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Abstract

As a model problem for clustering, we consider the densest k-disjoint-clique problem of

partitioning a weighted complete graph into k disjoint subgraphs such that the sum of the

densities of these subgraphs is maximized. We establish that such subgraphs can be recovered

from the solution of a particular semidefinite relaxation with high probability if the input

graph is sampled from a distribution of clusterable graphs. Specifically, the semidefinite

relaxation is exact if the graph consists of k large disjoint subgraphs, corresponding to

clusters, with weight concentrated within these subgraphs, plus a moderate number of

nodes not belonging to any cluster. Further, we establish that if noise is weakly obscuring

these clusters, i.e, the between-cluster edges are assigned very small weights, then we can

recover significantly smaller clusters. For example, we show that in approximately sparse

graphs, where the between-cluster weights tend to zero as the size n of the graph tends to

infinity, we can recover clusters of size polylogarithmic in n under certain conditions on the

distribution of edge weights. Empirical evidence from numerical simulations is also provided

to support these theoretical phase transitions to perfect recovery of the cluster structure.
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1. Introduction

Clustering is a fundamental problem in machine learning and statistics, focusing on the

identification and classification of groups, called clusters, of similar items in a given data set.

Clustering is ubiquitous, playing a prominent role in varied fields such as computational

biology, information retrieval, pattern recognition, image processing and computer vision,

and network analysis. This problem is inherently ill-posed, as the partition or clustering

of any given data set will depend heavily on how we quantify similarity between items in

the data set and how we characterize clusters; it is not outside the realm of possibility to

have two drastically different clusterings of the same data if two different similarity metrics

are used in the clustering process. Regardless of the similarity metric used, clustering is a

combinatorial optimization problem at its core: given data, identify a partition or labeling

of the data (approximately) maximizing some measure of quality of the clustering. Due

to the difficulties inherent with optimization over discrete sets, many popular approaches

for clustering involve the approximate solution of an NP-hard combinatorial optimization

problem; for example, the spectral clustering heuristic for the normalized cut problem

(Dhillon et al., 2004; Ng et al., 2002), the convex relaxation approaches for the correlation

clustering problem (Mathieu and Schudy, 2010), robust principal component analysis (Chen

et al., 2014a; Oymak and Hassibi, 2011), and the densest k-disjoint-clique problem (Ames

and Vavasis, 2014; Ames, 2014), among many others.

In spite of the inherent intractability of clustering, many recent analyses have established

that if data is sampled from some distribution of clusterable data, then one can efficiently

recover the underlying cluster structure using a variety of clustering algorithms. In particular,

the recent results of Abbe et al. (2016); Ailon et al. (2013); Ames and Vavasis (2014); Ames

(2014); Amini and Levina (2018); Cai and Li (2015); Chen et al. (2014a,b); Chen and Xu

(2014); Guédon and Vershynin (2015); Hajek et al. (2015); Lei and Rinaldo (2015); Mathieu

and Schudy (2010); Nellore and Ward (2015); Oymak and Hassibi (2011); Rohe et al. (2011);

Qin and Rohe (2013); Vinayak et al. (2014) all establish sufficient conditions under which we

can expect to identify the latent cluster structure efficiently. Most of these results assume

that the similarity structure of the data can be modeled as a graph sampled from some

generalization of the stochastic block model proposed by Holland et al. (1983). In this model,

the nodes of the graph, called the similarity graph of the data, are associated with the

items in the data set. An edge is drawn between two items with fixed probability p if the

corresponding items belong to the same cluster, and with fixed probability q < p if the

corresponding items belong to different clusters. Under this block model, the analyses cited

above establish that the block structure of the data can be recovered in polynomial-time

with high probability provided that the smallest cluster in the data is sufficiently large,
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typically larger than c̃
√
n, where n denotes the number of items in the data (and nodes in

the similarity graph) and c̃ is a polylogarithmic factor in n depending on p− q.

Although valuable in establishing sufficient conditions for data to be clusterable, these

results are not immediately applicable to data sets seen in many applications, particularly

those arising from the analysis of social networks. For example, statistical analysis of social

networks suggests that communities, playing the role of clusters, tend to be limited in size to

several hundred users, while the networks themselves can contain thousands, if not millions

or even billions, of users (Leskovec et al., 2008, 2009). However, the recent analyses of Chen

et al. (2014a); Chen and Xu (2014); Guédon and Vershynin (2015); Jalali et al. (2015); Rohe

et al. (2014), among others, suggest that these clusterability results are overly conservative

with respect to the size of clusters we can expect to recover in polynomial-time. Specifically,

these analyses allow the edge probabilities p and q to vary with n, and investigate how the

size of the smallest cluster that can be recovered depends on the relative scaling of p, q and

n. In this case, the data is often assumed to be sampled from a sparse generalized stochastic

block model where the parameters p and q governing edge formation are functions depending

on the number of items n and one or both tends to 0 as n→∞. In the case where p tends

to 0 much more slowly than q, the noise obscuring the block structure is significantly weaker

than in the dense graph case (where p and q are assumed fixed). Here, sparsity refers to the

fact that graphs generated according to the block model contain very few edges between

clusters with high probability when n is large, and not that the graph itself is sparse in the

sense that the nodes have small average degree. In this case, it has been shown that clusters

significantly smaller than
√
n can be recovered efficiently; specifically, several methods have

been shown to recover clusters with size polylogarithmic in n under certain assumptions on

the probability functions p and q (see Chen et al., 2014a; Chen and Xu, 2014; Guédon and

Vershynin, 2015; Rohe et al., 2014). We should note that these results provide evidence of a

computational limit for cluster recovery; that is, these results establish that clusters can be

recovered in a computationally efficient way if the underlying data satisfies certain sufficient

conditions. We should note further that the lower bounds on cluster size given by these

sufficient conditions typically do not match information-theoretic limits; it is well-known

that it is possible to identify clusters of size on the order of log n in certain settings, however,

no polynomial-time algorithms are known to do so (Chen and Xu 2014; Hajek et al. 2015

provide further details).

The primary contribution of this paper is an analysis establishing similar clusterability

results for a particular convex relaxation of the clustering problem. That is, we present an

analysis establishing the following theorem, which provides conditions for perfect recovery

of the underlying cluster structure from the solution of a particular semidefinite program.

As an immediate corollary, the theorem establishes that one may identify clusters as small
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as Ω(log n), i.e., there exists constant c such that the size of the smallest cluster recoverable

cluster is bounded below by c log n for sufficiently large n, with high probability if the data

is sampled from the sparse block model described above for particular choices of p and q.

Here, we say that an event occurs with high probability (w.h.p.) if the event occurs with

probability tending polynomially to 1 as n→∞.

Theorem 1 Suppose that the n-node graph G = (V,E) is sampled from the generalized

stochastic block model, with k disjoint blocks, in-cluster edge probability p, and between-cluster

edge probability q. Let A ∈ Rn×n denote the adjacency matrix of G and let r̂ and r̃ denote

the cardinality of the smallest and largest clusters, respectively, in the block model for G.

Then there exists constants c1, c2, c3 > 0 such that the columns of the optimal solution X∗

of the semidefinite program

max
X∈Σn

+

{Tr(AX) : Xe ≤ e,Tr(X) = k,X ≥ 0}

are scalar multiples of the characteristic vectors of the clusters in our underlying block model

with high probability if

p− q ≥ c3 max

{√
σ̃2 log n

r̂
,
log n

r̂

}
,

where σ̃2 = max{p(1− p), q(1− q)}, and

(p− q)r̂ ≥ c1 max
{√

q(1− q)n,
√

log n
}

+ c2 max
{√

p(1− p)r̃,
√

log n
}
.

Moreover, in this case, every characteristic vector of a cluster in the block model is a scalar

multiple of at least one column of X∗.

Here, the characteristic vector of a set S ⊆ {1, 2, . . . , n} is the vector x ∈ {0, 1}n with

ith element

xi =

{
1, if i ∈ S
0, otherwise.

In Theorem 1, Tr(X) denotes the trace of the matrix X, e denotes the all-ones vector of

appropriate dimension, the notation X ≥ 0 indicates that the entries of X are nonnegative,

and Σn
+ denotes the cone of n× n symmetric positive semidefinite matrices.

Note that if G is sampled from the dense block model, i.e., p, q are independent of n,

then Theorem 1 suggests that we have exact recovery if r̂ ≥ c
√
n with high probability,

where c is a constant depending on p, q; this bound matches that established by Ames

(2014) (among many others) up to constant terms. On the other hand, when G is sampled

from the sparse block model, we see that Theorem 1 suggests that we may have perfect
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recovery of significantly smaller clusters. For example, suppose that p = 1 is fixed and

q = log n/n. Then we have exact recovery with high probability if the smallest cluster has

size r̂ = Ω(log n); see the discussion following Theorem 3.

