
Journal of Machine Learning Research 20 (2019) 1-38 Submitted 3/17; Revised 1/19; Published 1/19

The Relationship Between Agnostic Selective Classification,
Active Learning and the Disagreement Coefficient

Roei Gelbhart roeige@cs.technion.ac.il
Department of Computer Science
Technion — Israel Institute of Technology

Ran El-Yaniv rani@cs.technion.ac.il

Department of Computer Science

Technion — Israel Institute of Technology

Editor: Gabor Lugosi

Abstract

A selective classifier (f, g) comprises a classification function f and a binary selection func-
tion g, which determines if the classifier abstains from prediction, or uses f to predict. The
classifier is called pointwise-competitive if it classifies each point identically to the best
classifier in hindsight (from the same class), whenever it does not abstain. The quality of
such a classifier is quantified by its rejection mass, defined to be the probability mass of
the points it rejects. A “fast” rejection rate is achieved if the rejection mass is bounded
from above by Õ(1/m) where m is the number of labeled examples used to train the clas-
sifier (and Õ hides logarithmic factors). Pointwise-competitive selective (PCS) classifiers
are intimately related to disagreement-based active learning and it is known that in the
realizable case, a fast rejection rate of a known PCS algorithm (called Consistent Selective
Strategy) is equivalent to an exponential speedup of the well-known CAL active algorithm.

We focus on the agnostic setting, for which there is a known algorithm called LESS
that learns a PCS classifier and achieves a fast rejection rate (depending on Hanneke’s
disagreement coefficient) under strong assumptions. We present an improved PCS learning
algorithm called ILESS for which we show a fast rate (depending on Hanneke’s disagree-
ment coefficient) without any assumptions. Our rejection bound smoothly interpolates the
realizable and agnostic settings. The main result of this paper is an equivalence between
the following three entities: (i) the existence of a fast rejection rate for any PCS learning
algorithm (such as ILESS); (ii) a poly-logarithmic bound for Hanneke’s disagreement coef-
ficient; and (iii) an exponential speedup for a new disagreement-based active learner called
Active-ILESS.

Keywords: active learning, selective prediction, disagreement coefficient, selective sam-
pling, selective classification, reject option, pointwise-competitive, selective classification,
statistical learning theory, PAC learning, sample complexity, agnostic case

1. Introduction

Selective classification is a unique and extreme instance of the broader concept of
confidence-rated prediction (Chow, 1970; Vovk et al., 2005; Bartlett and Wegkamp, 2008;
Yuan and Wegkamp, 2010; Cortes et al., 2016a; Wiener and El-Yaniv, 2012; Kocak et al.,
2016; Zhang and Chaudhuri, 2014). Given a training sample consisting of m labeled in-
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stances, the learning algorithm is required to output a selective classifier (El-Yaniv and
Wiener, 2010), defined to be a pair (f, g), where f is a prediction function, chosen from
some hypothesis class F , and g : X → {0, 1} is a selection function, serving as a qualifier
for f as follows: for any x, if g(x) = 1, the classifier predicts f(x), and otherwise it ab-
stains. The general performance of a selective classifier is quantified in terms of its coverage
and risk, where coverage is the probabilistic mass of non-rejected instances, and risk is the
normalized average loss of f restricted to non-rejected instances. Let f∗ be any (unknown)
true risk minimizer1 in F for the given problem. The selective classifier (f, g) is said to be
pointwise-competitive if, for each x with g(x) = 1, it must hold that f(x) = f∗(x) for all
f∗ ∈ F (Wiener and El-Yaniv, 2015). Thus, pointwise-competitiveness w.h.p. over choices
of the training sample, is a highly desirable property: it guarantees, for each non-rejected
test point, the best possible classification obtainable using the best in-hindsight classifier
from F . We do not restrict g to be from any specific hypothesis class, however, because we
use disagreement-based selective prediction, the selection of F will limit the possibilities of
g. The scenario of a predefined decision functions hypothesis class is investigated in Cortes
et al. (2016b).

Pointwise-competitive selective classification (PCS) was first considered in the realizable
case (El-Yaniv and Wiener, 2010), for which a simple consistent selective strategy (CSS) was
shown to achieve a bounded and monotonically increasing (with m) coverage in various non-
trivial settings. Note that in the realizable case, any PCS strategy attains zero risk (over the
sub-domain it covers). These results were recently extended to the agnostic setting (Wiener
and El-Yaniv, 2015; El-Yaniv and Wiener, 2011) with a related but different algorithm
called low-error selective strategy (LESS), for which a number of coverage bounds were
shown. These bounds relied on the fact that the underlying probability distribution and
the hypothesis class F will satisfy the so-called “(β1, β2)-Bernstein property” (Bartlett et al.,
2004). The coverage bounds used by Wiener and El-Yaniv (2015); El-Yaniv and Wiener
(2011) are dependent on the parameters β1, β2. This Bernstein property assumption (as
presented in Bartlett et al., 2004), which allows for better concentration, nevertheless, can
be problematic. First, it is defined with respect to a unique true risk minimizer f∗, a
property that is unlikely to hold in noisy agnostic settings. Moreover, for arbitrary F , even
for the 0/1 loss function,there is little knowledge about cases for which the property holds
with a non-trivial β2.2 We removed the Bernstein assumption from our analysis.

Assuming that a selective classifier is w.h.p. pointwise-competitive, our key goal is a
small rejection rate. We will say that a learner has a fast R∗ rejection rate, if w.h.p. the
rejection rate is bounded by

polylog

(
1

R(f∗) + 1/m

)
·R(f∗) +

d · polylog(m, 1/δ)

m
,

1. We assume that there exists an f∗ in F . Otherwise, we can artificially define f∗ to be any function
whose risk is sufficiently close to inff∈F (R(f)), for instance, not greater than a small additive factor
from this infimum.

2. It was mentioned by Wiener and El-Yaniv (2015) that, under the Tsybakov noise condition (Tsybakov,
2004), the desired property holds, but this is guaranteed only for cases in which the Bayes classifier is
within F , which is a fairly strong assumption in itself.

2



Selective Classification, Active Learning and the Disagreement Coefficient

where R(f∗), d and δ are defined in Section 2. Selective classification is very closely related
to the field of active learning (AL). In active learning, the learner can actively influence
the learning process by selecting the points to be labeled. The incentive for introducing
this extra flexibility is to reduce labeling efforts. A key question in theoretical studies of
AL is how many label requests are sufficient to learn a given (unknown) target concept
to a specified accuracy, a quantity called label complexity. For an AL algorithm satisfying
the “passive example complexity” property (consuming the same number of unlabeled (and
labeled) examples, as a passive algorithm consumes labeled examples for achieving the same
error; see Definition 6.2), we will say it has R∗ exponential speedup, if w.h.p. the number
of labels it requests is bounded by

polylog

(
1

R(f∗) + 1/m

)
·R(f∗)m+ d · polylog(m, 1/δ).

The connection between active learning and confidence-rated prediction is quite intu-
itive. A pointwise-competitive selective classifier P can be straightforwardly used as the
querying component of an active learning algorithm. This reduction is most naturally
demonstrated in the stream-based AL model: at each iteration, the active algorithm trains
a selective classifier on the currently available labeled samples, and then decides to query a
newly introduced (unlabeled) point x if P abstains on x.

Hanneke’s disagreement coefficient (Hanneke, 2007), see Definition 2.1, is a well-
known parameter of the hypothesis class and the marginal distribution; it is used in most
of the known label complexity bounds (Hsu, 2010; Hanneke, 2007; Ailon et al., 2012). The
disagreement coefficient is the supremum of the relation between the disagreement mass
of functions that are r-distanced from f∗ to r, over r. PCS classification is based on
using generalization bounds to estimate the empirical error of f∗, and more specifically,
its distance from the empirical error of the ERM. Whenever all the functions that reside
within a ball around the ERM unanimously agree, the classifier chooses to classify. Thus,
the abstain rate is dependent on the disagreement mass of the functions within the ball. The
radius of the ball depends on the generalization bounds. The generalization bounds we use
are of the form Õ(R(f∗) + d/m) for the agnostic case. After observing m examples, we can
bound the disagreement mass of a ball around the ERM, by multiplying the radius of the
ball, which is Õ(R(f∗) + d/m), with the disagreement coefficient. Thus, if for example, the
disagreement coefficient is bounded by a constant, the abstain rate of some PCS algorithms
can be bounded by Õ(R(f∗)+d/m). This gives a basic idea of the disagreement coefficient,
which will be formally presented later on.

Note that, in principle, the disagreement coefficient can be replaced by another im-
portant quantity, namely, the version space compression set size, recently shown to
be equivalent to it (Wiener et al., 2015; El-Yaniv and Wiener, 2015). Specifically, an
O(polylog(m)log(1/δ)) version space compression set size minimal bound was shown by
Wiener et al. (2015, Corollary 11), to be equivalent to an O(polylog(1/r)) disagreement
coefficient.

Zhang and Chaudhuri (2014) present a new algorithm that uses LP in order to achieve
better label complexity analysis than was previously known. This paper proposes a quantity,
denoted ϕc, to replace the disagreement coefficient (see a streamlined definition of ϕc at the
top of page 24 in Hanneke, 2016), which is smaller than the disagreement coefficient. They
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show that for the case of linear classification under log-concave distributions, their analysis
can improve (reduce) the argument inside the logarithm of the label complexity bound, and
the dependency on the VC-dimension is also reduced by a square root. However, in our
paper we focus mainly on the more basic question: when can we achieve an exponential
speedup in terms of 1/ε. Thus, due to the simplicity of the disagreement coefficient, and its
widespread use in the literature, we chose to focus on it. See a detailed discussion on the
ϕc quantity in Section 9.

The first contribution of this paper is a novel selective classifier, called ILESS, which uses
a tighter generalization error bound than LESS and depends on R(f∗) (and interpolates
the agnostic and realizable cases). Most importantly, the new strategy can be analyzed
completely without the Bernstein condition.

We derive an active learning algorithm, called Active-ILESS, corresponding to our selec-
tive classifier, ILESS. Active-ILESS is constructed to work in a stream-based AL model and
its querying function is extremely conservative: for each unlabeled example, the algorithm
requests its label if and only if the labeling of the optimal classifier (from the same class)
on this point cannot be inferred from information already acquired. This querying strategy,
which is often termed “disagreement-based,” has been used in a number of stream-based
AL algorithms such as Agnostic CAL and Oracular CAL (Hsu, 2010), A2 (Agnostic Active),
developed by Balcan et al. (2006), RobustCAL, studied in Hanneke (2012, 2014b) and Han-
neke and Yang (2012), or the general agnostic AL algorithm of Dasgupta et al. (2007). Paper
Huang et al. (2015) presented a computationally efficient algorithm for disagreement-based
AL.

We prove that Active-ILESS, despite being very similar to Oracular CAL Hsu (2010),
exhibits an improved label complexity, in comparison to that proved for Oracular CAL.
Specifically, Active-ILESS achieves the same label complexity as Agnostic CAL, while being
simpler in the sense that its consumption of ERM computations is smaller.

