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Abstract
A new class of non-homogeneous state-affine systems is introduced for use in reservoir computing.
Sufficient conditions are identified that guarantee first, that the associated reservoir computers with
linear readouts are causal, time-invariant, and satisfy the fading memory property and second, that
a subset of this class is universal in the category of fading memory filters with stochastic almost
surely uniformly bounded inputs. This means that any discrete-time filter that satisfies the fading
memory property with random inputs of that type can be uniformly approximated by elements in the
non-homogeneous state-affine family.
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1. Introduction

A reservoir computer (RC) (Jaeger (2010), Jaeger and Haas (2004), Maass et al. (2002), Maass
(2011), Crook (2007), Verstraeten et al. (2007), Lukoševičius and Jaeger (2009)) or a RC system is a
specific type of recurrent neural network determined by two maps, namely a reservoir F : RN×Rn −→
RN , n,N ∈ N, and a readout map h : RN → R that under certain hypotheses transform (or filter) an
infinite discrete-time input z = (. . . , z−1, z0, z1, . . .) ∈ (Rn)Z into an output signal y ∈ RZ of the same
type using the state-space transformation given by:{

xt = F (xt−1, zt),

yt = h(xt),

(1.1)

(1.2)

where t ∈ Z and the dimension N ∈ N of the state vectors xt ∈ RN will be referred to as the number
of virtual neurons of the system. The expressions (1.1)-(1.2) determine a nonlinear state-space system
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and many of its dynamical properties (stability, controlability) have been studied for decades in the
literature from that point of view.

This notion of reservoir computer (also known as liquid state machine) is a significant general-
ization of the definitions found in the literature, where the readout map h is consistently taken to be
linear. In many supervised machine learning applications, the reservoir map is randomly generated (see,
for instance, the echo state networks in Jaeger (2010), Jaeger and Haas (2004)) and the memoryless
readout is trained so that the output matches a given teaching signal that we denote by d ∈ RZ.
Two important advantages of this approach lay on the fact that they reduce the training of a dynamic
task to a static problem and, moreover, if the reservoir map is rich enough, good performances can be
indeed attained with just linear readouts that are trained via a (eventually regularized) linear regression
that minimizes the Euclidean distance between the output y and the teaching signal d. These features
circumvent well-known difficulties in the training of generic recurrent neural networks having to do
with bifurcation phenomena (Doya (1992)) and that, despite recent progress in the regularization and
training of deep RNN structures (see, for instance Graves et al. (2013), Pascanu et al. (2013), Zaremba
et al. (2014), and references therein), render classical gradient descent methods non-convergent.

The interest for reservoir computing in both the machine learning and the signal processing com-
munities has strongly increased in the last years. One of the main reasons for this fact is that some
RC implementations are based on the computational capacities of certain non-neural dynamical sys-
tems (Crutchfield et al. (2010)), which opens the door to physical (optical or optoelectronic) realizations
that have already been built using dedicated hardware (see, for instance, Jaeger et al. (2007), Atiya and
Parlos (2000), Appeltant et al. (2011), Rodan and Tino (2011), Vandoorne et al. (2011), Larger et al.
(2012), Paquot et al. (2012), Brunner et al. (2013), Vandoorne et al. (2014), Vinckier et al. (2015)) and
that have shown unprecedented information processing speeds.

There are two central questions that need to be addressed when designing a machine learning
paradigm, namely, the capacity and the universality problems. The capacity problem concerns
generically the estimation of the error that is going to be committed in the execution of a specific
task. In statistical learning and in the approximation theoretical treatment of static neural networks,
this estimation has taken the form of generic bounds that incorporate various architecture parameters
of the system like in Pisier (1981), Jones (1992), Barron (1993), Kurkova and Sanguineti (2005). In the
specific context of reservoir computing, and in dynamic learning in general, one is interested in various
notions of memory capacity that have been the subject of much research (Jaeger (2002), White et al.
(2004), Ganguli et al. (2008), Hermans and Schrauwen (2010), Dambre et al. (2012), Grigoryeva et al.
(2015), Couillet et al. (2016), Grigoryeva et al. (2016a)).

The universality problem consists in showing that the set of input/output functionals that can be
generated with a specific architecture is dense in a sufficiently rich class, like the one containing, for
example, all continuous or even all measurable functionals. For classical machine learning paradigms
like neural networks, this question has given rise to well-known results that show that they can be
considered as universal approximators in a static and deterministic setup (see, for instance, Kolmogorov
(1956), Arnold (1957), Sprecher (1965, 1996, 1997), Cybenko (1989), Hornik et al. (1989), Rüschendorf
and Thomsen (1998)).

There is no general recipe that allows one to conclude the universality of a given machine learning
approach. The proof strategy depends much on the specific paradigm and, more importantly, on the
nature of the inputs and the outputs. In the context of reservoir computing there are several situations
for which universality has been established when the inputs/outputs are deterministic. There are two
features that influence significantly the level of mathematical sophistication that is needed to conclude
universality: first, the compactness of the time domain under consideration and second, if one works in
continuous or discrete time. In the following paragraphs we briefly review the results that have already
been obtained and, in passing, we present and put in context the contributions contained in this paper.
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The compactness of the time domain is crucial because, as we will see later on, universality can be
obtained as a consequence of various versions of the Stone-Weierstrass Theorem, which are invariably
formulated for functions defined on a compact metric space. When the time domain is compact, this
property is naturally inherited by the spaces relevant in the proofs. However, when it is not, it can still
be secured using functionals that satisfy a condition introduced in Boyd and Chua (1985) known as the
fading memory property. The distinction between continuous and discrete time inputs is justified
by the availability in the continuous setup of different tools coming from functional analysis that do not
exist for discrete time.

Reservoir computing universality for compact time domains is a corollary of classical results in
systems theory. Indeed, in the continuous time setup, it can be established for linear systems using
polynomial readouts and for bilinear systems using linear readouts (see Fliess (1976), Sussmann (1976)).
In the discrete-time setup, the situation is more convoluted when the readout is linear and required
the introduction in Fliess and Normand-Cyrot (1980) of the so-called (homogeneous) state-affine
systems (SAS) (see also Sontag (1979a,b)). The extension of these results to continuous non-compact
time intervals was carried out in Boyd and Chua (1985) for fading memory filters using exponentially
stable linear RCs with polynomial readouts and their bilinear counterparts with linear readouts (see
also Maass and Sontag (2000) and Maass et al. (2002, 2004, 2007)). An extension to the non-compact
discrete-time setup based on the Stone-Weierstrass theorem is, to our knowledge, not available in the
literature and it is one of the main contributions of this paper. This problem has only been tackled
from an internal approximation point of view, which consists in uniformly approximating the reservoir
and readout maps in (1.1)-(1.2) in order to obtain an approximation of the resulting filter; this strategy
has been introduced in Matthews (1992, 1993) for absolutely summable systems. The proofs in those
works were unfortunately based on an invalid compactness assumption. Even though corrections were
proposed in Perryman (1996) and in Stubberud and Perryman (1997b), this approach yields, in the best
of cases, universality only within the reservoir filter category, while we aim at proving that statement
in the much larger category of fading memory filters.

