that stores the most recent 105 transitions. For update we use
update bootstrap (Algorithm 7) to approximate a “double or nothing” online bootstrap
(Owen and Eckles, 2012). We use a discounted TD loss with γ = 0.99, learning rate α = 10−3

and minibatch size of 128. For our value function family Q we consider two-layer MLP with
50 rectified linear units in each layer.

In place of explicit prior regularizationR we evaluate Q̃θk = f
MLP
θk

+fMLP
θ0
k

where fMLP is a

2-layer MLP and the parameters θk, θ
0
k are sampled independently from Glorot initialization

and henceforth θ0
k is held fixed (Glorot and Bengio, 2010; Osband et al., 2018). We found

that this randomization plus SGD training provide sufficient regularization for deep learning
without use of weight decay (Zhang et al., 2016; Bartlett et al., 2017). Using two separate
networks, one with fixed weights, is useful so that the SGD training cannot easily learn to
ignore the state input and learn Q = 0 as a degenerate global solution. More detail on this
specific prior mechanism for deep neural networks is available in Osband et al. (2018).

We apply this algorithm to “deep sea” problem with a raw pixel representation in
[0,1]N×N where the diver’s position is given by a 1 and all other entries zero. This problem
is by nature tabular and does not necessitate complex representation via neural network
however we use it as a simple example to investigate the importance of ensemble size K.
Figure 14 presents the performance for N = 25 averaged over 20 seeds. We see that even
a relatively small number of parallel estimates K can direct deep exploration and that,
for a problem of this size, the marginal benefits seem to plateau around K = 20. The
computational savings of this parallel approach can be quite significant. We compare the
cost of K = 20 parallel Q-networks each with O(1) computation per episode against a
naive learn brlsvi that computes H = 25 value functions each with Ω(L) computation
per episode.

43

Osband, Van Roy, Russo, Wen

Figure 14: Investigating ensemble size K for learn ensemble rlsvi on deep sea N = 25.

Our next set of experiments investigates the scalability of learn ensemble rlsvi with
different feature representations. We repeat the experiment of Figure 14 with K = 20
varying N = 5, ..,50 under three separate representations and averaged over 20 seeds. First
we consider the raw pixel representation as above; this is effectively a tabular problem.
Next, we consider the informative linear basis of Section 7.1.2 with M = 10; this learning
can be expedited through generalization. Finally, we consider the raw pixel representation
but alter the problem formulation so that the action 1 is always “go right”; the optimal
value function for this setting takes a particularly simple form and an optimal policy can
easily be happened upon through random weight initialization and without any learning.
Figure 15 shows that RLSVI with neural network architecture can exploit these feature
representations where they are present, but defaults to an approximately tabular learning
approach when they are not.

Figure 15: Log-log plot shows empirical scalings with different feature representations.

44

Deep Exploration via Randomized Value Functions

7.2.2. Cartpole swing up

In this section we consider the classic “cartpole” problem of a cart attached to a pole on a
frictionless rail. We modify the problem so that, as in previous sections, deep exploration
is crucial to finding rewarding states and thus learning the optimal policy. However, unlike
“deep sea” the underlying dynamics are not governed by a small finite MDP. The cart is
of mass M = 1 and the pole is mass m = 0.1 and length l = 1, with acceleration due to
gravity g = 9.8. At each timestep the agent can apply a horizontal force Ft to the cart.
The dynamics for this system are given by a second order differential equation in xt, the
horizontal position of the cart and θt, the angle of the pole from vertically upright at θ = 0,

τt =
Ft +

l
2 θ̇t

2
sin(θt)

m +M
, θ̈t =

g sin(θt) − cos(θt)τt
l
2
(4

3 −
m

m+M cos(θt)2)
, ẍ = τ −

m l
2 θ̈t cos(θt)

m +M
.(7.2)

Unlike the traditional cartpole problem, where the agent begins with the pole stood
upright and must learn to balance it; our agent begins each episode with the pole hanging
down and has to learn to swing it up. Concretely we interact with the environment through
the state st ∶= (θt, θ̇t, xt, ẋt, t) ∈ R5. Each episode begins with s0 = (π,0,0,0) + w for
wi ∼ Unif([−0.05,0.05]) i.i.d. in each component. We discretize the evolution of (7.2)
with timescale ∆t = 0.01 and present the choice of actions Ft ∈ {−10,0,10} for all t. The
reward structure of this task is specifically designed to necessitate deep exploration; each

timestep the agent pays a cost
∣Ft∣
1000 for its action but can receive a reward of 1 if the pole

is balanced upright and steady in the middle10. The ends of the rail at x = −5,5 are rigid
and immovable; an episode ends whenever t > 10.

Figure 16 presents results for DQN and a 50-50-MLP with rectified linear units with
linear annealing ε-greedy dithering from 1 to 0 over varying number of episodes. Irrespective
of annealing schedule, DQN is unable to gather informative data since it does not perform
deep exploration. In this environment, dithering strategies for exploration are insufficient
to gain information beyond the locally-attractive policy to remain motionless and receive a
reward of zero.

Figure 16: DQN with ε-greedy exploration simply learns to stay motionless.

