Journal of Machine Learning Research 20 (2019) 1-24 Submitted 4/18; Revised 12/18; Published 2/19

Using Simulation to Improve Sample-Efficiency of Bayesian
Optimization for Bipedal Robots

Akshara Rai* ARAIQCS.CMU.EDU

Robotics Institute, School of Computer Science
Carnegie Mellon University, PA, USA

Rika Antonova* ANTONOVA@KTH.SE
Robotics, Perception and Learning, CSC
KTH Royal Institute of Technology, Stockholm, Sweden

Franziska Meier FRANZI.MEIERQGMAIL.COM

Paul G. Allen School of Computer Science & Engineering
University of Washington, Seattle, WA, USA

Christopher G. Atkeson CGAQCS.CMU.EDU
Robotics Institute, School of Computer Science
Carnegie Mellon University, PA, USA

*These authors contributed equally.

Editor: Bayesian Optimization Special Issue

Abstract

Learning for control can acquire controllers for novel robotic tasks, paving the path for
autonomous agents. Such controllers can be expert-designed policies, which typically re-
quire tuning of parameters for each task scenario. In this context, Bayesian optimization
(BO) has emerged as a promising approach for automatically tuning controllers. However,
sample-efficiency can still be an issue for high-dimensional policies on hardware. Here,
we develop an approach that utilizes simulation to learn structured feature transforms
that map the original parameter space into a domain-informed space. During BO, sim-
ilarity between controllers is now calculated in this transformed space. Experiments on
the ATRIAS robot hardware and simulation show that our approach succeeds at sample-
efficiently learning controllers for multiple robots. Another question arises: What if the
simulation significantly differs from hardware? To answer this, we create increasingly ap-
proximate simulators and study the effect of increasing simulation-hardware mismatch on
the performance of Bayesian optimization. We also compare our approach to other ap-
proaches from literature, and find it to be more reliable, especially in cases of high mis-
match. Our experiments show that our approach succeeds across different controller types,
bipedal robot models and simulator fidelity levels, making it applicable to a wide range of
bipedal locomotion problems.

Keywords: Bayesian Optimization, Bipedal Locomotion, Transfer Learning

1. Introduction

Machine learning can provide methods for learning controllers for robotic tasks. Yet, even
with recent advances in this field, the problem of automatically designing and learning con-
trollers for robots, especially bipedal robots, remains difficult. It is expensive to do learning

(©2019 Akshara Rai, Rika Antonova, Franziska Meier and Christopher G. Atkeson.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/18-196 .html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/18-196.html

RA1, ANTONOVA, MEIER, ATKESON

experiments that require a large number of samples with physical robots. Specifically, legged
robots are not robust to falls and failures, and are time-consuming to work with and repair.
Furthermore, commonly used cost functions for optimizing controllers are noisy to evaluate,
non-convex and non-differentiable. In order to find learning approaches that can be used
on real robots, it is thus important to keep these considerations in mind.

Deep reinforcement learning approaches can deal with noise, discontinuities and non-
convexity of the objective, but they are not data-efficient. These approaches could take on
the order of a million samples to learn locomotion controllers (Peng et al., 2016), which
would be infeasible on a real robot. For example, on the ATRIAS robot, 10,000 samples
would take 7 days, in theory. But practically, the robot needs to be “reset” between trials
and repaired in case of damage. Using structured expert-designed policies can help minimize
damage to the robot and make the search for successful controllers feasible. However,
the problem is black-box, non-convex and discontinuous. This eliminates approaches like
PI? (Theodorou et al., 2010) which make assumptions about the dynamics of the system
and PILCO (Deisenroth and Rasmussen, 2011) which assumes a continuous cost landscape.
Evolutionary approaches like CMA-ES (Hansen, 2006) can still be prohibitively expensive,
needing thousands of samples (Song and Geyer, 2015).

In comparison, Bayesian optimization (BO) is a sample-
efficient optimization technique that is robust to non-
convexity and noise. It has been recently used in a range
of robotics problems, such as Calandra et al. (2016b), Marco
et al. (2017) and Cully et al. (2015). However, sample-
efficiency of conventional BO degrades in high dimensions,
even for dimensionalities commonly encountered in locomo-
tion controllers. Because of this, hardware-only optimiza-
tion becomes intractable for flexible controllers and complex
robots. One way of addressing this issue is to utilize simula-
tion to optimize controller parameters. However, simulation-
only optimization is vulnerable to learning policies that ex-
ploit the simulation and, because of that, perform well in
simulation but poorly on the actual robot. This motivates
the development of hybrid approaches that can incorporate
simulation-based information into the learning method and
then optimize with few samples on hardware.

Figure 1: ATRIAS robot.

Towards this goal, our previous work in Antonova, Rai, and Atkeson (2016), Antonova
et al. (2017), Rai et al. (2018) presents a framework that uses information from high-fidelity
simulators to learn sample-efficiently on hardware. We use simulation to build informed
feature transforms that are used to measure controller similarity during BO. Thus, during
optimization on hardware, the similarity between controller parameters is informed by how
they perform in simulation. With this, it becomes possible to quickly infer which regions of
the input space are likely to perform well on hardware. This method has been tested on the
ATRIAS biped robot (Figure 1) and shows considerable improvement in sample-efficiency
over traditional BO.

In this article, we present in-depth explanations and empirical analysis of our previous
work. Furthermore, for the first time, we present a procedure for systematically evaluating

IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDAL ROBOTS

robustness of such approaches to simulation-hardware mismatch. We extend our previous
work incorporating mismatch estimates (Rai et al., 2018) to this setting. We also conduct
extensive comparisons with competitive baselines from prior work, e.g. Cully et al. (2015).
The rest of this article is organized as follows: Section 2 provides background for BO,
then gives an overview of related work on optimizing locomotion controllers. Section 3.1 de-
scribes the idea of incorporating simulation-based transforms into BO; Section 3.2 explains
how we handle simulation-hardware mismatch. Sections 4.1-4.5 describe the robot and con-
trollers we use for our experiments; Section 4.6 explains the motivation and construction
of simulators with various kinds of simulation-hardware mismatch. Section 5 summarizes
hardware experiments on the ATRIAS robot. Section 5.2 shows generalization to a different
robot model in simulation. Section 5.3 presents empirical analysis of the impact of simulator
quality on the performance of the proposed algorithms and alternative approaches.

2. Background and Related Work

This section gives a brief overview of Bayesian optimization (BO), the state-of-the-art re-
search on optimizing locomotion controllers, and utilizing simulation information in BO.

2.1. Background on Bayesian Optimization

Bayesian optimization (BO) is a framework for online, black-box, gradient-free global search
(Shahriari et al. (2016) and Brochu et al. (2010) provide a comprehensive introduction). The
problem of optimizing controllers can be interpreted as finding controller parameters * that
optimize some cost function f(z). Here x contains parameters of a pre-structured policy;
the cost f(z) is a function of the trajectory induced by controller parameters . For brevity,
we will refer to ‘controller parameters &’ as ‘controller £’. We use BO to find controller *,
such that: f(z*) = H;in f(x).

BO is initialized with a prior that expresses the a priori uncertainty over the value of
f(z) for each & in the domain. Then, at each step of optimization, based on data seen so
far, BO optimizes an auxiliary function (called acquisition function) to select the next x to
evaluate. The acquisition function balances exploration vs exploitation. It selects points
for which the posterior estimate of the objective f is promising, taking into account both
mean and covariance of the posterior. A widely used representation for the cost function f

is a Gaussian process (GP): f(@) ~ GP(u(@), k(zi,z;))

The prior mean function p(-) is set to 0 when no domain-specific knowledge is provided.
The kernel function k(-,-) encodes similarity between inputs. If k(z;, ;) is large for inputs
x;,x;, then f(x;) strongly influences f(x;). One of the most widely used kernel functions

is the Squared Exponential (SE):

kSE(.’L‘Z',J!j) = U]% exp (— %(.’L‘Z — .’L‘j)T diag(f)_z(a:i — .’L‘j)),

where a,%, £ are signal variance and a vector of length scales respectively. 0,%, £ are referred
to as ‘hyperparameters’ in the literature.

The SE kernel belongs to a broader class of Matérn kernels, which in general have more
free parameters. In some cases, carefully choosing kernel parameters improves performance
of BO (Snoek et al., 2012). However, domain-informed kernels can easily out-perform even

RA1, ANTONOVA, MEIER, ATKESON

well-tuned Matérn kernels (Cully et al., 2015). SE and Matérn kernels are stationary:
k(z;,x;) depend only on r =z;—x; Vx; ;. We aim to remove this limitation in a manner
informed by simulation. In future work, incorporating other approaches that relax station-
arity (e.g. Martinez-Cantin (2018)) could further improve BO.

