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Abstract

Hamiltonian Monte Carlo (HMC) samples efficiently from high-dimensional posterior dis-
tributions with proposed parameter draws obtained by iterating on a discretized version of
the Hamiltonian dynamics. The iterations make HMC computationally costly, especially in
problems with large data sets, since it is necessary to compute posterior densities and their
derivatives with respect to the parameters. Naively computing the Hamiltonian dynamics
on a subset of the data causes HMC to lose its key ability to generate distant parameter
proposals with high acceptance probability. The key insight in our article is that efficient
subsampling HMC for the parameters is possible if both the dynamics and the acceptance
probability are computed from the same data subsample in each complete HMC iteration.
We show that this is possible to do in a principled way in a HMC-within-Gibbs framework
where the subsample is updated using a pseudo marginal MH step and the parameters are
then updated using an HMC step, based on the current subsample. We show that our
subsampling methods are fast and compare favorably to two popular sampling algorithms
that use gradient estimates from data subsampling. We also explore the current limitations
of subsampling HMC algorithms by varying the quality of the variance reducing control
variates used in the estimators of the posterior density and its gradients.
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1. Introduction

Bayesian inference relies on computing expectations with respect to the posterior density of
the model parameters given the data. The functional form of the posterior density often does
not correspond to a known density and hence obtaining independent samples to compute
the expectation by Monte Carlo integration is difficult, especially when the dimension of the
model parameter is moderate to large. Markov Chain Monte Carlo (MCMC) is a generic
sampling algorithm that produces correlated draws from the posterior density.

Metropolis-Hastings (MH) (Metropolis et al., 1953; Hastings, 1970) is arguably the most
popular MCMC algorithm. Its most common implementation uses a random walk pro-
posal, in which a new sample is proposed based on the current state of the Markov chain.
While Random walk MH is easy to implement, it explores the posterior very slowly in
high-dimensional problems and gives highly correlated draws and imprecise estimators of
posterior integrals.

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987) can produce distant proposals
while maintaining a high acceptance probability (Neal, 2011; Betancourt, 2017). HMC
augments the target posterior by adding fictitious momentum variables and carries out
the sampling on an extended target density. The extended target is proportional to the
exponential of a Hamiltonian function that describes the total energy of the system, which
is the sum of the potential energy (negative log posterior) and the kinetic energy (negative
log density of the momentum variables). The Hamiltonian dynamics describes how the
total energy evolves through time. One particularly interesting feature of the Hamiltonian
is that it conserves energy as time evolves, a property that is approximately maintained even
when the dynamics is approximated in discrete time. Hence, a MH proposal obtained by
simulating the dynamics has approximately the same value of the extended target density
as that of the current draw, resulting in a high acceptance probability, even when the
proposed draw is far from the current draw. This typically avoids the inherently slow
exploration of the parameter space evident in random walk proposals (Betancourt, 2017).
HMC simulates the evolution of Hamiltonian dynamics for a given period of time. Up
to a point, the longer the integration time the more effectively the dynamics explore the
posterior distribution, while small integration times approach diffusive Langevin methods
(Roberts and Rosenthal, 1998; Roberts and Stramer, 2002). In practice, the simulation of
the dynamics is implemented with a numerical integrator. The more accurate the integrator,
the larger the step size and the fewer total steps needed to simulate the dynamic for a chosen
time. Smaller step sizes typically require larger integration times to achieve the same
efficient exploration of the posterior distribution. In either case, HMC requires computing
the gradient of the log-posterior in each step when simulating the dynamics, and in practice
a large number of steps may be performed. The extra computations are often worthwhile
as HMC greatly improves the sampling efficiency of the generated samples compared to a
proposal which does not use gradient information. Even with the improved performance
of HMC, however, the cost can be too prohibitive for the limited computational resources
available in a given application. Consequently, some algorithms use subsampling of the data
to reduce the cost of computing the posterior density and its gradients. Unfortunately, naive
subsampling methods are often problematic and in particular they compromise many of the
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features that give HMC its scalability (Betancourt, 2015). In this article we introduce a
subsampling HMC scheme that can tackle very large data sets and maintain the scalability.

Our article speeds up computation by using subsets of the data to compute both the
dynamics and the subsequent MH correction performed when deciding to accept a proposal.
More precisely, we propose a HMC-within-Gibbs algorithm that alternates i) sampling small
subsets of data using a pseudo-marginal step and ii) sampling parameters using the HMC
dynamics and the MH correction based on the current subset of the data. We will here focus
on HMC algorithms where the Hamiltonian dynamics are used to generate a proposal which
is subsequently accepted or rejected using a MH step, which we refer to as HMC. Extensions
to other HMC algorithms that use the entire trajectory generated by the dynamics (Hoffman
and Gelman, 2014; Betancourt, 2017) are interesting future research direction discussed in
Section 7.

We propose two different subsampling versions of the HMC algorithm. In the first
perturbed approach we use a slightly biased likelihood estimator and show that the algorithm
targets a perturbed posterior which gets close to the true posterior density as the subsample
size and the number of observations of the data set become large; see Section 4.2 for details.
The second approach uses an unbiased but possibly negative likelihood estimator which
allows us to obtain simulation consistent estimators of the posterior expectation of any
function of the parameters. However, this approach is harder to implement efficiently than
the perturbed approach and is typically slower computationally.

We compare our algorithms to Stochastic Gradient Langevin Dynamics (Welling and
Teh, 2011, SGLD) and Stochastic Gradient Hamiltonian Monte Carlo (Chen et al., 2014,
SG-HMC), two of the most popular subsampling algorithms that use gradient information
in machine learning. To make the comparison more challenging we implement both methods
with control variates for improved performance (Baker et al., 2017). We demonstrate that
our algorithms compare favorably to SGLD and SG-HMC. It is by now well known that all
proposed subsampling MCMC and HMC algorithms need accurate control variates to lower
the variance of the estimated posterior and gradients, and we explore the robustness of the
algorithms when the control variates are degraded.

The paper is organized as follows. Section 2 reviews previous research and the methods
we compare against. Section 3 presents our methodology using a general likelihood estimator
and argues that it circumvents the incompatibility of data subsampling and HMC raised in
recent literature. Sections 4 and 5 present two algorithms based on two specific likelihood
estimators. Finally, Section 6 demonstrates the usefulness of the methods on two large data
sets and compares with alternative approaches. This section also explores the limitation
of subsampling approaches by experimenting with successively degrading the quality of
the control variates used for variance reduction. Section 7 concludes and discusses future
research.