The paper is structured in three sections:

• All the notation and main definitions which are used later on in the paper are provided in Section 2.
Important concepts like filters, reservoir filters, and the fading memory property are discussed.

• Section 3 contains two different universality results. The first one in Subsection 3.1 shows that the
entire family of fading memory RCs itself is universal, as well as the much smaller one containing
all the linear reservoirs with polynomial readouts, when certain spectral restrictions are imposed
on the reservoir matrices (see below for details). The second universality result is contained in
Subsection 3.2 and is one of the main contributions of the paper. Here we restrict ourselves to
reservoir computers with linear readouts which are closer to the type of RCs used in applications.
We introduce a non-homogeneous variant of the state-affine systems in Fliess and Normand-Cyrot
(1980) and identify sufficient conditions that guarantee that the associated reservoir computers
with linear readouts are causal, time-invariant, and satisfy the echo state and the fading memory
properties. Finally, we state a universality result for a subset of this class which is shown to be
universal in the category of fading memory filters with uniformly bounded inputs.

• These universality statements are generalized to the stochastic setup for almost surely uniformly
bounded inputs in Section 4. In particular, it is shown that any discrete-time filter that has the
fading memory property with almost surely uniformly bounded stochastic inputs can be uniformly
approximated by elements in the non-homogeneous state-affine family.

Despite some preexisting work on the uniform approximation in probability of stochastic systems
with finite memory (see Perryman (1996), Perryman and Stubberud (1997), Stubberud and Perryman
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(1997a)), the universality result in the stochastic setup is, to our knowledge, the first of its type in the
literature and opens the door to new developments in the learning of stochastic processes and their
obvious applications to forecasting (see Galtier et al. (2014)). In the deterministic setup, RC has been
very successful (see, for instance, Jaeger and Haas (2004), Pathak et al. (2017, 2018)) in the learning of
the attractors of various dynamical systems. This approach is used for forecasting by path continuation
of synthetically learnt proxies, which has led to several orders of magnitude accuracy improvements with
respect to most standard dynamical systems forecasting techniques based on Takens’ Theorem (Takens
(1981)). We expect that the results in this paper should lead to comparable improvements in the density
forecasting of stochastic processes.

2. Notation, definitions, and preliminary discussions

Vector and matrix notations. Polynomials. A column vector is denoted by a bold lower case
symbol like r and r> indicates its transpose. Given a vector v ∈ Rn, we denote its entries by vi or vi,
depending on the context, with i ∈ {1, . . . , n}; we also write v = (vi)i∈{1,...,n}. We denote by Mn,m the
space of real n×m matrices with m,n ∈ N. When n = m, we use the symbol Mn to refer to the space
of square matrices of order n. Dn ⊂Mn is the set of diagonal matrices of order n and D denotes the set
of diagonal matrices of any order. Given a vector v ∈ Rn, we denote by diag(v) the diagonal matrix in
Mn with the elements of v as diagonal entries. Nilkn ⊂Mn is the set of nilpotent matrices in Mn of index
k ≤ n , that is, A ∈ Nilkn if and only if A ∈Mn, Ak = 0, and Al 6= 0 for any l < k. Nil denotes the set of
nilpotent matrices of any order and any index. Given a matrix A ∈ Mn,m, we denote its components
by Aij and we write A = (Aij), with i ∈ {1, . . . , n}, j ∈ {1, . . .m}. Given a vector v ∈ Rn, the symbol
‖v‖ stands for its Euclidean norm. For any A ∈ Mn,m, ‖A‖2 denotes its matrix norm induced by the
Euclidean norms in Rm and Rn, and satisfies that ‖A‖2 = σmax(A), with σmax(A) the largest singular
value of A (Example 5.6.6 in Horn and Johnson (2013)). ‖A‖2 is sometimes referred to as the spectral
norm of A (Horn and Johnson (2013)).

Let V1, V2,W1,W2 be vector spaces. The symbols V1 ⊕ V2 and V1 ⊗ V2 denote the corresponding
direct sum and tensor product vector spaces (Hungerford (1974)), respectively, of V1 and V2. Given any
v1 ∈ V1 and v2 ∈ V2, the vectors v1⊕v2 ∈ V1⊕V2 and v1⊗v2 ∈ V1⊗V2 are the direct sum and the (pure)
tensor product of v1 and v2, respectively. Given two linear maps A1 : V1 −→ W1 and A2 : V2 −→ W2,
we denote by A1 ⊕ A2 : V1 ⊕ V2 −→ W1 ⊕W2 and A1 ⊗ A2 : V1 ⊗ V2 −→ W1 ⊗W2 the associated
direct sum and tensor product maps, respectively, defined by A1 ⊕ A2 (v1 ⊕ v2) := A1 (v1) ⊕ A2 (v2)
and A1 ⊗ A2 (v1 ⊗ v2) := A1 (v1) ⊗ A2 (v2). The matrix representation of A1 ⊕ A2 is obtained by
concatenating in a block diagonal matrix the matrix representations of A1 and A2. As to the matrix
representation of A1 ⊗A2 it is obtained via the Kronecker product of the matrix representations of A1

and A2 (Horn and Johnson (2013)).
Given an element z ∈ Rn, we denote by R[z] the real-valued multivariate polynomials on z with real

coefficients. Analogously, Pol(Rn,R) will denote the set of real-valued polynomials on Rn. When z ∈ R
and m,n ∈ N, we define the set Mm,n[z] of Mm,n-valued polynomials on z with coefficients in Mm,n as

Mm,n[z] := {A0 + zA1 + z2A2 + · · ·+ zrAr | r ∈ N, A0, A1, A2, . . . , Ar ∈Mm,n}. (2.1)

Nilkn[z] ⊂ Mn[z] is the set of nilpotent Mn-valued polynomials on z of index k, that is, p(z) ∈ Nilkn[z]
whenever k is the smallest natural number for which p(z)k = 0, for all z ∈ R. Nil[z] is the set of
matrix-valued nilpotent polynomials on z of any order and any index.

Sequence spaces. N denotes the set of natural numbers with the zero element included. Z (re-
spectively, Z+ and Z−) are the integers (respectively, the positive and the negative integers). The
symbol (Rn)Z denotes the set of infinite real sequences of the form z = (. . . , z−1, z0, z1, . . .), zi ∈ Rn,
i ∈ Z; (Rn)Z− and (Rn)Z+ are the subspaces consisting of, respectively, left and right infinite sequences:
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(Rn)Z− = {z = (. . . , z−2, z−1, z0) | zi ∈ Rn, i ∈ Z−}, (Rn)Z+ = {z = (z0, z1, z2, . . .) | zi ∈ Rn, i ∈ Z+}.
Analogously, (Dn)Z, (Dn)Z− , and (Dn)Z+ stand for (semi-)infinite sequences with elements in the subset
Dn ⊂ Rn. In most cases we shall use in these infinite product spaces either the product topology (see
Chapter 2 in Munkres (2014)) or the topology induced by the supremum norm ‖z‖∞ := supt∈Z {‖zt‖}.
The symbols `∞(Rn) and `∞± (Rn) will be used to denote the Banach spaces formed by the elements in
those infinite product spaces that have a finite supremum norm ‖ · ‖∞. The symbol Bn(v,M) ⊂ Rn,
denotes the open ball of radius M > 0 and center v ∈ Rn with respect to the Euclidean norm. The bars
over sets stand for topological closures, in particular, Bn(v,M) is the closed ball.