10. Reward +1 received if cos(θ) > 0.95 with all of ∣θ̇∣, ∣x∣, ∣ẋ∣ ≤ 1.

45

Osband, Van Roy, Russo, Wen

Figure 17 presents the average episodic reward for an ensemble approach to RLSVI
with K = 20 and the same algorithmic approach as Section 7.2.1. We note that, unlike
DQN with ε-greedy exploration, RLSVI is able to learn a successful swing up policy with
an identical network architecture. In addition, we note that RLSVI implemented with
linear or single-layer Q-value functions is unable to learn a successful swing up policy. This
demonstrates the importance of both deep exploration and deep representation learning in
order for a successful application of deep RL in this setting. The results of Figures 16 and
17 are averaged over 20 seeds, with confidence intervals at 1 standard error of the mean.
We present visualization of this performance https://youtu.be/ia72VyW5MfI.

Figure 17: RLSVI with 2-layer neural network is able to learn a near-optimal policy.

The computational results we present in this paper are tailored to be simple and inter-
pretable, with a clear focus on the importance of deep exploration and the compatibility of
this approach with linear and nonlinear value function learning. Related work investigates
scaling up this approach in several arcade games including Tetris, Angry Birds, Atari 2600
as well as a model of recommendation systems (Osband et al., 2016b; Ibarra et al., 2016;
Osband et al., 2016a). We consciously choose to keep our empirical investigation concise
and the key results sanitary, but look forward to pushing the boundaries of large-scale
applications of “deep RL” via randomized value functions in future work.

8. Closing remarks

Much of the applied RL literature focuses on simulated systems and learning a good final
policy, potentially over billions or trillions of episodes. Assessed in this manner, perfor-
mance is driven largely by the investment of computational resources and simulation time;
not just how effectively a reinforcement learning algorithm makes decisions and interprets
observations. In many real systems, data collection is costly or constrained by the physical
context, and this calls for a focus on statistical efficiency. In these contexts it may be more
appropriate, for example, to evaluate algorithms over a fixed number of episodes.

Exploration is a key driver of statistical efficiency. As discussed in Section 4, there can
be an exponentially large difference in data requirements between an agent that explores via
dithering, as has commonly been done in past applications of reinforcement learning, and

46

https://youtu.be/ia72VyW5MfI

Deep Exploration via Randomized Value Functions

an agent that carries out deep exploration. In this paper, we have developed randomized
value functions as a concept that enables efficient deep exploration in conjunction with value
function learning methods commonly used in reinforcement learning.

Acknowledgements

This work was generously supported by a research grant from Boeing, a Marketing Research
Award from Adobe, and Stanford Graduate Fellowships, courtesy of PACCAR, Burt and
Deedee McMurty, and ST Microelectronics. We thank Emma Brunskill, Hamid Reza Maei,
and Rich Sutton for helpful discussions and Vikranth Dwaracherla, Xiuyuan Lu, Shuhui
Ku, and Kuang Xu for pointing out errors and ambiguities in earlier drafts, and more
broadly, students who participated in Stanford University’s 2017 and 2018 offerings of Re-
inforcement Learning, for feedback and stimulating discussions on this work. We also thank
John Aslanides, Albin Cassirer, Alex Pritzel, Charles Blundell and the rest of the team at
DeepMind for help with experiments, infrastructure and an engaging work environment.

47

Osband, Van Roy, Russo, Wen

APPENDIX

Appendix A. Proofs of technical lemmas

A.1. Proof of Lemma 3

Lemma 1 (Planning Error to Bellman Error) Let Q0,Q1,Q2, ...,QH ∈ R∣X ∣∣A∣ be any
sequence with QH = 0 ∈ R∣X ∣∣A∣ and take π = (π0, π1, ...) to be the policy πt(x) = arg maxa∈AQt(x, a)
for all a, x. Then for any MDP M and initial state x ∈ X ,

(A.1) Q0(x,π0(x)) − V
π
M(x) = EM,π [

H

∑
t=0

((Qt − FM,tQt+1)(xt, at)) ∣x0 = x)]

Proof Define the operator F πM,t at time t for the MDP M and policy π by

F πM,tQ(x, a) = E[rt+1 +Q(xt+1, πt+1(xt+1))∣M, xt = x, at = a].

Let QπM,0, ...,Q
π
M,H ∈ R∣X ∣∣A∣ be defined according to QπM,H = 0 and

QπM,t = F
π
M,tQ

π
M,t+1 t ∈ {0, ...,H − 1}.

Then QπM,0(x,π0(x)) = V
π
M(x) and, since πt(x) = arg maxaQt+1(x, a), F

π
M,tQt+1 = FM,tQt+1

for all t. We can therefore rewrite (A.1) as

Q0(x,π0(x)) −Q
π
M,0(x,π0(x)) = EM,π [

H−1

∑
t=0

((Qt − F
π
M,tQt+1)(xt, at)) ∣x0 = x)] .

We have

Q0 −Q
π
M,0 = Q0 − F

π
M,0Q1 + F

π
M,0Q1 −Q

π
M,0

= Q0 − F
π
M,0Q1 + F

π
M,0Q1 − F

π
M,0Q

π
M,1.

By definition, this means

(Q0 −Q
π
M,0)(x,π0(x)) = (Q0 − F

π
M,0Q1) (x,π0(x)) +EM,π[(Q1 −Q

π
M,1) (x1, a1)∣x0 = x].

The result follows by iterating this relation.

A.2. Proof of Lemma 7

Lemma 2 (Preservation under convex operations) For two collections (X1, ...,Xn)

and (Y1, ..., Yn) of independent random variables with Xi ⪰SO Yi for each i ∈ {1, ...n} and
any convex increasing function f ∶ Rn → R,

f(X1, ...,Xn) ⪰SO f(Y1..., Yn).