2.2. Optimizing Locomotion Controllers

Parametric locomotion controllers can be represented as u = 7;(s), where 7 is a policy
structure that depends on parameters . For example, m can be parameterized by feedback
gains on the center of mass (CoM), reference joint trajectories, etc. Vector s is the state
of the robot, such as joint angles and velocities, used in closed-loop controllers. Vector u
represents the desired control action, for example: torques, angular velocities or positions for
each joint on the robot. The sequence of control actions yields a sequence of state transitions,
which form the overall ‘trajectory’ [sg,u1,81,u2, S2,...]. This trajectory is used in the cost
function to judge the quality of the controller . In our work, we use structured controllers
designed by experts. State of the art research on walking robots featuring such controllers
includes Feng et al. (2015) and Kuindersma et al. (2016). The overall optimization then
includes manually tuning the parameters . An alternative to manual tuning is to use
evolutionary approaches, like CMA-ES, as in Song and Geyer (2015). However, these require
a large number of samples and can usually be conducted only in simulation. Optimization
in simulation can produce controllers that perform well in simulation, but not on hardware.
In comparison, BO is a sample-efficient technique which has become popular for direct
optimization on hardware. Recent successes include manipulation (Englert and Toussaint,
2016) and locomotion (Calandra et al., 2016b).

BO for locomotion has been previously explored for several types of mobile robots.
These include: snake robots (Tesch et al., 2011), AIBO quadrupeds (Lizotte et al., 2007),
and hexapods (Cully et al., 2015). Tesch et al. (2011) optimize a 3-dimensional controller
for a snake robot in 10-40 trials (for speeds up to 0.13m/s). Lizotte et al. (2007) use BO
to optimize gait parameters for a AIBO robot in 100-150 trials. Cully et al. (2015) learn
36 controller parameters for a hexapod. Even with hardware damage, they can obtain
successful controllers for speeds up to 0.4m/s in 12-15 trials.

Hexapods, quadrupeds and snakes spend a large portion of their gaits with their center of
mass within their support polygon (convex hull of the feet on the ground). Ignoring velocity,
this is statically stable. In contrast, bipedal walking can be highly dynamic, especially for
point-feet robots like ATRIAS. ATRIAS, like most bipeds, spends a significant time of its
gait being “unstable”, or dynamically stable. In our experiments on hardware, ATRIAS
goes up to speeds of 1m/s. All of this leads to a challenging optimization setting and
discontinuous cost function landscape. Calandra et al. (2016b) use BO for optimizing gaits
of a dynamic biped on a boom, needing 30-40 samples for finding walking gaits for a 4-
dimensional controller. While this is promising, optimizing a higher-dimensional controller
needed for complex robots would be even more challenging. If significant number of samples
lead to unstable gaits and falls, they could damage the robot. Hence, it is important to
develop methods that can learn complex controllers fast, without damaging the robot.

IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDAL ROBOTS

2.3. Incorporating Simulation Information into Bayesian Optimization

The idea of using simulation to speed up BO on hardware has been explored before. Infor-
mation from simulation can be added as a prior to the GP used in BO, such as in Cully et al.
(2015). While such methods can be successful, one needs to carefully tune the influence of
simulation points over hardware points, especially when simulation is significantly different
from hardware.

More generally, approaches such as Kandasamy et al. (2017) and Marco et al. (2017)
address trading off computation vs simulation accuracy when selecting the source for the
next trial/evaluation (with real world viewed as the most expensive source). Instead, we
consider a setting with ample compute resources for simulation, but an extremely small
number of experiments on a real robot. This is appropriate for bipedal locomotion with
full-scale robots, since these can be expensive to run. Hence, our work does not fall into
the ‘multi-fidelity’ BO paradigm, and we instead take a two step approach: pre-computing
information needed for kernel transforms in the first stage, then running an ultra-sample
efficient version of BO in the second stage on a real robot.

Recently, several approaches proposed incorporating Neural Networks (NNs) into the
Gaussian process (GP) kernels (Wilson et al. (2016), Calandra et al. (2016a)). The strength
of these approaches is that they can jointly update the GP and the NN. Calandra et al.
(2016a) demonstrated how this added flexibility can handle discontinuities in the cost func-
tion landscape. However, these approaches do not directly address the problem of incorpo-
rating a large amount of data from simulation in hardware BO experiments.

Wilson et al. (2014) explored enhancing GP kernel with trajectories. Their Behavior
Based Kernel (BBK) computes an estimate of a symmetric variant of the KL divergence
between trajectories induced by two controllers, and uses this as a distance metric in the ker-
nel. However, getting an estimate would require samples for each controller x;, x; whenever
k(x;, ;) is needed. This can be impractical, as it involves an evaluation of every controller
considered. To overcome this, the authors suggest combining BBK with a model-based ap-
proach. But building an accurate model from hardware data might be an expensive process
in itself.

Cully et al. (2015) utilize simulation by defining a behavior metric and collecting best
performing points in simulation. This behavior metric then guides BO to quickly find
controllers on hardware, and can even compensate for damage to the robot. The search
on hardware is conducted in behavior space, and limited to pre-selected “successful” points
from simulation. This helps make their search faster and safer on hardware. However, if an
optimal point was not pre-selected, BO cannot sample it during optimization.

In our work, we utilize trajectories from simulation to build feature transforms that
can be incorporated in the GP kernel used for BO. Our approaches incorporate trajec-
tory/behavior information, but ensure that k(z;,x;) is computed efficiently during BO.
Our work is related, in part, to input space warping, as described in Snoek et al. (2014),
but we construct our transforms from simulated data. Our simulation-informed kernels bias
the search towards regions that look promising, but are able to ‘recover’ and search in other
parts of the space if simulation-hardware mismatch becomes apparent.

RA1, ANTONOVA, MEIER, ATKESON

o(x) Xnext
S \ /\
§(0) 7 (5)
x——¢(x) s :
— —
Build)
Simulate controllers Collect transform ¢
X1.N trajectories using & Run BO experiments on real robot

Figure 2: Overview of our proposed approach. Here, 75 (s) is the policy (Section 2.2); is a vector
of controller parameters; s is the state of the robot; {(x) is a trajectory observed in simulation for
x; ¢(-) is the transform built using £(+); f(z) is the cost of evaluated on hardware. BO uses ¢(z)
and evaluated costs f(z) to propose next promising controller x,cy¢.

3. Proposed Approach: Bayesian Optimization with Informed Kernels

In this section, we offer in-depth explanation of approaches from our work in Antonova,
Rai, and Atkeson (2016), Antonova et al. (2017), and Rai et al. (2018). This work proposes
incorporating domain knowledge into BO with the help of simulation. We evaluate loco-
motion controllers in simulation, and collect their induced trajectories, which are then used
to build an informed transform. This can be achieved by using a domain-specific feature
transform (Section 3.1.1) or by learning to reconstruct short trajectory summaries (Sec-
tion 3.1.2). This feature transform is used to construct an informed distance metric for BO,
and helps BO discover promising regions faster. Figure 2 gives an overview. In Section 3.2
we discuss how to incorporate simulation-hardware mismatch in to the transform, ensuring
that BO can benefit from inaccurate simulations as well.

3.1. Constructing Flexible Kernels using Simulation-based Transforms

High dimensional problems with discontinuous cost functions are very common with legged
robots, where slight changes to some parameters can make the robot unstable. Both of
these factors can adversely affect BO’s performance, but informed feature transforms can
help BO sample high-performing controllers even in such scenarios.

In this section, we demonstrate how to construct such transforms ¢(z) utilizing simula-
tions for a given controller z. We then use ¢ to create an informed kernel ky(2;, ;) for BO

on hardware: tij=o(x;)—o(x;)

ks (w1,3;) = o2 exp (— 47 diag(e)*tij)
Note that the functional form above is the same as that of Squared Exponential kernel,
if considered from the point of view of the transformed space, with ¢(z) as input. Using
a low-dimensional ¢ could improve sample efficiency by reducing dimensionality. More
notably, crucial gains arise when ¢ brings controllers that perform similar in simulation
closer together, as compared to the original parameter space. For locomotion, this could
bring failing controllers close together to occupy only a small portion of the transformed
space, as illustrated in Rai et al. (2018). In essence, this means that the resultant kernel,
though stationary in ¢, is non-stationary in «.