Filters. We will refer to the maps of the type U : (Dn)Z −→ RZ as filters or operators and to
those like H : (Dn)Z −→ R (or H : (Dn)Z± −→ R) as functionals. A filter U is called causal when
for any two elements z,w ∈ (Dn)Z that satisfy that zτ = wτ for all τ ≤ t, for any given t ∈ Z, we
have that U(z)t = U(w)t. Let Uτ : (Dn)Z −→ (Dn)Z, τ ∈ Z, be the time delay operator defined by
Uτ (z)t := zt−τ . The filter U is called time-invariant when it commutes with the time delay operator,
that is, Uτ ◦ U = U ◦ Uτ (in this expression, the two time delay operators Uτ have to be understood
as defined in the appropriate sequence spaces). We recall (see, for instance, Boyd and Chua (1985))
that there is a bijection between causal time-invariant filters and functionals on (Dn)Z− . Indeed, given
a time-invariant filter U , we can associate to it a functional HU : (Dn)Z− −→ R via the assignment
HU (z) := U(ze)0, where ze ∈ (Dn)Z is an arbitrary extension of z ∈ (Dn)Z− to (Dn)Z. Conversely, for
any functional H : (Dn)Z− −→ R, we can define a time-invariant causal filter UH : (Dn)Z −→ RZ by
UH(z)t := H((PZ− ◦ U−t)(z)), where U−t is the (−t)-time delay operator and PZ− : (Dn)Z −→ (Dn)Z−

is the natural projection. It is easy to verify that:

HUH = H, for any functional H : (Dn)Z− −→ R,
UHU = U, for any causal time-invariant filter U : (Dn)Z −→ RZ.

Additionally, let H1, H2 : (Dn)Z− −→ R and λ ∈ R, then UH1+λH2(z) = UH1(z) + λUH2(z), for any
z ∈ (Rn)Z. In the following pages and when the discussion will take place in a causal and time-invariant
setup, we will use the term filter to denote exchangeably the associated functional and the filter itself.

Reservoir filters. Consider now the RC system determined by (1.1)–(1.2). It is worth mentioning
that, unlike in those expressions, the reservoir and the readout maps are in general defined only on
subsets DN , D

′
N ⊂ RN and Dn ⊂ Rn and not on the entire Euclidean spaces RN and Rn, that is,

F : DN × Dn −→ D′N and h : D′N → R. Reservoir systems determine a filter when the following

existence and uniqueness property holds: for each z ∈ (Dn)
Z

there exists a unique x ∈ (DN )
Z

such that
for each t ∈ Z, the relation (1.1) holds. This condition is known in the literature as the echo state
property (see Jaeger (2010), Yildiz et al. (2012)) and has deserved much attention in the context of echo
state networks (Jaeger and Haas (2004), Buehner and Young (2006), Bai Zhang et al. (2012), Wainrib
and Galtier (2016), Manjunath and Jaeger (2013)). The echo state property formulated for infinite (or
semi-infinite) inputs guarantees that the output of the filter at any given time does not depend on initial
conditions. We emphasize that this is a genuine condition that is not automatically satisfied by all RC
systems.

We will denote by UF : (Dn)Z −→ (DN )Z the filter determined by the reservoir map via (1.1),
that is, UF (z)t := xt ∈ DN , and by UFh : (Dn)Z −→ RZ the one determined by the entire reservoir
system, that is, UFh (z)t := h

(
UF (z)t

)
= yt. U

F
h will be called the reservoir filter associated to the

RC system (1.1)–(1.2). The filters UF and UFh are causal by construction and it can also be shown that
they are necessarily time-invariant (Grigoryeva and Ortega (2018)). We can hence associate to UFh a
reservoir functional HF

h : (Dn)Z− −→ R determined by HF
h := HUF

h
.

Weighted norms and the fading memory property (FMP). Let w : N −→ (0, 1] be a decreasing
sequence with zero limit. We define the associated weighted norm ‖ · ‖w on (Rn)Z− associated to the
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weighting sequence w as the map:

‖ · ‖w : (Rn)Z− −→ R+

z 7−→ ‖z‖w := supt∈Z−{‖ztw−t‖},

where ‖ · ‖ denotes the Euclidean norm in Rn. It is worth noting that the space

`∞w (Rn) :=
{

z ∈ (Rn)
Z− | ‖z‖w <∞

}
, (2.2)

endowed with weighted norm ‖ · ‖w forms a Banach space (Grigoryeva and Ortega (2018)).
All along the paper, we will work with uniformly bounded families of sequences, both in the

deterministic and the stochastic setups. The two main properties of these subspaces in relation with
the weighted norms are spelled out in the following two lemmas.

Lemma 1 Let M > 0 and let KM be the set of elements in (Rn)
Z− which are uniformly bounded by

M , that is,

KM :=
{

z ∈ (Rn)
Z− | ‖zt‖ ≤M for all t ∈ Z−

}
= Bn(0,M)

Z−
, (2.3)

with Bn(0,M) ⊂ Rn the closed ball of radius M and center 0 in Rn with respect to the Euclidean norm.
Then, for any weighting sequence w and z ∈ KM , we have that ‖z‖w <∞.

Additionally, let λ, ρ ∈ (0, 1) and let w,wρ, w1−ρ be the weighting sequences given by wt := λt,
wρt := λρt, w1−ρ

t := λ(1−ρ)t, t ∈ N. Then, the series
∑∞
t=0 ‖z−t‖wt is absolutely convergent and satisfies

the inequalities:

∞∑
t=0

‖z−t‖wt =

∞∑
t=0

‖z−t‖λt ≤ ‖z‖w1−ρ
1

1− λρ
, (2.4)

∞∑
t=0

‖z−t‖wt =

∞∑
t=0

‖z−t‖λt ≤ ‖z‖wρ
1

1− λ1−ρ . (2.5)

The following result is a discrete-time version of Lemma 1 in Boyd and Chua (1985) that is easily
obtained by noticing that in the discrete-time setup all functions are trivially continuous if we consider
the discrete topology for their domains and, moreover, all families of functions are equicontinuous. A
proof is given in the appendices for the sake of completeness.

Lemma 2 Let M > 0 and let KM be as in (2.3). Let w : N −→ (0, 1] be a weighting sequence. Then
KM is a compact topological space when endowed with the relative topology inherited from the norm
topology in the Banach space (`∞w (Rn), ‖·‖w).

