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Abstract

We propose and analyze two new MCMC sampling algorithms, the Vaidya walk and the
John walk, for generating samples from the uniform distribution over a polytope. Both
random walks are sampling algorithms derived from interior point methods. The former
is based on volumetric-logarithmic barrier introduced by Vaidya whereas the latter uses
John’s ellipsoids. We show that the Vaidya walk mixes in significantly fewer steps than the
logarithmic-barrier based Dikin walk studied in past work. For a polytope in Rd defined
by n > d linear constraints, we show that the mixing time from a warm start is bounded as
O
(
n0.5d1.5

)
, compared to the O (nd) mixing time bound for the Dikin walk. The cost of

each step of the Vaidya walk is of the same order as the Dikin walk, and at most twice as
large in terms of constant pre-factors. For the John walk, we prove an O

(
d2.5 · log4(n/d)

)

bound on its mixing time and conjecture that an improved variant of it could achieve a
mixing time of O

(
d2 · poly-log(n/d)

)
. Additionally, we propose variants of the Vaidya and

John walks that mix in polynomial time from a deterministic starting point. The speed-up
of the Vaidya walk over the Dikin walk are illustrated in numerical examples.

Keywords: MCMC methods, interior point methods, polytopes, sampling from convex
sets

1. Introduction

Sampling from distributions is a core problem in statistics, probability, operations research,
and other areas involving stochastic models (Geman and Geman, 1984; Brémaud, 1991;
Ripley, 2009; Hastings, 1970). Sampling algorithms are a prerequisite for applying Monte
Carlo methods to order to approximate expectations and other integrals. Recent decades
have witnessed great success of Markov Chain Monte Carlo (MCMC) algorithms; for in-
stance, see the handbook by Brooks et al. (2011) and references therein. These methods are
based on constructing a Markov chain whose stationary distribution is equal to the target
distribution, and then drawing samples by simulating the chain for a certain number of
steps. An advantage of MCMC algorithms is that they only require knowledge of the target
density up to a proportionality constant. However, the theoretical understanding of MCMC
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algorithms used in practice is far from complete. In particular, a general challenge is to
bound the mixing time of a given MCMC algorithm, meaning the number of iterations—as
a function of the error tolerance δ, problem dimension d and other parameters—for the
chain to arrive at a distribution within distance δ of the target.

In this paper, we study a certain class of MCMC algorithms designed for the prob-
lem of drawing samples from the uniform distribution over a polytope. The polytope is
specified in the form K := {x ∈ Rd | Ax ≤ b}, parameterized by the matrix-vector pair
(A, b) ∈ Rn×d × Rn. Our goal is to understand the mixing time for obtaining δ-accurate
samples, and how it grows as a function of the pair (n, d).

The problem of sampling uniformly from a polytope is important in various applications
and methodologies. For instance, it underlies various methods for computing randomized
approximations to polytope volumes. There is a long line of work on sampling methods
being used to obtain randomized approximations to the volumes of polytopes and other
convex bodies (see, e.g., Lovász and Simonovits, 1990; Lawrence, 1991; Bélisle et al., 1993;
Lovász, 1999; Cousins and Vempala, 2014). Polytope sampling is also useful in developing
fast randomized algorithms for convex optimization (Bertsimas and Vempala, 2004) and
sampling contingency tables (Kannan and Narayanan, 2012), as well as in randomized
methods for approximately solving mixed integer convex programs (Huang and Mehrotra,
2013, 2015). Sampling from polytopes is also related to simulations of the hard-disk model
in statistical physics (Kapfer and Krauth, 2013), as well as to simulations of error events
for linear programming in communication (Feldman et al., 2005).

Many MCMC algorithms have been studied for sampling from polytopes, and more
generally, from convex bodies. Some early examples include the Ball Walk (Lovász and
Simonovits, 1990) and the hit-and-run algorithm (Bélisle et al., 1993; Lovász, 1999), which
apply to sampling from general convex bodies. Although these algorithms can be applied to
polytopes, they do not exploit any special structure of the problem. In contrast, the Dikin
walk introduced by Kannan and Narayanan (2012) is specialized to polytopes, and thus can
achieve faster convergence rates than generic algorithms. The Dikin walk was the first sam-
pling algorithm based on a connection to interior point methods for solving linear programs.
More specifically, as we discuss in detail below, it constructs proposal distributions based
on the standard logarithmic barrier for a polytope. In a later paper, Narayanan (2016)
extended the Dikin walk to general convex sets equipped with self-concordant barriers.

For a polytope defined by n constraints, Kannan and Narayanan (2012) proved an
upper bound on the mixing time of the Dikin walk that scales linearly with n. In many
applications, the number of constraints n can be much larger than the number of variables
d. For example, we could imagine one using many hyperplane constraints to approximate
complicated convex sets such as sphere or ellipsoid. For such problems, linear dependence
on the number of constraints is not desirable. Consequently, it is natural to ask if it is
possible to design a sampling algorithm whose mixing time scales in a sub-linear manner
with the number of constraints. Our main contribution is to investigate and answer this
question in affirmative—in particular, by designing and analyzing two sampling algorithms
with provably faster convergence rates than the the Dikin walk while retaining its advantages
over the ball walk and the hit-and-run methods.
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Our contributions: We introduce and analyze a new random walk, which we refer
to as the Vaidya walk since it is based on the volumetric-logarithmic barrier introduced
by Vaidya (1989). We show that for a polytope in Rd defined by n-constraints, the Vaidya
walk mixes in O

(
n1/2d3/2

)
steps, whereas the Dikin walk (Kannan and Narayanan, 2012)

has mixing time bounded as O (nd). So the Vaidya walk is better in the regime n� d. We
also propose the John walk, which is based on the John ellipsoidal algorithm in optimization.
We show that the John walk has a mixing time of O

(
d2.5 · log4(n/d)

)
and conjecture that a

variant of it could achieve O
(
d2 · poly-log(n/d)

)
mixing time. We show that when compared

to the Dikin walk, the per-iteration computational complexities of the Vaidya walk and the
John walk are within a constant factor and a poly-logarithmic in n/d factor respectively.
Thus, in the regime n � d, the overall upper bound on the complexity of generating an
approximately uniform sample follows the order Dikin walk � Vaidya walk � John walk.

The remainder of the paper is organized as follows. In Section 2, we discuss many
polynomial-time random walks on convex sets and polytopes, and motivate the starting
point for the new random walks. In Section 3, we introduce the new random walks and
state bounds on their rates of convergence and provide a sketch of the proof in Section 3.5.
We discuss the computational complexity of the different random walks and demonstrate
the contrast between the random walks for several illustrative examples in Section 4. We
present the proof of the mixing time for the Vaidya walk in Section 5 and defer the analysis
of the John walk to the appendix. We conclude with possible extensions of our work in
Section 6.

Notation: For two sequences aδ and bδ indexed by δ ∈ I ⊆ R, we say that aδ = O (bδ) if
there exists a universal constant C > 0 such that aδ ≤ Cbδ for all δ ∈ I. For a set K ⊂ Rd,
the sets int (K) and Kc denote the interior and complement of K respectively. We denote the
boundary of the set K by ∂K. The Euclidean norm of a vector x ∈ Rd is denoted by ‖x‖2.
For any square matrix M , we use det(M) and trace(M) to denote the determinant and the
trace of the matrix M respectively. For two distributions P1 and P2 defined on the same
probability space (X ,B(X )), their total-variation (TV) distance is denoted by ‖P1−P2‖TV

and is defined as follows

‖P1 − P2‖TV = sup
A∈B(X )

|P1(A)− P2(A)| .

Furthermore if P1 is absolutely continuous with respect to P2, then the KullbackLeibler
divergence from P2 to P1 is defined as

KL(P1‖P2) =

∫

X
log

(
dP1

dP2

)
dP1.

2. Background and problem set-up

In this section, we describe general MCMC algorithms and review the rates of convergence
of existing random walks on convex sets. After introducing several random walks studied
in past work, we introduce the Vaidya and John walks studied in this paper.
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2.1 Markov chains and mixing

Suppose that we are interested in drawing samples from a target distribution π∗ supported
on a subset X of Rd. A broad class of methods are based on first constructing a discrete-
time Markov chain that is irreducible and aperiodic, and whose stationary distribution is
equal to π∗, and then simulating this Markov chain for a certain number of steps k. As we
describe below, the number of steps k to be taken is determined by a mixing time analysis.

In this paper, we consider the class of Markov chains that are of the Metropolis-Hastings
type (Metropolis et al., 1953; Hastings, 1970); see the books by Robert (2004) and Brooks
et al. (2011), as well as references therein, for further background. Any such chain is
specified by an initial density π0 over the set X , and a proposal function p : X × X ∈ R+,
where p(x, ·) is a density function for each x ∈ X . At each time, given a current state x ∈ X
of the chain, the algorithm first proposes a new vector z ∈ X by sampling from the proposal
density p(x, ·). It then accepts z ∈ X as the new state of the Markov chain with probability

α(x, z) := min

{
1,
π∗(z)p(z, x)

π∗(x)p(x, z)

}
. (1)

Otherwise, with probability equal to 1 − α(x, z), the chain stays at x. Thus, the overall
transition kernel p for the Markov chain is defined by the function

q(x, z) := p(x, z)α(x, z) for z 6= x,

and a probability mass at x with weight 1 −
∫
X q(x, z)dz. It should be noted that the

purpose of the Metropolis-Hastings correction (1) is that ensure that the target distribution
π∗ satisfies the detailed balanced condition, meaning that

q(y, x)π∗(x) = q(x, y)π∗(y) for all x, y ∈ X . (2)

It is straightforward to verify that the detailed balance condition (2) implies that the target
density π∗ is stationary for the Markov chain. Throughout this paper, we analyze the lazy
version of the Markov chain, defined as follows: when at state x with probability 1/2 the
walk stays at x and with probability 1/2 it makes a transition as per the original random
walk. Given that the Markov chains discussed in this paper are also irreducible, the laziness
ensures uniqueness of the stationary distribution.

Overall, this set-up defines an operator Tp on the space of probability distributions:
given an initial distribution µ0 with supp(µ0) ⊆ supp(π∗), it generates a new distribution
Tp(µ0), corresponding to the distribution of the chain at the next step. Moreover, for any
positive integer k = 1, 2, . . ., the distribution µk of the chain at time k is given by T kp (µ0),

where T kp denotes the composition of Tp with itself k times. Furthermore, the transition
distribution at any state x is given by Tp(δx) where δx denotes the dirac-delta distribution
with unit mass at x.

Given our assumptions and set-up, we are guaranteed that limk→∞ T kp (µ0) = π∗—that
is, if we were to run the chain for an infinite number of steps, then we would draw a sample
from the target distribution π∗. In practice, however, any algorithm will be run only for a
finite number of steps, which suffices to ensure only that the distribution from which the
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sample has been drawn is “close” to the target π∗. In order to quantify the closeness, for a
given tolerance parameter δ ∈ (0, 1), we define the δ-mixing time as

kmix(δ;µ0) := min
{
k | ‖T kp (µ0)− π∗‖TV ≤ δ

}
, (3)

corresponding to the first time that the chain’s distribution is within δ in TV norm of the
target distribution, given that it starts with distribution µ0.

In the analysis of Markov chains, it is convenient to have a rough measure of the distance
between the initial distribution µ0 and the stationary distribution. Warmness is one such
measure: For a finite scalar M , the initial distribution µ0 is said to be M -warm with respect
to the stationary distribution π∗ if

sup
S

(
µ0(S)

π∗(S)

)
≤M, (Warm-Start)

where the supremum is taken over all measurable sets S. A number of mixing time guar-
antees from past work (Lovász, 1999; Vempala, 2005) are stated in terms of this notion of
M -warmness, and our results make use of it as well. In particular, we provide bounds on the
quantity sup

µ0∈PM (π∗)
kmix(δ;µ0), where PM (π∗) denotes the set of all distributions that are

M -warm with respect to π∗. Naturally, as the value of M decreases, the task of generating
samples from the target distribution gets easier. However, access to a warm-start may not
be feasible for many applications and thus deriving bounds on mixing time of the Markov
chain from a non warm-start is also desirable. Consequently, we provide modifications of
our random walks which mix in polynomial time even from deterministic starting points.

2.2 Sampling from polytopes

In this paper, we consider the problem of drawing a sample uniformly from a polytope.
Given a full-rank matrix A ∈ Rn×d with n ≥ d, we consider a polytope K in Rd of the form

K :=
{
x ∈ Rd | Ax ≤ b

}
, (4)

where b ∈ Rn is a fixed vector. Since the uniform distribution on the polytope K is the
primary target distribution considered in the paper, in the sequel we use π∗ exclusively
to denote the uniform distribution on the polytope K. There are various algorithms to
sample a vector from the uniform distribution over K, including the ball walk (Lovász
and Simonovits, 1990) and hit-and-run algorithms (Lovász, 1999). To be clear, these two
algorithms apply to the more general problem of sampling from a convex set; Table 1 shows
their complexity, when applied to the polytope K, relative to the Vaidya walk analyzed in
this paper. Most closely related to our paper is the Dikin walk proposed by Kannan and
Narayanan (2012), and a more general random walk on a Riemannian manifold studied by
Narayanan (2016). Both of these random walks, as with the Vaidya and John walks, can be
viewed as randomized versions of the interior point methods used to solve linear programs,
and more generally, convex programs equipped with suitable barrier functions.

In order to motivate the form of the Vaidya and John walks proposed in this paper, we
begin by discussing the ball walk and then the Dikin walk. For the sake of completeness, we
end the section with a brief description another popular sampling algorithm Hit-and-run.
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Ball walk: The ball walk of Lovász and Simonovits (1990) is simple to describe: when at
a point x ∈ K, it draws a new point u from a Euclidean ball of radius r > 0 centered at x.
Here the radius r is a step size parameter in the algorithm. If the proposed point u belongs
to the polytope K, then the walk moves to u; otherwise, the walk stays at x. On the one
hand, unlike the walks analyzed in this paper, the ball walk applies to any convex set, but
on the other, its mixing time depends on the condition number γK of the set K, given by

γK = inf
Rin,Rout>0

{Rout

Rin
| B(x,Rin) ⊆ K ⊆ B(y,Rout) for some x, y ∈ K

}
. (5)

Mixing time of the ball walk has been improved greatly since it was introduced (Kannan
et al., 1997, 2006; Lee and Vempala, 2018b). Nonetheless, as shown in Table 1, the mixing
time of the ball walk gets slower when the condition of the set is large; for instance, it scales1

as d6 for a set with condition number γK = d2. One approach to tackle bad conditioning
is to use rounding as a pre-processing step, where the set is rounded to bring it in a near-
isotropic position, i.e., reduce the condition γK to near-constant before sampling from it.
Nonetheless, these algorithms are themselves based on several rounds of sampling algorithms
and the current best algorithm by Lovász and Vempala (2006b) puts a convex body into
approximately isotropic position, i.e., O∗(

√
d) rounding with a running time of O∗(d4)

where we have omitted the dependence on log-factors. If one has more information about
the structure of the convex set (and not just oracle access as required by the ball walk), one
can potentially exploit it to design fast sampling algorithms which are unaffected by the
conditioning of the set thereby reducing the need of the (expensive) pre-processing step.
One such algorithm is the Dikin walk for polytopes which we describe next.

Dikin walk: The Dikin walk (Kannan and Narayanan, 2012) is similar in spirit to the
ball walk, except that it proposes a point drawn uniformly from a state-dependent ellipsoid
known as the Dikin ellipsoid (Dikin, 1967; Nesterov and Nemirovskii, 1994). It then applies
an accept-reject step to adjust for the difference in the volumes of these ellipsoids at different
states. The state-dependent choice of the ellipsoid allows the Dikin walk to adapt to the
boundary structure. A key property of the Dikin ellipsoid of unit radius—in contrast to
the Euclidean ball that underlies the ball walk—is that it is always contained within K, as
is known from classic results on interior point methods (Nesterov and Nemirovskii, 1994).
Furthermore, the Dikin walk is affine invariant, meaning that its behavior does not change
under linear transformations of the problem. As a consequence, the Dikin mixing time does
not depend on the condition number γK. In a variant of this random walk (Narayanan,
2016), uniform proposals in the ellipsoid are replaced by Gaussian proposals with covariance
specified by the ellipsoid, and it is shown that with high probability, the proposal falls within
the polytope.

The Dikin walk is closely related to the interior point methods for solving linear pro-
grams. In order to understand the Vaidya and John walks, it is useful to understand this
connection in more detail. Suppose that our goal is to optimize a convex function over the
polytope K. A barrier method is based on converting this constrained optimization problem
to a sequence of unconstrained ones, in particular by using a barrier to enforce the linear

1. Although, very recently Lee and Vempala (2018b) improved the mixing time of the ball walk for isotropic
sets which have γK = O(

√
d) improved from O

(
d3
)

to O
(
d2.5

)
.
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constraints defining the polytope. Letting a>i denote the i-th row vector of matrix A, the
logarithmic-barrier for the polytope K given by the function

F(x) := −
n∑

i=1

log(bi − aTi x). (6)

For each i ∈ [n], we define the scalar sx,i := (bi − aTi x), and we refer to the vector
sx := (sx,1, . . . , sx,n)> as the slackness at x.

Each step of an interior point algorithm (Boyd and Vandenberghe, 2004) involves (ap-
proximately) solving a linear system involving the Hessian of the barrier function, which is
given by

∇2F(x) :=
n∑

i=1

aia
>
i

s2
x,i

. (7)

In the Dikin walk (Kannan and Narayanan, 2012), given a current iterate x, the algorithm
chooses a point uniformly at random from the ellipsoid

{u ∈ Rd | (u− x)>Dx(u− x) ≤ R}, (8)

where Dx := ∇2F(x) is the Hessian of the log barrier function, and R > 0 is a user-defined
radius. In an alternative form of the Dikin walk (Narayanan, 2016; Sachdeva and Vishnoi,
2016), the proposal vector u ∈ Rd is drawn randomly from a Gaussian centered at x, and
with covariance equal to a scaled copy of (Dx)−1. Note that in contrast to the ball walk,
the proposal distribution now depends on the current state.

Vaidya walk: For the Vaidya walk analyzed in this paper, we instead generate proposals
from the ellipsoids defined, for each x ∈ int (K), by the positive definite matrix

Vx :=
n∑

i=1

(σx,i + βV)
aia
>
i

s2
x,i

, where (9a)

βV := d/n and σx :=

(
a>1 (∇2Fx)−1a1

s2
x,1

, . . . ,
a>n (∇2Fx)−1an

s2
x,n

)>
. (9b)

The entries of the the vector σx are known as the leverage scores assciated with the matrix
∇2Fx from equation (7), and are commonly used to measure the importance of rows in a
linear system (Mahoney, 2011). The matrix Vx is related to the Hessian of the function
x 7→ Vx given by

Vx := log det∇2Fx + βVFx. (10)

This particular combination of the volumetric barrier and the logarithmic barrier was in-
troduced by Vaidya (1989) and Vaidya and Atkinson (1993) in the context of interior point
methods, hence our name for the resulting random walk.
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John walk: We now describe the John walk. For any vector w ∈ Rn, let W := diag(w)
denote the diagonal matrix with Wii = wi for each i ∈ [n]. Let Sx = diag(sx) denote
the slackness matrix at x. It is easy to see that Sx is positive semidefinite for all x ∈ K,
and strictly positive definite for all x ∈ int (K). The (scaled) inverse covariance matrix
underlying the John walk is given by

Jx :=
n∑

i=1

ζx,i
aia
>
i

s2
x,i

, (11)

where for each x ∈ int (K), the weight vector ζx ∈ Rn is obtained by solving the convex
program

ζx := arg min
w∈Rn

{
n∑

i=1

wi −
1

αJ

log det(A>S−1
x WαJS−1

x A)− βJ

n∑

i=1

logwi

}
, (12)

with βJ := d/2n and αJ := 1 − 1/ log2(1/βJ). Lee and Sidford (2014) proposed the convex
program (12) associated with the approximate John weights ζx, with the aim of searching
for the best member of a family of volumetric barrier functions. They analyzed the use of
the John weights in the context of speeding up interior point methods for solving linear
programs; here we consider them for improving the mixing time of a sampling algorithm.
The convex program (12) is closely related to the problem of finding the largest ellipsoid at
any interior point of the polytope, such that the ellipsoid is contained within the polytope.
This problem of finding the largest ellipsoid was first studied by John (1948) who showed
that each convex body in Rd contains a unique ellipsoid of maximal volume. The convex
program (12) was used by Lee and Sidford (2014) to compute approximate John Ellipsoids
for solving linear programs. In a recent work, Gustafson and Narayanan (2018) make use of
the exact John ellipsoids and design a polynomial time sampling algorithm for polytopes.
See Table 1 for the associated guarantees.

Hit-and-run: We conclude with a brief discussion with another popular sampling algo-
rithm: Hit-and-run. It was introduced by Smith (1984) as a sampling algorithm for general
distributions and it was later shown to have polynomial mixing time for sampling from
convex sets (Lovász, 1999; Lovász and Vempala, 2003, 2006a). The algorithm proceeds as
follows: when at point x, it firsts draws a random line through x and then samples from
the one-dimensional marginal of the target distribution restricted to this line. For uniform
sampling from convex sets, the second step simplifies to drawing a uniform point from the
line restricted to the convex set. Mixing time bounds for this random walk are summarized
in Table 1.

2.3 Mixing time comparisons of walks

Table 1 provides a summary of the mixing time bounds and per step complexity and the
effective per sample complexity for various random walks, including the Vaidya and John
walks analyzed in this paper. In addition to the Ball Walk, Hit-and-Run, Dikin, Vaidya
and John walks, we also show scalings for the recently introduced Riemannian Hamiltonian
Monte Carlo (RHMC) on polytopes by Lee and Vempala (2016) and the John’s walk based
on exact John ellipsoids studied by Gustafson and Narayanan (2018). The details of per
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iteration cost for the new random walks is discussed in Section 4.1. We now compare and
contrast the complexities of these random walks.

Unlike the Ball Walk or hit-and-run which are useful for general convex sets, the Dikin,
Vaidya, John and RHMC walks are specialized for polytopes. These latter random walks
exploit the definition of the polytope in a particular way so that the transition probability
from a point x to y does not change under an affine transformation, i.e., T(x, y) = T(Ax,Ay)
where T denotes the transition kernel for the random walk. Consequently, the mixing time
bounds for these random walks have no dependence on the condition number of the set
γK (5). We can see from Table 1, that compared to the Ball walk and hit-and-run, Vaidya
walk mixes significantly faster if n � dγ2

K. The condition number γK of polytopes with

polynomially many faces can not be O(d
1
2
−ε) for any ε > 0 but can be arbitrarily larger,

even exponential in dimension d (Kannan and Narayanan, 2012). For such polytopes,
Vaidya walk mixes faster as long as n � d3 (and even for larger n when γK is large). It
takes O(

√
n/d) fewer steps compared to Dikin walk and thus provides a practical speed up

over all range of d.

From a warm start, the Riemannian Hamiltonian Monte Carlo on polytopes introduced
by Lee and Vempala (2016) has O

(
nd2/3

)
mixing time, and thus mixes faster (up to con-

stants) compared than the Vaidya walk (respectively the John walk) when the number of
constraints n is is bounded as n � d5/3 (respectively n � d11/6). For larger numbers of
constraints, the Vaidya and John walks exhibit faster mixing. More generally, it is clear
that the rate of John walk has almost the best order across all the walks for reasonably
large values of n� d2.

Finally, let us compare the (exact) John walk due to Gustafson and Narayanan (2018)
with the (approximate) John walk studied in our paper. A notable feature of their random
walk is that its mixing time is independent of the number of constraints and the per iteration
cost also depends linearly on the number of constraints. Nonetheless, the dependence on
d, for both the mixing time (d7) and the per iteration cost (nd4 + d8) is quite poor. In
contrast, the per iteration cost for our John walk is nd2 and the mixing time has only a
poly-logarithmic dependence on n.

2.4 Visualization of three walks’ proposal distributions

In order to gain intuition about the three interior point based methods—namely, the Dikin,
Vaidya and John walks—it is helpful to discuss how their underlying proposal distributions
change as a function of the current point x. All three walks are based on Gaussian proposal
distributions with inverse covariance matrices of the general form

n∑

i=1

wx,i
aia
>
i

s2
x,i

,

where wx,i > 0 corresponds to a state-dependent weight associated with the i-th constraint.
The Dikin walk uses the weights wx,i = 1; the Vaidya walk uses the weights wx,i = σx,i + βV;
and the John walk uses the weights wx,i = ζx,i. For simplicity, we refer to these weights
as the Dikin, Vaidya and John weights. The i-th weight characterize the importance of
the i-th linear constraint in constructing the inverse covariance matrix. A larger value of
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Random walk kmix(δ;µ0) Iteration cost Per sample cost

Ball walk# (Kannan et al., 2006) d2γ2
K nd nd3γ2

K

Hit-and-Run (Lovász and Vempala, 2006a) d2γ2
K nd nd3γ2

K

Dikin walk (Kannan and Narayanan, 2012) nd nd2 n2d3

RHMC walk (Lee and Vempala, 2018a) nd2/3 nd2 n2d2.67

John’s walk† (Gustafson and Narayanan, 2018) d7 nd4 + d8 nd11 + d15

Vaidya walk (this paper) n1/2d3/2 nd2 n1.5d3.5

John walk (this paper) d5/2 log4
(

2n
d

)
nd2 log2 n nd4.5

Improved John walk‡ (this paper) d2 κn,d nd2 log2 n nd4

Table 1. Upper bounds on computational complexity of random walks on the polytope
K = {x ∈ Rd|Ax ≤ b} defined by the matrix-vector pair (A, b) ∈ Rn×d × Rn with a warm-
start. For simplicity, here we ignore the logarithmic dependence on the warmness parameter
and the tolerance δ. The iteration cost terms of order nd2 arise from linear system solving,
using standard and numerically stable algorithms, for n equations in d dimensions; algorithms
with best possible theoretical complexity ndω for ω < 1.373 are not numerically stable enough
for practical use. #Mixing time of the Ball walk has been improved to O

(
d2γK

)
for near

isotropic convex bodies by Lee and Vempala (2018b) during the submission period of this
paper. While ball walk, Hit-and-run are affected by the condition number γK of the set, the
Dikin and RHMC walks have quadratic dependence on the number of constraints n. †John’s
walk by Gustafson and Narayanan (2018) (based on the exact John ellipsoids) has linear
dependence on n but poor dependence on d. In contrast, the Vaidya walk has sub-quadratic
dependence on n and significantly better dependence on d. Furthermore, the John walk
(based on approximate John’s ellipsoids) analyzed in this paper has linear dependence with
reasonable dependence on the dimensions d. ‡The mixing time bound for the improved John
walk with poly-logarithmic factor κn,d is conjectured.

the weight wx,i relative to the total weight
∑n

i=1wx,i signifies more importance for the i-th
linear constraint for the point x.