The first formal relationship between PCS classification and AL was proposed by El-
Yaniv and Wiener (2012); Wiener (2013), where the aforementioned CSS algorithm was
shown to be equivalent to the well-known CAL AL algorithm of Cohn et al. (1994), in
the sense that a fast coverage rate for CSS was proven to be equivalent to an exponential
label complexity speedup for CAL. This result applies to the realizable setting only. Our
first contribution is a similar equivalence relation between pointwise-competitive selective
classification and AL, which applies to the more challenging agnostic case and smoothly
interpolates the realizable and agnostic settings.

Our second and main contribution is to show a complete equivalence between (i) selective
classification with a fast R∗ rejection rate, (ii) an AL algorithm, Active-ILESS, with an
R∗ exponential speedup, and (iii) the existence of an f∗ with a disagreement coefficient
bounded by polylog(1/r). This is illustrated in Figure 1, where the blue errors indicate the
equivalence relationships we prove in this paper, and the red arrow indicates a previously
known result (Hsu, 2010; Hanneke, 2007), and can also be deduced from the other arrows.

2. Definitions

Consider a domain X , and a binary label set Y = {±1}. A learning problem is specified
via a hypothesis class F and an unknown probability distribution PX ,Y . Given a sequence
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Figure 1: Main results

of labeled training examples Sm = ((x1, y1), (x2, y2), ..., (xm, ym)), such that ∀i, (xi, yi) ∈
X × Y, the empirical error of a hypothesis f over Sm is R̂(f, Sm) , 1

m

∑m
i=1 `(f(xi), yi),

where ` : Y×Y → R+ is a loss function. In this paper, we focus mainly on the zero-one loss
function, `01(y, y′) , 1{y 6= y′}. The true (zero-one) error of f is R(f) , EP [`01(f(x), y)].
An empirical risk minimizer hypothesis (henceforth, an ERM) is

f̂(Sm) , argmin
f∈F

R̂(f, Sm), (1)

and a true risk minimizer is f∗ , argminf∈F R(f).3

We acquire the following definitions from Wiener and El-Yaniv (2015). For any hypoth-
esis class F , hypothesis f ∈ F , distribution PX ,Y , sample Sm, and real number r > 0, define
the true and empirical low-error sets,

V(f, r) ,
{
f ′ ∈ F : R(f ′) ≤ R(f) + r

}
(2)

and
V̂(f, r) ,

{
f ′ ∈ F : R̂(f ′, Sm) ≤ R̂(f, Sm) + r

}
. (3)

Let G ⊆ F . The disagreement set (Hanneke, 2007) and agreement set (El-Yaniv and
Wiener, 2010) w.r.t. G are defined, respectively, as

DIS(G) , {x ∈ X : ∃f1, f2 ∈ G , f1(x) 6= f2(x)} (4)

3. We assume that f∗ exists, and that it need not be unique, in which case f∗ refers to any one of the
minimizers.
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and AGR(G) , {x ∈ X : ∀f1, f2 ∈ G , f1(x) = f2(x)} . (5)

In selective classification (El-Yaniv and Wiener, 2010), the learning algorithm receives Sm
and is required to output a selective classifier, defined to be a pair (f, g), where f ∈ F is a
classifier, and g : X → {0, 1} is a selection function, serving as a qualifier for f as follows.
For any x ∈ X , (f, g)(x) = f(x) iff g(x) = 1. Otherwise, the classifier outputs “I don’t
know”. For any selective classifier (f, g), we define its coverage to be

Φ(f, g) , Pr
X∼PX

(g(X) = 1),

and its complement, 1 − Φ, is called the abstain rate. For any f ∈ F and r > 0, define
the set B(f, r) of all hypotheses that reside within a ball of radius r around f ,

B(f, r) ,

{
f ′ ∈ F : Pr

X∼PX

{
f ′(X) 6= f(X)

}
≤ r
}
.

For any G ⊆ F , and distribution PX , we denote by ∆G the volume of the disagreement set
of G (see (4)), ∆G , Pr {DIS(G)}.

Definition 2.1 (Disagreement Coefficient) Let r0 ≥ 0. Hanneke’s disagreement coef-
ficient (Hanneke, 2007) of a classifier f ∈ F with respect to the target distribution PX is

θf (r0) , sup
r>r0

∆B(f, r)

r
, (6)

and the general disagreement coefficient of the entire hypothesis class F is

θ(r0) , sup
f∈F

θf (r0). (7)

Notice that this definition of the disagreement coefficient is independent of PY|X . An-
other commonly used definition of the disagreement coefficient does depend on a true risk
minimizer f∗, as follows:

θ′(r0) = sup
r>r0

∆B(f∗, r)

r
. (8)

Clearly, it always holds that θ′ ≤ θ. The independence of θ of unknown quantities such
as the underlying distribution (and f∗), however, is a convenient property that sometimes
allows for a direct estimation of θ, which only depends on the marginal distribution, PX .
This is, for example, the case in AL, where labels are expensive but information about the
marginal distribution (provided by unlabeled examples) is cheap. Note also that the above
definition of θ′ implicitly assumes a unique f∗. Nevertheless, the definition can be extended
to cases where f∗ is not unique, in which case the infimum over all f∗ can be considered
(the analysis can be extended accordingly using limits). For more on the disagreement
coefficient, and examples of probabilities distributions and hypothesis classes for which it
is bounded, see Hanneke (2014b).
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3. Convergence Bounds and LESS

We use a uniform convergence bound from Vapnik and Chervonenkis (1974); Dasgupta
et al. (2007); Bousquet et al. (2003). Define convergence slacks σR−R̂(m, δ, d,R, R̂) and

σR̂−R(m, δ, d,R, R̂), given in terms of the training sample, Sm, its size, m, the confidence
parameter, δ, and the VC-dimension d of the class F . For any f ∈ F ,

σR−R̂(m, δ, d,R, R̂) , min


4d ln(16me

dδ )

m
+

√
4d ln(16me

dδ )

m
· R̂︸ ︷︷ ︸

σ̂R−R̂(m,δ,d,R̂)

,

√
4d ln(16me

dδ )

m
·R︸ ︷︷ ︸

σ̄R−R̂(m,δ,d,R)

 (9)

and

σR̂−R(m, δ, d,R, R̂) , min


4d ln(16me

dδ )

m
+

√
4d ln(16me

dδ )

m
·R︸ ︷︷ ︸

σ̄R̂−R(m,δ,d,R)

,

√
4d ln(16me

dδ )

m
· R̂︸ ︷︷ ︸

σ̂R̂−R(m,δ,d,R̂)

 . (10)

To simplify the analysis, we further decompose the above slack terms into their empirical
and non-empirical components. For (9), we thus have, respectively,

σ̂R−R̂(m, δ, d, R̂) ,
4d ln(16me

dδ )

m
+

√
4d ln(16me

dδ )

m
· R̂ (11)

and

σ̂R̂−R(m, δ, d, R̂) ,

√
4d ln(16me

dδ )

m
· R̂. (12)

Similarly, the non-empirical part in these minimums are denoted by σ̄R−R̂ and σ̄R̂−R. With
this notation, we can write, for example, σR−R̂ = min{σ̂R−R̂, σ̄R−R̂}. Our Lemma 1 is taken
from the work of Dasgupta et al. (2007, Lemma 1), which is based on Bousquet et al. (2003,
Theorem 7) 4.

Lemma 1 Let F be a hypothesis class with VC-dimension d. For any 0 < δ < 1, with
probability of at least 1− δ over the choice of Sm from Pm, any hypothesis f ∈ F satisfies

R(f) ≤ R̂(f) + σR−R̂

(
m, δ, d,R(f), R̂(f)

)
(13)

R̂(f) ≤ R(f) + σR̂−R

(
m, δ, d,R(f), R̂(f)

)
. (14)

4. In the original lemma from Dasgupta et al. (2007), S(H, n), the growth function, is given. We insert
Sauer’s Lemma, S(H, n) ≤ ( em

d
)d, into Lemma 1 from Dasgupta et al. (2007) to get our lemma.
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Strategy 1 is the LESS algorithm of Wiener and El-Yaniv (2015). LESS learns w.h.p.
a pointwise-competitive selective classifier, (f, g), where f ∈ F and g : X → {0, 1} is its
selection function that determines whether to abstain or to classify. A pointwise-competitive
selective classifier must satisfy the following condition: For each x with g(x) = 1, it must
hold that f(x) = f∗(x) for all f∗ ∈ F . A PCS learning algorithm must output a PCS
classifier w.h.p. for all PY|X ; otherwise, one can consider a tailor-made trivial algorithm
for each distribution, which simply returns f∗.

Remark 2 The original definition of pointwise-competitiveness from Wiener and El-Yaniv
(2015) requires a single f∗. We widen the definition to cases for which there are more
than one f∗, and require that a pointwise-competitive selective classifier be equal to all f∗,
wherever g = 1. This extrapolation seems a bit strict. Nevertheless, even if the requirement
would have been relaxed to “any f∗”, any pointwise-competitive selective classifier would
still have been forced to identify with all f∗, as it is impossible to determine whether a set
of functions are all f∗, or one is better than the rest.

The main idea behind LESS is that, w.h.p., all f∗ lie within a ball around an ERM
hypothesis with an error radius of 2σ(m, δ/4, d), where

σ(m, δ, d) , 2

√
2d
(
ln 2me

d

)
+ ln 2

δ

m
(15)

is the slack term of a certain uniform convergence bound. Therefore, if all the functions in
that ball agree over the labeling of any instance x, we know with high probability that all f∗

label x the same way as the ERM. This property ensures that LESS is pointwise-competitive
w.h.p.

Strategy 1 Agnostic Low-Error Selective Strategy (LESS)
Input: Sample set of size m, Sm,

Confidence level δ
Hypothesis class F with VC dimension d

Output: A selective classifier (h, g)
1: Set f̂ = ERM(F , Sm), i.e., f̂ is any empirical risk minimizer from F
2: Set G = V̂

(
f̂ , 2σ(m, δ/4, d)

)
3: Construct g such that g(x) = 1⇐⇒ x ∈ {X \DIS (G)}
4: f = f̂

4. ILESS

We now introduce an improved version of LESS, called ILESS, which uses a radius of

the form d · polylog(m, 1/δ) ·
(

1
m +

√
R(f∗)
m

)
. Noting that the radius, 2σ(m, δ/4, d), used

by LESS to define G = V̂, is of the form d · polylog(m, 1/δ)/
√
m, we observe that in cases

where R(f∗) ≈ C
m , this new radius behaves as d·polylog(m,1/δ)

m . We later show that this radius
allows ILESS to achieve a faster rejection decay rate than the one achieved by LESS.

Consider the pseuodo-code of ILESS given in Strategy 2. We now analyze ILESS, and
begin by showing in Lemma 3 that ILESS is pointwise-competitive w.h.p., i.e., for any x
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Strategy 2 Improved Low-Error Selective Strategy (ILESS)
Input: Sample set of size m, Sm,

Confidence level δ
Hypothesis class F with VC dimension d

Output: A selective classifier (h, g)
1: Set f̂ = ERM(F , Sm), i.e., f̂ is any empirical risk minimizer from F
2: Set σILESS = σ̂R−R̂

(
m, δ, d, R̂(f̂ , Sm)

)
+ σ̄R̂−R

(
m, δ, d, R̂(f̂ , Sm) + σ̂R−R̂(m, δ, d, R̂(f̂ , Sm))

)
3: Set G = V̂

(
f̂ , σILESS

)
4: Construct g such that g(x) = 1⇐⇒ x ∈ {X \DIS (G)}
5: h = f̂

for which g(x) = 1, f(x) = f∗(x) for all f∗. The calculation of g appears to be very
problematic, as for a specific x, a unanimous decision over an infinite number of functions
must be ensured. This problem was shown to be reducible to finding an ERM under one
constraint (Lemma 6.1 in El-Yaniv and Wiener, 2011, a.k.a. the disbelief principle). This
is a difficult problem, nonetheless, albeit one that could be estimated with heuristics.