Definition 3 Let Dn ⊂ Rn and let HU : (Dn)Z− −→ R be the functional associated to the causal and
time-invariant filter U : (Dn)Z −→ RZ. We say that U has the fading memory property (FMP)
whenever there exists a weighting sequence w : N −→ (0, 1] such that the map HU : ((Dn)Z− , ‖·‖w) −→ R
is continuous. This means that for any z ∈ (Dn)Z− and any ε > 0, there exists a δ(ε) > 0 such that for
any s ∈ (Dn)Z− that satisfies that

‖z− s‖w = sup
t∈Z−
{‖(zt − st)w−t‖} < δ(ε), then |HU (z)−HU (s)| < ε.

If the weighting sequence w is such that wt = λt, for some λ ∈ (0, 1) and all t ∈ N, then U is said to
have the λ-exponential fading memory property.
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Remark 4 This formulation of the fading memory property is due to Boyd and Chua (1985) and it
is the key concept that allowed these authors to extend to non-compact time intervals the first filter
universality results formulated in the classical works Fréchet (1910), Wiener (1958), Brilliant (1958),
and George (1959), always under compactness assumptions on the input space and the time interval in
which inputs are defined.

Remark 5 In the context of reservoir filters, the fading memory property is in some occasions related
to the Lyapunov stability of the autonomous system associated to the reservoir map by setting the
input sequence equal to zero. This connection has been made explicit, for example, for discrete-time
nonlinear state-space models that are affine in their inputs, and have direct feed-through term in the
output (Zang and Iglesias (2004)) or for time delay reservoirs (Grigoryeva et al. (2016b)).

Remark 6 Time-invariant fading memory filters always have the bounded input, bounded output
(BIBO) property. Indeed, if for simplicity we consider functionals HU that map the zero input to zero,
that is HU (0) = 0, and we want bounded outputs such that |HU (z)| < k, for a given constant k > 0,
by Definition 3 it suffices to consider inputs z ∈ (RN )Z− such that ‖z‖∞ := supt∈Z−{‖zt‖} < δ(k).
Indeed, if HU has the FMP with respect to a weighting sequence w, then ‖z‖w ≤ ‖z‖∞ < δ(k) and hence
|HU (z)| < k, as required. Another important dynamical implication of the fading memory property is
the uniqueness of steady states or, equivalently, the asymptotic independence of the dynamics on
the initial conditions. See Theorem 6 in Boyd and Chua (1985) for details about this fact.

The following lemma, which will be used later on in the paper, spells out how the FMP depends on
the weighting sequence used to define it.

Lemma 7 Let Dn ⊂ Rn and let HU : (Dn)Z− −→ R be the functional associated to the causal and
time-invariant filter U : (Dn)Z −→ (R)Z. If HU has the FMP with respect to a given weighting sequence
w, then it also has it with respect to any other weighting sequence w′ which satisfies

wt
w′t

< λ, for a fixed λ > 0 and for all t ∈ N.

In particular, the thesis of the lemma holds when w′ dominates w, that is when λ = 1.

It can be shown (see Grigoryeva and Ortega (2018)) that when in this lemma the set (Dn)Z− is made
of uniformly bounded sequences, that is, (Dn)Z− = KM , with KM as in (2.3) then, if a filter has the
FMP with respect to a given weighting sequence, it necessarily has the same property with respect to
any other weighting sequence.

3. Universality results in the deterministic setup

The goal of this section is identifying families of reservoir filters that are able to uniformly approximate
any time-invariant, causal, and fading memory filter with deterministic inputs with any desired degree
of accuracy. Such families of reservoir computers are said to be universal.

The main mathematical tool that we use is the Stone-Weierstrass theorem for polynomial subalgebras
of real-valued functions defined on compact metric spaces. This approach provides us with universal
families of filters as long as we can prove that, roughly speaking, their elements form polynomial algebras
using a product defined in the space of functionals. More specifically, if Dn ⊂ Rn and HU1

, HU2
:

(Dn)Z− −→ R are the functionals associated to the causal and time-invariant filters U1, U2 : (Dn)Z −→
RZ, we readily define their product HU1

· HU2
: (Dn)Z− −→ R and linear combination HU1

+ λHU2
:

(Dn)Z− −→ R, λ ∈ R, as

(HU1
·HU2

) (z) := HU1
(z) ·HU2

(z) , (HU1
+ λHU2

) (z) := HU1
(z) + λHU2

(z) , z ∈ (Dn)Z− . (3.1)
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This section contains two different universality results. The first one shows that polynomial algebras
of filters generated by reservoir systems using the operations in (3.1) that have the fading memory
property and that separate points, are able to approximate any fading memory filter. Two important
consequences of this result are that the entire family of fading memory RCs itself is universal, as well as
the one containing all the linear reservoirs with polynomial readouts, when certain spectral restrictions
are imposed on the reservoir matrices (see below for details). In the second result, we restrict ourselves to
reservoir computers with linear readouts and introduce the non-homogeneous state-affine family in order
to be able to obtain a similar universality statement. The linearity restriction on the readouts makes
this universality statement closer to the type of RCs used in applications and to the standard notion of
reservoir system that one commonly finds in the literature (see Lukoševičius and Jaeger (2009)).

The first result can be seen as a discrete-time version of the one in Boyd and Chua (1985) for
continuous-time filters, while the second one is an extension to infinite time intervals of the main
approximation result in Fliess and Normand-Cyrot (1980), which was originally formulated for compact
time intervals using homogeneous state-affine systems.

3.1 Universality for fading memory RCs with non-linear readouts

The following statement is a direct consequence of the compactness result in Lemma 2.3 and the Stone-
Weierstrass, as formulated in Theorem 7.3.1 in Dieudonné (1969). See Appendix 6.4 for a detailed
proof.

All along this subsection, we work with reservoir filters with uniformly bounded inputs in a set KM ⊂
(Rn)Z− , as defined in (2.3). These filters are generated by reservoir systems F : DN ×Bn(0,M) −→ DN

and h : DN → R, for some n,N ∈ N, M > 0, and DN ⊂ RN .

Theorem 8 Let KM ⊂ (Rn)Z− be a subset of the type defined in (2.3), I an index set, and let

R := {HFi
hi

: KM −→ R | hi ∈ C∞(DNi), Fi : DNi ×Bn(0,M) −→ DNi , i ∈ I,Ni ∈ N} (3.2)

be a set of reservoir filters defined on KM that have the FMP with respect to a given weighted norm
‖ · ‖w. Let A(R) be the polynomial algebra generated by R, that is, the set formed by finite products
and linear combinations of elements in R according to the operations defined in (3.1). If the algebra
A(R) contains the constant functionals and separates the points in KM , then any causal, time-invariant
fading memory filter H : KM −→ R can be uniformly approximated by elements in A(R), that is,
A(R) is dense in the set (C0(KM ), ‖ · ‖w) of real-valued continuous functions on (KM , ‖ · ‖w). More
explicitly, this implies that for any fading memory filter H and any ε > 0, there exist a finite set of
indices {i1, . . . , ir} ⊂ I and a polynomial p : Rr −→ R such that

‖H −HF
h ‖∞ := sup

z∈KM
{|H(z)−HF

h (z)|} < ε with h := p(hi1 , . . . , hir ) and F := (Fi1 , . . . , Fir ).