Figure 1a illustrates the difference in three weights as we move points inside the polytope
[−1, 1]2. When the point x is in the middle of the unit square formed by the four constraints,
all walks exhibit equal weight for every constraint. When the point x is closer to the bottom-
left boundary, the Vaidya and John weights assign larger weights to the bottom and the
left constraints, while the weights for top and right constraints decrease. Note that the
total sum of Vaidya weights and that of John weights remains constant independent of the
position of the point x.

In Figure 1b-2b, we demonstrate that the Vaidya walk and the John walk are better at
handling repeated constraints. Note that we can define the square [−1, 1]2 as

[−1, 1]2 =




x ∈ R2

∣∣∣∣∣Ax ≤ b, A =




1 0
0 1
−1 0
0 −1


 , b =

[
1
1

]



. (13)
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1.00

1.00

1.00

1.50
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0.50
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1.25

0.25

0.25
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(a) Weights for different locations and a fixed
number of constraints n.

1.00

1.00

1.00

1.00

Dikin Weights

0.51

1.28

1.49

0.72

Vaidya Weights

0.25

1.21

1.25

0.29

John Weights

4.00

4.00

4.00

4.00

0.51

1.28

1.49

0.72

0.25

1.22

1.25

0.28

32.00

32.00

32.00

32.00

0.51

1.28

1.49

0.72

0.25

1.23

1.25

0.27

(b) Effective weights for a fixed location and
different number of constraints n

Figure 1. Visualization of the weights on the square with repeated constraints Sn/4 for
the different random walks. The number mentioned next to the boundary lines denotes the
effective weight for the location x (denoted by diamond) for the corresponding constraint.
(a) n = 4 is common across rows and x = (0, 0) for the top row, (0.9, 0.9) for the middle and
(−0.9,−0.7) for the bottom row. The Dikin weights are independent of x, the Vaidya and
the John weights for a constraint increase if the location x is closer to it. (b) x = (0.85, 0.30)
is common across rows, and n=4 for the top row, n = 16 for the middle and n=128 for the
bottom row. The effective Dikin weight for each constraint increases linearly with n but for
the Vaidya and John walk adaptively, the weights get adjusted such that the sum of their
weights is always of the order of the dimension d.

Simply repeating the rows of the matrix A several times changes the mathematical for-
mulatiton of the polytope, but does not change the shape of the polytope. We define the
square with constraints repeated n/4 times Sn/4 as

Sn/4 =




x ∈ R2

∣∣∣∣∣An/4x ≤ bn/4, An/4 =




A
...

×(n/4)


 , bn/4 =




b
...

×(n/4)


 ,





(14)

where A and b were defined above. We denote effective weight for each distinct constraint as
the sum of weights corresponding to the same constraint. Using this definition, the effective
Dikin weight, which is n/4, is thus affected by the repeating of constraints. Consequently,
the Dikin ellipsoid is much smaller for polytopes with repeated constraints. However, the
Vaidya and John weights do not change as observed in the Figure 1b. Such a property
of these two weights implies that the Vaidya and John ellipsoids are not too small even
for very large number of constraints. And we observe such a phenomenon in Figures 2a-
2b where the repetition of rows in the matrix A leads to very small Dikin ellipsoid but
large Vaidya and John ellipsoid. A few other numerical computations also suggest that the
Vaidya and John ellipsoids are moder adaptive when compared to Dikin ellipsoids when the
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number of constraints is large. Nonetheless, such a claim is only based on heuristics and
is presented simply to provide an intuition that the new ellipsoids are better behaved than
Dikin ellipsoids and thereby motivated the design of the new random walks.

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0
Dikin

Vaidya

John

(a) n = 32

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0
Dikin

Vaidya

John

(b) n = 2048

Figure 2. Visualization of the proposal distribution on the square with repeated constraints
Sn/4 for the different random walks. (a, b) Unit ellipsoids associated with the covariances
of the random walks at different states x on the square with repeated constraints Sn/4.
Clearly, all these ellipsoids adapt to the boundary but increasing n has a profound impact
on the volume of the Dikin ellipsoids and comparatively less impact on the Vaidya and John
ellipsoids.

3. Main results

With the basic background in place, we now describe the algorithms more precisely and
state upper bounds on the mixing time of the Vaidya and John walks. In Section 3.4, we
propose a variant of the John walk, known as the improved John walk, and conjecture that
it has a better mixing time bound than that of the John walk.

3.1 Vaidya and John walks

In this subsection, we formally define the Vaidya and John walks. In Algorithm 1 and
Algorithm 2, we summarize the steps of the Vaidya walk and the John walk.

Vaidya walk: The Vaidya walk with radius parameter r > 0, denoted by VW(r) for
short, is defined by a Gaussian proposal distribution denoted as PV

x : given a current state
x ∈ int (K), it proposes a new point by sampling from the multivariate Gaussian distribution

12
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N
(
x, r2√

nd
Vx
−1
)

. In analytic terms, the proposal density at x is given by

pVx(z) := pVaidya(r)(x, z) =
√

detVx

(
nd

2πr2

)d/2
exp

(
−
√
nd

2r2
(z − x)>Vx(z − x)

)
. (15)

As the target distribution for our walk is the uniform distribution on K, the proposal step is
followed by an accept-reject step as described in Section 2.1 (equation 1). Thus the overall
transition distribution for the walk at state x is defined by a density given by

qVaidya(r)(x, z) =

{
min {pVx(z), pVz (x)} , z ∈ K and z 6= x,

0, z /∈ K,

and a probability mass at x, given by 1 −
∫
z∈Kmin {px(z), pz(x)} dz. We use TVaidya(r) to

denote the resulting transition operator for the Vaidya walk with parameter r.

Algorithm 1: Vaidya Walk with parameter r (VW(r))

Input: Parameter r and x0 ∈ int (K)
Output: Sequence x1, x2, . . .

1 for i = 0, 1, . . . do
2 With probability 1

2 stay at the current state: xi+1 ← xi % lazy step

3 With probability 1
2 perform the following update:

4 Proposal step: Draw zi+1 ∼ N
(
xi,

r2

(nd)1/2
V −1xi

)

5 Accept-reject step:
6 if zi+1 /∈ K then xi+1 ← xi % reject an infeasible proposal

7 else

8 compute αi+1 = min
{

1, pzi+1
(xi+1)/pxi+1

(zi+1)
}

9 With probability αi+1 accept the proposal: xi+1 ← zi+1

10 With probability 1− αi+1 reject the proposal: xi+1 ← xi
11 end

John walk: The John walk is similar to the Vaidya walk except that the proposals at state

x ∈ int (K) are generated from the multivariate Gaussian distributionN
(
x, r2

d3/2·log4
2(2n/d)

Jx
−1
)

,

where the matrix Jx is defined by equation (11), and r > 0 is a constant. The proposal
distribution at x ∈ int (K) is denoted as PJ

x. The proposal step is then followed by an
accept-reject step similarly defined as in the Vaidya walk. We use TJohn(r) to denote the
resulting transition operator for the John walk with parameter r.

3.2 Mixing time bounds for warm start

We are now ready to state an upper bound on the mixing time of the Vaidya walk. In
this and other theorem statements, we use c to denote a universal positive constant. Recall
that π∗ denotes the uniform distribution on the polytope K, and, that TVaidya(r) denotes the
operator on distributions associated with the Vaidya walk.

13
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Algorithm 2: John Walk with parameter r (JW(r))

Input: Parameter r and x0 ∈ int (K)
Output: Sequence x1, x2, . . .

1 for i = 0, 1, . . . do
2 With probability 1

2 stay at the current state: xi+1 ← xi % lazy step

3 With probability 1
2 perform the following update:

4 Proposal step: Draw zi+1 ∼ N
(
xi,

r2

d3/2 J
−1
xi

)
% this step is different than the Vaidya walk

5 Accept-reject step:
6 if zi+1 /∈ K then xi+1 ← xi % reject an infeasible proposal

7 else

8 compute αi+1 = min
{

1, pzi+1
(xi+1)/pxi+1

(zi+1)
}

9 With probability αi+1 accept the proposal: xi+1 ← zi+1

10 With probability 1− αi+1 reject the proposal: xi+1 ← xi
11 end

Theorem 1 Let µ0 be any distribution that is M -warm with respect to π∗ as defined in
equation (Warm-Start). For any δ ∈ (0, 1], the Vaidya walk with parameter rV = 10−4

satisfies

‖T k
Vaidya(rV)(µ0)− π∗‖TV ≤ δ for all k ≥ cn1/2d3/2 log

(√
M

δ

)
. (16)

The proof of Theorem 1 is provided in Section 5. Theorem 1 precisely quantifies the depen-
dence of mixing time of the Vaidya walk on many parameters of interest such as dimension
d, number of constraints n, the error tolerance δ and the warmness M . The specific choice
rV = 10−4 is for theoretical purposes; in practice, we find that substantially larger values
can be used.2 Our upper bound for the mixing time of the Vaidya walk has O(

√
n/d)

improvement over the current best upper bound for the mixing time of the Dikin walk. In
Section 4.1, we show that the per iteration cost for the two walks is of the same order.
Since n ≥ d for closed polytopes in Rd, the effective cost until convergence (iteration com-
plexity multiplied by number of iterations required) for the Vaidya walk is at least of the
same order as of the Dikin walk, and significantly smaller when n � d. Comparing the
provable mixing time upper bounds, the Vaidya walk has an advantage over the Dikin walk
for the problems where the number of constraints is significantly larger than the number of
variables involved. Our simulations also confirm this theoretical finding.

Let us now state our result for the mixing time of the John walk:

2. A larger than optimal r leads to an undesirable high rejection rate. In practice, we can fine tune r
by performing a binary search over the interval [10−4, 1] and keeping track of the rejection rate of the
samples during the run of the Markov chain for a given choice of r. A choice of r > 1 is obviously bad
because then the Vaidya ellipsoid will have poor overlap with polytopes near the boundary, causing high
rejection rate and slow down of the chain.
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Theorem 2 Suppose that n ≤ exp(
√
d), and let µ0 be any distribution that is M -warm

with respect to π∗. Then for any δ ∈ (0, 1], the John walk with parameter rJ = 10−5 satisfies

‖T k
John(rJ)(µ0)− π∗‖TV ≤ δ for all k ≥ c d2.5 log4

(n
d

)
log

(√
M

δ

)
.

The proof of Theorem 2 is provided in Appendix D. Again the specific choice of rJ = 10−5

is for theoretical purpose; in practice larger choices are possible. Note that the mixing time
bound for the John walk depends only on the number of constraints n via a logarithmic
factor, and so is almost independent of n. Consequently, it has a mixing time that is
polynomial in d even if the number of constraints n scales exponentially in

√
d. Further,

we show in Section 4.1 that the cost to execute one step of the John walk is of the same
order as of the Dikin walk up to a poly-logarithmic factor in n. Thus, using John walk, we
obtain improved mixing time bounds for the case when n� d2.

3.3 Mixing time bounds from deterministic start

The mixing time bounds in Theorem 1 and 2 depend on the warmness M of the initial
distribution. In some applications, it may not be easy to find an M -warm initial distribu-
tion. In such cases, we can consider starting the random walk from a deterministic point
x0 ∈ int (K) that is not too close to the boundary ∂K. Indeed, such a point can be found
using standard optimization methods—e.g., using a Phase-I method for Newton’s algorithm
(see Boyd and Vandenberghe, 2004, Section 11.5.4).

Given such a deterministic initialization, our mixing time guarantees depend on the
distance of the starting point from the boundary. This dependence involves the following
notion of s-centrality:

Definition 3 A point x ∈ int (K) is called s-central if for any chord ef with end points
e, f ∈ ∂K passing through x, we have ‖e− x‖2 / ‖f − x‖2 ≤ s.
Assuming that it is started at an s-central point x0, the Dikin walk (Kannan and Narayanan,
2012, algorithm in section 2.1) has a polynomial mixing time. The authors showed that
when the walk moves to a new state for the first time, the distribution of the iterate is
O
(
(
√
ns)d

)
-warm with respect to the distribution3 π∗. Since only constant number of steps

is required to get a warm start, for a deterministic start, we can just use the Dikin walk in
the beginning to provide a warm start to the Vaidya (or John) walk. This motivates us to
define the following hybrid walk.

Given an s-central point x0, simulate the Dikin walk until we observe a new state. Note
that due to laziness and the accept-reject step, the chain can stay at the starting point for
several steps before making the first move a new state. Let k1 denote the (random) number
of steps taken to make the first move to a new state. After k1 steps, we run the walk VW(r)
with xk1 as the initial point. We call such a walk as s-central Dikin-start-Vaidya-walk with
parameter r. Let TDikin denote the transition kernel of the Dikin walk stated above. Then,
we have the following mixing time bound for this hybrid walk.

3. Obtaining a warmness result for the Vaidya walk from a deterministic start from a central point is non-
trivial and it is quite possible that the warmness does not improve. As a result, we simply invoke the
established result for the Dikin walk.
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Corollary 4 Any s-central Dikin-start-Vaidya-walk with parameter r = 10−4 satisfies

‖T k
Vaidya(r)

(
T k1Dikin(δx0)

)
− π∗‖TV ≤ δ for all k ≥ cn1/2d5/2 log

(ns
δ

)
,

where k1 is a geometric random variable with E [k1] ≤ c′, and c, c′ > 0 are universal con-
stants.

The mixing rate is logarithmic in ns and has an extra factor of d compared to the bounds in
Theorem 1. However, guaranteeing a warm start for a general polytope is hard but obtaining
a central point involves only a few steps of optimization. Consequently, the hybrid walk and
the guarantees from Corollary 4 come in handy for all such cases. Once again we observe
that the upper bounds for mixing time are improved by a factor of O(

√
n/d) when compared

to the Dikin walk from an s-central start (Kannan and Narayanan, 2012; Narayanan, 2016)
which had a mixing time of O

(
nd2
)
. The proof follows immediately from Theorem 1 by

Kannan and Narayanan (2012) and Theorem 1 of this paper and is thereby omitted.
In a similar fashion, we can provide a polynomial time guarantee for a modified John

walk from a deterministic start. We can consider a hybrid random walk that starts at an
s-central point, simulates the Dikin walk until it makes the first move to a new state, and
from there onwards simulates the John walk. Such a chain would have a mixing time of
O
(
d3.5poly-log(n, d, s)

)
. For brevity, we omit a formal statement of this result.

3.4 Conjecture on improved John walk

From our analysis, we suspect that it is possible to improve the mixing time bound of
O
(
d2.5poly-log(n/d)

)
in Theorem 2 by considering a variant of the John walk. In particular,

we conjecture that a random walk with proposal distribution given byN
(
x, r2

d·poly-log(n/d)Jx
−1
)

for a suitable choice of r has an O
(
d2poly-log(n/d)

)
mixing time from a warm start. We

refer to this random walk as the improved John walk, and denote its transition operator by
TJohn+ . Let us now give a formal statement of our conjecture on its mixing rate.

Conjecture 5 Let µ0 be any M -warm distribution. Then for any δ ∈ (0, 1], the improved
John walk with parameter r = r0, satisfies the bound

‖T k
John+(µ0)− π∗‖TV ≤ δ for all k ≥ c d2 logc

′
2

(
2n

d

)
log

(√
M

δ

)
,

where r0, c, c
′ are universal constants.

Note that this conjecture involves quadratic (degree two) scaling in d; this exponent of
two matches the sum of exponents for d and n in the mixing time bounds for both the Dikin
and Vaidya walks from a warm-start. Consquently, the improved John walk would have
better performance than the Dikin, Vaidya and John walks for almost all ranges of (n, d),
apart from possible poly-logarithmic factors in the ratio n/d.

3.5 Proof sketch

In this subsection, we provide a high-level sketch of the main ingredients of the main proof.
It is well-known that mixing of a Markov chain is closely related to its conductance. Our
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main proof relies on the work by Lovász (1999) that characterizes the conductance of Markov
chains on a convex set using Hilbert metric. Precisely, Lovász (1999) showed that a Markov
chain has good conductance if it makes jumps to regions with large overlaps from two nearby
points and the mixing time depends inversely on the maximum Hilbert metric between
such nearby points. Using this argument, it remains to make sure that the ellipsoid radius
is chosen properly such that the ellipsoids remain inside the polytope and the ellipsoids
corresponding to two different points x and y overlap a lot even if the points x and y are
relatively far apart.

The conductance-based argument has been used for analyzing the ball walk (Lovász and
Simonovits, 1990, 1993), Hit-and-run (Lovász, 1999; Lovász and Vempala, 2006a) and the
Dikin walk (Kannan and Narayanan, 2012; Narayanan, 2016; Sachdeva and Vishnoi, 2016).
We refer the reader to the survey by Vempala (2005) for a thorough discussion about the
relation between the conductance and mixing time for Markov chains. Our proof techniques
share a few features with the recent analyses of the Dikin walk by Kannan and Narayanan
(2012) and Sachdeva and Vishnoi (2016). However, new technical ideas are needed in order
to handle the state-dependent weights σx and ζx, as defined in equations (9b) and (12)
respectively, that underlie the proposal distributions for the Vaidya and John walks. Note
that these techniques are not present in the analysis of the Dikin walk, which is based on
constant weights.

Specifically, we present the proof of Theorem 1 on the mixing time of the Vaidya walk
in Section 5 and defer the intermediate technical results to Appendix A, B and C. We
present the proof of Theorem 2 (mixing time bound for the John walk) in Appendix D
and provide related auxiliary results and their proofs in Appendices E, F, G, H and I. As
alluded to earlier, to keep the paper self-contained, we provide the proof of Lovász’s Lemma
in Appendix J.

4. Numerical experiments

In this section, we first analyze the per-iteration cost to implement of three walks. We
show that while the Dikin walk has the best per-iteration cost, the per-iteration cost of
the Vaidya walk is only twice of that of Dikin walk and the per-iteration cost of the John
walk is only of order log2(2n/d) larger. Second, we demonstrate the speed-up gained by the
Vaidya walk over the Dikin walk for a warm start on different polytopes.

4.1 Per iteration cost

We now show that the per iteration cost of the Dikin, Vaidya and John walks is of the same
order. The proposal step of Vaidya walk requires matrix operations like matrix inversion,
matrix multiplication and singular value decomposition (SVD). The accept-reject step re-
quires computation of matrix determinants, besides a few matrix inverses and matrix-vector
products. The complexity of all aforementioned operations is O

(
nd2
)
. Thus, per iteration

computational complexity for the Vaidya walk is O
(
nd2
)
.4

4. In theory, the matrix computations for the Dikin walk can be carried out in time ndν for an exponent
ν < 1.373, but such algorithms are not numerically stable enough for practical use.
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Both the Dikin and Vaidya walks requires an SVD computation for inverting the Hessian
of Dikin barrier ∇2Fx. In addition for the Vaidya walk, we have to invert the matrix Vx,
which leads to almost twice the computation time of the Dikin walk per step. This difference
can be observed in practice.

For the John walk, we need to compute the weights ζx at each point which involves
solving the program (12). Lee and Sidford (2014) argued that the convex program (12) for
obtaining John walk’s weights is strongly convex with a suitably chosen norm. They proved
that solving this program requires log2 n number of gradient steps, where the computational
complexity of each gradient step is equivalent to that of solving an n × d linear system
(O
(
nd2
)

using a numerically stable routine). Thus, the overall cost for the John walk is of
the same order as of the Dikin walk up to a poly-logarithmic factor in the pair (n, d).

In practice, for the John walk, the combined effect of logarithmic factors in the number
of steps and the cost to implement each step cannot be ignored. This extra factor becomes a
bottleneck for the overall run time for the convergence of the Markov chain. Consequently,
the John walk is not suitable for polytopes with moderate values of n and d, and its mixing
time bounds are computationally superior to the Dikin and Vaidya walks only for the
polytopes with n� d� 1.

4.2 Simulations

We now present simulation results for the random walks in Rd for d = 2, 10 and 50 with
initial distribution µ0 = N (0, σ2

d Id) and target distribution being uniform, on the following
polytopes:

Set-up 1 : The set [−1, 1]2 defined by different number of constraints.

Set-up 2 : The set [−1, 1]d for d ∈ {2, 3, 4, 5, 6, 7} for n = {2d, 2d2, 2d3} constraints.

Set-up 3 : Symmetric polytopes in R2 with n-randomly-generated-constraints.

Set-up 4 : The interior of regular n-polygons on the unit circle.

Set-up 5 : Hyper cube [−1, 1]d for d = 10 and 50.

We choose σd such that the warmness parameter M is bounded by 100. We provide imple-
mentations of the Dikin, Vaidya and John walks in python and a jupyter notebook at the
github repository https://github.com/rzrsk/vaidya-walk.

We use the following three ways to compare the convergence rate of the Dikin and the
Vaidya walks: (1) comparing the approximate mixing time of a particular subset of the
polytope—smaller value is associated with a faster mixing chain; (2) comparing the plot
of the empirical distribution of samples from multiple runs of the Markov chain after k
steps—if it appears more uniform for smaller k, the chain is deemed to be faster; and (3)
contrasting the sequential plots of one dimensional projection of samples for a single long
run of the chain—less smooth plot is associated with effective and fast exploration leading
to a faster mixing (Yu and Mykland, 1998). Note that MCMC convergence diagnostics is
a hard problem, especially in high dimensions, and since the methods outlined above are
heuristic in nature we expect our experiments to not fully match our theoretical results.

In Set-up 1, we consider the polytope [−1, 1]2 which can be represented by exactly 4
linear constraints (see Section 2.4). Suppose that we repeat the rows of the matrix A, and
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then run the Dikin and Vaidya walks with the new A. Given the larger number of con-
straints, our theory predicts that the random walks should mix more slowly. In Figure 3c
and 3d, we plot the empirical distribution obtained by the Dikin walk and Vaidya walk,
starting from 200 i.i.d initial samples, for n = 64 and 2048. The empirical distribution plot
shows that having large n significantly slows the mixing rate of the Dikin walk, while the
effect on the Vaidya walk is much less. Further, we also plot the scaling of the approxi-
mate mixing time k̂mix (defined below) for this simulation as a function of the number of
constraints n in Figure 3b. For Set-up 2, we plot k̂mix as a function of the dimensions d
in Figures 3e-3g, for the random walks on [−1, 1]d where the hypercube is parametrized by
different number of constraints n ∈ {2d, 2d2, 2d3}. The approximate mixing time is defined
with respect to the set Sd = {x ∈ Rd| |xi| ≥ cd ∀i ∈ [d]} where cd is chosen such that
π∗(Sd) = 1/2. In particular, for a fixed value of n, let T̂k denote the empirical measure
after k-iterations across 2000 experiments. The approximate mixing time k̂mix is defined as

k̂mix := min

{
k

∣∣∣∣π∗(Sd)− T̂k(Sd) ≤
1

20

}
, (17)

We choose such a set since the set covers the regions near to the boundary of the poly-
tope which are not covered well by the chosen initial distribution. We make the following
observations:

1. The slopes of the best-fit lines, for k̂mix versus n in the log-log plot in Figure 3b, are
0.88 and 0.45 for Dikin and Vaidya walks respectively. This observation reflects a
near-linear and sub-linear dependence on n for a fixed d for the mixing time of the
Dikin walk and the Vaidya walk respectively.

2. In Figures 3e-3g, once again we observe a more significant effect of increasing the
number of constraints on the approximate mixing time k̂mix. We list the slopes of
the best fit lines on these log-log plots in Table 2. These slopes correspond to the
exponents for d for the approximate mixing time. From the table, we can observe that
these experiments agree with the mixing time bounds of O (nd) for the Dikin walk
and O

(
n0.5d1.5

)
for the Vaidya walk.

No. of Constraints DW Theoretical VW Theoretical DW Experiments VW Experiments

n = 2d 2.0 2.0 1.58 1.72
n = 2d2 3.0 2.5 2.80 2.48
n = 2d3 4.0 3.0 3.84 2.75

Table 2. Value of the exponent of dimensions d for the theoretical bounds on mixing time
and the observed approximate mixing time of the Dikin walk (DW) and the Vaidya walk
(VW) for [−1, 1]d described by n = 2d, 2d2, 2d3 constraints. The theoretical exponents are
based on the mixing time bounds of O (nd) for the Dikin walk and O

(
n0.5d1.5

)
for the Vaidya

walk. The experimental exponents are based on the results from the simulations described
in Set-up 2 in Section 4.2. Clearly, the exponents observed in practice are in agreement
with the theoretical rates and imply the faster convergence of the Vaidya walk compared to
the Dikin walk for large number of constraints.

In Set-up 3, we compare the plots of the empirical distribution of 200 runs of the Dikin
walk and the Vaidya walk for different values of k, for symmetric polytopes in R2 with n-
randomly-generated-constraints. We fix bi = 1. To generate ai, first we draw two uniform
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random variables from [0, 1] and then flip the sign of both of them with probability 1/2 and
assign these values to the vector ai. The resulting polytope is always a subset of the square
K = [−1, 1]2 and contains the diagonal line connecting the points (−1, 1) and (1,−1). From
Figure 4a-4b, we observe that while there is no clear winner for the case n = 64, the Vaidya
walk mixes mixes significantly faster than the Dikin walk for the polytope defined by 2048
constraints.

In Set-up 4, the constraint set is the regular n-polygons inscribed in the unit circle. A
similar observation as in Set-up 3 can be made from Figure 4c-4d: the Vaidya walk mixes
at least as fast as the Dikin walk and mixes significantly faster for large n.

In Set-up 5, we examine the performance of the Dikin walk and the Vaidya walk on
hyper-cube [−1, 1]d for d = 10, 50. We plot the one dimensional projections onto a random
normal direction of all the samples from a single run up to 10, 000 steps. The Vaidya
sequential plot looks more jagged than that of the Dikin walk for d = 10, n = 5120. For
other cases, we do not have a clear winner. Such an observation is consistent with the
O(
√
n/d) speed up of the Vaidya walk which is apparent when the ratio n/d is large.

5. Proofs

We begin with auxiliary results in Section 5.1 which we use then to prove Theorem 1 in
Section 5.2. Proofs of the auxiliary results are in Sections 5.3 and 5.4, and we defer other
technical results to appendices.

5.1 Auxiliary results

Our proof proceeds by formally establishing the following property for the Vaidya walk: if
two points are close, then their one-step transition distribution are also close. Consequently,
we need to quantify the closeness between two points and the associated transition distri-
butions. We measure the distance between two points in terms of the cross ratio that we
define next. For a given pair of points x, y ∈ K, let e(x), e(y) ∈ ∂K denote the intersection
of the chord joining x and y with K such that e(x), x, y, e(y) are in order (see Figure 6a).
The cross-ratio dK(x, y) is given by

dK(x, y) :=
‖e(x)− e(y)‖2 ‖x− y‖2
‖e(x)− x‖2 ‖e(y)− y‖2

. (18)

The ratio dK(x, y) is related to the Hilbert metric on K, which is given by log (1 + dK(x, y));
see the paper by Bushell (1973) for more details.