2. Related work

2.1. High-dimensional MCMC for large data sets

There has recently been a surge of interest in developing posterior simulation algorithms
that scale with respect to both the number of observations n and the number of parameters
d. Since simulation methods have the ambitious goal of exploring all regions in parame-
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ter space with sizable probability mass, they naturally require many more iterations than
posterior optimization algorithms. Posterior optimization is computationally attractive for
big data, but does not quantify the posterior uncertainty, which is often a central task in
science. Although there exist optimization-based methods that aim to approximate the
entire posterior distribution, e.g. variational Bayes (Blei et al., 2017), Laplace approxima-
tions (Bernardo and Smith, 2001, Chapter 5) or integrated nested Laplace approximations
(Rue et al., 2009), in practice it is nearly impossible to know how they perform without
comparing the results to a posterior simulation method. It is thus important to develop
posterior simulation methods that:

i) remain computationally efficient when n is large and

ii) explore the posterior distribution efficiently when d is large.

Two distinct approaches exist to resolve i). The first is to use parallel computing by dividing
the n data observations into K parts, performing independent posterior simulation on each
of theK subposteriors and subsequently merge the draws to represent the full data posterior.
See, for example, Scott et al. (2013); Neiswanger et al. (2014); Wang and Dunson (2014);
Minsker et al. (2014); Nemeth and Sherlock (2018). The second approach, which is the
focus of our article, is to work with subsamples of m observations to estimate the full data
posterior (Maclaurin and Adams, 2014; Korattikara et al., 2014; Bardenet et al., 2014, 2017;
Maire et al., 2018; Bierkens et al., 2019; Quiroz et al., 2019, 2018b,a; Gunawan et al., 2018)
or its gradient (Welling and Teh, 2011; Chen et al., 2014; Ma et al., 2015; Shang et al., 2015;
Baker et al., 2017). The rest of this section reviews samplers which use gradient information
about the posterior density.

The primary problem confronted in ii) is how to generate proposals which maintain
a high acceptance probability and are also distant enough to avoid a highly persistent
Markov chain for the model parameter. A useful approach is to simulate a discretized
Langevin diffusion (Roberts and Rosenthal, 1998; Nemeth et al., 2016) or, more generally,
Hamilton’s equations (Duane et al., 1987) and use the simulated draw as a proposal in the
MH algorithm to correct for the bias introduced by the discretization (Neal, 2011). HMC
provides a solution to ii) (Neal, 2011; Betancourt, 2017), but when combined with i), the
algorithm becomes computationally intractable since simulating the Hamiltonian dynamics
requires a large number of costly gradient evaluations for every proposed parameter value.

2.2. Subsampling HMC algorithms and related approaches

A computationally attractive way to accelerate HMC is to use a fixed subsample of the data
to unbiasedly estimate the computationally costly gradients in each step of the discretized
Hamiltonian trajectory, and skip the MH correction to avoid evaluating the posterior on the
full data. Betancourt (2015) demonstrates that this simple strategy produces highly biased
trajectories, where the bias depends upon the quality of the gradient estimator. Moreover,
Betancourt (2015) shows that attempts to average out the bias by renewing the subsample
in each step of the trajectory still perform poorly; see also the naive stochastic gradient HMC
in Chen et al. (2014). Betancourt (2015) illustrates that adding a MH correction step based
on the full data to fully correct for the biased trajectories leads to a rapid deterioration of
the acceptance probability of HMC as d increases, and concludes that there is a fundamental
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incompatibility of HMC and data subsampling. As a remedy to the poor performance by
the naive stochastic gradient HMC, Chen et al. (2014) propose adding a friction term to
the dynamics to correct for the bias. For the rest of our article, we refer to the method
using the friction term in the dynamics as Stochastic Gradient Hamiltonian Monte Carlo
(SG-HMC). Chen et al. (2014) omit the MH correction step and the resulting bias in the
posterior depends on the quality of the discretization of the continuous dynamics. Hence,
in order to traverse the parameter space effectively, the integrator potentially needs a large
number of steps to compensate for the small step size used when discretizing the dynamics,
which may be very costly.

A different approach, but related in the sense that it uses an estimated gradient, is
Stochastic Gradient Langevin Dynamics (Welling and Teh, 2011, SGLD). SGLD combines
Stochastic Gradient Optimization (Robbins and Monro, 1951, SGO) and Langevin dynamics
(Roberts and Rosenthal, 1998), by allowing the initial iterates to resemble a SGO and
gradually traverse to Langevin Dynamics so as to not collapse to the posterior mode. SGLD
avoids a costly MH correction by arguing that it is not needed because the discretization
step size of the Langevin dynamics is decreased as a function of the iterates (Welling and
Teh, 2011). However, this decreases the rate of convergence of estimators based on its
output to R−1/3, where R is the number of samples from the posterior (Teh et al., 2016),
as opposed to R−1/2 for MCMC (Roberts and Rosenthal, 2004), and in particular HMC.
Practical implementations of SGLD use a sequence of step sizes that does not decrease to
zero in the limit, and Vollmer et al. (2016) show that the posterior approximated by SGLD
can then be quite far from the true posterior; see also Brosse et al. (2018). Bardenet et al.
(2017) also demonstrate that SGLD can be accurate for the posterior mode, but gives a
poor approximation of the full posterior distribution on a toy example with d = 2 and
highly redundant data, i.e. superfluous amounts of data in relation to the complexity of the
model. Recently, Dubey et al. (2016) improve SGLD using control variates, see also Baker
et al. (2017) who, in addition, use control variates in the SG-HMC algorithm proposed in
Chen et al. (2014). We implement both SGLD and SG-HMC with highly efficient control
variates when comparing them to our method. We also implement the methods without
control variates as it has been shown that sometimes variance reduction may be detrimental
(Chatterji et al., 2018).

All the problems discussed above with subsampling in HMC and related algorithms
stem from the fact that subsampling disconnects the Hamiltonian from its own dynamics.
This disconnect causes HMC proposals to lose their energy conserving property and their
attractive ability to sample efficiently in high dimensions. The next section presents a new
energy conserving approach to subsampling in HMC that keeps the connection intact by
estimating both the Hamiltonian and its corresponding dynamics from the same subsample.
By updating the subsample in a separate pseudo-marginal step we make sure that the HMC
algorithm still targets the posterior based on all data. Put differently, our new approach
creates a Hamiltonian system with corresponding dynamics for a given subset of data. This
allows for the scalability of HMC to be maintained for each subsample, as is demonstrated
in Section 6.7.
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3. Energy conserving subsampling in HMC

This section presents our new approach to subsampling in HMC and discusses why our
approach avoids the pitfalls described in Betancourt (2015). In order to not distract from
the main ideas, we first present our approach for a general unbiased and almost surely
positive likelihood estimator from data subsampling. Sections 4 and 5 then present practical
algorithms based on likelihood estimators proposed in Quiroz et al. (2019) and Quiroz et al.
(2018b), respectively.