Definition 4.1 Let F be a hypothesis class with a finite VC dimension d, and PX ,Y be an
unknown probability distribution. Given a sample set Sm, drawn from PX ,Y , we denote by E
the event where both inequalities (13) and (14) of Lemma 1 simultaneously hold. We know
from the lemma that E occurs with probability of at least 1− δ.

Lemma 3 (ILESS is pointwise-competitive) Given that event E occurred (see Defini-
tion 4.1), for all f∗ ∈ F , f∗ resides within G (from Strategy 2), and therefore, ILESS is
pointwise-competitive w.h.p.

Proof From (14), it follows that

R̂(f∗, Sm) ≤ R(f∗) + σR̂−R(m, δ, d,R(f∗), R̂(f∗, Sm))

≤ R(f∗) + σ̄R̂−R (m, δ, d,R(f∗)) . (16)

Additionally, by the definition of f∗, we know that it has the lowest true error, and using
Inequality (13) from Lemma 1 we obtain,

R(f∗) ≤ R(f̂)

≤ R̂(f̂ , Sm) + σR−R̂(m, δ, d,R(f̂), R̂(f̂ , Sm))

≤ R̂(f̂ , Sm) + σ̂R−R̂(m, δ, d, R̂(f̂ , Sm)). (17)

Finally, by applying (17) in (16), we have,

R̂(f∗, Sm) ≤ R̂(f̂ , Sm) + σ̂R−R̂(m, δ, d, R̂(f̂ , Sm))

+ σ̄R̂−R

(
m, δ, d, R̂(f̂ , Sm) + σ̂R−R̂(m, δ, d, R̂(f̂ , Sm))

)
,

which means that f∗ ∈ G.

9



Gelbhart and El-Yaniv

Lemma 4 below bounds the radius σILESS of ILESS. The lemma uses the notation

A , 4d ln(
16me

dδ
),

with which, by the definition of σILESS (see Strategy 2), we have,

σILESS = σ̂R−R̂(m, δ, d, R̂(f̂ , Sm)) + σ̄R̂−R

(
m, δ, d, R̂(f̂ , Sm) + σ̂R−R̂(m, δ, d, R̂(f̂ , Sm))

)
=

A

m
+

√
A

m
· R̂(f̂ , Sm) +

A

m
+

√√√√A

m
·

[
R̂(f̂ , Sm) +

A

m
+

√
A

m
· R̂(f̂ , Sm)

]
.

(18)

Lemma 4 Given that event E (see Definition 4.1) occurred, the radius of ILESS satisfies

σILESS ≤ 6
A

m
+ 3

√
A

m
·R(f∗) = O

(
A

m
+

√
A

m
·R(f∗)

)
, (19)

where A , 4d ln(16me
dδ ).

Proof Under our assumption, inequalities (13) and (14) hold for every f ∈ F . We thus
have

R̂(f̂ , Sm) ≤ R̂(f∗, Sm) ≤ R(f∗) +
A

m
+

√
A

m
·R(f∗). (20)

10
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Replacing the three occurrences of R̂(f∗, Sm) in (18) with the R.H.S. of (20), and using the
basic inequalities

√
a+ b ≤

√
a+
√
b and

√
ab ≤ a/2 + b/2, we get,

σILESS ≤ A

m
+

√√√√A

m
·

(
R(f∗) +

A

m
+

√
A

m
·R(f∗)

)
+
A

m
+

+

√√√√√A

m
·

R(f∗) +
2A

m
+

√
A

m
·R(f∗) +

√√√√A

m
·

(
R(f∗) +

A

m
+

√
A

m
·R(f∗)

)
≤ 2A

m
+

√
A

m
·
(
R(f∗) +

A

m
+

A

2m
+

1

2
R(f∗)

)
+

+

√√√√A

m
·

[
R(f∗) +

3A

2m
+

1

2
R(f∗) +

A

m
+

√
A

m
·
(
R(f∗) +

3A

2m
+

1

2
R(f∗)

)]

≤ 2A

m
+

3A

2m
+

3

2

√
A

m
R(f∗) +

√√√√A

m
·

[
5A

2m
+

3

2
R(f∗) +

√
A

m
·
(

3A

2m
+

3

2
R(f∗)

)]

≤ 7A

2m
+

3

2

√
A

m
·R(f∗) +

√√√√A

m
·

[
5A

2m
+

3

2
R(f∗) +

3A

2m
+

√
3A

2m
·R(f∗)

]

≤ 7A

2m
+

3

2

√
A

m
·R(f∗) +

√
A

m
·
[

5A

2m
+

3

2
R(f∗) +

3A

2m
+

3A

4m
+

3

4
R(f∗)

]
≤ 7A

2m
+

3

2

√
A

m
·R(f∗) +

√
19

4

A

m
+

√
A

m
· 9

4
R(f∗)

≤ 6
A

m
+ 3

√
A

m
·R(f∗). (21)

In comparison, the radius of LESS is of order O(
√

A
m), which can be significantly larger

when R(f∗) is small. This potential radius advantage translates into a potential coverage
advantage of ILESS, as stated in the following theorem.

Theorem 5 Let F be a hypothesis class with a finite VC dimension d, and let PX ,Y be
an unknown probability distribution. Given that event E (see Definition 4.1) occurred, G
defined in Strategy 2, holds that

G ⊆ B(f∗, R0),

where

R0 , 2 ·R(f∗) + 11 · A
m

+ 6 ·
√
A

m
·R(f∗),

and thus, for all f∗, the abstain rate is bounded by

1− Φ(ILESS) ≤ θf∗(R0) ·R0.

11
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This immediately implies (by definition) that

1− Φ(ILESS) ≤ θ(R0) ·R0.

Remark 6 Note that R0 = O
(
R(f∗) + A

m

)
due to

√
A
m ·R(f∗) ≤ 1

2(Am +R(f∗)).

Proof We start by showing that G, defined in Strategy 2, resides within a ball around any
specific f∗. To do so, we need to bound the true error of all functions in G.

f ∈ G ⇒ R̂(f, Sm) ≤ R̂(f̂ , Sm) + σILESS (22)

⇒ R̂(f, Sm) ≤ R(f∗) +
A

m
+

√
A

m
·R(f∗) + 6

A

m
+ 3

√
A

m
·R(f∗) (23)

⇒ R̂(f, Sm) ≤ R(f∗) + 7 · A
m

+ 4 ·
√
A

m
·R(f∗), (24)

where Inequality (22) is explained by the definition of G, and inequality (23) follows from
(20) and (21) (under event E). We then have,

R(f) ≤ R̂(f, Sm) + σ̂R−R̂(m, δ, d, R̂) (25)

≤ R̂(f, Sm) +
A

m
+

√
A

m
· R̂(f, Sm) (26)

≤ R(f∗) + 8 · A
m

+ 4 ·
√
A

m
·R(f∗) +

+

√√√√A

m
·

[
R(f∗) + 7 · A

m
+ 4 ·

√
A

m
·R(f∗)

]
(27)

≤ R(f∗) + 8 · A
m

+ 4 ·
√
A

m
·R(f∗) +

√
A

m
·
[
3R(f∗) + 9 · A

m

]
(28)

≤ R(f∗) + 11 · A
m

+ 6 ·
√
A

m
·R(f∗), (29)

where inequality (25) is (13) (which holds given E), inequality (26) follows directly from
the definition of σ̂R−R̂, inequality (27) is obtained using (24), Inequality (28) follows from√
ab ≤ a/2 + b/2, and (29) from

√
a+ b ≤

√
a+
√
b.

Using (29), for all f ∈ G, and any f∗, we have,

Pr
X∼PX

{f(X) 6= f∗(X)} = Pr
X,Y∼PX ,Y

{f(X) 6= f∗(X) ∧ f∗(X) = Y }+

Pr
X,Y∼PX ,Y

{f(X) 6= f∗(X) ∧ f∗(X) 6= Y }

≤ Pr
X,Y∼PX ,Y

{f(X) 6= f∗(X) ∧ f∗(X) = Y }+R(f∗)

≤ Pr
X,Y∼PX ,Y

{f(X) 6= Y }+R(f∗)

= R(f) +R(f∗)

≤ 2 ·R(f∗) + 11 · A
m

+ 6 ·
√
A

m
·R(f∗). (30)

12
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It follows that

f ∈ B

(
f∗, 2 ·R(f∗) + 11 · A

m
+ 6 ·

√
A

m
·R(f∗)

)
= B(f∗, R0),

and, in particular,
G ⊆ B(f∗, R0),

so,
∆G ≤ ∆B(f∗, R0).

The abstain rate of ILESS equals ∆G. We can now use the disagreement coefficient to
bound the abstain rate from above,

∆G ≤ ∆B(f∗, R0) =
∆B(f∗, R0)

R0
·R0 ≤ θ(R0) ·R0, (31)

which concludes the proof.

According to Theorem 5, assuming the disagreement coefficient is θ(r) = O(polylog(1/r))
for r ≥ R(f∗), the rejection mass of ILESS, defined as the probability that the classifier
trained by ILESS will output “I don’t know” is bounded w.h.p. by

polylog1

(
1

R(f∗) + 1/m

)
·R(f∗) +

d · polylog2(m, 1/δ)

m
. (32)

In many cases, the disagreement coefficient, θ(r), is bounded by a constant, or by
O(polylog(1/r)) for all r > 0 (see Hanneke, 2014b). For example, it was shown in Wiener
et al. (2015), that for linear separators under mixture of Gaussians, and for axis-aligned
rectangles with probability mass bounded away from zero under product densities over Rk,
θ(r) is bounded by O(polylog(1/r)) for all r > 0. For such cases, we know that (32) always
holds, regardless of the size of R(f∗). The disagreement coefficient is only dependent on
the marginal PX , the hypothesis class F , and the identity of the true risk minimizers, f∗

(which is not necessarily unique). This fact motivates the following definition of a rejection
rate of a selective learning algorithm, which is only dependent on PX ,F and f∗.

Definition 4.2 (Fast R∗ Rejection Rate) Given PX ,F and f∗, if for all δ > 0, and
all PY|X for which f∗ is a true risk minimizer, the rejection mass of a selective classifier
learning algorithm is bounded by (32) with probability of at least 1 − δ, we say that the
algorithm achieves a fast R∗ rejection rate, with polylog1 and polylog2 as its parameters.

Corollary 7 Let F be a hypothesis class with a finite VC dimension d. Given PX and
f∗, if θf∗(r) is bounded by O(polylog(1/r)) for all r > 0, then there exists a PCS learning
algorithm (ILESS) which achieves a fast R∗ rejection rate.

Proof The proof is immediate from Theorem 5.

In the next section, we will show the other direction; that is, if there is a PCS learning
algorithm that has a fast R∗ rejection rate, then θ(r) = O(polylog(1/r)) for all r > 0.