We will show that analogous phenomena occur in what we will call approximately sparse

graphs. In many practical applications, the expectation that we have a binary labeling

indicating whether any pair of items in a given data set are similar or dissimilar is unrealistic.

However, it is often possible to describe the level of similarity between any two items using

some affinity function based on distance between the items in question. For example, we could

consider the discrepancy in pixel intensity and geographic location in image segmentation

applications or Euclidean distance between two items represented as vectors in a Euclidean

space (or some other vector space with corresponding norm). In this case, we can summarize

the pairwise similarity relationships within our data using a weighted graph, called a weighted

similarity graph. Specifically, given a data set with affinity function f , the weighted similarity

graph is the weighted complete graph with nodes corresponding to the items in the data

set, and edge weight wij between nodes i and j given by the value of f(i, j). Clearly, this

contains the similarity graphs discussed earlier as a special case where wij = 1 if items i

and j are known to be similar and wij = 0 otherwise; note that we assume that we have an

undirected graph with symmetric adjacency matrix.

We can generalize the stochastic block model in an identical fashion. We assume that

items in the same cluster are significantly more similar than pairs of items in different

clusters. This corresponds to edge weights within clusters being larger, on average, than

edge weights between clusters. This motivates the following random graph model, which we

will call the planted cluster model. Let G = (V,W ) be the weighted complete graph whose

node set represents the items in some data set containing k clusters and (potentially) some

nodes that will not be assigned to a cluster. For each pair of nodes u, v in the same cluster

C`, ` ∈ {1, 2, . . . , k}, we randomly sample edge weight wuv ≥ 0, and wvu by symmetry, from

some probability distribution Ω` with mean α` ≥ α > 0. If u ∈ Ci, v ∈ Cj , where i 6= j, i.e.,

u, v do not belong to the same cluster, we sample wuv = wvu ≥ 0 from a different probability

distribution Ωij with mean βij ≤ β ∈ [0, α). Note that this model contains the generalized

stochastic block model discussed earlier as a special case when Ω` and Ωij are Bernoulli

distributions with probabilities of success p` = p and qij = q, respectively.

It was shown by Ames (2014) that if G = (V,W ) is sampled from the planted cluster

model with minimum cluster size at least c
√
n in the homogeneous case where all within-

cluster edges are i.i.d. with mean α and all between-cluster edges are i.i.d. with mean β,

where c is a constant depending on α and β, then we can recover the clusters from the
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optimal solution of the semidefinite program

max
X∈Σn

+

{
Tr(WX) : Xe ≤ e,Tr(X) = k,X ≥ 0

}
(1)

with high probability, where k is the number of clusters in the graph. We will show that these

results can be strengthened to establish that much smaller clusters can be recovered in the

presence of approximately sparse noise. That is, we will see that if the between-cluster edge

weights have expectation β and variance σ2
2 approaching zero sufficiently quickly as n→∞,

then we may recover clusters containing as few as Ω(log n) nodes with high probability. We

will derive the semidefinite program (1) as a relaxation of a particular model problem for

clustering in Section 2.1 and formally state our recovery guarantees in Section 2.2; we will see

that these results immediately specialize to those stated in Theorem 1 for the semidefinite

program (1).

2. Semidefinite Relaxations of the Densest k-Disjoint Clique Problem

In this section, we derive a semidefinite relaxation for the densest k-disjoint clique problem

and present an analysis illustrating a sufficient condition ensuring that this relaxation is

exact. This problem will act as a model problem for clustering and we will see that we

should expect to accurately recover the underlying cluster structure if the given data satisfies

this sufficient condition.

2.1. The Densest k-disjoint Clique Problem

We begin by deriving a heuristic for the clustering problem based on semidefinite relaxation

of the densest disjoint clique problem. A similar discussion motivating the relaxation was

originally presented by Ames (2014); we repeat it here for completeness. Let Kn = (V,W )

be a weighted complete graph with vertex set V = {1, 2, . . . , n} and nonnegative edge weights

wij ∈ [0, 1] for all i, j ∈ V . Given a subgraph H of Kn, the density dH of H is the average

edge weight incident at a vertex in H:

dH =
∑

ij∈E(H)

wij
|V (H)|

.

If we assume that Kn is the similarity graph of some data set consisting of k disjoint

clusters and that weight is concentrated more heavily on within-cluster edges than between-

cluster edges, then we may cluster this data set by finding the set of k disjoint subgraphs,

corresponding to these clusters, with maximum density; we call this problem the densest

k-partition problem. Peng and Wei (2007) established that the densest k-partition problem is
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NP-hard. Moreover, this partition model excludes the case where some items in the data set

do not naturally associate with any of the clusters in the data. To simultaneously motivate

a convex relaxation of the densest k-partition problem and address the inclusion of nodes

that do not naturally belong to clusters, we consider the densest k-disjoint clique problem.

Given a graph G = (V,E), a clique of G is a pairwise adjacent subset of V . That is,

C ⊆ V is a clique of G if ij ∈ E for every pair of nodes i, j ∈ C or, equivalently, the subgraph

G(C) induced by C is complete. We say that H is a k-disjoint-clique subgraph of Kn if

V (H) consists of k disjoint cliques, i.e., H is the union of k disjoint complete subgraphs of

Kn. The densest k-disjoint-clique problem seeks a k-disjoint-clique subgraph H∗ maximizing

the sum of the densities of the disjoint complete subgraphs comprising H∗. Note that if we

add the additional constraint that each node in Kn belongs to exactly one k-disjoint-clique

subgraph in Kn, then the densest k-disjoint-clique problem becomes the densest k-partition

problem. However, in general, the densest k-disjoint-clique problem allows an assignment

of nodes to clusters, represented by the disjoint cliques, which excludes some nodes. For

example, if such nodes are present in the data, they would not be assigned to a cluster by

the optimal k-disjoint-clique subgraph.

The complexity of the densest k-disjoint-clique problem is unknown; in particular, no

polynomial-time algorithm for its solution is known. To address this potential intractability,

we will attempt to approximately solve the k-disjoint-clique problem by convex relaxation.

Suppose that v1, . . . ,vk are the characteristic vectors of a set of disjoint cliques C1, C2, . . . , Ck

forming a k-disjoint-clique subgraph of Kn. Using this notation, the density of the complete

subgraph induced by Ci is equal to

dG(Ci) =
∑
u,v∈Ci

wuv
|Ci|

=
vTi Wvi

vTi vi
.

If we let P be the n×k matrix with ith column equal to vi/‖vi‖, where ‖ · ‖ = ‖ · ‖2 denotes

the standard Euclidean norm, then it is easy to see that

k∑
i=1

dG(Ci) = Tr(P TWP ).

We call such a matrix P a normalized k-cluster matrix and denote the set of normalized k-

cluster matrices of the vertex set V by ncm(V, k). It follows that the densest k-disjoint-clique

problem may be formulated as

max
{

Tr(P TWP ) : P ∈ ncm(V, k)
}
. (2)

Again, the complexity of (2) is unknown, however, the maximization of quadratic functions

subject to combinatorial constraints is known to be NP-hard.
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A process for relaxation of (2) using matrix lifting is described by Ames (2014); a

similar relaxation technique was applied by Ames and Vavasis (2011, 2014) and Ames (2015).

In particular, each proposed cluster Ci, with characteristic vector vi, corresponds to the

rank-one symmetric matrix

X(i) =
viv

T
i

vTi vi
.

It is easy to see that the density of G(Ci) is equal to

dG(Ci) =
vTi Wvi

vTi vi
= Tr(WX(i)).

Moreover, each of the matrices X(i) has row and column sums equal to either 0 or 1,

and trace equal to 1. Finally, for each proposed clustering C1, . . . , Ck, the corresponding

rank-one matrices are orthogonal in the trace inner product, due to the orthogonality of the

characteristic vectors of the corresponding disjoint clusters. Thus, the matrix

X =

k∑
i=1

X(i) =

k∑
i=1

viv
T
i

vTi vi
(3)

has rank equal to k. This suggests that we may relax (2) as the rank-constrained semidefinite

program

max
X∈Σn

+

{Tr(WX) : Xe ≤ e, rankX = k,TrX = k,X ≥ 0} . (4)

The relaxation (4) can be relaxed further to a semidefinite program by omitting the nonconvex

rank constraint:

max
X∈Σn

+

{Tr(WX) : Xe ≤ e,TrX = k,X ≥ 0} . (5)

We should note that the semidefinite program (5) is remarkably similar to the semidefinite

relaxation of the minimum sum of squared distance partition of Peng and Wei (2007) and

the semidefinite relaxation of the maximum likelihood estimate of the stochastic block model

considered by Amini and Levina (2018), among others, although our relaxation approach

differs slightly from that used in these two papers.

