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Abstract

The automation of posterior inference in Bayesian data analysis has enabled experts and
nonexperts alike to use more sophisticated models, engage in faster exploratory modeling
and analysis, and ensure experimental reproducibility. However, standard automated
posterior inference algorithms are not tractable at the scale of massive modern data sets,
and modifications to make them so are typically model-specific, require expert tuning,
and can break theoretical guarantees on inferential quality. Building on the Bayesian
coresets framework, this work instead takes advantage of data redundancy to shrink the
data set itself as a preprocessing step, providing fully-automated, scalable Bayesian inference
with theoretical guarantees. We begin with an intuitive reformulation of Bayesian coreset
construction as sparse vector sum approximation, and demonstrate that its automation and
performance-based shortcomings arise from the use of the supremum norm. To address
these shortcomings we develop Hilbert coresets, i.e., Bayesian coresets constructed under a
norm induced by an inner-product on the log-likelihood function space. We propose two
Hilbert coreset construction algorithms—one based on importance sampling, and one based
on the Frank-Wolfe algorithm—along with theoretical guarantees on approximation quality
as a function of coreset size. Since the exact computation of the proposed inner-products is
model-specific, we automate the construction with a random finite-dimensional projection
of the log-likelihood functions. The resulting automated coreset construction algorithm is
simple to implement, and experiments on a variety of models with real and synthetic data
sets show that it provides high-quality posterior approximations and a significant reduction
in the computational cost of inference.
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1. Introduction

Bayesian probabilistic models are a standard tool of choice in modern data analysis. Their
rich hierarchies enable intelligent sharing of information across subpopulations, their posterior
distributions provide many avenues for principled parameter estimation and uncertainty
quantification, and they can incorporate expert knowledge through the prior. In all but the
simplest models, however, the posterior distribution is intractable to compute exactly, and
we must resort to approximate inference algorithms. Markov chain Monte Carlo (MCMC)
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(Gelman et al., 2013, Chapters 11, 12) methods are the gold standard, due primarily to their
guaranteed asymptotic exactness. Variational Bayes (VB) (Jordan et al., 1999; Wainwright
and Jordan, 2008) is also becoming widely used due to its tractability, detectable convergence,
and parameter estimation performance in practice.

One of the most important recent developments in the Bayesian paradigm has been the
automation of these standard inference algorithms. Rather than having to develop, code,
and tune specific instantiations of MCMC or VB for each model, practitioners now have
“black-box” implementations that require only a basic specification of the model as inputs. For
example, while standard VB requires the specification of model gradients—whose formulae
are often onerous to obtain—and an approximating family—whose rigorous selection is
an open question—ADVI (Ranganath et al., 2014; Kucukelbir et al., 2015, 2017) applies
standard transformations to the model so that a multivariate Gaussian approximation can
be used, and computes gradients with automatic differentiation. The user is then left only
with the much simpler task of specifying the log-likelihood and prior. Similarly, while
Hamiltonian Monte Carlo (Neal, 2011) requires tuning a step size and path length parameter,
NUTS (Hoffman and Gelman, 2014) provides a method for automatically determining
reasonable values for both. This level of automation has many benefits: it enables experts
and nonexperts alike to use more sophisticated models, it facilitates faster exploratory
modeling and analysis, and helps ensure experimental reproducibility.

But as modern data sets continue to grow larger over time, it is important for inference
to be not only automated, but scalable while retaining theoretical guarantees on the quality
of inferential results. In this regard, the current set of available inference algorithms falls
short. Standard MCMC algorithms may be “exact”, but they are typically not tractable
for large-scale data, as their complexity per posterior sample scales at least linearly in
the data set size. Variational methods on the other hand are often scalable, but posterior
approximation guarantees continue to elude researchers in all but a few simple cases. Other
scalable Bayesian inference algorithms have largely been developed by modifying standard
inference algorithms to handle distributed or streaming data processing. Examples include
subsampling and streaming methods for variational Bayes (Hoffman et al., 2013; Broderick
et al., 2013; Campbell et al., 2015), subsampling methods for MCMC (Welling and Teh,
2011; Ahn et al., 2012; Bardenet et al., 2014; Korattikara et al., 2014; Maclaurin and Adams,
2014; Bardenet et al., 2015), and distributed “consensus” methods for MCMC (Scott et al.,
2016; Srivastava et al., 2015; Rabinovich et al., 2015; Entezari et al., 2016). These methods
either have no guarantees on the quality of their inferential results, or require expensive
iterative access to a constant fraction of the data, but more importantly they tend to be
model-specific and require extensive expert tuning. This makes them poor candidates for
automation on the large class of models to which standard automated inference algorithms
are applicable.

An alternative approach, based on the observation that large data sets often contain
redundant data, is to modify the data set itself such that its size is reduced while preserving
its original statistical properties. In Bayesian regression, for example, a large data set can
be compressed using random linear projection (Geppert et al., 2017; Ahfock et al., 2017;
Bardenet and Maillard, 2015). For a wider class of Bayesian models, one can construct a
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small weighted subset of the data, known as a Bayesian coreset1 (Huggins et al., 2016),
whose weighted log-likelihood approximates the full data log-likelihood. The coreset can then
be passed to any standard (automated) inference algorithm, providing posterior inference at
a significantly reduced computational cost. Note that since the coresets approach is agnostic
to the particular inference algorithm used, its benefits apply to the continuing developments
in both MCMC (Robert et al., 2018) and variational (Dieng et al., 2017; Li and Turner,
2016; Liu and Wang, 2016) approaches.

Bayesian coresets, in contrast to other large-scale inference techniques, are simple to
implement, computationally inexpensive, and have theoretical guarantees relating coreset
size to both computational complexity and the quality of approximation (Huggins et al.,
2016). However, their construction cannot be easily automated, as it requires computing the
sensitivity (Langberg and Schulman, 2010) of each data point, a model-specific task that
involves significant technical expertise. This approach also often necessitates a bounded
parameter space to ensure bounded sensitivities, precluding many oft-used continuous
likelihoods and priors. Further, since Bayesian coreset construction involves i.i.d. random
subsampling, it can only reduce approximation error compared to uniform subsampling by a
constant, and cannot update its notion of importance based on what points it has already
selected.

In this work, we develop a scalable, theoretically-sound Bayesian approximation frame-
work with the same level of automation as ADVI and NUTS, the algorithmic simplicity
and low computational burden of Bayesian coresets, and the inferential performance of
hand-tuned, model-specific scalable algorithms. We begin with an intuitive reformulation
of Bayesian coreset construction as sparse vector sum approximation, in which the data
log-likelihood functions are vectors in a vector space, sensitivity is a weighted uniform
(i.e. supremum) norm on those vectors, and the construction algorithm is importance sam-
pling. This perspective illuminates the use of the uniform norm as the primary source of the
shortcomings of Bayesian coresets. To address these issues we develop Hilbert coresets, i.e.,
Bayesian coresets using a norm induced by an inner-product on the log-likelihood function
space. Our contributions include two candidate norms: one a weighted L2 norm, and another
based on the Fisher information distance (Johnson and Barron, 2004). Given these norms, we
provide an importance sampling-based coreset construction algorithm and a more aggressive
“direction of improvement”-aware coreset construction based on the Frank–Wolfe algorithm
(Frank and Wolfe, 1956; Guélat and Marcotte, 1986; Jaggi, 2013). Our contributions include
theoretical guarantees relating the performance of both to coreset size. Since the proposed
norms and inner-products cannot in general be computed in closed-form, we automate the
construction using a random finite-dimensional projection of the log-likelihood functions
inspired by Rahimi and Recht (2007). We test Hilbert coresets empirically on multivariate
Gaussian inference, logistic regression, Poisson regression, and von Mises-Fisher mixture
modeling with both real and synthetic data; these experiments show that Hilbert coresets
provide high quality posterior approximations with a significant reduction in the computa-
tional cost of inference compared to standard automated inference algorithms. All proofs
are deferred to Appendix A.

1. The concept of a coreset originated in computational geometry and optimization (Agarwal et al., 2005;
Feldman and Langberg, 2011; Feldman et al., 2013; Bachem et al., 2015; Lucic et al., 2016; Bachem et al.,
2016; Feldman et al., 2011; Han et al., 2016).
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2. Background

In the general setting of Bayesian posterior inference, we are given a data set (yn)Nn=1 of
N observations, a likelihood p(yn|θ) for each observation given the parameter θ ∈ Θ, and a
prior density π0(θ) on Θ. We assume throughout that the data are conditionally independent
given θ. The Bayesian posterior is given by the density

π(θ) :=
1

Z
exp(L(θ))π0(θ),

where the log-likelihood L(θ) and marginal likelihood Z are defined by

Ln(θ) := log p(yn | θ), L(θ) :=
N∑
n=1

Ln(θ), Z :=

∫
exp(L(θ))π0(θ) dθ.