An important fact is that the polynomial algebra A(R) generated by a set formed by fading memory
reservoir filters is made of fading memory reservoir filters. Indeed, let hi ∈ C∞(DNi), Fi : DNi ×
Bn(0,M) −→ DNi , i ∈ {1, 2}, and λ ∈ R. Then, the product HF1

h1
· HF2

h2
and the linear combination

HF1

h1
+ λHF2

h2
filters, as they were defined in (3.1), are such that

HF1

h1
·HF2

h2
= HF

h , with h := h1 · h2 ∈ C∞(DN1
×DN2

), (3.3)

HF1

h1
+ λHF2

h2
= HF

h′ , with h′ := h1 + λh2 ∈ C∞(DN1
×DN2

), (3.4)

and where F : (DN1 ×DN2)×Bn(0,M) −→ (DN1 ×DN2) is given by

F (((x1)t, (x2)t), zt) := (F1((x1)t, zt), F2((x2)t, zt)) , (3.5)

8
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for any ((x1)t, (x2)t) ∈ DN1
×DN2

, zt ∈ Bn(0,M), and t ∈ Z−. We emphasize that the functionals HF
h

and HF
h′ in (3.3) and (3.4) are well defined because if the reservoir maps F1 and F2 satisfy the echo state

property then so does F . Indeed, if x1 ∈ (DN1)
Z

and x2 ∈ (DN2)
Z

are the solutions of the reservoir

equation (1.1) for F1 and F2 associated to the input z ∈ KM , then so is (x1,x2) ∈ (DN1 ×DN2)
Z
,

defined by (x1,x2)t := ((x1)t, (x2)t), for F in (3.5).
This observation has as a consequence that the set formed by all the RC systems that have the echo

state property and the FMP with respect to a given weighted norm ‖ · ‖w form a polynomial algebra
that contains the constant functions (they can be obtained by using as readouts constant elements in
C∞(DNi)) and separates points (take the trivial reservoir map F (x, z) = z and use the separation
property of C∞(DNi) together with time-invariance). This remark and Theorem 8 yield the following
corollary.

Corollary 9 Let KM ⊂ (Rn)Z− be a subset as defined in (2.3) and let

Rw := {HF
h : KM −→ R | h ∈ C∞(DN ), F : DN ×Bn(0,M) −→ DN , N ∈ N} (3.6)

be the set of all reservoir filters with uniformly bounded inputs in KM and that have the FMP with respect
to a given weighted norm ‖ · ‖w. Then Rw is universal, that is, it is dense in the set (C0(KM ), ‖ · ‖w)
of real-valued continuous functions on (KM , ‖ · ‖w).

Remark 10 The stability of reservoir filters under products and linear combinations in (3.3)-(3.4) is a
feature that allows us, in Corollary 9 and in some of the results that follow later on, to identify families
of reservoir filters that are able to approximate any fading memory filter. This fact is a requirement
for the application of the Stone-Weierstrass theorem but does not mean that we have to carry those
operations out in the construction of approximating filters, which would indeed be difficult to implement
in specific applications.

According to the previous corollary, reservoir filters that have the FMP are able to approximate any
time-invariant fading memory filter. We now show that actually a much smaller family of reservoirs
suffices to do that, namely, certain classes of linear reservoirs with polynomial readouts. Consider the
RC system determined by the expressions{

xt = Axt−1 + czt, A ∈MN , c ∈MN,n,

yt = h(xt), h ∈ R[x].

(3.7)

(3.8)

If this system has a reservoir filter associated (the next result provides a sufficient condition for this to

happen) we denote by HA,c
h : KM −→ R the associated functional and we refer to it as the linear

reservoir functional determined by A, c, and the polynomial h. These filters exhibit the following
universality property that is proved in Appendix 6.5.

Corollary 11 Let KM ⊂ (Rn)Z− be a subset of the type defined in (2.3) and let 0 < ε < 1. Consider
the set Lε formed by all the linear reservoir systems as in (3.7)-(3.8) determined by matrices A ∈ MN

such that σmax(A) < 1− ε. Then, the elements in Lε generate λρ-exponential fading memory reservoir
functionals, with λρ := (1− ε)ρ, for any ρ ∈ (0, 1). Equivalently, Lε ⊂ Rwρ , with wρt := λtρ, and Rwρ as
in (3.6). These functionals can be explicitly written as:

HA,c
h (z) = h

( ∞∑
i=0

Aicz−i

)
, for any z ∈ KM . (3.9)

This family is dense in (C0(KM ), ‖ · ‖wρ).
The same universality result can be stated for the following two smaller subfamilies of Lε:

9
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(i) The family DLε ⊂ Lε formed by the linear reservoir systems in Lε determined by diagonal matrices
A ∈ D such that σmax(A) < 1− ε.

(ii) The family NL ⊂ Lε formed by the linear reservoir systems determined by nilpotent matrices
A ∈ Nil.

Remark 12 The elements in the family NL belong automatically to Lε because the eigenvalues of
a nilpotent matrix are always zero. This implies that if a linear reservoir system is determined by
a nilpotent matrix A ∈ NilkN of index k ≤ N , then the reservoir functional HA,c

h is automatically
well-defined and given by a finite version of (3.9), that is,

HA,c
h (z) = h

(
k−1∑
i=0

Aicz−i

)
, for any z ∈ KM . (3.10)

3.2 State-affine systems and universality for fading memory RCs with linear readouts

As it was explained in the introduction, the standard notion of reservoir computing that one finds in the
literature concerns architectures with linear readouts. It is is particularly convenient to work with RCs
that have this feature in machine learning applications since in that case the training reduces to solving a
linear regression problem. That makes training feasible when there is need for a high number of neurons,
as it happens in many cases. This point makes relevant the identification of families of reservoirs that
are universal when the readout is restricted to be linear, which is the subject of this subsection. In order
to simplify the presentation, we restrict ourselves in this case to one-dimensional input signals, that is,
all along this section we set n = 1. The extension to the general case is straightforward, even though
more convoluted to write down (see Remark 22).

Definition 13 Let N ∈ N, W ∈ RN , and let p(z) ∈ MN [z] and q(z) ∈ MN,1[z] be two polynomials on
the variable z with matrix coefficients, as they were introduced in (2.1). The non-homogeneous state-
affine system (SAS) associated to p, q and W is the reservoir system determined by the state-space
transformation: {

xt = p(zt)xt−1 + q(zt),

yt = W>xt.

(3.11)

(3.12)

Our next result spells out a sufficient condition that guarantees that the SAS reservoir system (3.11)-
(3.12) has the echo state property. Moreover, it provides an explicit expression for the unique causal
and time-invariant solution associated to a given input.

