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Abstract

Kasiviswanathan et al. (FOCS 2008) defined private learning as a combination of PAC
learning and differential privacy. Informally, a private learner is applied to a collection of
labeled individual information and outputs a hypothesis while preserving the privacy of
each individual. Kasiviswanathan et al. left open the question of characterizing the sample
complexity of private learners.

We give a combinatorial characterization of the sample size sufficient and necessary to
learn a class of concepts under pure differential privacy. This characterization is analogous
to the well known characterization of the sample complexity of non-private learning in
terms of the VC dimension of the concept class. We introduce the notion of probabilistic
representation of a concept class, and our new complexity measure RepDim corresponds to
the size of the smallest probabilistic representation of the concept class.

We show that any private learning algorithm for a concept class C with sample com-
plexity m implies RepDim(C) = O(m), and that there exists a private learning algorithm
with sample complexity m = O(RepDim(C)). We further demonstrate that a similar char-
acterization holds for the database size needed for computing a large class of optimization
problems under pure differential privacy, and also for the well studied problem of private
data release.

Keywords: Differential privacy, PAC learning, Sample complexity

1. Introduction

Motivated by the observation that learning generalizes many of the analyses applied to large
collections of data, Kasiviswanathan et al. (2011) defined private learning as a combination
of probably approximately correct (PAC) learning (Valiant, 1984) and differential privacy
(Dwork et al., 2006). A PAC learner is given a collection of labeled examples (sampled
according to an unknown probability distribution and labeled according to an unknown

∗. A preliminary version of this paper appeared in ITCS’13 under the title “Characterizing the Sample
Complexity of Private Learners”. Subsequent works showed that the sample complexity of private
learning can be quite different under approximate differential privacy, and we chose to change the title
in order to reflect the fact that our characterization only applies to learners satisfying pure differential
privacy. See discussion in Section 1.4

c©2019 Amos Beimel and Kobbi Nissim and Uri Stemmer.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/18-269.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/18-269.html


Beimel and Nissim and Stemmer

concept) and generalizes the labeled examples into a hypothesis h that should predict with
high accuracy the labeling of fresh examples.

The privacy requirement is that the choice of h preserves differential privacy of sample
points. Intuitively this means that this choice should not be significantly affected by any
particular sample. Differential privacy is increasingly accepted as a standard for rigorous
privacy, and recent research has shown that differentially private variants exists to many
analyses. We refer the reader to the excellent surveys by Dwork and Roth (2014) and
Vadhan (2016).

A natural problem is to characterize the sample complexity – the minimum number of
examples necessary in order to identify a good hypothesis – as a function of the target class
C. This important measure determines the amount of data that must be collected before
starting the analysis. Without privacy, it is well-known that the sample complexity of PAC
learning is proportional to the Vapnik–Chervonenkis (VC) dimension of the class C (Vapnik
and Chervonenkis, 1971; Blumer et al., 1989; Ehrenfeucht et al., 1989).

In analogy to this characterization of the sample complexity of non-private PAC learners
via the VC-dimension, we give a combinatorial characterization of the sample size sufficient
and necessary for PAC learners satisfying pure differential privacy. Towards obtaining
this characterization, we introduce the notion of probabilistic representation of a concept
class. We note that our characterization, as the VC-dimension characterization, ignores the
computation required by the learner. Some of our algorithms are, however, computationally
efficient.

1.1. Related Work

In the initial work on private learning, Kasiviswanathan et al. (2011) proved that a private
learner exists for every finite concept class. Their construction of is based on the exponential
mechanism of McSherry and Talwar (2007), and exhibits a sample complexity logarithmic
in |C|. The VC dimension of a concept class C is always at most log |C|, but is significantly
lower for many interesting classes. Hence, the results of Kasiviswanathan et al. (2011) left
open the possibility that the sample complexity of private learning may be significantly
higher than that of non-private learning.

Consider the task of properly learning a concept class C where, after consulting its
sample, the learner outputs a hypothesis that is by itself in C. While non-privately this
restriction has no effect on the sample complexity, Beimel et al. (2014) showed that it can
have a big impact for pure differentially private learners. Specifically, Beimel et al. proved
lower bounds on the sample complexity of properly learning the class of point functions under
pure differential privacy, implying that the VC dimension of a class does not characterize
the sample complexity of pure private proper learning. On the other hand, they observed
that the sample complexity can be improved for improper private learners whenever there
exists a smaller hypothesis class H that represents C in the sense that for every concept
c ∈ C and for every distribution on the examples, there is a hypothesis h ∈ H that is close
to c. Using the exponential mechanism to choose among the hypotheses in H instead of C,
the sample complexity is reduced to ln |H| (this is why the size of the representation H is
defined to be ln |H|). For some classes this can dramatically improve the sample complexity,
e.g., for the class of point functions, the sample complexity is improved from O(ln |C|) to
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O(ln ln |C|). Using other techniques, Beimel et al. showed that the sample complexity of
learning point functions can be reduced even further to O(1), hence showing the largest
possible gap between proper and non proper private learning. Such a gap does not exists
for non-private learning.

1.2. Our Results

Beimel et al. (2014) showed how to use a representation of a class to privately learn it. We
make an additional step in improving the sample complexity by considering a probabilistic
representation of a concept class C. Instead of one collection H representing C, we consider
a list of collections H1, . . . ,Hr such that for every c ∈ C and every distribution on the
examples, if we sample a collection Hi from the list, then with high probability there is
a hypothesis h ∈ Hi that is close to c. To privately learn C, the learning algorithm first
samples i ∈ {1, . . . , r} and then uses the exponential mechanism to select a hypothesis from
Hi. This reduces the sample complexity to O(maxi ln |Hi|); the size of the probabilistic
representation is hence defined to be maxi ln |Hi|. We define the representation dimension
(RepDim) of a class C as the size of its smallest such probabilistic representation.

We show that for point functions there exists a probabilistic representation of size O(1).
This results in a private learning algorithm with sample complexity O(1), matching a dif-
ferent algorithm of Beimel et al. (2014). Our new algorithm offers some improvement in the
sample complexity compared to the algorithm of Beimel et al. (2014) when considering the
learning and privacy parameters. Furthermore, our algorithm can be made computation-
ally efficient without making any computational hardness assumptions, while the efficient
version of Beimel et al. (2014) assumes the existence of one-way functions. Finally, it is
conceptually simpler.

One can ask if there are private learning algorithms with smaller sample complexity than
the size of the smallest probabilistic representation. We show that under pure differential
privacy the answer is no — the size of the smallest probabilistic representation is a lower
bound on the sample complexity. Thus, the size of the smallest probabilistic representation
of a class C, which we call the representation dimension and denote by RepDim(C), char-
acterizes (up to constants) the sample size necessary and sufficient for learning the class C
under pure differential privacy.

The notion of probabilistic representation applies not only to private learning, but also
to optimization problems. We consider a scenario where there is a domain X, a database
S of m records, each taken from the domain X, a set of solutions F , and a quality function
q : X∗ × F → [0, 1] that we wish to maximize. If the exponential mechanism is used for
(approximately) solving the problem, then the size of the database should be Ω(ln |F|) in
order to achieve a reasonable approximation. Using our notions of a representation of F
and of a probabilistic representation of F , one can reduce the size of the minimal database
without paying too much in the quality of the solution. Interestingly, a similar notion to
representation, called “solution list algorithms”, was considered by Beimel et al. (2008) for
constructing secure protocols for search problems while leaking only a few bits on the input.
Curiously, their notion of leakage is very different from that of differential privacy.

We give two examples of such optimization problems. First, an example inspired by
Beimel et al. (2008): each record in the database is a clause with exactly 3 literals and we
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want to find an assignment satisfying at least 7/8 fraction of the clauses while protecting
the privacy of the clauses. A construction of Beimel et al. (2008) yields a deterministic
representation for this problem where the size of the database can be much smaller. Using
a probabilistic representation, we can give a good assignment even for databases of constant
size. This example is a simple instance of a scenario, where each individual has a preference
on the solution and we want to choose a solution maximizing the number of individuals
whose preferences are met, while protecting the privacy of the preference. Another example
of optimization is sanitization, where given a database we want to publish a synthetic
database, which gives a similar utility as the original database while protecting the privacy
of the individual records of the database. Using our techniques, we study the minimal
database size for which sanitization gives reasonable performance with respect to a given
family of queries.

1.3. Subsequent Work: Private Learning and Communication Complexity

Following our work, Feldman and Xiao (2015) showed an equivalence between RepDim(C)
and the randomized one-way communication complexity of the evaluation problem for con-
cepts from C. Using this equivalence, they separated the sample complexity of pure private
learners from that of non-private ones, and showed that the sample complexity of pure
private learners (proper or improper) can generally be much higher than what is required
for non-private learning.

We next present a high level overview of the ideas of Feldman and Xiao (2015). Let C be
a concept class over a domain X, and consider the following communication problem: Alice
holds a function c ∈ C and Bob holds an input x ∈ X. Together they want to compute
c(x), where we can assume that the function c and the input x are sampled from some
distribution µ (known to both Alice and Bob). The randomized one-way communication
complexity of this problem is the length of the shortest message that Alice needs to send
Bob to allow him to compute c(x) correctly (w.h.p. over the choice of c and x and over the
shared randomness in the protocol).

To see how RepDim(C) upper bounds the communication complexity, consider a list of
collections H1, . . . ,Hr that probabilistically represents C where RepDim(C) = maxi ln |Hi|.
We can now use H1, . . . ,Hr to design a protocol as follows. Alice and Bob begin by using
their shared randomness in order to sample a collection Hi from the list. By the definition
of probabilistic representation, with high probability there is a hypothesis h ∈ Hi that is
close to the function c that Alice holds, in the sense that h(x′) = c(x′) w.h.p. over x′ ∼ µ|c.
Alice now identifies such a hypothesis h, and sends it to Bob, who computes h(x). Observe
that specifying h requires sending log |Hi| ≤ RepDim(C) bits.