In almost all cases in practice, an exact closed-form expression of π is not available due to
the difficulty of computing Z, forcing the use of approximate Bayesian inference algorithms.
While Markov chain Monte Carlo (MCMC) algorithms (Gelman et al., 2013, Chapters 11,
12) are often preferred for their theoretical guarantees asymptotic in running time, they are
typically computationally intractable for large N . One way to address this is to construct a
small, weighted subset of the original data set whose log-likelihood approximates that of the
full data set, known as a Bayesian coreset (Huggins et al., 2016). This coreset can then be
passed to a standard MCMC algorithm. The computational savings from running MCMC
on a much smaller data set can allow a much faster inference procedure while retaining the
theoretical guarantees of MCMC. In particular, the aim of the Bayesian coresets framework
is to find a set of nonnegative weights w := (wn)Nn=1, a small number of which are nonzero,
such that the weighted log-likelihood

L(w, θ) :=
N∑
n=1

wnLn(θ) satisfies |L(w, θ)− L(θ)| ≤ ε |L(θ)| , ∀θ ∈ Θ. (2.1)

The algorithm proposed by Huggins et al. (2016) to construct a Bayesian coreset is as follows.
First, compute the sensitivity σn of each data point,

σn := sup
θ∈Θ

∣∣∣∣Ln(θ)

L(θ)

∣∣∣∣ , (2.2)

and then subsample the data set by taking M independent draws with probability propor-
tional to σn (resulting in a coreset of size ≤M) via

σ :=

N∑
n=1

σn (M1, . . . ,MN ) ∼ Multi

(
M,
(σn
σ

)N
n=1

)
Wn =

σ

σn

Mn

M
. (2.3)

Since E [Wn] = 1, we have that E [L(W, θ)] = L(θ), and we expect that L(W, θ)→ L(θ) in
some sense as M increases. This is indeed the case; Braverman et al. (2016); Feldman and
Langberg (2011) showed that with high probability, the coreset likelihood L(W, θ) satisfies
Eq. (2.1) with ε2 = O

(
1
M

)
, and Huggins et al. (2016) extended this result to the case of

Bayesian coresets in the setting of logistic regression. Typically, exact computation of the
sensitivities σn is not tractable, so upper bounds are used instead (Huggins et al., 2016).
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3. Coresets as Sparse Vector Sum Approximation

This section develops an intuitive perspective of Bayesian coresets as sparse vector sum
approximation under a uniform norm, and draws on this perspective to uncover the limitations
of the framework and avenues for extension. Consider the vector space of functions g : Θ→ R
with bounded uniform norm weighted by the total log-likelihood L(θ),

‖g‖ := sup
θ∈Θ

∣∣∣∣ g(θ)

L(θ)

∣∣∣∣ . (3.1)

In this space, the data log-likelihood functions Ln(θ) have vectors Ln with norm σn := ‖Ln‖
as defined in Eq. (2.2), the total log-likelihood has vector L :=

∑N
n=1 Ln, and the coreset

guarantee in Eq. (2.1) corresponds to approximation of L with the vector L(w) :=
∑N

n=1wnLn
under the vector norm with error at most ε, i.e. ‖L(w)− L‖ ≤ ε. Given this formulation,
we can write the problem of constructing the best coreset of size M as the minimization of
approximation error subject to a constraint on the number of nonzero entries in w,

min
w∈RN

‖L(w)− L‖2 s.t. w ≥ 0,
N∑
n=1

1 [wn > 0] ≤M. (3.2)

Eq. (3.2) is a convex optimization with binary constraints, and thus is difficult to solve
efficiently in general; we are forced to use approximate methods. The uniform Bayesian
coresets framework provides one such approximate method, where L/N is viewed as the
expectation of a uniformly random subsample of (Ln)Nn=1, and importance sampling is used
to reduce the expected error of the estimate. Choosing importance probabilities proportional
to σn = ‖Ln‖ results in a high-probability bound on approximation error given below in
Theorem 3.2. The proof of Theorem 3.2 in Appendix A is much simpler than similar results
available in the literature (Feldman and Langberg, 2011; Braverman et al., 2016; Huggins
et al., 2016) due to the present vector space formulation. Theorem 3.2 depends on two
constants (σ and η) that capture important aspects of the geometry of the optimization
problem:

σn := ‖Ln‖ σ :=
N∑
n=1

σn η2 := max
n,m∈[N ]

∥∥∥∥Lnσn − Lmσm
∥∥∥∥2

, (3.3)

where [N ] := {1, 2, . . . , N}. The quantity σ ≥ 0 captures the scale of the problem; all
error guarantees on ‖L(w)− L‖ should be roughly linearly proportional to σ. The quantity
0 ≤ η ≤ 2 captures how well-aligned the vectors (Ln)Nn=1 are, and thus the inherent difficulty
of approximating L with a sparse weighted subset L(w). For example, if all vectors are
aligned then η = 0, and the problem is trivial since we can achieve 0 error with a single
scaled vector Ln. Theorem 3.2 also depends on an approximate notion of the dimension of
the span of the log-likelihood vectors (Ln)Nn=1, given by Definition 3.1. Note in particular
that the approximate dimension of a set of vectors in Rd is at most d, corresponding to the
usual notion of dimension in this setting.
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(a) (b)

Figure 1: (1a): The sparse vector approximation problem, depicting the sum L in blue and
the vectors Ln in grey. (1b): Uniform Bayesian coresets behavior on the simple exercise of
learning a Gaussian mean. Depicted are data likelihoods in black, scaled posterior density
in blue, and data as black scatter points. The sensitivity of each datapoint is indicated by
the line thickness of the likelihood—a thicker, darker line denotes higher sensitivity, while
thinner, lighter lines denote lower sensitivity.

Definition 3.1. The approximate dimension dim (un)Nn=1 of N vectors in a normed vector
space is the minimum value of d ∈ N such that all vectors un can be approximated using
linear combinations of a set of d unit vectors (vj)

d
j=1, ‖vj‖ = 1:

∀n ∈ [N ], ∃αn ∈ [−1, 1]d s.t.

∥∥∥∥∥∥ un
‖un‖

−
d∑
j=1

αnjvj

∥∥∥∥∥∥ ≤ d√
N
.

Theorem 3.2. Fix any δ ∈ (0, 1). With probability ≥ 1 − δ, the output of the uniform
coreset construction algorithm in Eq. (2.3) satisfies

‖L(W )− L‖ ≤ σ√
M

(
3

2
dim (Ln)Nn=1 + η

√
2 log

1

δ

)
.

The analysis, discussion, and algorithms presented to this point are independent of the
particular choice of norm given in Eq. (3.1); one might wonder if the uniform norm used
above is the best choice, or if there is another norm more suited to Bayesian inference
in some way. For instance, the supremum in Eq. (3.1) can diverge in an unbounded or
infinite-dimensional parameter space Θ, requiring an artificial restriction placed on the space
(Huggins et al., 2016). This precludes the application to the many common models and
priors that have unbounded parameter spaces, even logistic regression with full support
Θ = Rd. The optimization objective function in Eq. (3.1) is also typically nonconvex, and
finding (or bounding) the optimum is a model-specific task that is not easily automated.

Perhaps most importantly, the uniform norm lacks a sense of “directionality” as it does
not correspond to an inner-product. This implies that the bound in Theorem 3.2 does
not scale properly with the alignment of vectors (note how the error does not approach
0 as η → 0) and that it depends on the approximate dimension (which may be hard to
compute). Moreover, the lack of directionality makes the coreset construction algorithm
behave counterintuitively and limits its performance in a fundamental way. Fig. 1a provides
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a pictorial representation of this limitation. Recall that the goal of coreset construction is
to find a sparse weighted subset of the vectors (Ln)Nn=1 (grey) that approximates L (blue).
In this example, there are vectors which, when scaled, could individually nearly perfectly
replicate L. But the importance sampling algorithm in Eq. (2.3) will instead tend to sample
those vectors with large norm that are pointed away from L, requiring a much larger coreset
to achieve the same approximation error. This is a consequence of the lack of directionality
of the uniform norm; it has no concept of the alignment of certain vectors with L, and
is forced to mitigate worst-case error by sampling those vectors with large norm. Fig. 1b
shows the result of this behavior in a 1D Gaussian inference problem. In this figure, the
likelihood functions of the data are depicted in black, with their uniform norm (or sensitivity)
indicated by thickness and opacity. The posterior distribution is displayed in blue, with
its log-density scaled by 1/N for clarity. The importance sampling algorithm in Eq. (2.3)
will tend to sample those data that are far away from the posterior mean, with likelihoods
that are different than the scaled posterior, despite the fact that there are data close to the
mean whose likelihoods are near-perfect approximations of the scaled posterior. Using the
intuition from Fig. 1, it is not difficult to construct examples where the expected error of
importance sampling is arbitrarily worse than the error of the optimal coreset of size M .

4. Hilbert Coresets

It is clear that a notion of directionality of the vectors (Ln)Nn=1 is key to developing both
efficient, intuitive coreset construction algorithms and theory that correctly reflects problem
difficulty. Therefore, in this section we develop methods for constructing Bayesian coresets
in a Hilbert space (Hilbert coresets), i.e., using a norm corresponding to an inner product.
The notion of directionality granted by the inner product provides two major advantages
over uniform coresets: coreset points can be chosen intelligently based on the residual
posterior approximation error vector; and theoretical guarantees on approximation quality
can directly incorporate the difficulty of the approximation problem via the alignment of
log-likelihood vectors. We provide two coreset construction algorithms which take advantage
of these benefits. The first method, developed in Section 4.1, is based on viewing L/N as
the expectation of a uniformly random subsample of (Ln)Nn=1, and then using importance
sampling to reduce the expected error of the estimate. The second method, developed in
Section 4.2, is based on viewing the cardinality-unconstrained version of Eq. (3.2) as a
quadratic optimization over an appropriately-chosen polytope, and then using the Frank–
Wolfe algorithm Frank and Wolfe (1956); Guélat and Marcotte (1986); Jaggi (2013) to
compute a sparse approximation to the optimum. Theoretical guarantees on posterior
approximation error are provided for both. In Section 4.3, we develop streaming/distributed
extensions of these methods and provide similar approximation guarantees. Note that this
section treats the general case of Bayesian coreset construction with a Hilbert space norm;
the selection of a particular norm and its automated computation is left to Section 5.