Consider a lazy reversible random walk on a bounded convex set K with transition
operator T defined via the mapping µ0 7→ µ0/2 + T̃ (µ0)/2 and stationary with respect
to the uniform distribution on K (denoted by π∗). (Recall that δx denote the dirac-delta
distribution with unit mass at x.) The following lemma gives a bound on the mixing-time
of the Markov chain.

Lemma 6 (Lovász’s Lemma) Suppose that there exist scalars ρ,∆ ∈ (0, 1) such that

‖T̃ (δx)− T̃ (δy)‖TV ≤ 1− ρ for all x, y ∈ int (K) with dK(x, y) < ∆. (19a)
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Figure 3. Comparison of the Dikin and Vaidya walks on the polytope K = [−1, 1]2. (a)
Samples from the initial distribution µ0 = N (0, 0.04 I2) and the uniform distribution on

[−1, 1]2. (b) Log-log plot of k̂mix (17) versus the number of constraints (n) for a fixed
dimension d = 2. (c, d) Empirical distribution of the samples for the Dikin walk (blue/top
rows) and the Vaidya walk (red/bottom rows) for different values of n at iteration k =

10, 100, 500 and 1000. (e, f, g) Log-log plot of k̂mix vs the dimension d, for n ∈ {2d, 2d2, 2d3}
for d ∈ {2, 3, 4, 5, 6, 7}. The exponents from these plots are summarized in Table 2. Note
that increasing the number of constraints n has more profound effect on the Dikin walk in
almost all the cases.

Then for every distribution µ0 that is M -warm with respect to π∗, the lazy transition operator
T satisfies

‖T k(µ0)− π∗‖TV ≤
√
M exp

(
−k ∆2ρ2

4096

)
∀ k = 1, 2, . . . . (19b)
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Figure 4. Empirical distribution of the samples from 200 runs for the Dikin walk (blue/top
rows) and the Vaidya walk (red/bottom rows) at different iterations k. The 2-dimensional
polytopes considered are: (a, b) random polytopes with n-constraints, and (c, d) regular
n-polygons inscribed in the unit circle. For both sets of cases, we observe that higher n slows
down the walks, with visibly more effect on the Dikin walk compared to the Vaidya walk.
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Figure 5. Sequential plots of a one-dimensional random projection of the samples on the
hyperbox K = [−1, 1]d, defined by n constraints. Each plot corresponds to one long run of
the Dikin and Vaidya walks, and the projection is taken in a direction chosen randomly
from the sphere. (a) Plots for d = 10 and n ∈ {20, 640, 5120}. (b) Plots for d = 50 and
n ∈ {100, 400, 1600}. Relative to the Dikin walk, the Vaidya walk has a more jagged plot for
pairs (n, d) in which the ratio n/d is relatively large: for instance, see the plots corresponding
to (n, d) = (640, 10) and (5120, 10). The same claim cannot be made for pairs (n, d) for which
the ratio n/d is relatively small; e.g., the plot with (n, d) = (20, 10). These observations are
consistent with our results that the Vaidya walk mixes more quickly by a factor of order
O(
√
n/d) over the Dikin walk.

22



Fast MCMC Sampling Algorithms on Polytopes

x

y

e(x)

e(y)

(a)

x

y

e(x)

e(y)

) { bi�a>
i y

bi�a>
i x

u

v

(b)

Figure 6. Polytope K = {x ∈ Rd|Ax ≤ b}. (a) The points e(x) and e(y) denote the
intersection points of the chord joining x and y with K such that e(x), x, y, e(y) are in order.
(b) A geometric illustration of the argument (23). It is straightforward to observe that
‖x− y‖2/‖e(x)− x‖2 = ‖u− y‖2/‖u− v‖2 =

∣∣a>i (y − x)
∣∣/
(
bi − a>i x

)
.

This result is implicit in the paper by Lovász (1999), though not explicitly stated. In order
to keep the paper self-contained, we provide a proof of this result in Appendix J.

Our proof of Theorem 1 is based on applying Lovász’s Lemma; the main challenge in our
work is to establish that our random walks satisfy the condition (19a) with suitable choices
of ∆ and ρ. In order to proceed with the proof, we require a few additional notations. Recall
that the slackness at x was defined as sx := (b1 − a>1 x, . . . , bn − a>n x)>. For all x ∈ int (K),
define the Vaidya local norm of v at x as

‖v‖Vx :=
∥∥∥V 1/2

x v
∥∥∥

2
=

√√√√
n∑

i=1

(σx,i + βV)
(a>i v)2

s2
x,i

, (20a)

and the Vaidya slack sensitivity at x as

θVx :=

(∥∥∥∥
a1

sx,1

∥∥∥∥
2

Vx

, . . . ,

∥∥∥∥
an
sx,n

∥∥∥∥
2

Vx

)>
=

(
a>1 V

−1
x a1

s2
x,1

, . . . ,
a>n V

−1
x an
s2
x,n

)>
. (20b)

Similarly, we define the John local norm of v at x and the John slack sensitivity at x as

‖v‖Jx :=
∥∥∥J1/2

x v
∥∥∥

2
and θJx :=

(∥∥∥∥
a1

sx,1

∥∥∥∥
2

Jx

, . . . ,

∥∥∥∥
an
sx,n

∥∥∥∥
2

Jx

)>
. (20c)

The following lemma provides useful properties of the leverage scores σx from equation (9b),
the weights ζx obtained from solving the program (12), and the slack sensitivities θVx and
θJx .

Lemma 7 For any x ∈ int (K), the following properties hold:

(a) σx,i ∈ [0, 1] for all i ∈ [n],

(b)
∑n

i=1 σx,i = d,
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(c) θVx,i ∈
[
0,
√
n/d

]
for all i ∈ [n],

(d) ζx,i ∈ [βJ, 1 + βJ] for all i ∈ [n],

(e)
∑n

i=1 ζx,i = 3d/2, and

(f) θJx,i ∈ [0, 4] for all i ∈ [n].

We prove this lemma in Section 5.3.

Let PV
x to denote the proposal distribution of the random walk VW(r) at state x. Next,

we state a lemma that shows that if two points x, y ∈ int (K) are close in Vaidya local norm
at x, then for a suitable choice of the parameter r, the proposal distributions PV

x and PV
y

are close. In addition, we show that the proposals are accepted with high probability at
any point x ∈ int (K). To establish the latter result, we now define the non-lazy transition
operator of the Vaidya walk. Since the Vaidya walk is lazy with probability 1/2, there exists
a valid (non-lazy) transition operator T̃Vaidya(r) such that for any distribution µ0, we have

TVaidya(r)(µ0) = µ0/2 + T̃Vaidya(r)(µ0)/2.

We call T̃Vaidya the non-lazy transition operator for the Vaidya walk. Note that the one-step
non-lazy transition distribution T̃Vaidya(r)(δx) denotes the distribution of proposals after the
accept-reject step if the chain was not lazy. Thus to establish that proposals are accepted
with high probability, it suffices to establish that the transition distribution T̃Vaidya(r)(δx) at
any point x ∈ K is close to the proposal distribution PV

x . We now state these two results
formally:

Lemma 8 There exists a continuous non-decreasing function f : [0, 1/4] → R+ with
f(1/15) ≥ 10−4 such that for any ε ∈ (0, 1/15], the random walk VW(r) with r ∈ [0, f(ε)]
satisfies

‖PV
x − PV

y ‖TV ≤ ε ∀ x, y ∈ int (K) s.t. ‖x− y‖Vx ≤
εr

2(nd)1/4
, and (21a)

‖T̃Vaidya(r)(δx)− PV
x ‖TV ≤ 5ε ∀ x ∈ int (K). (21b)

See Section 5.4 for the proof of this lemma.

With these lemmas in hand, we are now equipped to prove Theorem 1. To simplify notation,
for the rest of this section, we adopt the shorthands Tx = T̃Vaidya(r)(δx), Px = PV

x and
‖·‖Vx = ‖·‖x.

5.2 Proof of Theorem 1

In order to invoke Lovász’s Lemma for the random walk VW(10−4), we need to verify the
condition (19a) for suitable choices of ρ and ∆. Doing so involves two main steps:

(A): First, we relate the cross-ratio dK(x, y) to the local norm (20a) at x.

(B): Second, we use Lemma 8 to show that if x, y ∈ int (K) are close in local-norm, then
the transition distributions Tx and Ty are close in TV-distance.
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Step (A): We claim that for all x, y ∈ int (K), the cross-ratio can be lower bounded as

dK(x, y) ≥ 1√
2d
‖x− y‖x . (22)

Note that we have

dK(x, y) =
‖e(x)− e(y)‖2 ‖x− y‖2
‖e(x)− x‖2 ‖e(y)− y‖2

(i)

≥ max

{ ‖x− y‖2
‖e(x)− x‖2

,
‖x− y‖2
‖e(y)− y‖2

}

(ii)

≥ max

{ ‖x− y‖2
‖e(x)− x‖2

,
‖x− y‖2
‖e(y)− x‖2

}
,

where step (i) follows from the inequality ‖e(x)− e(y)‖2 ≥ max {‖e(y)− y‖2 , ‖e(x)− x‖2};
and step (ii) follows from the inequality ‖e(x)− x‖2 ≤ ‖e(y)− x‖2. Furthermore, from
Figure 6b, we observe that

max

{ ‖x− y‖2
‖e(x)− x‖2

,
‖x− y‖2
‖e(y)− x‖2

}
= max

i∈[n]

∣∣∣∣
a>i (x− y)

sx,i

∣∣∣∣ . (23)

This argument of equation (14) has also been used (Sachdeva and Vishnoi, 2016, lemma
9). Note that maximum of a set of non-negative numbers is greater than the mean of the
numbers. Combining this fact with properties (a) and (b) from Lemma 7, we find that

dK(x, y) ≥

√√√√ 1∑n
i=1 (σx,i + βV)

n∑

i=1

(σx,i + βV)
(a>i (x− y))2

s2
x,i

=
‖x− y‖x√

2d
,

thereby proving the claim (22).

Step (B): By the triangle inequality, we have

‖Tx − Ty‖TV ≤ ‖Tx − Px‖TV + ‖Px − Py‖TV + ‖Py − Ty‖TV.

Thus, for any (r, ε) such that ε ∈ [0, 1/15] and r ≤ f(ε), Lemma 8 implies that

‖Tx − Ty‖TV ≤ 11ε, ∀x, y ∈ int (K) such that ‖x− y‖x ≤
rε

2(nd)1/4
.

Consequently, the walk VW(r) satisfies the assumptions of Lovász’s Lemma with

∆ :=
1√
2d
· rε

2(nd)1/4
and ρ := 1− 11ε.

Since f(1/15) ≥ 10−4, we can set ε = 1/15 and r = 10−4, whence

∆2ρ2 =
(1− 11ε)2ε2r2

8d
√
nd

=
42

152

1

152

1

10−8
· 1

d
√
nd
≥ 10−12 1

d
√
nd
.

Observing that ∆ < 1 yields the claimed upper bound for the mixing time of Vaidya Walk.
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5.3 Proof of Lemma 7

In order to prove part (a), observe that for any x ∈ int (K), the Hessian∇2Fx :=
∑n

i=1 aia
>
i /s

2
x,i

is a sum of rank one positive semidefinite (PSD) matrices. Also, we can write∇2Fx = A>xAx
where

Ax :=



a>1 /sx,1

...
a>n /sx,n


 .

Since rank(Ax) = d, we conclude that the matrix ∇2Fx is invertible and thus, both the

matrices ∇2Fx and
(
∇2Fx

)−1
are PSD. Since σx,i = a>i

(
∇2Fx

)−1
ai/s

2
x,i, we have σx,i ≥ 0.

Further, the fact that aia
>
i /s

2
x,i � ∇2Fx implies that σx,i ≤ 1.

Turning to the proof of part (b), from the equality trace(AB) = trace(BA), we obtain

n∑

i=1

σx,i = trace

(
n∑

i=1

a>i
(
∇2Fx

)−1
ai

s2
x,i

)
= trace

(
(
∇2Fx

)−1
n∑

i=1

aia
>
i

s2
x,i

)
= trace(Id) = d.

Now we prove part (c). Using the fact that σx,i ≥ 0, and an argument similar to part (a)
we find that that the matrices Vx and V −1

x are PSD. Since θVx,i = a>i V
−1
x ai/s

2
x,i, we have

θVx,i ≥ 0. It is straightforward to see that βV∇2Fx � Vx which implies that θVx,i ≤ σx,i/β.

Further, we also have (σx,i + βV)
aia
>
i

s2x,i
� Vx and whence θVx,i ≤ 1/ (σx,i + βV). Combining

the two inequalities yields the claim.
The other parts of the Lemma follow from Lemma 13, 14 and 15 by Lee and Sidford

(2014) and are thereby omitted here.

5.4 Proof of Lemma 8

We prove the lemma for the following function

f(ε) := min





1

20
(

1 +
√

2 log
1
2

(
4
ε

)) ,
ε√

18 log(2/ε)
,

√
ε

86
√

3χ2

,
ε

22
√

5/3χ3

,

√
ε

50
√

105χ4



 ,

(24)

where χk = (2e/k · log (4/ε))k/2 for k = 2, 3 and 4. A numerical calculation shows that
f(1/15) ≥ 10−4.

5.4.1 Proof of claim (21a)

In order to bound the total variation distance ‖Px − Py‖TV, we apply Pinsker’s inequality,
which provides an upper bound on the TV-distance in terms of the KL divergence:

‖Px − Py‖TV ≤
√

2 KL(Px‖Py).

For Gaussian distributions, the KL divergence has a closed form expression. In particular,
for two normal-distributions G1 = N (µ1,Σ1) and G2 = N (µ2,Σ2), the Kullback-Leibler
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divergence between the two is given by

KL(G1‖G2) =
1

2

(
trace(Σ

−1/2
1 Σ2Σ

−1/2
1 )−d−log det(Σ

−1/2
1 Σ2Σ

−1/2
1 )+(µ1−µ2)>Σ−1

1 (µ1−µ2)
)
.

Recall from equation (15) that the proposal distribution for Vaidya walk is Gaussian, i.e.,

Px = N
(
x, r√

nd
V −1
x

)
. Substituting G1 = Px and G2 = Py into the above expression and

applying Pinsker’s inequality, we find that

‖Px − Py‖2TV ≤ 2 KL(Py‖Px) = trace(V −1/2
x VyV

−1/2
x )−d−log det(V −1/2

x VyV
−1/2
x ) +

√
nd

r2
‖x−y‖2x

=

{
d∑

i=1

(
λi − 1 + log

1

λi

)}
+

√
nd

r2
‖x− y‖2x , (25)

where λ1, . . . , λd > 0 denote the eigenvalues of the matrix V
−1/2
x VyV

−1/2
x , and we have used

the facts that det(V
−1/2
x VyV

−1/2
x ) =

∏d
i=1 λi and trace(V

−1/2
x VyV

−1/2
x ) =

∑d
i=1 λi. The

following lemma is useful in bounding expression (25).

Lemma 9 For any scalar t ∈ [0, 1/12] and any pair x, y ∈ int (K) such that ‖x− y‖x ≤ t/(nd)1/4,
we have (

1− 8t√
d

)
Id � V −1/2

x VyV
−1/2
x �

(
1 +

8t√
d

)
Id,

where � denotes ordering in the PSD cone, and Id is the d-dimensional identity matrix.

See Appendix B for the proof of this lemma.

For ε ∈ (0, 1/15] and r ∈ [0, 1/12], we have t = εr/2 ≤ 1/12, whence the eigenvalues
{λi, i ∈ [d]} can be sandwiched as

1

2
≤ 1− 4εr√

d
≤ λi ≤ 1 +

4εr√
d

for all i ∈ d. (26)

We are now ready to bound the TV distance between Px and Py. Using the bound (25)
and the inequality logω ≤ ω − 1, valid for ω > 0, we obtain

‖Px − Py‖2TV ≤
d∑

i=1

(
λi − 2 +

1

λi

)
+

√
nd

r2
‖x− y‖2x .

Using the assumption that ‖x− y‖x ≤ εr/
(
2(nd)1/4

)
, and plugging in the bounds (26) for

the eigenvalues {λi, i ∈ [d]}, we find that

d∑

i=1

(
λi − 2 +

1

λi

)
+

√
nd

r2
‖x− y‖2x ≤ 32ε2r2 +

ε2

4
.

In asserting this inequality, we have used the facts that according to equation (26), for any
i ∈ [d],

λi − 2 +
1

λi
=

(λi − 1)2

λi
≤ 2 ·

(
4εr√
d

)2

.

Note that for any r ∈ [0, 1/12] we have that 32r2 ≤ 1/2. Putting the pieces together yields
‖Px − Py‖TV ≤ ε, as claimed.
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5.4.2 Proof of claim (21b)

Note that

Tx({x}) = Px(Kc) +

∫

K

(
1−min

{
1,
pz(x)

px(z)

})
px(z)dz, (27)

where Kc denotes the complement of K. Consequently, we find that

‖Px − Tx‖TV =
1

2

(
Tx({x}) +

∫

Rd
px(z)dz −

∫

K
min

{
1,
pz(x)

px(z)

}
px(z)dz

)

=
1

2

(
2− 2

∫

Rd
min

{
1,
pz(x)

px(z)

}
px(z)dz + 2

∫

Kc
min

{
1,
pz(x)

px(z)

}
px(z)dz

)

≤ Px(Kc)︸ ︷︷ ︸
=: S1

+ 1− Ez∼Px
[
min

{
1,
pz(x)

px(z)

}]

︸ ︷︷ ︸
=: S2

, (28)

Consequently, it suffices to show that both S1 and S2 are small, where the probability is
taken over the randomness in the proposal z. In particular, we show that S1 ≤ ε and S2 ≤ 4ε.

Bounding the term S1: Since z is multivariate Gaussian with mean x and covariance
r2√
nd
V −1
x , we can write

z
d
= x+

r

(nd)1/4
V −1/2
x ξ, (29)

where ξ ∼ N (0, Id) and
d
= denotes equality in distribution. Using equation (29) and defini-

tion (20b) of θVx,i, we obtain the bound

(
a>i (z − x)

)2

s2
x,i

=
r2

(nd)
1
2

[
a>i V

−1/2
x ξ

sx,i

]2
(i)

≤ r2

(nd)
1
2

θVx,i ‖ξ‖22
(ii)

≤ r2

d
‖ξ‖22 , (30)

where step (i) follows from Cauchy-Schwarz inequality, and step (ii) from the bound on θVx,i
from Lemma 7(c). Define the events

E :=

{
r2

d
‖ξ‖22 < 1

}
and E ′ := {z ∈ int (K)} .

Inequality (30) implies that E ⊆ E ′ and hence P [E ′] ≥ P [E ]. Using a standard Gaussian tail
bound and noting that r ≤ 1

1+
√

2/d log(1/ε)
, we obtain P [E ] ≥ 1−ε and whence P [E ′] ≥ 1− ε.

Thus, we have shown that P [z /∈ K] ≤ ε which implies that S1 ≤ ε.

Bounding the term S2: By Markov’s inequality, we have

Ez∼Px
[
min

{
1,
pz(x)

px(z)

}]
≥ αP [pz(x) ≥ αpx(z)] for all α ∈ (0, 1]. (31)
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By definition (15) of px, we obtain

pz(x)

px(z)
= exp

(
−
√
nd

2r2

(
‖z − x‖2z − ‖z − x‖2x

)
+

1

2
(log detVz − log detVx)

)
.

The following lemma provides us with useful bounds on the two terms in this expression,
valid for any x ∈ int (K).

Lemma 10 For any ε ∈ (0, 1/15] and r ∈ (0, f(ε)], we have

Pz∼Px
[

1

2
log detVz −

1

2
log detVx ≥ −ε

]
≥ 1− ε, and (32a)

Pz∼Px
[
‖z − x‖2z − ‖z − x‖2x ≤ 2ε

r2

√
nd

]
≥ 1− ε. (32b)

See Appendix C for the proof of this claim.

Using Lemma 10, we now complete the proof. For r ≤ f(ε), we obtain

pz(x)

px(z)
≥ exp (−2ε) ≥ 1− 2ε

with probability at least 1 − 2ε. Substituting α = 1 − 2ε in inequality (31) yields that
S2 ≤ 4ε, as claimed.

6. Discussion

In this paper, we focused on improving mixing rate of MCMC sampling algorithms for
polytopes by building on the advancements in the field of interior point methods. We
proposed and analyzed two different barrier based MCMC sampling algorithms for polytopes
that outperforms the existing sampling algorithms like the ball walk, the hit-and-run and
the Dikin walk for a large class of polytopes. We provably demonstrated the fast mixing of
the Vaidya walk, O

(
n0.5d1.5

)
and the John walk, O

(
d2.5poly-log(n/d)

)
from a warm start.

Our numerical experiments, albeit simple, corroborated with our theoretical claims: the
Vaidya walk mixes at least as fast the Dikin walk and significantly faster when the number
of constraints is quite large compared to the dimension of the underlying space. For the
John walk, the logarithmic factors were dominant in all our experiments and thereby we
deemed the result of importance only for set-ups with polytopes in very high dimensions
with number of constraints overwhelmingly larger than the dimensions. Besides, proving
the mixing time guarantees for the improved John walk (Conjecture 5) is still an open
question.

Narayanan (2016) analyzed a generalized version of the Dikin walk for arbitrary convex
sets equipped with self-concordant barrier. From his results, we were able to derive mixing
time bounds of O

(
nd4
)

and O
(
d5poly-log(n/d)

)
from a warm start for the Vaidya walk

and the John walk respectively. Our proof takes advantage of the specific structure of the
Vaidya and John walk, resulting a better mixing rate upper bound the the general analysis
provided by Narayanan (2016).
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While our paper has mainly focused on sampling algorithms on polytopes, the idea
of using logarithmic barrier to guide sampling can be extended to more general convex
sets. The self-concordance property of the logarithmic barrier for polytopes is extended by
Anstreicher (2000) to more general convex sets defined by semidefinite constraints, namely,
linear matrix inequality (LMI) constraints. Moreover, Narayanan (2016) showed that for
a convex set in Rd defined by n LMI constraints and equipped with the log-determinant
barrier—the semidefinite analog of the logarithmic barrier for polytopes—the mixing time
of the Dikin walk from a warm start is O

(
nd2
)
. It is possible that an appropriate Vaidya

walk on such sets would have a speed-up over the Dikin walk. Narayanan and Rakhlin
(2013) used the Dikin walk to generate samples from time varying log-concave distributions
with appropriate scaling of the radius for different class of distributions. We believe that
suitable adaptations of the Vaidya and John walks for such cases would provide significant
gains.
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Appendix A. Auxiliary results for the Vaidya walk

In this appendix, we first summarize a few notations used in the proofs related to Theorem 1,
and collect the auxiliary results for the later proofs.

A.1 Notation

We begin with introducing the notation. Recall A ∈ Rn×d is a matrix with a>i as its i-th
row. For any positive integer p and any vector v = (v1, . . . , vp)

>, diag(v) = diag(v1, . . . , vp)
denotes a p×p diagonal matrix with the i-th diagonal entry equal to vi. Recall the definition
of Sx:

Sx = diag (sx,1, . . . , sx,n) where sx,i = bi − a>i x for each i ∈ [n]. (33)

Furthermore, define Ax = S−1
x A for all x ∈ int (K), and let Υx denote the projection matrix

for the column space of Ax, i.e.,

Υx := Ax(A>xAx)−1A>x = Ax∇2F−1
x A>x . (34)

Note that for the scores σx (9b), we have σx,i = (Υx)ii for each i ∈ [n]. Let Σx be an n× n
diagonal matrix defined as

Σx = diag (σx,1, . . . , σx,n) . (35)

Let σx,i,j := (Υx)ij , and let Υ
(2)
x denote the Hadamard product of Υx with itself, i.e.,

(Υ(2)
x )ij = σ2

x,i,j =

(
a>i ∇2F−1

x aj
)2

s2
x,is

2
x,j

for all i, j ∈ [n]. (36)

Using the shorthand θx := θVx , we define

Θx := diag (θx,1, . . . , θx,m) where θx,i =
a>i V

−1
x ai
s2
x,i

for i ∈ [n], and

Ξx := (θ2
x,i,j) where θ2

x,i,j =

(
a>i V

−1
x aj

)2

s2
x,is

2
x,j

for i, j ∈ [n].

In our new notation, we can re-write the Vaidya matrix Vx defined in equation (9a) as
Vx = A>x (Σx + βVI)Ax, where βV = d/n.

A.2 Basic Properties

We begin by summarizing some key properties of various terms involved in our analysis.

Lemma 11 For any vector x ∈ int (K), the following properties hold:

(a) σx,i =
∑n

j=1 σ
2
x,i,j =

∑n
j,k=1 σx,i,jσx,j,kσx,k,i for each i ∈ [n],

(b) Σx � Υ
(2)
x ,
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(c)
∑n

i=1 θx,i (σx,i + βV) = d,

(d) ∀i ∈ [n], θx,i =
∑n

j=1 (σx,j + βV) θ2
x,i,j, for each i ∈ [n],

(e) θ>x (Σx + βVI) θx =
∑n

i=1 θ
2
x,i (σx,i + βV) ≤

√
nd, and

(f) βV∇2Fx � Vx � (1 + βV)∇2Fx.

where βV = d/n was defined in equation (9b).

Proof We prove each property separately.

Part (a): Using Id = ∇2Fx
(
∇2Fx

)−1
, we find that

σx,i =
a>i
(
∇2Fx

)−1∇2Fx
(
∇2Fx

)−1
ai

s2
x,i

=
a>i
(
∇2Fx

)−1∇2
∑n

j=1

a>j aj

s2x,j

(
∇2Fx

)−1
ai

s2
x,i

=
n∑

i,j=1

σ2
x,i,j .

Applying a similar trick twice and performing some algebra, we obtain

σx,i =
a>i
(
∇2Fx

)−1∇2Fx
(
∇2Fx

)−1∇2Fx
(
∇2Fx

)−1
ai

s2
x,i

=

n∑

i,j,k=1

σx,i,jσx,j,kσx,k,i.

Part (b): From part (a), we have that Σx−Υ
(2)
x is a symmetric and diagonally dominant

matrix with non-negative entries on the diagonal. Applying Gershgorin’s theorem (Bhatia,
2013; Horn and Johnson, 2012), we conclude that it is PSD.