In the case of threshold functions over a domain X, computing c(x) is exactly the well-
known “greater than” communication problem (where Alice holds a ∈ X and Bob holds
b ∈ X, and together they want to learn if a > b), for which a lower bound of Ω(log |X|)
is known (Miltersen et al., 1998). Hence, as RepDim characterizes the sample complexity
of pure private learners, the sample complexity of every pure private (proper or improper)
learner for the class of threshold functions over a domain X is at least Ω(log |X|). This
is a strong separation from the non-private sample complexity, which is O(1) as the VC
dimension of this class is constant.
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1.4. Subsequent Work: Sample Complexity of Approximate Private Learners

Beimel et al. (2013) showed that relaxing the privacy requirement from pure to approximate
differential privacy can drastically reduce the sample complexity of private learners. In
particular, they showed that threshold functions can be learned with approximate privacy
using 2O(log∗ |X|) examples, a dramatic improvement over the Ω(log |X|) lower bound on the
sample complexity of every pure private learner for this class (Feldman and Xiao, 2015).
For point functions, they constructed an approximate private proper learner with constant
sample complexity, again circumventing the lower bound of Ω(log |X|) for pure private
proper learners.

In light of these positive results on the sample complexity of approximate private learn-
ers, one might hope that the sample complexity of such learners is actually characterized
by the VC dimension and is of the same order as that of non-private learning. However,
this is not the case. First, Bun et al. (2015) showed that any approximate private proper
learner for threshold functions over X must have sample complexity Ω(log∗ |X|). This re-
sult separated the sample complexity of approximate private proper learners from that of
non-private ones, but left open the question of understanding the sample complexity of
approximate private improper learners.

Recently, Alon et al. (2018) showed that a similar lower bound holds also for improper
learners. This means that learning threshold functions over an infinite domain is impossible
with approximate privacy. In fact, the negative result of Alon et al. (2018) holds for any
concept class C with infinite Littlestone Dimension (Littlestone, 1987). Informally, the
Littlestone Dimension of a concept class C over a domain X, denoted Ldim(C), is the
maximal depth of a complete binary tree such that each root-to-leaf path in the tree can
be “explained” by some concept c ∈ C. In more details, consider a complete binary tree T
in which each node is labeled by a domain element x ∈ X. Every concept c ∈ C realizes
a root-to-leaf path in the tree T , where from a node that is labeled by an element x we
proceed to the left child if c(x) = 0 and proceed to the right child if c(x) = 1. The
Littlestone Dimension of C is the depth of the largest complete tree T such that every root-
to-leaf path in T is realized by some concept c ∈ C. Alon et al. (2018) showed that any
approximate private learner (proper or improper) for a class C must have sample complexity
Ω(log∗(Ldim(C))). In particular, the class of thresholds over a domain X has Littlestone
Dimension log |X|, and hence, every approximate private learner for it requires Ω(log∗ |X|)
examples.

We remark that the connection between the Littlestone Dimension and the sample
complexity of private learners was first identified by Feldman and Xiao (2015) in the context
of pure private learners. They showed that every pure private learner (proper or improper)
for a class C must have sample complexity Ω(Ldim(C)). Tables 1 summarizes the currently
known bounds on the sample complexity of private learners.

1.5. Other Related Work

Chaudhuri and Hsu (2011) studied learning algorithms that are only required to protect
the privacy of the labels (and do not necessarily protect the privacy of the examples them-
selves). They proved upper and lower bounds on the sample complexity of such algorithms.
In particular, they proved a lower bound on the sample complexity using the doubling di-
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Pure privacy Approximate privacy

Generic bounds for properly
learning a class C

O(log |C|)
Ω(Ldim(C))

O(log |C|)
Ω(log∗(Ldim(C)))

Generic bounds for improperly
learning a class C

Θ(RepDim(C))
Ω(Ldim(C))

O(RepDim(C))
Ω(log∗(Ldim(C)))

Properly Learning Points
over domain X

Θ(log |X|) Θ(1)

Improperly Learning Points
over domain X

Θ(1) Θ(1)

Learning Thresholds over domain X
(properly or improperly)

Θ(log |X|) 2O(log∗ |X|)

Ω(log∗ |X|)
Table 1: Bounds on the sample complexity of private learning.

mension of the disagreement metric of the hypothesis class with respect to the unlabeled
data distribution. Following their results, Beimel et al. (2013) showed that the sample com-
plexity of such learners is actually fully characterized by the VC dimension, and is of the
same order as that of non-private learners.

Beimel et al. (2015) studied the labeled sample complexity of semi-supervised private
learners, and showed that the sample complexity of such learners is also characterized by
the VC dimension.

A line of research (started by Schapire (1990)) that is very relevant to our paper is
boosting learning algorithms, that is, taking learning algorithms that have a big classi-
fication error and producing a learning algorithm with small error. Dwork et al. (2010)
show how to privately boost accuracy, that is, given a private learning algorithms that
have a big classification error, they produce a private learning algorithm with small er-
ror. In Lemma 18, we show how to boost the accuracy α for probabilistic representations.
This gives an alternative private boosting, whose proof is simpler. However, as it uses the
exponential mechanism, it is (generally) not computationally efficient.

1.6. Open Questions

Our understanding of the sample complexity of learning under approximate (ε, δ)-differential
privacy is still very limited. On the one hand, there are currently no generic upper bounds
on the sample complexity of approximate private learners that achieve a better sample
complexity than the generic constructions for pure private learners. On the other hand,
the only currently known lower bounds are the above mentioned bounds that scale with
Ω(log∗ |X|). While log∗ |X| is super constant, we would like to know whether there are
cases in which the gap in the sample complexity (compared to the non-private sample
complexity) is larger, say Ω(log |X|). In addition, we consider the task of characterizing the
sample complexity of approximate private learners to be an important question for future
work.
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2. Preliminaries

Notation. We useOγ(g(n)) as a shorthand for O(h(γ)·g(n)) for some non-negative function
h. Given a set B of cardinality r, and a distribution P on {1, 2, . . . , r}, we use the notation
b ∈P B to denote a random element of B chosen according to P.

2.1. Preliminaries from Privacy

A database is a vector S = (z1, . . . , zm) over a domain X, where each entry zi ∈ S represents
information contributed by one individual. Databases S1 and S2 are called neighboring if
they differ in exactly one entry. An algorithm preserves differential privacy if neighboring
databases induce nearby outcome distributions. Formally,

Definition 1 (Dwork et al. (2006)) A randomized algorithm A is (ε, δ)-differentially pri-
vate if for all neighboring databases S1, S2, and for all sets F of outputs,

Pr[A(S1) ∈ F ] ≤ exp(ε) · Pr[A(S2) ∈ F ] + δ. (1)

The probability is taken over the random coins of A. When δ = 0 we omit it and say that
A preserves ε-differential privacy.

We use the term pure differential privacy when δ = 0 and the term approximate differ-
ential privacy when δ > 0, in which case δ is typically a negligible function of the database
size. The focus of this work is on pure differential privacy.

An immediate consequence of the definition of pure differential privacy is that for any
two databases S1, S2 ∈ Xm, and for all sets F of outputs,

Pr[A(S1) ∈ F ] ≥ exp(−εm) · Pr[A(S2) ∈ F ].

2.2. Preliminaries from Learning Theory

Let Xd = {0, 1}d. A concept c : Xd → {0, 1} is a function that labels examples taken from
the domain Xd by either 0 or 1. A concept class C over Xd is a class of concepts mapping
Xd to {0, 1}.

PAC learning algorithms are given examples sampled according to an unknown proba-
bility distribution D over Xd, and labeled according to an unknown target concept c ∈ C.
The generalization error of a hypothesis h : Xd → {0, 1} is defined as

errorD(c, h) = Pr
x∈DXd

[h(x) 6= c(x)].

For a labeled sample S = (xi, yi)
m
i=1, the empirical error of h is

errorS(h) =
1

m
|{i : h(xi) 6= yi}|.

Definition 2 An α-good hypothesis for c and D is a hypothesis h such that errorD(c, h) ≤
α.
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Definition 3 (Valiant (1984)) Algorithm A is an (α, β)-PAC learner for a concept class
C over Xd using hypothesis class H and sample size m if for all concepts c ∈ C, all distri-
butions D on Xd, given an input of m samples S = (z1, . . . , zm), where zi = (xi, c(xi)) and
xi are drawn i.i.d. from D, algorithm A outputs a hypothesis h ∈ H satisfying

Pr[errorD(c, h) ≤ α] ≥ 1− β.

The probability is taken over the random choice of the examples in S according to D and
the coin tosses of the learner A.

Definition 4 An algorithm satisfying Definition 3 with H ⊆ C is called a proper PAC
learner; otherwise it is called an improper PAC learner.

2.3. Private Learning

As a private learner is a PAC learner, its outcome hypothesis should also be a good predictor
of labels. Hence, the privacy requirement from a private learner is not that an application of
the hypothesis h on a new sample (pertaining to an individual) should leak no information
about the sample.

Definition 5 (Kasiviswanathan et al. (2011)) Let A be an algorithm that gets an input
S = (z1, . . . , zm). Algorithm A is an (α, β, ε)-PPAC learner for a concept class C over Xd

using hypothesis class H and sample size m if

Privacy. Algorithm A is ε-differentially private (as formulated in Definition 1);

Utility. Algorithm A is an (α, β)-PAC learner for C using H and sample size m (as
formulated in Definition 3).

2.4. The Exponential Mechanism

We next describe the exponential mechanism of McSherry and Talwar (2007). We present
its private learning variant; however, it can be used in more general scenarios. The goal here
is to choose a hypothesis h ∈ H approximately minimizing the empirical error. The choice
is probabilistic, where the probability mass that is assigned to each hypothesis decreases
exponentially with its empirical error.