Proposition 14 Consider a non-homogeneous state-affine system as in (3.11)-(3.12) determined by
polynomials p, q, and a vector W, with inputs defined on IZ, I := [−1, 1]. Assume that

K1 := max
z∈I
‖p(z)‖2 = max

z∈I
σmax(p(z)) < 1. (3.13)

Then, the reservoir system (3.11)-(3.12) has the echo state property and for each input z ∈ IZ it has a
unique causal and time-invariant solution given by

xt =

∞∑
j=0

(
j−1∏
k=0

p(zt−k)

)
q(zt−j),

yt = W>xt,

(3.14)

(3.15)

10
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where
j−1∏
k=0

p(zt−k) := p(zt) · p(zt−1) · · · p(zt−j+1).

Let now K2 := maxz∈I ‖q(z)‖2. Then,

‖xt‖ ≤
K2

1−K1
, for all t ∈ Z. (3.16)

We will denote by Up,qW : IZ −→ RZ and Hp,q
W : IZ− −→ R the corresponding SAS reservoir filter and

SAS functional, respectively.

The next result presents two alternative conditions that imply the hypothesis maxz∈I ‖p(z)‖2 < 1
in the previous proposition and that are easier to verify in practice.

Lemma 15 Let p(z) ∈MN [z] be the polynomial given by

p(z) := A0 + zA1 + z2A2 + · · ·+ zn1An1 , n1 ∈ N.

Suppose that z ∈ I and consider the following three conditions:

(i) There exists a constant 0 < λ < 1, such that ‖Ai‖2 = σmax(Ai) < λ, for any i ∈ {0, 1, . . . , n1}, and
that at the same time satisfies that λ(n1 + 1) < 1.

(ii) Bp := ‖A0‖2 + ‖A1‖2 + · · ·+ ‖An1‖2 < 1.

(iii) Mp := maxz∈I ‖p(z)‖2 < 1.

Then, condition (i) implies (ii) and condition (ii) implies (iii).

We emphasize that since Proposition 14 was proved using condition (iii) in the previous lemma
then, any of the three conditions in that statement imply the echo state property for (3.14)-(3.15) and
the time-invariance of the corresponding solutions. The next result shows that the same situation holds
in relation with the fading memory property.

Proposition 16 Consider a non-homogeneous state-affine system as in (3.11)-(3.12) determined by
polynomials p, q, and a vector W, with inputs defined on IZ, I := [−1, 1]. If the polynomial p satisfies
any of the three conditions in Lemma 15 then the corresponding reservoir filter has the fading memory
property. More specifically, if p satisfies condition (i) in Lemma 15, then Hp,q

W : (IZ− , ‖ · ‖wρ) −→ R is
continuous with wρt := (n1 + 1)ρtλρt and ρ ∈ (0, 1) arbitrary. The same conclusion holds for conditions
(ii) and (iii) with wρt := Bρtp and wρt := Mρt

p , respectively.

The importance of SAS in relation to the universality problem has to do with the fact that they
form a polynomial algebra which allows us, under certain conditions, to use the Stone-Weierstrass
theorem to prove a density statement. Before we show that, we observe that for any two polynomials
p1(z) ∈MN1,M1

[z] and p2(z) ∈MN2,M2
[z] given by

p1(z) := A1
0 + zA1

1 + z2A1
2 + · · ·+ zn1A1

n1
, (3.17)

p2(z) := A2
0 + zA2

1 + z2A2
2 + · · ·+ zn2A2

n2
, (3.18)

with n1, n2 ∈ N, their direct sum and their tensor product are also polynomials in z with matrix
coefficients. More explicitly, p1 ⊕ p2(z) ∈MN1+N2,M1+M2 [z] and is written as

p1⊕p2(z) = A1
0⊕A2

0+zA1
1⊕A2

1+z2A1
2⊕A2

2+· · ·+zn2A1
n2
⊕A2

n2
+zn2+1A1

n2+1⊕0+· · ·+zn1A1
n1
⊕0, (3.19)

11
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where we assumed that n2 ≤ n1. Analogously, their tensor product p1 ⊗ p2(z) ∈ MN1·N2,M1·M2
[z] and

is written as

p1 ⊗ p2(z) =

n1∑
i=0

n2∑
j=0

zi+jA1
i ⊗A2

j . (3.20)

The next result shows that the products and the linear combinations of SAS reservoir function-
als are SAS reservoir functionals. Additionally, it makes explicit the polynomials that determine the
corresponding SAS reservoir systems.

Proposition 17 Let Hp1,q1
W1

, Hp2,q2
W2

: IZ− −→ R be two SAS reservoir functionals associated to two
corresponding time-invariant SAS reservoir systems. Assume that the two polynomials with matrix
coefficients p1(z) ∈ MN1 [z] and p2(z) ∈ MN2 [z] satisfy that ‖p1(z)‖2 < 1 − ε and ‖p2(z)‖2 < 1 − ε for
all z ∈ I := [−1, 1] and a given 0 < ε < 1. Then, with the notation introduced in the expressions (3.19)
and (3.20), we have that:

(i) For any λ ∈ R, the linear combination of the SAS reservoir functionals Hp1,q1
W1

+ λHp2,q2
W2

is a SAS
reservoir functional and:

Hp1,q1
W1

+ λHp2,q2
W2

= Hp1⊕p2,q1⊕q2
W1⊕λW2

. (3.21)

(ii) The product of the SAS reservoir functionals Hp1,q1
W1

·Hp2,q2
W2

is a SAS reservoir functional and:

Hp1,q1
W1

·Hp2,q2
W2

= H
p,q1⊕q2⊕(q1⊗q2)
0⊕0⊕(W1⊗W2) , (3.22)

where p(z) ∈ MN12
[z], N12 := N1 + N2 + N1 · N2, is the polynomial with matrix coefficients in

MN12
whose block-matrix expression for the three summands in RN1 ⊕ RN2 ⊕

(
RN1 ⊗ RN2

)
is:

p(z) :=

 p1(z) 0 0
0 p2(z) 0

p1 ⊗ q2(z) q1 ⊗ p2(z) p1 ⊗ p2(z)

 . (3.23)

The expression p1⊗p2(z) ∈MN1·N2
[z] denotes the element defined in (3.20). The symbol p1⊗q2(z)

(respectively, q1⊗p2(z)) denotes the matrix of the linear map from RN1 (respectively, RN2) to RN1⊗
RN2 that associates to any v1 ∈ RN1 the element (p1(z)v1)⊗q2(z) (respectively, q1(z)⊗ (p2(z)v2),
with v2 ∈ RN2). When all the polynomials in (3.23) are written in terms of monomials using the
conventions that we just mentioned and we factor out the different powers of the variable z, we
obtain a polynomial with matrix coefficients in MN12

and with degree deg(p) equal to

deg(p) = max {deg(p1) · deg(q2),deg(q1) · deg(p2),deg(p1) · deg(p2)} .