13



Gelbhart and El-Yaniv

As long as the number of training examples that ILESS receives is not “too large”
relative to 1/R(f∗), i.e., m� 1

R(f∗) , the rejection mass of ILESS is

O

(
d · polylog(m, 1/δ)

m

)
.

Whenm is large, andR(f∗) becomes more dominant than 1
m , our coverage bound is dom-

inated by R(f∗). This should not surprise us, as ILESS achieves pointwise-competitiveness
w.h.p., and any strategy that achieves pointwise-competitiveness cannot ensure a better
rejection mass than R(f∗) without making more assumptions about the error or the distri-
bution. This can be seen in the following example, in which θ(r) ≤ 1 for all r > 0, but the
rejection mass of any pointwise-competitive strategy is always at least R(f∗).

Example 1 Given any 0 < ε < 0.5, let X = [0, 1], and F = {f1, f2} where

f1(x) =

{
1, x < ε

0, otherwise
, f2(x) =

{
1, x > 1− ε
0, otherwise.

Let PX be the uniform distribution over [0, 1]. Assume that Y will always be zero. f1 and
f2 are both f∗. Every pointwise-competitive classifier will have to output g(x) = 0 for every
x in the disagreement set of f1 and f2. R(f∗) = ε, and the rejection mass is 2ε(= 2R(f∗)).

5. From Selective Classification to the Disagreement Coefficient

We now turn to show a reduction from selective classification, to the disagreement coeffi-
cient.

Theorem 8 Let F be a hypothesis class with a finite VC dimension d, and PX ,Y be an
unknown distribution. Let PCS be an algorithm that returns a pointwise-competitive selec-
tive classifier w.h.p. for all distributions whose marginal is PX . If for every m ≤ 1/R(f∗),
0 < δ, with probability of at least 1−δ, the abstain rate 1−Φ of PCS(Sm, δ,F , d) is bounded
by a monotonic5 polylog as follows:

1− Φ(PCS) ≤ polylog0(m, 1/δ)

m
. (33)

Then for every f∗ (every true risk minimizer), for every r ≥ R(f∗),

θf∗(r) ≤ 20 (polylog0(1/r, 1/r) + 3) .

Proof For any m ∈ {4, 5, ..., b1/R(f∗)c}, denote by Sm a random training sample drawn
from PX ,Y . Let Z be a random variable representing a single random unlabeled example
sampled from PX , and let f∗ to be a specific true risk minimizer.

For Z ∈ DIS
(
B(f∗, 1

m)
)
, we use the following argument from Hanneke (2012, Lemma

47). We know that there exists a function hZ ∈ F s.t. hZ(Z) 6= f∗(Z) and Pr(hZ(X) 6=
f∗(X)) ≤ 1

m . We denote by PX ,Yz a new probability distribution, where the marginal, PX ,

5. If the polylog is not monotonic, the following holds: θf∗(r) ≤ 16(polylog(b1/rc, b1/rc) + 3) · 5
4

; see
Eq. (44).

14
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remains the same, but Y becomes Y , hZ(x). Clearly, hZ is a true risk minimizer (f∗) for
such a distribution.

Denote by e1 the probability event where (33) holds (for a specific m ≤ 1/R(f∗)).
Denote by e2 the event where PCS has succeeded in returning a pointwise-competitive
selective classifier (fsm , gsm) under Sm.

Define S′m to be a modified Sm where, for every (x, y) ∈ Sm s.t. hZ(x) 6= y, y is modified
to become y = hZ(x). S′m is a random training sample drawn from PX ,Yz. Denote by e3z

the event where PCS has succeeded in returning a pointwise-competitive selective classifier
(fs′m , gs′m) under S′m. hZ is only defined for cases in which Z ∈ DIS

(
B(f∗, 1

m)
)
, and thus

we define that e3z will vacuously hold when Z /∈ DIS
(
B(f∗, 1

m)
)
.

Under our assumptions, Pr(e1),Pr(e2) ≥ 1−δ. For every Z ∈ DIS(B(f∗, 1
m)), Pr(e3z|Z) ≥

1− δ, and for every Z /∈ DIS(B(f∗, 1
m)), Pr(e3z|Z) = 1, which implies that Pr(e3z) ≥ 1− δ.

We denote by hZ(Xm) = Ym the event where hZ(x) = y for all (xi, yi) ∈ Sm. The explana-
tions for the following (in)equalities follow.

Pr

{
Z ∈ DIS

(
B(f∗,

1

m
)

)
∧ hZ(Xm) = Ym

}
(34)

= Pr

{
Z ∈ DIS

(
B(f∗,

1

m
)

)
∧ hZ(Xm) = Ym ∧ e1 ∧ e2 ∧ e3z

}
(35)

+ Pr

{
Z ∈ DIS

(
B(f∗,

1

m
)

)
∧ hZ(Xm) = Ym | ¬(e1 ∧ e2 ∧ e3z)

}
· Pr(¬(e1 ∧ e2 ∧ e3z))

≤ Pr

{
Z ∈ DIS

(
B(f∗,

1

m
)

)
∧ hZ(Xm) = Ym ∧ e1 ∧ e2 ∧ e3z

}
+ 3δ (36)

≤ Pr{gsm(Z) = 0 ∧ e1 ∧ e2 ∧ e3z}+ 3δ (37)

≤ Pr{gsm(Z) = 0 ∧ e1}+ 3δ

≤ Pr{gsm(Z) = 0 | e1}+ 3δ

≤ polylog0(m, 1/δ)

m
+ 3δ. (38)

In (34), it is convenient to view the random experiment as if we draw z first, and then Sm.
If Z ∈ DIS

(
B(f∗, 1

m)
)
, then consider hZ to be any function that holds hZ(Z) 6= f∗(Z) and

Pr(hZ(X) 6= f∗(X) ≤ 1
m). If Z /∈ DIS

(
B(f∗, 1

m)
)
, then the event described in (34) does

not occur, and hZ is undefined. In (35), we use conditional probability, and in (36) we apply
the union bound. Inequality (37) is justified as follows. If hZ(Xm) = Ym, then the algorithm
received the same input under PX ,Yz and PX ,Y . Given that e2 and e3z occurred, we know
that the algorithm has successfully output a pointwise-competitive selective classifier for
both probabilities, which means that whenever f∗ and hZ disagree, gsm has to output
zero; otherwise, it will not be pointwise-competitive for one of the distributions. By the
definition of hZ , hZ(Z) 6= f∗(Z), which explains the inequality. Inequality (38) follows from
the definition of e1. Taking δ = 1

m , we get,

Pr

{
Z ∈ DIS

(
B(f∗,

1

m
)

)
∧ hZ(Xm) = Ym

}
≤ polylog0(m,m) + 3

m
. (39)

The following inequalities are derived using elementary conditional probability. In Equation
(41) we use an argument taken from the proof of Hanneke (2012, Lemma 47). hZ ∈
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B(f∗, 1
m), and thus the probability that f∗ and hZ will have a different label for a specific

example is bounded by 1/m. The probability that f∗ will mispredict is by definition R(f∗),
and thus, using the union bound, we get (41).

Pr

{
Z ∈ DIS

(
B(f∗,

1

m
)

)
∧ hZ(Xm) = Ym

}
= Pr

{
hZ(Xm) = Ym | Z ∈ DIS

(
B(f∗,

1

m
)

)}
· Pr

{
Z ∈ DIS

(
B(f∗,

1

m
)

)}
≥ Pr

{
f∗(Xm) = Ym ∧ hZ(Xm) = f∗(Xm) | Z ∈ DIS

(
B(f∗,

1

m
)

)}
· (40)

·Pr

{
Z ∈ DIS

(
B(f∗,

1

m
)

)}
≥

(
1−R(f∗)− 1

m

)m
· Pr

{
Z ∈ DIS

(
B(f∗,

1

m
)

)}
(41)

≥
(

1− 1

m
− 1

m

)m
· Pr

{
Z ∈ DIS

(
B(f∗,

1

m
)

)}
≥ 1

16
·∆B

(
f∗,

1

m

)
. (42)

Combining (39) and (42), we get that for every m ∈ {4, 5, ..., b1/R(f∗)c},

∆B(f∗, 1/m)

1/m
≤ 16 (polylog0(m,m) + 3) . (43)

The following inequalities follow from (43), and from the fact that ∆B(f∗, x) and polylog0(·)
are non-decreasing. For any r in [R(f∗), 1

5 ], and noting that 1
b1/rc ≥ r,

∆B(f∗, r)

r
≤

∆B
(
f∗, 1

b1/rc

)
1
b1/rc

· 1

r · b1/rc

≤ 16(polylog0(b1/rc, b1/rc) + 3) · 1

r · (1/r − 1)

≤ 16 (polylog0(b1/rc, b1/rc) + 3) · 1

1− r

≤ 16(polylog0(b1/rc, b1/rc) + 3) · 5

4
(44)

≤ 20(polylog0(1/r, 1/r) + 3)

and for r in [1
5 , 1],

∆B(f∗, r)

r
≤ 1

1/5
= 5, (45)

which concludes the proof.
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Corollary 9 Let F be a hypothesis class with a finite VC dimension d, and let PX ,Y be an
unknown distribution. If for every m ≤ 1/R(f∗), 0 < δ, with probability of at least 1 − δ,
the abstain rate 1− Φ of ILESS(Sm, δ,F) is bounded by a monotonic polylog as follows:

1− Φ(ILESS) ≤ polylog0(m, 1/δ)

m
.

Then for every f∗ (every true risk minimizer), for every r ≥ R(f∗),

θf∗(r) ≤ 20(polylog0(1/r, 1/r) + 3).

Proof This is a direct result from Theorem 8, and from the fact that ILESS is PCS.

Given PX ,F and f∗, if any PCS learning algorithm has a fast R∗ rejection rate, we can
apply Theorem 8 with a deterministic PY|X distribution for which Y = f∗(X), and get that
R(f∗) = 0. Thus, by definition,

1− Φ(PCS) ≤ polylog1

(
1

R(f∗) + 1/m

)
· 0 +

d · polylog2(m, 1/δ)

m
.

We can now apply Theorem 8 with R(f∗) = 0, and get that the disagreement coefficient
is bounded by polylog(1/r) for all r > 0. Thus, together with Corollary 7, we complete a
two sided equivalence from PCS with a fast R∗ rejection rate to a disagreement coefficient
bounded by polylog(1/r) for all r > 0.

6. Active-ILESS

In this section in Strategy 3 we introduce an agnostic active learning algorithm called
Active-ILESS. Active-ILESS is very similar to Agnostic CAL and to Oracular CAL (Das-
gupta et al., 2007), which were inspired by A2 (Balcan et al., 2006). Both Agnostic CAL
and Oracular CAL use a LEARNH(S, T ) subroutine, which returns an ERM over a cer-
tain set T with the constraint that a zero training error must be achieved over a set S
(see details in Hsu, 2010). Oracular CAL has an advantage over Agnostic CAL in that it
only uses one such constraint while using the LEARNH subroutine. Nevertheless, as Hsu
mentions, this weakens the label complexity analysis of Oracular CAL, and makes it depen-
dent on the square of the disagreement coefficient. Similar to Oracular CAL, Active-ILESS
can be implemented with an ERM computation under only one constraint (as seen from
the disbelief principle in El-Yaniv and Wiener, 2011, already discussed in Section 4), but
its proven label complexity is only dependent linearly on the disagreement coefficient. In
this sense, Active-ILESS enjoys the best of both worlds. The label complexity analysis of
Active-ILESS appears in Section 8.