48

Deep Exploration via Randomized Value Functions

Proof The proof proceeds by induction on n. First consider the base case n = 1. Fix any
convex increasing function u ∶ R→ R. Then u ○ f is convex increasing and

E[u(f(X1))] ≥ E[u(f(Y1))].

Now suppose the result holds for any collection of n − 1 random variables. Fix any convex
increasing u ∶ R → R : Define the convex increasing functions UX ∶ R → R and UY ∶ R → R
by

UX(z) ≡ E[u(f(z,X2, ...,Xn))]

UY (z) ≡ E[u(f(z, Y2, ..., Yn))].

For each fixed z ∈ R, UX(z) ≥ UY (z) since

UX(z) = E[u(fz(X2, ..,Xn))] ≥ E[u(fz(Y2, .., Yn))] = UY (z)

where fz ∶ Rn−1 → R is the convex increasing function fz(x2, ..., xn) = f(z, x2, ..., xn) and
fz(X2, ...Xn) ⪰SO fz(Y2, ...Yn) by the inductive hypothesis. We conclude

E[u(f(X1, ...,Xn))] = E[UX(X1)] ≥ E[UY (X1)] ≥ E[UY (Y1)] = E[u(f(X1, ...,Xn))]

where the first and last equality use the independence of (X1, ...,Xn) and (Y1, ..., Yn) along
with the Fubini–Tonelli theorem. The final inequality uses the definition of stochastic op-
timism.

A.3. Proof of Corollary 15

Corollary 1 If RLSVI is applied with parameters (λ, v, θ̄) with v/λ = β ≥ 3 , v = 3H2 and
θ̄ =H1,

E[max
`≤L,t<H

∥VQ`,t+1∥∞] ≤ 2H +H2
√

2 log(∣X ∣∣A∣HL)

Proof To begin, we observe a basic fact about the maximum of Gaussian random variables.
Fix independent Gaussian random variables X0,X1, ...,Xn ∼ N(0,1). Let f ∶ (x0, ..., xn) ↦
maxi xi be the maximum function, so E[f(X0, ...,Xn)] ≤

√
2 log(n + 1) by a standard Gaus-

sian maximum inequality. Then by Jensen’s inequality,

E [(max
i∈{1,...,n}

Xi)
+
] = E[f(0,X1, ...,Xn)] = E[f(E[(X0,X1, ...,Xn)∣X1, ...,Xn])]

≤ E[f(X0,X1, ...,Xn)]

≤
√

2 log(n + 1).(A.2)

For every state action value function Q ∈ R∣X ∣∣A∣, ∥VQ∥∞ ≤ 1+∥Q∥∞. Therefore, by equation
6.4, for every episode ` and period t,

∥F`,tQ∥∞ ≤ max{∥θ∥∞, ∥VQ∥∞} + max
x∈X ,a∈A

w`(t, x, a)

≤ max{∥θ∥∞, ∥Q∥∞} + 1 + max
x∈X ,a∈A

w`(t, x, a)

≤ max{∥θ∥∞, ∥Q∥∞} + 1 +wmax

49

Osband, Van Roy, Russo, Wen

where wmax ≜ (maxt≤H,`≤L,a∈A,x∈X w`(t, x, a)})+. This implies

∥Q`,H−1∥∞ = ∥F`,H−10∥∞ ≤ ∥θ∥∞ + 1 +wmax.

Then

∥Q`,H−2∥∞ = ∥F`,H−2Q`,H−1∥∞ ≤ max{∥θ∥∞, ∥Q`,H−1∥∞} + 1 +wmax ≤ ∥θ∥∞ + 2(1 +wmax).

Repeating this by backward induction shows,

max
t<H

∥∥Q`,t+1∥∞ ≤ ∥θ∥∞ + (H − 1)(1 +wmax)

Therefore

max
t<H

∥VQ`,t+1∥∞ ≤ 1 +max
t<H

∥Q`,t+1∥∞ ≤ ∥θ̄∥∞ +H (1 +wmax) .

In addition

E[wmax] = E [(max
t≤H,`≤L,a∈A,x∈X

w`(t, x, a))
+
] = E [(max

t<H,`≤L,a∈A,x∈X
σ`(t, x, a)

w`(t, x, a)

σ`(t, x, a)
)
+
]

≤

√
v

β
E [(max

t<H,`≤L,a∈A,x∈X

w`(t, x, a)

σ`(t, x, a)
)
+
]

≤
√

2v/β log(1 + ∣X ∣∣A∣HL)

where the last step uses equation (A.2). Combining these results implies,

E[max
`≤L,t<H

∥VQ`,t+1∥∞] ≤ ∥θ̄∥∞ +H +HE [wmax] ≤ ∥θ̄∥∞ +H +H
√

2(v/β) log(1 + ∣X ∣∣A∣HL).

The result then follows by plugging in for β ≥ 3, v = 3H2, and θ̄ =H.

A.4. Proof of Lemma 16

Lemma 3 If β ≥ 2, with probability 1,

∑
`≤L
∑
t≤H

1

β + n`(t, xt, at)
≤H ∣X ∣∣A∣ log(

1 +L

∣X ∣∣A∣
)

and

∑
`≤L
∑
t≤H

√
1

β + n`(t, xt, at)
≤ 2H

√
∣X ∣∣A∣L.