2.2. Block Models and Recovery Guarantees

Given a set of clusterable data or, more accurately, a clusterable graph representation of

data, Ames (2014) established that one can recover the underlying cluster structure from the

optimal solution of the semidefinite program (5). Specifically, it is assumed that data with

strong cluster structure should correspond to similarity graphs with heavy weight assigned

to edges within clusters, relative to that between cluster edges. This corresponds to pairs of
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items within clusters being significantly more similar than pairs of items in different clusters.

This motivates the following block model.

Let H∗ be a k-disjoint-clique subgraph of Kn = (V,W ) with vertex set composed of the

disjoint cliques C1, . . . , Ck and let Σn denote the set of all n× n symmetric matrices. We

consider weight matrices W = [wij ] ∈ Σn with entries sampled independently from one of

two probability distributions Ω1,Ω2 as follows.

• For each i = 1, . . . , k and each u, v ∈ Ci, we sample wuv = wvu from a distribution Ω1

such that

E[wuv] = E[wvu] = α, 0 ≤ wuv ≤ 1,

for fixed α ∈ (0, 1].

• For each remaining edge uv, u ∈ Ci, v ∈ Cj , we sample the edge weight wuv = wvu

from a second distribution Ω2 such that

E[wuv] = E[wvu] = β, 0 ≤ wuv ≤ 1,

for fixed β ∈ [0, α) if 1 ≤ i, j ≤ k or i = j = k + 1, and E[wuv] = β/2 otherwise.

We should note that the assumption that the entries of W are bounded between 0 and 1

is made for simplicity in the statement and proof of our main result; analogous recovery

guarantees hold if we assume that random variables sampled according to Ω1 and Ω2 are

bounded and nonnegative with high probability. We say that such random matrices W are

sampled from the planted cluster model. Note that if W is sampled from the planted cluster

model, then weight is concentrated on within-cluster edges (in expectation). This provides a

natural generalization of the stochastic block model. Indeed, the stochastic block model

corresponds to the planted cluster model in the special case that Ω1 and Ω2 are Bernoulli

distributions with probabilities of success p and q, respectively. Ames (2014) established

the following theorem, ensuring recovery of the planted cliques C1, . . . , Ck from the optimal

solution of (5) under the planted cluster model (see Ames, 2014, Theorem 2.1).

Theorem 2 Suppose that the vertex sets C1, . . . , Ck define a k-disjoint-clique subgraph H∗

of the n-node weighted complete graph Kn(V,W ) and let Ck+1 := V \
(
∪ki=1Ci

)
. Let ri := |Ci|

for all i = 1, . . . , k+ 1 and let r̂ = mini=1,...,k ri. Let W ∈ Σn be a random symmetric matrix

sampled from the planted cluster model according to distributions Ω1 and Ω2 with means α

and β, respectively, satisfying

γ = γ(α, β, r) := α− β > 0.
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Let X∗ be the feasible solution of (5) corresponding to C1, . . . , Ck defined by (3). Then there

exist scalars c1, c2, c3 > 0 such that if

c1

√
n+ c2

√
krk+1 + c3rk+1 ≤ γr̂,

then X∗ is the unique optimal solution of (5), and H∗ is the unique maximum density

k-disjoint-clique subgraph of Kn with probability tending exponentially to 1 as r̂ →∞.

In contrast to Theorem 1, the result of Theorem 2 implies that we can have perfect

recovery if the graph contains a small number of nodes that shouldn’t be assigned to any

of the planted clusters. Each potential edge from each of these nodes to any other node is

added independently to the graph with probability q, so that each node in Ck+1 has roughly

the same number of neighbours in each cluster block. This implies that such a node is not

assigned to any of the planted clusters because it is weakly associated with all of the planted

clusters. It is important to note that this edge assignment is performed randomly and

not deterministically by an adversary attempting to obscure the cluster structure present

in the graph. We present a new analysis that improves upon the recovery guarantee of

Theorem 2 in two ways. First, the hypothesis of Theorem 2 assumes that between-cluster

and within-cluster edge weights are i.i.d. We consider the more general heterogeneous case

constructed as follows:

• For each u ∈ Ci, v ∈ Cj , we sample the edge weight wuv = wvu from distribution Ωij

with

E[wuv] = E[wvu] = µij , Var[wuv] = Var[wvu] = σ2
ij , 0 ≤ wuv ≤ 1.

This forces weights within the same block to be i.i.d., but weight may not be identically

distributed in different blocks.

Second, the analysis leading to Theorem 2 assumes that the expectations of Ω1,Ω2 in

the planted cluster model are fixed and that the variances are bounded by 1. We improve

upon the recovery guarantee of Theorem 2 by considering the case where the parameters α

and β depend on the number of nodes n in the graph. In particular, our recovery guarantees

explicitly depend on the variances of the distributions Ωij , and their scaling with n, which

will expand the set of graphs known to be clusterable by (5). We have the following theorem.

Theorem 3 Suppose that the vertex sets C1, . . . , Ck define a k-disjoint-clique subgraph K∗

of the weighted complete graph Kn = (V,W ) on n vertices and let Ck+1 = V \
(
∪ki=1Ci

)
. Let

ri = |Ci| for all i = 1, . . . , k+1 and let r̂ = mini=1,...,k ri. Let W ∈ Σn be a random symmetric

matrix sampled from the heterogeneous planted cluster model according to distributions {Ωij}
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with expected values µij = µij(n) and variances σ2
ij = σ2

ij(n). Let σ̃ := maxq,s σqs and

σ̂ := maxq σqq. Let X∗ be the feasible solution to (5) corresponding to C1, . . . , Ck defined by

(3). Let

γ := min
q,s=1,2,...,k

q 6=s

{µqq − µqs} .

Then there exists scalar c > 0 such that if

γr̂ ≥ cmax
{√

σ̃2n,
√
σ̃2r̂ log n,

√
σ̂2krk+1,

√
krk+1 log n/r̂, µk+1,k+1rk+1, log n

}
, (6)

then X∗ is the unique optimal solution for (5), and K∗ is the unique maximum density

k-disjoint-clique subgraph of Kn with high probability.

The weak assortativity condition (6) implies that we have perfect recovery provided that

the gap between the cluster block expectation µqq and the largest between-cluster block

expectation µqs is sufficiently large for all clusters Cq, q = 1, . . . , k, relative to the minimum

cluster size, number of unassigned nodes rk+1, number of clusters, and edge weight variances.

In the Bernoulli case, i.e., within-cluster and between-cluster edges are added independently

with probabilities p and q, respectively, Theorem 3 and, in particular, (6) establish that we

can recover the planted clusters provided that

(p− q)2

σ̃2
=

(p− q)2

max{p(1− p), q(1− q)}
= Ω

( n
r̂2

)
.

This result agrees with the Easy Regime for cluster recovery proposed by Chen and Xu

(2014), where a polynomial-time algorithm exists for exact recovery of the planted clusters,

in this case, the solution of the semidefinite relaxation (5). One distinct advantage of

this result over similar recovery guarantees is that our model and phase transition are

largely parameter free. For example, Amini and Levina (2018) present an analysis of

three semidefinite relaxations that obtain nearly identical conditions on {Ωij} guaranteeing

recovery but restrict their analysis to the case where the clusters are identical in size or

otherwise known and when {Ωij} are Bernoulli distributions; we should note that Amini and

Levina (2018) consider heterogeneous Bernoulli distributions where the within-cluster and

between-cluster probabilities of adding an edge vary across clusters. Similarly, Chen and Xu

(2014) and Jalali et al. (2015) give identical conditions for recovery (up to constants and

logarithmic terms) in the Bernoulli case to those in Theorem 3 for semidefinite relaxations

that require the sizes of the clusters to be used as input parameters (or all clusters to

have identical size), neither of which are realistic assumptions in practice. In contrast, our

approach achieves this recovery guarantee using only the desired number of clusters as a

parameter. Further, our guarantee extends to the general weighted case where the vast
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majority of existing recovery guarantees for stochastic block models are restricted to the

Bernoulli case.

It is important to note that tighter recovery guarantees than those provided by Theorem 3

are known for specific problem settings. This is a natural consequence of the more general

framework of our analysis. For example, Yan et al. (2017) studies a convex relaxation

for cluster recovery in the Bernoulli (unweighted) case. The main theorem of this article

establishes conditions for perfect recovery that allow larger clusters to have higher variance,

although specialized for the unweighted case. Moreover, Yan et al. (2017) consider the use

of a tuning parameter to allow recovery without knowledge of the number of clusters k. On

the other hand, the results of Amini and Levina (2018); Jalali et al. (2015) also provide

tighter recovery guarantees but require knowledge of cluster sizes. The key contribution

of this work is the presentation of a recovery guarantee that extends to the weighted case

without strict assumptions regarding input parameters, as well as the first-order method for

solution of (1) discussed in detail in Section 4.