As Agnostic CAL and Oracular CAL, Active-ILESS creates artificial labels (step 1),
but unlike these other algorithms, Active-ILESS works in batches (inside each batch, the
decision whether to query an example is made instantly and not at the end of the batch).
This allows Active-ILESS to be a bit more conservative with its deltas. This also allows us
to achieve a tighter label complexity.

In Section 7 we use Active-ILESS to show an equivalence between active learning (rep-
resented by Active-ILESS) and selective classification (represented by a variant of ILESS,
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Strategy 3 Agnostic Low-Error Active Learning Strategy (Active-ILESS)

Input: ε and/or m depending on the desired termination condition (error or labeling budget, respectively)
Confidence level δ
Hypothesis class F with VC dimension d
An unlabeled input sequence sampled i.i.d from PX ,Y : x1, x2, x3, . . .

Output: A classifier f̂
Initialize:
Set Ŝ = ∅, G0 = F , t = 1
Perform for each example xt received:

1: if xt ∈ AGR(Gt−1): don’t request label for xt and set yt = f(xt) using any f ∈ Gt−1

otherwise: request label yt
2: Set Ŝ = Ŝ ∪ {(xt, yt)}
3: Set f̂ = f̂(Ŝ)
4: if log2(t) ∈ N:

• Set σActive = σ̂R−R̂

(
t
2
, δ
2t
, d, R̂(f̂ , Ŝ)

)
+ σ̄R̂−R

(
t
2
, δ
2t
, d, R̂(f̂ , Ŝ) + σ̂R−R̂( t

2
, δ
2t
, d, R̂(f̂ , Ŝ))

)
• If ε was given as input and σActive < ε, terminate and return f̂

• If m was given as input and t > m/2, terminate and return f̂

• Set Gt = V̂
(
f̂ , σActive

)
• Set Ŝ = ∅

otherwise:

• Gt = Gt−1

5: Set t = t +1

“Batch-ILESS”). The introduction of these new variants facilitates a straightforward proof
of the equivalence relationship. This equivalence implies a novel relationship between selec-
tive and active classification in the agnostic setting.

We begin by analyzing Active-ILESS and showing that much like ILESS, f∗ ∈ Gt in
each iteration t. The low-error set G, maintained by ILESS, contains all the hypotheses
that have an empirical error smaller than R̂(f̂) + σILESS. In Lemma 1 we showed that
this condition implies that f∗ resides within the low-error set G of ILESS. A proof that
f∗ ∈ Gt, after each iteration of Active-ILESS, cannot follow the same argument due to the
fact that Active-ILESS, shown in Strategy 3, labels by itself each example whose label is not
requested from the teacher. Further, since we consider an agnostic setting, these self-labels
can differ from the true labels.

Active-ILESS, as seen in Strategy 3, receives as a termination condition either ε > 0
and/or m, and terminates when the radius of its low-error set, Gt, is smaller than ε, or
when it has processed m examples.

Active-ILESS changes its low-error set, Gt, only for t that are natural powers of 2. For
each change, Active-ILESS begins to create fake labels for xt ∈ AGR(Gt−1) that may or
may not be equal to the real label of xt (under the original distribution). In fact, this Gt
defines a new distribution, PX ,Y(Gt), and this distribution changes for every t that is a
natural power of 2. With respect to a run of Active-ILESS, and t = 2i, i ∈ N, we denote by
PX ,Y(Gt), the new probability distribution implied by Gt, and the fake labels created by the
algorithm. RPX ,Y (Gt)(f) will be the true risk under the new distribution, while RPX ,Y (f) is
the true risk of f under the original distribution.
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Definition 6.1 Let F be a hypothesis class with a finite VC dimension d, and let PX ,Y be
an unknown distribution. Given a run of Active-ILESS, we denote by K the event where
both inequalities (46) and (47) hold simultaneously for every f ∈ F , for all iterations of
Active-ILESS where t = 2i, i ∈ N. R̂(f) , R̂(f, Ŝ) for Ŝ before it was initialized:

RPX ,Y (Gt)(f) ≤ R̂(f) + σR−R̂

(
t

2
,
δ

2t
, d,R(f), R̂(f)

)
(46)

R̂(f) ≤ RPX ,Y (Gt)(f) + σR̂−R

(
t

2
,
δ

2t
, d,R(f), R̂(f)

)
(47)

Lemma 10 K occurs with probability of at least 1− δ.

Proof Gt changes only for iterations of the type 2i, i ∈ N. We know by Lemma 1 that
the probability that inequalities (46) and (47) do not hold is smaller than δ/(2t). By the
union bound, the probability that one of these inequalities does not hold after any iteration
is smaller than ∑

t=2i,i∈N

δ

2t
≤ δ.

Lemma 11 If f∗, a true risk minimizer under probability distribution PX ,Y , resides within
Gt, then it is also a true risk minimizer under probability distribution PX ,Y(Gt).

Proof

argmin
f∈F

RPX ,Y (Gt)(f) = argmin
f∈F

RPX ,Y (f)︸ ︷︷ ︸
A

+RPX ,Y (Gt)(f)−RPX ,Y (f)︸ ︷︷ ︸
B

 .

We know that f∗ minimizes A, and we note that every function that resides within Gt
minimizes B, because every difference in the labeling between PX ,Y and PX ,Y(Gt) was done
according to the label given by the unanimous decision of functions in Gt. In other words,
whenever x ∈ AGR(Gt), the labelling of x is done according to any function in Gt, for
instance, f∗. Thus,

RPX ,Y (Gt)(f)−RPX ,Y (f) = E [1[X ∈ AGR(Gt)](1[f(X) 6= f∗(X)]− 1[f(X) 6= Y ])]

= E
[
1[X ∈ AGR(Gt) ∧ f∗(X) 6= Y ] · (−1)1(f(X)=f∗(X))

]
and we see that f∗ minimizes the last term. Hence, f∗ minimizes A+B.

The proofs of the following four lemmas appear in Appendix A. They all show basic good
qualities of Active-ILESS.

Lemma 12 Given that event K (see Definition 6.1) occurred, each f∗ of the original
distribution PX ,Y resides within Gt for all t. This implies that RPX ,Y (Gt)(f

∗) ≤ R(f∗), for
all t, as every change in the labeling is done according to f∗.
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Lemma 13 Given that event K (see Definition 6.1) occurred, and under the assumption
that Active-ILESS terminated with the ε condition, the hypothesis returned by Active-ILESS,
f̂ , holds:

RPX ,Y (f̂) ≤ RPX ,Y (f∗) + ε.

Lemma 14 Given that event K (see Definition 6.1) occurred, the final radius of Active-ILESS
satisfies

σActive = O

(
B

m
+

√
B

m
·R(f∗)

)
, (48)

where B , 16d ln(16m2e
dδ ).

Lemma 15 Given that event K (see Definition 6.1) occurred, the total number of examples
that Active-ILESS(ε) processed (without necessarily requesting labels) is

O

(
1

ε
ln(

1

ε
) +

R(f∗)

ε2
ln(

R(f∗)

ε2
)

)
,

where we hide factors of d, ln(1/δ) under the O.

Definition 6.2 An active learner that generates a hypothesis whose true error is smaller
than ε w.h.p., has passive example complexity, if it observes up to

O

(
1

ε
ln(

1

ε
) +

R(f∗)

ε2
ln(

R(f∗)

ε2
)

)
examples (not necessarily labeled).

By Lemmas 13 and 15 we know that Active-ILESS has passive example complexity.
The definition of a fast R∗ rejection rate for selective classification induces the following

related definition for the exponential speedup of active learning algorithms.

Definition 6.3 (R∗ Exponential Speedup) Given PX ,F and f∗, we say that an active
learner has an R∗ exponential speedup, with polylog1 and polylog2 as its parameters, if
for every PY|X for which f∗ is a true risk minimizer, and for every m > 0, with probability
of at least 1 − δ, the number of labels requested by the active learner after observing m
examples is not greater than

polylog1

(
1

R(f∗) + 1/m

)
·R(f∗)m+ d · polylog2(m, 1/δ).

Hsu (2010) introduced the agnostic CAL algorithm and showed (Theorem 4.3, page
41) that if the disagreement coefficient is bounded, then Agnostic CAL has an R∗ expo-
nential speedup (under our new definition). Any active algorithm that has passive ex-
ample complexity and achieves an R∗ exponential speedup requires w.h.p. no more than

O
(

polylog(R(f∗)
ε2

)R(f∗)2

ε2
+ polylog(1

ε )
)

labels to reach a true error smaller than ε. The proof

is immediate by considering the cases R(f∗)
ε ≥ 1 and R(f∗)

ε < 1. The leading term of this

bound is R(f∗)2

ε2
, which is also the case for A2 (Balcan et al., 2006).
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7. A Reduction from Active-iLess to Batch-ILESS

In Strategy 4 we define a selective classifier, called Batch-ILESS, which uses Active-ILESS
as its engine. Given a labeled sample Sm, Batch-ILESS simulates the active algorithm,
by applying it over Sm in a straightforward manner (i.e., it sequentially introduces to the
active algorithm an unlabeled example and reveals the label only if the active algorithm
requests it). Upon termination, after the active algorithm has consumed all examples, our
batch algorithm receives f̂ from the active algorithm and uses its last low-error set Gt to
define its selection function.

Lemma 12 implies that Batch-ILESS is pointwise-competitive. We note that Lemma 4,
Theorem 5 and Theorem 9, which were proven for ILESS, can also be proven for Batch-
ILESS. We chose to prove it for ILESS, as it is simpler than Batch-ILESS, and does not
require an active algorithm as its engine. We state these ideas formally, and give sketches
of their proofs, in Lemma 23 and Theorem 24 which appear in Appendix C.

Strategy 4 Batch Improved Low-Error Selective Strategy (Batch-ILESS)
Input: Sample set of size m, Sm,

Confidence level δ
Hypothesis class F with VC dimension d

Output: A selective classifier (h, g)
1: Simulate Active-ILESS with Sm as its input stream; let Gt be the low-error set obtained by Active-ILESS

in its last round, and let f̂ be its resulting classifier.
2: Construct g such that g(x) = 1⇐⇒ x ∈ {X \DIS (Gt)}
3: h = f̂

Theorem 16 shows a deep connection between the speedup of Active-ILESS and the
rejection mass of Batch-ILESS for specific PX ,Y . An immediate corollary of this theorem is
that if Active-ILESS has R∗ exponential speedup (see Definition an 6.3), then Batch-ILESS
has a fast R∗ rejection rate (see Definition 4.2).

Theorem 16 Let F be a hypothesis class with a finite VC dimension d, and let PX ,Y be an
unknown distribution. If for every m ≤ mmax, after observing m examples, with probability
of at least 1− δ, the number of labels requested by Active-ILESS is not greater than

polylog1

(
1

R(f∗) + 1/m

)
·R(f∗)m+ d · polylog2(m, 1/δ),

then the rejection mass of Batch-ILESS for every m ≤ mmax
2 is bounded w.h.p. by

8 · polylog1

(
1

R(f∗) + 1/m

)
·R(f∗) +

2
(√

ln(2/δ) +
√

ln(2/δ) + 2d · polylog2(2m, 2/δ)
)2

m
.