4.1. Coreset Construction via Importance Sampling

Taking inspiration from the uniform Bayesian coreset construction algorithm, the first Hilbert
coreset construction method, Algorithm 1, involves i.i.d. sampling from the vectors (Ln)Nn=1
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Algorithm 1 IS: Hilbert coresets via importance sampling

Require: (Ln)Nn=1, M , ‖·‖
∀n ∈ [N ] σn ← ‖Ln‖, and σ ←

∑N
n=1 σn . compute norms

(M1, . . . ,MN )← Multi
(
M,
(
σn
σ

)N
n=1

)
. subsample the data

Wn ← σ
σn

Mn
M for n ∈ [N ] . reweight the subsample

return W

with probabilities (pn)Nn=1 and reweighting the subsample. In contrast to the case of the
weighted uniform norm in Eq. (3.1), the choice pn ∝ σn exactly minimizes the expected
squared coreset error under a Hilbert norm (see Eq. (A.2) in Appendix A), yielding

E
[
‖L(W )− L‖2

]
=
σ2η2

M
η2 := 1− ‖L‖

2

σ2
, (4.1)

where 0 ≤ η ≤ 1, similar to η, captures how well-aligned the vectors (Ln)Nn=1 are. However,
in a Hilbert space η is a tighter constant: η ≤ η/

√
2 by Lemma A.4. Theorem 4.1, whose

proof in Appendix A relies on standard martingale concentration inequalities, provides a
high-probability guarantee on the quality of the output approximation. This result depends
on η from Eq. (3.3) and η from Eq. (4.1).

Theorem 4.1. Fix any δ ∈ (0, 1). With probability ≥ 1− δ, the output W of Algorithm 1
satisfies

‖L(W )− L‖ ≤ σ√
M

(
η + ηM

√
2 log

1

δ

)
where

ηM := min

(
η, η

√
2Mη2

η2 log 1
δ

H−1

(
η2 log 1

δ

2Mη2

))
H(y) := (1 + y) log(1 + y)− y.

In contrast to Theorem 3.2, Theorem 4.1 takes advantage of the inner product to
incorporate a notion of problem difficulty into the bound. For example, since H(y) ∼ y2 as
y → 0, we have that H−1(y) ∼ √y and so limy→0

√
y−1 H−1(y) = 1. Combined with the

fact that η ≤ η, we have limM→∞ ηM = η, and so the bound in Theorem 4.1 is asymptotically

equivalent to ση√
M

(
1 +

√
2 log 1

δ

)
as M →∞. Given that importance sampling can only

improve convergence over uniformly random subsampling by a constant, this constant
reduction is significant. Note that Theorem 4.1, in conjunction with the fact that η ≤ η,
immediately implies the simpler result in Corollary 4.2.

Corollary 4.2. Fix any δ ∈ (0, 1). With probability ≥ 1− δ, the output W of Algorithm 1
satisfies

‖L(W )− L‖ ≤ ση√
M

(
1 +

√
2 log

1

δ

)
.
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4.2. Coreset Construction via Frank–Wolfe

The major advantages of Algorithm 1 are its simplicity and sole requirement of computing
the norms (‖Ln‖)Nn=1. Like the original uniform Bayesian coreset algorithm in Eq. (2.3),
however, it does not take into account the residual error in the coreset approximation in
order to choose new samples intelligently. The second Hilbert coreset construction method,
Algorithm 2, takes advantage of the directionality of the Hilbert norm to incrementally build
the coreset by selecting vectors aligned with the “direction of greatest improvement.”

The development of Algorithm 2 involves two major steps. First, we replace the cardinality
constraint on w in Eq. (3.2) with a polytope constraint:

min
w∈RN

(w − 1)TK(w − 1) s.t. w ≥ 0,
N∑
n=1

σnwn = σ, (4.2)

where K ∈ RN×N is a kernel matrix defined by Kij := 〈Li,Lj〉, and we take advantage of
the Hilbert norm to rewrite ‖L(w)− L‖2 = (w − 1)TK(w − 1). The polytope is designed
to contain the point w = 1 := [1, 1, . . . , 1]T ∈ RN—which is optimal with cost 0 since
L(1) = L—and have vertices σ

σn
1n for n ∈ [N ], where 1n is the nth coordinate unit vector.

Next, taking inspiration from the large-scale optimization literature Frank and Wolfe (1956);
Guélat and Marcotte (1986); Jaggi (2013); Lacoste-Julien and Jaggi (2015); Clarkson (2010);
Reddi et al. (2016); Balasubramanian and Ghadimi (2018); Hazan and Luo (2016), we solve
the convex optimization in Eq. (4.2) using the Frank–Wolfe algorithm (Frank and Wolfe,
1956). Frank–Wolfe is an iterative algorithm for solving convex optimization problems of the
form minx∈D g(x), where each iteration has three steps: 1) given the tth iterate xt, we first
find a search direction dt = st − xt by solving the linear program st = arg mins∈D∇f(xt)

T s;
2) we find a step size by solving the 1-dimensional optimization γt = arg minγ∈[0,1] f(xt+γdt);
and 3) we update xt+1 ← xt + γtdt. In Eq. (4.2), we are optimizing a convex objective
over a polytope, so the linear optimization can be solved by searching over all vertices of
the polytope. And since we designed the polytope such that its vertices each have a single
nonzero component, the algorithm adds at most a single data point to the coreset at each
iteration; after initialization followed by M − 1 iterations, this produces a coreset of size
≤M .

We initialize w0 to the vertex most aligned with L, i.e.

w0 =
σ

σf0
1f0 where f0 = arg max

n∈[N ]

〈
L, 1

σn
Ln
〉
. (4.3)

Let wt be the iterate at step t. The gradient of the cost is 2K (wt − 1), and we are solving
a convex optimization on a polytope, so the Frank–Wolfe direction may be computed by
searching over its vertices:

dt :=
σ

σft
1ft − wt where ft = arg max

n∈[N ]

〈
L − L(wt),

1

σn
Ln
〉
. (4.4)

The Frank–Wolfe algorithm applied to Eq. (4.2) thus corresponds to a simple greedy approach
in which we select the vector Lft with direction most aligned with the residual error L−L(wt).
We perform line search to update wt+1 = wt + γdt for some γ ∈ [0, 1]. Since the objective is
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Algorithm 2 FW: Hilbert coresets via Frank–Wolfe

Require: (Ln)Nn=1, M , 〈·, ·〉
∀n ∈ [N ] σn ←

√
〈Ln,Ln〉 , and σ ←

∑N
n=1 σn . compute norms

f ← arg maxn∈[N ]

〈
L, 1

σn
Ln
〉

. greedy initial vertex f selection

w ← σ
σf

1f . initialize w with full weight on f

for t ∈ {1, . . . ,M − 1} do

f ← arg maxn∈[N ]

〈
L − L(w), 1

σn
Ln
〉

. find the FW vertex index f

γ ←

〈
σ
σf
Lf−L(w),L−L(w)

〉
〈

σ
σf
Lf−L(w), σ

σf
Lf−L(w)

〉 . closed-form line search for step size γ

w ← (1− γ)w + γ σ
σf

1f . add/reweight data point f in coreset

end for
return w

quadratic, the exact solution for unconstrained line search is available in closed form per
Eq. (4.5); Lemma 4.3 shows that this is actually the solution to constrained line search in
γ ∈ [0, 1], ensuring that wt+1 remains feasible.

wt+1 = wt + γtdt where γt =

〈
σ
σft
Lft − L(wt),L − L(wt)

〉
〈

σ
σft
Lft − L(wt),

σ
σft
Lft − L(wt)

〉 . (4.5)

Lemma 4.3. For all t ∈ N, γt ∈ [0, 1].

Theorem 4.4 below provides a guarantee on the quality of the approximation output by
Algorithm 2 using the combination of the initialization in Eq. (4.3) and exact line search in
Eq. (4.5). This result depends on the constants η from Eq. (3.3), η from Eq. (4.1), and ν,
defined by

ν2 := 1− r2

σ2η2 ,

where r is the distance from L to the nearest boundary of the convex hull of {σLn/σn}Nn=1.
Since L is in the relative interior of this convex hull by Lemma A.5, we are guaranteed that
ν < 1. The proof of Theorem 4.4 in Appendix A relies on a technique from Guélat and
Marcotte (1986, Theorem 2) and a novel bound on the logistic equation.

Theorem 4.4. The output w of Algorithm 2 satisfies

‖L(w)− L‖ ≤ σηην√
η2ν−2(M−2) + η2(M − 1)

≤ ση√
M

.

In contrast to previous convergence analyses of Frank–Wolfe optimization, Theorem 4.4
exploits the quadratic objective and exact line search to capture both the logarithmic 1/

√
M

convergence rate for small values of M , and the linear νM rate for large M . Alternatively,

10



Automated Scalable Inference via Hilbert Coresets

one can remove the computational cost of computing the exact line search via Eq. (4.5) by
simply setting γt = 2

3t+4 . In this case, Theorem 4.4 is replaced with the weaker result (see
the note at the end of the proof of Theorem 4.4 in Appendix A)

‖L(w)− L‖ ≤ 2ση√
3M + 1

.

4.3. Distributed Coreset Construction

An advantage of Hilbert coresets—and coresets in general—is that they apply to streaming
and distributed data with little modification, and retain their theoretical guarantees. In
particular, if the data set (yn)Nn=1 is distributed (not necessarily evenly) among C processors,
and either Algorithm 1 or Algorithm 2 are run for M iterations on each processor, the
resulting merged coreset of size ≤ MC has an error guarantee given by Corollary 4.5 or
Corollary 4.6. Note that the weights from each distributed coreset are not modified when
merging. These results both follow from Theorems 4.1 and 4.4 with straightforward usage
of the triangle inequality, the union bound, and the fact that η for each subset is bounded
above by η for the full data set.

Corollary 4.5. Fix any δ ∈ (0, 1). With probability ≥ 1 − δ, the coreset constructed by
running Algorithm 1 on C nodes and merging the result satisfies

‖L(w)− L‖ ≤ ση√
M

(
1 +

√
2 log

C

δ

)
.