(1)

IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDAL ROBOTS

3.1.1. THE DETERMINANTS OF GAIT TRANSFORM

We propose a feature transform for bipedal locomotion derived from physiological features
of human walking called Determinants of Gaits (DoG) (Inman et al., 1953). ¢p,g was orig-
inally developed for human-like robots and controllers (Antonova, Rai, and Atkeson, 2016),
and then generalized to be applicable to a wider range of bipedal locomotion controllers
and robot morphologies (Rai et al., 2018). It is based on the features in Table 1.

M, (Swing leg retraction) — If the maximum ground clearance of the swing foot
9 x¢ is more than a threshold, M; =1 (0 otherwise); ensures swing leg retraction.
L

My (Center of mass height) — If CoM height z stays about the same at the start
and end of a step, My=1 (0 otherwise); checks that the robot is not falling.

; Ms (Trunk lean) — If the average trunk lean 6 is the same at the start and end of
a step, M3=1 (0 otherwise); ensures that the trunk is not changing orientation.

My (Average walking speed) — Average forward speed v of a controller per step,
My =1v4vqg; My helps distinguish controllers that perform similar on M;_3.

Table 1: Illustration of the features used to construct DoG transform.

®poc combines features Mj_4 per step and scales them by the normalized simulation
time to obtain the DoG score of controller a:

N 4
t .
scorepoc = — . Z Z My (2)

tmaz s=1 k=1

Here, subscript & identifies the feature metric, s is the step number, N is the total number
of steps taken in simulation, ts;,, is time at which simulation terminated (possibly due to a
fall), tyqe is total time allotted for simulation. Since larger number of steps lead to higher
DoG, some controllers that chatter (step very fast before falling) could get misleadingly high
scores; we scale the scores by tt:nﬁ to prevent that. ¢poc () for controller parameters & now
becomes the computed scorep,g of the resulting trajectories when x is simulated. ¢pog
essentially aids in (soft) clustering of controllers based on their behaviour in simulation.
High scoring controllers are more likely to walk than low scoring ones. Since M;_4 are
based on intuitive gait features, they are more likely to transfer between simulation and
hardware, as compared to direct cost. The thresholds in M;_3 are chosen according to
values observed in nominal human walking from Winter and Yack (1987).

3.1.2. LEARNING A FEATURE TRANSFORM WITH A NEURAL NETWORK

While domain-specific feature transforms can be extremely useful and robust, they might be
difficult to generate when a domain expert is not present. This motivates directly learning
such feature transforms from trajectory data. In this section we describe our approach
to train neural networks to reconstruct trajectory summaries (Antonova et al., 2017) that
achieves this goal of minimizing expert involvement.

Trajectory summaries are a convenient choice for reparametrizing controllers into an
easy to optimize space. For example, controllers that fall would automatically be far away
from controllers that walk. If these trajectories can be extracted from a high-fidelity sim-

RA1, ANTONOVA, MEIER, ATKESON

ulator, we would not have to evaluate each controller on hardware. However, conventional
implementations of BO evaluate the kernel function for a large number of points per iter-
ation, requiring thousands of simulations each iteration. To avoid this, a Neural Network
(NN) can be trained to reconstruct trajectory summaries from a large set of pre-sampled
data points. NN provides flexible interpolation, as well as fast evaluation (controller — tra-
jectory summary). Furthermore, trajectories are agnostic to the specific cost used during
BO. Thus the data collection can be done offline, and there is no need to re-run simulations
in case the definition of the cost is modified.

We use the term ‘trajectory’ in a general sense, referring to several sensory states
recorded during a simulation. To create trajectory summaries for the case of locomotion, we
include measurements of: walking time (time before falling), energy used during walking,
position of the center of mass and angle of the torso. With this, we construct a dataset for
NN to fit: a Sobol grid of controller parameters (21.n, N ~0.5 million) along with trajectory
summaries &, from simulation. NN is trained using mean squared loss:

NN input: £ — a set of controller parameters
NN output: ¢iainn(x) = éz — reconstructed trajectory summary

NN loss: %Ei\il ||émz - fmzHQ
The outputs ¢qjnn(x) are then used in the kernel for BO:

ktrajnn(Ti, ;) = of exp (— 3t diag(£) L), tij = OtrajnN(Z;) — urajnn(T;) (3)
Appendix A describes our data collection and training. We did not carefully select the
sensory traces used in the trajectory summaries. Instead, we used the most obvious states,
aiming for an approach that could be easily adapted to other domains. To apply this
approach to a new setting, one could simply include information that is customarily tracked,
or used in costs. For example, for a manipulator, the coordinates of the end effector(s) could
be recorded at relevant points. Force-torque measurements could be included, if available.

3.2. Kernel Adjustment for Handling Simulation-Hardware Mismatch

Approaches described in previous sections could provide improvement for BO when a high-
fidelity simulator is used in kernel construction. In Rai et al. (2018) we presented promising
results of experimental evaluation on hardware. However, it is unclear how the performance
changes when simulation-hardware mismatch becomes apparent.

In Rai et al. (2018), we also proposed a way to incorporate information about simulation-
hardware mismatch into the kernel from the samples evaluated so far. We augment the
simulation-based kernel to include this additional information about mismatch, by expand-
ing the original kernel by an extra dimension that contains the predicted mismatch for each
controller x.

A separate Gaussian process is used to model the mismatch experienced on hardware,
starting from an initial prior mismatch of 0: g(x) ~GP(0, ksg(xi,x;)). For any evaluated
controller z;, we can compute the difference between ¢(z;) in simulation and on hardware:
dg, = ¢*"™(x;) — ¢ (x;). We can now use mismatch data {ds,|i = 1..n} to construct a
model for the expected mismatch: g(z). In the case of using a GP-based model, g(-) would
denote the posterior mean. With this, we can predict simulation-hardware mismatch in the
original space of controller parameters for unevaluated controllers. Combining this with

IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDAL ROBOTS

kernel k4 we obtain an adjusted kernel:

adj d)Sim (.’ZJ) adj ad ad

bog a2 = ofexp (45 i [)ﬂtzﬁ)

The similarity between points x;,z; is now dictated by two components: representation in
¢ space and expected mismatch. This construction has an intuitive explanation: Suppose
controller ; results in walking when simulated, but falls during hardware evaluation. kg,
would register a high mismatch for z;. Controllers would be deemed similar to z; only if
they have both similar simulation-based ¢(-) and similar estimated mismatch. Points with
similar simulation-based ¢(-) and low predicted mismatch would still be ‘far away’ from
the failed ;. This would help BO sample points that still have high chances of walking in
simulation, but are in a different region of the original parameter space. In the next section,
we present a more mathematically rigorous interpretation for kg, .

3.2.1. INTERPRETATION OF KERNEL WITH MISMATCH MODELING

Let us consider a controller x; evaluated on hardware. The difference between simulation-
based and hardware-based feature transform for x; is dg, = ¢*"™(x;) — ¢"*(x;). The ‘true’
hardware feature transform for z; is ¢"V(z;) = ¢*"™(x;) — dy,. After n evaluations on
hardware, {dg,|i = 1...n} can serve as data for modeling s1mulat10n hardware mismatch. In
principle, any data-efficient model g(-) can be used, such as GP (a multi-output GP in case
¢(-) > 1D). With this, we can obtain an adjusted transform: ¢ (zx) = ¢*"(x) — g(x),
where g(-) is the output of the model fitted using {dg,|i = 1,...n}.

Suppose Ty, has not been evaluated on hardware. We can use QAS’“” (Tnew) = O™ (Tpew)—
9(Zpew) as the adjusted estimate of what the output of ¢ should be, taking into account
what we have learned so far about simulation-hardware mismatch.