3.1. Pseudo-marginal MCMC

Denote the model parameter vector by θ ∈ Θ ⊂ Rd, where Rd is the space of d-dimensional
real vectors, and let π(θ) be its posterior density given a data set y with n observations. We
first briefly describe pseudo-marginal MCMC (Andrieu and Roberts, 2009), which serves
as inspiration for one building block in our subsampling HMC approach. Pseudo-marginal
algorithms target the augmented posterior

πm(θ, u) ∝ L̂m(θ)pΘ(θ)pU (u), (1)

where L̂m(θ) is an unbiased and non-negative estimator of the likelihood L(θ) based on m
auxiliary variables, u, with density pU (u). In the particular application to subsampling,
u ∈ {1, . . . , n}m, contains the indices for the data observations used in estimating the
likelihood and m denotes the subsample size, see Section 4.1 for details. Note that L̂m and
any quantity included in its definition depend on n, but this is suppressed in the notation
for conciseness. We can now design an MCMC chain to sample θ and u jointly from (1)
and, since L̂m(θ) is unbiased, the θ iterates are samples from π(θ).

The choice of m is crucial for pseudo-marginal methods. An m that is too small re-
sults in a noisy likelihood estimator and the Markov chain may get stuck due to severely
overestimating the likelihood at the current draw, subsequently rejecting nearly all propos-
als. Conversely, taking m too large wastes useful computational resources. A natural aim
is to choose an m that minimizes the Computational Time (CT) needed to generate the
equivalent of a single independent draw from the posterior, with

CT := IF× Total number of density and gradient evaluations, (2)

where the Inefficiency Factor (IF) is proportional to the asymptotic variance when estimat-
ing a posterior functional based on the MCMC output, and is interpreted as the number of
samples needed to obtain the equivalent of a single independent sample. The second term is
proportional to the computing time for a single draw, a measure that is independent of the
implementation. Starting with Pitt et al. (2012), there is a large literature showing that CT
is minimized by an m that targets a variance of the log of the likelihood estimator around
1 (Doucet et al., 2015; Sherlock et al., 2015; Tran et al., 2017; Deligiannidis et al., 2018;
Schmon et al., 2018). Recent developments in pseudo-marginal methods induce dependence
in the auxiliary variables u over the MCMC iterations such that the likelihood estimates
over the iterations become dependent (Deligiannidis et al., 2018). This makes it possible
to tolerate a substantially larger variance of the likelihood estimator, and hence smaller
subsamples in our context. We follow Tran et al. (2017) and induce the dependence over
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the iterations by partioning the u’s into blocks and only update a subset of the blocks in
each iteration. The optimal subsample size m is then obtained by targeting a certain value
for the conditional variance of the likelihood estimator for a given induced correlation ρ
(Tran et al., 2017).

3.2. An energy conserving HMC-within-Gibbs framework

Following the standard HMC algorithm, our subsampling HMC algorithm introduces a
fictitious continuous momentum vector ~p ∈ P ⊂ Rd of the same dimension as the continuous
parameter vector θ. The extended target in (1) is then further augmented by ~p to

πm(θ, ~p, u) ∝ exp
(
−Ĥ(θ, ~p)

)
pU (u), Ĥ(θ, ~p) = Û(θ) +K(~p) (3)

with

Û(θ) = − log L̂m(θ)− log pΘ(θ) and K(~p) =
1

2
~p ′M−1~p, (4)

where M is a symmetric positive-definite matrix. In (3) we assume that the Hamiltonian
Ĥ is separable. We propose a HMC-within-Gibbs method to sample from (3), alternating
sampling from

1. u|θ, ~p, y - Pseudo-marginal MH update (Section 3.3)

2. θ, ~p |u, y - HMC update given u from Step 1 (Section 3.4).

This scheme has (3) as its invariant distribution. Integrating out the momentum variables
yields πm(θ, u) in (1) and, further integrating out u, yields π(θ) if the likelihood estimator
L̂m(θ) is unbiased. Lindsten and Doucet (2016) propose the related pseudo-marginal HMC
sampler, in which a momentum vector is also introduced for the auxiliary variables u. That
scheme, however, is not applicable here as the pseudo-marginal variables we employ are
discrete and not amenable to Hamiltonian dynamics themselves.

The next subsections describe in detail the two updates of our algorithm and explain
why our approach does not compromise the Hamiltonian flow.

3.3. Updating the data subset

Given θ(j−1), ~p (j−1) and u(j−1), at iteration j we propose u′ ∼ pU (u) and set u(j) = u′ with
probability

αu = min

{
1,

L̂m(θ(j−1);u′)

L̂m(θ(j−1);u(j−1))

}
, (5)

where the notation emphasizes that the estimators are based on different data subsets. If
the proposal is rejected we set u(j) = u(j−1).

Since u′ is proposed independently of u(j−1), the log of the ratio in (5) can be highly vari-
able, possibly getting the sampler stuck when the numerator is significantly overestimated.
To prevent this, we implement the block update of u for data subsampling in Quiroz et al.
(2019, 2018b) with G blocks, which gives a correlation ρ of roughly 1 − 1/G between the
log L̂m at the current and proposed draws (Tran et al., 2017; Quiroz et al., 2018b). Setting
G = 100, gives ρ ≈ 0.99, which helps the chain to mix well.
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3.4. Updating the parameters

Given u(j), we use Hamilton’s equations

dθl
dt

=
∂Ĥ(θ, ~p)

∂~pl
,

d~pl
dt

= −∂Ĥ(θ, ~p)

∂θl
, l = 1, . . . , d, (6)

to propose θ and ~p. Note that this trajectory follows the Hamiltonian flow for Ĥ viewed as
a function of θ and ~p for a given data subset selected by u(j), since u(j) is fixed through time
t. We obtain the proposal as in standard HMC, using a leapfrog integrator with integration
time εL, but with Ĥ in place of H. Specifically, at iteration j, given the data subset u(j),
if the leapfrog integrator starts at (θ(j−1), ~p0) with ~p0 ∼ K(~p) and ends at (θL,−~pL), we let
(θ(j), ~p (j)) = (θL,−~pL) with probability

αθ,~p = min
{

1, exp
(
−Ĥ(θL,−~pL) + Ĥ(θ(j−1), ~p0)

)}
, (7)

with Ĥ in (3). If (θL,−~pL) is rejected, we set (θ(j), ~p (j)) = (θ(j−1), ~p0). In practice, it is
unnecessary to store the sampled momentum.

Using the terminology in Betancourt (2015), we can think of the dynamics in (6) as
generating a trajectory following a modified level set (Ĥ), as opposed to the exact level set
obtained using dynamics that do not subsample the data (H). A key property of our frame-
work is that the same estimate Ĥ is used in generating the discretized leapfrog trajectory
as in the acceptance probability in (7). The connection between the modified level set Ĥ
and its dynamics is kept intact, and thus the original energy conserving property of HMC
remains, even for distant proposals. We therefore name our algorithm Hamiltonian Monte
Carlo with Energy Conserving Subsampling (HMC-ECS). Note that energy conservation is
only possible because of the pseudo-marginal mechanism where we update the subsample in
each Gibbs iteration, thereby guaranteeing that our samples are from the target posterior
based on all the data.