To further illustrate the consequences of Theorem 3, we consider several examples. In

each, we assume that the graph is generated in the homogeneous setting where within-cluster

weights are i.i.d. according to Ω1 with mean α and variance σ2
1, and between-cluster weights

are i.i.d. according to Ω2 with mean β < α and variance σ2
2.

2.2.1. The Dense Case

When α, β are fixed, we obtain the same recovery guarantee as before, up to constants and

logarithmic terms: we have exact recovery w.h.p. if r̂ ≥ c̃1
√
n and r̂ ≥ c̃2rk+1 for some

constants c̃1 and c̃2 depending on Ω1 and Ω2. Indeed, each of the pointwise maximums in

the first three terms of (6) is bounded above by O(
√
n) since r̃ ≤ n, and krk+1 = O(n) if

rk+1 = O(r̂).

2.2.2. The Sparse Case

On the other hand, if noise in the form of between-cluster edge-weight is small, then we

should expect to be able recover much smaller clusters. For example, suppose that Ω2 is

the Bernoulli distribution with probability of adding an edge q and that Ω1 is the Bernoulli

distribution with probability of adding an edge p = 1 (the assumption that p = 1 is for the

sake of simplicity in this example and we can expect analogous recovery guarantees for any

p tending slowly enough to 0). Assume further that q(1− q) ≤ log n/n. Finally, again for

simplicity, assume that we have k equally sized clusters of size r̂ = n/k and (rk+1 = 0). In

12



Exact Clustering of Weighted Graphs via Semidefinite Programming

this case, (6) holds if

γr̂ ≥ c log n = cmax

√log n,

√
r̂ log2 n

n
, log n

 ≥ cmax
{√

σ̃2n,
√
σ̃2r log n, log n

}
,

since σ̃2 = max{p(1 − p), q(1 − q)} = q(1 − q) ≤ log n/n and the terms involving rk+1

and 1 − p are equal to zero. This implies that we have exact recovery of the planted

clusters w.h.p. provided r̂ = Ω(log n). This exceeds the state of the art recovery bound of

r̂ = Ω(
√

log n) established in Jalali et al. (2015) by a factor of
√

log n. However, the convex

relaxation proposed by Jalali et al. (2015) requires knowledge of
∑k

i=1 r
2
i , which is often an

unrealistic expectation in practice; in contrast, our approach only requires knowledge of the

number of clusters k present in the data. Further, the requirement r̂ = Ω(log n) is enforced

by the gap inequality (6), which itself is a consequence of the use of the Bernstein inequality

to establish certain dual variables are nonnegative in the proof of Theorem 3 (see Section 3.1

for more details). It may be possible to improve this bound to r̂ = Ω(
√

log n) with improved

concentration inequalities but it is unclear what form these improvements may take.

2.2.3. The Planted Clique and Sparsest Subgraph

In the special case when k = 1 and Ω1 and Ω2 are Bernoulli distributions, the planted

cluster model specializes to the planted clique model considered in Ames and Vavasis (2011)

and Ames (2015). In this case, (6) suggests that we can recover a planted clique (in the

dense case) of size r1 = Ω (max {
√
n, r2}) = Ω (max {

√
n, n− r1}). This recovery guarantee

is far more conservative than those provided by Ames and Vavasis (2011) and Ames (2015),

among others, which establish that a planted clique of size Ω(
√
n) can be recovered from the

optimal solution of a particular nuclear norm relaxation of the maximum clique problem.

Unfortunately, it appears that this lower bound restricting the size of a recoverable

planted clique to a constant multiple of the number of nonclique vertices is tight. For

example, let p and q be the probabilities of adding an edge given by Ω1 and Ω2. Then the

expected value of the proposed solution X∗ in (5) is equal to

E[Tr(WX∗)] =
1

r̂

∑
i∈C1

∑
j∈C1

E[wij ] = pr̂.

On the other hand, the solution 1
nee

T is also feasible for (5) with expected objective value

E

[
1

n
Tr(WeeT )

]
≥ ĉqn,

for some constant ĉ. This implies that the proposed solution is suboptimal if pr̂ < ĉqn, which

holds unless r̂ ≥ ĉ(q/p)n. We will see that the realized values of these sums are concentrated

13
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near their expectations and thus we cannot reasonably expect to recover planted clusters

with unassigned nodes significantly outnumbering the smallest cluster. This implies that we

cannot recover planted cliques of size ω(n) by maximizing density of a complete subgraph

because the planted clique is not the index set of the densest such graph; in this case,

the entire graph is a denser complete subgraph, as measured by average vertex degree, in

expectation.

3. Derivation of the Recovery Guarantee

In this section, we show that if the hypothesis of Theorem 3 is satisfied then the solution

X∗ constructed according to (3) is optimal for (5) and the corresponding k-disjoint-clique

subgraph has maximum density. In particular, we will show that X∗ satisfies the following

sufficient condition for optimality of a feasible solution of (5) (see Ames, 2014, Theorem

4.1).

Theorem 4 Let X be feasible for (5) and suppose that there exist some τ ∈ R, λ ∈ Rn
+,

Ξ ∈ Rn×n
+ and S ∈ Σn

+ such that

−W + λeT + eλT −Ξ + τI = S (7)

λT (Xe− e) = 0 (8)

Tr(XΞ) = 0 (9)

Tr(XS) = 0. (10)

Then X is optimal for (5).

Theorem 4 is a restriction of the Karush-Kuhn-Tucker optimality conditions to the

semidefinite program (5) (see, for example, Boyd and Vandenberghe, 2004, Section 5.5.3).

The goal of this section is to establish that we can construct dual variables τ ∈ R, λ ∈ Rn
+,

Ξ ∈ Rn×n
+ and S ∈ Σn

+ which satisfy the hypothesis of Theorem 4 with high probability

if the weight matrix W is sampled from a distribution of clusterable block models. To

motivate our proposed choice of dual variables, we note that the complementary slackness

condition Tr(XS) = 0 holds if and only if XS = 0 under the assumption that both X and

S are positive semidefinite. Therefore, the block structure of X implies that each block of

S corresponding to a cluster block in W must sum to zero.

Before we continue with the construction of our dual variables, let us first remind ourselves

of the notation of Theorem 3. Let K∗ be a k-disjoint-clique subgraph of Kn with vertex set

composed of the disjoint cliques C1, . . . , Ck of sizes r1, . . . , rk and letX∗ be the corresponding

14
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feasible solution of (5) defined by (3). Let Ck+1 := V \ (∪ki=1Ci) and rk+1 := n−
∑k

i=1 ri

be the size of Ck+1. Moreover, let r̂ := mini=1,...,k ri and r̃ := maxi=1,...,k ri be the size of

the smallest and largest clusters, respectively. Let W ∈ Σn be a random symmetric matrix

sampled from the planted cluster model with planted clusters C1, . . . , Ck and remaining

nodes Ck+1 according to the distributions {Ωij} with means {µij} and variances {σ2
ij}.

We now propose a choice of dual variables satisfying the complementary slackness

condition XS = 0. Restricting this condition to the blocks XCq ,Cq and SCq ,Cq of X and S

with rows and columns indexed by Cq, q ∈ {1, 2, . . . , k}, we see that X∗S = 0 holds if and

only if

0 = SCq ,Cqe = τe+ rqλCq + (λTCq
e)e−WCq ,Cqe,

by the block structure of X∗; note that ΞCq ,Cq = 0 is chosen to satisfy the complementary

slackness condition (9). Solving this linear system for λCq using the Sherman-Morrison-

Woodbury Formula (Golub and Van Loan, 2013, Equation (2.1.4)) gives

λCq =
1

rq

(
WCq ,Cqe−

1

2

(
τ +

eTWCq ,Cqe

rq

)
e

)
. (11)

On the other hand, we choose λCk+1
= 0 to satisfy the complementary slackness condition

(8). Next, we use this choice of λ to construct the remaining dual variables.