Inputs: a privacy parameter ε, a hypothesis class H, and m labeled samples S = (xi, yi)
m
i=1.

1. ∀h ∈ H define q(S, h) = |{i : h(xi) = yi}|.

2. Randomly choose h ∈ H with probability

exp (ε · q(S, h)/2)∑
f∈H exp (ε · q(S, f)/2)

.

Proposition 6 Denote ê , minf∈H{errorS(f)}. The probability that the exponential mech-
anism outputs a hypothesis h such that errorS(h) > ê + ∆ is at most |H| · exp(−ε∆m/2).
Moreover, the exponential mechanism is ε differentially private.
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2.5. Concentration Bounds

Let X1, . . . , Xn be independent random variables where Pr[Xi = 1] = p and Pr[Xi = 0] =
1 − p for some 0 < p < 1. Clearly, E[

∑
iXi] = pn. Chernoff and Hoeffding bounds show

that the sum is concentrated around this expected value:

Pr
[∑

i
Xi > (1 + δ)pn

]
≤ exp

(
−pnδ2/3

)
for δ > 0,

Pr
[∑

i
Xi < (1− δ)pn

]
≤ exp

(
−pnδ2/2

)
for 0 < δ < 1,

Pr
[∣∣∣∑

i
Xi − pn

∣∣∣ > δ
]
≤ 2 exp

(
−2δ2/n

)
for δ ≥ 0.

The first two inequalities are known as the multiplicative Chernoff bounds (Chernoff, 1952),
and the last inequality is known as the Hoeffding bound (Hoeffding, 1963).

3. The Representation Dimension

In this section we present a combinatorial measure of a concept class C that characterizes
the sample complexity necessary and sufficient for learning C under pure differential privacy.
The measure is a probabilistic representation of the class C. We start with the notation of
deterministic representation of Beimel et al. (2014).

Definition 7 (Beimel et al. (2014)) A hypothesis class H is an α-representation for a
class C if for every c ∈ C and every distribution D on Xd there exists a hypothesis h ∈ H
such that errorD(c, h) ≤ α.

Example 1 (POINTd) For j ∈ Xd, define cj : Xd → {0, 1} as cj(x) = 1 if x = j, and
cj(x) = 0 otherwise. Define POINTd = {cj}j∈Xd. Beimel et al. (2014) showed that for
α < 1/2, every α-representation for POINTd must be of cardinality at least d, and that an
α-representation Hd for POINTd exists where |Hd| = O(d/α2).

The above representation can be used for non-private learning, by taking a big enough
sample and finding a hypothesis h ∈ Hd minimizing the empirical error. For private learning,
Beimel et al. (2014) showed that a sample of size Oα,β,ε(log |Hd|) suffices, with a learner
that employs the exponential mechanism to choose a hypothesis from Hd.

Definition 8 For a hypothesis class H we denote size(H) = ln |H|. We define the Deter-
ministic Representation Dimension of a concept class C as

DRepDim(C) = min
{

size(H) : H is a
1

4
-representation for C

}
.

Remark 9 Choosing 1
4 is arbitrary; we could have chosen any (smaller than 1

2) constant.

Example 2 By the results of Beimel et al. (2014), stated in the previous example, DRepDim(POINTd) =
θ(ln(d)).
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We are now ready to present the notion of a probabilistic representation. The idea
behind this notion is that we have a list of hypothesis classes, such that for every concept c
and distribution D, if we sample a hypothesis class from the list, then with high probability
it contains a hypothesis that is close to c.

Definition 10 Let P be a distribution over {1, 2, . . . , r}, and let H = {H1,H2, . . . ,Hr}
be a family of hypothesis classes (every Hi ∈H is a set of boolean functions). We say that
(H ,P) is an (α, β)-probabilistic representation for a class C if for every c ∈ C and every
distribution D on Xd:

Pr
P

[∃h ∈ Hi s.t. errorD(c, h) ≤ α] ≥ 1− β.

The probability is over randomly choosing a set Hi ∈P H .

Remark 11 As we will see in Section 4, the existence of such a probabilistic representation
(H ,P) for a concept class C implies the existence of a private learning algorithm for C
with sample complexity that depends on the cardinality of the hypothesis classes Hi ∈ H .
The sample complexity will not depend on r = |H |. Nevertheless, there always exists a
probabilistic representation in which r is bounded (see Appendix 7 for more details).

Example 3 (POINTd) In Section 7 we construct for every α and every β a pair (H ,P)
that (α, β)-probabilistically represents the class POINTd, where H contains all the sets of at
most 4

α ln(1/β) boolean functions.

Definition 12 Let H = {H1,H2, . . . ,Hr} be a family of hypothesis classes. We denote
|H | = r, and size(H ) = max{ ln |Hi| : Hi ∈ H }. We define the Representation Dimen-
sion of a concept class C as

RepDim(C) = min

 size(H ) :
∃P s.t. (H ,P) is a
(1

4 ,
1
4)-probabilistic

representation for C

 .

Remark 13 Choosing α = β = 1
4 is arbitrary; we could have chosen any constants 0 <

α < 1
2 and 0 < β < 1.

Example 4 (POINTd) The size of the probabilistic representation mentioned in Example 3
is ln( 4

α ln(1/β)). Placing α = β = 1
4 , we see that the Representation Dimension of POINTd

is constant.

4. Equivalence of Probabilistic Representation and Private Learning

We now show that RepDim(C) characterizes the sample complexity of private learners. We
start by showing in Lemma 14 that an (α, β)-probabilistic representation of C implies a
private learning algorithm whose sample complexity is the size of the representation. We
then show in Lemma 16 that if there is a private learning algorithm with sample complexity
m, then there is probabilistic representation of C of size O(m); this lemma implies that
RepDim(C) is a lower bound on the sample complexity. Recall that RepDim(C) is the size
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of the smallest probabilistic representation for α = β = 1/4. Thus, to complete the proof
we show in Lemma 18 that a probabilistic representation with α = β = 1/4 implies a
probabilistic representation for arbitrary α and β.

Lemma 14 If there a exists pair (H ,P) that (α, β)-probabilistically represents a class C,
then for every ε there exists an algorithm A that (6α, 4β, ε)-PPAC learns C with a sample

size m = O
(

1
αε(size(H ) + ln( 1

β ))
)

.

Proof Let (H ,P) be an (α, β)-probabilistic representation for the class C, and consider
the following algorithm A:

Inputs: S = (xi, yi)
m
i=1, and a privacy parameter ε.

1. Randomly choose Hi ∈P H .
2. Choose h ∈ Hi using the exp. mechanism with ε.

By the properties of the exponential mechanism, A is ε-differentially private. We will show

that with sample size m = O
(

1
αε(size(H ) + ln( 1

β ))
)

, algorithm A is a (6α, 4β)-PAC learner

for C. Fix some c ∈ C and D, and define the following 3 good events:

E1 Hi chosen in step 1 contains at least one hypothesis h s.t. errorS(h) ≤ 2α.

E2 For every h ∈ Hi s.t. errorS(h) ≤ 3α, it holds that errorD(c, h) ≤ 6α

E3 The exponential mechanism chooses an h such that errorS(h) ≤ α+minf∈Hi {errorS(f)}.

We first show that if those 3 good events happen, algorithm A returns a 6α-good hy-
pothesis. Event E1 ensures the existence of a hypothesis f ∈ Hi s.t. errorS(f) ≤ 2α. Thus,
event E1∩E3 ensures algorithm A chooses (using the exponential mechanism) a hypothesis
h ∈ Hi s.t. errorS(h) ≤ 3α. Event E2 ensures therefore that this h obeys errorD(c, h) ≤ 6α.

We will now show that those 3 events happen with high probability. As (H ,P) is an
(α, β)-probabilistic representation for the class C, the chosen Hi contains a hypothesis h s.t.
errorD(c, h) ≤ α with probability at least 1− β; by the Chernoff bound with probability at
least 1 − exp(−mα/3) this hypothesis has empirical error at most 2α. Event E1 happens
with probability at least (1 − β)(1 − exp(−mα/3)) > 1 − (β + exp(−mα/3)), which is at
least (1− 2β) for m ≥ 3

α ln(1/β).

Using the Chernoff bound, the probability that a hypothesis h s.t. errorD(c, h) > 6α
has empirical error ≤ 3α is less than exp(−mα3/4). Using the union bound, the probability
that there is such a hypothesis in Hi is at most |Hi| · exp(−mα3/4). Therefore, Pr[E2] ≥
1− |Hi| · exp(−mα3/4). For m ≥ 4

3α(ln( |Hi|β )), this probability is at least (1− β).

The exponential mechanism ensures that the probability of event E3 is at least 1−|Hi| ·
exp(−εαm/2) (see Section 2.4), which is at least (1− β) for m ≥ 2

αε ln( |Hi|β ).

All in all, by setting m = 3
αε(size(H )+ln( 1

β )) we ensure that the probability of A failing
to output a 6α-good hypothesis is at most 4β.

We will demonstrate the above lemma with two examples:

11
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Example 5 (Efficient learner for POINTd) As described in Example 3, there exists an
(H ,P) that (α/6, β/4)-probabilistically represents the class POINTd, where size(H ) = Oα,β,ε(1).
By Lemma 14, there exists an algorithm that (α, β, ε)-PPAC learns C with sample size
m = Oα,β,ε(1).

The existence of an algorithm with sample complexity O(1) was already proven by Beimel
et al. (2014). Moreover, assuming the existence of oneway functions, their learner is effi-
cient. Our constructions yields an efficient learner, without assumptions. To see this, con-
sider again algorithm A presented in the above proof, and note that as size(H ) is constant,
step 2 could be done in constant time. Step 1 can be done efficiently as we can efficiently
sample a set Hi ∈P H . In Claim 35 we initially construct a probabilistic representation
in which the description of every hypothesis is exponential in d. The representation is then
revised using pairwise independence to yield a representation in which every hypothesis h
has a short description, and given x the value h(x) can be computed efficiently.