Betancourt (2015) illustrates the problems with using Ĥ for the dynamics, but H in the
acceptance probability. Given a sensible step length ε, discretizing the Hamiltonian with
a symplectic integrator introduces an error of O(ε2) (Neal, 2011) relative to the modified
level set and hence the discretization error is very small. Betancourt (2015) notes that the
modified level set and the discretized trajectory based on it might be very far from the
exact level set, resulting in low acceptance probabilities no matter how small ε is. SG-HMC
(Chen et al., 2014) deliberately circumvents the disconnect problem by generating proposals
from the trajectories based on a modified Hamiltonian, but skip the rejection step. The
disadvantage of SG-HMC is therefore that the bias in the targeted posterior now grows
with the step length ε. Keeping ε small makes SG-HMC very computationally demanding
since a very large number of leapfrog steps are needed for distant proposals. In contrast,
the dynamics of HMC-ECS target the subsampled Hamiltonian, and so maintain a high
acceptance probability even for a large ε. The bias introduced by the subsampling is then
confined to the pseudo-marginal step, which is chosen so that the bias is very small as our
theoretical analysis below shows.

Algorithm 1 shows one iteration of our proposed HMC-ECS algorithm based on the
leapfrog integrator using the estimated likelihood L̂m(θ). The next two sections consider
previously proposed likelihood estimators and show how we use them in HMC-ECS.
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Algorithm 1: One iteration of HMC-ECS.

Input: Current position u(j−1), θ(j−1), stepsize ε and integrating time εL

Propose u′ ∼ pU (u)

Set u(j) ← u′ with probability

αu = min

{
1,

L̂m(θ(j−1);u′)

L̂m(θ(j−1);u(j−1))

}
,

else u(j) ← u(j−1)

Given u(j) :

~p0 ∼ K(~p); θ0 ← θ(j−1); Ĥ0 ← Ĥ(θ(j−1), ~p0)

~p0 ← ~p0 − ε
2∇θÛ(θ0)

for l = 1 to L do

θl ← θl−1 + εM−1~pl−1

if i < L then ~pl ← ~pl−1 − ε∇θÛ(θl);

else ~pL ← ~pL−1 − ε
2∇θÛ(θl);

end
~pL ← −~pL
ĤL ← Ĥ(θL, ~pL)

Set (θ(j), ~p
(j)

)← (θL, ~pL) with probability

αθ,~p = min
{

1, exp
(
−Ĥ(θL,−~pL) + Ĥ(θ(j−1), ~p0)

)}
,

else (θ(j), ~p
(j)

)← (θ(j−1), ~p0)

Output: u(j), θ(j)
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4. Perturbed HMC-ECS

4.1. Efficient estimators of the log-likelihood

Quiroz et al. (2019) propose sampling m observations with replacement and estimate an
additive log-likelihood

`(θ) = logL(θ) =
n∑
k=1

`k(θ), `k(θ) = log p(yk|θ)

by the unbiased difference estimator

̂̀
m(θ) =

n∑
k=1

qk(θ) + d̂m(θ), (8)

where

d̂m(θ) =
1

m

m∑
i=1

`ui(θ)− qui(θ)
ωui(θ)

, ui ∈ {1, . . . , n} iid with Pr(ui = k) = ωk, (9)

and qk(θ) are control variates. We continue to suppress dependence on n in the notation for
many quantities introduced in this section. If the qk(θ) approximate the `k(θ) reasonably
well, then we obtain an efficient estimator by taking ωk = 1/n for all k. Quiroz et al. (2019)

estimate σ2(θ) = V
[̂̀
m(θ)

]
by

σ̂2
m(θ) =

n2

m2

m∑
i=1

(
dui(θ)− du(θ)

)2
, with dui(θ) = `ui(θ)− qui(θ) (10)

where du denotes the mean of the dui in the sample u = (u1, . . . , um).
To obtain efficient control variates, Quiroz et al. (2019) follow Bardenet et al. (2017)

and let qk(θ) be a second order Taylor approximation around a fixed central value θ?,

qk(θ) = `k(θ
?) +∇θ`k(θ?)>(θ − θ?) +

1

2
(θ − θ?)>Hk(θ

?)(θ − θ?), Hk(θ
?) := ∇θ∇>θ `k(θ?).

(11)
After processing the full data once before the MCMC to compute simple summary statistics,∑n

k=1 qk(θ) can be computed in O(1) time (Bardenet et al., 2017).

4.2. Efficient estimators of the likelihood and its gradient

Quiroz et al. (2019) use the likelihood estimator

L̂m(θ) = exp

(̂̀
m(θ)− 1

2
σ̂2
m(θ)

)
(12)

first proposed by Ceperley and Dewing (1999) and Nicholls et al. (2012). The motivation for
this estimator is that it is unbiased for the likelihood if i) ̂̀m(θ) ∼ N (`(θ), σ2(θ)) (justified
by the central limit theorem) and ii) σ̂2

m(θ) in (12) is replaced by the population quantity

10
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σ2(θ). However, σ2(θ) is not available in practice and the estimator in (12) is biased. This
bias makes the MCMC algorithm in Quiroz et al. (2019) target a slightly perturbed posterior
πm(θ). Assuming that the expansion point θ? in the control variates is the posterior mode
based on all the data, Quiroz et al. (2019) prove that∫

Θ
|πm(θ)− π(θ)|dθ = O

(
1

nm2

)
and |Eπm [h(θ)]− Eπ[h(θ)]| = O

(
1

nm2

)
, (13)

where πm(θ) = EpU

[
L̂m(θ)

]
is the perturbed marginal for θ when using the likelihood

estimator in (12). These results carry over to our Hamiltonian approach straightforwardly as
we obtain the augmented target in Quiroz et al. (2019) after integrating out the momentum
in (3) and using (12). Hence, the θ iterates from HMC-ECS converge to a perturbed
posterior which may get arbitrarily close to the true posterior by increasing the subsample
size m, or by increasing n and letting m = O(nν) for some ν > 0. For example, if ν = 1/2,
then the above orders are O(1/n2) with respect to n. However, this extremely rapidly
vanishing perturbation is usually not practically attainable since the result in (13) assumes
that θ? is the posterior mode based on all data. Corollary 1 in Quiroz et al. (2019) proves
rates under the more realistic assumption that θ? is the posterior mode based on a fixed
subset of ñ � n observations. If, for example, ñ = O(

√
n) then the rates in (13) become

O(1/
√
n). Importantly, the optimal subsample size in this case becomes m = O(

√
n), which

shows that HMC-ECS scales well with the size of the data. See Quiroz et al. (2019) for
suggestions on how to get closer to the rates in (13) in a computationally tractable way.