Let’s construct kernel k:;id] (z;,x;) that uses these hardware-adjusted estimates directly:
g = 3" @) — " (a))
= (™" (i) — g(xi)) — (6" (z) — g(x;))
= (™" (@) — 0" (2;)) — (g(2:) — g(x;))
Vo Vg
v adj . ad,
K, @aws) = of, exo (- (gl diag(e) g
2 — 3wy — v,)T diag(€) (v, — vg)])

= o exp
—1 ['vg diag () vy + 'v;‘; diag(€) v, — prodij])

l\?\»—l

= o2 exp (
where prod;; = 2’03; diag(£) v

Using exp(a + b+ ¢) = exp(c) - exp(a + b), we have:
l{:gidj (zi, ;) = o exp(prod;;) exp (-z [v¢ diag(€) vy + 'vg diag(ﬁ)_Qng

RA1, ANTONOVA, MEIER, ATKESON

Which can be written as:
.) AR
k;id] (zi,x;) = o2 exp(prod;;) exp (- %(t?jdﬂ)T diag < M) t?jﬂ)

padi _ [%} _ [W’” (i) — ¢ (ﬁj)]
ij = (e — a(p.
vy 9(zi) — g(z;)
Compare this to kg, from Equation 4:
Ji . AR

Koo (®irTj) = ofexp (- %(t?j])T diag ([32}) t?j]) (5)
Now we see that k::;idj and kg, ,. have a similar form. Hyperparameters £;, 2 provide flexibil-
ity in kg,,; as compared to having only vector £ in k;’idj. They can be adjusted manually or

with Automatic Relevance Determination. For k;idj, the role of signal variance is captured

by o2 exp(—prod;;). This makes the kernel nonstationary in the transformed ¢ space. Since
kg,q; is already non-stationary in z, it is unclear whether non-stationarity of]-c;idj in the
transformed ¢ space has any advantages.

The above discussion shows that kg, proposed in Rai et al. (2018) is motivated both
intuitively and mathematically. It aims to use a transform that accounts for the hardware
mismatch, without adding extra non-stationarity in the transformed space. While the above
analysis shows the connection between kg, and k:;idj, a more systematic empirical analysis
would be beneficial as part of future work.

4. Robots, Simulators and Controllers Used

In this section we give a concise description of the robots, controllers and simulators used
in experiments with BO for bipedal locomotion. Our approach is applicable to a wide
range of bipedal robots and controllers, including state-of-the-art controllers (Feng et al.,
2015). We work with two different types of controllers — a reactively stepping controller
and a human-inspired neuromuscular controller (NMC). The reactively stepping controller
is model-based: it uses inverse-dynamics models of the robot to compute desired motor
torques. In contrast, NMC is model-free: it computes desired torques using hand-designed
policies, created with biped locomotion dynamics in mind. These controllers exemplify two
different and widely used ways of controlling bipedal robots. In addition to this, we show
results on two different robot morphologies — a parallel bipedal robot ATRIAS, and a serial
7-link biped model. Our hardware experiments are conducted on ATRIAS; the 7-link biped
is only used in simulation. Our success on both robots shows that the approaches developed
in this paper are widely applicable to a range of bipedal robots and controllers.

4.1. ATRIAS Robot

Our hardware platform is an ATRIAS robot (Figure 1). ATRIAS is a parallel bipedal robot,
weighing ~ 64kg. The legs are 4-segment linkages actuated by 2 Series Elastic Actuators
(SEAs) in the sagittal plane and a DC motor in the lateral plane. Details can be found in
Hubicki et al. (2016). In this work we focus on planar motion around a boom. ATRIAS is
a highly dynamic system due to its point feet, with static stability only in double stance on
the boom.

10

IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDAL ROBOTS

4.2. Planar 7-link Biped

The second robot used in our experiments is a 7-link biped (Thatte and Geyer, 2016). It
has a trunk and segmented legs with ankles, with actuators in the hip, knees and ankles.
The inertial properties of its links are similar to an average human (Winter and Yack,
1987). This 7-link model is a canonical simulator for testing bipedal walking algorithms, for
example in Song and Geyer (2015). It is a simplified two-dimensional simulator for a large
range of humanoid robots, like Atlas (Feng et al., 2015). We use this simulator to study
the generalizability of our proposed approaches to systems different from ATRIAS.

4.3. Feedback Based Reactive Stepping Policy

We design a parametric controller for controlling the CoM height, torso angle and the swing
leg by commanding desired ground reaction forces and swing foot landing location.

Fp=Kp(Oaes—0) — Kyt F. = Kp.(2des— 2) — Kaz2 p = k(v — vigs) + Cd + 0.50T

Here, F), is the desired horizontal ground reaction force (GRF), K,; and Ky are the
proportional and derivative feedback gains on the torso angle # and velocity 6. F, is the
desired vertical GRF, K, and Kg, are the proportional and derivative gains on the CoM
height z and vertical velocity z. z4es and 04cs are the desired CoM height and torso lean. x,
is the desired foot landing location for the end of swing; v is the horizontal CoM velocity,
k is the feedback gain that regulates v towards the target velocity vi4;. C'is a constant and
d is the distance between the stance leg and the CoM; T is the swing time.

The desired GRF's are sent to ATRIAS inverse dynamics model that generates desired
motor torques 7y, 7,. Details can be found in Rai et al. (2018). This controller assumes no
double-support, and the swing leg takes off as soon as stance is detected. This leads to a
highly dynamic gait, posing a challenging optimization problem.

To investigate the effects of increasing dimensionality on our optimization, we construct
two controllers with different number of free parameters:

e S-dimensional controller : optimizing 5 parameters [Kp, Kq, k, C, T
(Zdes, Odes and the feedback on z are hand tuned)

e 9-dimensional controller : optimizing all 9 parameters of the high-level policy
[Kpt, Kdta edesa sza Kdza Zdes» k> 07 T]

4.4. 16-dimensional Neuromuscular Controller

We use neuromuscular model policies, as introduced in Geyer and Herr (2010), as our
controller for the 7-link planar human-like biped model. These policies use approximate
models of muscle dynamics and human-inspired reflex pathways to generate joint torques,
producing gaits that are similar to human walking.

Each leg is actuated by 7 muscles, which together produce torques about the hip, knee
and ankle. Most of the muscle reflexes are length or force feedbacks on the muscle state
aimed at generating a compliant leg, keeping knee from hyperextending and maintaining
torso orientation in stance. The swing control has three main components — target leg angle,
leg clearance and hip control due to reaction torques. Together with the stance control, this
leads to a total of 16 controller parameters, described in details in Antonova et al. (2016).

11

RA1, ANTONOVA, MEIER, ATKESON

Though originally developed for explaining human neural control pathways, this con-
troller has recently been applied to prosthetics and bipeds, for example Thatte and Geyer
(2016) and Van der Noot et al. (2015). This controller is capable of generating a variety
of locomotion behaviours for a humanoid model — walking on rough ground, turning, run-
ning, and walking upstairs, making it a very versatile controller (Song and Geyer, 2015).
This is a model-free controller as compared to the reactive-stepping controller, which was
model-based.

4.5. 50-dimensional Virtual Neuromuscular Controller

Another model-free controller we use on ATRIAS is a modified version of Batts et al.
(2015). VNMC maps a neuromuscular model, similar to the one described in Section 4.4 to
the ATRIAS robot’s topology and emulates it to generate desired motor torques. We adapt
VNMC by removing some biological components while preserving its basic functionalities.
The final version of the controller consists of 50 parameters including low-level control
parameters, such as feedback gains, as well as high level parameters, such as desired step
length and desired torso lean. Details can be found in Rai et al. (2018). When optimized
using CMA-ES, it can control ATRIAS to walk on rough terrains with height changes of
+20 cm in planar simulation (Batts et al., 2015).

4.6. Increasingly Inaccurate Simulators

To compare the performance of different methods that can be used to transfer information
from simulation to hardware, we create a series of increasingly approximate simulators.
These simulators emulate increasing mismatch between simulation and hardware and its ef-
fect on the information transfer. In this setting, the high-fidelity ATRIAS simulator (Martin
et al., 2015), which was used in all the previous simulation experiments becomes the “hard-
ware”. Next we make dynamics approximations to the original simulator, which are used
commonly in simulators to decrease fidelity and increase simulation speed. For example,
the complex dynamics of harmonic drives are approximated as a torque multiplication, and
the boom is removed from the simulation, leading to a two-dimensional simulator. These
approximate simulators now become the “simulators”. As the approximations in these sim-
ulators are increased, we expect the performance of methods that utilize simulation for
optimization on hardware to deteriorate.

The details of the approximate simulators are described in the two paragraphs below:

1. Simulation with simplified gear dynamics : We replace the original high-fidelity
gear model with a commonly used approximation for geared systems — multiplying the rotor
torque by the gear ratio. This reduces the simulation time to about a third of the original
simulator, but leads to an approximate gear dynamics model.