Proof Consider an application of Active-ILESS with δ = δ0 over m0 , 2dlog(m+1)e ex-
amples. Denote by Xi an indicator random variable for the labeling of its ith example,
1 ≤ i ≤ m0. With probability of at least 1− δ0 over the choice of samples from PX ,Y ,

m0∑
i=1

Xi ≤ polylog1

(
1

R(f∗) + 1/m0

)
·R(f∗)m0 + d · polylog2 (m0, 1/δ0) . (49)
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We know by the definition of Active-ILESS (Strategy 3), that the last m0/2 examples
had the exact same probability, ∆Gm0/2, of requiring a label, and that this is exactly the
probability that Batch-ILESS will decide to abstain after receiving m examples, according
to Strategy 4.

We now estimate ∆Gm0/2 using the version of the Chernoff bound given by Canny
(2012). For the sake of self-containment, Canny’s statement and proof of the bound are
provided in Lemma 21 in Appendix B.

The statement of the lemma is as follows. Let Z1, Z2, . . . , Zn be independent Bernoulli
trials with Pr[Zi = 1] = p, let Z ,

∑n
i=1 Zi, and µ = EZ. Then, for every α > 0:

Pr (Z < (1− α)µ) ≤ exp(−µα2/2).

Applying the Chernoff bound with the indicator variables of the last m0/2 examples,
we have X =

∑m0

m0/2
Xi, µ = pm0

2 , and set p , ∆Gm0/2. Select α such that

exp
(
−pm0

2
α2/2

)
= δ2.

Solving for α,

α =

√
4 ln(1/δ1)

m0p
.

We conclude that with probability of at least 1− δ1,

X ≥

(
1−

√
4 ln(1/δ1)

m0p

)
· pm0

2

⇔ 0 ≥ pm0

2
−
√
pm0 · ln(1/δ1)−X. (50)

Solving the quadratic equation (50) for
√
pm0, we get that

√
pm0 ≤

√
ln(1/δ1) +

√
ln(1/δ1) + 2X

⇒ p ≤
(
√

ln(1/δ1) +
√

ln(1/δ1) + 2X)2

m0
. (51)

Combining (49) and (51), from the union bound we get that with probability of at least
1− δ0 − δ1,

∆Gm0/2 ≤

≤

(√
ln( 1

δ1
) +

√
ln( 1

δ1
) + 2polylog1

(
1

R(f∗)+1/m0

)
R(f∗)m0 + 2d · polylog2(m0,

1
δ0

)

)2

m0
.
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If we take δ0 = δ1 = δ/2, then, since m ≤ m0 ≤ 2m, we can use
√
a+ b ≤

√
a +
√
b and

(a+ b)2 ≤ 2a2 + 2b2, to obtain

∆Gm0/2 ≤

≤

(√
ln(2

δ ) +

√
ln(2

δ ) + 4polylog1

(
1

R(f∗)+1/m

)
·R(f∗)m+ 2d · polylog2(2m, 2

δ )

)2

m

≤

(√
ln(2

δ ) +
√

ln(2
δ ) + 2d · polylog2(2m, 2

δ ) +

√
4polylog1

(
1

R(f∗)+1/m

)
R(f∗)m

)2

m

≤
2
(√

ln(2
δ ) +

√
ln(2

δ ) + 2d · polylog2(2m, 2
δ )
)2

m
+

+

2

(√
4polylog1

(
1

R(f∗)+1/m

)
·R(f∗)m

)2

m

=
2
(√

ln(2
δ ) +

√
ln(2

δ ) + 2d · polylog2(2m, 2
δ )
)2

m
+

+8 ·R(f∗) · polylog1

(
1

R(f∗) + 1/m

)

Corollary 17 Let F be a hypothesis class with a finite VC dimension d, and let PX ,Y be
an unknown distribution. If for every m ≤ 2/R(f∗), 0 < δ after observing m examples, with
probability of at least 1 − δ, the number of labels requested by Active-ILESS is not greater
than

polylog1

(
1

R(f∗) + 1/m

)
·R(f∗)m+ d · polylog2(m, 1/δ),

then for every r ≥ R(f∗),

θf∗(r) ≤ 20

(
2
(√

ln(2/r) +
√

ln(2/r) + 2d · polylog2(2/r, 2/r)
)2

+ 8 · polylog1(1/r) + 3

)
= O (d · polylog(1/r)) .

Proof The proof follows from Theorems 16 and 8. Applying Theorem 16, we know that
for m ≤ 1/R(f∗), the rejection mass of Batch-ILESS is bounded w.h.p. by,

2
(√

ln(2/δ) +
√

ln(2/δ) + 2d · polylog2(2m, 2/δ)
)2

+ 8 · polylog1( 1
R(f∗)+1/m)

m
.
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We know by Lemma 12 that f∗ ∈ Gt, and thus Batch-ILESS is PCS. We apply Theorem
8, and get that for every r ≥ R(f∗),

θf∗(r) ≤ 20

2

(√
ln(

2

r
) +

√
ln(

2

r
) + 2d · polylog2(

2

r
,
2

r
)

)2

+ 8 · polylog1

(
1

R(f∗) + r

)
+ 3


≤ 20

2

(√
ln(

2

r
) +

√
ln(

2

r
) + 2d · polylog2(

2

r
,
2

r
)

)2

+ 8 · polylog1(1/r) + 3

 .

8. From the Disagreement Coefficient to Active Learning

In this section we show that when θ′(r) is bounded by polylog1(1/r) for all r > R(f∗)
for some specific PX ,Y , then the label complexity of Active-ILESS under the same PX ,Y is
bounded by

polylog2

(
1

R(f∗) + 1/m

)
·R(f∗)m+ d · polylog3(m, 1/δ), (52)

where the parameters of polylog2 and polylog3 are only dependent on polylog1(1/r). Thus,
if θ′(r) ≤ polylog1(1/r) for all r > 0, we get that Active-ILESS has an R∗ exponential
speedup. This direction has been shown before in Hsu (2010); Hanneke (2007) for Oracular
CAL, Agnostic CAL and A2. For the sake of self-containment, we show it here for Active-
ILESS. Due to the fact that Active-ILESS relies on ILESS, for which we already have
bounds, the proof is straightforward.

As a preparation for Theorem 19, we present Lemma 18 (shown before in Hanneke,
2014b, Theorem 7.1), which introduces a small feature of the disagreement coefficient that
will serve us later.

Lemma 18 Let F be a hypothesis class with a finite VC dimension d, and let PX ,Y be an
unknown distribution. For every f ∈ F and 0 < r ≤ 1, θf (r)·r is a non-decreasing function.

Theorem 19 Let F be a hypothesis class with a finite VC dimension d, PX ,Y be an
unknown distribution, and f∗, a true risk minimizer of PX ,Y . The label complexity of
Active-ILESS(m, δ/2) is bounded w.h.p. by

θ′
(

5R(f∗) + 14
A

m

)
· 2e ·mR(f∗) + log2(2/δ) + 56e · log2m ·A · θ′

(
5R(f∗) + 14

A

m

)
.

Proof Each run of Active-ILESS(m, δ/2) simulates dlog2me runs of ILESS. Denote by T
indices of iterations where log2(t) ∈ N. We know by Lemma 10 that with probability of at
least 1 − δ/2, inequalities (46) and (47) hold for each run. Recall that we denoted by K
the event where both inequalities hold throughout all runs of ILESS, which is exactly the
definition of event E per run (see Definition 4.1). Under event K, Lemma 12 implies that
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all f∗ of the original distribution PX ,Y reside within GT for all T . This also implies that
all f∗ of the original distribution remain the true risk minimizers under PX ,Y(GT ), for all
T , as they always benefit from the creation of the artificial labels.

Because the marginal of the distribution does not change during the run of Active-
ILESS, and because event E holds for each iteration of ILESS, we can apply Theorem 5
for all the runs of ILESS. We thus get that for every run of ILESS, which we denote by
ILESST ,

GT ⊆ B(f∗, RT ),

and thus, the rejection mass is bounded as follows

1− Φ(ILESST ) ≤ ∆B(f∗, RT ) ≤ θ(RT ) ·RT ,

where

RT , 2 ·R(f∗) + 11 · A
T

+ 6 ·
√
A

T
·R(f∗).

We denoted by R(f∗) the true error according to the original distribution, which might be
larger than the true error implied by the fake label distributions that the algorithm induces.
According to Lemma 18, enlarging RT can only weaken the bound, and thus, there is no
problem doing so. We additionally bound RT using

√
ab ≤ a/2 + b/2 to get

RT ≤ 5 ·R(f∗) + 14 · A
T
.

and thus,

∆B(f∗, RT ) ≤ θ′
(

5 ·R(f∗) + 14 · A
T

)
·
(

5 ·R(f∗) + 14 · A
T

)
.

In this proof we bound the sum
∑m

t=1Xt, where Xt , 1[xt ∈ ∆Gt], as ∆Gt is by
definition the probability that Active-ILESS requests a label. To do so, we will bound the
sum

∑m
t=1 Pt where Pt , 1[xt ∈ ∆B(f∗, Rt)], as we know that when K holds, ∆Gt ⊆

∆B(f∗, Rt).
According to the definition of Gt in Strategy 3, the probability distribution of the

artificial labeling done by Active-ILESS changes only when t is a natural power of 2. Thus,
Rt only changes when log2(t) ∈ N, and we get that

Pt ≤ θ′
(

5 ·R(f∗) + 14 · A
T

)
· 5R(f∗) +

14A · θ′
(
5 ·R(f∗) + 14 · AT

)
T

, (53)

where T = 2blog2(t−1)c−1.
We now have a series of Poisson trials, P1, P2, . . . , Pm. We use a version of the Chernoff

bound (as shown by Canny, 2012) to bound the label complexity.6 The statement and a
sketch of the proof of this bound are provided in Lemma 22 in Appendix B.

For independent Poisson variables P1, P2, . . . , Pm, where Pr[Pi = 1] = pi, P ,
∑n

i=1 Pi,
and µ = EP , for every α > 2e− 1:

Pr(P > (1 + α)µ) ≤ 2−µα.

6. This useful bound was used by Hanneke (2014a, Theorem 5.4).
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To bound µ = EP from above, we use Inequality (53) and plug it into the definition of µ.

µ = P1 + P2 +
m∑
i=3

Pt

≤ 2 +

dlog2me−1∑
k=1

2kP2k+1

≤ 2 +m · θ′
(

5R(f∗) + 14
A

m

)
·R(f∗) +

dlog2me−1∑
k=1

2k
14A · θ′

(
5R(f∗) + 14Am

)
2k−1

≤ 2 +m · θ′
(

5R(f∗) + 14
A

m

)
·R(f∗) + 28 log2m ·A · θ′

(
5R(f∗) + 14

A

m

)
.

(54)

We need to choose an α that satisfies both 2−µα ≤ δ/2, and α > 2e − 1. Clearly, α =
log2(2/δ)

µ + 2e− 1 suffices. Hence, we get that with probability of at least 1− δ/2,

P ≤

(
1 +

log2(2
δ )

µ
+ 2e− 1

)
µ

= log2(
2

δ
) + 2eµ.