In addition to estimating the likelihood and the log-likelihood, our Hamiltonian approach
also needs to estimate a gradient. It is straightforward to modify (8) to instead provide an
unbiased estimator of the gradient of the log-likelihood. With ωk = 1/n and ∇θqk(θ) =
∇θ`k(θ?) +Hk(θ

?)(θ − θ?),

∇θ ̂̀m(θ) = A(θ?) +B(θ?)(θ − θ?) +
n

m

m∑
i=1

(∇θ`ui(θ)−∇θqui(θ)) , (14)

where

A(θ?) :=

n∑
k=1

∇θ`k(θ?) ∈ Rd and B(θ?) :=

n∑
k=1

Hk(θ
?) ∈ Rd×d

are obtained at the cost of computing over the full data set once before the MCMC since
θ? is fixed. It is also straightforward to compute ∇θσ̂2

m(θ) using (10) with this choice of
control variate.

It is important to note that the perturbation in the targeted posterior in perturbed
HMC-ECS is independent of the step length in the leapfrog iterations, ε. Hence, we can
generate distant proposals from a small number of leapfrog steps without increasing the
posterior bias.

5. Signed HMC-ECS

We now present an alternative HMC-ECS algorithm based on the Block-Poisson estimator in
Quiroz et al. (2018b). This algorithm gives simulation consistent estimates of expectations
with respect to the true posterior density without any perturbation.
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5.1. The block-Poisson estimator

Quiroz et al. (2018b) propose the block-Poisson estimator, formed by sampling Xl ∼ Pois(1)

for l = 1, . . . λ, and computing d̂
(h,l)
m , h = 1, . . . ,Xl, using (9) based on a mini-batch sample

size m, and then estimate the likelihood by

L̂m(θ) = exp

(
n∑
k=1

qk(θ)

)
λ∏
l=1

ξl, ξl = exp

(
a+ λ

λ

) Xl∏
h=1

(
d̂

(h,l)
m (θ)− a

λ

)
, (15)

where λ is a positive integer, a is a real number and ξl = exp ((a+ λ)/λ) if Xl = 0. Pois(1)
denotes the Poisson distribution with mean 1. Note that the total subsample size mλXl is
random with mean mλ in a given MCMC iteration.

Since L̂m(θ) is unbiased for L(θ), defining the augmented density as in (3) gives∫
U

∫
P
πm(θ, ~p, u)d~pdu = π(θ).

Hence, if (3) is a proper density using (15), we obtain samples from the desired marginal for

θ. However, (3) is a proper density only if τ := Pr
(
L̂m(θ) ≥ 0

)
= 1, which requires that a

in (15) is a lower bound of d̂
(h,l)
m (Jacob and Thiery, 2015) which results in a prohibitively

costly estimator (Quiroz et al., 2018b). Instead, we follow Quiroz et al. (2018b) who use
the approach of Lyne et al. (2015) for exact inference on an expectation of an arbitrary
function ψ(θ) with respect to π(θ). For our Hamiltonian approach, this entails defining a
proper augmented density,

π̃m(θ, ~p, u) ∝
∣∣∣L̂m(θ)

∣∣∣ pΘ(θ)pU (u) exp (−K(~p)) , (16)

and writing

Eπ[ψ] =

∫
Θ ψ(θ)L(θ)pΘ(θ)dθ∫

Θ L(θ)pΘ(θ)dθ
=

∫
U
∫
P
∫

Θ ψ(θ)S(θ, u)π̃(θ, ~p, u)dθd~pdu∫
U
∫
P
∫

Θ S(θ, u)π̃(θ, ~p, u)dθd~pdu
=

Eπ̃[ψS]

Eπ̃[S]
, (17)

where S(θ, u) = sign
(
L̂m(θ)

)
and sign(·) = 1 if L̂m(θ) ≥ 0 and sign(·) = −1 otherwise.

Equation (17) suggests running the HMC-ECS sampler outlined in Section 3.2 on the target
(16), and then estimating (17) by

ÎR =

∑R
j=1 ψ(θ(j))s(j)∑R

j=1 s
(j)

,

where s(j) is the sign of the estimate at the jth iteration. We follow Quiroz et al. (2018b)
and use the term signed PM for any pseudo-marginal algorithm that uses the technique
in Lyne et al. (2015) where a pseudo-marginal sampler is run on the absolute value of the
estimated posterior and subsequently sign-corrected by importance sampling. Similarly, we
call the algorithm described in this section signed HMC-ECS.

The block-Poisson estimator in (15) has more tuning parameters than the estimator in
(12). Quiroz et al. (2018b) extend the optimal tuning approach in Pitt et al. (2012) to the

12
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signed pseudo-marginal algorithm with the block-Poisson estimator. The Computational
Time (CT) measure in (2) now becomes

CT :=
IF

(2τ − 1)2
× Total number of density and gradient evaluations, (18)

where τ := Pr
(
L̂m(θ) ≥ 0

)
. Quiroz et al. (2018b) derive analytical expressions for both

V[log |L̂m|] and Pr(L̂m ≥ 0) needed to optimize CT. The fact that Quiroz et al. (2018b) take
Pr(L̂m ≥ 0) into account when tuning the algorithm avoids the instability from changing
signs in signed PMMH. Quiroz et al. (2018b) also consider optimal tuning when correlating
the estimators of the log of the likelihood at the current and proposed values of the MCMC.
This correlation, ρ, is achieved by only updating u for a subset of the products in (15) in
each iteration, keeping the others fixed. Quiroz et al. (2018b) show that if u is updated in
κ products, then ρ ≈ 1− κ/λ.

6. Applications

6.1. Model

We consider the logistic regression

p(yk|xk, θ) =

(
1

1 + exp(−x>k θ)

)yk ( 1

1 + exp(x>k θ)

)1−yk
, with pΘ(θ) = N (θ|0, λ−2

θ I),

where λθ is a global shrinkage factor which we treat as constant for simplicity. We estimate
the model on two large data sets described below.

6.2. Competing algorithms and performance measure

We compare the performance of both the perturbed and the signed HMC-ECS algorithms
against SGLD and SG-HMC. All subsampling methods use the same control variates based
on a second order Taylor expansion for comparability; see Section 6.8 for experiments with
control variates based on lower order Taylor expansions. The expansion point θ? is unique
to each experiment and is discussed later.

Following Vollmer et al. (2016); Baker et al. (2017), we implement SGLD using a fixed
small step size ε instead of decreasing it (which gives worse results). This gives the following
dynamics after discretization

θi = θi−1 −
ε

2
∇θÛ(θi) + ζi, i = 1, . . . , R,

where Û(θ) = −∇θ ̂̀m(θ)− log pΘ(θ) with ∇θ ̂̀m(θ) in (14) and ζi ∼ N (0, εI).