2. Simulation with no boom and simplified gear dynamics : The ATRIAS robot
walks on a boom in our hardware experiments. In our second approximation, we remove the
boom from the original simulator and constraint the motion of the robot to a 2-dimensional
plane. This is a common approximation for two-dimensional robots. However, the boom
leads to lateral forces on the robot, which have vertical force components that are not
modelled anymore.

12

IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDAL ROBOTS

Figure 3: ATRIAS during BO with DoG-based kernel (video: https://youtu.be/hpXNFREgaRA)

The advantage of such an arrangement is that we can test the effect of un-modelled
and wrongly modelled dynamics on information transfer between simulation and hardware.
Even in our high-fidelity original simulator, there are several un-modelled components of the
actual hardware. For example, the non-rigidness of the robot parts, misaligned motors and
relative play between joints. In our experiments, we find that the 50-dimensional VNMC is
a sensitive controller, with little hope of directly transferring from simulation to hardware.
Anticipating this, we can now test several methods of compensating for this mismatch using
our increasingly approximate simulators.

5. Experiments

We will now present our experiments on optimizing controllers that are 5, 9, 16 and 50
dimensional. We split our experiments into three categories: hardware experiments on
the ATRIAS robot, simulation experiments on the 7-link biped and experiments using
simulators with different levels of mismatch. We demonstrate that our proposed approach
is able to generalize to different controllers and robot structures and is also robust to
simulation inaccuracies. The sections below present experimental results, while Appendix A
gives further details on data collection, BO implementation and kernel generation.

5.1. Hardware Experiments on the ATRIAS Robot

In this section we describe experiments conducted on the ATRIAS robot (hardware from
Section 4.1). These experiments were conducted around a boom. The cost function used
in our experiments is a slight modification of the cost used in Song and Geyer (2015):

100 — if fall
cost — 00 ajfa”, 1I Ta. (6)
‘ |Ua'ug — Utgt| ’, if walk

where x 74 is distance covered before falling, v4,4 is average speed per step and v;4; contains

target velocity profile, which can be variable. This cost function heavily penalizes falls, and
encourages walking controllers to track target velocity.

We do multiple runs of each algorithm on the robot. Each run typically consists of 10
experiments on the robot. All BO runs start from scratch, with an uninformed GP prior.
At the end of the run, the GP posterior has 10 data points, depending on the experiment.
Each robot trial is designed to be between 30s to 60s long and the robot is reset to its
“home” position between trials.

We will present two sets of hardware experiments in the following subsections. First
we describe experiments with the DoG-based kernel on the 5 and 9 dimensional controllers

13

https://youtu.be/hpXNFREgaRA

RA1, ANTONOVA, MEIER, ATKESON

-

o

o
—
o
o

*SE kernel

5 80 *DoG kernel -E 80
o) o *SE kernel
ff 60 f 60 *DoG kernel
[0} [72])
o] o]
© 40 040
» »
))
Q20 Q20

0 0

5 10 15 20 2 4 6 8 10
trials trials

(a) BO for 5D controller. BO with SE finds (b) BO for 9D controller. BO with SE doesn’t
walking points in 4/5 runs within 20 trials. BO find walking points in 3 runs. BO with DoG-
with DoG-based kernel finds walking points in ~ based kernel finds walking points in 3/3 runs
5/5 runs within 3 trials. within 5 trials.

Figure 4: BO for 5D and 9D controller on ATRIAS robot hardware. Plots show mean best cost so
far. Shaded region shows £ one standard deviation. From Rai et al. (2018).

(first reported in Rai et al. (2018)). The second set describes a new set of experiments for
optimizing a 9-dimensional controller using a Neural Network based kernel on hardware.

5.1.1. EXPERIMENTS WITH A 5-DIMENSIONAL CONTROLLER AND DOG-BASED KERNEL

In our first set of experiments on the robot, we investigated optimizing the 5-dimensional
controller from Section 4.3. For these experiments we picked a challenging variable target
speed profile: 0.4m/s (15 steps) - 1.0m/s (15 steps) - 0.2m/s (15 steps) - 0m/s (5 steps).
The controller was stopped after the robot took 50 steps.

To evaluate the difficulty of this setting, we sampled 100 random points on hardware.
10% of these randomly sampled controllers could walk. In contrast, in simulation the success
rate of random sampling was ~27.5%. This indicates that the simulation was easier, which
could be potentially detrimental to algorithms that rely heavily on simulation, because a
large portion of controllers that walk in simulation fall on hardware. Nevertheless, using a
DoG-based kernel offered significant improvements over a standard SE kernel (Figure 4a).

We conducted 5 runs of BO with DoG-based kernel and 5 runs of BO with SE, 10 trials
for DoG-based kernel per run, and 20 for SE kernel. In total, this led to 150 experiments on
the robot (excluding the 100 random samples, which were not used during BO). BO with
DoG-based kernel found walking points in 100% of runs within 3 trials. In comparison, BO
with SE found walking points in 10 trials in 60% runs, and in 80% runs in 20 trials (Figure
4a). Although BO could find walking controllers as early as the second trial (with no prior
hardware information), it is worth noting that the optimization did not converge after only
a few trials. Sampling more could possibly lead to better walking controllers, but our goal
was to find the best controller with a budget of only 10 to 20 trials.

5.1.2. EXPERIMENTS WITH A 9-DIMENSIONAL CONTROLLER AND DOG-BASED KERNEL

Our next set of experiments optimized the 9-dimensional controller from Section 4.3. First,
we sampled 100 random points for the variable speed profile described above, but this led

14

IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDAL ROBOTS

to no walking points. To ensure that we have a reasonable baseline we decided to simplify
the speed profile for this setting: 0.4m/s for 30 steps. We evaluated 100 random points
on hardware, and 3 walked for the easier speed profile. In comparison, the success rate in
simulation was 8% for the tougher variable-speed profile, implying an even greater mismatch
between hardware and simulation than the 5-dimensional controller. For experiments in
Sections 5.1.1 and 5.1.2 the inertial measurement unit (IMU) of the robot was broken, and
we replaced its functionality with external boom sensors. These were lower resolution than
the IMU, leading to noisier readings and larger time delays. As a result, the system did
not have a good estimation of vertical height of the CoM, leading to poor control authority.
However, the IMU on ATRIAS is a very expensive fiber-optic IMU that is not commonly
used on humanoid robots, and most robots use simple state estimation methods. So, this is
a common setting for humanoid robots, even if it presents a challenge for the optimization
methods.

We conducted 3 runs of BO with DoG-based kernel and BO with SE, 10 trials for DoG-
based kernel per run, and 10 for SE. In total, this led to 60 experiments on the hardware
(excluding the random samples, which were not used for BO). BO with DoG-based kernel
found walking points in 5 trials in 3/3 runs. BO with SE did not find any walking points
in 10 trials in all 3 runs. These results are shown in Figure 4b.

Based on these results, we concluded that BO with DoG-based kernel was indeed able to
extract useful information from simulation and speed up learning on hardware, even when
there was mismatch between simulation and hardware.

5.1.3. EXPERIMENTS WITH A 9-DIMENSIONAL CONTROLLER AND NN-BASED KERNEL

In the next set of experiments, we evaluated per- 100

formance of the NN-based kernel described in Sec- SE kernel

trajNN kernel

tion 3.1.2. We optimize the 9-dimensional controller 80
from Section 4.3. 360
@
The target of hardware experiments was to walk 8 ,, A
for 30 steps at 0.4m/s, similar to Section 5.1.2. %
20
For these experiments the IMU was repaired,
leading to better state estimation on the robot. For 0— 4 5 8 1‘0
a fair comparison, we re-ran experiments with the trials

baseline for this setting and the baseline performed Figure 5: BO for 9D controller on
slightly better than the baseline of earlier experi- ATRIAS robot hardware.
ments (because of improved sensing).

Figure 5 shows comparison of BO with NN-based kernel and SE kernels. We conducted 5
runs of both algorithms with 10 trials in each run, leading to a total of 100 robot trials. BO
with the NN-based kernel found walking points in all 5 runs within 6 trials, while BO with
SE kernel only found walking points in 2 of 5 runs in 10 trials. Hence, even without explicit
hand-designed domain knowledge, like the DoG-based kernel, the NN-based kernel is able
to extract useful information from simulation and successfully guide hardware experiments.