Corollary 4.6. The coreset constructed by running Algorithm 2 on C nodes and merging
the results satisfies

‖L(w)− L‖ ≤ ση√
M

.

5. Norms and Random Projection

The algorithms and theory in Section 4 address the scalability and performance of Bayesian
coreset construction, but are specified for an arbitrary Hilbert norm; it remains to choose
a norm suitable for automated Bayesian posterior approximation. There are two main
desiderata for such a norm: it should be a good indicator of posterior discrepancy, and it
should be efficiently computable or approximable in such a way that makes Algorithms 1
and 2 efficient for large N , i.e., O(N) time complexity. To address the desideratum that the
norm is an indicator of posterior discrepancy, we propose the use of one of two Hilbert norms.
It should, however, be noted that these are simply reasonable suggestions, and other Hilbert
norms could certainly be used in the algorithms set out in Section 4. The first candidate is
the expectation of the squared 2-norm difference between the log-likelihood gradients under
a weighting distribution π̂,

‖L(w)− L‖2π̂,F := Eπ̂
[
‖∇L(θ)−∇L(w, θ)‖22

]
, (5.1)

11
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where the weighting distribution π̂ has the same support as the posterior π. This norm is a
weighted version of the Fisher information distance (Johnson and Barron, 2004). The inner
product induced by this norm is defined by

〈Ln,Lm〉π̂,F := Eπ̂
[
∇Ln(θ)T∇Lm(θ)

]
. (5.2)

Although this norm has a connection to previously known discrepancies between probability
distributions, it does require that the likelihoods are differentiable. One could instead employ
a simple weighted L2 norm on the log-likelihoods, given by

‖L(w)− L‖π̂,2 := Eπ̂
[
(L(θ)− L(w, θ))2

]
(5.3)

with induced inner product

〈Ln,Lm〉π̂,2 := Eπ̂ [Ln(θ)Lm(θ)] . (5.4)

In both cases, the weighting distribution π̂ would ideally be chosen equal to π to emphasize
discrepancies that are in regions of high posterior mass. Though we do not have access to
the true posterior without incurring significant computational cost, there are many practical
options for setting π̂, including: the Laplace approximation (Bishop, 2006, Section 4.4),
a posterior based on approximate sufficient statistics (Huggins et al., 2017), a discrete
distribution based on samples from an MCMC algorithm run on a small random subsample
of the data, the prior, independent posterior conditionals (see Eq. (7.1) in Section 7.3), or any
other reasonable method for finding a low-cost posterior approximation. This requirement
of a low-cost approximation is not unusual, as previous coreset formulations have required
similar preprocessing to compute sensitivities, e.g., a k-clustering of the data (Huggins et al.,
2016; Lucic et al., 2016; Braverman et al., 2016). We leave the general purpose selection of
a weighting function π̂ for future work.

The two suggested norms ‖·‖π̂,2/F often do not admit exact closed-form evaluation due
to the intractable expectations in Eqs. (5.2) and (5.4). Even if closed-form expressions are
available, Algorithm 2 is computationally intractable when we only have access to inner
products between pairs of individual log-likelihoods Ln, Lm, since obtaining the Frank–Wolfe
direction involves the O(N2) computation arg maxn∈[N ]

∑N
m=1 〈Lm,Ln/σn〉. Further, the

analytic evaluation of expectations is a model- (and π̂-) specific procedure that cannot be
easily automated. To both address these issues and automate Hilbert coreset construction,
we use random features (Rahimi and Recht, 2007), i.e. a random projection of the vectors
(Ln)Nn=1 into a finite-dimensional vector space using samples from π̂. For the weighted
Fisher information inner product in Eq. (5.2), we approximate 〈Ln,Lm〉π̂,F with an unbiased
estimate given by

(dj)
J
j=1

i.i.d.∼ Unif({1, . . . , D}) (µj)
J
j=1

i.i.d.∼ π̂

〈Ln,Lm〉π̂,F ≈
D

J

J∑
j=1

(∇Ln(µj))dj (∇Lm(µj))dj ,

where subscripts indicate the selection of a component of a vector. If we define the J-
dimensional vector

L̂n :=

√
D

J
[(∇Ln(µ1))d1 , (∇Ln(µ2))d2 , . . . , (∇Ln(µJ))dJ ]T , (5.5)

12
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Algorithm 3 Bayesian Hilbert coresets with random projection

Require: (Ln)Nn=1, π̂, M , J
. sample feature points and gradient dimension indices
(µj)

J
j=1

i.i.d.∼ π̂, (dj)
J
j=1

i.i.d.∼ Unif({1, . . . , D})
. construct the random projection using one of the norms from Eqs. (5.5) and (5.6)
If ‖·‖π̂,F : ∀n ∈ [N ], vn ←

√
D/J [(∇Ln(µ1))d1 , . . . , (∇Ln(µJ))dJ ]T

If ‖·‖π̂,2: ∀n ∈ [N ], vn ←
√

1/J [Ln(µ1), . . . ,Ln(µJ)]T

. return the coreset constructed using random feature vectors

return FW
(

(vn)Nn=1 ,M, (·)T (·)
)

or IS
(

(vn)Nn=1 ,M, ‖·‖2
)

we have that for all n,m ∈ [N ],

〈Ln,Lm〉π̂,F ≈ L̂
T
n L̂m.

Therefore, for n ∈ [N ], L̂n serves as a random finite-dimensional projection of Ln that can
be used in Algorithms 1 and 2. Likewise, for the weighted L2 inner product in Eq. (5.4), we
have

(µj)
J
j=1

i.i.d.∼ π̂ 〈Ln,Lm〉π̂,2 ≈
1

J

J∑
j=1

Ln(µj)Lm(µj),

and so defining

L̂n :=

√
1

J
[Ln(µ1),Ln(µ2), . . . ,Ln(µJ)]T , (5.6)

we have that for all n,m ∈ [N ],

〈Ln,Lm〉π̂,2 ≈ L̂
T
n L̂m,

and once again ∀n ∈ [N ], L̂n serves as a finite-dimensional approximation of Ln. The construc-
tion of the random projections is both easily automated and enables the efficient computation
of inner products with vector sums. For example, to obtain the Frank–Wolfe direction, rather
than computing arg maxn∈[N ]

∑N
m=1 〈Lm,Ln/σn〉, we can simply compute L̂ =

∑N
n=1 L̂n in

O(NJ) time once at the start of the algorithm and then arg maxn∈[N ]
1
σn
L̂T L̂n in O(NJ)

time at each iteration. Further, since L̂Tn L̂m is an unbiased estimate of 〈Ln,Lm〉π̂,2/F ,
we expect the error of the approximation to decrease with the random finite projection
dimension J . Theorem 5.2 (below), whose proof may be found in Appendix A, shows that
under reasonable conditions this is indeed the case: the difference between the true output
error and random projection output error shrinks as J increases. Note that Theorem 5.2 is
quite loose, due to its reliance on a max-norm quadratic form upper bound.

Definition 5.1. (Boucheron et al., 2013, p. 24) A random variable X is sub-Gaussian with
constant ξ2 if

∀λ ∈ R, E
[
eλX

]
≤ e

λ2ξ2

2 .
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Theorem 5.2. Let µ ∼ π̂, d ∼ Unif({1, . . . , D}), and suppose D∇Ln(µ)d∇Lm(µ)d (given
‖·‖π̂,F ) or Ln(µ)Lm(µ) (given ‖·‖π̂,2) is sub-Gaussian with constant ξ2. Fix any δ ∈ (0, 1).
With probability ≥ 1− δ, the output of Algorithm 3 satisfies

‖L − L(w)‖2π̂,2/F ≤ ‖L̂ − L̂(w)‖22 + ‖w − 1‖21

√
2ξ2

J
log

2N2

δ
.

6. Synthetic Evaluation

In this section, we compare Hilbert coresets to uniform coresets and uniformly random
subsampling in a synthetic setting where expressions for the exact and coreset posteriors,
along with the KL-divergence between them, are available in closed-form. In particular, the
methods are used to perform posterior inference for the unknown mean µ ∼ N (µ0, I) of a
2-dimensional multivariate normal distribution with known covariance I from a collection of
N = 1, 000 i.i.d. observations (yn)Nn=1:

µ ∼ N (µ0, I) (yn)Nn=1 |µ
i.i.d.∼ N (µ, I).

6.1. Methods

We ran 1000 trials of data generation followed by uniformly random subsampling (Rand),
uniform coresets (Unif), Hilbert importance sampling (IS), and Hilbert Frank–Wolfe (FW).
For the two Hilbert coreset constructions, we used the weighted Fisher information distance
in Eq. (5.1). In this simple setting, the exact posterior distribution is a multivariate Gaussian
with mean µπ and covariance Σπ given by

µ | (yn)Nn=1 ∼ N (µπ,Σπ) Σπ =
1

1 +N
I µπ = Σπ

(
µ0 +

N∑
n=1

yn

)
.