The equalities (3.21) and (3.22) show that the SAS family forms a polynomial algebra.

Remark 18 Notice that the linear reservoir equation (3.7) is a particular case of the SAS reservoir
equation (3.11) that is obtained by taking for p and q polynomials of degree zero and one, respectively.
Regarding that specific case, Proposition 17 shows that linear reservoirs with linear readouts do not
form a polynomial algebra. Indeed, as it can be seen in (3.22), the product of two SAS filters involves
the tensor product q1 ⊗ q2 which, when q1 and q2 come from a linear filter, it has degree two and it is
hence not compatible with a linear reservoir filter.

Theorem 19 (Universality of SAS reservoir computers) Let IZ− ⊂ RZ− be the subset of real
uniformly bounded sequences in I := [−1, 1] as in (2.3), that is,

IZ− := {z ∈ RZ− | zt ∈ [−1, 1], for all t ≤ 0},

12
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and let Sε be the family of functionals Hp,q
W : IZ− −→ R induced by the state-affine systems defined

in (3.11)-(3.12) that satisfy that Mp := maxz∈I ‖p(z)‖2 < 1− ε and Mq := maxz∈I ‖q(z)‖2 < 1− ε. The
family Sε forms a polynomial subalgebra of Rwρ (as defined in (3.6)) with wρt := (1− ε)ρt and ρ ∈ (0, 1)
arbitrary, made of fading memory reservoir filters that contains the constant functions and separates
points. The subfamily Sε is hence dense in the set (C0(IZ−), ‖ · ‖wρ) of real-valued continuous functions
on (IZ− , ‖ · ‖wρ).

This statement implies that any causal, time-invariant fading memory filter H : IZ− −→ R can
be uniformly approximated by elements in Sε. More specifically, for any fading memory filter H and
any ε > 0, there exist a natural number N ∈ N, polynomials p(z) ∈ MN [z], q(z) ∈ MN,1[z] with
Mp,Mq < 1− ε, and a vector W ∈ RN such that

‖H −Hp,q
W ‖∞ := sup

z∈IZ−
{|H(z)−Hp,q

W (z)|} < ε.

The same universality result can be stated for the smaller subfamily NSε ⊂ Sε formed by SAS
reservoir systems determined by nilpotent polynomials p(z) ∈ Nil[z].

Remark 20 As it is stated in Theorem 19, it is the condition (iii) in Lemma 15 that yields a uni-
versal family of SAS fading memory reservoirs. As it can deduced from its proof (available in the
Appendix 6.10), the families determined by conditions (i) or (ii) in that lemma contain SAS fading
memory reservoirs but they do not form a polynomial algebra. In such cases, and according to Theo-
rem 8, it is the algebras generated by them and not the families themselves that are universal.

Remark 21 A continuous-time analog of the universality result that we just proved can be obtained
using the bilinear systems considered in Section 5.3 of Boyd and Chua (1985). In discrete time, but
only when the number of time steps is finite, this universal approximation property is exhibited by
homogeneous state-affine systems, that is, by setting q(z) = 0 in (3.11)-(3.12) (see Fliess and Normand-
Cyrot (1980)).

Remark 22 Generalization to multidimensional signals. When the input signal is defined in IZn ,
with In := [−1, 1]n, a SAS family with the same universality properties can be defined by replacing the
polynomials p and q in Definition 13, by polynomials of degree r and s of the form:

p(z) =
∑

i1,...,in∈{0,...,r}
i1+···+in≤r

zi11 · · · zinn Ai1,...,in , Ai1,...,in ∈MN , z ∈ In

q(z) =
∑

i1,...,in∈{0,...,s}
i1+···+in≤s

zi11 · · · zinn Bi1,...,in , Bi1,...,in ∈MN,1, z ∈ In.

Remark 23 SAS with trigonometric polynomials. An analogous construction can be carried out
using trigonometric polynomials of the type:

p(z) =
∑

i1,...,in∈{0,...,r}
i1+···+in≤r

cos (i1 · z1 + · · ·+ in · zn)Ai1,...,in , Ai1,...,in ∈MN , z ∈ In

q(z) =
∑

i1,...,in∈{0,...,s}
i1+···+in≤s

cos (i1 · z1 + · · ·+ in · zn)Bi1,...,in , Bi1,...,in ∈MN,1, z ∈ In.

In this case, it is easy to establish that the resulting SAS family forms a polynomial algebra by invoking
Proposition 17 and by reformulating the expressions (3.19) and (3.20) using the trigonometric identity

cos(θ) cos(φ) =
1

2
(cos(θ − φ) + cos(θ + φ)) .

Additionally, the corresponding SAS family includes the linear family and hence the point separation
property can be established as in the proof of Theorem 19 in the Appendix 6.10.
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4. Reservoir universality results in the stochastic setup

This section extends the previously stated deterministic universality results to a setup in which the
reservoir inputs and outputs are stochastic, that is, the reservoir is not driven anymore by infinite
sequences but by discrete-time stochastic processes. We emphasize that we restrict our discussion to
reservoirs that are deterministic and hence the only source of randomness in the systems considered is
the stochastic nature of the input.

The results that follow are mainly based on the observation that if we adopt a uniform approximation
criterion and we assume that the random inputs satisfy almost surely the uniform boundedness that we
used as hypothesis in Section 3, then important features like the fading memory property or universality
are naturally inherited in the stochastic setup from the deterministic case. This fact is what we call
the deterministic-stochastic transfer principle and it is contained in the statement of Theorem
27 below. In particular, this result can be easily applied to show that all the universal families with
deterministic inputs introduced in Section 3 are also universal in the stochastic setup when the input
processes considered produce paths that, up to a set of measure zero, are uniformly bounded.

The stochastic setup. All along this section we work on a probability space (Ω,A,P). If a condition
defined on this probability space holds everywhere except for a set with zero measure, we will say that
the relation is true almost surely. Let X : Ω −→ B be a random variable with (B, ‖·‖B) a normed
space endowed with a σ-algebra (for example, but not necessarily, its Borel σ-algebra). Let

‖X‖L∞ := ess sup
ω∈Ω

{‖X(ω)‖B} = inf
{
ρ ∈ R+ | ‖X‖B ≤ ρ almost surely

}
, (4.1)

We denote by L∞(Ω, B) the classes of B-valued almost surely equal random variables whose norms have
a finite essential supremum or that, equivalently, have almost surely bounded norms, that is,

L∞(Ω, B) := SB/ ∼B , (4.2)

where
SB := {X : Ω −→ B random variable | ‖X‖L∞ <∞} , (4.3)

and ∼B is the equivalence relation defined on SB as follows: two random variables Y and Z with finite
‖·‖L∞ norm are ∼B-equivalent if and only if P({ω ∈ Ω : Y(ω) 6= Z(ω)} = 0. As it is customary in the
literature, we will not make a distinction in what follows between the elements in SB and the classes
in the quotient L∞(Ω, B). Using this identification we recall, for example, that L∞(Ω, B) is a vector
space with the operations

(X + λY)(ω) := X(ω) + λY(ω) (4.4)

for any X,Y ∈ L∞(Ω, B), λ ∈ R, ω ∈ Ω. Moreover, (L∞(Ω, B), ‖·‖L∞) is a normed space. We emphasize
that L∞(Ω, B) is in general not a Banach space (see pages 42 and 46 in Ledoux and Talagrand (1991)).
It can be shown that whenever B is finite dimensional or, more generally, a separable Banach space,
then the space L∞(Ω, B) is also a Banach space (Pisier (2016)).