50

Deep Exploration via Randomized Value Functions

Proof Set Y = {0, ...,H − 1} × X × A to be the set of valid period, state, action triples
y = (t, x, a) ∈ Y. Note that ∣Y∣ =H ∣X ∣∣A∣. We have

∑
t≤H,`≤L

1

β + n`(t, xt, at)
= ∑
y∈Y

nL(y)−1

∑
i=0

1

β + i
≤ ∑

y∈Y

nL(y)+β−1

∫

β−1

1

z
dz

= ∑
y∈Y

log(
β − 1 + nL(y)

β − 1
)

≤ ∑
y∈Y

log (1 + nL(y))

≤ ∣Y∣ log(
∑y∈Y(1 + nL(y))

∣Y∣
)

= ∣Y∣ log(1 +
LH

∣Y∣
) .

= H ∣X ∣∣A∣ log(1 +
L

∣X ∣∣A∣
) .

In addition

∑
t≤H,`≤L

√
1

β + n`(t, xt, at)
= ∑
y∈Y

nL(y)−1

∑
i=0

√
1

β + i
≤ ∑

y∈Y

nL(y)

∫

z=0

1

(β − 1 + z)1/2dz

≤ ∑
y∈Y

nL(y)

∫

z=0

1

z1/2dz

= ∑
y∈Y

2
√
nL(y)

≤ 2
√

∣Y∣ ∑
y∈Y

nL(y)

= 2H
√

∣X ∣∣A∣L.

A.5. Proof of Lemma 9

This section establishes Lemma 9 through a sequence of results. First, Lemma 17 provides
general conditions for stochastic optimism. Next, we use these properties to show a stochas-
tic dominance relation between Dirichlet and Beta distributions in Lemma 18 and between
Beta and Gaussian distributions in Lemma 19. The final proof of Lemma 9, given at the
end of this section, uses a simple combination of these results.

We begin with Lemma 17, which reproduces several sufficient conditions for stochas-
tic optimism. Conditions (1.) and (2.) are classic results in the theory of second order

51

Osband, Van Roy, Russo, Wen

stochastic dominance (SSD) and we refer to (Hadar and Russell, 1969; Hanoch and Levy,
1969) for proofs. 11 For a clever and explicit construction of coupled random variables per
condition (1.) see (Machina and Pratt, 1997). In fact, both (1.) and (2.) are also necessary
conditions for stochastic optimism, although our results do not rely upon this.

Condition (3.) is less widely stated, but is a simple consequence of (2.) and has been
known since Hanoch and Levy (1969). To our knowledge, condition (4.) is a new result
that provides a sufficient condition for stochastic optimism that is much easier to verify
than condition (3.). Some intuition for this result is captured by Figure 18a. We provide a
detailed proof that analytically establishes many of the properties observable in Figure 18.

Lemma 17 (Sufficient Conditions for Stochastic Optimism) Consider two integrable
random variables X and Y with probability density functions f and g. Let F (s) = ∫

s
−∞ f(x)dx

and G(s) = ∫
s
−∞ g(x)dx denote the corresponding cumulative distribution functions. Then

X ⪰SO Y if any of the following properties hold:

1. One can construct random variables (X̃, Ỹ , W̃) on a joint probability space such that
X̃ has marginal distribution F , Ỹ has marginal distribution G, E[W̃ ∣Ỹ] ≥ 0 and

X̃ = Ỹ + W̃ .

2. For all a ∈ R,
∞

∫
a

(G(s) − F (s))ds ≥ 0.

3. E[X] ≥ E[Y] and there exists a ∈ R such that

G(s) ≥ F (s) ⇐⇒ s ≥ a.

4. E[X] ≥ E[Y] and C ∶= {x ∈ R ∶ g(x) > f(x)} is convex.

Proof (1.) follows easily by the tower property of conditional expectation and the con-
ditional Jensen inequality. We have E[X̃ ∣ Ỹ] ≥ Ỹ and hence for any convex increasing
function u ∶ R→ R,

E[u(X̃)] = E[E[u(X̃) ∣ Ỹ]] ≥ E[u (E[X̃ ∣ Ỹ])] ≥ E[u (Ỹ)].

(2.) follows from integration by parts and (3.) is a fairly simple consequence of (2.). See
Hanoch and Levy (1969) for a proof. The claim (4.) is new and established here.

Define the function

D(s) = G(s) − F (s) =

s

∫
−∞

(g(x) − f(x))dx

11. The literature on SSD generally considers concave and increasing utility functions whereas we consider
convex and increasing utility functions. Results on SSD can be easily translated into results about
stochastic optimism through swapping positive and negative signs.

52

Deep Exploration via Randomized Value Functions

and note C = {x ∶ g(x) − f(x) > 0} = {x ∶ D′(x) > 0}. We have limt→∞D(t) = 0. Two distri-
butions yielding convex C and the corresponding functions D′(s) and D(s) are pictured in
Figure 18.

Integration by parts shows (Hanoch and Levy, 1969, Lemma 1)

(A.3)

∞

∫
−∞

D(s)ds = E[X] −E[Y] ≥ 0.