Fix q, s ∈ {1, 2, . . . , k + 1} such that q 6= s. We will choose ΞCq ,Cs so that SCq ,Cse = 0

and SCs,Cqe = 0. In particular, we choose

ΞCq ,Cs =
(

1−δq,k+1

2

(
µqq − τ

rq

)
+

1−δs,k+1

2

(
µss − τ

rs

)
− µqs

)
eeT + yq,seT + e(zq,s)T , (12)

where the vectors yq,s and zq,s are unknown vectors parametrizing the entries of ΞCq ,Cs ;

here δi,j is the Kronecker delta function defined by δi,j = 1 if i = j and 0 otherwise. That is,

we choose ΞCq ,Cs to be the expected value of λCqe
T +eλTCs

−WCq ,Cs plus the parametrizing

term yq,seT + e(zq,s)T ; the vectors yq,s and zq,s are chosen to be solutions of the systems

of linear equations given by the complementary slackness conditions SCq ,Cse = 0 and

SCs,Cqe = 0. It is reasonably straight-forward to show that we may choose

yq,s =
1

rs

(
bq,s −

bTq,se

rq + rs
e

)
zq,s =

1

rq

(
bs,q −

bTs,qe

rq + rs
e

)
, (13)

where

bq,s =
(
λCqe

T + eλTCs
−WCq ,Cs −E

[
λCqe

T + eλTCs
−WCq ,Cs

])
e. (14)

Indeed, we must choose y = yq,s and z = zq,s to be solutions of the system(
rsI + eeT 0

0 rqI + eeT

)(
y

z

)
=

(
bq,s

bs,q

)
, (15)
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to ensure that the complementary slackness conditions are satisfied. Note that taking the

inner product of each side of (15) with the vector (e;−e) yields

(rq + rs)(e
Ty − eTz) = eTbq,s − eTbs,q = 0,

by the symmetry of W . This establishes that the solution (y; z) of (15) is also a solution of

the (singular) system of equations,(
rsI eeT

eeT rqI

)(
y

z

)
=

(
bq,s

bs,q

)
,

imposed by the complementary slackness conditions SCq ,Cse = 0 and SCs,Cq = 0. Solv-

ing (15) for y and z using the Sherman-Morrison-Woodbury Formula yields the formula for

y and z given by (13). We set the remaining block ΞCk+1,Ck+1
= 0. Ames (2014, Section 4.2)

provides further details.

Finally, we choose

τ = min
q,s=1,...,k

q 6=s

{µqq − µqs} εr̂ =: γεr̂, (16)

where ε > 0 is a parameter to be chosen later. In particular, the analysis provided in

Sections 3.1, 3.2, and 3.3 establishes that a suitable choice of ε exists if the hypothesis of

Theorem 3 is satisfied.

The entries of S are chosen according to the stationarity condition (7), but we will also

define an auxiliary variable S̃ ∈ Σn as the following (k + 1)× (k + 1) block matrix:

S̃Cq ,Cs =


µq,see

T −WCq ,Cs , if q, s ∈ {1, . . . , k},
µq,k+1ee

T −WCq ,Ck+1
+ (λCq −E[λCq ])eT , if s = k + 1,

µk+1,see
T −WCk+1,Cs + e(λCs −E[λCs ])

T , if q = k + 1.

(17)

We next provide the following theorem, first stated by Ames (2014, Theorem 4.2), which

characterizes when the proposed dual variables satisfy the hypothesis of Theorem 4.

Theorem 5 Suppose that the vertex sets C1, . . . , Ck define a k-disjoint-clique subgraph K∗

of the weighted complete graph Kn = (V,W ), where W ∈ Σn is a random symmetric matrix

sampled from the planted cluster model according to the distributions {Ωij} with means {µij}
and variances {σ2

ij}. Let r1, . . . , rk+1, and r̂ be defined as in Theorem 3. Let X∗ be the

feasible solution for (5) corresponding to C1, . . . , Ck defined by (3). Let τ ∈ R, λ ∈ Rn,

and Ξ ∈ Rn×n be chosen according to (16), (11), and (12), respectively, and let S̃ be chosen

according to (17). Suppose that the entries of λ and Ξ are nonnegative. Then X∗ is optimal

for (5), and K∗ is the maximum density k-disjoint-clique subgraph of Kn corresponding to

W , if

‖S̃‖ ≤ εγr̂. (18)
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Moreover, if (18) is satisfied and

rse
TWCq ,Cqe > rqe

TWCq ,Cse, (19)

for all q, s ∈ {1, . . . , k} such that q 6= s, then X∗ is the unique optimal solution of (5) and

K∗ is the unique maximum density k-disjoint-clique subgraph of Kn.

The proof of Theorem 5 is nearly identical to that by Ames (2014, Theorem 4.2), and

is omitted. Theorem 5 provides a clear roadmap for the remainder of the proof; if we can

show that if W is sampled from the planted cluster model satisfying (6) then λ and Ξ are

nonnegative and ‖S̃‖ ≤ εγr̂ with high probability, then we will have established that we can

recover the underlying block structure with high probability in this case. We establish the

necessary bounds on λ, Ξ, and ‖S̃‖ in the following sections.

3.1. Nonnegativity of λ and Ξ

We first establish that the entries of Ξ, as constructed according to (12), are nonnegative

with high probability. To do so, we will make repeated use of the following specialization of

the Bernstein inequality which provides a bound on the tail of a sum of bounded independent

random variables; see Boucheron et al. (2013, Section 2.8), for more details regarding the

Bernstein inequality.

Theorem 6 Let x1, . . . , xm be independent identically distributed (i.i.d.) variables with

mean µ and variance σ2. Let S = x1 + · · ·+ xm. Then

Pr
(
|S − µm| > 6 max

{√
σ2m log T , log T

})
≤ 2T−6, (20)

for all T > 1.

The following bound on the parametrizing vectors yq,s and zq,s in the choice of the

(Cq, Cs) block of Ξ defined by (12) is an immediate consequence of Theorem 6.

Lemma 7 There exists constant c > 0 such that

‖yq,s‖∞ + ‖zq,s‖∞ ≤ cmax

{√
σ̃2 log n

r̂
,
log n

r̂

}
,

w.h.p., where σ̃ := max{σij : i, j = 1, 2, . . . , k + 1}, for all q, s ∈ {1, . . . , k + 1} such that

q 6= s.
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For q, s ∈ {1, . . . , k + 1} such that q 6= s, we define yq,s and zq,s as in (13). To bound

the absolute values of the entries of yq,s and zq,s, we must estimate the sums eTWCq ,Cqe,

eTWCs,Cse and eTWCq ,Cse; applying Theorem 6 to bound the tails of these sums yields

Lemma 7. See Appendix A for the full argument.

We have the following bound on the entries of Ξ as an immediate consequence of

Lemma 7.

Proposition 8 Suppose that {µij} satisfy (6). Then there exists constant c > 0 such that

each entry of Ξ is nonnegative w.h.p. if ε satisfies

0 < ε ≤ 1− c

γ
max

{√
σ̃2 log n

r̂
,
log n

r̂

}
. (21)

Proof Fix q, s ∈ {1, . . . , k} such that q 6= s. By construction, we have

ΞCq ,Cs = E
[
λCqe

T + eλTCs
−WCq ,Cs

]
+ yq,seT + e (zq,s)T

=

(
1

2

(
µqq −

τ

rq

)
+

1

2

(
µss −

τ

rs

)
− µqs

)
eeT + yq,seT + e (zq,s)T .

Using (16) and Lemma 7, we see that

Ξij ≥
1

2
(µqq − γε) +

1

2
(µss − γε)− µsq − ‖yq,s‖∞ − ‖zq,s‖∞

≥ (1− ε)γ − cmax

{√
σ̃2 log n

r̂
,
log n

r̂

}
,

for all i ∈ Cq, j ∈ Cs w.h.p., where c is the constant appearing in Lemma 7. Note that the

right-hand side of this inequality is nonnegative if and only if

ε ≤ 1− c

γ
max

{√
σ̃2 log n

r̂
,
log n

r̂

}
.

The argument for the case when one of q or s is equal to k+ 1 follows analogously. Applying

the union bound over all blocks of Ξ shows that each entry of Ξ is nonnegative w.h.p. if ε

satisfies (21).

We have an analogous result ensuring that the entries of λ are nonnegative with high

probability; we present the proof of this result in Appendix B.
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Proposition 9 Suppose {µij} satisfy (6). Then there exists constant c′ > 0 such that each

entry of λ is nonnegative w.h.p. if ε satisfies

0 < ε ≤ 1

2γ

(
µqq − c′max

{√
σ2
qq log n

rq
,
log n

rq

})
, (22)

for all q ∈ {1, . . . , k}.

We conclude this section with a result ensuring that the uniqueness condition (19) of

Theorem 5 is satisfied for all q, s ∈ {1, . . . , k} such that q 6= s; we provide a proof in

Appendix C.

Proposition 10 Suppose that

γ ≥ 12 max

{√
σ̃2 log n

r̂2
,
log n

r̂2

}
. (23)

Then rse
TWCq ,Cqe > rqe

TWCq ,Cse for all q, s ∈ {1, . . . , k} such that q 6= s with high

probability.

3.2. A Bound on S̃

It remains to establish the following bound on the spectral norm of the matrix S̃.

Proposition 11 There exists scalars C,C ′ > 0 such that

‖S̃‖ ≤ C max
{
σ̃
√
n,
√

log n
}

+ C ′
(

max

{
σ̂2,

log n

r̂

}
krk+1

)1/2

+ µk+1,k+1rk+1, (24)

where σ̂2 = maxq=1,...,k

{
σ2
qq

}
, with high probability.