Following Chen et al. (2014), we implement SG-HMC using a discretized dynamics with
momentum ~p with covariance matrix M of the form

θl = θl−1 + εM−1~pl−1

~pl = ~pl−1 − ε∇θÛ(θl)− εCM−1~pl−1 + ζl, l = 1, . . . , L,

13
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where Û(θ) = −∇θ ̂̀m(θ) − log pΘ(θ) with ∇θ ̂̀m(θ) in (14), ζl ∼ N (0, 2(C − B̂)ε). We set
B̂ = 0 (Chen et al., 2014) and C = I (Ma et al., 2015).

The algorithms are compared with respect to CT as defined in (2) when the likelihood
estimator is non-negative, where IF is computed using the CODA package in R (Plummer
et al., 2006). For signed HMC-ECS, the CT is given by (18) and we estimate τ by the
fraction of positive signs. Note that CT does not take into account that some of the
algorithms can give a substantially biased estimate of the posterior, and we assess the bias
separately.

The Relative Computational Time (RCT) between algorithm A1 and A2 is defined as

RCTA1,A2 =
CTA2

CTA1

. (19)

6.3. Tuning and settings of our algorithms

We first outline how our algorithms are tuned. These settings are used for all the experi-
ments unless stated otherwise.

The choice of the positive-definite mass matrix M in (4) is crucial for the performance
of any HMC type algorithm: an M that closely resembles the covariance of the posterior
facilitates sampling, especially when θ is highly correlated in the posterior (Neal, 2011;
Betancourt, 2017). In logistic regression, we set M = −Σ−1(θ?), where Σ(θ?) is the Hessian
of the log posterior evaluated at some θ?. We initialize M = I and, during a burn-in period
of 1,000 iterations, update M every 200 iterations based on the new θ?. We use the same
tuning of M in HMC-ECS when updating θ and ~p conditional on the data subsample u.
However, since it is impractical to compute the Hessian of the conditional posterior at each
iteration, we use the full data set when evaluating M (and include the cost in the CT),
which performs well in practice although we stress that it is not optimal.

To select the step size ε in the leapfrog integrator, we use the dual averaging approach of
Hoffman and Gelman (2014), which requires a predetermined trajectory length εL. We find
that εL = 1.2 is sensible for our examples. The dual averaging algorithm uses this trajectory
length and adaptively changes ε during the burn-in period in order to achieve a desired level
of acceptance rate δ. We follow Hoffman and Gelman (2014) and set δ = 0.8. The tuning
for the logistic regression is relatively simple since Σ can be computed analytically, which
is useful for both setting M and ε. More complex models are harder to tune, but this is
unlikely to influence the comparisons between HMC-ECS and the other algorithms here,
which is our primary concern. We stress that these tuning issues are inherent to HMC itself
and not due to our subsampling approach. This strategy gives ε = 0.2 and L = 6 for our
algorithm which is the default in our experiments unless otherwise stated.

In HMC-ECS we generate subsamples with a correlation of ρ = 0.99. The subsample
size m in the perturbed HMC-ECS approach is set according to the guidelines in Quiroz
et al. (2019), see Section 4. In the signed HMC-ECS approach, we follow Quiroz et al.
(2018b) who set the mini-batch size m = 30 and set λ optimally to minimize CT according
to the formulas in Quiroz et al. (2018b). For our examples, λ = 100 and λ = 200, for the
HIGGS and bankruptcy data sets, respectively.
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6.4. Tuning and settings of the competing algorithms

We run full data HMC using the tuning strategy for ε and M outlined in Section 6.3 and
use M = Σ−1(θ?) with θ? as the posterior mean in SG-HMC. This favours SG-HMC over
HMC-ECS, which needs to learn θ? as the algorithm progresses.

We are unaware of any tuning strategies for setting ε in SGLD and SG-HMC and
therefore use trial and error. We find that the value of ε depends on which data set or
algorithm was considered; see Sections 6.5 and 6.6. For SG-HMC we also need to set
the number of steps L and we explore two choices. First, notice that HMC-ECS uses the
trajectory length εL = 1.2. We thus set L = 1.2/ε so that SG-HMC can traverse the space
as swiftly as HMC-ECS. We also compare with SG-HMC using a value of L which gives
the same number of likelihood and gradient evaluations as HMC-ECS. For SGLD, we run
the algorithm for R iterations that correspond to the number of gradient evaluations used
post burn-in in HMC-ECS. For example, R = 12,000 iterations if L = 6 and HMC-ECS
performs 2, 000 iterations.

Finally, we use the same m as HMC-ECS for SGLD and SG-HMC, as it is outside the
scope of this paper to derive optimality results for those algorithms.

6.5. Results for the HIGGS data

Baldi et al. (2014) use the HIGGS data set, which contains 11 million observations, with a
binary response detected particle predicted by 29 covariates. We use 10.5 millions observa-
tions for training and 500,000 for testing.

Unless stated otherwise, we start all algorithms at a θ? obtained as the posterior mean
from running HMC on 1% of a randomly chosen subset of the data. This θ? is also used
to initialize the control variates. We first run the algorithms using a full mass matrix M ,
chosen as explained above. The subsample size was set to m = 1, 300 for all methods. For
SG-HMC and SGLD, ε = 0.06 and ε = 0.000001 are used, respectively. The resulting L is
20 for SG-HMC.

Table 1 displays the CT for each algorithm compared to the perturbed HMC-ECS algo-
rithm. The table shows the minimum, median and maximum RCT across all parameters.
The best algorithm is perturbed HMC-ECS closely followed by signed HMC-ECS, both have
RCTs that are roughly three times better than the best competitor SG-HMC. Although
our metrics do not allow for direct comparison between biased (our approaches, SG-HMC
and SGLD) methods and unbiased methods (HMC), we note that implementing HMC using
the full data in this example is, for the perturbed and exact approaches respectively, 642.8
and 554.1 times more expensive in terms of posterior density and gradient evaluations.

RCT does not take the bias into account, however. Figure 1 displays kernel density
estimates of the marginal posterior of four randomly selected parameters, and Figure 2
plots the posterior mean and variance for all the parameters from each algorithm against
the true posterior mean and variance obtained from HMC based on the full data set. Figures
1 and 2 clearly show that both HMC-ECS algorithms and SG-HMC do a very good job in
approximating the posterior, while SGLD gives biased estimates. We have also added the
results for SG-HMC and SGLD without control variates as variance reduction is not always
optimal for these algorithms (Chatterji et al., 2018). In this example, control variates
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Figure 1: HIGGS data. The figure shows kernel density estimates of the posterior from the
compared subsampling algorithms for four randomly selected parameters (green
lines) and the corresponding posterior from HMC on the full data set (red lines).
All algorithms use the negative inverse Hessian from all the data as mass ma-
trix. HMC-ECSP and HMC-ECSS denote, respectively, the perturbed and signed
HMC-ECSS. For SGLD and SG-HMC, subscript 1 refers to the second order
control variate and subscript 2 refers to the version without control variates.
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Figure 2: HIGGS data. The figure plots the estimated posterior mean and variance for all
parameters from the subsampling algorithm against their true values obtained by
HMC on the full data set. All algorithms use the negative inverse Hessian from all
the data as mass matrix. HMC-ECSP and HMC-ECSS denote, respectively, the
perturbed and signed HMC-ECSS. For SGLD and SG-HMC, subscript 1 refers
to the second order control variate and subscript 2 refers to the version without
control variates.
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RCT Signed HMC-ECS SG-HMC SGLD

min 0.8 2.43 3.58

median 1.15 2.97 12.46

max 1.95 4.08 326.80

Table 1: HIGGS data. Relative computational time compared to perturbed HMC-ECS.
The computational cost is (number of likelihood/gradient evaluations)×IF. For
HMC-ECS and signed HMC-ECS the cost is computed for the entire run including
training and warmup period. The RCT for the stochastic gradient methods are
based on post-burnin iterations only.