We first show sup{C} < ∞. Note that we cannot have C = (−∞,∞), as this would imply

∫ g(x)dx > ∫ f(x)dx, contradicting that g and f are probability density functions. Now
suppose for contradition that C = (c,∞) for some c ∈ R. Then, for t ≤ c we have D(t) =

∫
t
−∞(g(s) − f(s))ds < 0. Since limt→∞D(t) = 0, we have that for t ≥ c, D(t) = −∫

∞
t (g(s) −

f(s))ds < 0. Thus we have showed that D(t) < 0 for all t ∈ R contradicting (A.3).
Next, suppose C = (−∞, c) for c ∈ R. Then for s ∈ C, D′(s) > 0 by definition of C,

which shows D(t) = ∫
t
−∞D

′(s)ds > 0 for t ∈ C. But since D′(s) < 0 for all s > c and
limt→∞D(t) = 0, we must have D(t) > 0 also for all t ≥ c. Since D is non-negative, we have

∫
∞
a D(s) ≥ 0 for all a ∈ R and hence X ⪰SO Y . 12

Finally, suppose C = (−c, c) and refer to Figures 18c and 18d for visual guidance. For
s < c, D′(s) ≤ 0 and hence D(t) = ∫

t
−∞D

′(s)ds ≤ 0 for t ≤ c. For s ∈ C, D′(s) > 0. For s > c,
D′(s) ≤ 0, which implies D(t) ≥ 0 for all t ≥ c since limt→∞D(t) = 0. Since we have shown
D(c) ≤ 0 ≤ D(c) there must exists a single crossing point a ∈ (c, c) with D(a) = 0. For this
value of a, we have

G(s) − F (s) ⇐⇒ s ≥ a,

implying X ⪰SO Y . This completes the proof of condition (4.).

Our next result uses several relationships between Gamma, Beta, and Dirichlet random
variables to establish a stochastic optimism relationship between specific matched distribu-
tions. First, for two independent Gamma distributed random variables γ ∼ Gamma(α,1)
and γ′ ∼ Gamma(β,1), we have that γ

γ+γ′ ∼ Beta(α,β). Next, γ + γ′ ∼ Gamma(α + β,1)

and E[γ ∣ γ + γ′] = (γ + γ′) (α
α+β). Finally, for a collection of independent Gamma random

variables γi ∼ Gamma(αi,1), the random probability vector P = (
γ1

∑nj=1 γj
, . . . γn

∑nj=1 γj
) follows

a Dirichlet(α) distribution. Lemma 18 compares the distribution of the inner product P ⊺V
between a Dirichlet random variable P and a fixed vector V to an appropriate Beta random
variable X.

Lemma 18 (Beta-Dirichlet optimism) If V ∈ Rn where 0 = V1 ≤ ⋯ ≤ Vn = 1, P ∼

Dirichlet(α) where α ∈ Rn+, and X ∼ Beta(∑ni=1 αiVi, ∑
n
i=1 αi(1 − Vi)) then X ⪰SO P

⊺V .

Proof Our proof constructs coupled Dirichlet and and Beta random variables with the
marginal distributions described in the lemma’s statement. Consider independent Gamma-
distributed random variables (γ0

1 , γ
1
1 , . . . , γ

0
n, γ

1
n) where

γ0
i ∼ Gamma(αiVi,1) and γ1

i ∼ Gamma(αi(1 − Vi),1) i = 1, . . . , n.

12. In fact, X first-order stochastically dominates Y in this case.

53

Osband, Van Roy, Russo, Wen

(a) Comparison of PDFs (b) Comparison of CDFs

(c) Difference in PDFs D′(s) = g(s) − f(s) (d) Difference in CDFs D(s) = G(s) − F (s)

Figure 18: Comparison of Beta(3,2) and N(3/5,1/3) distributions. The dashed vertical
lines indicate the boundaries of set C.

Set γi = γ
0
i + γ

1
i so that γi ∼ Gamma(αi,1). Then, set

P =
(γ1, . . . , γn)

∑
n
i=1 γi

∼ Dirichlet(α)

and

X =
∑
n
i=1 γ

0
i

∑
n
i=1 γi

=
∑
n
i=1 γ

0
i

∑
n
i=1 γ

0
i +∑

n
i=1 γ

1
i

∼ Beta(
n

∑
i=1

αiVi,
n

∑
i=1

αi(1 − Vi)) .

Our result follows from the fact that∑ni=1 γ
0
i ∼ Gamma(∑αiVi,1) and∑ni=1 γ

1
i ∼ Gamma(∑ni=1 αi(1−

Vi),1) and the ratio of Gamma distributed random variables follows a Beta distribution.
Now, we have that

E[γ0
i ∣γi] = γi (

E[γ0
i]

E[γ0
i] +E[γ1

i]
) = γi (

αiVi
αi

) = γiVi.

54

Deep Exploration via Randomized Value Functions

This implies,

E[X ∣γ] = E [
∑
n
i=1 γ

0
i

∑
n
i=1 γi

∣γ] =
∑
n
i=1 E[γ0

i ∣ γi]

∑
n
i=1 γi

=
∑
n
i=1 γiVi

∑
n
i=1 γi

= P ⊺V.

Set Y = P ⊺V and W = X − Y so that X = Y +W . We have shown E[W ∣ γ] = 0 and so
E[W ∣ Y] = E[E[W ∣ γ] ∣ Y] = 0 and the result follows from part 1 of Lemma 17.

Our next result, Lemma 19 shows that a Gaussian distribution with sufficiently large
mean and varaince stochastically dominates a Beta distribution. The proof shows this by
looking at the ratio of their probability density functions and concluding this is a quasi-
concave function. The basic properties of quasi-concave functions used here are in (Boyd
and Vandenberghe, 2004, Section 3.4).