15

RA1, ANTONOVA, MEIER, ATKESON

1.2 300 %
#SE Kernel
1 4trajNN kernel
8 D JG k 20 *SE Kernel
< oG kernel] atrai
08 * 200 rajNN kernel
? 3 DoG kernel
§ 0.6 walking when § 150 walking when
3 0.4 cost < 0.2] 100 cost < 100 -
o 1] bt
Q o -
0.2 50
0 0
20 40 60 80 100 20 40 60 80 100
trials trials
(a) Using smooth cost from Equation 7. (b) Using non-smooth cost from Equation 8.

Figure 6: BO for the Neuromuscular controller. trajNN and DoG kernels were constructed with
undisturbed model on flat ground. BO is run with mass/inertia disturbances on different rough
ground profiles. Plots show means over 50 runs, 95% CIs. From Antonova et al. (2017).

5.2. Simulation Experiments on a 7-link Biped

This section describes simulation experiments with a 16-dimensional Neuromuscular con-
troller (Section 4.4) on a 7-link biped model. These experiments, from Antonova et al.
(2017), highlight the cost-agnostic nature of our approach by optimizing two very different
costs.

Figure 6 shows BO with DoG-based kernel, NN-based kernel and SE kernel for two
different costs from prior literature. The first cost promotes walking further and longer
before falling, while penalizing deviations from the target speed (Antonova et al., 2016):

c0Stsmooth = 1/(1 +1t) +0.3/(1 + d) 4+ 0.01(s — s¢q¢), (7)

where ¢ is seconds walked, d is the final CoM position, s is speed and s;4 is the desired
walking speed (1.3m/s in our case). The second cost function is similar to the cost used
in Section 5. It penalizes falls explicitly, and encourages walking at desired speed and with

300 — @ fqu, if fall

100| |Ua'ug — Utgt” + Ctr, if walk (8)
where x4y is the distance covered before falling, v4.4 is the average speed of walking, vyg
is the target velocity, and ¢, captures the cost of transport. The changed constants is to
account for a longer simulation time. Figure 6a shows that the NN-based kernel and the
DoG-based kernel offer a significant improvement over BO with the SE kernel in sample
efficiency when using the costgpooth, with more than 90% of runs achieving walking after 25
trials. BO with the SE kernel takes 90 trials to get 90% success rate. Figure 6b shows that
similar performance by the two proposed approaches is observed on the non-smooth cost.
With the NN-based kernel, 70% of the runs find walking solutions after 100 trials, similar
to the DoG-based kernel. However, optimizing non-smooth cost is very challenging for BO
with the SE kernel: a walking solution is found only in 1 out of 50 runs after 100 trials.
We attribute the difference in performance of the SE kernel on the two costs to the
nature of the costs. If a point walks some distance d, Equation 7 reduces in terms of é
and Equation 8 reduces by —d. A sharper fall in the first cost encourages BO to exploit
around points that walk some distance, quickly finding points that walk forever. BO with
the second cost continues to explore, as the signal is too weak. However the success of both

lower cost of transport:
COStnon-smooth = {

16

IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDAL ROBOTS

100 - 100
kernels built using —SE kernel
'simple gears' simulator trajNN knl

kernels built using —SE kernel
no boom' simulator trajNN knl

80 *DoG knl 80 *DoG knl
8 ~+adj DoG knl 3 +adj DoG knl
360 360
‘D @
8 g
+— 40 +— 40
2] %]
[0} [0
o) o

20 20

0 0
10 20 30 40 50 10 20 30 40 50
trials trials

(a) Informed kernels generated using simulator (b) Informed kernels generated using simplified
with simplified gear dynamics. gear dynamics, without boom model.

Figure 7: BO is run on the original simulator. Informed kernels perform well despite significant
mismatch, when kernels are generated using simulator with simplified gear dynamics (left). In the
case of severe mismatch, when the boom model is also removed, informed kernels still improve over
baseline SE (right). Plots show best cost for mean over 50 runs for each algorithm, 95% Cls.

NN-based and DoG-based kernels on both costs shows that the same kernel can indeed be
used for optimizing multiple costs robustly, without any further tuning needed.

5.3. Experiments with Increasing Simulation-Hardware Mismatch

In this section, we describe our experiments with increasing simulation-hardware mismatch
and its effect on approaches that use information from simulation during hardware opti-
mization. The quality of information transfer between simulation and hardware depends
not only on the mismatch between the two, but also on the controller used. For a robust
controller, small dynamics errors would not cause a significant deterioration in performance,
while for a sensitive controller this might be much more detrimental.

In the rest of this section, we provide experimental analyses of settings with increasing
simulated mismatch and their effect on optimization of the 50-dimensional VNMC from
Section 4.5. We compare several approaches that improve sample-efficiency of BO and
investigate if the improvement they offer is robust to mismatch between the simulated
setting used for constructing kernel/prior and the setting on which BO is run.

First, we examine the performance of our proposed approaches with informed kernels:
kpoa, ktrajnn and kpog, & Figure 7a shows the case when informed kernels are generated
using the simulator with simplified gear dynamics while BO is run on the original simulator.
After 50 trials, all runs with informed kernels find walking solutions, while for SE only 70%
have walking solutions.

Next, Figure 7b shows performance of kpoq, ktrajnn and kpog, 4 when the kernels are
constructed using a simulator with simplified dynamics and without a the boom. In this
case the mismatch with the original simulator is larger than before and we see the advantage
of using adjustment for DoG-based kernel: kpoq,,, finds walking points in all runs after 35

trials. kgajnn also achieves this, but after 50 trials. kpoq finds walking points in ~ 90%

17

RA1, ANTONOVA, MEIER, ATKESON

100 100 '
—SE kernel Cost prior —SE kernel IT&E (w/ cost prior)
built using: built using:
80 no boom 80 #no boom
3_\3 simple gears E *simple gears
260 original sim. 260 original sim.
@ @
o} o
240 240
4 4
3 3
20 20
0 0 o Arkciedelcdels
10 20 30 40 50 10 20 30 40 50
trials trials

(a) BO with cost prior: straightforward ap-
proach useful for low-to-medium mismatch; but
no improvement if mismatch is severe.

(b) Performance of IT&E algorithm (our im-
plementation of Cully et al. (2015), adapted to
bipedal locomotion).

Figure 8: BO using prior-based approaches. Mean over 50 runs for each algorithm, 95% CIs.

of the runs after 50 trials. The performance of SE stays the same, as it uses no prior
information from any simulator.

This illustrates that while the original DoG-based kernel can recover from slight simulation-
hardware mismatch, the adjusted DoG-kernel is required for higher mismatch. kyajnn seems
to recover from the mismatch, but might benefit from an adjusted version. We leave this
to future work.

5.3.1. COMPARISONS OF PRIOR-BASED AND KERNEL-BASED APPROACHES

In this section, we classify approaches that use simulation information in hardware optimiza-
tion as prior-based or kernel-based. Prior-based approaches use costs from the simulation
in the prior of the GP used in the BO. This can help BO a lot if the costs are similar
between simulation and hardware, and the cost function is fixed. However, in the pres-
ence of large mismatch, controllers that perform well in simulation might fail on hardware.
A prior-based method can be biased towards sampling promising points from simulation,
resulting in worse performance than uninformed BO. Kernel-based approaches consist of
methods that incorporate information from simulation into the kernel of the GP. These can
be less sample-efficient as compared to prior-based method, but not as likely to be biased
towards unpromising regions in the presence of mismatch. They also easily generalize to
multiple costs, so that there is no need to re-run simulations for data collection if the cost
is changed. This is important because a lot of these approaches can take several days of
computation to generate a cost prior or informed kernel. For example, Cully et al. (2015)
report taking 2 weeks on a 16-core computer to generate their map.

It is possible to also combine both prior-based and kernel-based methods, as in Cully
et al. (2015). We classify these as ‘prior-based’ methods, since in our experiments prior
outweighs the kernel effects for such cases. In our comparison with Cully et al. (2015), we
implement a version with and without the prior points. We do not add a cost prior to
BO using DoG-based kernel, as this would limit us to a particular cost and high-fidelity
simulators, and both of these can be major obstacles in real robot experiments.

18

IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDAL ROBOTS

Figure 8a shows the performance when using simulation cost in the prior during BO.
BO with a cost prior created using the original version of the simulator illustrates what
would happen in the best case scenario. When the simulator with simplified gear dynamics
is used for constructing the prior, we observe significant improvements over uninformed BO
prior. However, when the prior is constructed from simplified gear dynamics and no boom
setting, the approach performs slightly worse than uninformed BO. This shows that while
an informed prior can be very helpful when created from a simulator close to hardware, it
can hurt performance if simulator is significantly different from hardware.