Perturbed HMC-ECS Signed HMC-ECS

αθ,~p 0.980 0.979

αu 1 0.993

L 6 6

IF 2.185 2.192

ESS 927 922

τ̂ 1

100(m/n) 0.012 0.029

Table 2: HIGGS data. Summary of settings and efficiencies of HMC-ECS. The table shows
the average acceptance probabilities (as a benchmark HMC has 0.980) in the post
burn-in period for the two Gibbs steps, the number of steps L in the integrator
used to obtain a predetermined trajectory length εL = 1.2, the average Ineffi-
ciency Factor (IF) (as a benchmark HMC has 2.084), the Effective Sample Size
ESS = R/IF, the estimated probability of a positive likelihood estimator τ and
the percentage of data used by each of the algorithms.

are indeed helpful, except for SGLD which does not provide an accurate approximation
regardless of which control variate is used.

We conclude this example by demonstrating that HMC-ECS can safely be used for
obtaining the predictive distribution. Figure 3 shows that the Receiver Operating Char-
acteristic (ROC) curve for the 500, 000 test observations obtained with either of the two
HMC-ECS algorithms are indistinguishable from the ROC curve obtained with HMC on
the full data set.
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Figure 3: Prediction performance for the HIGGS data. The figure shows the Receiver
Operating Characteristic (ROC) curves for the 500, 000 test observations with
HMC and HMC-ECSP (left panel, perturbed HMC-ECS) and HMC-ECSS (right
panel, signed HMC-ECS).

6.6. Results for the Bankruptcy data

This data set contains annual observations on the bankruptcy status (binary y) of Swedish
firms in the time period 1991-2008. We follow Giordani et al. (2014) and model the log
odds of the firm failure probability as a non-linear function of six firm-specific financial
ratios and two macroeconomic variables using an additive spline model. Giordani et al.
(2014) estimate the model using frequentist methods. We use a Bayesian approach with an
81 dimensional posterior distribution (an intercept and 10 basis spline functions for each
covariate) given the n = 4,748,089 firm-year observations.

Experimentation shows that ε = 0.02 is a sensible choice for SG-HMC. Using the same
trajectory length as in HMC-ECS gives L = 60 for SG-HMC. We also compare with SG-
HMC using L = 7 for which SG-HMC has the same number of gradient evaluations as
HMC-ECS has gradient and likelihood evaluations. For SGLD, ε = 0.00002 is a sensible
choice.

The subsample size for perturbed HMC-ECS was initially set to the optimal m = 62,000
following the guidelines in Quiroz et al. (2019) based on the initial value for θ?. We then
ran perturbed HMC-ECS for 100 iterations to obtain a better θ? and recalibrated to the
now optimal m = 1,000 for this improved θ?. This improved θ? is also used to tune λ in
signed HMC-ECS, as explained in Section 5. All iterations used for tuning are included in
the computational cost.

Figures 4 and 5 clearly show that the two HMC-ECS algorithms give better posterior
approximations. The figures also show that SG-HMC with L = 60 leapfrog steps performs
reasonably well in terms of accuracy and much better than SGLD, although some expecta-
tion estimates are biased. SG-HMC with L = 7 has substantially higher inefficiency factors
and these figures show the degraded accuracy of the algorithm.
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RCT HMC-ECSS SG-HMC1 SG-HMC2 SGLD

min 1.2 6.8 48.6 53.9

median 1.6 9.5 100.2 230.1

max 2.6 682.3 246.7 2784.2

Table 3: Bankruptcy data. Relative computational time compared to perturbed HMC-
ECS. For the two HMC-ECS algorithms, the cost is computed for the entire run
including training and warmup period. The RCT with respect to stochastic gra-
dient methods are based on post-burnin iteration only. HMC-ECSS is the signed
HMC-ECS. SG-HMC1 and SG-HMC2 denote, respectively, the SG-HMC with
L = 60 and L = 7 leapfrog steps.

Perturbed HMC-ECS Signed HMC-ECS

αθ,~p 0.967 0.962

αu 0.994 0.964

L 6 6

IF 2.202 2.31

ESS 912 871

τ̂ 1

100(m/n) 0.021 0.126

Table 4: Bankruptcy data. Summary of settings and efficiencies of HMC and HMC-ECS.
The table shows the average acceptance probabilities (as a benchmark HMC has
0.966) in the post burn-in period for the two Gibbs steps, the number of steps
L in the integrator used to obtain a predetermined trajectory length εL = 1.2,
the average Ineffiency Factor (IF) (as a benchmark HMC has 2.195), the Effec-
tive Sample Size ESS = R/IF, the estimated probability of a positive likelihood
estimator τ and the percentage of data used by each of the algorithms.
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Figure 4: Bankruptcy data. The figure shows kernel density estimates of the posterior
from the compared subsampling algorithms for four randomly selected parameters
(green lines) and the corresponding posterior from HMC on the full data set
(red lines). HMC-ECSP and HMC-ECSS denote, respectively, the perturbed and
signed HMC-ECSS. SG-HMC1 and SG-HMC2 denote, respectively, the SG-HMC
with L = 60 and L = 7 leapfrog steps.
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Figure 5: Bankruptcy data. The figure plots the estimated posterior mean and variance for
all parameters from the subsampling algorithm against their true values obtained
by HMC on the full data set. HMC-ECSP and HMC-ECSS denote, respectively,
the perturbed and signed HMC-ECSS. SG-HMC1 and SG-HMC2 denote, respec-
tively, the SG-HMC with L = 60 and L = 7 leapfrog steps.
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Figure 6: Realized and predicted bankruptcy probabilities as a function of the covariate
Earnings ratio from the perturbed HMC-ECS (left panel) and HMC (right panel).
Realized mean bankruptcy probabilities (blue dots) are computed by dividing
the data into 100 equally sized groups based on the earnings ratio variable and
estimating the bankruptcy probability by the fraction of bankrupt firms in each
group. The solid line is the predictive mean and the shaded regions are point
wise 90% equal tail posterior credible intervals.