Lemma 19 (Gaussian-Beta optimism) Let X ∼ N(µ,σ) and Y ∼ Beta(α,β). If α+β ≥

3, µ = α/(α + β) and σ2 = (α + β − 2)−1, then X ⪰SO Y .

Proof Let f(x) = 1√
2πσ

e−(x−µ)
2/2σ2

and g(x) =
xα−1(1−x)β−1

B(α,β) denote the probability density

functions corresponding to the N(µ,σ) and Beta(α,β) distributions. We show g(x)/f(x)
is quasi-concave, which implies the super-level set C = {x ∶ g(x)/f(x) ≥ 1} is convex. The
result then follows by Lemma 17 and condition (4.).

Let `(x) = log (g(x)/f(x)). Since g(x)/f(x) = e`(x) is a monotone function of `, it is
quasi-concave a long as `(x) is quasi-concave. We show ` is quasi-concave by considering
two cases. First, if α > 1 and β > 1, we show ` is concave (and therefore quasi-concave).
Differentiation shows

`′′(x) = −(
α − 1

x2
+

β − 1

(1 − x)2
) +

1

σ2
≤ −(α + β − 2) +

1

σ2
≤ 0

where the last step follows from our choice of σ2. In the case where either α ∈ (0,1) or
β ∈ (0,1), we find that ` is monotone (and therefore quasi-concave). Assume β ∈ (0,1), in
which case α ≥ 2. Then,

`′(x) =
α − 1

x
−
β − 1

1 − x
+
x − µ

σ2
≥
α − 1

x
+
x − µ

σ2
.

This is non-negative for x ≥ µ. For x < µ, plugging in µ = α/(α+β) and σ2 ≥ 1/(α+β) gives

`′(x) ≥
α − 1

x
+
x − µ

σ2
≥
α − α/2

x
+ x(α + β) − α ≥

α

2x
+ α(x − 1) ≥ 0

where the last inequality can be verified by solving minx>0
2
x +x−1 = 2√

1/2
+
√

1/2−1 ≥ 0.

With these results we are now ready to prove Lemma 9, which we restate below.

Lemma 4 Let Y = P TV for V ∈ Rn fixed and P ∼ Dirichlet(α) with α ∈ Rn+ and ∑ni=1 αi ≥ 3.

Let X ∼ N(µ,σ2) with µ ≥
∑ni=1 αiVi
∑ni=1 αi

, σ2 ≥ 3 (∑
n
i=1 αi)

−1 Span(V)2, then X ⪰SO Y .

55

Osband, Van Roy, Russo, Wen

Proof [Proof of Lemma 9] Without loss of generality, assume V1 ≤ . . . ≤ Vn. Set V ′
i =

(Vi−V1)/(Vn−V1) for i = 1, . . . , n. If X ∼ Beta(∑ni=1 αiV
′
i , ∑

n
i=1 αi(1−V

′
i)), then X ⪰SO P

⊺V ′

by Lemma 18. Let Z ∼ N(µ,σ2) where µ = E[X] = ∑i αiV
′
i /(∑j αj) and σ2 = (∑

n
i=1 αi−2)−1.

Then Z ⪰SO X by Lemma 19. Combining these results gives

P ⊺V = V1 + (Vn − V1)P
⊺V ′

⪯SO V1 + (Vn − V1)X ⪯SO V1 + (Vn − V1)Z.

We have that V1 + (Vn − V1)Z is normally distributed with

E[V1 + (Vn − V1)Z] = V1 + (Vn − V1)µ = V1 + (Vn − V1)(
∑i αiV

′
i

∑j αj
) =
∑
n
i=1 αiVi

∑
n
i=1 αi

and

Variance (V1 + (Vn − V1)Z) = (Vn−V1)
2σ2

= Span(V)
2
(
n

∑
i=1

αi − 2)

−1

≤ 3⋅Span(V)
2
(
n

∑
i=1

αi)

−1

.

References

Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive control of
linear quadratic systems. Journal of Machine Learning Research - Proceedings Track, 19:
1–26, 2011.

Sander Adam, Lucian Busoniu, and Robert Babuska. Experience replay for real-time rein-
forcement learning control. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 42(2):201–212, 2012.

Shipra Agrawal and Navin Goyal. Analysis of Thompson sampling for the multi-armed
bandit problem. In Conference on Learning Theory, pages 39–1, 2012.

Shipra Agrawal and Navin Goyal. Further optimal regret bounds for Thompson sampling.
In Artificial Intelligence and Statistics, pages 99–107, 2013a.

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear
payoffs. In Proceedings of the 30th Annual International Conference on Machine Learning,
pages 127–135, 2013b.

Peter Auer and Ronald Ortner. Logarithmic online regret bounds for undiscounted rein-
forcement learning. In Advances in Neural Information Processing Systems 19, pages
49–56, 2006.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for
reinforcement learning. In Proceedings of the 34th Annual International Conference on
Machine Learning, 2017.

Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient explo-
ration through Bayesian deep q-networks. arXiv preprint arXiv:1802.04412, 2018.

56

Deep Exploration via Randomized Value Functions

Peter L. Bartlett and Ambuj Tewari. REGAL: A regularization based algorithm for rein-
forcement learning in weakly communicating MDPs. In Proceedings of the 25th Conference
on Uncertainty in Artificial Intelligence (UAI2009), pages 35–42, June 2009.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin
bounds for neural networks. In Advances in Neural Information Processing Systems 30,
pages 6241–6250, 2017.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation. In Advances in Neural
Information Processing Systems 29, pages 1471–1479. 2016.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on rein-
forcement learning. In Advances in Neural Information Processing Systems 30, 2017.