Next, we discuss experiments with our implementation of Intelligent Trial and Error
(IT&E) algorithm from Cully et al. (2015). This algorithm combines adding a cost prior
from simulated evaluations with adding simulation information into the kernel. IT&E de-
fines a behavior metric and tabulates best performing points from simulation on their cor-
responding behavior score. The behavior metric used in our experiments is duty-factor of
each leg, which can go from 0 to 1.0. We discretize the duty factor into 21 cells of 0.05
increments, leading to a 21 x 21 grid. We collect the 5 highest performing controllers for
each square in the behavior grid, creating a 21 x 21 x 5 grid. Next, we generate 50 random
combinations of a 21 x 21 grid, selecting 1 out of the 5 best controllers per grid cell. Care
was taken to ensure that all 5 controllers had comparable costs in the simulator used for
creating the map. Cost of each selected controller is added to the prior and BO is performed
in the behavior space, like in Cully et al. (2015).

Figure 8b shows BO with IT&E constructed using different versions of the simulator.
IT&E constructed using simplified gear dynamics simulator is slightly less sample-efficient
than the straightforward ‘cost prior’ approach. When constructed with the simulator with
no boom, IT&E is able to improve over uninformed BO. However, it only finds walking
points in 77% of the runs in 50 trials in this case, as some of the generated maps contained
no controllers that could walk on the ‘hardware’. This is a shortcoming of the IT&E
algorithm, as it eliminates a very large part of the search space and if the pre-selected space
does not contain a walking point, no walking controllers can be sampled with BO. This
problem could possibly be avoided by using a finer grid, or a different behavior metric.
However tuning such hyper-parameters can turn out to be expensive, in computation and
hardware experiment time.

To separate the effects of using simulation information in prior mean vs kernel, we
evaluated a kernel-only version of IT&E algorithm (Figure 9a). It shows that the cost prior
is crucial for the success of IT&E and performance deteriorates without it. Hence, it is
not practical to use IT&E on a cost different than what it was generated for. Nonetheless,
Figure 7 showed that BO with adjusted DoG kernel is able to handle both moderate and
severe mismatch with kernel-only information, collected in Figure 9b.

Summarizing this section, we created two simulators with increasing modelling approxi-
mations, and studied the effect of using these to aid optimization on the original simulator.
We found that while methods that use cost in the prior of BO can be very sample-efficient
in low mismatch, their performance worsens as mismatch increases. IT&E, introduced in
Cully et al. (2015), uses simulation information in both prior mean and kernel, and is very
sample-efficient in cases of low mismatch. Even with high mismatch, it performed better
than just prior-based BO but doesn’t find walking controllers reliably. In comparison, ad-

19

RA1, ANTONOVA, MEIER, ATKESON

100 100 - :
—SE kernel | IT&E w/o cost prior —SE kernel| adj DoG knl
built using: built using:
80 #no boom 80 I #no boom
5 “#simple gears E 1 “*simple gears
260 m original sim. 960 1 \ original sim.
k7] 1 @
8 8
=40 =40
[%2] []
1] | o}
e} el
20 T 5,:,:%‘» 20
T Yok
0 0 e -
10 20 30 40 50 10 20 30 40 50
trials trials

(b) BO using kpog,,; constructed from simula-

tors with various levels of mismatch.

(a) BO using our implementation of IT&E
without cost prior (from Cully et al. (2015)).

Figure 9: BO using kernel-based approaches. Mean over 50 runs for each algorithm, 95% CIs.

justed DoG-based kernel performed well in all the tested scenarios, and can reliably improve
sample-efficiency of BO even when the mismatch between simulation and hardware is high.

6. Conclusion

In this paper, we presented and analyzed in detail our work from Antonova et al. (2016),
Antonova et al. (2017) and Rai et al. (2018). These works introduce domain-specific fea-
ture transforms that can be used to optimize locomotion controllers on hardware efficiently.
The feature transforms project the original controller space into a space where BO can dis-
cover promising regions quickly. We described a transform for bipedal locomotion designed
with the knowledge of human walking and a neural network based transform that uses
more general information from simulated trajectories. Our experiments demonstrate suc-
cess at optimizing controllers on the ATRIAS robot. Further simulation-based experiments
also indicate potential for other bipedal robots. For optimizing sensitive high-dimensional
controllers, we proposed an approach to adjust simulation-based kernel using data seen on
hardware. To study the performance of this, as well as compare our approach to other meth-
ods, we created a series of increasingly approximate simulators. Our experiments show that
while several methods from prior literature can perform well with low simulation-hardware
mismatch (sometimes even better than our proposed approach), they suffer when this mis-
match increases. In such cases, our proposed kernels with hardware adjustment can yield
reliable performance across different costs, simulators and robots.

Acknowledgments

This research was supported in part by National Science Foundation grant IIS-1563807, the
Max-Planck-Society, & the Knut and Alice Wallenberg Foundation. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the funding organizations.

20

IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDAL ROBOTS

Appendix A: Implementation Details

In this appendix we provide a summary of data collection and implementation details. Our
implementation of BO was based on the framework in Gardner et al. (2014). We used Ex-
pected Improvement (EI) acquisition function (Mockus et al., 1978). We also experimented
with Upper Confidence Bound (UCB) (Srinivas et al., 2010), but found that performance
was not sensitive to the choice of acquisition function. Hyper-parameters for BO were
initialized to default values: 0 for mean offset, 1.0 for kernel length scales and signal vari-
ance, 0.1 for o, (noise parameter). Hyperparameters were optimized using the marginal
likelihood (Shahriari et al. (2016), Section V-A). For all algorithms, we started optimiz-
ing hyperparameters after a low-cost controller was found (to save compute resources and
avoid premature hyperparameter optimization). The search space boundaries for controller
parameters was designed with physical constraints of the ATRIAS robot in mind.

Kernel type Controller dim # Sim points Sim duration Kernel dim Features in kernel
kpoc 5 20K 3.5s 1 scorepoG
100K 5s 1 scorepoq
50 200K 5s 1 scorepoc
KtrajNN 9 100K 5s 4 twalks Tends Bavg, Vz,avg
16 100K 5s 8 twalks Tend> Oend, Va,end
Cry Yend, Vy,ends Ocna
50 200K 5s 13 twalks Tend, Cry trajz, trajy

Table 2: Simulation data collection details. scorepoc was described in Section 3.1.1. For kireinn:
twaik 18 time walked in simulation before falling, ¢4 and y,q are the x and y positions of Center of
Mass (CoM) at the end of the short simulation, € is the torso angle, 6 is the torso velocity, v is the
CoM speed (v is the horizontal and v, is the vertical component), ¢, is the squared sum of torques
applied; traj., trajy denote vectors with mean CoM and € measurements every second.

Eirajnn discussed in Section 3.1.2 was constructed by training a fully connected neural
network (NN) with 3 hidden layers, using L1 loss to reconstruct features encoded by tra-
jectory summaries. For experiments with 16D controller in Section 5.2, for example, the
hidden layers contained 512, 128, 32 units; NN was trained on 100K simulated examples to
reconstruct 8D trajectory summaries (see next-to-last row of Table 2). We experimented
with various hidden layer sizes for 9D and 50D controllers, but did not find the overall BO
performance to be sensitive to size or other training parameters, like NN learning rate. This
was likely because NN used to construct an informed kernel only needs to approximately
learn to separate well-performing parts from failing parts of the control parameter space.
This is the benefit of our choice not to put the output of NN directly into a GP posterior.

To create cost prior for experiments in Section 5.3 we collected 50,000 evaluations of
30s trials for a range of controller parameters. Then we conducted 50 runs, using random
subsets of 35,000 evaluations to construct the prior. The numbers were chosen such that
this approach used similar amount of computation as our kernel-based approaches. To
accommodate GP prior with a large number of points we used a sparse GP construction
provided by Rasmussen and Nickisch (2010).

21

RA1, ANTONOVA, MEIER, ATKESON

References

Rika Antonova, Akshara Rai, and Christopher G Atkeson. Sample efficient optimization
for learning controllers for bipedal locomotion. In IFEE-RAS International Conference
on Humanoid Robots (Humanoids), pages 22-28. IEEE, 2016.

Rika Antonova, Akshara Rai, and Christopher G Atkeson. Deep Kernels for Optimizing
Locomotion Controllers. In Conference on Robot Learning (CoRL), PMLR 78, pages
47-56, 2017.