Inequality (54) holds with probability of at least 1 − δ/2, and using the union bound, we
get that with probability of at least 1− δ,

P ≤ log2(
2

δ
) +

+2e

(
2 +m · θ′

(
5R(f∗) + 14

A

m

)
·R(f∗) + 28 log2m ·A · θ′

(
5R(f∗) + 14

A

m

))
= θ′

(
5R(f∗) + 14

A

m

)
2e ·mR(f∗) + log2(

2

δ
) + 56e · log2m ·A · θ′

(
5R(f∗) + 14

A

m

)
(55)

Corollary 20 Let F be a hypothesis class with a finite VC dimension d, PX ,Y be an un-
known distribution, and f∗ a true risk minimizer of PX ,Y . If for all r > R(f∗),

θ′(r) ≤ polylog1(1/r),

then the label complexity of Active-ILESS(m, δ/2) is bounded w.h.p. by

polylog1

(
1

5R(f∗) + 14Am

)
2e·mR(f∗)+log2(2/δ)+56e·log2m·A·polylog1

(
1

5R(f∗) + 14Am

)
,

which has the same form as Equation (52).
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Hsu (2010) calculated the label complexity of Agnostic CAL and Oracular CAL under
the assumption that the disagreement coefficient is bounded by a constant, θ for all r > 0.
If we adopt this assumption and use it in our analysis, we get that the label complexity is
bounded by

O
(
θmR(f∗) + ln(1/δ) + θd lnm ln

(m
dδ

))
.

This result is nearly identical (up to some logarithmic factors) to the result shown by
Hsu (2010, Theorem 4.3) for Agnostic CAL. Agnostic CAL, however, as mentioned before,
requires calculation of ERM under several constraints. Oracular CAL only requires one
constrained ERM calculation, and its label complexity depends on θ2 ln3m (Hsu, 2010,
Theorem 5.2). Our algorithm thus enjoys the good properties of both algorithms.

The dominant factor of Equation (55), if we ignore the logarithmic factors, is mR(f∗).
Active-ILESS has passive example complexity (see Definition 6.2), which means that the

total sample complexity is bounded by Õ(1
ε + R(f∗)

ε2
), where Õ(·) hides logarithmic factors.

Plugging the sample complexity into m in (55), we get that the total label complexity is

bounded by Õ(R(f∗)2

ε2
), in cases for which ILESS has a fast R∗ rejection rate. Kääriäinen

(2006, Theorem 3) showed that for every AL algorithm, under a specific (non-trivial) hy-
pothesis class F , there exists a deterministic target function g, and a marginal distribution

PX , s.t. the label complexity is Ω̃(R(f∗)2

ε2
) (where Ω̃(·) hides logarithmic factors).

9. Concluding Remarks

In this paper we focused on disagreement-based methods. Namely, we always required that
f∗ remains inside a low-error subset of hypotheses w.h.p., and made decisions based on dis-
agreement considerations. We have always chosen to abstain (in selective classification) or
require a label (in AL) whenever there was no consensus in the low error set for a given ex-
ample. However, this approach is not necessary when you have an epsilon budget for error.
Zhang and Chaudhuri (2014) presented an AL algorithm that uses a confidence-rated pre-
dictor to decide which labels to query. This predictor (see top of page 6 in their paper) uses
LP to minimize the query probability under a constraint on the total error. They also pro-
vided a new complexity measure, which is nicely presented in Hanneke (2016), and termed
ϕc. Up to certain constants, ϕc replaces the disagreement coefficient in the error bounds of
Equation (16) and Theorem 16 in that paper. ϕc is a potential improvement because it is
shown that ϕc(r) ≤ θf (r). Zhang and Chaudhuri show an example where this improvement
can be as large as

√
d for linear classification under the log-concave distribution.

In our paper we focused only on consensus based decisions. This approach did not
affect our results significantly as our main concern was the dependency on 1/ε (logarithmic
or linear). Consensus was an important element in the proof of Theorem 8. Pointwise-
competitive selective classifiers are based on consensus decisions, and thus the LP idea
is not an appropriate AL equivalent for PCS. Nevertheless, our reduction from PCS to
θf∗(r) (Theorem 8), is immediately translated to ϕc(r), as ϕc(r) ≤ θf∗(r). It is interesting,
however, to define a selective classifier that is not PCS, has an error budget, and apply the
LP technique. We leave this for future work.

We introduced a new selective classification algorithm, called ILESS, whose rejection
“engine” uses sharp generalization bounds (which depend on R(f∗)). Our analysis proves
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that ILESS has sometimes significantly better rejection guarantees relative to the best
known pointwise-competitive selective strategy of Wiener and El-Yaniv (2015). Moreover,
the guarantees we provide for ILESS do not depend at all on the Bernstein assumption.
For the general agnostic setting, we showed an equivalence relation between pointwise-
competitive selective classification, active learning with Active-ILESS, and the disagreement
coefficient (see Figure 1). This equivalence is formulated in terms of a fast R∗ rejection rate
and an R∗ exponential speedup (Definitions 4.2 and 6.3).

Theorems 8 and 5 show that selective classification with a fast R∗ rejection rate is
completely equivalent to having a disagreement coefficient bounded by polylog(1/r) for
r > 0. In Section 6, in Strategy 3, we define Active-ILESS using ILESS implicitly as its
engine (see Statement 4 in Strategy 3). We can replace ILESS with another pointwise-
competitive selective algorithm, and thus construct a new active learner, that queries a
label whenever the selective classifier abstains, and create a fake label according to the
decision of the classifier whenever it decides to predict. Because the selective predictor is
pointwise-competitive, we know that the underlying distribution induced by its fake labels is
equivalent to a distribution defined by a deterministic labeling according to f∗ and the same
PX . The algorithm will terminate using the exact same termination condition as Active-
ILESS (when σActive < ε), and thus the total sample complexity (labeled and unlabeled
examples) will remain the same. The change will only be in the labeling criterion. Lemmas
11, 12, 13, 14, and 15 can all be generalized to such an algorithm.

Going in the other direction to create a selective classifier from a general active learner
is more challenging. If the active learner, however, follows the Active-ILESS paradigm, and
in particular, uses a pointwise-competitive selective classifier to decide on label requests,
then a new pointwise-competitive selective classifier can be created in the same way that
Batch-ILESS was created. We can then restate Theorem 16, providing a reduction from an
R∗ exponential speedup of the active algorithm to a fast R∗ rejection rate of the selective
classifier.

Disagreement-based decision making in active and selective learning leads to “defensive”
algorithms. For example, in the active learning case, this means that a defensive algorithm
will ask for more labels than a more aggressive algorithm. In selective classification, this
defensiveness provides the power to be pointwise-competitive, but at a cost of an increased
rejection rate. It would be interesting to consider more aggressive algorithms that could,
for example, take into consideration an estimation of PX in order to ignore examples that
cause disagreement only between functions that are very similar to each other (in terms of
the probability mass of their difference). Such algorithms can be seen in Dasgupta (2005);
Freund et al. (1997); Gonen et al. (2013); Zhang and Chaudhuri (2014), for the realizable
and the low-error scenarios. We believe that there is still work to be done for the agnostic
scenario.

Many aggressive algorithms could be devised under assumptions about knowledge of PX
(that could be acquired during the algorithm run, and is given in the transductive case),
or in a Bayesian setting where a prior distribution on F exists. When researching this
direction, one might also want to define a cost over unlabeled examples, and discuss the
trade-off between labeled and unlabeled examples. The main open question inspired by our
results would be to identify similar correspondence between aggressive selective classification
algorithms and aggressive active learners.
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Another aspect of selective classification and active learning, which was not addressed
in this paper, is differentiating between more and less noisy areas of the distribution. If
we define the noise to be the error of the Bayes classifier, and we assume that the noise
behaves similarly in close areas (for instance, we assume that the derivative of the noise
is bounded), we can derive an active learner that will estimate the noise, and take it into
consideration. A noisy area could be defined as an area for which even the best classifier in
the class could not achieve a low-error. This motivates a new type of labeling for selective
prediction, where one can abstain for two reasons: (i) lack of knowledge in a specific region
of X , i.e., not enough examples were observed in that region, and the generalization bounds
are not sufficiently tight. (ii) The region was well explored, but even the best classifier
performs poorly, and thus the answer is unknown (the region is noisy). In our paper, an
active learner will query for both scenarios; however, a more clever active learner might only
query examples of the first type, as examples of the second type cannot reduce its error.

Consider the following experiment in Active Learning; Suppose we are trying to learn
a hyperspace hypothesis over R2, where we have a Gaussian distribution of positive points
located at (−1, 0), and another Gaussian distribution of negative points located at (1, 0).
A simple active learner that is based on distance from the margin, will quickly converge
to querying points that have x ∼ 0, but will have no preferation over the value of y. Now
consider another Gaussian distribution of noisy points, located at (0, 1), where each point
is −1 or 1 with equal probability. Querying in areas where y ∼ 1 is almost completely
unbeneficial, however, this is still very close to the margin. We devised a simple active
learner that creates a noise hit map over R2, and consider the noise as part of its heuristics.
Thus, achieving faster convergence over the usual margin based algorithm. Of course, this
is only a toy example, and when running this experiment over some few real world data
sets, we got no improvement. We believe that some more experimental work in this area,
might prove to be beneficial.

There has been a lot of progress on the theoretical level, in the field of active learning with
noise estimation (Locatelli et al., 2017; Hanneke, 2017; Minsker, 2012; Hanneke and Yang,
2015) However most of the work requires either the Tsybakov noise condition (Tsybakov,
2004), a finite VC dimension, or some other strong smoothing assumptions. It would
be interesting to see some experimental work on real data sets, accompanied with some
theoretical work with a simplistic noise locality assumption.
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Appendix A. Proofs for Lemmas in Section 6

Proof of Lemma 12 We prove the claim by induction over t for which Gt is different from
Gt−1. The base case of the induction is clear. We now show that functions that are true
risk minimizers of PX ,Y(Gt−1) reside within Gt. According to Lemma 11, f∗ is a true risk
minimizer under PX ,Y(Gt−1) (given the induction hypothesis), and hence will also be within
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Gt. We refer by f∗ to a true risk minimizer according to PX ,Y(Gt−1). Using Inequality (47)
and the definition of σ̄R̂−R,

R̂(f∗, Ŝ) ≤ RPX ,Y (Gt−1)(f
∗) + σR̂−R

(
t

2
,
δ

2t
, d,RPX ,Y (Gt−1)(f

∗), R̂(f∗, Ŝ)

)
≤ RPX ,Y (Gt−1)(f

∗) + σ̄R̂−R

(
t

2
,
δ

2t
, d,RPX ,Y (Gt−1)(f

∗)

)
,

(56)

and by Inequality (46) and the definition of f̂ we get,

RPX ,Y (Gt−1)(f
∗) ≤ RPX ,Y (Gt−1)(f̂)

≤ R̂(f̂ , Ŝ) + σR−R̂

(
t

2
,
δ

2t
, d,RPX ,Y (Gt−1)(f̂), R̂(f̂ , Ŝ)

)
≤ R̂(f̂ , Ŝ) + σ̂R−R̂

(
t

2
,
δ

2t
, d, R̂(f̂ , Ŝ)

)
.