The proof of Proposition 11 follows the same structure as that of Ames (2014, Lemma 4.5).

In particular, we decompose S̃ as S̃ = S̃1 + S̃2 + S̃3, where

S̃1 = E[W ]−W , (25)

[S̃2]Cq ,Cs =


(
λCq −E

[
λCq

])
eT , if s = k + 1,

e (λCs −E [λCs ])
T , if q = k + 1,

0, otherwise,

(26)

[S̃3]Cq ,Cs =

−µk+1,k+1ee
T , if q = s = k + 1,

0, otherwise.
(27)

Note that ‖S̃3‖ = µk+1,k+1‖eeT ‖ = µk+1,k+1rk+1. The following lemmas provide the

necessary bounds on ‖S̃1‖ and ‖S̃2‖.
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Lemma 12 Suppose that S̃1 is constructed according to (25) for some W ∈ Σn sampled

from the heterogeneous planted cluster model. Then there exists constant C > 0 such that

‖S̃1‖ ≤ C max
{
σ̃
√
n,
√

log n
}
, (28)

with high probability.

Lemma 13 Suppose that S̃2 is constructed according to (26) for some W ∈ Σn sampled

from the heterogeneous planted cluster model. Then there exists constant C ′ > 0 such that

‖S̃2‖ ≤ C ′
(

max

{
σ̂2,

log n

r̂

}
krk+1

)1/2

,

with high probability, where σ̂ := maxq=1,...,k σqq.

We delay the proof of Lemmas 12 and 13 until Appendix D and Appendix E, respectively.

Combining the three bounds on ‖S̃1‖, ‖S̃2‖, and ‖S̃3‖ and applying the triangle inequality

one last time shows that (24) holds with high probability.

3.3. The Conclusion of the Proof

According to Theorem 5, it suffices to prove that ‖S̃‖ ≤ εγr̂ is satisfied with high probability

in order to prove Theorem 3. According to Proposition 11, if

γεr̂ ≥ C max
{
σ̃
√
n,
√

log n
}

+ C ′
(

max
{
σ̂2, logn

r̂

}
krk+1

)1/2
+ µk+1,k+1rk+1, (29)

then ‖S̃‖ ≤ εγr̂ holds with high probability. Hence, we have three conditions, (21), (22) and

(29), on ε > 0 that need to be satisfied simultaneously; choosing any ε > 0 satisfying all three

establishes the desired recovery guarantee. We see that (21) and (29) can be simultaneously

fulfilled if

1− c
γ max

{√
σ̃2 logn

r̂ , logn
r̂

}
≥ 1

γr̂

(
C max

{
σ̃
√
n,
√

log n
}

+ C ′
(

max
{
σ̂2, logn

r̂

}
krk+1

)1/2
+ µk+1,k+1rk+1

)
,

which holds if and only if

r̂

(
γ − cmax

{√
σ̃2 logn

r̂ , logn
r̂

})
≥ C max

{
σ̃
√
n,
√

log n
}

+ C ′
(

max
{
σ̂2, logn

r̂

}
krk+1

)1/2
+ µk+1,k+1rk+1. (30)

Next, we see that (29) and (22) are simultaneously fulfilled if

1
2γ

(
µqq − c′max

{√
σ2
qq logn

r̂ , logn
r̂

})
≥ 1

γr̂

(
C max

{
σ̃
√
n,
√

log n
}

+ C ′
(

max
{
σ̂2, logn

r̂

}
krk+1

)1/2
+ µk+1,k+1rk+1

)
,

which holds if and only if

r̂

(
µqq − c′max

{√
σ2
qq logn

rqq
, logn
rqq

})
≥ 2

(
C max

{
σ̃
√
n,
√

log n
}

+ C ′
(

max
{
σ̂2, logn

r̂

}
krk+1

)1/2
+ µk+1,k+1rk+1

)
. (31)
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Finally, suppose that we choose the parameter c4 > max{c, c′, 12} so that gap condition (23)

is satisfied and

γ > max{c, c′, 12}max

{√
σ̃2 log n

r̂
,
log n

r̂

}
.

Then there exist constants c1, c2, c3, depending on c4, such that (30) and (31) are satisfied,

i.e., there exists ε satisfying (21), (22) and (29) simultaneously, if

γr̂ ≥ c1 max
{
σ̃
√
n,
√

log n
}

+ c2

(
max

{
σ2

1,
log n

r̂

}
krk+1

)1/2

+ c3µk+1,k+1rk+1.

This concludes the proof of Theorem 3.

4. Numerical Methods and Simulations

We conclude with a discussion of an algorithm for solution of (5) based on the alternating

direction method of multipliers (ADMM), and provide the results of a series of experiments

that empirically verify the phase transitions predicted in Section 2.2. In particular, we

randomly sample graphs G = (V,W ) from the planted cluster model and compare the

optimal solution of (5) with the planted partition.

4.1. Alternating Direction Method of Multipliers for the Densest k-Disjoint

Clique Problem

We solve (5) iteratively using the algorithm proposed by Ames (2014). Specifically, we split

the decision variable X to obtain the equivalent formulation

max
{

Tr(WY ) : X − Y = 0,Xe ≤ e,X ≥ 0, TrY = k,Y ∈ ΣV
+

}
.

We then apply an approximate dual ascent scheme to maximize the augmented Lagrangian

Lρ(X,Y ,Z) = Tr(WY )− Tr(Z(X − Y )) +
ρ

2
‖X − Y ‖2F ,

where ρ > 0 is a penalty parameter for violation of the linear equality constraint X −Y = 0.

In particular, we minimize Lρ with respect to Y and X successively, and then update

Z = Z − ρ(X − Y ) using approximate gradient ascent.

We update Y as the minimizer of the subproblem

Y t+1 = arg min
Y ∈Σn

+

{∥∥∥∥Y − (Xt − W +Zt

ρ

)∥∥∥∥2

F

: TrY = k

}
,

where (Xt,Y t,Zt) is the current iterate after t iterations. That is, Y t+1 is the projection

of the matrix U t := Xt − (W + Zt)/ρ onto the intersection of the positive semidefinite
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cone and the set of matrices with trace equal to zero. Such a projection can be computed

explicitly by projecting the vector of eigenvalues λt of U t onto the nonnegative simplex

{y ∈ Rn : eTy = k, y ≥ 0}. Zhang and Lu (2011, Proposition 2.6) and Van Den Berg and

Friedlander (2008) can be consulted for further details.

We update Xt+1 as the optimal solution of

Xt+1 = arg min
X∈Rn×n

{∥∥X − (Y t +Zt/ρ
)∥∥2

F
: X ≥ 0, Xe ≤ e

}
. (32)

Applying strong duality, we know that the optimal solution of (32) is given by

Xt+1 =

[(
Y t+1 +Zt/ρ

)
− z

∗e+ e(z∗)T

2

]
+

,

where the operator [·]+ is the projection onto the symmetric nonnegative cone ΣV ∩RV×V
+

given by [[Z]+]ij = max{0, Zij} for all Z ∈ ΣV , and z∗ is the optimal solution of the dual

problem of (32) given by

min
z≥0

1

2

∥∥∥∥[(Y t+1 +Zt/ρ
)
− ze+ ezT

2

]
+

∥∥∥∥2

F

+ zTe− 1

2
‖Y t+1 +Zt/ρ‖2F . (33)

The objective function of the dual problem (33) is differentiable and coercive in z, so it

can be solved efficiently by applying the spectral projected gradient method of Birgin et al.

(2000). We complete each iteration by performing an approximate dual ascent step to update

the dual variable Zt+1. We stop the projected gradient method when the relative duality

gap, given by |v(t)
p − v(t)

d |/max{v(t)
p , 1}, and primal constraint violation are both smaller

than a desired error tolerance. We summarize the algorithm as Algorithm 1. Please see the

work of Ames (2014, Section 6) for further implementation details.

4.2. Empirical Verification of Exact Recovery

We perform two sets of experiments, one to illustrate the recovery guarantee for dense

graphs sampled from the heterogeneous planted cluster model and another to illustrate the

guarantee when the noise is sparse. For the dense graph experiments, we fix n = 1000,

and sample 10 graphs from the heterogeneous planted cluster model corresponding to the

Bernoulli distributions Ωij = Bern(pij) with probabilities of success pij given by

pij :=


(

1−
(

0.35
k+1

)
i
)
p, if i = j,(

1−
(

0.35
k+1

)
min{i, j}

)
q, if i 6= j,

for q = 0.25 and each p = {0.25, 0.275, 0.3, . . . , 0.975, 1} and r̂ ∈ {20, 40, . . . , 500}. We

choose the number of clusters k = bn/r̂c and distribute the remaining n− kr̂ nodes evenly
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Algorithm 1 ADMM for (1)

Input: Initial iterates X0 = Y 0 = Z0 = 0, augmented Lagrangian parameter ρ > 0, and

stopping tolerance ε > 0.