Example 6 (POINTN) Consider the class POINTN, which is exactly like POINTd, only over
the natural numbers. By results of Chaudhuri and Hsu (2011) and Beimel et al. (2014),
it is impossible to properly PPAC learn the class POINTN. Our construction can yield an
(inefficient) improper private learner for POINTN with Oα,β,ε(1) samples. The details are
deferred to Section 7.

The next lemma shows that a private learning algorithm implies a probabilistic rep-
resentation. This lemma can be used to lower bound the sample complexity of private
learners.

Lemma 15 If there exists an algorithm A that (α, 1
2 , ε)-PPAC learns a concept class C with

a sample size m, then there exists a pair (H ,P) that (α, 1/4)-probabilistically represents
the class C such that size(H ) = O (mε).

Proof Let A be an (α, 1
2 , ε)-PPAC learner for a class C using hypothesis class F whose

sample size is m. For a target concept c ∈ C and a distribution D on Xd, we define G
as the set of all hypotheses h ∈ F such that errorD(c, h) ≤ α. Fix some c ∈ C and a
distribution D on Xd. As A is an (α, 1

2)-PAC learner, PrD,A [A(S) ∈ G] ≥ 1
2 , where the

probability is over A’s randomness and over sampling the examples in S (according to
D). Therefore, there exists a database S of m samples such that PrA [A(S) ∈ G] ≥ 1

2 ,
where the probability is only over the randomness of A. As A is ε-differentially private,

PrA

[
A(~0) ∈ G

]
≥ e−mε · PrA [A(S) ∈ G] ≥ 1

2e
−mε, where ~0 is a database with m zeros.1

That is, PrA

[
A(~0) /∈ G

]
≤ 1 − 1

2e
−mε. Now, consider a set H containing the outcomes of

2 ln(4)emε executions of A(~0). The probability that H does not contain an α-good hypoth-
esis is at most (1− 1

2e
−mε)2 ln(4)emε ≤ 1

4 . Thus, H = {H ⊆ F : |H| ≤ 2 ln(4)emε}, and P,

the distribution induced by A(~0), are an (α, 1/4)-probabilistic representation for class C. It
follows that size(H ) = max{ ln |H| : H ∈H } = ln(2 ln(4)) +mε.

1. Choosing ~0 is arbitrary; we could have chosen any database.

12
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The above lemma yields a lower bound of Ω
(

1
ε RepDim(C)

)
on the sample complexity

of private learners for a concept class C. To see this, fix α ≤ 1
4 and let A be an (α, 1

2 , ε)-
PPAC learner for C with sample size m. By the above lemma, there exists a pair (H ,P)
that (α, 1/4)-probabilistically represents C s.t. size(H ) = ln(2 ln(4)) + mε. Therefore,
by definition, RepDim(C) ≤ ln(2 ln(4)) + mε. Thus, m ≥ 1

ε (RepDim(C) − ln(2 ln(4))) =
Ω
(

1
ε RepDim(C)

)
.

In order to refine this lower bound (and incorporate α in it), we will need a somewhat
stronger version of this lemma:

Lemma 16 Let α ≤ 1/4. If there exists an algorithm A that (α, 1
2 , ε)-PPAC learns a

concept class C with a sample size m, then there exists a pair (H ,P) that (1/4, 1/4)-
probabilistically represents the class C such that size(H ) = O (mεα).

Proof Let A be an (α, 1
2 , ε)-PPAC learner for the class C using hypothesis class F whose

sample size is m. Without loss of generality, we can assume that m ≥ 3 ln(4)
4α (since A can

ignore part of the sample). For a target concept c ∈ C and a distribution D on Xd, we
define

GαD = {h ∈ F : errorD(c, h) ≤ α}.

Fix some c ∈ C and a distribution D on Xd, and define the following distribution D̃ on Xd:

Pr
D̃

[x] =

{
1− 4α+ 4α · PrD[x], x = 0d.

4α · PrD[x], x 6= 0d.

Note that for every x ∈ Xd,

Pr
D̃

[x] ≥ 4α · Pr
D

[x]. (2)

As A is an (α, 1
2)-PAC learner, it holds that

Pr
D̃,A

[
A(S) ∈ GαD̃

]
≥ 1

2
,

where the probability is over A’s randomness and over sampling the examples in S (accord-
ing to D̃). In addition, by inequality (2), every hypothesis h with errorD(c, h) > 1/4 has
error strictly greater than α under D̃:

errorD̃(c, h) ≥ 4α · errorD(c, h) > α.

So, every α-good hypothesis for c and D̃ is a 1
4 -good hypothesis for c and D. That is,

Gα
D̃
⊆ G1/4

D . Therefore, PrD̃,A

[
A(S) ∈ G1/4

D

]
≥ 1

2 .

We say that a database S of m labeled examples is good if the unlabeled example 0d

appears in S at least (1− 8α)m times. Let S be a database constructed by taking m i.i.d.
samples from D̃, labeled by c. By the Chernoff bound, S is good with probability at least
1− exp(−4αm/3). Hence,

13
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Pr
D̃,A

[
(A(S) ∈ G1/4

D ) ∧ (S is good)
]
≥ 1

2
− exp(−4αm/3) ≥ 1

4
.

Therefore, there exists a database Sgood of m samples that contains the unlabeled sample

0d at least (1− 8α)m times, and PrA

[
A(Sgood) ∈ G1/4

D

]
≥ 1

4 , where the probability is only

over the randomness of A. All of the examples in Sgood (including the example 0d) are
labeled by c.

For σ ∈ {0, 1}, denote by ~0σ a database containing m copies of the example 0d labeled
as σ. As A is ε-differentially private, and as the target concept c labels the example 0d by
either 0 or 1, for at least one σ ∈ {0, 1} it holds that

Pr
A

[A(~0σ) ∈ G1/4
D ] ≥ exp(−8αεm) · Pr

A

[
A(Sgood) ∈ G1/4

D

]
≥ exp(−8αεm) · 1/4. (3)

That is, PrA[A(~0σ) /∈ G1/4
D ] ≤ 1− 1

4e
−8αεm. Now, consider a set H containing the outcomes

of 4 ln(4)e8αεm executions of A(~00), and the outcomes of 4 ln(4)e8αεm executions of A(~01).
The probability that H does not contain a 1

4 -good hypothesis for c and D is at most

(1 − 1
4e
−8αεm)4 ln(4)e8αεm ≤ 1

4 . Thus, H =
{
H ⊆ F : |H| ≤ 2 · 4 ln(4)e8αεm

}
, and P, the

distribution induced by A(~00) and A(~01), are a (1/4, 1/4)-probabilistic representation for
the class C. Note that the value c(0d) is unknown, and can be either 0 or 1. Therefore the
construction uses the two possible values (one of them correct).

It holds that size(H ) = max{ ln |H| : H ∈H } = ln(8 ln(4)) + 8αεm = O (mεα).

Lemma 18 shows how to construct a probabilistic representation for an arbitrary α and
β from a probabilistic representation with α = β = 1/4; in other words we boost α and
β. The proof of this lemma is combinatorial. It allows us to start with a private learning
algorithm with constant α and β, move to a representation, use the combinatorial boosting,
and move back to a private algorithm with small α and β. This should be contrasted with
the private boosting of Dwork et al. (2010) which is algorithmic and more complicated
(however, the algorithm of Dwork et al. (2010) is computationally efficient).

We first show how to construct a probabilistic representation for arbitrary β from a
probabilistic representation with β = 1/4.

Claim 17 For every concept class C and for every β, there exists a pair (H ,P) that
(1/4, β)-probabilistically represents C where size(H ) ≤ RepDim(C) + ln ln(1/β).

Proof Let β < 1/4, and let (H 0,P0) be a (1
4 ,

1
4)- probabilistic representation for C with

size(H 0) = RepDim(C) , k0 (that is, for every H0
i ∈H 0 it holds that |H0

i | ≤ ek0). Denote
H 0 = {H0

1,H0
2, . . . ,H0

r}, and consider the following family of hypothesis classes:

H 1 =
{
H0
i1 ∪ · · · ∪ H

0
iln(1/β)

: 1 ≤ i1 ≤ · · · ≤ iln(1/β) ≤ r
}
.

Note that for every H1
i ∈ H 1 it holds that |H1

i | ≤ ln(1/β)ek0 and so size(H 1) , k1 ≤
k0 + ln ln(1/β). We will now show an appropriate distribution P1 on H 1 s.t. (H 1,P1) is
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a (1
4 , β)-probabilistic representation for C. To this end, consider the following process for

randomly choosing an H1 ∈H 1:

1. Denote M = ln(1/β)
2. For i = 1, . . . ,M :

Randomly choose H0
i ∈P0 H 0.

3. Return H1 =
⋃M
i=1H0

i .

The above process induces a distribution on H 1, denoted as P1. As H 0 is a (1
4 ,

1
4)-

probabilistic representation for C, we have that

Pr
P1

[
@h ∈ H1 s.t. errorD(c, h) ≤ 1/4

]
=

=

M∏
i=1

Pr
P0

[
@h ∈ H0

i s.t. errorD(c, h) ≤ 1/4
]
≤

≤
(

1

4

)M
≤ β.

Lemma 18 For every concept class C, every α, and every β, there exists (H ,P) that
(α, β)-probabilistically represents C where

size(H ) = O
(

ln(
1

α
) ·
(

RepDim(C) + ln ln ln(
1

α
) + ln ln(

1

β
)
))
.

Lemma 18 corresponds to standard accuracy amplification arguments. We defer the
proof to Appendix 7. The next theorem states the main result of this section – RepDim
characterizes the sample complexity of private learning.

Theorem 19 Let C be a concept class. Θ̃β

(
RepDim(C)

αε

)
samples are necessary and sufficient

for the private learning of the class C.