For uniform coreset construction, we subsampled the data set as per Eq. (2.3), where the
sensitivity of yn (see Appendix C for the derivation) is given by

σn =
1

N

(
1 +

(yn − ȳ)T(yn − ȳ)
1
N

∑N
m=1 y

T
mym − ȳT ȳ

)
, ȳ :=

1

N

N∑
n=1

yn. (6.1)

This resulted in a multivariate Gaussian uniform coreset posterior approximation with mean
µ̂π and covariance Σ̂π given by

Σ̂π =
1

1 +
∑N

n=1Wn

I µ̂π = Σ̂π

(
µ0 +

N∑
n=1

Wnyn

)
. (6.2)

Generating a uniformly random subsample posterior approximation involved a similar
technique, instead using probabilities 1

N for all n ∈ [N ]. For the Hilbert coreset algorithms,
we used the true posterior as the weighting distribution, i.e., π̂ = π. This was chosen to
illustrate the ideal case in which the true posterior π is well-approximated by the weighting

14



Automated Scalable Inference via Hilbert Coresets

distribution π̂. Given this choice, the Fisher information distance inner product is available
in closed-form:

〈Ln,Lm〉π,F =
2

1 +N
+ (µπ − yn)T (µπ − ym) . (6.3)

Note that the norm ‖Ln‖π,F implied by Eq. (6.3) and the uniform sensitivity from Eq. (6.1)
are functionally very similar; both scale with the squared distance from yn to an estimate of µ.
Since all the approximate posteriors are multivariate Gaussians of the form Eq. (6.2)—with
weights Wn differing depending on the construction algorithm—we were able to evaluate
posterior approximation quality exactly using the KL-divergence from the approximate
coreset posterior π̃ to π, given by

DKL (π||π̃) =
1

2

{
tr
(
Σ−1
π̃ Σπ

)
+ (µπ̃ − µπ)TΣ−1

π̃ (µπ̃ − µπ)− 2 + log
|Σπ̃|
|Σπ|

}
.

6.2. Results

The results of this test appear in Fig. 2. The visual comparison of the different coreset
constructions in Fig. 2a–2d makes the advantages of Hilbert coresets constructed via Frank–
Wolfe clear. As more coreset points are added, all approximate posteriors converge to the
true posterior; however, the Frank–Wolfe method requires many fewer coreset points to
converge on a reliable estimate. While both the Hilbert and uniform coresets subsample
the data favoring those points at greater distance from the center, the Frank–Wolfe method
first selects a point close to the center (whose scaled likelihood well-approximates the true
posterior), and then refines its estimate with points far away from the center. This intuitive
behavior results in a higher-quality approximation of the posterior across all coreset sizes.
Note that the black coreset points across M = 5, 50, and 500 show a single trace of a
coreset being constructed, while the green posterior predictive ellipses show the noise in
the coreset construction across multiple runs at each fixed value of M . The quantitative
results in Figs. 2e and 2f—which plot the KL-divergence between each coreset approximate
posterior and the truth as the projection dimension J or the number of coreset iterations
M varies—confirm the qualitative evaluations. In addition, Fig. 2e confirms the theoretical
result from Theorem 4.4, i.e., that Frank–Wolfe exhibits linear convergence in this setting.
Fig. 2f similarly confirms Theorem 5.2, i.e., that the posterior error of the projected Hilbert
coreset converges to that of the exact Hilbert coreset as the dimension J of the random
projection increases.

7. Experiments

In this section we evaluate the performance of Hilbert coresets compared with uniform coresets
and uniformly random subsampling, using MCMC on the full data set as a benchmark.
We test the algorithms on logistic regression, Poisson regression, and directional clustering
models applied to numerous real and synthetic data sets. Based on the results of the synthetic
comparison presented in Section 6, for clarity we focus the tests on comparing uniformly
random subsampling to Hilbert coresets constructed using Frank–Wolfe with the weighted
Fisher information distance from Eq. (5.1). Additional results on importance sampling,
uniform coresets, and the weighted 2-norm from Eq. (5.3) are deferred to Appendix B.
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(a) Uniformly random subsampling (b) Uniform coreset

(c) Hilbert importance sampling (d) Hilbert Frank–Wolfe

(e) (f)

Figure 2: (2a-2d): Comparison of different coreset constructions for Gaussian inference,
showing example coreset posterior predictive 3σ ellipses (green), the true data generating
distribution 3σ ellipse (blue), and a single trace of coreset construction (black) for M = 5,
50, and 500. The radius of each coreset point indicates its weight. (2e): A comparison of
approximate posteriors using exact norms versus coreset construction iterations M . (2f):
A comparison of exact and projected methods versus projection dimension J , with fixed
M = 50.

7.1. Models

In the logistic regression setting, we are given a set of data points (xn, yn)Nn=1 each
consisting of a feature xn ∈ RD and a label yn ∈ {−1, 1}, and the goal is to predict the
label of a new point given its feature. We thus seek to infer the posterior distribution of the
parameter θ ∈ RD+1 governing the generation of yn given xn via

θ ∼ N (0, I) yn |xn, θ
indep∼ Bern

(
1

1 + e−zTn θ

)
zn := [xn, 1]T .

In the Poisson regression setting, we are given a set of data points (xn, yn)Nn=1 each
consisting of a feature xn ∈ RD and a count yn ∈ N, and the goal is to learn a relationship
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between features xn and the associated mean count. We thus seek to infer the posterior
distribution of the parameter θ ∈ RD governing the generation of yn given xn via

θ ∼ N (0, I) yn |xn, θ
indep∼ Poiss

(
log
(

1 + eθ
T zn
))

zn := [xn, 1]T .

Finally, in the directional clustering setting, we are given a data set of points (xn)Nn=1 on
the unit (D − 1)-sphere, i.e. xn ∈ RD with ‖xn‖2 = 1, and the goal is to separate them into
K clusters. For this purpose we employ a von Mises-Fisher (vMF) mixture model (Banerjee
et al., 2005). The component likelihood in this model is the von Mises-Fisher distribution
vMF(µ, τ) with concentration τ ∈ R+ and mode µ ∈ RD, ‖µ‖2 = 1, having density

fvMF(x;µ, τ) = CD(τ)eτx
Tµ CD(τ) =

τD/2−1

(2π)D/2ID/2−1(τ)

with support on the unit (D−1)-sphere SD−1, where Ip denotes the modified Bessel function
of the first kind of order p. We place uniform priors on both the component modes and
mixture weights, and set τ = 50, resulting in the generative model

(µk)
K
k=1

i.i.d.∼ Unif
(
SD−1

)
(ωk)

K
k=1 ∼ Dir(1, . . . , 1)

(xn)Nn=1 | (ωk, µk)Kk=1
i.i.d.∼

K∑
k=1

ωkvMF(µk, τ).

7.2. Datasets

We tested the coreset construction methods for each model on a number of data sets. For
logistic regression, the Synthetic data set consisted of N = 10,000 data points (with
1,000 held out for testing) with covariate xn ∈ R2 sampled i.i.d. from N (0, I), and label
yn ∈ {−1, 1} generated from the logistic likelihood with parameter θ = [3, 3, 0]T . The
Phishing2 data set consisted of N = 11,055 data points (with 1,105 held out for testing)
each with D = 68 features. In this data set, each covariate corresponds to the features
of a website, and the goal is to predict whether or not a website is a phishing site. The
ChemReact3 data set consisted of N = 26,733 data points (with 2,673 held out for testing)
each with D = 10 features. In this data set, each covariate represents the features of a
chemical experiment, and the label represents whether a chemical was reactive in that
experiment or not.

For Poisson regression, the Synthetic data set consisted of N = 10,000 data points
(with 1,000 held out for testing) with covariate xn ∈ R sampled i.i.d. from N (0, 1), and
count yn ∈ N generated from the Poisson likelihood with θ = [1, 0]T . The BikeTrips4 data
set consisted of N = 17,386 data points (with 1,738 held out for testing) each with D = 8
features. In this data set, each covariate corresponds to weather and season information for
a particular hour during the time between 2011–2012, and the count is the number of bike
trips taken during that hour in a bikeshare system in Washington, DC. The AirportDelays5

2. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

3. http://komarix.org/ac/ds/

4. http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

5. Airport information from http://stat-computing.org/dataexpo/2009/the-data.html, with historical
weather information from https://www.wunderground.com/history/.
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(a) Uniformly random subsampling (b) Uniform coreset

(c) Hilbert importance sampling (d) Hilbert Frank–Wolfe

(e) (f)

Figure 3: (3a-3d): Comparison of different coreset constructions for logistic regression on
the Synthetic data set (with blue & red labeled data), showing example coreset posterior
mean classification boundaries (green), and a single trace of coreset construction (black)
for M = 10, 100, and 1000. The radius of each coreset point indicates its weight. (3e, 3f):
A comparison of negative test log-likelihood (3e) and 1-Wasserstein distance (3f) versus
computation time for Frank–Wolfe (solid) and uniform random subsampling (dashed) on
the logistic regression model. Both axes are normalized using results from running MCMC
on the full data set; see Section 7.3.

data set consisted of N = 7,580 data points (with 758 held out for testing) each with D =
15 features. In this data set, each covariate corresponds to the weather information of a day
during the time between 1987–2008, and the count is the number of flights leaving Boston
Logan airport delayed by more than 15 minutes that day.

Finally, for directional clustering, the Synthetic data set consisted of N = 10,000
data points (with 1,000 held out for testing) generated from an equally-weighted vMF
mixture with 6 components, one centered at each of the axis poles.
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(a) Uniformly random subsampling

(b) Hilbert importance sampling (c) Hilbert Frank–Wolfe

(d) (e)

Figure 4: (4a-4c): Comparison of different coreset constructions for Poisson regression on
the Synthetic data set, showing example coreset posterior Poisson mean curves (green),
and a single trace of coreset construction (black) for M = 10, 100, and 1,000. The radius of
each coreset point indicates its weight. (4d, 4e): A comparison of negative test log-likelihood
(4d) and 1-Wasserstein distance (4e) versus computation time for Frank–Wolfe (solid) and
uniform random subsampling (dashed) on the Poisson regression model. Both axes are
normalized using results from running MCMC on the full data set; see Section 7.3.

7.3. Methods

We ran 50 trials of uniformly random subsampling and Hilbert Frank–Wolfe using the
approximate Fisher information distance in Eq. (5.1), varying M ∈ {10, 50, 100, 500, 1,000,
5,000, 10,000}. For both logistic regression and Poisson regression, we used the Laplace
approximation (Bishop, 2006, Section 4.4) as the weighting distribution π̂ in the Hilbert
coreset, with the random projection dimension set to D = 500. Posterior inference in each
of the 50 trials was conducted using random walk Metropolis-Hastings with an isotropic
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multivariate Gaussian proposal distribution. We simulated a total of 100,000 steps, with
50,000 warmup steps including proposal covariance adaptation with a target acceptance rate
of 0.234, and thinning of the latter 50,000 by a factor of 5, yielding 10,000 posterior samples.