Part (c): Since trace(AB) = trace(BA), we have

n∑

i=1

θx,i (σx,i + βV) = trace

(
V −1
x

n∑

i=1

(σx,i + βV)
aia
>
i

s2
x,i

)
= trace (Id) = d.

Part (d): An argument similar to part (a) implies that

θx,i =
a>i V

−1
x VxV

−1
x ai

s2
x,i

=
a>i V

−1
x

∑n
j=1 (σx,i + βV)

a>j aj

s2x,j
V −1
x ai

s2
x,i

=
n∑

i,j=1

(σx,i + βV) θ2
x,i,j .

Part (e): Using part (c) and Lemma 7(c) yields the claim.

Part (f): The left inequality is by the definition of Vx. The right inequality uses the fact
that Σx � Id.

We now prove an important result that relates the slackness sx and sy at two points, in
terms of ‖x− y‖x.

Lemma 12 For all x, y ∈ int (K), we have

∣∣∣∣1−
sy,i
sx,i

∣∣∣∣ ≤
(n
d

) 1
4 ‖x− y‖x for each i ∈ [n].
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Proof For any pair x, y ∈ int (K) and index i ∈ [n], we have

(
a>i (x− y)

)2
=

(
(V
− 1

2
x ai)

>V
1
2
x (x− y)

)2 (i)

≤ ‖V −
1
2

x ai‖22 ‖V
1
2
x (x− y)‖22

= aTi V
−1
x ai ‖x− y‖2x

= θx,is
2
x,i ‖x− y‖2x

(ii)

≤
√
n

d
s2
x,i ‖x− y‖2x ,

where step (i) follows from the Cauchy-Schwarz inequality, and step (ii) uses the bound θx,i
from Lemma 7(c). Noting the fact that a>i (x−y) = sy,i−sx,i, the claim follows after simple
algebra.

Appendix B. Proof of Lemma 9

In this appendix section, we prove Lemma 9 using results from the previous appendix. As
a direct consequence of Lemma 12, we find that

∣∣∣∣1−
sy,i
sx,i

∣∣∣∣ ≤
t√
d
, for any x, y ∈ int (K) such that ‖x− y‖x ≤

t

(nd)1/4
.

The Hessian ∇2Fy is thus sandwiched in terms of the Hessian ∇2Fx as

(
1− t√

d

)2

∇2Fx � ∇2Fy �
(

1 +
t√
d

)2

∇2Fx.

By the definition of σx,i and σy,i, we have

(
1− t√

d

)2

(
1 + t√

d

)2σx,i ≤ σy,i ≤

(
1 + t√

d

)2

(
1− t√

d

)2σx,i for all i ∈ [n]. (37)

Consequently, we find that

(
1− t√

d

)2

(
1 + t√

d

)4Vx � Vy �

(
1 + t√

d

)2

(
1− t√

d

)4Vx.

Note that

(1− ω)2

(1 + ω)4 ≥ 1− 8ω and
(1 + ω)2

(1− ω)4 ≤ 1 + 8ω for any ω ∈
[
0, 1

12

]
.

Applying this sandwiching pair of inequalities with ω = t/
√
d yields the claim.
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Appendix C. Proof of Lemma 10

We begin by defining

ϕx,i :=
σx,i + βV

s2
x,i

for i ∈ [n], and Ψx :=
1

2
log detVx, for all x ∈ int (K) . (38)

Further, for any two points x and z, let xz denote the set of points on the line segment joining
x and z. The proof of Lemma 10 is based on a Taylor series expansion, and so requires
careful handling of σ, ϕ,Ψ and their derivatives. At a high level, the proof involves the
following steps: (1) perform a Taylor series expansion around x and along the line segment
xz; (2) transfer the bounds of terms involving some point y ∈ xz to terms involving only x
and z; and then (3) use concentration of Gaussian polynomials to obtain high probability
bounds.

C.1 Auxiliary results for the proof of Lemma 10

We now introduce some auxiliary results involved in these three steps. The following lemma
provides expressions for gradients of σ, ϕ and Ψ and bounds for directional Hessian of ϕ
and Ψ. Let ei ∈ Rd denote a vector with 1 in the i-th position and 0 otherwise. For any
h ∈ Rd and x ∈ int (K), define ηx,h,i = ηx,i := a>i h/sx,i for each i ∈ [n].

Lemma 13 The following relations hold;

(a) Gradient of σ: ∇σx,i = 2A>x (Σx −Υ
(2)
x )ei for each i ∈ [n].

(b) Gradient of ϕ: ∇ϕx,i =
2

s2
x,i

A>x

[
2Σx + βV I−Υ(2)

x

]
ei for each i ∈ [n];

(c) Gradient of Ψ: ∇Ψx = A>x

(
2 Σx + βV I−Υ(2)

x

)
θx;

(d) Bound on ∇2ϕ: s2
x,i

∣∣1
2h
>∇2ϕx,ih

∣∣ ≤ 14 (σx,i + βV) η2
x,i+11

∑n
j=1 σ

2
x,i,jη

2
x,j for i ∈ [n];

(e) Bound on ∇2Ψ:
∣∣1

2h
> (∇2Ψx

)
h
∣∣ ≤ 13

∑n
i=1 (σx,i + βV) θx,iη

2
x,i+

17
2

∑n
i,j=1 σ

2
x,i,jθx,iη

2
x,j.

See Section C.6 for the proof of this claim.

The following lemma that shows that for a random variable z ∼ Px, the slackness sz,i
is close to sx,i with high probability.

Lemma 14 For any ε ∈ (0, 1/4], r ∈ (0, 1) and x ∈ int (K), we have

Pz∼Px
[
∀i ∈ [n],∀v ∈ xz, sx,i

sv,i
∈ (1− r (1 + δ) , 1 + r (1 + δ))

]
≥ 1− ε/4,

where δ =

√
2 log(4/ε)

d . Thus for any d ≥ 1 and r ≤ 1/
[
20
(

1 +
√

2 log
(

4
ε

))]
, we have

Pz∼Px
[
∀i ∈ [n], ∀v ∈ xz, sx,i

sv,i
∈ (0.95, 1.05)

]
≥ 1− ε/4.
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See Section C.4 for the proof which is based on combining the bound on
sx,i
sv,i

from Lemma 12

with standard Gaussian tail bounds.

This result comes in handy for transferring bounds for different expressions in Taylor
expansion involving an arbitrary y on xz to bounds on terms involving simply x. The proof
follows from Lemma 12 and a simple application of the standard Gaussian tail bounds and
is thereby omitted. For brevity, we define the shorthand

âx,i =
1

sx,i
V −1/2
x ai for each i ∈ [n]. (39)

In the following lemma, we state some tail bounds for particular Gaussian polynomials that
arise in our analysis.

Lemma 15 For any ε ∈ (0, 1/15], define χk = (2e/k · log (4/ε))k/2 for k = 2, 3 and 4.
Then for ξ ∼ N (0, Id) and any x ∈ int (K) the following high probability bounds hold:

P

[
n∑

i=1

(σx,i + βV)
(
â>x,iξ

)2
≤ χ2

√
3d

]
≥ 1− ε

4
, (40a)

P

[∣∣∣∣∣
n∑

i=1

(σx,i + βV)
(
â>x,iξ

)3
∣∣∣∣∣ ≤ χ3

√
15 (nd)1/4

]
≥ 1− ε

4
, (40b)

P



∣∣∣∣∣∣

n∑

i,j=1

σ2
x,i,j

((
âx,i + âx,j

2

)>
ξ

)3
∣∣∣∣∣∣
≤ χ3

√
15 (nd)1/4


 ≥ 1− ε

4
, (40c)

P

[
n∑

i=1

(σx,i + βV)
(
â>x,iξ

)4
≤ χ4

√
105 (nd)1/2

]
≥ 1− ε

4
. (40d)

See Section C.5 for the proof of these claims.

Now we summarize the final ingredients needed for our proofs. Recall that the Gaussian
proposal z is related to the current state x via the equation

z
d
= x+

r

(nd)1/4
V −1/2
x ξ, (41)

where ξ ∼ N (0, Id). We also use the following elementary inequalities:

Cauchy-Schwarz inequality: |u>v| ≤ ‖u‖2 ‖v‖2 (C-S)

AM-GM inequality: νκ ≤ 1

2
(ν2 + κ2). (AM-GM)

Sum of squares inequality:
1

2
‖a+ b‖22 ≤ ‖a‖22 + ‖b‖22 , (SSI)

Note that the sum-of-squares inequality is simply a vectorized version of the AM-GM in-
equality. With these tools, we turn to the proof of Lemma 10. We split our analysis into
parts.
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C.2 Proof of claim (32a)

Using the second degree Taylor expansion, we have

Ψz −Ψx = (z − x)>∇Ψx +
1

2
(z − x)>∇2Ψy (z − x) , for some y ∈ xz.

We claim that for r ≤ f(ε), we have

Pz
[
(z − x)>∇Ψx ≥ −ε/2

]
≥ 1− ε/2, and (42a)

Pz
[

1

2
(z − x)∇2Ψy (z − x) ≥ −ε/2

]
≥ 1− ε/2. (42b)

Note that the claim (32a) is a consequence of these two auxiliary claims, which we now
prove.

C.2.1 Proof of bound (42a)

Equation (41) implies that (z − x)>∇Ψx ∼ N
(

0, r2√
nd
∇Ψ>x V

−1
x ∇Ψx

)
. We claim that

∇Ψ>x V
−1
x ∇Ψx ≤ 9

√
nd for all x ∈ int (K) . (43)

We prove this inequality at the end of this subsection. Taking it as given for now, let
ξ′ ∼ N (0, 9r2). Then using inequality (43) and a standard Gaussian tail bound, we find
that

P
[
(z − x)>∇Ψx ≥ −ω

]
≥ P

[
ξ′ ≥ −ω

]
≥ 1− exp(−ω2/(18r2)), valid for all ω ≥ 0.

Setting ω = ε/2 and noting that r ≤ ε√
18 log(2/ε)

completes the claim.

C.2.2 Proof of bound (42b)

Let ηx,i =
a>i (z−x)
sx,i

= r

(mn)
1
4
â>x,iξ. Using Lemma 13(e), we have

∣∣∣∣
1

2
(z − x)>∇2Ψy (z − x)

∣∣∣∣ ≤ 13

n∑

i=1

(σy,i + βV) θy,i
s2
x,i

s2
y,i

η2
x,i +

17

2

n∑

i,j=1

σ2
y,i,jθy,i

s2
x,j

s2
y,j

η2
x,j

≤ 43

2

√
n

d

n∑

i=1

(σx,i + βV)
(σy,i + βV)

(σx,i + βV)

s2
x,i

s2
y,i

η2
x,i. (44)

The last inequality comes from Lemma 7(c) and Lemma 11(a). Setting τ = 1.05, we define
the events E1 and E2 as follows:

E1 =

{
∀i ∈ [n],

sx,i
sy,i
∈ [2− τ, τ ]

}
, and (45a)

E2 =

{
∀i ∈ [n],

σx,i
σy,i
∈
[
0,

τ2

(2− τ)2

]}
. (45b)
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It is straightforward to see that E1 ⊆ E2 following a similar argument we used to obtain

equation (37) in the proof of Lemma 9. Since r ≤ 1/
[
20
(

1 +
√

2 log1/2
(

4
ε

))]
, Lemma 14

implies that P [E1] ≥ 1− ε/4 whence P [E2] ≥ 1− ε/4. Using these high probability bounds
and the setting τ = 1.05, we obtain that with probability at least 1− ε/4
√
n

d

n∑

i=1

(σx,i + βV)
(σy,i + βV)

(σx,i + βV)

s2
x,i

s2
y,i

η2
x,i ≤ 2

√
n

d

n∑

i=1

(σx,i + βV) η2
x,i =

2r2

d

n∑

i=1

(σx,i + βV) (â>x,iξ)
2.

(46)

Applying the high probability bound Lemma 15 (40a) and the condition

r ≤
√

ε

86
√

3χ2

, (47)

we obtain that with probability at least 1− ε/2,

1

2
(z − x)>∇2Ψy (z − x) ≥ −ε/2,

as claimed.

C.2.3 Proof of bound (43)

We now return to prove our earlier inequality (43). Using the expression for the gradient
∇Ψx from Lemma 13(c), we have that for any vector u ∈ Rn

u>∇Ψx∇Ψ>x u =
〈
u,A>x

(
2Σx −Υ(2)

x + βVI
)
θx

〉2

=
〈
Axu,

(
2Σx −Υ(2)

x + βVI
)
θx

〉2

=
〈

(Σx + βVI)
1
2 Axu, (Σx + βVI)−1/2

(
2Σx −Υ(2)

x + βVI
)
θx

〉2

≤ u>Vxu · θ>x
(

2Σx −Υ(2)
x + βVI

)
(Σx + βVI)−1

(
2Σx −Υ(2)

x + βVI
)
θx

(48)

where the last step follows from the Cauchy-Schwarz inequality. As a consequence of

Lemma 11(b), the matrix Σx −Υ
(2)
x is PSD. Thus, we have

0 � 2Σx −Υ(2)
x + βVI � 3 (Σx + βVI) .

Consequently, we find that

0 � (3Σx + 3βVI)−1/2
(

2Σx −Υ(2)
x + βVI

)
(3Σx + 3βVI)−1/2

︸ ︷︷ ︸
=:L

� I.

We deduce that all eigenvalues of the matrix L lie in the interval [0, 1] and hence all the
eigenvalues of the matrix L2 belong to the interval [0, 1]. As a result, we have

(
2Σx −Υ(2)

x + βVI
)

(3Σx + 3βVI)−1
(

2Σx −Υ(2)
x + βVI

)
� (3Σx + 3βVI) .
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Thus, we obtain

θ>x

(
2Σx −Υ(2)

x + βVI
)

(Σx + βVI)−1
(

2Σx −Υ(2)
x + βVI

)
θx ≤ 9θ>x (Σx + βVI) θx. (49)

Finally, applying Lemma 11 and combining bounds (48) and (49) yields the claim.

C.3 Proof of claim (32b)

The quantity of interest can be written as

‖z − x‖2z − ‖z − x‖2x =
n∑

i=1

(
a>i (z − x)

)2
(ϕz,i − ϕx,i) .

We can write z = x+ αu, where α is a scalar and u is a unit vector in Rd. Then we have

‖z − x‖2z − ‖z − x‖2x = α2
n∑

i=1

(
a>i u

)2
(ϕz,i − ϕx,i) .

We apply a Taylor series expansion for
∑n

i=1

(
a>i u

)2
(ϕz,i − ϕx,i) around the point x, along

the line u. There exists a point y ∈ xz such that

n∑

i=1

(
a>i u

)2
(ϕz,i − ϕx,i) =

n∑

i=1

(
a>i u

)2
(

(z − x)>∇ϕx,i +
1

2
(z − x)>∇2ϕy,i (z − x)

)
.

Multiplying both sides by α2, and using the shorthand ηx,i =
a>i (z−x)
sx,i

, we obtain

‖z−x‖2z−‖z−x‖2x =
n∑

i=1

η2
x,is

2
x,i (z−x)>∇ϕx,i +

n∑

i=1

η2
x,is

2
x,i

1

2
(z−x)>∇2ϕy,i (z−x) . (50)

Substituting the expression for ∇ϕx,i from Lemma 13(b) in equation (50) and performing
some algebra, the first term on the RHS of equation (50) can be written as

n∑

i=1

η2
x,is

2
x,i(z − x)>∇ϕx,i = 2

n∑

i=1

(
7

3
σx,i + βV

)
η3
x,i −

1

3

n∑

i,j=1

σ2
x,i,j (ηx,i + ηx,j)

3 . (51)

On the other hand, using Lemma 13 (d), we have

1

2
s2
x,i

∣∣∣(z − x)>∇2ϕy,i (z − x)
∣∣∣ ≤

s2
x,i

s2
y,i


14 (σy,i + βV)

s2
x,i

s2
y,i

η2
x,i + 11




n∑

j=1

σ2
y,i,jη

2
x,j

s2
x,j

s2
y,j




 .

(52)

Now, we use a fourth degree Gaussian polynomial to bound both the terms on the RHS of
inequality (52). To do so, we use high probability bound for sx,i/sy,i. In particular, we use
the high probability bounds for the events E1 and E2 defined in equations (45a) and (45b).
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Multiplying both sides of inequality (52) by η2
x,i and summing over the index i, we obtain

that with probability at least 1− ε/4, we have

n∑

i=1

η2
x,is

2
x,i

∣∣∣∣
1

2
(z − x)>∇2ϕy,i (z − x)

∣∣∣∣ ≤


14

n∑

i=1

(σy,i + βV)
s4
x,i

s4
y,i

η4
x,i + 11

n∑

i,j=1

σ2
y,i,jη

2
x,iη

2
x,j

s2
x,is

2
x,j

s2
y,is

2
y,j




(hpb.(45a))

≤ τ4

[
14

n∑

i=1

(σy,i + βV) η4
x,i + 11

n∑

i,j=1

σ2
y,i,jη

2
x,iη

2
x,j

]

(AM−GM)

≤ τ4

[
14

n∑

i=1

(σy,i + βV) η4
x,i +

11

2

n∑

i,j=1

σ2
y,i,j(η

4
x,i + η4

x,j)

]

(Lem. 11(a))

≤ 25τ4
n∑

i=1

(σy,i + βV) η4
x,i

(hpb.(45b))

≤ 50
n∑

i=1

(σx,i + βV) η4
x,i, (53)

where “hpb” stands for high probability bound for events E1 and E2. In the last step, we
have used the fact that τ6/(2 − τ)2 ≤ 2 for τ = 1.05. Combining equations (50), (51) and
(53) and noting that ηx,i = râ>i ξ/(nd)1/4, we find that

∣∣∣‖z − x‖2z − ‖z − x‖2x
∣∣∣ ≤ 14

3

∣∣∣∣∣
n∑

i=1

(σx,i + βV) η3
x,i

∣∣∣∣∣+
8

3

∣∣∣∣∣∣

n∑

i,j=1

σ2
x,i,j ((ηx,i + ηx,j) /2)3

∣∣∣∣∣∣
+ 38

n∑

i=1

σx,iη
4
x,i

≤ 14

3

r3

(nd)3/4

∣∣∣∣∣
n∑

i=1

(σx,i + βV)
(
â>x,iξ

)3
∣∣∣∣∣+

8

3

r3

(nd)3/4

∣∣∣∣∣∣

n∑

i,j=1

σ2
x,i,j

(
1

2
(âx,i + âx,j)

>ξ

)3
∣∣∣∣∣∣

+ 50
r4

nd

n∑

i=1

(σx,i + βV) (â>x,iξ)
4, (54)

where the last step follows from the fact that 0 ≤ σx,i ≤ σx,i + βV. In order to show that∣∣∣‖z − x‖2z − ‖z − x‖2x
∣∣∣ is bounded as O

(
1/
√
nd
)

with high probability, it suffices to show

that with high probability, the third and fourth degree polynomials of â>x,iξ, that appear in

bound (54), are bounded by O
(
(nd)1/4

)
and O

(√
nd
)

respectively.

Applying the bounds (40b), (40c) and (40d) from Lemma 15, we have with probability
at least 1− ε,

‖z − x‖2z − ‖z − x‖2x ≤
r3

√
nd

(
22
√

15χ3

3

)
+

r4

√
nd

(
50
√

105χ4

)
.

Using the condition

r ≤ min

{
ε

22
√

5/3χ3

,

√
ε

50
√

105χ4

}
, (55)

completes our proof of claim (32b).
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C.4 Proof of Lemma 14

The proof is based on Lemma 12 and a simple application of the standard chi-square tail
bounds. According to Lemma 12, we have that for v ∈ xz,

∣∣∣∣1−
sv,i
sx,i

∣∣∣∣ ≤
(n
d

) 1
4 ‖x− v‖x ≤

(n
d

) 1
4 ‖x− z‖x .

According to equation (41), the proposal follows Gaussian distribution
(n
d

) 1
4 ‖x− z‖x =

r

d1/2
‖ξ‖2 ,

where ξ ∼ N (0, Id). Using the standard chi-square tail bound we have that for δ > 0,

P
[
‖ξ‖2 /

√
d ≥ 1 + δ

]
≤ exp

(
−dδ2/2

)
.

Plugging in δ =
√

2
d log

1
2

(
4
ε

)
concludes the lemma.

C.5 Proof of Lemma 15

The proof relies on the classical fact that the tails of a polynomial in Gaussian random
variables decay exponentially independently of dimension. In particular, Theorem 6.7 by
Janson (1997) ensures that for any integers d, k ≥ 1, any polynomial f : Rd → R of degree
k, and any scalar t ≥ (2e)k/2, we have

P
[
|f(ξ)| ≥ t

(
Ef(ξ)2

) 1
2

]
≤ exp

(
− k

2e
t2/k

)
, (56)

where ξ ∼ N (0, In) denotes a standard Gaussian vector in n dimensions. Also, the following
observations on the behavior of the vectors âx,i defined in equation (39) are useful:

‖âx,i‖22 = θx,i
(i)

≤
√
n

d
for all i ∈ [n], and (57a)

(â>x,iâx,j)
2 = θ2

x,i,j for all i, j ∈ [n], (57b)

where inequality (i) follows from Lemma 7 (c).

C.5.1 Proof of bound (40a)

We have

E

(
n∑

i=1

(σx,i + βV)
(
â>x,iξ

)2
)2

=

n∑

i,j=1

(σx,i + βV) (σx,j + βV)E
(
â>x,iξ

)2 (
â>x,jξ

)2

=

n∑

i,j=1

(σx,i + βV) (σx,j + βV)

(
‖âx,i‖22 ‖âx,j‖

2
2 + 2

(
â>x,iâx,j

)2
)

=

n∑

i,j=1

(σx,i + βV) (σx,j + βV)
(
θx,iθx,j + 2θ2

x,i,j

)

(i)
= d2 + 2d

≤ 3d2,
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where step (i) follows from properties (c) and (d) from Lemma 11. Applying the bound (56)
with k = 2, t = e log(4

ε ) yields the claim. We verify that for ε ∈ (0, 1/15], t ≥ 2e.

C.5.2 Proof of bound (40b)

Using Isserlis’ theorem (Isserlis, 1918) for Gaussian moments, we obtain

E

(
n∑

i=1

(σx,i + βV)
(
â>x,iξ

)3
)2

=
n∑

i,j=1

(σx,i + βV) (σx,i + βV)E
(
â>x,iξ

)3 (
â>x,jξ

)3

= 9

n∑

i,j=1

(σx,i + βV) (σx,j + βV) ‖âx,i‖22 ‖âx,j‖
2
2

(
â>x,iâx,j

)

︸ ︷︷ ︸
=:N1

+ 6
n∑

i,j=1

(σx,i + βV) (σx,j + βV)
(
â>x,iâx,j

)3

︸ ︷︷ ︸
=:N2

. (58)

We claim that the two terms in this sum are bounded as N1 ≤
√
nd and N2 ≤

√
nd.

Assuming the claims as given, we now complete the proof. Plugging in the bounds for N1

and N2 in equation (58) we find that E
(∑n

i=1 (σx,i + βV)
(
â>x,iξ

)3)2 ≤ 15
√
nd. Applying

the bound (56) with k = 3, t =
(

2e
3 log(4/ε)

)3/2
yields the claim. We also verify that for

ε ∈ (0, 1/15], t ≥ (2e)3/2. We now turn to proving the bounds on N1 and N2.

Bounding N1: Let B be an n × d matrix with its i-th row given by
√

(σx,i + βV)â>x,i.
Observe that

n∑

i=1

(σx,i + βV) âiâ
>
x,i = V −1/2

x

(
n∑

i=1

(σx,i + βV)
aia
>
i

s2
x,i

)
V −1/2
x = V −1/2

x VxV
−1/2
x = Id. (59)

Thus we have B>B = Id, which implies that BB> is an orthogonal projection matrix.
Letting v ∈ Rn be a vector such that vi =

√
(σx,i + βV) ‖âx,i‖22, we then have

n∑

i,j=1

(σx,i+βV)‖âx,i‖22 â>x,i (σx,j+βV)‖âx,j‖22 âx,j =

∥∥∥∥∥
n∑

i=1

(σx,i+βV)‖âx,i‖22 âx,i
∥∥∥∥∥

2

2

=
∥∥∥B>v

∥∥∥
2

2

(i)

≤ ‖v‖22 ,

where inequality (i) follows from the fact that v>Pv ≤ ‖v‖22 for any orthogonal projection
matrix P . Equation (57a) implies that v2

i = (σx,i + βV) θ2
x,i. Using Lemma 11(e), we find

that

‖v‖22 =

n∑

i=1

(σx,i + βV) θ2
x,i ≤

√
nd.
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Bounding N2: We see that

n∑

i,j=1

(σx,i + βV) (σx,j + βV)
(
â>x,iâx,j

)3 (C−S)

≤
n∑

i,j=1

(σx,i + βV) (σx,j + βV)
(
â>x,iâx,j

)2
‖âx,i‖2 ‖âx,j‖2

(eqns.(57a),(57b))

≤
n∑

i,j=1

(σx,i + βV) (σx,j + βV) θ2
x,i,j

√
θx,iθx,j

(Lem. 7(c))

≤
√
n

d

n∑

i,j=1

(σx,i + βV) (σx,j + βV) θ2
x,i,j .

We now apply Lemma 11(d) followed by Lemma 11(c) to obtain the claimed bound on N2.

C.5.3 Proof of bound (40c)

Let ci,j =
(âx,i + âx,j)

2
for i, j ∈ [n]. Using Isserlis’ theorem for Gaussian moments, we

obtain

E




n∑

i,j=1

σ2
x,i,j

(
c>i,jξ

)3




2

=
n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,lE

(
c>i,jξ

)3 (
c>k,lξ

)3

= 9
n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,l‖ci,j‖22 ‖ck,l‖

2
2

(
c>i,jck,l

)

︸ ︷︷ ︸
=: C1

+6
n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,l

(
c>i,jck,l

)3

︸ ︷︷ ︸
=: C2

We claim that C1 ≤
√
nd and C2 ≤

√
nd. Assuming the claims as given, the result follows

using similar arguments as in the previous part. We now bound Ci, i = 1, 2, using arguments
similar to the ones used in Section C.5.2 to bound Ni, i = 1, 2, respectively. The following
bounds on ‖ci,j‖22 are used in the arguments that follow:

‖ci,j‖22
SSI
≤ 1

2

(
‖âi‖22 + ‖âj‖22

)
=

1

2
(θx,i + θx,j) (60a)

Lem. 7(c)

≤
√
n

d
. (60b)

Bounding C1: Let B be the same n × d matrix as in the proof of previous part with
its i-th row given by

√
(σx,i + βV)â>x,i. Define the vector u ∈ Rd with entries given by
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ui =
∑n

j=1 σ
2
x,i,j ‖ci,j‖22/(σx,i + βV)1/2. We have

n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,l ‖ci,j‖22 ‖ck,l‖

2
2

(
c>i,jck,l

)
≤

∥∥∥∥∥∥

n∑

i,j=1

σ2
x,i,j ‖ci,j‖22 ci,j

∥∥∥∥∥∥

2

2

(SSI)

≤ 1

2



∥∥∥∥∥∥

n∑

i,j=1

σ2
x,i,j ‖ci,j‖22 âx,i

∥∥∥∥∥∥

2

2

+

∥∥∥∥∥∥

n∑

i,j=1

σ2
x,i,j ‖ci,j‖22 âx,j

∥∥∥∥∥∥

2

2




=
∥∥∥B>u

∥∥∥
2

2

(i)

≤ ‖u‖22 ,
where inequality (i) follows from the fact that v>Pv ≤ ‖v‖22 for any orthogonal projection
matrix P . It is left to bound the term u2

i . We see that

u2
i =

1

σx,i + βV

n∑

j,k=1

σ2
x,i,jσ

2
x,i,k ‖ci,j‖22 ‖ci,k‖

2
2

(bnd. (60b))

≤
√
n

d

1

σx,i + βV

n∑

j,k=1

σ2
x,i,jσ

2
x,i,k ‖ci,j‖22

(Lem. 11(a))

≤
√
n

d

σx,i
σx,i + βV

n∑

j=1

σ2
x,i,j ‖ci,j‖22

(bnd. (60a))

≤
√
n

d

n∑

j=1

σ2
x,i,j

θx,i + θx,j
2

.