Proof Fix some α ≤ 1/4, β ≤ 1/2, and ε. By Lemma 18, there exists a pair (H ,P)

that (α6 ,
β
4 )-represent class C, where size(H ) = O

(
ln(1/α) ·

(
RepDim(C) + ln ln ln(1/α) +

ln ln(1/β)
))

. Therefore, by Lemma 14, there exists an algorithm A that (α, β, ε)-PPAC

learns the class C with a sample size

m = Oβ

(
1

αε
ln(

1

α
) ·
(

RepDim(C) + ln ln ln(
1

α
)

))
.

For the lower bound, let A be an (α, β, ε)-PPAC learner for the class C with a sample
size m, where α ≤ 1/4 and β ≤ 1/2. By Lemma 16, there exists an (H ,P) that (1

4 ,
1
4)-
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probabilistically represents the class C and size(H ) = ln(8) + ln ln(4) + 8αεm. Therefore,
by definition, RepDim(C) ≤ ln(8 ln(4)) + 8αεm. Thus,

m ≥ 1

8αε
·
(

RepDim(C)− ln(8 ln(4))
)

= Ω

(
RepDim(C)

αε

)
.

5. Probabilistic Representation for Privately Solving Optimization
Problems

The notion of probabilistic representation applies not only to private learning, but also to
a broader task of optimization problems. We consider the following scenario:

Definition 20 An optimization problem OPT over a universe X and a set of solutions F
is defined by a quality function q : X∗ × F → [0, 1]. Given a database S, the task is to
choose a solution f ∈ F such that q(S, f) is maximized.

Notation. We will refer to the optimization problem defined by a quality function q as
OPTq.

Definition 21 An α-good solution for a database S is a solution s such that q(S, s) ≥
maxf∈F{q(S, f)} − α.

Given an optimization problem OPTq, one can use the exponential mechanism to choose
a solution s ∈ F . In general, this method achieves a reasonable solution only for databases
of size Ω(log |F|/ε). To see this, consider a case where there exists a database S of m records
such that exactly one solution t ∈ F has a quality of q(S, t) = 1, and every other f ∈ F has
a quality of q(S, f) = 1/2. The probability of the exponential mechanism choosing t is:

Pr[t is chosen] =
exp(εm/2)

(|F| − 1) · exp(εm/4) + exp(εm/2)
.

Unless

m ≥ 4
ε ln(|F| − 1) = Ω(1

ε ln |F|), (4)

the above probability is strictly less than 1/2. Using our notations of probabilistic repre-
sentation, it might be possible to reduce the necessary database size.

Consider using the exponential mechanism for choosing a solution s, not out of F , but
rather from a smaller set of solutions B. Roughly speaking, the factor of ln |F| in require-
ment (4) will now be replaced with ln |B|, which corresponds to size of the representation.
Therefore, the database size m should be at least ln |B|/ε. So m needs to be bigger than
the size of the representation by at least a factor of 1/ε.

In the following analysis we will denote this required gap, i.e., m/ ln |B|, as ∆. We
will see that the existence of a private approximation algorithm implies a probabilistic
representation with 1 < ∆ ≈ 1

ε , and that a probabilistic representation with ∆ > 1 implies
a private approximation algorithm. Bigger ∆ corresponds to better privacy; however, it
might be harder to achieve.
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Definition 22 Let OPTq be an optimization problem over a universe X and a set of so-
lutions F . Let B be a set of solutions, and denote size(B) = ln |B|. We say that B is an
α-deterministic representation of OPTq for databases of m elements if for every S ∈ Xm

there exists a solution s ∈ B such that q(S, s) ≥ maxf∈F{q(S, f)} − α.

Definition 23 Let B be an α-deterministic representation of OPTq for databases of m
elements. Denote ∆ , m

size(B) . If ∆ > 1, then we say that the ratio of B is ∆.

An α-deterministic representation B with ratio ∆ is required to support all the databases
of m = ∆ · size(B) elements. That is, for every S ∈ Xm, the set B is required to contain at
least one α-good solution.

Fix S ∈ Xm. Intuitively, ∆ controls the ratio between m and number of bits needed to
represent an α-good solution for S. As B contains an α-good solution for S, and assuming
B is publicly known, this solution could be represented with ln |B| = size(B) = m/∆ bits.

Definition 24 Let OPTq be an optimization problem over a universe X and a set of solu-
tions F . Let P be a distribution over {1, 2, . . . , r}, and let B = {B1,B2, . . . ,Br} be a family
of solution sets for OPTq. We denote size(B) = max{ ln |Bi| : Bi ∈ B }. We say that
(B,P) is an (α, β)-probabilistic representation of OPTq for databases of m elements if for
every S ∈ Xm:

Pr
P

[
∃s ∈ Bi s.t. q(S, s) ≥ max

f∈F
{q(S, f)} − α

]
≥ 1− β.

Definition 25 Let (B,P) be an (α, β)-probabilistic representation of OPTq for databases of
m elements. Denote ∆ , m

size(B) . If ∆ > 1, then we say that the ratio of the representation
is ∆.

Definition 26 An optimization problem OPTq is bounded if
∣∣∣|S1|·q(S1, f)−|S2|·q(S2, f)

∣∣∣ ≤
1 for every solution f and every two neighboring databases S1, S2.

We are interested in approximating bounded optimization problems, while guaranteeing
differential privacy:

Definition 27 Let OPTq be a bounded optimization problem over a universe X and a set
of solutions F . An algorithm A is an (α, β, ε)-private approximation algorithm for OPTq

with a database of m records if:

1. Algorithm A is ε-differentially private (as formulated in Definition 1);

2. For every S ∈ Xm, algorithm A outputs with probability at least (1− β) a solution s
such that q(S, s) ≥ maxf∈F{q(S, f)} − α.

Example 7 (Sanitization) Consider a class of predicates C over X. A database S con-
tains points taken from X. A predicate query Qc for c ∈ C is defined as Qc(S) = 1

|S| · |{xi ∈
S : c(xi) = 1}|. Blum et al. (2008) defined a sanitizer (or data release mechanism) as
a differentially private algorithm that, on input a database S, outputs another database Ŝ
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with entries taken from X. A sanitizer A is (α, β)-useful for predicates in the class C if for
every database S it holds that

Pr
A

[
∀c ∈ C

∣∣Qc(S)−Qc(Ŝ)
∣∣ ≤ α] ≥ 1− β.

This scenario can be viewed as a bounded optimization problem: The solutions are sani-
tized databases. For an input database S and and a sanitized database Ŝ, the quality function
is

q(S, Ŝ) = 1−max
c∈C

{
|Qc(S)−Qc(Ŝ)|

}
.

To see that this optimization problem is bounded, note that for every two neighboring
databases S1, S2 of m elements, and every c ∈ C it holds that |Qc(S1) − Qc(S2)| ≤ 1

m .
Therefore, for every sanitized database f ,

m · |q(S1, f)− q(S2, f)| = m ·
∣∣∣∣max
c∈C
{|Qc(S1)−Qc(f)|} −max

c∈C
{|Qc(S2)−Qc(f)|}

∣∣∣∣ ≤ 1

Example 8 (Center points) Let X ⊆ Rd be a finite domain. Given a database S ∈ Xm,
consider the task of privately identifying a point x ∈ R that is “deep inside” the convex-
hull of S. This problem was shown to be closely related to (privately) learning halfspaces
(Beimel et al., 2019). In this context, “deep inside” is quantified using the notion of Tukey
depth (Tukey, 1975). Specifically, the Tukey depth of a point x ∈ Rd w.r.t. the database
S, denoted td(S, x), is the minimum number of points that need to be removed from S such
that x is not in the convex-hull of the remaining points.

The task of identifying a point with high Tukey depth can also be viewed as a bounded
optimization problem, where the solutions are points in some subset Y ⊆ Rd. For an input
database S ∈ Xm and a solution y ∈ Y , the quality function is q(S, y) = td(S, y)/|S|.

The next two lemmas establish an equivalence between a private approximation algo-
rithm and a probabilistic representation for a bounded optimization problem.

Lemma 28 Let OPTq be a bounded optimization problem over a universe X. If there exists
a pair (B,P) that (α, β)-probabilistically represents OPTq for databases of m elements, s.t.

the ratio of (B,P) is ∆ > 1, then for every α̂, β̂, ε satisfying

∆ ≥ 2

εα̂

(
1 +

ln(1/β̂)

size(B)

)
,

there exists an
(
(α + α̂), (β + β̂), ε

)
-approximation algorithm for OPTq with a database of

size m.

Proof Consider the following algorithm A:
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Inputs: a database S ∈ Xm, and a privacy parameter ε.

1. Randomly choose Bi ∈P B.

2. Choose s ∈ Bi using the exponential mechanism, that is, with probability

exp(ε ·m · q(S, s)/2)∑
f∈Bi exp(ε ·m · q(S, f)/2)

.

By the properties of the exponential mechanism, A is ε-differentially private. Fix a
database S ∈ Xm, and define the following 2 bad events:

E1 The set Bi chosen in step 1 does not contain a solution s s.t. q(S, s) ≥ maxf∈F{q(S, f)}−
α.

E2 The solution s chosen in step 2 is such that q(S, s) < maxt∈Bi q(S, t)− α̂.

Note that if those two bad events do not occur, algorithm A outputs a solution s such
that q(S, s) ≥ maxf∈F{q(S, f)}−α− α̂. As (B,P) is an (α, β)-probabilistic representation
of OPTq for databases of size m, event E1 happens with probability at most β. By the
properties of the exponential mechanism, the probability of event E2 is bounded by |Bi| ·
exp(−εmα̂/2). As m = ∆ size(B), this probability is at most

Pr[E2] ≤ size(B) · exp(−εmα̂/2)

= size(B) · exp(−ε∆ size(B)α̂/2)

≤ size(B) · exp

(
−

(
1 +

ln(1/β̂)

size(B)

)
size(B)

)
= size(B) · exp(− size(B)− ln(1/β̂)) = β̂.