For directional clustering the weighting distribution π̂ for the Hilbert coreset was
constructed by finding maximum likelihood estimates of the cluster modes (µ̂k)

K
k=1 and

weights ω̂ using the EM algorithm, and then setting π̂ to an independent product of
approximate posterior conditionals,

x̄k :=

N∑
n=1

znkxn z̄k :=

N∑
n=1

znk

µk
indep∼ vMF

(
x̄k
‖x̄k‖

, τ‖x̄k‖
)

ω
indep∼ Dir (1 + z̄1, . . . , 1 + z̄k) , (7.1)

where (zn)Nn=1, zn ∈ RK+ are the smoothed cluster assignments. The random projection
dimension was set to D = 500, and the number of clusters K was set to 6. Posterior
inference in each of the 50 trials was conducted used Gibbs sampling (introducing auxiliary
label variables for the data) with a total of 100,000 steps, with 50,000 warmup steps and
thinning of the latter 50,000 by a factor of 5, yielding 10,000 posterior samples. Note that
this approach is exact for the full data set; for the coreset constructions with weighted data,
we replicate each data point by its ceiled weight, and then rescale the assignment variables
to account for the fractional weight. In particular, for coreset weights (wn)Nn=1, we sample
labels for points with wn > 0 via

γk ∝ ωkfvMF (xn;µk, τ) zn
indep∼ Multi(ceil(wn), γ) zn ←

wn
ceil(wn)

zn,

and sample the cluster centers and weights via Eq. (7.1).
For all models, we evaluate two metrics of posterior quality: negative log-likelihood on

the held-out test set, averaged over posterior MCMC samples; and 1-Wasserstein distance of
the posterior samples to samples obtained from running MCMC on the full data set. All
negative test log-likelihood results are shifted by the maximum possible test log-likelihood
and normalized by the test log-likelihood obtained from the full data set posterior. All
1-Wasserstein distance results are normalized by the median pairwise 1-Wasserstein distance
between 10 trials of MCMC on the full data set. All computation times are normalized by
the median computation time for MCMC on the full data set across the 10 trials. These
normalizations allow the results from multiple data sets to be plotted coherently on the
same axes.

We ran the same experiments described above on Hilbert importance sampling for all
data sets, and uniform coresets on the logistic regression model with a = 3 and K = 4
(see Huggins et al. (2016, Sec. 4.2)). We also compared Hilbert coresets with the weighted
2-norm in Eq. (5.3) to the weighted Fisher information distance in Eq. (5.1). The results of
these experiments are deferred to Appendix B for clarity.

7.4. Results and discussion

Figs. 3, 4 and 5 show the experimental results for logistic regression, Poisson regression,
and directional clustering, respectively. The visual comparisons of coreset construction for
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(a) Uniformly random subsampling

(b) Hilbert importance sampling (c) Hilbert Frank–Wolfe

(d) (e)

Figure 5: (5a-5c): Comparison of different coreset constructions for directional clustering,
showing example coreset posterior mean clusters (green), and a single trace of coreset
construction (black) for M = 10, 100, and 1,000. The radius of each coreset point indicates its
weight. (5d, 5e): A comparison of negative test log-likelihood (5d) and 1-Wasserstein distance
(5e) versus computation time for Frank–Wolfe (solid) and uniform random subsampling
(dashed) on the directional clustering model. Both axes are normalized using results from
running MCMC on the full data set; see Section 7.3.

all models mimic the results of the synthetic evaluation in Fig. 2. For all the algorithms,
the approximate posterior converges to the true posterior on the full data set as more
coreset points are added; and the Frank–Wolfe Hilbert coreset construction selects the
most useful points incrementally, creating intuitive coresets that outperform all the other
methods. For example, in the logistic regression model, the uniform coreset construction
sensitivities are based on the proximity of the data to the centers of a K-clustering, and do
not directly incorporate information about the classification boundary. This construction
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(a) (b) (c)

Figure 6: A comparison of (6a) negative test log-likelihood, (6b) 1-Wasserstein posterior
distance estimate, and (6c) computation time versus coreset construction iterations M for
Frank–Wolfe (blue), importance sampling (red), and uniformly random subsampling (dashed
black) across all models and data sets. All metrics are normalized to the median value for
uniformly random subsampling; see Section 7.3.

therefore generally favors sampling points on the periphery of the data set and assigns high
weight to those near the center. The Hilbert importance sampling algorithm, in contrast,
directly considers the logistic regression problem; it favors sampling points lying along the
boundary and assigns high weight to points orthogonal to it, thereby fixing the boundary
plane more accurately. The Hilbert Frank–Wolfe algorithm selects a single point closely
aligned with the classification boundary normal, and then refines its estimate with points
near the boundary. This enables it to use far fewer coreset points to achieve a more accurate
posterior estimate than the sampling-based methods. Similar statements hold for the two
other models: in the Poisson regression model, the Hilbert Frank–Wolfe algorithm chooses a
point closest to the true parameter and then refines its estimate using far away points; and
in the directional clustering model, the Hilbert Frank–Wolfe algorithm initially selects points
near the cluster centers and then refines the estimates with points in each cluster far from its
center. The quantitative results demonstrate the strength of the Hilbert Frank–Wolfe coreset
construction algorithm: for a given computational time budget, this algorithm provides
orders of magnitude reduction in both error metrics over uniformly random subsampling. In
addition, the Hilbert Frank–Wolfe coreset achieves the same negative test log-likelihood as
the full data set in roughly a tenth of the computation time. These statements hold across
all models and data sets considered.

Fig. 6 provides a summary of the performance of Hilbert coresets as a function of
construction iterations M across all models and data sets. This demonstrates its power
not only as a scalable inference method but also as a data set compression technique.
For any value of M and across a wide variety of models and data sets, Hilbert coresets
(both importance sampling and Frank–Wolfe-based constructions) provide a significant
improvement in posterior approximation quality over uniformly random subsampling, with
comparable computation time. This figure also shows a rather surprising result: not only does
the Frank–Wolfe-based method provide improved posterior estimates, it also can sometimes
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have reduced overall computational cost compared to uniformly random subsampling for
fixed M . This is due to the fact that M is an upper bound on the coreset size; the Frank–
Wolfe algorithm often selects the same point multiple times, leading to coresets of size
� M , whereas subsampling techniques always have coresets of size ≈ M . Since the cost
of posterior inference scales with the coreset size and dominates the cost of setting up
either coreset construction algorithm, the Hilbert Frank–Wolfe method has a reduced overall
cost. Generally speaking, we expect the Hilbert coreset methods to be slower than random
subsampling for small M , where π̂ setup and random projection dominates the time cost,
but the Frank–Wolfe method to sometimes be faster for large M where the smaller coreset
provides a significant inferential boost.

Although more detailed results for Hilbert importance sampling, uniform coresets, and the
weighted 2-norm from Eq. (5.3) are deferred to Appendix B, we do provide a brief summary
here. Fig. 7 shows that Hilbert importance sampling provides comparable performance
to both uniform coresets and uniformly random subsampling on all models and data sets.
The Hilbert Frank–Wolfe coreset construction algorithm typically outperforms all random
subsampling methods. Finally, Figs. 8 and 9 show that the weighted 2-norm and Fisher
information norm perform similarly in all cases considered.

8. Conclusion

This paper presented a fully-automated, scalable, and theoretically-sound Bayesian inference
framework based on Hilbert coresets. The algorithms proposed in this work are simple
to implement, reliably provide high-quality posterior approximation at a fraction of the
cost of running inference on the full data set, and enable experts and nonexperts alike to
conduct sophisticated modeling and exploratory analysis at scale. There are many avenues
for future work, including exploring the application of Hilbert coresets in more complex
high-dimensional models, using alternate Hilbert norms, connecting the norms proposed
in the present work to more well-known measures of posterior discrepancy, investigating
different choices of weighting function, obtaining tighter bounds on the quality of the
random projection result, and using variants of the Frank–Wolfe algorithm (e.g. away-
step, pairwise, and fully-corrective FW (Lacoste-Julien and Jaggi, 2015)) with stronger
convergence guarantees.
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Appendix A. Technical results and proofs

In this section we provide proofs of the main results from the paper, along with support-
ing technical lemmas. Lemma A.1 is the martingale extension of Hoeffding’s inequality
(Boucheron et al., 2013, Theorem 2.8, p. 34) known as Azuma’s inequality. Lemma A.2 is
the martingale extension of Bennet’s inequality (Boucheron et al., 2013, Theorem 2.9, p. 35).
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Lemma A.3 provides bounds on the expectation and martingale differences of the norm of a
vector constructed by i.i.d. sampling from a discrete distribution. Finally, Lemma A.5 is
a geometric result and Lemma A.6 bounds iterates of the logistic equation, both of which
are used in the proof of the Frank-Wolfe error bound. Lemma A.4 provides a relationship
between two vector alignment constants in the main text.

Lemma A.1 (Azuma’s Inequality). Suppose (Ym)Mm=0 is a martingale adapted to the filtration
(Fm)Mm=0. If there is a constant ξ such that for each m ∈ {1, . . . ,M},

|Ym − Ym−1| ≤ ξ a.s.,

then for all ε ≥ 0,

P (YM − Y0 > ε) ≤ e−
ε2

2Mξ2 .