Now, summing over i and using symmetry of indices i, j, we find that

‖u‖22 ≤
√
n

d

n∑

i=1

n∑

j=1

σ2
x,i,jθx,i

(Lem. 11(a))
=

√
n

d

n∑

i=1

σx,iθx,i
(Lem. 11(c))

≤
√
nd,

thereby implying that C1 ≤
√
nd.

Bounding C2: Using the Cauchy-Schwarz inequality and the bound (60b), we find that
n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,l

(
c>i,jck,l

)3
≤

n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,l

(
c>i,jck,l

)2
‖ci,j‖2 ‖ck,l‖2

≤
√
n

d

n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,l

(
c>i,jck,l

)2
.

Using SSI and the symmetry of pairs of indices (i, j) and (k, l), we obtain
n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,l

(
c>i,jck,l

)2
≤

n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,l

(
â>x,iâk

)2
=

n∑

i,k=1

σx,iσx,k

(
â>x,iâk

)2
.

The resulting expression can be bounded as follows:
n∑

i,k=1

σx,iσx,k

(
â>x,iâk

)2 (eqn.(57b))
=

n∑

i,k=1

σx,iσx,kθ
2
x,i,k

(Lem. 11(d))

≤
n∑

i=1

σx,iθx,i
(Lem. 11(c))

≤ n.

Putting the pieces together yields the claimed bound on C2.
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C.5.4 Proof of bound (40d)

Observe that â>x,iξ ∼ N (0, θx,i) and hence E
(
â>x,iξ

)8
= 105 θ4

x,i. Thus we have

E

(
n∑

i=1

σx,i

(
â>x,iξ

)4
)2

C−S
≤

n∑

i,j=1

σx,iσx,j

(
E
(
â>x,iξ

)8
) 1

2
(
E
(
â>x,jξ

)8
) 1

2

= 105
n∑

i,j=1

σx,iσx,jθ
2
x,iθ

2
x,j

= 105

(
n∑

i=1

σx,iθ
2
x,i

)2

(Lem. 11(e))

≤ 105nd.

Applying the bound (56) with k = 4, t =
(
e
2 log(4/ε)

)2
yields the result. We also verify that

for ε ∈ (0, 1/15], we have t ≥ (2e)2

C.6 Proof of Lemma 13

We now derive the different expressions for derivatives and prove the bounds for Hessians
of x 7→ ϕx,i, i ∈ [n] and x 7→ Ψx. In this section we use the simpler notation Hx := ∇2Fx.

C.6.1 Gradient of σ

Using sx+h,i = (bi − a>i (x+ h)) = sx,i − a>i h, we define the Hessian difference matrix

∆H
x,h := Hx+h −Hx =

n∑

i=1

aia
>
i

(
1

(sx,i − a>i h)2
− 1

s2
x,i

)
. (61)

Up to second order terms, we have

1

s2
x+h,i

=
1

s2
x,i

[
1 +

2a>i h

sx,i
+

3(a>i h)2

s2
x,i

]
+O

(
‖h‖32

)
, (62a)

∆H
x,h =

n∑

i=1

aia
>
i

s2
x,i

[
2a>i h

sx,i
+

3(a>i h)2

s2
x,i

]
+O

(
‖h‖32

)
, (62b)

aTi H
−1
x+hai = a>i H

−1
x ai − a>i H−1

x ∆H
x,hH

−1
x ai + a>i H

−1
x ∆H

x,hH
−1
x ∆H

x,hH
−1
x ai +O

(
‖h‖32

)
.

(62c)
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Collecting different first order terms in σx+h,i − σx,i, we obtain

σx+h,i − σx,i = 2
a>i H

−1
x ai

s2
x,i

a>i h

sx,i
− 2

a>i H
−1
x

(∑n
j=1

aja
>
j

s2x,j

a>j h

sx,j

)
H−1
x ai

s2
x,i

+O
(
‖h‖22

)

= 2


σx,i

a>i h

sx,i
−

n∑

j=1

σ2
x,i,j

a>j h

sx,j


+O

(
‖h‖22

)

= 2 [(Σx −Υ(2)
x )S−1

x A]i h+O
(
‖h‖22

)
.

Dividing both sides by h and letting h→ 0 yields the claim.

C.6.2 Gradient of ϕ

Using the chain rule and the fact that ∇sx,i = −ai, we find that

∇ϕx,i =
∇σx,i
s2
x,i

− 2 (σx,i + βV)
∇sx,i
s3
x,i

=
2

s2
x,i

A>S−1
x

[
2Σx + βV I−Υ(2)

x

]
ei,

as claimed.

C.6.3 Gradient of Ψ

For convenience, let us restate equations (39) and (59):

âx,i =
1

sx,i
V −1/2
x ai, and

n∑

i=1

(σx,i + βV) âx,iâ
>
x,i = Id.

For a unit vector h, we have

h>∇ log detVx = lim
δ→0

1

δ

[
trace log

(
n∑

i=1

(σx+δh,i + βV)
(
1− δa>i h/sx,i

)2 âx,iâ
>
x,i

)
− trace log

(
n∑

i=1

(σx,i + βV) âx,iâ
>
x,i

)]
.

(63)

Let logL denote the logarithm of the matrix L. Keeping track of the first order terms on
RHS of equation (63), we find that

trace

[
log

(
n∑

i=1

(σx+δh,i + βV)
âx,iâ

>
x,i(

1− δa>i h/sx,i
)2

)]
− trace

[
log

(
n∑

i=1

(σx,i + βV) âx,iâ
>
x,i

)]

= trace

[
log

(
n∑

i=1

(
σx+δh,i + βV + δh>∇σx,i

)(
1 + 2δ

a>i h

s2
x,i

))]
− trace

[
log

(
n∑

i=1

(σx,i + βV) âx,iâ
>
x,i

)]
+O

(
δ2
)

= trace

[
n∑

i=1

δ

(
2 (σx,i + βV)

a>i h

s2
x,i

+ h>∇σx,i
)
âx,iâ

>
x,i

]
+O

(
δ2
)

= δ

(
n∑

i=1

(
2 (σx,i + βV)

a>i h

s2
x,i

+ h>∇σx,i
)
θi

)
+O

(
δ2
)
,
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where we have used the fact trace(log I) = 0. Letting δ → 0 and substituting expression of
h>∇σx from part (a), we obtain

h>∇ log detVx = A>x

(
4Σx + 2βVI− 2Υ(2)

x

)
Θxh.

C.6.4 Bound on Hessian ∇2ϕ

In terms of the shorthand Eii = eie
>
i , we claim that for any h ∈ Rd,

h>∇2ϕx,ih =
2

s2
x,i

h>A>x

[
Eii

(
3 (Σx + βVI) + 7Σx − 8 diag(Υ(2)

x ei)
)
Eii

+ diag(Υxei)(4Υx − 3I) diag(Υxei)

]
Axh. (64)

Note that

ϕx+h,i − ϕx,i =

(
a>i H

−1
x+h,iai

s4
x+h,i

−
a>i H

−1
x,i ai

s4
x,i

)

︸ ︷︷ ︸
=:A1

+βV

(
1

s2
x+h,i

− 1

s2
x,i

)

︸ ︷︷ ︸
=:A2

. (65)

The second order Taylor expansion of 1/s4
x,i is given by

1

s4
x+h,i

=
1

s4
x,i

[
1 +

4a>i h

sx,i
+

10(a>i h)2

s2
x,i

]
+O

(
‖h‖32

)
.

Let B1 and B2 denote the second order terms, i.e., the terms that are of order O
(
‖h‖22

)
,

in Taylor expansion of A1 and A2 around x, respectively. Borrowing terms from equa-
tions (62a)-(62c) and simplifying we obtain

B1 = 10σx,i
(a>i h)2

s2
x,i

−8
a>i h

sx,i

n∑

j=1

σ2
x,i,j

s2
x,i

a>j h

sx,j
−3

n∑

j=1

σ2
x,i,j

s2
x,i

(a>j h)2

s2
x,j

+4

n∑

j=1

n∑

l=1

σx,i,j
sx,i

σx,j,l
σx,l,i
sx,i

a>j h

sx,j

a>l h

sx,l
,

and B2 = 3βV

(a>i h)2

s2
x,i

.

Observing that the second order term in the Taylor expansion of ϕx+h,i around x, is exactly
1
2h
>∇2ϕx,ih yields the claim (64). We now turn to prove the bound on the directional
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Hessian. Recall ηx,i = a>i h/sx,i. We have

s2
y,i

∣∣∣∣
1

2
h>∇2ϕx,ih

∣∣∣∣

=

∣∣∣∣∣∣
3 (σx,i+βV) η2

x,i+7σx,iη
2
x,i−8

n∑

j=1

σ2
x,i,jηx,jηx,i−3

n∑

j=1

σ2
x,i,jη

2
x,j+4

n∑

j,k=1

σx,i,jσx,j,kσx,k,iηx,jηx,k

∣∣∣∣∣∣
(i)

≤ 10 (σx,i + βV) η2
x,i + 8

n∑

j=1

σ2
x,i,j |ηx,iηx,j |+ 7

n∑

j=1

σ2
x,i,jη

2
x,j

(ii)

≤ 10 (σx,i + βV) η2
x,i + 4

n∑

j=1

σ2
x,i,j

(
η2
x,i + η2

x,j

)
+ 7

n∑

j=1

σ2
x,i,jη

2
x,j

(iii)

≤ 10 (σx,i + βV) η2
x,i + 4

n∑

j=1

σx,iη
2
x,i + 4

n∑

j=1

σ2
x,i,jη

2
x,j + 7

n∑

j=1

σ2
x,i,jη

2
x,j ,

(iv)

≤ 14 (σx,i + βV) η2
x,i + 11

n∑

j=1

σ2
x,i,jη

2
x,j ,

where step (i) follows from the fact that diag(Υyei)Υy diag(Υyei) � diag(Υyei) diag(Υyei)
since Υy is an orthogonal projection matrix; step (ii) follows from AM-GM inequality; step
(iii) follows from the symmetry of indices i and j and Lemma 11(a), and step (iv) from the
fact that σx,i ≤ σx,i + βV.

C.6.5 Bound on Hessian ∇2Ψ

We have

1

2
h>
(
∇2 log detVx

)
h =

1

2
lim
δ→0

1

δ2

[
trace log

(
n∑

i=1

(σx+δh,i + βV)
(
1− δa>i h/sx,i

)2 âx,iâ
>
x,i

)

+ trace log

(
n∑

i=1

(σx−δh,i + βV)
(
1 + δa>i h/sx,i

)2 âx,iâ
>
x,i

)

− 2 trace log

(
n∑

i=1

(σx + βV) âx,iâ
>
x,i

)]
. (66)
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Up to second order terms, we have

trace

[
log

(
n∑

i=1

(σx+δh,i + βV)
âx,iâ

>
x,i(

1− δa>i h/sx,i
)2

)]

= trace

[
log

(
n∑

i=1

(
σx,i + βV + δh>∇σx,i +

1

2
δ2h>∇2σx,ih

)(
1 + 2δ

a>i h

sx,i
+ 3δ2

(
a>i h

sx,i

)2
)
âx,iâ

>
x,i

)]

= trace

[
n∑

i=1

(
σx,i + βV + δh>∇σx,i +

1

2
δ2h>∇2σx,ih

)(
1 + 2δ

a>i h

sx,i
+ 3δ2

(
a>i h

sx,i

)2
)
âx,iâ

>
x,i

]

− trace


1

2

(
n∑

i=1

(
σx,i + βV + δh>∇σx,i +

1

2
δ2h>∇2σx,ih

)(
1 + 2δ

a>i h

sx,i
+ 3δ2

(
a>i h

sx,i

)2
)
âx,iâ

>
x,i

)2

 .

We can similarly obtain the second order expansion of the term trace log

(∑n
i=1

(σx−δh,i+βV)
(1+δa>i h/sx,i)

2 âx,iâ
>
x,i

)
.

Recall ηx,i =
a>i h
sx,i

. Using part (a) to substitute h>∇σx,i, we obtain

1

2
h>
(
∇2 log detVx

)
h =

n∑

i=1


3 (σx,i + βV) η2

x,i + 4


σx,iη2

x,i −
n∑

j=1

σ2
x,i,jηx,iηx,j


+

1

2
h>∇2σx,ih


 θi

− 2

[ n∑

i,j=1

(2σx,i + βV) (2σx,j + βV) ηx,iηx,jθ
2
x,i,j − 2

n∑

i,j,k=1

(2σx,i + βV)σ2
x,j,kθ

2
x,i,kηx,iηx,j

+
n∑

i,j,k,l=1

σ2
x,i,lσ

2
x,j,kθ

2
x,k,lηx,iηx,j

]
. (67)

We claim that the directional Hessian h>∇2σx,ih is given by

h>∇2σx,ih = 2h>A>x

[
Eii(3Σx − 4 diag(Υ(2)

x ei))Eii + diag(Υxei)(4Υx − 3I) diag(Υxei)
]
Axh.

(68)

Assuming the claim at the moment we now bound
∣∣h>∇2Ψxh

∣∣. To shorten the notation,
we drop the x-dependence of the terms σx,i, σx,i,j , θx,i and ηx,i. Since Υx is an orthogonal
projection matrix, we have

diag(Υxei)Υx diag(Υxei) � diag(Υxei) diag(Υxei).

Using this fact and substituting the expression for h>∇2σx,ih from equation (68) in equa-
tion (67), we obtain
∣∣∣h>∇2Ψxh

∣∣∣

≤
n∑

i=1

[
3

(
σi + βV

)
η2
i + 4

(
σiη

2
i +

n∑

j=1

σ2
i,jηiηj

)
+ 3σiη

2
i + 4

n∑

j=1

σ2
i,jηiηj + 7

n∑

j=1

σ2
i,jη

2
j

]
θi

+

[
8

n∑

i,j=1

(σi + βV) (σj + βV) ηiηjθ
2
i,j + 8

n∑

i,j,k=1

(σi + βV)σ2
j,kθ

2
i,kηiηj + 2

n∑

i,j,k,l=1

σ2
i,lσ

2
j,kθ

2
k,lηiηj

]
.
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Rearranging terms, we find that

∣∣∣h>∇2Ψxh
∣∣∣

≤
n∑

i=1

[
10 (σi + βV) η2

i + 8
n∑

j=1

σ2
i,jηiηj + 7

n∑

j=1

σ2
i,jη

2
j

]
θi

+

[
8

n∑

i,j=1

(σi + βV) (σj + βV) ηiηjθ
2
i,j + 8

n∑

i,j,k=1

(σi + βV)σ2
j,kθ

2
i,kηiηj + 2

n∑

i,j,k,l=1

σ2
i,lσ

2
j,kθ

2
k,lηiηj

]

(i)

≤
n∑

i=1

[
10 (σi + βV) η2

i + 4

n∑

j=1

σ2
i,j

(
η2
i + η2

j

)
+ 7

n∑

j=1

σ2
i,jη

2
j

]
θi

+

[
4

n∑

i,j=1

(
σi + βV

)(
σj + βV

)
θ2
i,j(η

2
i + η2

j ) + 4
n∑

i,j,k=1

(
σi + βV

)
σ2
j,kθ

2
i,k(η

2
i + η2

j ) +
n∑

i,j,k,l=1

σ2
i,lσ

2
j,kθ

2
k,l(η

2
i + η2

j )

]

where in step (i) we have used the AM-GM inequality. Simplifying further, we obtain

∣∣∣h>∇2Ψyh
∣∣∣ ≤

n∑

i=1

[
14 (σi + βV) η2

i + 11

n∑

j=1

σ2
i,jη

2
j

]
θi +

[
n∑

i=1

12 (σi + βV) θiη
2
i +

n∑

i,j=1

6σ2
i,jθiη

2
j

]

= 26
n∑

i=1

(σi + βV) θiη
2
i + 17

n∑

i,j=1

σ2
i,jθiη

2
j .

Dividing both sides by two completes the proof.

Proof of claim (68): In order to compute the directional Hessian of x 7→ σx,i, we need
to track the second order terms in equations (62a)-(62c). Collecting the second order terms

(denoted by σ
(2)
h ) in the expansion of σx+h,i − σx,i, we obtain

σ
(2)
h = 3

a>i H
−1
x ai

s2
x,i

(a>i h)2

s2
x,i

− 4

a>i H
−1
x

(∑n
j=1

aja
>
j

s2x,j

a>j h

sx,j

)
H−1
x ai

s2
x,i

a>i h

sx,i

− 3

a>i H
−1
x

(∑n
j=1

aja
>
j

s2x,j

(a>j h)2

s2x,j

)
H−1
x ai

s2
x,i

+ 4

a>i H
−1
x

(∑n
j=1

aja
>
j

s2x,j

a>j h

sx,j

)
H−1
x

(∑n
l=1

ala
>
l

s2x,l

a>l h
sx,l

)
ai

s2
x,i

.

We simply each term on the RHS one by one. Simplifying the first term, we obtain

3
a>i H

−1
x ai

s2
x,i

(a>i h)2

s2
x,i

= 3σx,iη
2
x,i = h>3A>xEiiΣxEiiAx h.
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For the second term, we have

4

a>i H
−1
x

(∑n
j=1

aja
>
j

s2x,j

a>j h

sx,j

)
H−1
x ai

s2
x,i

a>i h

sx,i
= 4 ηx,i

n∑

j=1

σ2
x,i,j ηx,j

= 4h>A>xEii diag
(

Υ(2)
x ei

)
EiiAxh.

The third term can be simplified as follows:

3

a>i H
−1
x

(∑n
j=1

aja
>
j

s2x,j

(a>j h)2

s2x,j

)
H−1
x ai

s2
x,i

= 3
n∑

j=1

σ2
x,i,jη

2
x,j

= 3h>A>x diag (Υxei) diag (Υxei)Axh

For the last term, we find that

4

a>i H
−1
x

(∑n
j=1

aja
>
j

s2x,j

a>j h

sx,j

)
H−1
x

(∑n
l=1

ala
>
l

s2x,l

a>l h
sx,l

)
ai

s2
x,i

= 4

n∑

j,l=1

σx,i,j σx,j,l σx,l,i ηx,j ηx,l

= 4h>A>x diag (Υxei) Υx diag (Υxei)Axh.

Putting together the pieces yields the expression (68).

Appendix D. Analysis of the John walk

We recap the key ideas of the John walk for convenience. We have designed a new proposal
distribution by making use of an optimal set of weights to define the new covariance structure
for the Gaussian proposals, where optimality is defined with respect to the convex program
defined below (69). The optimality condition is closely related to the problem of finding
the largest ellipsoid at any interior point of the polytope, such that the ellipsoid is contained
within the polytope. This problem of finding the largest ellipsoid was first studied by John
(1948) who showed that each convex body in Rd contains a unique ellipsoid of maximal
volume. More recently, Lee and Sidford (2014) make use of approximate John Ellipsoids
to improve the convergence rate of interior point methods for linear programming. We
refer the readers to their paper for more discussion about the use of John Ellipsoids for
optimization problems. In this work, we make use of these ellipsoids for designing sampling
algorithms with better theoretical bounds on the mixing times.

The vector ζx = (ζx,1, . . . , ζx,n)> defined in the John walk’s inverse covariance ma-
trix (11) is computed by solving the following optimization problem:

ζx = arg min
w∈Rn

cx (w) :=
n∑

i=1

wi −
1

αJ

log det
(
A>S−1

x WαJS−1
x A

)
− βJ

n∑

i=1

logwi, (69)

where the parameters αJ, βJ are given by

αJ = 1− 1

log2 (2n/d)
and βJ =

d

2n
,
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and W denotes an n× n diagonal matrix with Wii = wi for each i ∈ [n]. In particular, for
our proposal the inverse covariance matrix is proportional to Jx, where

Jx =
n∑

i=1

ζx,i
aia
>
i

(bi − a>i x)2
. (70)

where κ := κn,d = log2(2n/d) = (1− αJ)
−1.

Recall that for John walk with parameter r
d3/4κ2

, the proposals at state x are drawn

from the multivariate Gaussian distribution given by N
(
x, r2

d3/2κ4
J−1
x

)
, which we denote

by PJ
x. In particular, the proposal density at point x ∈ int (K) is given by

px(z) := p(x, z) =
√

det Jx

(
κ4d3/2

2πr2

)d/2
exp

(
−κ

4d3/2

2r2
(z − x)>Jx(z − x)

)
. (71)

Here we restate our result for the mixing time of the John walk.

Theorem 2 Let µ0 be any distribution that is M -warm with respect to π∗ and let n < exp(
√
d).

Then for any δ ∈ (0, 1], the John walk with parameter rJohn = 10−5 satisfies

‖T k
John(r)(µ0)− π∗‖TV ≤ δ for all k ≥ C d2.5 log4

2

(
2n

d

)
log

(√
M

δ

)
.

D.1 Auxiliary results

We begin by proving basic properties of the weights ζx which are used throughout the paper.
For x ∈ int (K) , w ∈ Rn++, define the projection matrix Υx,w as follows

Υx,w = Wα/2Ax(A>xW
αAx)−1A>xW

α/2, (72)

where Ax = S−1
x A and W is the n × n diagonal matrix with i-th diagonal entry given by

wi. Also, let

σx,i := (Υx,ζx)ii for x ∈ int (K) and i ∈ [n]. (73)

Define the John slack sensitivity θJx as

θx := θJx :=

(
a>1 J

−1
x a1

s2
x,1

, . . . ,
a>n J

−1
x an
s2
x,n

)>
for all x ∈ int (K) . (74)

Further, for any x ∈ int (K), define the John local norm at x as

‖·‖Jx : v 7→
∥∥∥J1/2

x v
∥∥∥

2
=

√√√√
n∑

i=1

ζx,i
(a>i v)2

s2
x,i

. (75)

We now collect some basic properties of the weights ζx and the local sensitivity θx and
restate parts of Lemma 7 for clarity here.
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Lemma 3 For any x ∈ int (K), the following properties are true:

(a) (Implicit weight formula) ζx,i = σx,i + βJ for all i ∈ [n],

(b) (Uniformity) ζx,i ∈ [βJ, 1 + βJ] for all i ∈ [n],

(c) (Total size)
∑n

i=1 ζx,i = 3d/2, and

(d) (Slack sensitivity) θx,i ∈ [0, 4] for all i ∈ [n].

Lemma 3 follows from Lemmas 14 and 15 by Lee and Sidford (2014) and thereby we omit
its proof.

Next, we state a key lemma that is crucial for proving the convergence rate of John
walk. In this lemma, we provide bounds on difference in total variation norm between the
proposal distributions of two nearby points.

Lemma 4 There exists a continuous non-decreasing function h : [0, 1/30] → R+ with
h(1/30) ≥ 10−5, such that for any ε ∈ (0, 1/30], the John walk with r ∈ [0, h(ε)] satis-
fies

‖PJ
x − PJ

y‖TV ≤ ε, for all x, y ∈ int (K) such that ‖x− y‖Jx ≤
εr

2κ2d3/4
, and

(76a)

‖TJohn(r)(δx)− PJ
x‖TV ≤ 5ε, for all x ∈ int (K). (76b)

See Section D.3 for its proof.
With these lemmas in hand, we are now ready to prove Theorem 2.

D.2 Proof of Theorem 2

The proof is similar to the proof of Theorem 1, and relies on the Lovász’s Lemma. Here
onwards, we use the following simplified notation

Tx = TJohn(r)(δx),Px = PJ
x and ‖·‖x = ‖·‖Jx .

In order to invoke Lovász’s Lemma, we need to show that for any two points x, y ∈ int (K)
with small cross-ratio dK(x, y), the TV-distance ‖Tx − Ty‖TV is also small.

We proceed with the proof in two steps: (A) first, we relate the cross-ratio dK(x, y)
to the John local norm of x − y at x, and (B) we then use Lemma 4 to show that if
x, y ∈ int (K) are close in the John local-norm, then the transition kernels Tx and Ty are
close in TV-distance.

Step (A): We claim that for all x, y ∈ int (K), the cross-ratio can be lower bounded as

dK(x, y) ≥ 1√
3d/2

‖x− y‖x . (77)

From the arguments in the proof of Theorem 1 (proof for the Vaidya Walk), we have

dK(x, y) ≥ max
i∈[n]

∣∣∣∣
a>i (x− y)

sx,i

∣∣∣∣ . (78)
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Using the fact that maximum of a set of non-negative numbers is greater than the weighted
mean of the numbers and Lemma 3, we find that

dK(x, y) ≥

√√√√ 1∑n
i=1 ζx,i

n∑

i=1

ζx,i
(a>i (x− y))2

s2
x,i

=
‖x− y‖x√

3d/2
,

thereby proving the claim (77).

Step (B): By the triangle inequality, we have

‖Tx − Ty‖TV ≤ ‖Tx − Px‖TV + ‖Px − Py‖TV + ‖Py − Ty‖TV.

Using Lemma 4, we obtain that

‖Tx − Ty‖TV ≤ 11ε, ∀x, y ∈ int (K) such that ‖x− y‖x ≤
εr

2κ2d3/4
.

Consequently, the John walk satisfies the assumptions of Lovász’s Lemma with

∆ :=
1√
3d/2

· εr

2κ2d3/4
and ρ := 1− 11ε.

Plugging in ε = 1/30, r = 10−5, we obtain the claimed upper bound of O
(
κ4d5/2

)
on the

mixing time of the random walk.