Dimitri P. Bertsekas and John Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
September 1996.

Peter J Bickel and David A Freedman. Some asymptotic theory for the bootstrap. The
Annals of Statistics, pages 1196–1217, 1981.

David Blackwell. Discounted dynamic programming. The Annals of Mathematical Statistics,
36(1):226–235, 1965.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

Ronen I. Brafman and Moshe Tennenholtz. R-max - a general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research, 3:213–231,
2002.

Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon rein-
forcement learning. In Advances in Neural Information Processing Systems 28, pages
2818–2826. 2015.

Richard Dearden, Nir Friedman, and Stuart J. Russell. Bayesian Q-learning. In AAAI
Conference on Artificial Intelligence, pages 761–768, 1998.

Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy search for
robotics. Foundations and Trends® in Robotics, 2(1–2):1–142, 2013.

Dean Eckles and Maurits Kaptein. Bootstrap thompson sampling and sequential decision
problems in the behavioral sciences. SAGE Open, 9(2):2158244019851675, 2019.

Bradley Efron. The jackknife, the bootstrap and other resampling plans, volume 38. SIAM,
1982.

Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. CRC press, 1994.

57

Osband, Van Roy, Russo, Wen

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hes-
sel, Ian Osband, Alex Graves, Volodymyr Mnih, Remi Munos, Demis Hassabis, Olivier
Pietquin, Charles Blundell, and Shane Legg. Noisy networks for exploration. In Interna-
tional Conference on Learning Representations, 2018.

Tadayoshi Fushiki. Bootstrap prediction and bayesian prediction under misspecified models.
Bernoulli, pages 747–758, 2005.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the 13th international conference on artificial
intelligence and statistics, pages 249–256, 2010.

Aditya Gopalan and Shie Mannor. Thompson sampling for learning parameterized Markov
decision processes. In Proceedings of the 28th Annual Conference on Learning Theory,
2015.

Josef Hadar and William R Russell. Rules for ordering uncertain prospects. The American
Economic Review, pages 25–34, 1969.

G Hanoch and H Levy. The efficiency analysis of choices involving risk. The Review of
Economic Studies, 36(3):335–346, 1969.

Imanol Arrieta Ibarra, Bernardo Ramos, and Lars Roemheld. Angrier birds: Bayesian
reinforcement learning. arXiv preprint arXiv:1601.01297, 2016.

Morteza Ibrahimi, Adel Javanmard, and Benjamin V Roy. Efficient reinforcement learn-
ing for high dimensional linear quadratic systems. In Advances in Neural Information
Processing Systems 25, pages 2636–2644, 2012.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforce-
ment learning. Journal of Machine Learning Research, 11:1563–1600, 2010.

Sham Kakade. On the Sample Complexity of Reinforcement Learning. PhD thesis, Univer-
sity College London, 2003.

Michael J. Kearns and Daphne Koller. Efficient reinforcement learning in factored MDPs.
In IJCAI, pages 740–747, 1999.

Michael J. Kearns and Satinder P. Singh. Near-optimal reinforcement learning in polynomial
time. Machine Learning, 49(2-3):209–232, 2002.

Lihong Li and Michael L Littman. Reducing reinforcement learning to kwik online regres-
sion. Annals of Mathematics and Artificial Intelligence, 58(3-4):217–237, 2010.

Lihong Li, Michael L Littman, and Thomas J Walsh. Knows what it knows: a framework
for self-aware learning. In Proceedings of the 25th international conference on Machine
learning, pages 568–575. ACM, 2008.

Zachary Lipton, Xiujun Li, Jianfeng Gao, Lihong Li, Faisal Ahmed, and Li Deng. BBQ-
networks: Efficient exploration in deep reinforcement learning for task-oriented dialogue
systems. AAAI Conference on Artificial Intelligence, 2018.

58

Deep Exploration via Randomized Value Functions

Xiuyuan Lu and Benjamin Van Roy. Ensemble sampling. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages 3258–3266. 2017.

Mark Machina and John Pratt. Increasing risk: some direct constructions. Journal of Risk
and Uncertainty, 14(2):103–127, 1997.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533,
2015.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient
off-policy reinforcement learning. In Advances in Neural Information Processing Systems
29, pages 1046–1054, 2016.

Brendan O’Donoghue, Ian Osband, Remi Munos, and Volodymyr Mnih. The uncertainty
Bellman equation and exploration. In Proceedings of the 35th Annual International Con-
ference on Machine Learning, 2017.

Ronald Ortner and Daniil Ryabko. Online regret bounds for undiscounted continuous re-
inforcement learning. In Advances in Neural Information Processing Systems 25, pages
1763–1771, 2012.

Ian Osband. Deep Exploration via Randomized Value Functions. PhD thesis, Stanford
University, 2016.

Ian Osband and Benjamin Van Roy. Model-based reinforcement learning and the eluder
dimension. In Advances in Neural Information Processing Systems 27, pages 1466–1474,
2014a.

Ian Osband and Benjamin Van Roy. Near-optimal reinforcement learning in factored MDPs.
In Advances in Neural Information Processing Systems 27, pages 604–612, 2014b.

Ian Osband and Benjamin Van Roy. Bootstrapped Thompson sampling and deep explo-
ration. arXiv preprint arXiv:1507.00300, 2015.