Lemma A.2 (Martingale Bennet Inequality). Suppose (Ym)Mm=0 is a martingale adapted to
the filtration (Fm)Mm=0. If there are constants ξ and τ2 such that for each m ∈ {1, . . . ,M},

|Ym − Ym−1| ≤ ξ and E
[
(Ym − Ym−1)2 | Fm−1

]
≤ τ2 a.s.,

then for all ε ≥ 0,

P (YM − Y0 > ε) ≤ e−
Mτ2

ξ2
H
(

εξ

Mτ2

)
, H(x) := (1 + x) log(1 + x)− x.

Lemma A.3. Suppose U and {Um}Mm=1 are i.i.d. random vectors in a normed vector space
with discrete support on (un)Nn=1 with probabilities (pn)Nn=1, and

Y :=

∥∥∥∥∥ 1

M

M∑
m=1

Um − E [U ]

∥∥∥∥∥ .
Then we have the following results.

1. Suppose dim (un)Nn=1 ≤ d where dim is given by Definition 3.1, αn· ∈ [−1, 1]d are the
coefficients used to approximate un in Definition 3.1, and Aj is a random variable
equal to αnj when U = un. Then

E [Y ] ≤ d√
M

(
N∑
n=1

‖un‖
√
pn(1− pn)

N
+
√

Var [‖UAj‖]

)
.

2. If the norm is a Hilbert norm,

E [Y ] ≤ 1√
M

√
E
[
‖U‖2

]
− ‖E [U ]‖2 .

3. The random variable Ym := E [Y | Fm] with Fm the σ-algebra generated by U1, . . . , Um
is a martingale that satisfies, for m ≥ 1, both

|Ym − Ym−1| ≤
1

M
max
n,`
‖un − u`‖
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and

E
[
(Ym − Ym−1)2 | Fm−1

]
≤ 1

M2
E
[
‖U − U1‖2

]
almost surely.

Proof. 1. Using the triangle inequality, denoting the number of times vector un is sampled
as Mn,

E [Y ] ≤ 1

M

N∑
n=1

d ‖un‖√
N

E [|Mn −Mpn|]

+
1

M

d∑
j=1

E

[∣∣∣∣∣
N∑
n=1

(Mn −Mpn) ‖un‖αnj

∣∣∣∣∣
]
.

Bounding E [|·|] ≤
√

E [(·)2] via Jensen’s inequality and evaluating the multinomial
variances yields the desired result.

2. This follows from Jensen’s inequality to write E [Y ] ≤
√
E [Y 2] and the expansion of

the squared norm.

3. (Ym)Mm=0 is a standard Doob martingale with Y0 = E [Y ]. Letting U ′` = U` for ` 6= m

and U ′m be an independent random variable with U ′m
d
= Um, by the triangle inequality

we have

|Ym − Ym−1|
= |E [Y | Fm]− Ym−1|

=

∣∣∣∣∣E
[∥∥∥∥∥ 1

M

M∑
`=1

U` − E [U ]

∥∥∥∥∥ | Fm
]
− Ym−1

∣∣∣∣∣
=

∣∣∣∣∣E
[∥∥∥∥∥ 1

M

(
Um − U ′m

)
+

1

M

M∑
`=1

U ′` − E [U ]

∥∥∥∥∥ | Fm
]
− Ym−1

∣∣∣∣∣
≤

∣∣∣∣∣ 1

M
E
[∥∥Um − U ′m∥∥ | Fm]+ E

[∥∥∥∥∥ 1

M

M∑
`=1

U ′` − E [U ]

∥∥∥∥∥ | Fm
]
− Ym−1

∣∣∣∣∣
=

1

M
E
[∥∥Um − U ′m∥∥ | Fm] (A.1)

≤ 1

M
max
n,`
‖un − u`‖.

Next, using Eq. (A.1) and Jensen’s inequality, we have that

E
[
(Ym − Ym−1)2 | Fm−1

]
≤ E

[
E
[

1

M

∥∥Um − U ′m∥∥ | Fm]2

| Fm−1

]
≤ 1

M2
E
[∥∥Um − U ′m∥∥2 | Fm−1

]
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=
1

M2
E
[∥∥Um − U ′m∥∥2

]
.

Proof of Theorem 3.2. Set δ ∈ (0, 1). Rearranging the results of Lemma A.1, we have that
with probability ≥ 1− δ,

YM ≤ Y0 +

√
2Mξ2 log

1

δ
.

We now apply the results of Lemma A.3(1) and Lemma A.3(3), noting that∑N
n=1

√
pn(1− pn) is maximized when pn = 1/N , where the discrete distribution is speci-

fied by atoms un = σLn/σn with probabilities σn/σ for n ∈ [N ]. Further, when applying
Lemma A.3(1), note that

Var ‖UAj‖ = σ2 Var |Aj |

= σ2 Var

(
|Aj | −

1

2

)
≤ σ2E

[(
|Aj | −

1

2

)2
]
≤ σ2

4
.

This yields

Y0 ≤
3σd

2
√
M

ξ =
ση

M
.

Substituting these results into the above expression,

YM ≤
σ√
M

(
3

2
dim (Ln)Nn=1 + η

√
2 log

1

δ

)
.

Proof of Theorem 4.1. Set δ ∈ (0, 1). Rearranging the results of Lemmas A.1 and A.2, we
have that with probability ≥ 1− δ,

YM ≤ Y0 + min

(√
2Mξ2 log

1

δ
,
Mτ2

ξ
H−1

(
ξ2

Mτ2
log

1

δ

))
.

We now apply the results of Lemma A.3(3), where the discrete distribution is specified by
atoms un = Ln/pn with probabilities pn for n ∈ [N ]. Define Mn to be the number of times
index n is sampled; then (M1, . . . ,MN ) ∼ Multi(M, (pn)Nn=1). Then since our vectors are in
a Hilbert space, we use Lemma A.3(2) and Lemma A.3(3) to find that

YM =

∥∥∥∥∥ 1

M

M∑
m=1

Um − E [U ]

∥∥∥∥∥ =

∥∥∥∥∥
N∑
n=1

Mn

Mpn
Ln − L

∥∥∥∥∥
Y0 ≤

√√√√ 1

M

(
N∑
n=1

‖Ln‖2
pn

− ‖L‖2
)
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ξ =
1

M
max
m,n

∥∥∥∥Lnpn − Lmpm
∥∥∥∥

τ2 =
1

M2
E
[∥∥Um − U ′m∥∥2

]
=

2

M2

(
N∑
n=1

‖Ln‖2

pn
− ‖L‖2

)
.

Minimizing both τ2 and Y0 over (pn)Nn=1 by setting the derivative to 0 yields

pn =
‖Ln‖
σ

σ :=
N∑
n=1

‖Ln‖. (A.2)

Finally, we have that

Y0 ≤
√

1

M
σ2η2 τ2 =

2σ2

M2

(
1− ‖L‖

2

σ2

)
=

2σ2η2

M2
ξ =

σ

M
η,

and Mn
M

1
pn

= Wn from Algorithm 1, so

‖L(W )− L‖ ≤ ση√
M

+ min

(√
2
σ2η2

M
log

1

δ
,
2ση2

η
H−1

(
η2

2Mη2
log

1

δ

))

=
σ√
M

(
η + ηM

√
2 log

1

δ

)

ηM := min

(
η, η

√
2Mη2

η2 log 1
δ

H−1

(
η2 log 1

δ

2Mη2

))
.

Lemma A.4. Given a Hilbert norm, η from Eq. (3.3) and η from Eq. (4.1) satisfy

η ≤ η√
2
.

Proof. Noting ‖L‖2 = 〈L,L〉 and expanding the definition from Eq. (4.1),

η2 = 1−
N∑

n,m=1

σnσm
σ2

〈
Ln
σn
,
Lm
σm

〉
≤ 1− min

n,m∈[N ]

〈
Ln
σn
,
Lm
σm

〉
=

1

2
η2

where the inequality follows from
∑N

n,m=1
σnσm
σ2 = 1.

Lemma A.5. L is in the relative interior of the convex hull of
{

σ
‖Ln‖Ln

}N
n=1

.

Proof. First, since K (the kernel matrix of inner products defined in Eq. (4.2)) is a symmetric
postive semidefinite N ×N matrix, there exists an N ×N matrix U such that ‖L(w)‖2 =
wTKw = wTUTUw = ‖u(w)‖22, where u(w) :=

∑N
n=1wnun, u :=

∑N
n=1 un, and un ∈ RN

are the columns of U . Therefore the mapping L(w)→ u(w) is a linear isometry from the
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Hilbert space to RN , so if u is in the relative interior of the convex hull of
{

σ
‖un‖un

}N
n=1

,

the result follows. Let y be any other point in the convex hull in RN , with coefficients γn. If
we set

λ = min
n:γn>

‖un‖
σ

γn

γn − ‖un‖σ

where the minimum of an empty set is defined to be ∞, then λu + (1 − λ)y is in the
convex hull and λ > 1. Since for any point y we can find such a λ, the result follows from
(Rockafeller, 1970, Theorem 6.4, p. 47).

Lemma A.6. The logistic recursion,

xn+1 ≤ αxn(1− xn),

for x0, α ∈ [0, 1] satisfies

∀n ∈ N, xn ≤
x0

α−n + x0n
.

Proof. The proof proceeds by induction. The bound holds at n = 0 since

x0 ≤
x0

α0 + 0
= x0.

Since 1− x ≤ 1/(1 + x), for any n ≥ 0,

xn+1 ≤ αxn(1− xn) ≤ α xn
1 + xn

.

Assuming the bound holds for any n ≥ 0, and noting x/(1 + x) is monotone increasing for
x ≥ 0, we can substitute the bound yielding

xn+1 ≤ α
x0

α−n+nx0

1 + x0
α−n+nx0

= α
x0

α−n + nx0 + x0
=

x0

α−(n+1) + α−1(n+ 1)x0
.

The final result follows since α−1 ≥ 1.