D.3 Proof of Lemma 4

We prove the lemma for the following function,

h(ε) = min





1

25
√

1 +
√

2 log(4/ε)
,

ε(
2
√

32χ1,ε

) ,
√

ε

386
√

24χ2,ε

,
ε

5
√

60χ3,ε

,

√
ε

8
√

1680χ4,ε

,

√
ε

40
(
χ2,εχ6,ε

√
24
√

15120
)1/2 ,

√
ε

204800χ2,ε

√
24 log(32/ε)



 .

where χ1,ε = log(2/ε)and χk,ε = (2e/k · log (16/ε))k/2 for k = 2, 3, 4 and 6. A numerical
calculation shows that h(1/30) ≥ 10−5.

We now prove the two parts (76a) (76b) of the Lemma separately.

D.3.1 Proof of claim (76a)

Applying Pinsker’s inequality, and plugging in the closed formed expression for the KL
divergence between two Gaussian distributions we find that

‖Px − Py‖2TV ≤ 2 KL(Py‖Px) = trace(J−1/2
x JyJ

−1/2
x )−d−log det(J−1/2

x JyJ
−1/2
x ) +

κ4d3/2

r2
‖x−y‖2x

=

d∑

i=1

(
λi − 1 + log

1

λi

)
+
κ4d3/2

r2
‖x− y‖2x , (79)

where λ1, . . . , λd > 0 denote the eigenvalues of the matrix J
−1/2
x JyJ

−1/2
x . To bound the

expression (79), we make use of the following lemma:
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Lemma 5 For any scalar t ∈ [0, 1/64] and pair of points x, y ∈ int (K) such that ‖x− y‖x ≤ t/κ2,
we have

(
1− 48t+ 4t2

)
Id � J−1/2

x JyJ
−1/2
x �

(
1 + 48t+ 4t2

)
,

where � denotes ordering in the PSD cone and Id denotes the d-dimensional identity matrix.

See Section F for the proof of this lemma.
For ε ∈ (0, 1/30] and r = 10−5, we have t = εr/(2d3/4) ≤ 1/64, whence the eigenvalues

{λi, i ∈ [d]} can be sandwiched as

1− 24εr

d3/4
+
ε2r2

d3/2
≤ λi ≤ 1 +

24εr

d3/4
+
ε2r2

d3/2
for all i ∈ d. (80)

We are now ready to bound the TV distance between Px and Py. Using the bound (79)
and the inequality logω ≤ ω − 1, valid for ω > 0, we obtain

‖Px − Py‖2TV ≤
d∑

i=1

(
λi − 2 +

1

λi

)
+
κ4d3/2

r2
‖x− y‖2x .

Using the assumption that ‖x− y‖x ≤ εr/
(
2κ2d3/4

)
, and plugging in the bounds (80) for

the eigenvalues {λi, i ∈ [d]}, we find that

d∑

i=1

(
λi − 2 +

1

λi

)
+
κ4d3/2

r2
‖x− y‖2x ≤

2000ε2r2

√
d

+
ε2

4
.

In asserting this inequality, we have used the facts that

1

1− 24ω + ω2
≤ 1 + 24ω + 1000ω2, and

1

1 + 24ω + ω2
≤ 1− 24ω + 1000ω2 for all ω ∈

[
0, 1

100

]
.

Note that for any r ∈ [0, 1/100], we have that 2000r2/
√
d ≤ 1/2. Putting the pieces together

yields ‖Px − Py‖TV ≤ ε, as claimed.

D.3.2 Proof of claim (76b)

We have

‖Px − Tx‖TV ≤
3

2
Px(Kc)
︸ ︷︷ ︸

=: S1

+ 1− Ez∼Px
[
min

{
1,
pz(x)

px(z)

}]

︸ ︷︷ ︸
=: S2

, (81)

where Kc denotes the complement of K. We now show that S1 ≤ ε and S2 ≤ 4ε, from which
the claim follows.

Bounding the term S1: Note that for z ∼ N (x, r2

κ2d3/2
J−1
x ), we can write

z
d
= x+

r

κd3/4
J−1/2
x ξ, (82)
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where ξ ∼ N (0, Id) and
d
= denotes equality in distribution. Using equation (82) and defini-

tion (74) of θx,i, we obtain the bound

(
a>i (z − x)

)2

s2
x,i

=
r2

κ2d3/2

[
a>i J

−1/2
x ξ

sx,i

]2
(i)

≤ r2

κ2d3/2
θx,i ‖ξ‖22

(ii)

≤ 4r2

d
‖ξ‖22 , (83)

where step (i) follows from Cauchy-Schwarz inequality, and step (ii) from part (d) of
Lemma 3. Define the events

E :=

{
r2

d
‖ξ‖22 <

1

4

}
and E ′ := {z ∈ int (K)} .

Inequality (83) implies that E ⊆ E ′ and hence P [E ′] ≥ P [E ]. Using a standard Gaussian

tail bound and noting that r ≤ 1/2

1+
√

2/d log(2/ε)
, we obtain P [E ] ≥ 1 − ε/2 and whence

P [E ′] ≥ 1− ε/2. Thus, we have shown that P [z /∈ K] ≤ ε/2 which implies that S1 ≤ ε.

Bounding the term S2: By Markov’s inequality, we have

Ez∼Px
[
min

{
1,
pz(x)

px(z)

}]
≥ αP [pz(x) ≥ αpx(z)] for all α ∈ (0, 1]. (84)

By definition (71) of px, we obtain

pz(x)

px(z)
= exp

(
−d

3/2κ4

2r2

(
‖z − x‖2z − ‖z − x‖2x

)
+

1

2
(log detJz − log detJx)

)
.

The following lemma provides us with useful bounds on the two terms in this expression,
valid for any x ∈ int (K).

Lemma 6 For any ε ∈ (0, 1
4 ] and r ∈ (0, h(ε)], we have

Pz∼Px
[

1

2
log detJz −

1

2
log detJx ≥ −ε

]
≥ 1− ε, and (85a)

Pz∼Px
[
‖z − x‖2z − ‖z − x‖2x ≤ 2ε

r2

κ4d3/2

]
≥ 1− ε. (85b)

We provide the of this lemma in Section G.

Using Lemma 6, we now complete the proof of the Theorem 2. For r ≤ h(ε), we obtain

pz(x)

px(z)
≥ exp (−2ε) ≥ 1− 2ε

with probability at least 1 − 2ε. Substituting α = 1 − 2ε in inequality (84) yields that
S2 ≤ 4ε, as claimed.
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Appendix E. Technical Lemmas for the John walk

We begin by summarizing a few key properties of various terms involved in our analysis.
Let Σx,w be an n× n diagonal matrix defined as

Σx,w = diag (σx,w,i, . . . , σx,w,n) where σx,ζx,w,i = (Υx,w)ii, i ∈ [n]. (86a)

Let Υ
(2)
x,w denote the hadamard product of Υx,w with itself. Further define

Λx,w := Σx,w −Υ(2)
x,w. (86b)

Lee and Sidford (2014) proved that the weight vector ζx is the unique solution of the
following fixed point equation:

wi = σx,w,i + βJ, i ∈ [n]. (87a)

To simplify notation, we use the following shorthands:

σx = σx,ζx , Υx = Υx,ζx , Υ(2)
x = Υ

(2)
x,ζx

, Σx = Σx,ζx , Λx = Λx,ζx . (87b)

Thus, we have the following relation:

ζx = σx,ζx + βJ1 = σx + βJ1. (87c)

E.1 Deterministic expressions and bounds

We now collect some properties of various terms defined above.

Lemma 7 For any x ∈ int (K), the following properties hold:

(a) σx,i =
∑n

j=1 σ
2
x,i,j =

∑n
j,k=1 σx,i,jσx,j,kσx,k,i for each i ∈ [n],

(b) Σx � Υ
(2)
x ,

(c)
∑n

i=1 ζx,iθx,i = d,

(d) θx,i =
∑n

j=1 ζx,iθ
2
x,i,j, for each i ∈ [n],

(e) θ>x Σxθx =
∑n

i=1 θ
2
x,iζx,i ≤ 4d, and

(f) βJ∇2Fx � Jx � (1 + βJ)∇2Fx.

The proof is based on the ideas similar to Lemma 5 in the proof of the Vaidya walk and is
thereby omitted.

The next lemma relates the change in slackness sx,i = bi − a>i x to the John-local norm
at x.

Lemma 8 For all x, y ∈ int (K), we have

max
i∈[n]

∣∣∣∣1−
sy,i
sx,i

∣∣∣∣ ≤ 2 ‖x− y‖x .
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Proof For any pair x, y ∈ int (K) and index i ∈ [n], we have

(
a>i (x− y)

)2 (i)

≤ ‖J−
1
2

x ai‖22 ‖J
1
2
x (x− y)‖22 = θx,is

2
x,i ‖x− y‖2x

(ii)

≤ 4s2
x,i ‖x− y‖2x ,

where step (i) follows from the Cauchy-Schwarz inequality, and step (ii) uses the bound
θx,i from Lemma 3(d). Noting the fact that a>i (x− y) = sy,i − sx,i, the claim follows after
simple algebra.

We now state various expressions and bounds for the first and second order derivatives
of the different terms. To lighten notation, we introduce some shorthand notation. For any
y ∈ int (K) and h ∈ Rd, define the following terms:

dy,i =
a>i h

sy,i
, i ∈ [n] Dy = diag(dy,1, . . . , dy,n), (88a)

fy,i =
∇ζ>y,ih
ζy,i

, i ∈ [n] Fy = diag(fy,1, . . . , fy,n), (88b)

`y,i =
1

2
h>∇2ζy,ih/ζy,i, i ∈ [n] Ly = diag(`y,1, . . . , `y,n), (88c)

ρy := (Gy − αΛy)



`y,1

...
`y,n


 , (88d)

where for brevity in our notation we have omitted the dependence on h. The choice of h is
specified as per the context. Further, we define for each x ∈ int (K) and i ∈ [n]

ϕx,i :=
ζx,i
s2
x,i

, and Ψx :=
1

2
log detJx, (89)

âx,i :=
J
−1/2
x ax,i
s2
x,i

, and b̂x,i := J−1/2
x AxΛx (Gx − αΛx)−1 ei. (90)

Next, we state expressions for gradients of ζ, ϕ and Ψ and bounds for directional Hessian
of σ, ϕ and Ψ which are used in various Taylor series expansions and bounds in our proof.

Lemma 9 (Calculus) For any y ∈ int (K) and h ∈ Rn, the following relations hold;

(a) Gradient of ζ: (fy,1, . . . , fy,n)> = 2 (Gy − αΛy)
−1 ΛyAyh;

(b) Hessian of ζ:

‖ρy‖1 ≤ 56κ2
n∑

i=1

ζy,id
2
y,i. (91)

(c) Gradient of Ψ: ∇Ψ>h = θ>y Gy

(
In + (Gy − αΛy)

−1 Λy

)
Ayh.

(d) Gradient of ϕ: ∇ϕ>y,ih = ϕy,i (2dy,i + fy,i).
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(e) Bound on ∇2Ψ: 1
2

∣∣h>(∇2Ψ)h
∣∣ ≤ 1

2

[∑n
i=1 ζy,i θy,i

[
9 d2

y,i + 4f2
y,i

]
+ |∑n

i=1 ζy,i θy,i`y,i|
]

(f) Bound on ∇2ϕ:
∣∣∣∣∣
n∑

i=1

d2
y,is

2
y,i

1

2
h>∇2ϕy,ih

∣∣∣∣∣ ≤ 3

n∑

i=1

ζy,id
4
y,i + 2

∣∣∣∣∣
n∑

i=1

ζy,id
3
y,ify,i

∣∣∣∣∣+

∣∣∣∣∣
n∑

i=1

ζy,id
2
y,i`y,i

∣∣∣∣∣ .

The proof is provided in Section H.1.
Next, we state some results that would be useful to provide explicit bounds for various

terms like fy, `y and ρy that appear in the statements of the previous lemma. Note that the
following results do not have a corresponding analog in our analysis of the Vaidya walk.

Lemma 10 For any c1, c2 ≥ 0, y ∈ int (K), we have

(
c1In + c2Λy (Gy − αΛy)

−1
)
Gy

(
c1In + c2 (Gy − αΛy)

−1 Λy

)
� (c1 + c2)2 κ2Gy,

where � denotes the ordering in the PSD cone.

Lemma 11 Let µy denote the n×n matrix (Gy − αΛy)
−1Gy, and let µy,i,j denote its ij-th

entry. Then for each i ∈ [n] and y ∈ int (K), we have

µy,i,i ∈ [0, κ], and, (92a)

∑

j 6=i,j∈[n]

µ2
y,i,j

ζy,j
≤ κ3. (92b)

Corollary 12 Let ei ∈ Rn denote the unit vector along i-th axis. Then for any y ∈ int (K),
we have

∥∥∥Gy (Gy − αΛy)
−1 ei

∥∥∥
1
≤ 3
√
dκ3/2, for all i ∈ [n]. (93)

Consequently, we also have ||| (Gy − αΛy)
−1Gy|||∞ ≤ 3

√
dκ3/2.

See Section H.2, H.3 and H.4 for the proofs of Lemma 10, Lemma 11 and Corollary 12
respectively.

E.2 Tail Bounds

We now collect lemmas that provide us with useful tail bounds.
We start with a result that shows that for a random variable z ∼ Px, the slackness sz,i

is close to sx,i with high probability and consequently the weights ζz,i are also close to ζx,i.
This result comes in handy for transferring the remainder terms in Taylor expansions to
the reference point (around which the series is being expanded).

Lemma 13 For any point x ∈ int (K) and r ≤ 1

25·
√

1+
√

2 log(4/ε)
, we have

Pz∼Px
[
∀i ∈ [n],∀v ∈ xz, sx,i

sv,i
∈ [0.99, 1.01] and

ζx,i
ζv,i
∈ [0.96, 1.04]

]
≥ 1− ε/4 (94a)
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See Section I.1 for the proof of this lemma.

Next, we state high probability results for some Gaussian polynomials. These results are
useful to bound various polynomials of the form

∑n
i=1 ζx,id

k
x,i, where dx,i = a>i (z − x)/sx,i

and z is drawn from the transition distribution for the John walk at point x.

Lemma 14 (Gaussian moment bounds) To simplify notations, all subscripts on x are

omitted in the following statements. For any ε ∈ (0, 1/30], define χk := χk,ε = (2e/k · log (16/ε))k/2,
for k = 2, 3, 4 and 6, then we have

P

[
n∑

i=1

ζi

(
â>i ξ

)2
≤ χ2

√
24d

]
≥ 1− ε

16
, (95a)

P

[
n∑

i=1

ζi

(
â>i ξ

)3
≤ χ3

√
60d1/2

]
≥ 1− ε

16
, (95b)

P

[
n∑

i=1

ζi

(
â>i ξ

)2 (
b̂>i ξ
)
≤ χ3

√
240κd1/2

]
≥ 1− ε

16
, (95c)

P

[
n∑

i=1

ζi

(
â>i ξ

)4
≤ χ4

√
1680d

]
≥ 1− ε

16
, (95d)

P

[
n∑

i=1

ζi

(
â>i ξ

)6
≤ χ6

√
15120d

]
≥ 1− ε

16
. (95e)

See Section I.2 for the proof.

Appendix F. Proof of Lemma 5

As a direct consequence of Lemma 8, for any x, y ∈ int (K) such that ‖x− y‖x ≤ t/κ2, we
have

max
i∈[n]

∣∣∣∣1−
sy,i
sx,i

∣∣∣∣ ≤
2t

κ2
. (96)

Bounding the terms in ∇2Fx one by one, we obtain

(
1− 2t

κ2

)2

∇2Fy � ∇2Fx �
(

1 +
2t

κ2

)2

∇2Fy.

We claim that

‖log ζy − log ζx‖∞ ≤ 16t. (97)

Assuming the claim as given at the moment, we now complete the proof. Putting the
result (97) in matrix form, we obtain that exp (−16t) In � G−1

x Gy � exp (16t) In, and hence

exp (−16t) ζx,i ≤ ζy,i ≤ exp (16t) ζx,i. (98)
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Consequently, using the definition of Jx we have,

(
1− 2t

κ2

)2

exp (−16t)

︸ ︷︷ ︸
ω`

Jx ≤ Jy ≤
(

1 +
2t

κ2

)2

exp (16t)

︸ ︷︷ ︸
ωu

Jy.

Letting ω = 2t, we obtain

ω` ≥ (1− ω)2 · exp (−8ω)
(i)

≥ 1− 24ω + ω2, and ωu ≤ (1 + ω)2 · exp (8ω)
(ii)

≤ 1 + 24ω + ω2,

where inequalities (i) and (ii) hold since ω ≤ 1/24. Putting the pieces together, we find
that

(
1− 48t+ 4t2

)
Jx � Jy �

(
1− 48t+ 4t2

)
Jx

for t ∈ [0, 1/48].
Now, we return to the proof of our earlier claim (97). We use an argument based on the

continuity of the function x 7→ log ζx. (Such an argument appeared in a similar scenario
in Lee and Sidford (2014).) For λ ∈ [0, 1], define uλ = λy + (1− λ)x. Let

λmax := sup

{
λ ∈ [0, 1]

∣∣∣∣ ‖log ζuλ − log ζx‖∞ ≤ 16t

}
. (99)

It suffices to establish that λmax = 1. Note that λ = 0 is feasible on the RHS of equation (99)
and hence λmax exists. Now for any λ ∈ [0, λmax] and i ∈ {1, . . . , n}, there exists v on the
segment uλx such that

|log ζuλ,i − log ζx,i| =
∣∣∣∣∣

(∇ζv,i
ζv,i

)>
(uλ − x)

∣∣∣∣∣
(i)

≤
∥∥G−1

v G′v (y − x)
∥∥
∞ = 2

∥∥∥(Gv − αΛv)
−1 ΛvAv (y − x)

∥∥∥
∞
.

where in step (i) we have used the fact that uλ−x = λ(y−x) and λ ∈ [0, 1]. We claim that
∥∥∥(Gv − αΛv)

−1 Λvv1

∥∥∥
∞
≤ κ ‖v1‖∞ + 2κ2

∥∥∥G1/2
v v1

∥∥∥
2

for any v1 ∈ Rn. (100)

We prove the claim at the end of this section. We now derive bounds for the two terms on
the RHS of the equation (100) for v1 = Av(y − x). Note that

‖Av (y − x)‖∞ = max
i

∣∣∣∣
sy,i − sx,i

sv,i

∣∣∣∣ = max
i

∣∣∣∣
sy,i − sx,i

sx,i

∣∣∣∣
∣∣∣∣
sx,i
sv,i

∣∣∣∣
(i)

≤ 2t

κ2 (1− 2t/κ2)

(ii)

≤ 3t

κ2
.

Inequality (i) uses bound (96) and inequality (ii) follows by plugging in t ≤ 1/64. Next, we
have

∥∥∥G1/2
v Av (y − x)

∥∥∥
2

2
=

n∑

i=1

ζx,i

(
a>i (y − x)

)2

s2
x,i

ζv,i
ζx,i

s2
v,i

s2
x,i

(i)

≤ ‖x− y‖2x max
i∈[n]

ζv,i
ζx,i

s2
v,i

s2
x,i

(ii)

≤ t2

κ4

(
1 + (16t) + (16t)2

)(
1 +

2t

κ2

)2

(iii)

≤ 1.5t

κ4
,
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where step (i) follows from the definition of the local norm; step (ii) follows from bounds (96)
and (99) and the fact that ex ≤ 1 + x + x2 for all x ∈ [0, 1/4]; and inequality (iii) follows
by plugging in t ≤ 1/64. Putting the pieces together, we obtain

‖log ζuλ − log ζx‖∞ ≤ 2(κ · 3t/κ2 + 2κ2 · 1.5t/κ4) ≤ 12t < 16t.

The strict inequality is valid for λ = λmax. Consequently, using the continuity of x 7→ log ζx,
we conclude that λmax = 1.

It is left to prove claim (100). Let w := (Gv − αΛv)
−1 Λvv1. which implies (Gv − αΛv)w =

Λvv1. Plugging the expression of Gv and Λv, we have
(

(1− α)Σv + βJIn + αΥ(2)
v

)
w =

(
Σv −Υ(2)

v

)
v1.

Writing component wise, we find that for any i ∈ [n], we have

|((1− α)σv,i + βJ)wi| ≤ α
∣∣∣e>i Υ(2)

v w
∣∣∣+ σv,i |v1,i|+

∣∣∣e>i Υ(2)
v v1

∣∣∣
(i)

≤ ασv,i

∥∥∥Σ1/2
v w

∥∥∥
2

+ σv,i ‖v1‖∞ + σv,i

∥∥∥Σ1/2
v v1

∥∥∥
2

(ii)

≤ ασv,i

∥∥∥G1/2
v w

∥∥∥
2

+ σv,i ‖v1‖∞ + σv,i

∥∥∥G1/2
v v1

∥∥∥
2

(iii)

≤ ασv,iκ
∥∥∥G1/2

v v1

∥∥∥
2

+ σv,i ‖v1‖∞ + σv,i

∥∥∥G1/2
v v1

∥∥∥
2
, (101)

where inequality (ii) from the fact that Σy � Gy and inequality (iii) from Lemma 10 with
c1 = 0, c2 = 1. To assert inequality (i), observe the following
∣∣∣∣∣∣

n∑

j=1

σ2
y,i,jwj

∣∣∣∣∣∣
≤

n∑

j=1

σ2
y,i,j |wj |

(a)

≤ σy,i

n∑

j=1

σy,j |wj |
(b)

≤ σy,i

n∑

j=1

√
σy,j |wj | = σy,i

∥∥∥Σ1/2
v w

∥∥∥
2
,

where step (a) follows from the fact that σ2
y,i,j ≤ σy,iσy,j , and step (b) from the fac that

σy,i ∈ [0, 1]. Dividing both sides of inequality (101) by ((1− α)σv,i + βJ) and observing that
σv,i/ ((1− α)σv,i + βJ) ≤ κ, and α ∈ [0, 1], yields the claim.

Appendix G. Proof of Lemma 6

We prove Lemma 6 in two parts: claim (85a) in Section G.1 and claim (85b) in Section G.2.

G.1 Proof of claim (85a)

Using the second order Taylor expansion, we have

Ψz −Ψx = (z − x)>∇Ψx +
1

2
(z − x)>∇2Ψy (z − x) , for some y ∈ xz.

We claim that for r ≤ h(ε), we have

P
[
(z − x)>∇Ψx ≥ −ε/2

]
≥ 1− ε/2, and (102a)

P
[

1

2
(z − x)∇2Ψy (z − x) ≥ −ε/2

]
≥ 1− ε/2. (102b)

Note that the claim (85a) follows from the above two claims.
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G.1.1 Proof of bound (102a)

We observe that

(z − x)>∇Ψx ∼ N
(

0,
r2

κ2n
∇Ψ>x J

−1
x ∇Ψx

)
.

Let Ex = In + (Gx − αΛx)−1 Λx. Substituting the expression of ∇Ψx from Lemma 9 (c)
and applying Cauchy-Schwarz inequality, we have that for any vector v ∈ Rd

v>∇Ψx∇Ψ>x v = (θ>x GxExAxv)2 ≤
(
v>A>xGxAxv

)
·
(
θ>x GxExG

−1
x ExGxθx

)
. (103)

Observe that

G1/2
x ExG

−1/2
x = In + (In − αG−1/2

x ΛxG
−1/2
x )−1(G−1/2

x ΛxG
−1/2
x ).

Now, using the intermediate bound (126) from the proof of Lemma 10, we obtain that

In � G1/2
x ExG

−1/2
x � 2κIn,

and hence Gx � GxExG−1
x ExGx � 4κ2Gx. Consequently, we have

θ>x GxExG
−1
x ExGxθx ≤ 4κ2θ>x Gxθx = 4κ2

n∑

i=1

ζx,iθ
2
x,i ≤ 16κ2d,

where the last step follows from Lemma 7. Putting the pieces together into equation (103),

we obtain ∇Ψx∇Ψ>x � 16κ2dJx whence J
−1/2
x ∇Ψx∇Ψ>x J

−1/2
x � 16κ2dId. Noting that the

matrix J
−1/2
x ∇Ψx∇Ψ>x J

−1/2
x has rank one, we have

∇Ψ>x J
−1
x ∇Ψx = trace

(
J−1/2
x ∇Ψx∇Ψ>x J

−1/2
x

)
≤ 16κ2d.

Using standard Gaussian tail bound, we have P
(

(z − x)>∇Ψx ≥ −
√

32χ1r
)
≥ 1−exp

(
−χ2

1

)
.

Choosing χ1 = log(2/ε), and observing that

r ≤ ε(
2
√

32χ1

) , (104)

yields the claim.

G.1.2 Proof of bound (102b)

In the following proof, we use h = z−x for definitions (88a)-(88d). According to Lemma 9(e),
we have

∣∣∣∣
1

2
(z − x)>∇2Ψy (z − x)

∣∣∣∣ ≤
n∑

i=1

ζy,i θy,i

[
9

2
d2
y,i + 2f2

y,i

]
+

1

2

∣∣∣∣∣
n∑

i=1

ζy,i θy,i`y,i

∣∣∣∣∣
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We claim that

n∑

i=1

ζy,i θy,i

[
9

2
d2
y,i + 2f2

y,i

]
+

1

2

∣∣∣∣∣
n∑

i=1

ζy,i θy,i`y,i

∣∣∣∣∣ ≤ 386
√
dκ4

n∑

i=1

ζy,id
2
y,i. (105)

Assuming the claim as given at the moment, we now complete the proof. Note that y is
some particular point on xz and its dependence on z is hard to characterize. Consequently,
we transfer all the terms with dependence on y, to terms with dependence on x only. We
have

n∑

i=1

ζy,id
2
y,i =

n∑

i=1

ζx,id
2
x,i

ζy,i
ζx,i

s2
x,i

s2
y,i︸ ︷︷ ︸

τy,i

.

We now invoke the following high probability bounds implied by Lemma 13 and Lemma 14 (95a)
respectively

P

[
sup

y∈xz,i∈[n]
τy,i ≤ 1.1

]
≥ 1− ε/4, and, P

[
n∑

i=1

ζx,i

(
â>x,iξ

)2
≤ χ2

√
24d

]
≥ 1− ε/16.