Therefore, algorithm A outputs an (α + α̂)-good solution with probability at least
(1− β − β̂).

Lemma 29 Let OPTq be an optimization problem. If there exists an (α, β, ε)-private ap-

proximation algorithm for OPTq with a database of m records, then for every β̂ satisfying

∆ ,
m

ln( 1
1−β ) + ln ln( 1

β̂
) +m · ε

> 1,

there exists a pair (B,P) that (α, β̂)-probabilistically represents OPTq for databases of m
elements, where the ratio of the representation is ∆.

Proof Let A be an (α, β, ε)-private approximation algorithm for OPTq, with a sample size
m. Fix an arbitrary input database S ∈ Xm. Define G as the set of all solutions s, possibly
outputted by A, such that q(S, s) ≥ maxf∈F{q(S, f)}−α. As A is an (α, β, ε)-approximation

algorithm, PrA [A(S) ∈ G] ≥ 1 − β. As A is ε-differentially private, PrA

[
A(~0) ∈ G

]
≥
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(1−β)e−mε, where ~0 is a database with m zeros. That is, PrA

[
A(~0) /∈ G

]
≤ 1−(1−β)e−mε.

Now, consider a set B containing the outcomes of Γ , 1
1−β ln( 1

β̂
)emε executions of A(~0). The

probability that B does not contain a solutions s ∈ G is at most (1 − (1 − β)e−mε)Γ ≤ β̂.
Thus, B = {B ⊆ support(A) : |B| ≤ Γ}, and P, the distribution induced by A(~0), are an
(α, β̂)-probabilistic representation of OPTq for databases with m elements. Moreover, the
ratio of the representation is

m

size(B)
=

m

max{ ln |B| : B ∈ B }

=
m

ln( 1
1−β ) + ln ln( 1

β̂
) +mε

= ∆.

5.1. Exact 3SAT

Consider the following bounded optimization problem, denoted as OPTE3SAT: The universe
X is the set of all possible clauses with exactly 3 different literals over n variables, and the set
of solutions F is the set of all possible 2n assignments. Given a database S = (σ1, σ2, . . . , σm)
containing m E3CNF clauses, the quality of an assignment a ∈ F is

q(S, a) =
|{i : a(σi) = 1}|

m
.

Aiming at the (very different) objective of secure protocols for search problems, Beimel
et al. (2008) defined the notation of solution-list algorithms, which corresponds to our
notation of deterministic representation. We next rephrase their results using our notations.

R1 For every α > 0 and every ∆ > 1, there exists a set B that (α+ 1/8)-deterministically
represents OPTE3SAT for databases of size m = O

(
∆(ln ln(n) + ln(1/α)

)
), and a ratio

of ∆.

R2 Let α < 1/2 and ∆ > 1. For every set B that α- deterministically represents
OPTE3SAT for databases of size m with a ratio of ∆, it holds that m = Ω

(
ln ln(n)

)
.

Using (R1) and a deterministic version of Lemma 28, for every α, β, ε > 0, there
exists an

(
(1/8 + α), β, ε

)
- approximation algorithm for OPTE3SAT with a database of

m = Oα,β,ε(ln ln(n)) clauses. By (R2), this is the best possible using a deterministic repre-
sentation.

We can reduce the necessary database size, using a probabilistic representation. Fix a
clause with three different literals. If we pick an assignment at random, then with prob-
ability at least 7/8 it satisfies the clause. Now, fix any exact 3CNF formula. If we pick
an assignment at random, then the expected fraction of satisfied clauses is at least 7/8.
Moreover, for every 0 < α < 7/8, the fraction of satisfied clauses is at least (7/8− α) with
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probability at least α
α+1/8 . So, if we pick t = ln(1/β)

ln(α+1/8)+ln(1/α) random assignments, the prob-

ability that none of them will satisfy at least (7/8− α)m clauses is at most
(

α
α+1/8

)t
= β.

So, for every ∆ > 1,

B = {B : B is a set of at most t assignments},

and P, the distribution induced on B by randomly picking t assignments, are an
(
(1/8 +

α), β
)
-probabilistic representation of OPTE3SAT for databases of size ∆ · ln(t) and a ratio

of ∆. By Lemma 28, for every ε there exists an
(
(1/8 + α), β, ε

)
-approximation algorithm

for OPTE3SAT with a database of m = Oα,β,ε(1) clauses.

6. Extensions

6.1. (ε, δ)-Differential Privacy

Recall the definition of (ε, δ)-differential privacy:

Pr[A(S1) ∈ F ] ≤ exp(ε) · Pr[A(S2) ∈ F ] + δ.

The proof of Lemma 16 remains valid even if algorithm A is only (ε, δ)-differential private
for

δ ≤ 1
8e
−8αεm(1− e−ε). (5)

To see this, note that inequality (3) changes to

Pr
A

[
A(~0) ∈ G

]
≥

≥
(((

Pr
A

[A(S) ∈ G] · e−ε − δ
)
e−ε − δ

)
· · ·
)
e−ε − δ

≥ 1

4
e−8αεm − δ

(
8αm−1∑
i=0

e−iε

)

≥ 1

4
e−8αεm − δ

(
1

1− e−ε

)
≥ 1

8
e−8αεm.

The rest of the proof remains almost intact (only minor changes in the constants). With
that in mind, we see that the lower bound showed in Theorem 19 for ε-differentially private
(that is, with δ = 0) learners also applies for (ε, δ)-differentially private learners satisfying

inequality (5). That is, every such learner for a class C must use Ω
(

RepDim(C)
αε

)
samples.

When using (ε, δ)-differential privacy, it is desirable for δ to be negligible in the secu-
rity parameter, e.g., in d – the representation length of elements in Xd. In such a case,
using (ε, δ)-differential privacy instead of ε-differential privacy cannot reduce the sample
complexity for PPAC learning a concept class C whenever RepDim(C) = O (log(d)).
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6.2. Probabilistic Representation Using a Hypothesis Class

We will now consider a generalization of our representation notations that can be useful
when considering PPAC learners that use a specific hypothesis class. In particular, those
notation can be useful when considering proper PPAC learners, that is, a learner that learns
a class C using a hypothesis class B ⊆ C.

Definition 30 We define the α-Deterministic Representation Dimension of a concept class
C using a hypothesis class B as

DRepDimα(C,B) = min

size(H) :
H ⊆ B is an
α-representation
for class C

 .

Note that DRepDim 1
4
(C, 2Xd) = DRepDim(C). The dependency on α in the above

definition is necessary: if C is not contained in B then for every small enough α, the
hypothesis class B itself does not α-represents C (and therefore no subset H ⊆ B can α-
represent C). Moreover, when considering the notations of representation using a hypothesis
class, our boosting technique for α does not work (as the boosting uses more complex
hypotheses).

Example 9 Beimel et al. (2014) showed that for every α < 1, every subset H ( POINTd
does not α-represent the class POINTd. Therefore, DRepDimα(POINTd, POINTd) = θ(d) for
every α < 1.

Definition 31 A pair (H ,P) is an (α, β)-probabilistic representation for a concept class
C using a hypothesis class B if:

1. (H ,P) is an (α, β)-probabilistic representation for the class C, as formulated in Def-
inition 10.

2. Every Hi ∈H is a subset of B.

Note that whenever B = 2Xd , this definition is identical to Definition 10. Using this
general notation, we can restate Lemma 14 and Lemma 16 as follows:

Lemma 32 If there exists a pair (H ,P) that (α, β)- probabilistically represents a class C
using a hypothesis class B, then for every ε and every γ there exists an algorithm A that (α+
γ, 3β, ε)-PPAC learns C using B and a sample size m = O((size(H ) + ln( 1

β )) max{ 1
γε ,

1
γ2
}).

Note that in the above lemma the resulting algorithm A has accuracy (α + γ) as op-
posed to 6α in lemma 14, where γ is arbitrary. While in section 3 we did not mind the
multiplicative factor of 6 in the accuracy parameter (as we could boost it back), replacing
it with an additive factor of γ might be of value in this section as our boosting technique
for the accuracy parameter does not work here. As an example, consider a representation
with α = 1

10 . Without boosting capabilities, this change makes the difference between the
ability to generate an algorithm with α = 6

10 , or an algorithm with α = 1
10 + 1

1000 .
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Proof Let (H ,P) be an (α, β)-probabilistic representation for class C using a hypothesis
class B, and consider the following algorithm A:

Inputs: S = (xi, yi)
m
i=1, and a privacy parameter ε.

1. Randomly choose Hi ∈P H .
2. Choose h ∈ Hi using the exp. mechanism with ε.

First note that the support of A is indeed (a subset of) B. By the properties of the
exponential mechanism, A is ε-differentially private. Fix some c ∈ C and D, and define the
following 3 good events:

E1 Hi chosen in step 1 contains at least one hypothesis h s.t. errorD(h) ≤ α.

E2 For every h ∈ Hi it holds that |errorS(h)− errorD(c, h)| ≤ γ
3 .

E3 The exponential mechanism chooses an h such that errorS(h) ≤ γ
3 +minf∈Hi {errorS(f)}.

Note that if those 3 good events happen, algorithm A returns an (α+ γ)-good hypothesis.
We will now show that those 3 events happen with high probability.

As (H ,P) is an (α, β)-probabilistic representation for the class C, event E1 happens
with probability at least 1− β.

Using the Hoeffding bound, event E2 happens with probability at leat 1−2|Hi| exp(−2
9γ

2m).

For m ≥ 9
2γ2

ln(2|Hi|
β ), this probability is at leat 1− β.

The exponential mechanism ensures that the probability of event E3 is at least 1−|Hi| ·
exp(−εγm/6) (see Section 2.4), which is at least (1− β) for m ≥ 6

γε ln( |Hi|β ).

All in all, by setting m = 6(size(H )+ln( 2
β )) max{ 1

γ2
, 1
γε} we ensure that the probability

of A failing to output an (α+ γ)-good hypothesis is at most 3β.