Output: Approximate solution (X∗,Y ∗,Z∗) of (1).

For t = 0, 1, 2 . . . until converged

Compute spectral decomposition V tDiagλt(V t)T = U t = Xt − (W +Zt)/ρ.

Project λt onto the nonnegative simplex {y ∈ Rn : eTy = k, y ≥ 0} to obtain λ̄
t
.

Update Y t+1 = V tDiagλ̄
t
(V t)T .

Compute approximate optimal solution z∗ of the dual subproblem (33) using spectral

projected gradient method of Birgin et al. (2000).

Update Xt+1 =
[(
Y ts+1 +Zt/ρ

)
− z∗e+e(z∗)T

2

]
+
.

Update Zt+1 using approximate dual ascent

Zt+1 = Zt − ρ(Xt+1 − Y t+1).

Compute primal feasibilty gap

pfeas = min

{
min
ij

Y t
ij ,min

(
e− Y te

)}
.

Compute estimates of primal and dual objective values (note that v
(t+1)
d is not neces-

sarily a lower bound on the optimal dual value, but is asymptotically converging to

the optimal dual value):

v(t+1)
p = Tr(WY t) v

(t+1)
d = kλmin(W +Zt+1)− Tr(Xt+1Zt+1).

Calculate relative duality gap

relgap =
|v(t+1)
p − v(t+1)

d |

max
{
|v(t+1)
p |, 1

} .
Declare sequence of iterates to have converged if relgap < ε and pfeas > −ε.

End For

among k− 1 clusters to ensure that at least one cluster has minimum size. Under this choice

of pij the smallest gap between the in-cluster and between-cluster means occurs when i = 1

and j = k; this implies that

γ =

(
1− 0.35k

k + 1

)
p− q.
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(a) Dense Noise (b) Sparse Noise

Figure 1: Empirical recovery rate for n-node graph with k planted cliques of size at least

r̂ and W generated according to the planted heterogeneous cluster model with

distributions Ωij = Bern(pij). Brighter colors indicate higher rates of recovery,

with black corresponding to 0 recoveries and white corresponding to 10 recoveries

(out of 10 trials). The dashed curves indicate the phase transition to perfect

recovery predicted by Theorem 3.

For each graph G, we call the ADMM algorithm sketched above to solve (5); in the

algorithm, we use penalty parameter ρ = min {max {5n/k, 80} , 500} /2, stopping tolerance

ε = 10−4, and maximum number of iterations 100. We declare the block structure of G

to be recovered if ‖X∗ −X0‖2F /‖X0‖2F < 10−3, where X∗ is the solution returned by the

ADMM algorithm and X0 is the proposed solution given by (3). Note that Theorem 3

implies that we should expect exact recovery (w.h.p.) provided that γr̂ = Ω
(√

σ̃2n
)
.

Figure 1(a) illustrates the empirical success rate for each choice of r̂ and p, as well as the

curve p =
(
(k + 1)/(0.65k + 1)

)
(q + 1

2

√
n), where we use the upper bound σ̃2 ≤ 1/4 to

estimate the constant term in (6).

We perform identical experiments for graphs sampled from the homogeneous planted

cluster model with sparse noise. In particular, we fix n = 1000 and set q = 1/
√
n. We then

sample 10 graphs from the planted cluster model corresponding to the Bernoulli distributions

Ωij = Bern(p) if i = j and Ωij = Bern(q) if i 6= j for each r̂ ∈ {20, 60, . . . , 440, 500}
and p = tq for 10 equally spaced scaling factors t between 2 and b

√
nc. As before, we set

k = bn/r̂c and distribute the remaining nodes equally amongst the clusters so that the

smallest has size r̂ and rk+1 = 0. For each graph G, we call the ADMM algorithm to solve

(5) (with the same parameters as before) and declare the block structure of G recovered if

‖X∗ −X0‖2F /‖X0‖2F < 10−3. Theorem 3 suggests that we should expect recovery of the
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cluster structure in the case that

p > Ω

(
1√
n

+
n1/4

r̂

)
,

for this particular choice of p and q. Note that this implies that we have perfect recovery

(w.h.p.) for r̂ = Ω(n1/4), rather than Ω(
√
n) (as observed in the dense case). Figure 1(b)

provides the empirical success rate for each choice of r̂ and p, as well as the curve p =

1/
√
n+ n1/4/r̂. It is clear that we are able to recover significantly smaller clusters under

sparse noise than under dense noise, in accordance with (6).

5. Conclusions

We have established theoretical guarantees for graph clustering via a semidefinite relaxation

of the densest k-disjoint problem. These results add to the growing corpus of evidence that

clustering, while intractable in general, is possible if we seek to cluster clusterable data, i.e.,

data consisting of well-defined and well-separated groups of similar items. Moreover, our

results provide further evidence that the ω(
√
n) barrier can be broken for perfect cluster

recovery in approximately sparse graphs and, specifically, that the size of recoverable clusters

scales logarithmically with n at worst in the special case that all clusters are roughly the

same size. Finally, our semidefinite relaxation requires only an estimate of the number of

clusters present in the data as input.

Our results suggest several areas of further research. The numerical simulations suggest

that our theoretical guarantees may be overly conservative, especially in the dense noise

case; further investigation is needed to determine if tighter estimates on the minimum

size of clusters efficiently recoverable exist. Moreover, our model assumes clusters are

disjoint. This is clearly not met in many practical applications; for example, returning to

the social networking realm, users may belong to several overlapping communities. It would

be worthwhile to see how our model and recovery guarantees can be modified to address

overlapping clusters. Finally, our algorithm for graph clustering requires the solution of

a semidefinite program, which may be impractical for even moderately large graphs. For

example, the proposed algorithm, based on the ADMM, has per-iteration cost of O(n3)

flops per iteration, primarily to compute the spectral decomposition needed to update Y .

Classical methods based on interior-point methods will scale even more poorly. Efficient,

scalable methods for solving this semidefinite relaxation, and semidefinite programming in

general, are needed.
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Appendix A. Proof of Lemma 7

We give the full proof of Lemma 7 in this appendix.

Proof We fix q, s ∈ {1, . . . , k} such that q 6= s and assume without loss of generality that

rq ≤ rs. By the definition (13) of y := yq,s and the triangle inequality, we have

‖y‖∞ ≤
1

rs

(
‖bq,s‖∞ +

|bTq,se|
rq + rs

)
.

For simplicity, let b1 := bq,s and b2 := bs,q. It follows from (14) and our choice of λ that the

ith element of b1, denoted b1i , is given by

b1i = rs

(
λi −

1

2rq
(µqqrq − τ)

)
+

(
λTCs

e− 1

2
(µssrs − τ)

)
−

∑
j∈Cs

wij − µqsrs

 .

It follows from the definition (11) of λCs that

λTCs
e =

1

2rs

(
eTWCs,Cse− rsτ

)
,

which implies that ∣∣∣∣λTCs
e− 1

2
(µssrs − τ)

∣∣∣∣ =
1

2rs

∣∣eTWCs,Cse− µssr2
s

∣∣ .
Applying (20) with T = n to the right-hand side in the equation above shows that

|eTWCs,Cse− µssr2
s | ≤ 6 max{

√
σ2
ssr

2
s log n, log n}, (34)

with high probability, which in turn implies that∣∣∣∣λTCs
e− 1

2
(µssrs − τ)

∣∣∣∣ ≤ 3 max

{√
σ2
ss log n,

log n

rs

}
,

with high probability. Similarly, applying (20) with T = n to the sum
∑

j∈Cs
wij shows that∣∣∣∣∣∣

∑
j∈Cs

wij − µqsrs

∣∣∣∣∣∣ ≤ 6 max
{√

σ2
qsrs log n, log n

}
,
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for all i ∈ Cq, with high probability. Finally, we note that∣∣∣∣λi − 1

2rq
(µqqrq − τ)

∣∣∣∣ ≤ 1

rq

∣∣∣∣∣∣
∑
j∈Cq

wij − µqqrq

∣∣∣∣∣∣+
1

2r2
q

∣∣eTWCq ,Cqe− µqqr2
q

∣∣ .
We bound the first term in the sum using (20) with T = n, which establishes that∣∣∣∣∣∣

∑
j∈Cq

wij − µqqrq

∣∣∣∣∣∣ ≤ 6 max
{√

σ2
qqrq log n, log n

}
,

w.h.p., and note that the second term has upper bound∣∣eTWCq ,Cqe− µqqr2
q

∣∣ ≤ 6 max
{√

σ2
qqr

2
q log n, log n

}
,

w.h.p., by a calculation identical to that used to obtain (34). Applying these bounds using

the triangle inequality and the union bound over all i ∈ Cq, we conclude that

‖b1‖∞ ≤ rs
∣∣∣∣λi − 1

2rq
(µqqrq − τ)

∣∣∣∣+

∣∣∣∣λTCs
e− 1

2
(µssrs − τ)

∣∣∣∣+

∣∣∣∣∣∣
∑
j∈Cs

wij − µqsrs

∣∣∣∣∣∣
≤ rs

(
6

rq
max

{√
σ2
qqrq log n, log n

}
+ 3 max

{√
σ2
qq log n,

log n

rq

})
+ 3 max

{√
σ2
ss log n,

log n

rs

}
+ 6 max

{√
σ2
qsrs log n, log n

}
= O

(
rs max

{√
σ̃2 log n

r̂
,
log n

r̂

})
, (35)

with high probability.