(57)

Plugging (57) into (56) we get,

R̂(f∗, Ŝ) ≤ R̂(f̂ , Ŝ) + σ̂R−R̂

(
t

2
,
δ

2t
, d, R̂(f̂ , Ŝ)

)
+σ̄R̂−R

(
t

2
,
δ

2t
, d, R̂(f̂ , Ŝ) + σ̂R−R̂

(
t

2
,
δ

2t
, d, R̂(f̂ , Ŝ)

))
⇒ f∗ ∈ Gt.

Proof of Lemma 13 Let Gt−1 be the final low-error set of Active-ILESS, and Ŝ be the
final set of examples. The following inequalities are derived from Lemma 10 and inequalities
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(56) and (57).

RPX ,Y (Gt−1)(f̂) ≤ R̂(f̂ , Ŝ) + σ̂R−R̂

(
t

2
,
δ

2t
, d, R̂(f̂ , Ŝ)

)
≤ R̂(f∗, Ŝ) + σ̂R−R̂

(
t

2
,
δ

2t
, d, R̂(f̂ , Ŝ)

)
≤ RPX ,Y (Gt−1)(f

∗) + σ̄R̂−R

(
t

2
,
δ

2t
, d,RPX ,Y (Gt−1)(f

∗)

)
+σ̂R−R̂

(
t

2
,
δ

2t
, d, R̂(f̂ , Ŝ)

)
≤ RPX ,Y (Gt−1)(f

∗) + σ̄R̂−R

(
t

2
,
δ

2t
, d, R̂(f̂ , Ŝ) + σ̂R−R̂

(
t

2
,
δ

2t
, d, R̂(f̂ , Ŝ)

))
+σ̂R−R̂

(
t

2
,
δ

2t
, d, R̂(f̂ , Ŝ)

)
≤ RPX ,Y (Gt−1)(f

∗) + ε.

By Lemma 12 we know that f∗ resides within Gt−1, which implies that any change in
PX ,Y(Gt−1) in comparison to PX ,Y reduces the true error of f∗. This also means that for
every f ∈ F ,

RPX ,Y (f)−RPX ,Y (Gt−1)(f) ≤ RPX ,Y (f∗)−RPX ,Y (Gt−1)(f
∗),

which results in
RPX ,Y (f̂) ≤ RPX ,Y (f∗) + ε.

Proof of Lemma 14 The proof is similar to the proof of Lemma 4. We consider the last
modification of Gt as a run of ILESS, under PX ,Y(Gt−1), with m0 , 2blog2mc−1 examples
and delta equal to δ

4m0
.

Under event K, the conditions of Lemma 4 hold, and by Lemma 12, RPX ,Y (Gt−1)(f
∗) ≤

R(f∗). We simply apply Lemma 4 with these parameters to get A′ (A in Lemma 4).

A′ = 4d ln

(
16m0e

dδ/4m0

)
= 4d ln

(
64m2

0e

dδ

)
.

The fact that m/4 ≤ m0 ≤ m/2 completes the proof.

Proof of Lemma 15 We know by Lemma 14 that there exist constants C1,C2 that depend
only on ln(1

δ ) and d, and are independent of m, s.t.

σActive ≤ C1
lnm

m
+ C2

√
lnm

m
·R(f∗).

We also know by the definition of Active-ILESS (Strategy 3), that it terminates when σActive
is smaller than the given ε. We will find m large enough s.t.
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C1
lnm

m
≤ ε/2, (58)

C2

√
lnm

m
·R(f∗) ≤ ε/2. (59)

We assume that ε ≤ 1/e, as it is easy to find a proper m for ε > 1/e. Starting with Equation
(58), we want to show that m = O(1

ε ln(1
ε )) satisfies it. Thus, we find k1 s.t.

C1
ln(k1

1
ε ln

(
1
ε )
)

k1
1
ε ln

(
1
ε

) ≤ ε

2

⇔
ln
(
k1

1
ε · ln(1

ε )
)

ln
(

1
ε

) ≤ k1

2C1
. (60)

Bounding the left-hand side of Inequality (60) for ε ≤ 1/e gives us,

ln
(
k1

1
ε · ln(1

ε )
)

ln(1
ε )

≤
ln
(
k1

1
ε ·

1
ε

)
ln
(

1
ε

)
≤ 2 + ln k1.

We need to find k1 that will satisfy

2 + ln k1 ≤
k1

2C1
.

k1 = 16C2
1 will work for C1 ≥ 1; otherwise, we take k1 = 10.

We use the same procedure to show that m = O
(
R(f∗)
ε2

ln
(
R(f∗)
ε2

))
satisfies Equation

(59). We rewrite the equation in the following way:

lnm

m
≤ ε2

4C2
2R(f∗)

, ε0.

We assume that ε0 ≤ 1/e (m = 4 holds otherwise) and find k2 s.t.

ln
(
k2

1
ε0

ln
(

1
ε0

))
k2

1
ε0

ln
(

1
ε0

) ≤ ε0.

As before, we reduce the problem to finding k2 that satisfies

2 + ln(k2) ≤ k2.

k2 = 4 suffices. We thus get that m = O
(

1
ε20

ln
(

1
ε20

))
= O

(
R(f∗)
ε2

ln
(
R(f∗)
ε2

))
satisfies

Equation (59). This implies that there exists a function

m(1/ε,R(f∗)) = O

(
1

ε
ln

(
1

ε

)
+
R(f∗)

ε2
ln

(
R(f∗)

ε2

))
that bounds the total number of labels processed by Active-ILESS.
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Appendix B. Proofs of Chernoff Bounds

Lemma 21 Let X1, X2, ..., Xn be independent Bernoulli trials with Pr[Xi = 1] = p, X ,∑n
i=1Xi, and µ = EX. Then, for every α ≥ 0:

Pr(X < (1− α)µ) ≤ exp(−µα2/2).

Proof This proof is taken from the work of John Canny Canny (2012).

For t > 0, we have

Pr (X < (1− α)µ) = Pr (exp(−tX) > exp(−t(1− α)µ)) . (61)

We use Markov’s inequality. For a nonnegative random variable X, and a > 0,

Pr(X ≥ a) ≤ E(X)

a
.

We apply the inequality for the right-hand side of Equation (61), to get

Pr(X < (1− α)µ) ≤ E(exp(−tX))

exp(−t(1− α)µ)
. (62)

X1, X2, ..., Xn are independent and thus

E(exp(−tX)) =
n∏
i=1

E(exp(−tXi)).

For each Xi

E(exp(−tXi)) = pe−t + (1− p) = 1− p(1− e−t).

We use the fact that 1− x < exp(−x) for all x, with x = p(1− e−t), to get

E(exp(−tXi)) ≤ exp(−p(1− e−t)),

and conclude that

E(exp(−tX)) =
n∏
i=1

E (exp(−tXi)) ≤
n∏
i=1

exp
(
−p(1− e−t)

)
= exp

(
n∑
i=1

p(e−t − 1)

)
= exp

(
µ(e−t − 1)

)
. (63)

Going back to Equation (62), we have,

Pr(X < (1− α)µ) ≤
exp

(
µ(e−t − 1)

)
exp (−t(1− α)µ)

= exp
(
µ(e−t − 1 + t− tα)

)
. (64)

We choose t > 0 to make the right-hand side of the equation as small as possible. After

derivation, we get that the best t is t = ln
(

1
1−α

)
, and plugging it into Equation (64) gives
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us,

Pr(X < (1− α)µ) ≤ exp

(
µ(1− α− 1 + ln

(
1

1− α

)
− ln

(
1

1− α

)
α)

)
= exp

(
µ(−α+ ln

(
1

1− α

)
(1− α))

)
=

(
e−α

(1− α)1−α

)µ
. (65)

We now simplify this bound to get the desired result. We know that (1 − α)1−α =
e(1−α)ln(1−α), and by Taylor expansion

ln(1− α) = −α− α2

2
− α3

3
...,

which multiplied by (1− α), gives us

(1− α)ln(1− α) = −α+
α2

2
+ positive terms > −α+

α2

2
. (66)

Plugging (66) into Equation (65), we finally get,

Pr(X < (1− α)µ) ≤
(

e−α

(1− α)1−α

)µ
=

(
e−α

e(1−α)ln(1−α)

)µ
≤

(
e−α

e−α+α2

2

)µ
= e−µα

2/2

Lemma 22 Let X1, X2, ..., Xn be independent Poisson trials with Pr[Xi = 1] = pi, X ,∑n
i=1Xi, and µ = EX. Then, for every α ≥ 2e− 1:

Pr(X > (1 + α)µ) ≤ 2−µα.

Proof Sketch This sketch is taken from the work of John Canny Canny (2012). It is
almost identical to the proof of Lemma 21.

We start by showing that

Pr(X > (1 + α)µ) ≤
(

eα

(1 + α)1+α

)µ
.
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For every t > 0,

Pr(X > (1 + α)µ) = Pr[exp(tX) > exp (t(1 + α)µ)].

As we did in Lemma 21, we compute the Markov bound,

Pr(X > (1 + α)µ) ≤ E(exp(tX))

exp(t(1 + α)µ)
,

and use the fact that Xi are independent, just like in (63), to get that

E(exp(tX)) ≤ exp
(
µ(et − 1)

)
.

Thus we get that

Pr(X > (1 + α)µ) ≤ exp(µ(et − 1))

exp(t(1 + α)µ)
= exp

(
µ(et − 1− t− αt)

)
.

From deviation, we choose t = ln(1 + α) to get

Pr(X > (1 + α)µ) ≤
(

eα

(1 + α)1+α

)µ
.

For α ≥ 2e− 1:

Pr(X > (1 + α)µ) ≤
(

eα

(1 + α)1+α

)µ
≤
(

eα

(2e)1+α

)µ
≤
(

eα

(2e)α

)µ
= 2−µα.

Appendix C. The Rejection Rate of Batch-ILESS

Lemma 23 Given that event K (see Definition 6.1) occurred, the radius of Batch-ILESS,
as defined in Strategy 3, Stage 4, satisfies

σActive = O

(
B

m
+

√
B

m
·R(f∗)

)
,

where B , 4d ln
(

8m2e
dδ

)
.

Proof The proof is very similar to the proof of Lemma 14.

Theorem 24 Let F be a hypothesis class with VC-dimension d, and PX ,Y be an unknown
probability distribution. Assume that event K (see Definition 6.1) occurred. Then, for all
f∗, the abstain rate is bounded by

1− Φ(Batch-ILESS) ≤ θf∗(R0) ·R0,
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where

R0 , 2 ·R(f∗) + 44 · B
m

+ 12 ·
√
B

m
·R(f∗).

where B , 4d ln
(

8m2e
dδ

)
. This immediately implies (by definition) that

1− Φ(Batch-ILESS) ≤ θ(R0) ·R0.

Proof Sketch The proof is very similar to the proof of Lemma 23. We observe the last
modification of GT , and notice that the change was made according to a run of ILESS, on
the implied probability distribution PX ,Y(GT−1). Then we simply activate Theorem 5 with
the relevant parameters plugged into it.

Note that by Lemma 12, all f∗ of the original distribution reside within Gt for all t,
and thus, by Lemma 11, they are all true risk minimizers of PX ,Y(GT−1). This also implies
that R(f∗) ≥ RPX ,Y (Gt−1)(f

∗) and thus can be used to bound Equation (30) of the original
theorem that was proven for ILESS. θf is independent of PY|X for all f , and thus the change
of the labels does not affect it.
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