Figure 6 shows the probability of bankruptcy for the fitted model and the empirical
bankruptcy frequencies as a function of one of the covariates, Earnings ratio, with details in
the caption. The posterior mean and posterior predictive intervals obtained by HMC and
the perturbed HMC-ECS are indistinguishable.

Finally, we note that implementing HMC using the full data in this example is, for the
perturbed and exact approach respectively, 478.7 and 311.5 times more expensive in terms
of posterior density and gradient evaluations.

6.7. Scalability of HMC-ECS

Beskos et al. (2013) show that, in an optimally tuned HMC algorithm, the step size ε needs
to be scaled as O(d−1/4) to keep the acceptance probability constant as the dimension d
increases. This is more favorable than the rate O(d−1/3) of Langevin Monte Carlo (Roberts
and Rosenthal, 1998). We have argued that since our algorithm is performing a HMC step
using a Hamiltonian based on a subset of the data it should scale with dimension similarly
to HMC.

We set out to test this hypothesis empirically as follows. First, we consider a sequence
of d, obtained as d = 2h, h = 1, . . . , 8 and obtain eight simulated data sets with n = 10, 000
each. For each d, we run the dual averaging algorithm as described in Section 6.3 to
find the optimal εand check if ε = O(d−1/4) is reasonable. In agreement with Beskos
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Figure 7: Empirical illustration of the scaling of HMC-ECS, see Section 6.7 for the experi-
mental settings. The left figure shows the optimal step size as a function of the
dimension. HMC (O(d−1/4)) and Langevin (O(d−1/3)) are plotted for reference.
The right figure shows the acceptance rate targeted for optimality. The IF of
our methods are close to 1, regardless of if the 1st or 2nd control variate is used.
The variance of the log-likelihood estimator for the second order control variate
is nearly zero (quadratic target) and for the first order control variate is kept
around 1 (Pitt et al., 2012) by selecting m appropriately.

et al. (2013) we set M optimally from the curvature of the conditional target posterior.
This is easily achieved by considering a Gaussian regression model where we set the prior
pΘ(θ) = N (0, 52Id), such that the optimal M for the conditional target is, assuming the
bias-correction term to be negligible,

M =
n

m

m∑
i=1

X>uiXui +
1

52
,

where Xui denotes the uith row of the design matrix. We note that, since the Gaussian
model is quadratic in its log-density, the second order control variate will yield a perfect
fit, i.e. the variance of l̂m(θ) is zero. Thus, we also experiment with a first order control
variate. We scale m to maintain the variance around 1 (Pitt et al., 2012). Figure 7 shows
the results and we deduce that the algorithm does indeed maintain scalability.
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Figure 8: Variance of l̂m. The figure shows the estimated variance as a function of the
iterations for three different orders in the Taylor expansion for the control variates.
The dashed vertical lines correspond to the end of the training period used the
solid vertical line corresponds to the end of the burn-in period.

6.8. Limitations of subsampling HMC

Variance reduction by control variates is crucial in any subsampling MCMC algorithm.
This subsection explores the role of control variates by successively degrading the quality
of the control variates by lowering the order of their Taylor approximation. Figure 8 shows
the estimated variance of l̂m(θ) as a function of the iterates when the control variates are
based on a Taylor series expansions of different orders. We note that the algorithm survives
a substantial variance during the training iterations when applying the first order control
variates, and this variance eventually settles down once a sensible θ? is found. Figure 9
shows that the expectation and variance estimates are very accurate for the first order
control variates. Figures 8 and 9 also shows that control variates of zero order are too crude
for HMC-ECS in this example. While it seems that the competing methods are more robust
to the quality of the control variates, we again stress that all competitors are placed in the
unrealistically favorable scenario of having M equal to the inverse Hessian evaluated at the
posterior mean.

The control variates (Bardenet et al., 2017) used in this paper are quadratic in θ centered
around θ?. This means that they are expected to work well for any model which has a log-
density that is reasonably quadratic in θ in a neighborhood of θ?. Examples are Poisson
regression (Quiroz et al., 2018c) and Student-t regression (Quiroz et al., 2019). While the
locally approximately quadratic feature is found in many models, there are clearly models
in which this local approximation can be poor, for example deep neural nets. To find
efficient control variates, which are also computationally feasible, in a class of complex
models remains an open challenging problem. We stress however that this is a problem for
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Figure 9: Results for the zeroth and first order control variate. The figure shows the es-
timates of posterior expectations and posterior variances using the zeroth order
control variate (upper panel) and first order control variate (lower panel). All
comparisons are versus HMC which represents the ground truth.

all existing subsampling MCMC approaches, and any progress on improved control variates
can be straightforwardly incorporated into HMC-ECS.

7. Conclusions and Future Research

We propose a method to speed up Bayesian inference while maintaining high sampling
efficiency in moderately high-dimensional parameter spaces by combining data subsampling
and Hamiltonian Monte Carlo such that the energy is conserved. We show how to implement
the method using two estimators of the likelihood. The first implementation, which we
refer to as perturbed HMC-ECS, produces iterates from a perturbed density that will get
arbitrarily close to the true density, as measured by the total variation metric, at the rate
O(n−1m−2). The second implementation, which we refer to as signed HMC-ECS, gives
iterates which are then used in an importance sampling estimator to obtain a simulation
consistent estimator of the expectation of any posterior functional.
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We apply the methods to simulate from the posterior distribution in two data sets, with
d = 29 and d = 81 dimensions, respectively. Our two HMC-ECS algorithms perform highly
accurate inference, comparable to HMC without subsampling, but are computationally
much faster. This is a major step forward since Bardenet et al. (2017) and Quiroz et al.
(2019) demonstrate that most subsampling approaches cannot even beat standard MH
without subsampling on toy examples with d = 2 and highly redundant data. We also show
that HMC-ECS is very competitive against SGLD and SG-HMC, both in terms of sampling
efficiency and accuracy.

Control variates to reduce the variance of subsampling estimators are well known to
be crucial for any subsampling MCMC algorithm. We use very efficient control variates
based on a second order Taylor expansion in our applications, but explore the effects of less
accurate control variates. We find that HMC-ECS still performs well with a cruder first
order approximation, but that a Taylor approximation of order zero is too crude and gives
a too large variance for HMC-ECS.

Similarly to HMC, HMC-ECS is difficult to tune. Self-tuning algorithms such as the no-
U-Turn sampler (Hoffman and Gelman, 2014) have been proposed for HMC and it would be
interesting to see if our ideas can be applied there. It would also be interesting to consider
Riemann Manifold HMC (Girolami and Calderhead, 2011), which has been demonstrated
to be very effective when a high-dimensional posterior exhibits strong correlations. Scaling
up such an algorithm opens up the possibility of simulating the posterior density of highly
complex models with huge data sets. Finally, until recently, one of the limitations of HMC
was its inability to cope with discrete parameters. Nishimura et al. (2017) overcomes this
limitation and extending HMC-ECS in this direction would be an interesting undertaking.
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