We next bound
∣∣bT1 e∣∣. We have

bT1 e = rs

(
λTCq

e− 1

2
(µqqrq − τ)

)
+ rq

(
λTCs

e− 1

2
(µssrs − τ)

)
+
(
µqsrsrq − eTWCq ,Cse

)
.

Applying (20) to bound the sum of the entries of WCq ,Cs and the above concentration

inequalities for λTCq
e and λTCs

e we have

∣∣bT1 e∣∣ ≤ rs ∣∣∣∣λTCq
e− 1

2
(µqqrq − τ)

∣∣∣∣+ rq

∣∣∣∣λTCs
e− 1

2
(µssrs − τ)

∣∣∣∣+
∣∣µqsrsrq − eTWCq ,Cse

∣∣
≤ 3rs max

{√
σ2
qq log n,

log n

rq

}
+ 3rq max

{√
σ2
ss log n,

log n

rs

}
+ 6 max

{√
σ2
qsrqrs log n, log n

}
= O

(
rs max

{√
σ̃2 log n,

log n

r̂

})
, (36)
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w.h.p. Finally, we bound ‖y‖∞ using (35) and (36):

‖yq,s‖∞ ≤
1

rs

(
‖b1‖∞ +

|bT1 e|
rq + rs

)
= O

(
max

{√
σ̃2 log n

r̂
,
log n

r̂

})
,

w.h.p. Since this holds for any q, s ∈ {1, . . . , k} such that q 6= s, we conclude that

‖y‖∞ = O

(
max

{√
σ̃2 log n

r̂
,
log n

r̂

})
,

w.h.p. An identical argument shows that

‖zq,s‖∞ = O

(
max

{√
σ̃2 log n

r̂
,
log n

r̂

})
,

w.h.p. We conclude that

‖yq,s‖∞ + ‖zq,s‖∞ = O

(
max

{√
σ̃2 log n

r̂
,
log n

r̂

})
,

w.h.p.

Appendix B. Proof of Proposition 9

We next prove Proposition 9.

Proof We follow the proof of Lemma 4.3 given by Ames (2014). Fix q ∈ {1, . . . , k} and

i ∈ Cq. It follows from (11) that

λi =
∑
j∈Cq

wij −
1

2rq
eTWCq ,Cqe−

τ

2
,

for each i ∈ Cq. Applying (20) with S =
∑

j∈Cq
wij and T = n yields∑

j∈Cq

wij ≥ µqqrq − 6 max
{√

σ2
qqrq log n, log n

}
,

w.h.p. Moreover, by a similar argument, we have

1

2rq
eTWCq ,Cqe ≤

1

2

(
µqqrq + 6 max

{√
σ2
qq log n,

log n

rq

})
,

w.h.p. Combining the above inequalities shows that

λi ≥ rq

(
µqq
2
− εγ −O

(
max

{√
σ2
qq log n

rq
,
log n

rq

}))
,
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w.h.p. Since γ > 0 by (6), this implies that there exists constant c > 0 such that if

ε ≤ 1

2γ

(
µqq − cmax

{√
σ2
qq log n

rq
,
log n

rq

})
, (37)

then λi ≥ 0 w.h.p. Applying the union bound over all q = 1, 2, . . . , k and i ∈ Cq shows that

each entry of λCq is nonnegative w.h.p. if ε is chosen to satisfy (37) for all q.

Appendix C. Proof of Proposition 10

Our proof of Proposition 10 follows a similar structure to that of Ames (2014, Lemma 4.4).

Proof Fix q 6= s with q ∈ 1, . . . , k. Applying (34) and (20) with S = eTWCq ,Cse and

T = n, we have

rse
TWCq ,Cqe− rqeTWCq ,Cse

≥ (µqq − µqs)rsr2
q − 6rs max

{√
σ2
qqr

2
q log n, log n

}
− 6rq max

{√
σ2
qsrsrq log n, log n

}
≥ r2

qrs

(
γ − 12 max

{√
σ̃2 log n

r̂2
,
log n

r̂2

})
,

w.h.p. This implies that rse
TWCq ,Cqe ≥ rqeTWCq ,Cse w.h.p. if (23) is satisfied.

Appendix D. Proof of Lemma 12

We next prove Lemma 12.

Proof We will make repeated use of the following lemma, which specializes the concentration

inequality on the spectral norm of a random symmetric matrix with i.i.d. mean zero entries

given by Bandeira and van Handel (2016, Corollary 3.12).

Lemma 14 Let A = [aij ] ∈ Σn be a random symmetric matrix with i.i.d. mean zero entries

aij having variance at most σ2 and satisfying |aij | ≤ 1. Then there exists constant C > 0

such that

Pr
{
‖A‖ > C max

{√
σ2n,

√
T
}}
≤ nT−7 (38)

for all T > 0.
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Proof (of Lemma 14) Corollary 3.12 of Bandeira and van Handel (2016) establishes

that for each t > 0 there exists c̃ = c̃(t) > 0 such that

Pr
{
‖A‖ ≥ 3

√
σ2n+ t

}
≤ ne−c̃t2 . (39)

Here we have substituted the upper bound σ2n ≥ σ̃2, in place of σ̃ := maxi
∑

j E[X2
ij ] in

the original statement of Corollary 3.12. Let t = (C − 3) max{
√
σ2n,

√
log T} where C is

chosen large enough that c̃(C − 3)2 > 7. In this case, (39) specializes to

Pr
{
‖A‖ ≥ C max{

√
σ2n,

√
log n}

}
≤ ne−7 max{σ2n,logn} ≤ ne−7 logn = nT−7.

This completes the proof.

Before we continue with the derivation of the desired bound on ‖S̃1‖, we note that the

entries [S̃1]ij of S̃1 all satisfy |[S̃1]ij | ≤ 1 if we assume that wij ∈ [0, 1] for all i, j; note that

an identical argument establishes the result if we make the weaker assumption that the

entries of W are bounded with high probability. On the other hand, note that the entries of

S̃1 are not identically distributed (but are independent) since each wij is sampled according

to Ωqs, where i ∈ Cq, j ∈ Cs. However, we know that σ2
qs ≤ σ̃2 by our definition of σ̃2.

Moreover, E[[S̃1]ij ] = E[µqs − wij ] = 0. Thus, we can apply Lemma 14 to place a bound on

‖S̃1‖. Doing so establishes that (28) holds w.h.p.

Appendix E. Proof of Lemma 13

We conclude with the following proof of Lemma 13.

Proof Note that ‖S̃2‖ ≤ ‖λ−E[λ]‖√rk+1. Thus, it remains to bound ‖λ−E[λ]‖. To do

so, fix q ∈ {1, 2, . . . , k}. Recall that

λCq −E[λCq ] =
1

rq
(WCq ,Cqe− µqqrqe)− 1

r2
q

(eTWCq ,Cqe− µqqr2
q)e.

Applying (38) with T = n establishes that

‖WCq ,Cqe− µqqrqe‖ ≤ ‖WCq ,Cq − µqqeeT ‖‖e‖

≤ C√rq max{σqq
√
rq,
√

log n},

w.h.p. On the other hand, Bernstein’s inequality establishes that

|eTWCq ,Cqe− µqqr2
q | ≤ 6 max

{√
σ2
qqrq log n, log n

}
,
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w.h.p. Combining these two inequalities using the triangle inequality establishes that

‖λCq −E[λCq ]‖ ≤C max

{
σqq,

√
log n

rq

}
+ 6 max

{√
σ2
qq log n

r2
q

,
log n

r
3/2
q

}

= O

(
max

{
σqq,

√
log n

r̂

})
,

w.h.p. Finally, applying the union bound over all choices of q shows that

‖λ−E[λ]‖2 =

k∑
q=1

‖λCq −E[λCq ]‖2 = O

(
kmax

{
σ2
qq,

log n

r̂

})
,

w.h.p. This establishes that

‖S̃2‖2 = O

(
krk+1 max

{
σ2
qq,

log n

r̂

})
,

w.h.p., as required.
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