Ian Osband and Benjamin Van Roy. On lower bounds for regret in reinforcement learning.
arXiv preprint arXiv:1608.02732, 2016.

Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for
reinforcement learning? In Proceedings of the 34th International Conference on Machine
Learning, pages 2701–2710, 2017.

Ian Osband, Dnaiel Russo, and Benjamin Van Roy. (More) efficient reinforcement learning
via posterior sampling. In Advances in Neural Information Processing Systems 26, pages
3003–3011. 2013.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration
via bootstrapped DQN. In Advances In Neural Information Processing Systems 29, pages
4026–4034, 2016a.

59

Osband, Van Roy, Russo, Wen

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via ran-
domized value functions. In Proceedings of The 33rd International Conference on Machine
Learning, pages 2377–2386, 2016b.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep
reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems
31, pages 8625–8637. 2018.

Art B Owen and Dean Eckles. Bootstrapping data arrays of arbitrary order. The Annals
of Applied Statistics, pages 895–927, 2012.

Jason Pazis and Ronald Parr. PAC optimal exploration in continuous space Markov decision
processes. In AAAI Conference on Artificial Intelligence. Citeseer, 2013.

Matthias Plappert. Parameter Space Noise for Exploration in Deep Reinforcement Learning.
PhD thesis, Karlsruhe Institute of Technology, 2017.

Warren Powell and Ilya Ryzhov. Optimal Learning. John Wiley and Sons, 2011.

Doina Precup, Richard Sutton, and Sanjoy Dasgupta. Off-policy temporal-difference learn-
ing with function approximation. In Proceedings of The 18th International Conference
on Machine Learning, pages 417–424, 2001.

Daniel Russo. Worst-case regret bounds for exploration via randomized value functions.
arXiv preprint arXiv:1906.02870, 2019.

Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of
optimistic exploration. In Advances in Neural Information Processing Systems 26, pages
2256–2264. 2013.

Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. Math-
ematics of Operations Research, 39(4):1221–1243, 2014a.

Daniel Russo and Benjamin Van Roy. Learning to optimize via information-directed sam-
pling. In Advances in Neural Information Processing Systems 27, pages 1583–1591. 2014b.

Daniel Russo and James Zou. How much does your data exploration overfit? controlling
bias via information usage. arXiv preprint arXiv:1511.05219, 2015.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A
tutorial on Thompson sampling. Foundations and Trends® in Machine Learning, 11(1):
1–96, 2018.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience
replay. CoRR, abs/1511.05952, 2015.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

60

Deep Exploration via Randomized Value Functions

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Master-
ing the game of go without human knowledge. Nature, 550(7676):354, 2017.

Alexander L Strehl. Probably approximately correct (PAC) exploration in reinforcement
learning. PhD thesis, Rutgers University-Graduate School-New Brunswick, 2007.

Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L. Littman.
PAC model-free reinforcement learning. In Proceedings of the 23rd Annual International
Conference on Machine Learning, pages 881–888, 2006.

Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction, Second
Edition. MIT Press, 2018.

Richard Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba
Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for temporal-difference
learning with linear function approximation. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, pages 993–1000. ACM, 2009.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine
learning, 3(1):9–44, 1988.

Csaba Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John
Schulman, Filip De Turck, and Pieter Abbeel. #Exploration: A study of count-based
exploration for deep reinforcement learning. CoRR, abs/1611.04717, 2016.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains:
A survey. Journal of Machine Learning Research, 10(Jul):1633–1685, 2009.

Gerald Tesauro. Temporal difference learning and TD-gammon. Communications of the
ACM, 38(3):58–68, 1995.

William R Thompson. On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

John N Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning with
function approximation. IEEE Transactions on Automatic Control, 42(5):674–690, 1997.

Zheng Wen. Efficient reinforcement learning with value function generalization. PhD thesis,
Stanford University, 2014.

Zheng Wen and Benjamin Van Roy. Efficient exploration and value function generalization
in deterministic systems. In Advances in Neural Information Processing Systems 26,
pages 3021–3029, 2013.

Daan Wierstra, Tom Schaul, Jan Peters, and Juergen Schmidhuber. Natural evolution
strategies. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on
Computational Intelligence). IEEE Congress on, pages 3381–3387. IEEE, 2008.

61

Osband, Van Roy, Russo, Wen

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning requires rethinking generalization. CoRR, abs/1611.03530, 2016.

62

	Introduction
	Literature review
	Reinforcement learning problem
	Deep exploration
	Algorithms
	Value function learning
	Least-squares value iteration
	Randomized least-squares value iteration
	Randomization via Gaussian noise
	How does RLSVI drive deep exploration?
	Randomization via statistical bootstrap

	Practical variants of RLSVI
	Finite buffer experience replay
	Discounted TD and incremental learning
	Randomization via ensemble sampling

	Regret bound
	Formulation of a time-inhomogenous MDP
	Bayesian regret bound
	Stochastic Bellman operators
	Optimism and regret decompositions
	Stochastic optimism
	Analysis of on-policy Bellman error: proof of Theorem 1

	Computational studies
	Deep-sea exploration
	Tabular representation
	Linearly parameterized value functions
	Misspecified representations
	Parameter tuning

	Deep exploration with deep learning
	RLSVI via ensemble sampling
	Cartpole swing up

	Closing remarks
	Proofs of technical lemmas
	Proof of Lemma 3
	Proof of Lemma 7
	Proof of Corollary 15
	Proof of Lemma 16
	Proof of Lemma 9