Proof of Lemma 4.3. Let wt be the weight vector at iteration t in Algorithm 2, and let ft
and dt be the Frank-Wolfe vertex index and direction, respectively, from Eq. (4.4). For
brevity, denote the cost J(w) := (w− 1)TK(w− 1). For any γ ∈ R, if we let wt+1 = wt+γdt
we have that

J(wt+1) = J(wt) + 2γdTt K(wt − 1) + γ2dTt Kdt. (A.3)

Minimizing Eq. (A.3) over γ ∈ R yields Eq. (4.5) (expressed as a quadratic form with gram
matrix K),

γt =
dTt K(1− wt)

dTt Kdt
. (A.4)
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Suppose γt < 0. Then dTt K(1 − wt) < 0; but dt maximizes this product over feasible
directions, so

0 > dTt K(1− wt) > (1− wt)TK(1− wt) = J(wt) ≥ 0, (A.5)

which is a contradiction. Now suppose γt > 1. Then

dTt K(1− wt) > dTt Kdt,

and Eq. (A.5) holds again, so if we were to select γ = 1 in Eq. (A.3), we would have

0 ≤ J(wt+1) < J(wt) + dTt K(wt − 1) ≤ 0,

which is another contradiction, so γt ≤ 1. Therefore γt ∈ [0, 1]

Proof of Theorem 4.4. Using the same notation as the proof of Lemma 4.3 above, first note
that J(w0) ≤ σ2η2 as initialized by Eq. (4.3): for any ξ ∈ RN+ with

∑
n ξn = 1,

J(w0)

σ2
= 1− 2

〈
Lf0
σf0

,
L
σ

〉
+
‖L‖2

σ2
≤ 1− 2

N∑
n=1

ξn

〈
Ln
σn
,
L
σ

〉
+
‖L‖2

σ2

since f0 maximizes 〈L,Ln/σn〉 over n ∈ [N ], and picking ξn = σn/σ yields

J(w0)

σ2
≤ 1− 2

N∑
n=1

〈
Ln
σ
,
L
σ

〉
+
‖L‖2

σ2
= 1− ‖L‖

2

σ2
= η2.

By Lemma 4.3, we are guaranteed that each Frank-Wolfe iterate using exact line search is
feasible, and substituting Eq. (A.4) into Eq. (A.3) yields

J(wt+1) = J(wt)−
(
dTt K(1− wt)

)2
dTt Kdt

= J(wt)

1−

〈 σ
σft
Lft − L(wt)

‖ σ
σft
Lft − L(wt)‖

,
L − L(wt)

‖L − L(wt)‖

〉2
 . (A.6)

We now employ a technique due to Guélat and Marcotte (1986): by Lemma A.5, L is in the

relative interior of the convex hull of the
{
σ
σn
Ln
}N
n=1

, so there exists an r > 0 such that for

any feasible w,

L(w) + (‖L − L(w)‖+ r)
L − L(w)

‖L − L(w)‖

is also in the convex hull. Thus, since the Frank-Wolfe vertex σ
σft
Lft maximizes

〈L(w)− L(wt),L − L(wt)〉 over feasible w, we have that〈 σ
σft
Lft − L(wt)

‖ σ
σft
Lft − L(wt)‖

,
L − L(wt)

‖L − L(wt)‖

〉
≥

〈
(‖L − L(wt)‖+ r) L−L(wt)

‖L−L(wt)‖

‖ σ
σft
Lft − L(wt)‖

,
L − L(wt)

‖L − L(wt)‖

〉
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=

√
J(wt) + r

‖ σ
σft
Lft − L(wt)‖

≥
√
J(wt) + r

ση
.

Substituting this into Eq. (A.6) yields

J(wt+1) ≤ J(wt)

1−

(√
J(wt) + r

ση

)2
 ≤ J(wt)

(
ν2 − J(wt)

σ2η2

)
,

where ν := 1− r2

σ2η2
. Defining xt := J(wt)

σ2η2ν2
, we have that 0 ≤ xt ≤ 1 and

xt+1 ≤ ν2xt(1− xt),

and so Lemma A.6 implies that

J(wt)

σ2η2ν2
≤

J(w0)
σ2η2ν2

ν−2t + J(w0)
σ2η2ν2

t
.

Further, since the function a
a+b is monotonically increasing in a for all a, b ≥ 0, we can use

the bound on the initial objective J(w0), yielding

J(wt) ≤
σ2η2η2ν2

η2ν2−2t + η2t

The proof concludes by noting that we compute M − 1 iterations after initialization to
construct a coreset of size ≤M . The second stated bound results from the fact that η ≥ η
and ν ≤ 1.

The weaker bound in the note after the theorem is a result of a technique very similar to
that commonly found in past work (Clarkson, 2010; Jaggi, 2013): starting from Eq. (A.3),
we bound dTt Kdt ≤ σ2η2 and dTt K(wt − 1) ≤ −J(wt), and then use recursion to prove that

J(wt) ≤ 4σ2η2

3t+4 given γt = 2
3t+4 .

Proof of Theorem 5.2. Suppose maxm,n
∣∣〈Ln,Lm〉 − vTn vm∣∣ ≤ ε. Then

(w − 1)TK(w − 1)− (w − 1)TV (w − 1) ≤∑
m,n

|wn − 1| |wm − 1|
∣∣〈Ln,Lm〉 − vTn vm∣∣ ≤ ‖w − 1‖21 ε.

We now bound the probability that the above inequality holds, assuming D∇Ln(µ)d∇Lm(µ)d
(when using Dπ̂,F ) or Ln(µ)Lm(µ) (when using Dπ̂,2) is sub-Gaussian with constant ξ2. For
brevity denote the true vector Ln as Ln and its random projection as vn. Then

P
(

max
m,n

∣∣〈Ln,Lm〉 − vTn vm∣∣ ≥ ε)
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≤
∑
m,n

P
(∣∣〈Ln,Lm〉 − vTn vm∣∣ ≥ ε)

≤N2 max
m,n

P
(∣∣〈Ln,Lm〉 − vTn vm∣∣ ≥ ε)

=N2 max
m,n

P

∣∣∣∣∣∣〈Ln,Lm〉 − 1

J

J∑
j=1

vnjvmj

∣∣∣∣∣∣ ≥ ε


≤2N2e
−Jε

2

2ξ2 ,

using Hoeffding’s inequality for sub-Gaussian variables. Thus if we fix δ ∈ (0, 1), with
probability ≥ 1− δ, √

2ξ2

J
log

2N2

δ
≥ ε.

Therefore, with probability ≥ 1− δ,

‖L(w)− L‖2 ≤ ‖v(w)− v‖2 + ‖w − 1‖21

√
2ξ2

J
log

2N2

δ
.

Appendix B. Additional Results

This section contains supplementary quantitative evaluations. Fig. 7 compares Hilbert
importance sampling to uniformly random subsampling and uniform coresets. These results
demonstrate that all subsampling techniques perform similarly, with Hilbert coresets often
the best choice of the three. The Frank–Wolfe constructions outperform subsampling
techniques across all models and data sets considered. Figs. 8 and 9 compare the weighted
2-norm from Eq. (5.3) to the weighted Fisher information norm from Eq. (5.1) in both
importance sampling and Frank–Wolfe-based Hilbert coreset constructions. These results
show that the 2-norm and F-norm perform similarly in all cases.

Appendix C. Derivation of the Gaussian uniform coreset sensitivity

The sensitivity of observation yn used in the construction of a Bayesian coreset (Huggins
et al., 2016) (ignoring constants) is

Nσn = sup
µ∈Rd

NLn(µ)

L(µ)
= sup

µ∈Rd

N (yn − µ)T (yn − µ)∑N
m=1 (ym − µ)T (ym − µ)

.

By noting that

1

N

N∑
m=1

(ym − µ)T (ym − µ) =
1

N

N∑
m=1

yTmym − ȳT ȳ + (µ− ȳ)T (µ− ȳ) ,

where ȳ := 1
N

∑N
m=1 ym, we can keep the denominator constant by varying µ on the ball

centered at ȳ of constant radius. The maximum of the numerator while keeping the
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Comparisons for IS-F (solid), uniform coresets (dotted), and uniform random
subsampling (dashed) on (7a, 7b) logistic regression, (7c, 7d) Poisson regression, and (7e, 7f)
directional clustering. Both axes are normalized; see Section 7.3.
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Comparisons for IS-2 (solid) and IS-F (dashed) on (8a, 8b) logistic regression, (8c,
8d) Poisson regression, and (8e, 8f) directional clustering. Both axes are normalized; see
Section 7.3.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Comparisons for FW-2 (solid) and FW-F (dashed) on (9a, 9b) logistic regression,
(9c, 9d) Poisson regression, and (9e, 9f) directional clustering. Both axes are normalized; see
Section 7.3.
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denominator constant happens when µ lies on the 1d affine space between ȳ and yn; so we
can reparametrize µ = λȳ + (1− λ)yn for λ ∈ R, yielding the optimization

sup
µ∈Rd

NLn(µ)

L(µ)
= sup

λ∈R

λ2 (yn − ȳ)T (yn − ȳ)
1
N

∑N
m=1 y

T
mym − ȳT ȳ + (1− λ)2 (yn − ȳ)T (yn − ȳ)

for which the optimum occurs at λ? =

(
1
N

∑N
m=1 y

T
mym−ȳT ȳ

(yn−ȳ)T (yn−ȳ)
+ 1

)
with value

Nσn = sup
µ∈Rd

NLn(µ)

L(µ)
= 1 +

(yn − ȳ)T (yn − ȳ)
1
N

∑N
m=1 y

T
mym − ȳT ȳ

.
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Rémi Bardenet, Arnaud Doucet, and Chris Holmes. On Markov chain Monte Carlo methods for tall
data. arXiv:1505.02827, 2015.

Christopher Bishop. Pattern recognition and machine learning. Springer, 2006.
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