(106)

Since h = z − x, we have that d2
x,i = r2

κ2d3/2

(
â>x,iξ

)2
. Consequently, for

r ≤
√

ε

386
√

24χ2

, (107)

with probability at least 1− ε/2, we have

∣∣∣∣
1

2
(z − x)>∇2Ψy (z − x)

∣∣∣∣
eqn. (105)

≤ 386
√
dκ4

n∑

i=1

ζy,id
2
y,i

hpb (106)

≤ ε,

which completes the proof.
We now turn to the proof of claim (105). First we observe the following relationship

between the terms dy,i and fy,i:

n∑

i=1

ζy,if
2
y,i

(i)
= 4h>A>yΛy (Gy−αΛy)

−1Gy (Gy−αΛy)
−1ΛyAyh

(ii)

≤ 4κ2h>A>yGyAyh=4κ2
n∑

i=1

ζy,id
2
y,i,

(108)

where step (i) follows by plugging in the definition of fy,i (88b) and step (ii) by invoking
Lemma 10 with c1 = 0 and c2 = 1. Next, we relate the term on the LHS of equation (105)
involving `y,i to a polynomial in dy,i. Using Lemma 9, we find that

∣∣∣∣∣
n∑

i=1

ζy,i θy,i`y,i

∣∣∣∣∣ =

∣∣∣∣
(

(Gy − αΛy)
−1Gyθy

)>
(Gy − αΛy) `y

∣∣∣∣ ≤

∥∥∥∥∥∥
(Gy − αΛy)

−1Gyθy︸ ︷︷ ︸
v1

∥∥∥∥∥∥
∞

∥∥∥∥∥∥∥
(Gy − αΛy) `y︸ ︷︷ ︸

ρy

∥∥∥∥∥∥∥
1

,
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where the last step follows from the Holder’s inequality: for any two vectors u, v ∈ Rd, we
have that u>v ≤ ‖u‖∞ ‖v‖1. Substituting the bound for the norm ‖v1‖∞ from Corollary 12
and the bound on ρy,i from Lemma 9(b), we obtain that
∣∣∣∣∣
n∑

i=1

ζy,i θy,i`y,i

∣∣∣∣∣≤ 12
√
nκ3/2

n∑

i=1

[
7ζy,id

2
y,i+3ζy,if

2
y,i+

n∑

j=1

(
13d2

y,j+6f2
y,j

)
Υ2
y,i,j

]
≤672

√
nκ4

n∑

i=1

ζy,id
2
y,i,

where the last step follows from Lemma 7(a) and the bound (108). The claim now follows.

G.2 Proof of claim (85b)

Writing z = x+ tu, where t is a scalar and u is a unit vector in Rd, we obtain

‖z − x‖2z − ‖z − x‖2x = t2
n∑

i=1

(
a>i u

)2
(ϕz,i − ϕx,i) .

Now, we use a Taylor series expansion for
∑n

i=1

(
a>i u

)2
(ϕz,i − ϕx,i) around the point x,

along the line u. There exists a point y ∈ xz such that

n∑

i=1

(
a>i u

)2
(ϕz,i − ϕx,i) =

n∑

i=1

(
a>i u

)2
(

(z − x)>∇ϕx,i +
1

2
(z − x)>∇2ϕy,i (z − x)

)
.

Note that the point y in this discussion is not the same as the point y used in previous
proofs, in particular in Section G.1. Multiplying both sides by t2, and using the shorthand

dx,i =
a>i (z−x)
sx,i

, we obtain

‖z−x‖2z−‖z−x‖2x =
n∑

i=1

d2
x,is

2
x,i (z−x)>∇ϕx,i +

n∑

i=1

d2
x,is

2
x,i

1

2
(z−x)>∇2ϕy,i (z−x) . (109)

We claim that for r ≤ h(ε), we have

Pz∼TJ
x

[
n∑

i=1

d2
x,is

2
x,i (z−x)>∇ϕx,i ≤ ε

r2

κ4d3/2

]
≥ 1− ε/2, and (110a)

Pz∼TJ
x

[
sup
y∈xz

(
n∑

i=1

d2
x,is

2
x,i

1

2
(z−x)>∇2ϕy,i (z−x)

)
≤ ε r2

κ4d3/2

]
≥ 1− ε/2. (110b)

We now prove each claim separately.

G.2.1 Proof of bound (110a)

Using Lemma 9(d) and using h = z − x where z is given by the relation (82), we find that

n∑

i=1

d2
x,is

2
x,i (z−x)>∇ϕx,i =

n∑

i=1

ζx,id
2
x,i (2dx,i + fx,i)

=
r3

d9/4κ6

n∑

i=1

ζx,i

(
â>x,iξ

)3
+

2r3

d9/4κ6

n∑

i=1

ζx,i

(
â>x,iξ

)2 (
b̂>x,iξ

)
(111)
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Using high probability bounds for the two terms in equation (111) from Lemma 14, part (95b)
and part (95c), we obtain that

∣∣∣∣∣
n∑

i=1

d2
x,is

2
x,i (z−x)>∇ϕx,i

∣∣∣∣∣ ≤
5
√

60χ3r
3

κ5d7/4
≤ ε r2

κ4d3/2
,

with probability at least 1− ε/2. The last inequality uses the condition that

r ≤ ε

5
√

60χ3

. (112)

The claim now follows.

G.2.2 Proof of bound (110b)

Note that dx,isx,i = a>i h = dy,isy,i for any h. Using this equality for h = z−x, we find that
∣∣∣∣∣
n∑

i=1

d2
x,is

2
x,i

1

2
h>∇2ϕy,ih

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

d2
y,is

2
y,i

1

2
h>∇2ϕy,ih

∣∣∣∣∣
(i)

≤ 3
n∑

i=1

ζy,id
4
y,i

︸ ︷︷ ︸
C1

+2

∣∣∣∣∣
n∑

i=1

ζy,id
3
y,ify,i

∣∣∣∣∣
︸ ︷︷ ︸

C2

+

∣∣∣∣∣
n∑

i=1

ζy,id
2
y,i`y,i

∣∣∣∣∣
︸ ︷︷ ︸

C3

, (113)

where step (i) follows from Lemma 9(f). We can write C1 as follows

n∑

i=1

ζy,id
4
y,i =

n∑

i=1

ζx,id
4
x,i

ζy,i
ζx,i

d4
y,i

d4
x,i

=
r4

n3κ8

n∑

i=1

ζx,i

(
â>x,iξ

)4 ζy,i
ζx,i

d4
y,i

d4
x,i

. (114)

Now, we claim the following:

C2 ≤ 2
r4

n3κ7
·

√√√√
[

n∑

i=1

ζx,i

(
â>x,iξ

)2 ζy,i
ζx,i

d2
y,i

d2
x,i

]
·
[

n∑

i=1

ζx,i

(
â>x,iξ

)6 ζy,i
ζx,i

d6
y,i

d6
x,i

]
, and, (115a)

C3 ≤ 56
r4

n3κ4.5

(
n∑

i=1

ζx,i

(
â>x,iξ

)2 ζy,i
ζx,i

d2
y,i

d2
x,i

)
max

i

(
â>x,iξ

)2 d2
y,i

d2
x,i

+

√√√√
n∑

i=1

ζx,i

(
â>x,iξ

)4 ζy,i
ζx,i

d4
y,i

d4
x,i




(115b)

Assuming the claims as given, we now complete the proof. Using Lemma 13, we have

P

[
ζy,i
ζx,i

d6
y,i

d6
x,i

≤ 1.2

]
≥ 1− ε/4,

and consequently

3C1+2C2+C3 ≤
r4

d3κ4.5

[
4 ·

n∑

i=1

ζx,i(â
>
x,iξ)

4 + 10 ·
( n∑

i=1

ζx,i(â
>
x,iξ)

2 ·
n∑

i=1

ζx,i(â
>
x,iξ)

6

)1/2

+ 100 ·
n∑

i=1

ζx,i

(
â>x,iξ

)2
·
(

max
i

(â>x,iξ)
2 +

( n∑

i=1

ζx,i(â
>
x,iξ)

4
)1/2

)]
,

(116)
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with probability at least 1 − ε/4. Now, we observe that for all i ∈ [n] and x ∈ int (K), we
have

(
â>x,iξ

)
∼ N (0, θx,i) and θx,i ≤ 4.

Invoking the standard tail bound for maximum of Gaussian random variables, we obtain

P
[
max
i

∣∣∣
(
â>x,iξ

)∣∣∣ ≤ 8 ·
(√

log n+
√

log(32/ε)
)]
≥ 1− ε/16.

Using the fact that 2c1c2 ≥ c1 + c2 for all c1, c2 ≥ 1, we obtain

P
[
max
i

∣∣∣
(
â>x,iξ

)∣∣∣ ≤ 16 ·
√

log n ·
√

log(32/ε)

]
≥ 1− ε/16.

Combining this bound with the tail bounds for various Gaussian polynomials (95a), (95d),
(95e) from Lemma 14, and substituting in inequality (116), we obtain that

∣∣∣∣∣
n∑

i=1

d2
x,is

2
x,i

1

2
h>∇2ϕy,ih

∣∣∣∣∣ ≤
r4

κ6.5d3

[
4 · χ4

√
1680d+ 10

(
χ2

√
24d · χ6

√
15120d

)1/2

+ 100 · χ2

√
24d ·

(
256 · log n · log(32/ε) +

(
χ4

√
1680d

)1/2
)]

with probability at least 1− ε/2. In the above expression, the terms χi are a function of ε
as defined in Lemma 14. In particular, χi = χi,ε = (2e/i · log(16/ε))i/2 for i ∈ {2, 3, 4, 6}.
Observing that 256 log(32/ε) ≥

(
χ4

√
1680

)1/2
, and that our choice of r satisfies

r2 ≤ min

{
ε

8
√

1680χ4

,
ε

40
(
χ2χ6

√
24
√

15120
)1/2 ,

ε

204800χ2

√
24 log(32/ε)

}
, (117)

we obtain
∣∣∣∣∣
n∑

i=1

d2
x,is

2
x,i

1

2
h>∇2ϕy,ih

∣∣∣∣∣ ≤
r2

κ4d3/2

[
ε

2
+
ε

4
+
ε

8

(
log n√
d

+ 1

)]
.

Asserting the additional condition
√
d ≥ log n, yields the claim.

It is now left to prove the bounds (115a) and (115b). We prove these bounds separately.

Bounding C2: Applying Cauchy-Schwarz inequality, we have

∣∣∣∣∣
n∑

i=1

ζy,id
3
y,ify,i

∣∣∣∣∣ ≤
(

n∑

i=1

ζy,if
2
y,i ·

n∑

i=1

ζy,id
6
y,i

)1/2

Using the bound (108), we obtain

n∑

i=1

ζy,if
2
y,i ≤ 4κ2

n∑

i=1

ζy,id
2
y,i = 4κ2

n∑

i=1

ζx,id
2
x,i

ζy,i
ζx,i

d2
y,i

d2
x,i

.
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Substituting h = z − x where z is given by relation (82), we obtain that dx,i = r
d3/4κ

â>x,iξ,
and thereby

n∑

i=1

ζy,if
2
y,i ≤ 4κ2 r2

d3/2κ4

n∑

i=1

ζx,i(â
>
x,iξ)

2 ζy,i
ζx,i

d2
y,i

d2
x,i

.

Doing similar algebra, we obtain
∑n

i=1 ζy,id
6
y,i = r6

d9/2κ12

∑n
i=1 ζx,i

(
â>x,iξ

)6 ζy,i
ζx,i

d6y,i
d6x,i

. Putting

the pieces together yields the claim.

Bounding C3: Recall that ρy = (Gy − αΛy)`y (Lemma 9) and µy = (Gy − αΛy)
−1Gy

(Lemma 11). We have
∣∣∣∣∣
n∑

i=1

ζy,id
2
y,i`y,i

∣∣∣∣∣ = 1D2
yGy`y = 1D2

yGy(Gy − αΛy)
−1

︸ ︷︷ ︸
=:v>y

(Gy − αΛy)`y︸ ︷︷ ︸
ρy

.

Using the definition of vy and µy, we obtain

vy,i := e>i vy = e>i (Gy − αΛy)
−1GyD

2
y1 = e>i µyD

2
y1 = µy,i,id

2
y,i +

∑

j∈[n],j 6=i

µy,i,jd
2
y,j .

Consequently, we have

∣∣∣∣∣
n∑

i=1

vy,iρy,i

∣∣∣∣∣ ≤

=:C4︷ ︸︸ ︷
n∑

i=1

|ρy,i| ·
∣∣µy,i,id2

y,i

∣∣+

=:C5︷ ︸︸ ︷
n∑

i=1

|ρy,i| ·


 ∑

j∈[n],j 6=i

∣∣µy,i,jd2
y,j

∣∣



From Lemma 11, we have that µy,i,i ∈ [0, κ]. Hence, we have C4 ≤ ‖ρy‖1 · κ ·maxi∈[n] d
2
y,i.

To bound C5, we note that

∑

j∈[n],j 6=i

∣∣µy,i,jd2
y,j

∣∣ (i)

≤


 ∑

j∈[n],j 6=i

µ2
y,i,j

ζy,j
·
n∑

j=1

ζy,jd
4
y,j




1/2
(ii)

≤


κ3 ·

n∑

j=1

ζx,jd
4
x,j

ζy,j
ζx,j

d4
y,j

d4
x,j




1/2

,

where step (i) follows from Cauchy-Schwarz inequality and step (ii) from Lemma 11.
Putting the pieces together, we obtain that

∣∣∣∣∣
n∑

i=1

ζy,id
2
y,i`y,i

∣∣∣∣∣ ≤ ‖ρy‖1 ·


κ ·max

i∈[n]
d2
y,i + κ3/2




n∑

j=1

ζx,jd
4
x,j

ζy,j
ζx,j

d4
y,j

d4
x,j




1/2

 .

Using the bound on ‖ρy‖1 from Lemma 9, we have

∣∣∣∣∣
n∑

i=1

ζy,id
2
y,i`y,i

∣∣∣∣∣ ≤
(

56κ2
n∑

i=1

ζy,id
2
y,i

)
·


κ ·max

i∈[n]
d2
y,i + κ3/2




n∑

j=1

ζx,jd
4
x,j

ζy,j
ζx,j

d4
y,j

d4
x,j




1/2

 .

Substituting the expression for dx,i = r
κ2d3/4

(
â>x,iξ

)
yields the claim.
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Appendix H. Proofs of Lemmas from Section E.1

In this section we collect proofs of lemmas from Section E.1. Each lemma is proved in a
different subsection.

H.1 Proof of Lemma 9

Up to second order terms, we have

1

s2
x+h,i

=
1

s2
x,i

[
1 +

2a>i h

sx,i
+

3(a>i h)2

s2
x,i

]
+O

(
‖h‖32

)
, (118a)

ζy+h,i = ζy,i + h>∇ζy,i +
1

2
h>∇2ζy,ih+O

(
‖h‖32

)
, (118b)

ζαy+h,i = ζαy,i + αζα−1
y,i

(
h>∇ζy,i +

1

2
h>∇2ζy,ih

)
+
α (α− 1)

2
ζα−2
y,i

(
h>∇ζy,i

)2
+O

(
‖h‖32

)
,

(118c)

Further, let

J̃y := A>y G
α
yAy =

n∑

i=1

ζαy,i
aia
>
i

s2
y,i

. (118d)

Using equations (118a) and (118c), and substituting dy,i = a>i h/sy,i, fy,i = h>∇ζy,i/ζy,i and
`y,i = 1

2h
>∇2ζy,ih/ζy,i, we find that

J̃y+h =

n∑

i=1

[
1 + αfy,i + α`y,i +

α (α− 1)

2
f2
y,i

] [
1 + 2dy,i + 3d2

y,i

]
ζαy,i

aia
>
i

s2
y,i

+O
(
‖h‖32

)
.

Note that dy,i and fy,i are first order terms in ‖h‖2 and `y,i is a second order term in ‖h‖2.
Thus we obtain

J̃y+h − J̃y =
n∑

i=1

(2dy,i + αfy,i) ζ
α
y,i

aia
>
i

s2
y,i︸ ︷︷ ︸

=:∆
(1)
y,h

+

n∑

i=1

[
3d2

y,i + 2αdy,ify,i + α`y,i +
α(α− 1)

2
f2
y,i

]
ζαy,i

aia
>
i

s2
y,i︸ ︷︷ ︸

=:∆
(2)
y,h

+O
(
‖h‖32

)
.

Let ∆y,h := ∆
(1)
y,h + ∆

(2)
y,h. Note that ∆

(i)
y,h denotes the i-th order term in ‖h‖2. Finally, the

following expansion also comes in handy for our derivations:

aTi J̃
−1
y+hai = a>i J̃

−1
y ai − a>i J̃−1

y ∆y,hJ̃
−1
y ai + a>i J̃

−1
y ∆y,hJ̃

−1
y ∆y,hJ̃

−1
y ai +O

(
‖h‖32

)
. (118e)

H.1.1 Proof of part (a): Gradient of weights

The expression for the gradient ∇ζy,i is derived in Lemma 14 of the paper (Lee and Sidford,
2014) and is thereby omitted.
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H.1.2 Proof of part (b): Hessian of weights

We claim that

ρy =
(
I− αΛyG

−1
y

)



1
2h
>∇2ζy,1h
· · ·

1
2h
>∇2ζy,mh


 = (2Dy + αFy)Υ

(2)
y (2Dy + αFy)1

+
(

Σy −Υ(2)
y

) [
2αDyFy + 3D2

y + ταF
2
y

]
1

+ diag (Υy(2Dy + αFy)Υy(2Dy + αFy)Υy) , (119)

where we have used diag(B) to denote the diagonal vector (B1,1, . . . , Bn,n) of the matrix
B. Deferring the proof of this expression for the moment, we now derive a bound on the `1
norm of ρy. Expanding the i-th term of ρy,i from equation (119), we obtain

ρy,i = (2dy,i + αfy,i)
n∑

j=1

(2dy,j + αfy,j)Υ
2
y,i,j +

[
2αdy,ify,i + 3d2

y,i + ταf
2
y,i

]
σy,i

−
n∑

j=1

[
2αdy,jfy,j + 3d2

y,j + ταf
2
y,j

]
Υ2
y,i,j +

n∑

j,l=1

(2dy,j + αfy,j)(2dy,l + αfy,l)Υy,i,jΥy,j,lΥy,l,i.

Recall that α = 1 − 1/ log2(2n/d). Since n ≥ d for polytopes, we have α ∈ [0, 1] and
consequently |τα| = |α(α− 1)/2| ∈ [0, 1]. Further note that Υx is an orthogonal projection
matrix, and hence we have

diag(Υxei)Υx diag(Υxei) � diag(Υxei) diag(Υxei).

Combining these observations with the AM-GM inequality, we have

|ρy,i| ≤ 7σy,id
2
y,i + 3σy,if

2
y,i +

n∑

j=1

(
13d2

y,j + 6f2
y,j

)
Υ2
y,i,j .

Summing both sides over the index i, we find that

n∑

i=1

|ρy,i|
(i)

≤
n∑

i=1

20σy,id
2
y,i + 9σy,if

2
y,i

(ii)

≤
n∑

i=1

20ζy,id
2
y,i + 9ζy,if

2
y,i

(iii)

≤ 56κ2
n∑

i=1

ζy,id
2
y,i,

where step (i) follows from Lemma 7 (a), step (ii) from Lemma 3 (a) and step (iii) from
the bound (108).

We now return to the proof of expression (119). Using equation (87c), we find that

1

2
h>∇2ζy,ih =

1

2
h>∇2σy,ih for all i ∈ [n]. (120)

Next, we derive the Taylor series expansion of σy,i. Using the definition of J̃x (118d) in

equation (72), we find that σy,i = ζαy,i
a>i J̃

−1
y ai
s2y,i

. To compute the difference σy+h,i − σy,i, we
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use the expansions (118a), (118c) and (118e). Letting τα = α(α− 1)/2, we have

σy+h,i = ζαy+h,i

a>i J̃
−1
y+hai

s2
y+h,i

= ζαy,i
a>i J̃

−1
y+hai

s2
y,i

[
1 + αfy,i + α`y,i + ταf

2
y,i

] [
1 + 2dy,i + 3d2

y,i

]
+O

(
‖h‖32

)

= σy,i + (2dy,i + αfy,i)σy,i −
n∑

j=1

(2dy,j + αfy,j)Υ
2
y,i,j + (2dy,i + αfy,i)

n∑

j=1

(2dy,j + αfy,j)Υ
2
y,i,j

+ 2αdy,ify,iσy,i +
[
α`y,i + ταf

2
y,i + 3d2

y,i

]
σy,i −

n∑

j=1

[
3d2

y,j + 2αdy,jfy,j + α`y,j + ταf
2
y,j

]
Υ2
y,i,j

+
n∑

j,l=1

(2dy,j + αfy,j)(2dy,l + αfy,l)Υy,i,jΥy,j,lΥy,l,i +O
(
‖h‖32

)
.

We identify the second order (in O
(
‖h‖22

)
) terms in the previous expression. Using the

equation (120), these are indeed the terms that correspond to the terms 1
2h
>∇2ζy,ih, i ∈ [n].

Substituting `y,i = 1
2h
>∇2ζy,ih/ζy,i, we have

1

2
h>∇2ζy,ih

= (2dy,i + αfy,i)
n∑

j=1

(2dy,j + αfy,j)Υ
2
y,i,j + 2αdy,ify,iσy,i +

[
α

2

h>∇2ζy,ih

ζy,i
+ ταf

2
y,i + 3d2

y,i

]
σy,i

−
n∑

j=1

[
3d2

y,j + 2αdy,jfy,j +
α

2

h>∇2ζy,jh

ζy,j
+ ταf

2
y,j

]
Υ2
y,i,j +

n∑

j,l=1

(2dy,j + αfy,j)(2dy,l + αfy,l)Υy,i,jΥy,j,lΥy,l,i.

Collecting the different terms and doing some algebra yields the result (119).

H.1.3 Proof of part (c): Gradient of logdet

For a unit vector h ∈ Rd, we have

h> log detJy = lim
δ→0

1

δ
(log det Jy+δh − log detJy) = lim

δ→0

1

δ
(log detJ−1/2

y Jy+δhJ
−1/2
y − log det Id)

Let ây,i := J
−1/2
y,i ai/sy,i for each i ∈ [n]. Using the property log detB = trace logB, where

logB denotes the logarithm of the matrix and that log det Id = 0, we obtain

h> log detJy = lim
δ→0

1

δ

[
trace log

(
n∑

i=1

ζy+δh

(1− δa>i h/sy,i)
ây,iâ

>
y,i

)]
,
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where we have substituted sy+δh,i = sy,i − δa>i h. Keeping track of first order terms in δ,
and noting that

∑n
i=1 ζy,iây,iâ

>
y,i = Id, we find that

trace log

(
n∑

i=1

ζy+δh,i

(1− δa>i h/sy,i)
ây,iâ

>
y,i

)
= trace log

[
n∑

i=1

(
ζy,i + δh>∇ζy,i

)(
1 +

2δa>i h

sy,i

)
ây,iâ

>
y,i

]
+O

(
δ2
)

= trace

[
n∑

i=1

δ

(
2a>i h

sy,i
+ h>∇ζy,i

)
ây,iâ

>
y,i

]
+O

(
δ2
)

=
n∑

i=1

δ

(
2a>i h

sy,i
+ h>∇ζy,i

)
θy,i +O

(
δ2
)

where in the last step we have used the fact that trace(ây,iâ
>
y,i) = â>y,iây,i = θy,i for each

i ∈ [n]. Substituting the expression for ∇ζy from part (a), and rearranging the terms yields
the claimed expression in the limit δ → 0.

H.1.4 Proof of part (d): Gradient of ϕ

Using the chain rule and the fact that ∇sy,i = −ai, yields the result.

H.1.5 Proof of part (e)

We claim that

1

2
h>∇2Ψyh =

1

2




n∑

i=1

ζy,iθy,i(3d
2
y,i + 2dy,ify,i + `y,i)−

1

2

n∑

i,j=1

ζy,iζy,jθ
2
y,i,j (2dy,i + fy,i) (2dy,j + fy,j)


 .

The desired bound on
∣∣h>∇2Ψyh

∣∣ /2 now follows from an application of AM-GM inequality
with Lemma 7(d).

We now derive the claimed expression for the directional Hessian of the function Ψ. We
have

1

2
h>
(
∇2 log detJy

)
h = lim

δ→0

1

2δ2
(log det J−1/2

y Jy+δhJ
−1/2
y + log det J−1/2

y Jy−δhJ
−1/2
y − 2 log det Id)

=
1

2
lim
δ→0

1

δ2

[
trace log

(
n∑

i=1

ζy+δh

(1− δa>i h/sy,i)
ây,iâ

>
y,i

)
+ trace log

(
n∑

i=1

ζy−δh

(1 + δa>i h/sy,i)
ây,iâ

>
y,i

)]
.

Expanding the first term in the above expression, we find that

trace log

(
n∑

i=1

ζy+δh,i

(1− δa>i h/sy,i)
ây,iâ

>
y,i

)

= trace log

[
n∑

i=1

(
ζy,i + δh>∇ζy,i +

δ2

2
h>∇2ζy,ih

)(
1 + 2δ

a>i h

sy,i
+ 3δ2 (a>i h)2

s2
y,i

)
ây,iâ

>
y,i

]

︸ ︷︷ ︸
=:Id+B

+O
(
δ3
)
.
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Substituting the shorthand notation from equations (88a), (88b) and (88c), we have

B =
n∑

i=1

ζy,i
[
δ(2dy,i + fy,i) + δ2(3d2

y,i + 2dy,ify,i + `y,i)
]
ây,iâ

>
y,i +O

(
δ3
)
.

Now we make use of the following facts (1) trace log(Id+B) = trace
[
B − B2

2 +O
(
‖B‖3

)]
,

(2) for each i, j ∈ [n], we have trace(ây,iâ
>
j ) = â>y,iâj = θy,i,j , and (3) for each i ∈ [n], we

have θy,i,i = θy,i. Thus we obtain

trace log

(
n∑

i=1

ζy+δh,i

(1− δa>i h/sy,i)
ây,iâ

>
y,i

)
=

n∑

i=1

ζy,iθy,i
[
δ(2dy,i + fy,i) + δ2(3d2

y,i + 2dy,ify,i + `y,i)
]

− 1

2

n∑

i,j=1

ζy,iζy,jθ
2
y,i,jδ

2(2dy,i + fy,i)(2dy,j + fy,j) +O
(
δ3
)
.

Similarly, we can obtain an expression for trace log
(∑n

i=1
ζy−δh

(1+δa>i h/sy,i)
ây,iâ

>
y,i

)
. Putting the

pieces together, we obtain

1

2
h>
(
∇2 log detJy

)
h =

n∑

i=1

ζy,iθy,i(3d
2
y,i + 2dy,ify,i + `y,i)−

1

2

n∑

i,j=1

ζy,iζy,jθ
2
y,i,j(2dy,i + fy,i)(2dy,j + fy,j).