Zachary Batts, Seungmoon Song, and Hartmut Geyer. Toward a virtual neuromuscular
control for robust walking in bipedal robots. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 6318-6323. IEEE, 2015.

Eric Brochu, Vlad M Cora, and Nando De Freitas. A Tutorial on Bayesian Optimization
of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical
Reinforcement Learning. arXiv preprint arXiv:1012.2599, 2010.

Roberto Calandra, Jan Peters, Carl Edward Rasmussen, and Marc Peter Deisenroth. Man-
ifold Gaussian processes for regression. In International Joint Conference on Neural
Networks (IJCNN), pages 3338-3345. IEEE, 2016a.

Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisenroth. Bayesian
Optimization for Learning Gaits Under Uncertainty. Annals of Mathematics and Artificial
Intelligence, 76(1-2):5-23, 2016b.

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can
adapt like animals. Nature, 521(7553):503-507, 2015.

Marc Deisenroth and Carl E Rasmussen. PILCO: A model-based and data-efficient approach
to policy search. In International Conference on Machine Learning (ICML), pages 465—
472, 2011.

Peter Englert and Marc Toussaint. Combined Optimization and Reinforcement Learning
for Manipulation Skills. In Robotics: Science and Systems, 2016.

Siyuan Feng, Eric Whitman, X Xinjilefu, and Christopher G Atkeson. Optimization-based
Full Body Control for the DARPA Robotics Challenge. Journal of Field Robotics, 32(2):
293-312, 2015.

Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian @ Weinberger, and John
Cunningham. Bayesian Optimization with Inequality Constraints. In International Con-
ference on Machine Learning (ICML), pages 937-945, 2014.

Hartmut Geyer and Hugh Herr. A Muscle-reflex Model that Encodes Principles of Legged
Mechanics Produces Human Walking Dynamics and Muscle Activities. IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering, 18(3):263-273, 2010.

Nikolaus Hansen. The CMA evolution strategy: a comparing review. In Towards a new
evolutionary computation, pages 75—102. Springer, 2006.

22

IMPROVING BAYESIAN OPTIMIZATION FOR BIPEDAL ROBOTS

Christian Hubicki, Jesse Grimes, Mikhail Jones, Daniel Renjewski, Alexander Sprowitz,
Andy Abate, and Jonathan Hurst. ATRIAS: Design and validation of a tether-free
3D-capable spring-mass bipedal robot. The International Journal of Robotics Research
(IJRR), 35(12):1497-1521, 2016.

Verne T Inman, Howard D Eberhart, et al. The major determinants in normal and patho-
logical gait. Journal of Bone and Joint Surgery (JBJS), 35(3):543-558, 1953.

Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabas Pdczos. Multi-
fidelity Bayesian Optimisation with Continuous Approximations. In International Con-
ference on Machine Learning (ICML), pages 17991808, 2017.

Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valenzuela, Hongkai Dai, Frank
Permenter, Twan Koolen, Pat Marion, and Russ Tedrake. Optimization-based locomotion
planning, estimation, and control design for the atlas humanoid robot. Autonomous
Robots, 40(3):429-455, 2016.

Daniel J Lizotte, Tao Wang, Michael H Bowling, and Dale Schuurmans. Automatic Gait
Optimization with Gaussian Process Regression. In International Joint Conference on
Artificial Intelligence (IJCAI), volume 7, pages 944-949, 2007.

Alonso Marco, Felix Berkenkamp, Philipp Hennig, Angela P Schoellig, Andreas Krause,
Stefan Schaal, and Sebastian Trimpe. Virtual vs. real: Trading off simulations and
physical experiments in reinforcement learning with Bayesian optimization. In IEEFE
International Conference on Robotics and Automation (ICRA), pages 1557-1563. IEEE,
2017.

William C Martin, Albert Wu, and Hartmut Geyer. Robust spring mass model running for
a physical bipedal robot. In IEEFE International Conference on Robotics and Automation
(ICRA), pages 6307-6312. IEEE, 2015.

Ruben Martinez-Cantin. Funneled Bayesian optimization for design, tuning and control of
autonomous systems. IEEFE transactions on cybernetics, (99):1-12, 2018.

J Mockus, V Tiesis, and A Zilinskas. Toward Global Optimization, Volume 2, Chapter:
Bayesian Methods for Seeking the Extremum. 1978.

Xue Bin Peng, Glen Berseth, and Michiel van de Panne. Terrain-adaptive locomotion skills
using deep reinforcement learning. ACM Transactions on Graphics (TOG), 35(4):81,
2016.

Akshara Rai, Rika Antonova, Seungmoon Song, William Martin, Hartmut Geyer, and
Christopher Atkeson. Bayesian optimization using domain knowledge on the ATRIAS
biped. In IEEE International Conference on Robotics and Automation (ICRA), pages
1771-1778. IEEE, 2018.

Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes for machine learning
(gpml) toolbox. J. Mach. Learn. Res., 11:3011-3015, December 2010. ISSN 1532-4435.
URL http://dl.acm.org/citation.cfm?id=1756006.1953029.

23

http://dl.acm.org/citation.cfm?id=1756006.1953029

RA1, ANTONOVA, MEIER, ATKESON

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando de Freitas. Taking
the Human Out of the Loop: A Review of Bayesian Optimization. Proceedings of the
IEEE, 104(1):148-175, 2016.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of ma-
chine learning algorithms. In Advances in neural information processing systems (NIPS),
pages 2951-2959, 2012.

Jasper Snoek, Kevin Swersky, Rich Zemel, and Ryan Adams. Input warping for Bayesian
optimization of non-stationary functions. In International Conference on Machine Learn-
ing (ICML), pages 1674-1682, 2014.

Seungmoon Song and Hartmut Geyer. A Neural Circuitry that Emphasizes Spinal Feedback
Generates Diverse Behaviours of Human Locomotion. The Journal of Physiology, 593(16):
3493-3511, 2015.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process
optimization in the bandit setting: no regret and experimental design. In International
Conference on Machine Learning (ICML), pages 1015-1022. Omnipress, 2010.

Matthew Tesch, Jeff Schneider, and Howie Choset. Using response surfaces and expected
improvement to optimize snake robot gait parameters. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 1069-1074. IEEE, 2011.

Nitish Thatte and Hartmut Geyer. Toward Balance Recovery with Leg Prostheses Using
Neuromuscular Model Control. IEEE Transactions on Biomedical Engineering, 63(5):
904-913, 2016.

Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. A generalized path integral control
approach to reinforcement learning. Journal of Machine Learning Research (JMLR), 11
(Nov):3137-3181, 2010.

Nicolas Van der Noot, Luca Colasanto, Allan Barrea, Jesse van den Kieboom, Renaud
Ronsse, and Auke J Ijspeert. Experimental validation of a bio-inspired controller for
dynamic walking with a humanoid robot. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 393-400. IEEE, 2015.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. Using Trajectory Data to Improve Bayesian
Optimization for Reinforcement Learning. The Journal of Machine Learning Research
(JMLR), 15(1):253-282, 2014.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel
learning. In Artificial Intelligence and Statistics, pages 370-378, 2016.

DA Winter and HJ Yack. EMG profiles during normal human walking: stride-to-stride
and inter-subject variability. Electroencephalography and clinical neurophysiology, 67(5):
402411, 1987.

24

	Introduction
	Background and Related Work
	Background on Bayesian Optimization
	Optimizing Locomotion Controllers
	Incorporating Simulation Information into Bayesian Optimization

	Proposed Approach: Bayesian Optimization with Informed Kernels
	Constructing Flexible Kernels using Simulation-based Transforms
	The Determinants of Gait Transform
	Learning a Feature Transform with a Neural Network

	Kernel Adjustment for Handling Simulation-Hardware Mismatch
	Interpretation of Kernel with Mismatch Modeling

	Robots, Simulators and Controllers Used
	ATRIAS Robot
	Planar 7-link Biped
	Feedback Based Reactive Stepping Policy
	16-dimensional Neuromuscular Controller
	50-dimensional Virtual Neuromuscular Controller
	Increasingly Inaccurate Simulators

	Experiments
	Hardware Experiments on the ATRIAS Robot
	Experiments with a 5-dimensional controller and DoG-based kernel
	Experiments with a 9-dimensional controller and DoG-based kernel
	Experiments with a 9-dimensional controller and NN-based kernel

	Simulation Experiments on a 7-link Biped
	Experiments with Increasing Simulation-Hardware Mismatch
	Comparisons of Prior-based and Kernel-based Approaches

	Conclusion