Lemma 33 If there exists an algorithm A that (α, 1
2 , ε)-PPAC learns a concept class C using

a hypothesis class B and a sample size m, then there exists a pair (H ,P) that (α, 1/4)-
probabilistically represents the class C using the hypothesis class B where size(H ) = O (mε).

The proof of Lemma 33 is identical to the proof of Lemma 15.

Definition 34 We define the α-Probabilistic Representation Dimension of a concept class
C using a hypothesis class B as

RepDimα(C,B) = min

size(H ) :

∃P s.t. (H ,P)
is an (α, 1

4)-prob.
representation
for C using B

 .

Example 10 Beimel et al. (2014) showed that for every α < 1, every proper PPAC learner
for POINTd requires Ω((d + log(1/β))/(εα)) labled examples. Using Lemma 32, we get that
RepDimα(POINTd, POINTd) = Ω(d).

The above example shows a strong separation between the VC dimension of the class
POINTd and RepDimα(POINTd, POINTd).
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7. A Probabilistic Representation for Points

Example 3 states the existence of a constant size probabilistic representation for the class
POINTd. We now give the construction. Similar ideas were used by Feldman (2009) who
studied the smilingly unrelated model of evolvability of Valiant (2009) (a theoretical model
for quantifying how complex mechanisms, such as those found in living cells, can evolve as
result of a random search guided by selection).

Claim 35 There exists an (α, β)-probabilistic representation for POINTd of size ln(4/α) +
ln ln(1/β). Furthermore, each hypothesis h in each Hi has a short description and given x,
the value h(x) can be computed efficiently.

Proof Consider the following set of hypothesis classes

H =

{
H ⊆ 2Xd : |H| ≤ 4

α
ln(

1

β
)

}
.

That is, H ∈H if H contains at most 4
α ln( 1

β ) boolean functions. We will show an appropri-
ate distribution P s.t. (H ,P) is an (α, β)-probabilistic representation of the class POINTd.
To this end, fix a target concept cj ∈ POINTd and a distribution D on Xd (remember that
j is the unique point on which cj(j) = 1). We need to show how to randomly choose an
H ∈R H such that with probability at least (1− β) over the choice of H, there will be at
least one h ∈ H such that errorD(cj , h) ≤ α. Consider the following process for randomly
choosing an H ∈H :

1. Denote M = 4
α ln( 1

β )

2. For i = 1, . . . ,M construct hypothesis hi as follows:
For each x ∈ Xd (independently):

Let hi(x) = 1 with probability α/2,
and hi(x) = 0 otherwise.

3. Return H = {h1, h2, . . . , hM}.

The above process induces a distribution on H , denoted as P. We will next analyze the
probability that the returned H does not contain an α-good hypothesis. We start by fixing
some i and analyzing the expected error of hi, conditioned on the event that hi(j) = 1. The
probability is taken over the random coins used to construct hi.

E
hi

[
errorD(cj , hi)

∣∣∣ hi(j) = 1
]

=

= E
hi

[
E
x∈D

[ ∣∣cj(x)− hi(x)
∣∣ ] ∣∣∣ hi(j) = 1

]
= E

x∈D

[
E
hi

[ ∣∣cj(x)− hi(x)
∣∣ ∣∣∣ hi(j) = 1

]]
≤ α

2
.

Using Markov’s Inequality,

Pr
hi

[
errorD(cj , hi) ≥ α

∣∣∣∣ hi(j) = 1

]
≤ 1

2
.
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So, the probability that hi is α-good for cj and D is:

Pr
hi

[errorD(cj , hi) ≤ α] ≥

≥ Pr
hi

[hi(j) = 1] · Pr
hi

[
errorD(cj , hi) ≤ α

∣∣∣∣ hi(j) = 1

]
≥ α

2
· 1

2
=
α

4
.

Thus, the probability that H fails to contain an α-good hypothesis is at most
(
1− α

4

)M
,

which is less than β for our choice of M . This concludes the proof that (H ,P) is an
(α, β)-probabilistic representation for POINTd.

When a hypothesis hi() was constructed in the above random process, the value of hi(x)
was independently drawn for every x ∈ Xd. This results in a hypothesis whose description
size is O(2d), which in turn, will result in a non efficient learning algorithm. We next con-
struct hypotheses whose description is short. To achieve this goal, we note that in the above
analysis we only care about the probability that hi(x) = 0 given that hi(j) = 1. Thus, we
can choose the values of hi in a pairwise independent way, e.g., using a random polynomial
of degree 2. The size of the description in this case is O(d).

Consider the class POINTN, defined in Example 6. The above construction can be ad-
justed to yield an (inefficient) improper private learner for POINTN with Oα,β,ε(1) samples.
The only adjustments necessary are in the construction of the (α, β)-probabilistic repre-
sentation. Specifically, we need to specify how to randomly draw a boolean function h
over the natural numbers, such that for every x ∈ N the probability of h(x) = 1 is α/2,
and the values of h on every two distinct points in N are independent. This can be done
assuming that the learner is allowed to output a real number, as a random real number
could be interpreted as a random function over N. Note however, that this means that the
learner outputs a hypothesis with infinite description. As was shown by Bun et al. (2015),
this barrier is unavoidable, and every pure private (proper or improper) learner for POINTN
must output a hypothesis with infinite description.
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Appendix A.

In this section we prove Lemma 18.
Proof Let C be a concept class, and let (H 1,P1) be a (1

4 , β/T )-probabilistic represen-
tation for C (where T will be set later). By Claim 17, such a representation exists with
size(H 1) , k1 ≤ RepDim(C) + ln ln(T/β). We use H 1 and P1 to create an (α, β)- proba-
bilistic representation for C. We begin with two notations:

1. For T hypotheses h1, . . . , hT we denote by majh1,...,hT the majority hypothesis. That is,
majh1,...,hT (x) = 1 if and only if |{hi : hi(x) = 1}| ≥ T/2.

2. For T hypothesis classes H1, . . . ,HT we denote

MAJ(H1, . . . ,HT ) =
{

majh1,...,hT : ∀1≤i≤T hi ∈ Hi
}

.

Consider the following family of hypothesis classes:

H =

{
MAJ(Hi1 , . . . ,HiT ) : Hi1 , . . . ,HiT ∈H 1

}
.

Moreover, denote the distribution on H induced by the following random process as P:

For j = 1, . . . , T :
Randomly choose Hij ∈P1 H 1

Return MAJ(Hi1 , . . . ,HiT ).

Next we show that (H ,P) is an (α, β)-probabilistic representation for C: For a fixed pair
of a target concept c and a distribution D, randomly choose Hi1 , . . . ,HiT ∈P1 H 1. We now
show that with probability at least (1−β) the set MAJ(Hi1 , . . . ,HiT ) contains at least one
α-good hypothesis for c,D.

To this end, denote D1 = D and consider the following thought experiment, inspired by
the Adaboost Algorithm of Freund and Schapire (1997):

For t = 1. . . . , T :

1. Fail if Hit does not contain a 1
4 -good hypothesis for c,Dt.

2. Denote by ht ∈ Hit a 1
4 -good hypothesis for c,Dt.

3. Dt+1(x) =

{
2Dt(x), if ht(x) 6= c(x).(

1− errorDt (c,ht)

1−errorDt (c,ht)

)
Dt(x), otherwise.

Note that as D1 is a probability distribution on Xd; the same is true for D2,D3, . . . ,DT .
As (H 1,P1) is a (1

4 , β/T )-probabilistic representation for C, the failure probability of every
iteration is at most β/T . Thus (using the union bound), with probability at least (1 − β)
the whole thought experiment will succeed, and in this case we show that the error of
hfin = majh1,...,hT is at most α.

Consider the set R = {x : hfin(x) 6= c(x)} ⊆ Xd. This is the set of points on which at
least T/2 of h1, . . . , hT err. Next consider the partition of R to the following sets:

Rt =
{
x ∈ R :

(
ht(x) 6= c(x)

)
∧
(
∀i>t hi(x) = c(x)

)}
.
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That is, Rt contains the points x ∈ R on which ht is last to err. Clearly Dt(Rt) ≤ 1/4, as
Rt is a subset of the set of points on which ht errs. Moreover,

Dt(Rt) ≥ D1(Rt) · 2T/2 ·
(

1− errorDt(c, ht)

1− errorDt(c, ht)

)t−T/2
≥ D1(Rt) · 2T/2 ·

(
1− 1/4

1− 1/4

)t−T/2
≥ D1(Rt) · 2T/2 ·

(
1− 1/4

1− 1/4

)T/2
= D(Rt) ·

(
4

3

)T/2
,

so,

D(Rt) ≤ Dt(Rt) ·
(

4

3

)−T/2
≤ 1

4
·
(

4

3

)−T/2
.

Finally,

errorD(c, hfin) = D(R) =

T∑
t=T/2

D(Rt) ≤

≤ T

2
· 1

4
·
(

4

3

)−T/2
=
T

8
·
(

4

3

)−T/2
.

Choosing T = 14 ln( 2
α), we get that errorD(c, hfin) ≤ α. Hence, (H ,P) is an (α, β)-

probabilistic representation for C. Moreover, for every Hi ∈H we have that |Hi| ≤
(
ek1
)T

,
and so

size(H ) ≤ k1 · T ≤
(

RepDim(C) + ln ln(T/β)
)
T

= O
(

ln(
1

α
) ·
(

RepDim(C) + ln ln ln(
1

α
) + ln ln(

1

β
)
))
.

Appendix B.

As we mentioned in the introduction (Section 1.3), Feldman and Xiao (2015) showed an
equivalence between RepDim(C) and the randomized one-way communication complexity of
the evaluation problem for concepts from C (in the public coin model). A similar argument
shows that the private-coin model is equivalent to DRepDim(C). Thus, a relationship of
DRepDim(C) = O(RepDim(C) + ln(d)) follows from the classical result of Newman (1991)
on the difference in communication complexity between the public and private coin models.
In this section we present a direct proof for this relationship, essentially following the same
strategy as the proof of Newman.
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Observation 36 Let (H ,P) be an (α, β)-probabilistic representation for a concept class
C. Then, B =

⋃
Hi∈H Hi is an α-representation of C.