(121)

H.1.6 Proof of part (f)

We claim that

1

2
h>∇2ϕy,ih = ϕy,i

(
2dy,ify,i + 3d2

y,i + `y,i
)
. (122)

The claim follows from a straightforward application of chain rule and substitution of the
expressions for ∇ζy,i and ∇2ζy,i in terms of the shorthand notation dy,i, fy,i and `y,i. Mul-
tiplying both sides of equation (122) with d2

y,is
2
y,i and summing over index i, we find that

n∑

i=1

d2
y,is

2
y,i

1

2
h>∇ϕ2

y,ih =
n∑

i=1

d2
y,is

2
y,iϕy,i

[
`y,i + 2dy,ify,i + 3d2

y,i

]
=

n∑

i=1

d2
y,iζy,i

[
`y,i + 2dy,ify,i + 3d2

y,i

]

≤
n∑

i=1

d2
y,iζy,i

[
`y,i + f2

y,i + 4d2
y,i

]
,

where in the last step we have used the AM-GM inequality. The claim follows.

H.2 Proof of Lemma 10

We claim that

0 � G−1/2
y

(
c1In + c2Λy (Gy − αΛy)

−1
)
G1/2
y � (c1 + c2)κIn. (123)
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The proof of the lemma is immediate from this claim, as for any PSD matrix H ≤ cIn, we
have H2 ≤ c2In.

We now prove claim (123). Note that

G−1/2
y Λy (Gy − αΛy)

−1G1/2
y = G−1/2

y ΛyG
−1/2
y︸ ︷︷ ︸

:=By

(In − αJG
−1/2
y ΛyG

−1/2
y )−1. (124)

Note that the RHS is equal to the matrix By(In − αJBy)
−1 which is symmetric. Observe

the following ordering of the matrices in the PSD cone

Σy + βJIn = Gy � Σy � Λy = Σy −Υ(2)
y � 0.

For the last step we have used the fact that Σy−Υ
(2)
y is a diagonally dominant matrix with

non negative entries on the diagonal to conclude that it is a PSD matrix. Consequently, we
have

By = G−1/2
y ΛyG

−1/2
y � In. (125)

Further, recall that αJ = (1− 1/κ)⇔ κ = (1− αJ)
−1. As s result, we obtain

0 � (In − αJG
−1/2
y ΛyG

−1/2
y )−1 � κIn.

Multiplying both sides by B
1/2
y and using the relation (125), we obtain

0 � B1/2
y (In − αJG

−1/2
y ΛyG

−1/2
y )−1B1/2

y � κIn. (126)

Using the fact that By commutes with (In − By)−1, we obtain By(In − αJBy)
−1 � κIn.

Using observation (124) now completes the proof.

H.3 Proof of Lemma 11

Without loss of generality, we can first prove the result for i = 1. Let ν := µ>y e1 denote the
first row of the matrix µy. Observe that

e1 = (Gy − αΛy)G
−1
y ν = ν − αΣyG

−1
y ν + αΥ(2)

y G−1
y ν (127)

We now prove bounds (92a) and (92b) separately.

Proof of bound (92a): Multiplying the equation (127) on the left by ν>G−1
y , we obtain

g−1
1 ν1 = ν>G−1

y ν − αν>G−1
y ΣyG

−1
y ν + αν>G−1

y Υ(2)
y G−1

y ν

≥ ν>G−1
y ν − αν>G−1

y ΣyG
−1
y ν (128)

≥
(
g−1

1 − ασy,1/g2
1

)
ν2

1 .

Rearranging terms, we obtain

0 ≤ ν1 ≤
ζy,1

ζy,1 − ασy,1
(i)

≤ κ, (129)

where inequality (i) follows from the facts that ζy,j ≥ σy,j and (1− α) = κ.
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Proof of bound (92b): In our proof, we use the following improved lower bound for the
term µy,1,1 = ν1.

ν1 ≥
ζy,1

ζy,1 − ασy,1 + ασ2
y,1

, (130)

Deferring the proof of this claim at the moment, we now complete the proof.
We begin by deriving a weighted `2-norm bound for the vector ν̃ = (ν2, . . . , νn)>. Equa-

tion (128) implies

ζ−1
y,1ν1

(
1− ν1 + α

σy,1
ζy,1

ν1

)
≥

n∑

j=2

ν2
j

(
ζ−1
y,j − αζ−2

y,j σy,j

) (i)

≥ (1− α)
n∑

j=2

ν2
j

ζy,j
,

where step (i) follows from the fact that ζy,i ≥ σy,i. Now, we upper bound the expression
on the left hand side of the above inequality using the upper (129) and lower (130) bounds
on ν1:

ζ−1
y,1ν1

(
1− ν1 + α

σy,1
ζy,1

ν1

)
≤ ζ−1

y,1

ζy,1
ζy,1 − ασy,1

(
1−

(
1− ασy,1

ζy,1

)
ζy,1

ζy,1 − ασy,1 + ασ2
y,1

)

=
ασ2

y,1

(ζy,1 − ασy,1)
(
ζy,1 − ασy,1 + ασ2

y,1

)

≤ κ2,

where in the last step we have used the facts that ζy,1 ≥ σy,1 and (1 − α)−1 = κ. Putting
the pieces together, we obtain

∑n
j=2 ν

2
j ζ
−1
y,j ≤ κ3, which is equivalent to our claim (92b) for

i = 1.
It remains to prove our earlier claim (130). Writing equation (127) separately for the

first coordinate and for the rest of the coordinates, we obtain

1 =
(

1− ασy,1ζ−1
y,1 + ασ2

y,1,1ζ
−1
y,j

)
ν1 + α

n∑

j=2

σ2
y,1,jζ

−1
y,j νj , and (131a)

0 =
(
In−1 − αΣ′yG

′−1
y

)


ν2
...
νn


+ αΥ′(2)

y G′−1
y



ν2
...
νn


+ αζ−1

y,1ν1



σ2
y,1,2
...

σ2
y,1,n


 , (131b)

where G′y (respectively Σ′y,Υ
′(2)
y ) denotes the principal minor of Gy (respectively Σy,Υ

(2)
y )

obtained by excluding the first column and the first row. Multiplying both sides of the
equation (131b) from the left by

(
ν2, · · · , νn

)
G′−1
y , we obtain

0 =

n∑

j=2

1

ζy,j

(
1− ασy,j

ζy,j

)
ν2
j

︸ ︷︷ ︸
cy,j

+α
(
ν2, · · · , νn

)
G′−1
y Υ′(2)

y G′−1
y



ν2
...
νn




︸ ︷︷ ︸
Cy.2

+α
ν1

ζy,1

n∑

j=2

σ2
y,j

ζy,j
νj .

(132)
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Observing that α ∈ [0, 1] and ζy,j ≥ σy,j for all y ∈ int (K) and j ∈ [n], we obtain cy,j ≥ 0.

Further, note that G′−1
y Υ

′(2)
y G′−1

y is a PSD matrix and hence we have that Cy,2 ≥ 0. Putting
the pieces together, we have

α
ν1

ζy,1

n∑

j=2

σ2
y,j

ζy,j
νj ≤ 0.

Combining this inequality with equation (131a) yields the claim.

H.4 Proof of Corollary 12

Without loss of generality, we can prove the result for i = 1. Applying Cauchy-Schwarz
inequality, we have

‖ν‖1 = ν1 +

n∑

j=2

|νj | ≤ ν1 +

√√√√
n∑

j=2

ν2
j

ζy,j
·
n∑

j=2

ζy,j ≤ κ+ κ3/2 ·
√

1.5 d ≤ 3
√
dκ3/2,

where to assert the last inequality we have used Lemma 11 and Lemma 3(c). The claim (93)
follows. Further, noting that the infinity norm of a matrix is the `1-norm of its transpose,
we obtain ||| (Gy − αΛy)

−1Gy|||∞ ≤ 3
√
dκ3/2 as claimed.

Appendix I. Proof of Lemmas from Section E.2

In this section, we collect proofs of auxiliary lemmas from Section E.2.

I.1 Proof of Lemma 13

Using Lemma 8, and the relation (82) we have

(
1− sz,i

sx,i

)2

≤ 4
r2

κ4d3/2
ξ>ξ, (133)

where ξ ∼ N (0, Id). Define

∆s := max
i∈[n], v∈xz

∣∣∣∣1−
sv,i
sx,i

∣∣∣∣ . (134)

Using the standard Gaussian tail bound, we observe that Pξ∼N (0,In)

[
ξ>ξ ≥ d(1 + δ)

]
≤

1 − ε/4 for δ =
√

2
d . Plugging this bound in the inequality (133) and noting that for all

v ∈ xz we have ‖v − x‖Jx ≤ ‖z − x‖Jx , we obtain that

Pz∼Px

[
∆s ≤

2r2(1 +
√

2/d log(4/ε)

κ4
√
d

]
≥ 1− ε/4.

Setting

r ≤ 1/(25

√
1 +
√

2 log(4/ε)), (135)
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and noting that κ4
√
d ≥ 1 implies the claim (94a). Hence, we obtain that ∆s < .005/κ2

and consequently maxi∈[n],v∈xz sx,i/sv,i ∈ (0.99, 1.01) with probability at least 1− ε/4.

We now claim that

max
i∈[n],v∈xz

ζx,i
ζv,i
∈
[
1− 24κ2∆s, 1 + 24κ2∆s

]
, if ∆s ≤

1

32κ2
.

The result follows immediately from this claim. To prove the claim, note that equation (98)
implies that if ∆s ≤ 1

32κ2
, then

ζv,i
ζx,i
∈ (e−8κ2∆s , e8κ2∆s) for all i ∈ [n] and v ∈ xz,

which implies that

max
i∈[n],v∈xz

ζx,i
ζv,i
∈ (e−8κ2∆s , e8κ2∆s).

Asserting the facts that ex ≤ 1 + 3x and e−x ≥ 1− 3x, for all x ∈ [0, 1] yields the claim.

I.2 Proof of Lemma 14

The proof once again makes use of the classical tail bounds for polynomials in Gaussian
random variables. We restate the classical result stated in equation (136) for convenience.
For any d ≥ 1, any polynomial P : Rd → R of degree k, and any t ≥ (2e)k/2, we have

P
[
|P (ξ)| ≥ t

(
EP (ξ)2

) 1
2

]
≤ exp

(
− k

2e
t2/k

)
, (136)

where ξ ∼ N (0, In) denotes a standard Gaussian vector in n dimensions.

Recall the notation from equation (90) and observe that

‖âx,i‖22 = θx,i, and â>x,iâx,j = θx,i,j . (137)

We also have

n∑

i=1

ζx,iâx,iâ
>
x,i = J−1/2

x

n∑

i=1

ζx,i
aia
>
i

s2
x,i

J−1/2
x = Id. (138)

Further, using Lemma 10 we obtain

n∑

i=1

ζx,ib̂x,ib̂
>
x,i = J−1/2

x AxΛx (Gx − αΛx)−1Gx (Gx − αΛx)−1 ΛxA
>
x J
−1/2
x = 4κ2Id. (139)

Throughout this section, we consider a fixed point x ∈ int (K). For brevity in our notation,
we drop the dependence on x for terms like ζx,i, θx,i, âx,i (etc.) and denote them simply by
ζi, θi, âi respectively.
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We introduce some matrices and vectors that would come in handy for our proofs.

B =




√
ζ1â
>
1

...√
ζnâ
>
n


 , Bb =




√
ζ1b̂
>
1

...√
ζnb̂
>
n


 , v =




√
ζ1 ‖â1‖22

...√
ζn ‖ân‖22


 , and vab =




√
ζ1â
>
1 b̂1

...√
ζnâ
>
n b̂n


 .

(140)

We claim that

BB> � In, and BbB
>
b � 4κ2In. (141a)

To see these claims, note that equation (138) implies that B>B = Id and consequently, BB>

is an orthogonal projection matrix and BB> � In. Next, note that from equation (139)
we have that B>b Bb � κ2Id, which implies that BbB

>
b � κ2In. In asserting both these

arguments, we have used the fact that for any matrix B, the matrices BB> and B>B are
PSD and have same set of eigenvalues.

Next, we bound the `2 norm of the vectors v and vab:

‖v‖22 =
n∑

i=1

ζiθ
2
i

Lem. 7 (e)

≤ 4d, and (141b)

∥∥∥vab
∥∥∥

2

2
=

n∑

i=1

ζi

(
â>i b̂i

)2
≤

n∑

i=1

ζi ‖âi‖22
∥∥∥b̂i
∥∥∥

2

2
≤ 4

n∑

i=1

ζi

∥∥∥b̂i
∥∥∥

2

2
= 4 trace(B>b Bb)

eqn. (141a)

≤ 16κ2d.

(141c)

We now prove the five claims of the lemma separately.

I.2.1 Proof of bound (95a)

Using Isserlis theorem (Isserlis, 1918) for fourth order Gaussian moments, we have

E

(
n∑

i=1

ζi

(
â>i ξ

)2
)2

=
n∑

i,j=1

ζiζj

(
‖âi‖22 ‖âj‖22 + 2

(
â>i âj

)2
)

=
n∑

i,j=1

ζiζj
(
θiθj + 2θ2

i,j

)
≤ 24d2,

where the last follows from Lemma 7. Applying the bound (136) with k = 2 and t =
e log(16

ε ). Note that the bound is valid since t ≥ (2e) for all ε ∈ (0, 1/30].

I.2.2 Proof of bound (95b)

Applying Isserlis theorem for Gaussian moments, we obtain

E

(
n∑

i=1

ζi

(
â>i ξ

)3
)2

= 9

n∑

i,j=1

ζiζj ‖âi‖22 ‖âj‖22
(
â>i âj

)

︸ ︷︷ ︸
=:N1

+6
n∑

i,j=1

ζiζj

(
â>i âj

)3

︸ ︷︷ ︸
=:N2

.

We claim that N1 ≤ 4d and N2 ≤ 4d. Assuming these claims as given at the moment, we

now complete the proof. We have E
(∑n

i=1 ζi
(
â>i ξ

)3)2
≤ 60d. Applying the bound (136)
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with k = 3 and t =
(

2e
3 log

(
16
ε

))3/2
, and verifying that t ≥ (2e)3/2 for ε ∈ (0, 1/30] yields

the claim.

We now turn to prove the bounds on N1 and N2. We have

N1 =
n∑

i,j=1

ζi‖âi‖22 â>i ζj ‖âj‖22 âj =

∥∥∥∥∥
n∑

i=1

ζi ‖âi‖22 âi
∥∥∥∥∥

2

2

=
∥∥∥B>v

∥∥∥
2

2

eqn. (141a)

≤ ‖v‖22
eqn. (141b)

≤ 4d.

Next, applying Cauchy-Schwarz inequality and using equation (137), we obtain

N2 =
n∑

i,j=1

ζiζj

(
â>i âj

)3
≤

n∑

i,j=1

ζiζjθ
2
i,j

√
θiθj

(Lem. 3 (d))

≤ 4

n∑

i,j=1

ζiζjθ
2
i,j

(Lem. 7 (d))

≤ 4

n∑

i=1

ζiθi = 4d.

I.2.3 Proof of bound (95c)

Using Isserlis theorem for Gaussian moments, we have

E

(
n∑

i=1

ζi

(
â>i ξ

)2 (
b̂>x,iξ

))2

=
n∑

i,j=1

ζiζj ‖âi‖22 ‖âj‖22
(
b̂>i b̂j

)

︸ ︷︷ ︸
:=N3

+4

n∑

i,j=1

ζiζj

(
â>i âj

)(
â>i b̂i

)(
â>j b̂j

)

︸ ︷︷ ︸
:=N4

+4
n∑

i,j=1

ζiζj ‖âi‖22
(
b̂>i âj

)(
â>j b̂j

)

︸ ︷︷ ︸
:=N5

+2
n∑

i,j=1

ζiζj

(
â>i âj

)2 (
b̂>i b̂j

)

︸ ︷︷ ︸
:=N6

+4
n∑

i,j=1

ζiζj

(
â>i âj

)(
â>i b̂j

)(
b̂>i âj

)

︸ ︷︷ ︸
:=N7

We claim that all terms Nk ≤ 16κ2d, k ∈ {3, 4, 5, 6, 7}. Putting the pieces together, we have

E

(
n∑

i=1

ζi

(
â>i ξ

)2 (
b̂>x,iξ

))2

≤ 240κ2d.

Applying the bound (136) with k = 3 and t =
(

2e
3 log

(
16
ε

))3/2
yields the claim. Note that

for the given definition of t, we have t ≥ (2e)3/2 for ε ∈ (0, 1/30] so that the bound (136) is
valid.

It is now left to prove the bounds on Nk for k ∈ {3, 4, 5, 6, 7}. We have

N3 =
n∑

i,j=1

ζi‖âi‖22 b̂>i ζj ‖âj‖22 b̂j =

∥∥∥∥∥
n∑

i=1

ζi ‖âi‖22 b̂i
∥∥∥∥∥

2

2

=
∥∥∥B>b v

∥∥∥
2

2

eqn. (141a)

≤ 4κ2 ‖v‖22 =
eqn. (141b)

≤ 16κ2d,

N4 =

n∑

i,j=1

ζiζj

(
â>i âj

)(
â>i b̂i

)(
â>j b̂j

)
=
∥∥∥B>vab

∥∥∥
2

2

eqn. (141a)

≤
∥∥∥vab

∥∥∥
2

2

eqn. (141c)

≤ 16κ2d, and

N5 =

n∑

i,j=1

ζiζj ‖âi‖22
(
b̂>i âj

)(
â>j b̂j

)
=
(
B>vab

)> (
B>b v

) C−S
≤
∥∥∥B>vab

∥∥∥
2

∥∥∥B>b v
∥∥∥

2
≤ 16κ2d.
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For the term N6, we have

N6 =
n∑

i,j=1

ζiζj

(
â>i âj

)2 (
b̂>i b̂j

) (C−S)

≤ 1

2

n∑

i,j=1

ζiζj

(
â>i âj

)2
(∥∥∥b̂i

∥∥∥
2

2
+
∥∥∥b̂j
∥∥∥

2

2

)

(symm.in i,j)
=

n∑

i,j=1

ζiζj

(
â>i âj

)2 ∥∥∥b̂i
∥∥∥

2

2

(eqn. (138))

≤
n∑

i=1

ζi ‖âi‖22
∥∥∥b̂i
∥∥∥

2

2

(Lem. 3(d))

≤ 4

n∑

i=1

ζi

∥∥∥b̂i
∥∥∥

2

2

(eqn. (141c))

≤ 16κ2d.

The bound on the term N7 can be obtained in a similar fashion.

I.2.4 Proof of bound (95d)

Observe that â>i ξ ∼ N (0, θi) and hence E
(
â>i ξ

)8
= 105 θ4

i . Thus, we have

E

(
n∑

i=1

ζi

(
â>i ξ

)4
)2

C−S
≤

n∑

i,j=1

ζiζj

(
E
(
â>i ξ

)8
) 1

2
(
E
(
â>j ξ

)8
) 1

2

= 105
n∑

i,j=1

ζiζjθ
2
i θ

2
j = 105

(
n∑

i=1

ζiθ
2
i

)2

.

Now applying Lemma 7, we obtain that E
(∑n

i=1 ζi
(
â>i ξ

)4)2
≤ 1680d2. Consequently,

applying the bound (136) with k = 4 and t =
(
e
2 log

(
16
ε

))2
and noting that t ≥ (2e)2 for

ε ∈ (0, 1/30], yields the claim.

I.2.5 Proof of bound (95e)

Using the fact that E
(
â>i ξ

)12
= 945 θ6

i and an argument similar to the previous part yields

that E
(∑n

i=1 ζi
(
â>i ξ

)6)2
≤ 15120d2.

Finally, applying the bound (136) with k = 6 and t =
(
e
3 log

(
16
ε

))3
, and verifying that

t ≥ (2e)3 for ε ∈ (0, 1/30], yields the claim.

Appendix J. Proof of Lovász’s Lemma

We begin by formally defining the conductance (Φ) of a Markov chain on (K,B(K)) with
arbitrary transition operator T and stationary distribution π∗. We assume that the operator
T is lazy and thereby the stationary distribution π∗ is unique. Let Tx = T (δx) denote the
transition distribution at point x, then the conductance Φ is defined as

Φ := inf
S∈B(K)

π∗(S)∈(0,1/2)

Φ(S)

π∗(S)
where Φ(S) :=

∫

S
Tu(K ∩ Sc)dπ∗(u) for any S ⊆ K.
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The conductance denotes the measure of the flow from a set to its complement relative to
its own measure, when initialized in the stationary distribution. If the conductance is high,
the following result shows that the Markov chain mixes fast.

Lemma 15 (Lovász and Simonovits, 1993, Theorem 1.4) For any M -warm start µ0, the
mixing time of the Markov chain with conductance Φ is bounded as

∥∥∥T k(µ0)− π∗
∥∥∥
TV
≤
√
M

(
1− Φ2

2

)k
≤
√
M exp

(
−kΦ2

2

)
.

Note that this result holds for a general distribution π∗ although we apply for uniform
π∗. The result can be derived from Cheeger’s inequality for continuous-space discrete-time
Markov chain and elementary results in Calculus. See, e.g., Theorem 1.4 and Corollary 1.5
by Lovász and Simonovits (1993) for a proof. For ease in notation define K\S := K ∩ Sc.
We now state a key isoperimetric inequality.

Lemma 16 (Lovász, 1999, Theorem 6) For any measurable sets S1,S2 ⊆ K, we have

vol(K\S1\S2) · vol(K) ≥ dK(S1,S2) · vol(S1) · vol(S2),

where dK(S1,S2) := infx∈S1,y∈S2 dK(x, y).

Since π∗ is the uniform measure on K, this lemma implies that

π∗(K\S1\S2) ≥ dK(S1,S2) · π∗(S1) · π∗(S2). (142)

In fact, such an inequality holds for an arbitrary log-concave distribution (Lovász and
Vempala, 2003). In words, the inequality says that for a bounded convex set any two
subsets which are far apart, can not have a large volume. Taking these lemmas as given,
we now complete the proof.

Proof of (Lovász’s) Lemma 6: We first bound the conductance of the Markov chain
using the assumptions of the lemma. From Lemma 15, we see that the Markov chain mixes
fast if all the sets S have a high conductance Φ(S). We claim that

Φ ≥ ρ∆

64
, (143)

from which the proof follows by applying Lemma 15. We now prove the claim (143) along
the lines of Theorem 11 in the paper by Lovász (1999). In particular, we show that under
the assumptions in the lemma, the sets with bad conductance are far apart and thereby have
a small measure under π∗, whence the ratio Φ(S)/π∗(S) is not arbitrarily small. Consider
a partition S1,S2 of the set K such that S1 and S2 are measurable. To prove claim (143),
it suffices to show that

1

vol(K)

∫

S1
Tu(S2)du ≥ ρ∆

64
·min {π∗(S1), π∗(S2)} , (144)

Define the sets

S ′1 :=

{
u ∈ S1

∣∣∣∣T̃u(S2) <
ρ

2

}
, S ′2 :=

{
v ∈ S2

∣∣∣∣T̃v(S1) <
ρ

2

}
, and S ′3 := K\S ′1\S ′2.

(145)
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Case 1: If we have vol(S ′1) ≤ vol(S1)/2 and consequently vol(K\S ′1) ≥ vol(S1)/2, then

∫

S1
Tu(S2)du

(i)

≥ 1

2

∫

S1\S′1
T̃u(S2)du

(ii)

≥ ρ

4
vol(S1)

(iii)

≥ ρ∆

4
·min {vol(S1), vol(S2)} ,

which implies the inequality (144) since π∗ is the uniform measure on K. In the above
sequence of inequalities, step (i) follows from the definition of the kernel T , step (ii) follows
from the definition of the set S ′1 (145) and step (iii) from the fact that ∆ < 1. Dividing
both sides by vol(K) yields the inequality (144) and we are done.

Case 2: It remains to establish the inequality (144) for the case when vol(S ′i) ≥ vol(Si)/2
for each i ∈ {1, 2}. Now for any u ∈ S ′1 and v ∈ S ′2 we have

∥∥∥T̃u − T̃v
∥∥∥

TV
≥ T̃u(S1)− T̃v(S1) = 1− T̃u(S2)− T̃v(S1) > 1− ρ,

and hence by assumption we have dK(S ′1,S ′2) ≥ ∆. Applying Lemma 16 and the definition
of S ′3 (145) we find that

vol(S ′3) · vol(K) ≥ ∆ · vol(S ′1) · vol(S ′2) ≥ ∆

4
· vol(S1) · vol(S2). (146)

Using this inequality and the fact that for any x ∈ [0, 1] we have x(1−x) ≥ min {x, (1− x)} /2
we obtain that

π∗(S ′3) ≥ ∆

4
· π∗(S1) · π∗(S2) ≥ ∆

8
min {π∗(S1), π∗(S2)} . (147)

We claim that
∫

S1
Tu(S2)du =

∫

S2
Tv(S1)dv. (148)

Assuming the claim as given, we now complete the proof. Using the equation (148), we
have

1

vol(K)

∫

S1
Tu(S2)du =

1

2 vol(K)

(∫

S1
Tu(S2)du+

∫

S2
Tv(S1)dv

)

(i)

≥ 1

2 vol(K)

(
1

2

∫

S1\S′1
T̃u(S2)du+

1

2

∫

S2\S′2
T̃v(S2)dv

)

(ii)

≥ ρ

8

vol(S ′3)

vol(K)

(iii)

≥ ρ∆

64
min {π∗(S1), π∗(S2)} ,

where step (i) follows from the definition of the kernel T , step (ii) follows from the definition
of the set S ′3 (145) and step (iii) follows from the inequality (147). Putting together the
pieces yields the claim (143).
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It remains to prove the claim (148). We make use of the following result

Φ(S) = Φ(K\S) for any measurable S ⊆ K. (149)

Using equation (149) and noting that S1 = K\S2, we have

1

vol(K)

∫

S1
Tu(S2)du =

∫

S1
Tu(S2)π∗(u)du = Φ(S1) = Φ(K\S1) =

1

vol(K)

∫

S2
Tv(S1)dv,

which yields equation (148).

Proof of result (149): Note that
∫
K Tu(S)dπ∗(u) = π∗(S). Thus, we have

Φ(K\S) =

∫

K\S
Tu(S)dπ∗(u) =

∫

K
Tu(S)dπ∗(u)−

∫

S
Tu(S)dπ∗(u) = π∗(S)−

∫

S
Tu(S)dπ∗(u).

Using the fact that 1− Tu(S) = Tu(K\S), we obtain

π∗(S)−
∫

S
Tu(S)dπ∗(u) =

∫

S
dπ∗(u)−

∫

S
Tu(S)dπ∗(u) =

∫

S
Tu(K\S)dπ∗(u) = Φ(S),

thereby yielding the claim (149).
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László Lovász and Miklós Simonovits. Random walks in a convex body and an improved
volume algorithm. Random Structures & Algorithms, 4(4):359–412, 1993.
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