Proof As (H ,P) is an (α, β)-probabilistic representation for C, for every c and every D

Pr
P

[∃h ∈ Hi s.t errorD(c, h) ≤ α] ≥ 1− β > 0.

The probability is over choosing a set Hi ∈P H . In particular, for every c and every D
there exists an Hi ∈H that contains an α-good hypothesis.

The simple construction in Observation 36 may result in a very large deterministic
representation. For example, in Claim 35 we show an (H ,P) that (α, β)- probabilistically
represents the class POINTd, where H contains all the sets of at most 4

α ln( 1
β ) boolean

functions. While
⋃
Hi∈H Hi = 2Xd is indeed an α-representation for POINTd, it is extremely

over-sized.
We will show that it is not necessary to take the union of all the Hi’s in H in order to

get an α-representation for C. As (H ,P) is an (α, β)-probabilistic representation, for every
c and every D, with probability at least 1 − β a randomly chosen Hi ∈P H contains an
α-good hypothesis. The straight forward strategy here is to first boost β as in Claim 17,
and then use the union bound over all possible c ∈ C and over all possible distributions D
on Xd. Unfortunately, there are infinitely many such distributions, and the proof will be
somewhat more complicated.

Definition 37 Let H = {H1,H2, . . . ,Hr} be a family of hypothesis classes, and P be
a distribution over {1, . . . , r}. We will denote the following non private algorithm as
Learner(H ,P,m, γ):

Input: a sample S = (xi, yi)
m
i=1.

1. Randomly choose Hi ∈P H .
2. If for every h ∈ Hi errorS(h) > γ, then fail.
3. Return h ∈ Hi minimizing errorS(h).

We will say that Learner(H ,P,m, γ) is β-successful for a class C over Xd, if for every
c ∈ C and every distribution D on Xd, given an input sample drawn i.i.d. according to D
and labeled by c, algorithm Learner fails with probability at most β.

Claim 38 If (H ,P) is an (α, β)-probabilistic representation for a class C, then, for m ≥
3
α ln(1/β), algorithm Learner(H ,P,m, 2α) is 2β-successful for C.

Proof We will show that with probability at least 1−2β, the set Hi (chosen in Step 1) con-
tains at least one hypothesis h s.t. errorS(h) ≤ 2α. As (H ,P) is an (α, β)-probabilistic rep-
resentation for class C, the chosen Hi will contain a hypothesis h s.t. errorD(c, h) ≤ α with
probability at least 1−β; by the Chernoff bound with probability at least 1− exp(−mα/3)
this hypothesis has empirical error at most 2α. The set Hi contains a hypothesis h s.t.
errorS(h) ≤ 2α with probability at least (1−β)(1−exp(−mα/3)) > 1− (β+exp(−mα/3)),
which is at least (1− 2β) for m ≥ 3

α ln(1/β).
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Claim 39 Let H be a family of hypothesis classes, and P a distribution on it. Let γ, β and
m be such that m ≥ 4

γ (size(H ) + ln( 1
β )). If Learner(H ,P,m, γ) is β-successful for a class

C over Xd, then there exists Ĥ ⊆H and a distribution P̂ on it, s.t. Learner(Ĥ , P̂,m, γ)

is a (2γ, 3β)-PAC learner for C and
∣∣∣Ĥ ∣∣∣ = d·m

β2 .

Proof For every input S = (xi, yi)
m
i=1, denote by pS the probability of Learner(H ,P,m, γ)

failing on step 2 (the probability is only over the choice of Hi ∈P H in the first step). As
Learner(H ,P,m, γ) is β-successful,

Pr
P,D

[
Learner(H ,P,m, γ) fails

]
=
∑
S

Pr
D

[S] · pS ≤ β.

Consider the following process, denoted by Proc, for randomly choosing a multiset H̃ of
size t (t will be set later):

For i = 1, . . . , t :
Randomly choose Hi ∈P H

Return H̃ = (H1,H2, ...,Ht).

Denote by Ut the uniform distribution on {1, 2, . . . , t}. As before, for every input S =

(xi, yi)
m
i=1, denote by p̃S the probability of Learner(H̃ ,Ut,m, γ) failing on its second step

(again, the probability is only over the choice of Hi ∈Ut H̃ in the first step). Using those
notations:

Pr
Ut,D

[
Learner(H̃ ,Ut,m, γ) fails

]
=
∑
S

Pr
D

[S] · p̃S .

Fix a sample S. As the choice of Hi ∈Ut H̃ is uniform,

p̃S =

∣∣∣{Hi ∈ H̃ : ∀h ∈ Hi errorS(h) > γ
}∣∣∣∣∣∣H̃ ∣∣∣ .

Using the Hoeffding bound,

Pr
Proc

[
|p̃S − pS | ≥ β

]
≤ 2e−2tβ2

.

The probability is over choosing the multiset H̃ . There are at most 2m(d+1) samples of size
m (as every entry in the sample is an element of Xd, concatenated with a label bit). Using
the union bound over all possible samples S,

Pr
Proc

[
∃S s.t. |p̃S − pS | ≥ β

]
≤ 2m(d+1) · 2 · e−2tβ2

.

For t ≥ m·d
β2 the above probability is strictly less than 1. This means that for t = m·d

β2 there

exists a multiset Ĥ such that |p̂S − pS | ≤ β for every sample S. We will show that for

this Ĥ , Learner(Ĥ ,Ut,m, γ) is a (2γ, 3β)-PAC learner. Fix a target concept c ∈ C and a
distribution D on Xd. Define the following two good events:
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E1 Learner(Ĥ ,Ut,m, γ) outputs a hypothesis h such that errorS(h) ≤ γ.

E2 For every h ∈ Hi s.t. errorS(h) ≤ γ, it holds that errorD(c, h) ≤ 2γ.

Note that if those two events happen, Learner(Ĥ ,Ut,m, γ) returns a 2γ-good hypothesis
for c and D. We will show that those two events happen with high probability. We start
by bounding the failure probability of Learner(Ĥ ,Ut,m, γ).

Pr
Ut,D

[
Learner(Ĥ ,Ut,m, γ) fails

]
=

∑
S

Pr
D

[S] · p̂S

≤
∑
S

Pr
D

[S] · (pS + β)

= Pr
P,D

[
Learner(H ,P,m, γ) fails

]
+ β ≤ 2β.

When Learner(Ĥ ,Ut,m, γ) does not fail, it returns a hypothesis h with empirical error at
most γ. Thus, Pr[E1] ≥ 1− 2β.

Using the Chernoff bound, the probability that a hypothesis h with errorD(c, h) > 2γ
has empirical error ≤ γ is less than exp(−mγ/4). Using the union bound, the probability
that there is such a hypothesis in Hi is at most |Hi| · exp(−mγ/4). Therefore, Pr[E2] ≥
1− |Hi| · exp(−mγ/4). For m ≥ 4

γ ln( |Hi|β ), this probability is at least (1− β).

All in all, the probability of Learner(H ,P,m, γ) failing to output a 2γ-good hypothesis
is at most 3β.

Theorem 40 If there exists a pair (H ,P) that (α, β)-probabilistically represents a class

C over Xd (where |H | might be very big), then there exists a pair (Ĥ , P̂) that (4α, 6β)-

probabilistically represents C, where Ĥ ⊆H , and∣∣∣Ĥ ∣∣∣ =
3d

4αβ2

(
size(H ) + ln(

1

β
)

)
.

Proof Let (H ,P) be an (α, β)-probabilistic representation for a class C. Set m =
3
α(size(H ) + ln( 1

β )). By Claim 38, Learner(H ,P,m, 2α) is 2β-successful for class C. By

Claim 39, there exists an Ĥ ⊆H and a distribution P̂ on it, such that Learner(Ĥ , P̂,m, 2α)

is a (4α, 6β)-PAC learner for C and
∣∣∣Ĥ ∣∣∣ = d·m

4β2 = 3d
4αβ2 (size(H ) + ln( 1

β )).

Assume towards contradiction that (Ĥ , P̂) does not (4α, 6β)-represent C. So, there
exist a concept c ∈ C and a distribution D s.t., with probability strictly greater than 6β, a
randomly chosen Hi ∈P̂ Ĥ does not contain a 4α-good hypothesis for c,D. Therefore, for

those c and D, Learner(Ĥ , P̂,m, 2α) will fail to return a 4α-good hypothesis with proba-
bility strictly greater than 6β.
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Theorem 41 For every class C over Xd there exists a 1
4 -representation B such that size(B) =

O(ln(d) + RepDim(C)).

Proof By Lemma 18, there exists a pair (H ,P) that ( 1
16 ,

1
12)-probabilistically represents

C such that size(H ) = O(RepDim(C)). Using Theorem 40, there exists a pair (Ĥ , P̂) that

(1
4 ,

1
2)-probabilistically represents C, such that size(Ĥ ) = size(H ) and∣∣∣Ĥ ∣∣∣ = O (d · size(H )) .

We can now use Observation 36 and construct the set B =
⋃
Hi∈ Ĥ

Hi which is a
1
4 -representation for the class C. In addition,

|B| = O
(∣∣∣Ĥ ∣∣∣ · esize(H )

)
= O

(
d · size(H ) · esize(H )

)
.

Thus, size(B) = ln |B| = O (ln(d) + RepDim(C)).

Corollary 42 For every concept class C over Xd, DRepDim(C) = O(ln(d) + RepDim(C)).

Corollary 43 There exists a constant N s.t. for every concept class C over Xd where
DRepDim(C) ≥ N log(d), the sample complexity that is necessary and sufficient for privately
learning C is Θα,β(DRepDim(C)).
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