Given an element X ∈ L∞(Ω, B), we denote by E [X] its expectation. The following lemma collects
some elementary results that will be needed later on and shows, in particular, that the expectation E [X]

as well as that of all the powers ‖X‖kB of its norm are finite for all the elements X ∈ L∞(Ω, B).

Lemma 24 Let X ∈ L∞(Ω, B) and let C ∈ R+. Then:

(i) ‖X‖B ≤ ‖X‖L∞ almost surely.

(ii) ‖X‖L∞ ≤ C if and only if ‖X‖B ≤ C almost surely.

(iii) ‖X‖B ≤ C almost surely if and only if E
[
‖X‖kB

]
≤ Ck for any k ∈ N.
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(iv) Let B = Rn, then the components Xi of X, i ∈ {1, . . . , n}, are such that E [Xi] ≤ ‖X‖L∞ .

The first point in this lemma explains why we will refer to the elements of L∞(Ω, B) as almost surely
bounded random variables.

Stochastic inputs and outputs. The filters that we will consider in this section have almost surely
bounded stochastic processes as inputs and outputs. Recall that a discrete-time stochastic process
is a map of the type:

z : Z× Ω −→ Rn
(t, ω) 7−→ zt(ω),

(4.5)

such that, for each t ∈ Z, the assignment zt : Ω −→ Rn is a random variable. For each ω ∈ Ω, we will
denote by z(ω) := {zt(ω) ∈ Rn | t ∈ Z} the realization or the sample path of the process z. The
results that follow are presented for stochastic processes indexed by Z but are equally valid for Z+ and
Z−.

Recall that a map of the type (4.5) is a Rn-valued stochastic process if and only if the corresponding

map z : Ω −→ (Rn)
Z

into path space (designated with the same symbol) is a random variable when

in (Rn)
Z

we consider the product sigma algebra generated by cylinder sets (Chapter 1 in Comets and
Meyre (2006)). Then, the space of Rn-valued stochastic processes can be made into a vector space with
the same operations as in (4.4) and we can define in this space a norm ‖·‖L∞ using the same prescription

as in (4.1) by considering (Rn)
Z

as a normed space with the supremum norm ‖ · ‖∞, that is,

‖z‖L∞ := ess sup
ω∈Ω

{‖z(ω)‖∞} = ess sup
ω∈Ω

{
sup
t∈Z
{‖zt(ω)‖}

}
. (4.6)

The following lemma provides an alternative characterization of the norm ‖·‖L∞ that will be very useful
in the proofs of the results that follow and in which the supremum and the essential supremum have
been interchanged. The last statement contained in it complements part (ii) of Lemma 24 for processes.

Lemma 25 Let z : Ω −→ (Rn)
Z

be a stochastic process. Then,

‖z‖L∞ := ess sup
ω∈Ω

{
sup
t∈Z
{‖zt(ω)‖}

}
= sup

t∈Z

{
ess sup
ω∈Ω

{‖zt(ω)‖}
}
. (4.7)

Equivalently, using the notation in (4.1),

‖z‖L∞ :=

∥∥∥∥sup
t∈Z
{‖zt(ω)‖}

∥∥∥∥
L∞

= sup
t∈Z
{‖zt‖L∞}. (4.8)

These equalities imply that for any non-negative real number C ≥ 0, the process z satisfies that ‖z‖L∞ ≤
C if and only if ‖zt‖L∞ ≤ C for all t ∈ Z or, equivalently, if and only if supt∈Z{‖zt‖L∞} ≤ C.

Consider now the space L∞
(
Ω, (Rn)Z

)
of processes with finite ‖·‖L∞ norm. We refer to the ele-

ments of L∞
(
Ω, (Rn)Z

)
as almost surely bounded time series. Additionally, consider the space

L∞ (Ω, `∞(Rn)) of processes whose paths are all uniformly bounded, that is, they lay in the Banach
space (`∞(Rn), ‖ · ‖∞). According to the definition in (4.2), we have for both these spaces that

L∞
(
Ω, (Rn)Z

)
:= S(Rn)Z/ ∼(Rn)Z , L∞ (Ω, `∞(Rn)) := S`∞(Rn)/ ∼`∞(Rn)

with

S(Rn)Z :=
{
z : Z× Ω −→ Rn stochastic process, z(ω) ∈ (Rn)Z, for all ω ∈ Ω | ‖z‖L∞ <∞

}
,
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S`∞(Rn) := {z : Z× Ω −→ Rn stochastic process, z(ω) ∈ `∞(Rn), for all ω ∈ Ω | ‖z‖L∞ <∞} ,

and with the almost sure equality equivalence relations ∼`∞(Rn) and ∼(Rn)Z between stochastic processes

with paths in `∞(Rn) and (Rn)Z, respectively. The following result shows that the normed spaces
L∞

(
Ω, (Rn)Z

)
and L∞ (Ω, `∞(Rn)) are isomorphic.

Lemma 26 In the setup that we just introduced the inclusion ι : S`∞(Rn) ↪→ S(Rn)Z is equivariant
with respect to the equivalence relations ∼`∞(Rn) and ∼(Rn)Z and drops to an isomorphism of normed

spaces φ : (L∞
(
Ω, (Rn)Z

)
, ‖·‖L∞) −→ (L∞ (Ω, `∞(Rn)) , ‖·‖L∞). Equivalently, the following diagram

commutes

S`∞(Rn)
⊂

ι
> S(Rn)Z

L∞ (Ω, `∞(Rn))

Π∼`∞(Rn)
∨

φ
> L∞

(
Ω, (Rn)Z

)
,

Π∼
(Rn)Z∨

where Π∼`∞(Rn)
and Π∼

(Rn)Z
are the canonical projections.

Let now w be a weighting sequence and let ‖ · ‖w be the associated weighted norm in (Rn)
Z− . If we

replace in (4.6) the `∞ norm ‖ · ‖∞ by the weighted norm ‖ · ‖w, we obtain a weighted norm ‖ · ‖L∞w in
the space of processes z : Z− × Ω −→ Rn indexed by Z− as:

‖z‖L∞w := ess sup
ω∈Ω

{‖z(ω)‖w} = ess sup
ω∈Ω

{
sup
t∈Z−

{‖zt(ω)‖w−t}

}
. (4.9)

We will denote by L∞w
(
Ω, (Rn)Z−

)
the space of processes with finite ‖·‖L∞w norm. A result similar to

Lemma 26 shows that the normed spaces (L∞w
(
Ω, (Rn)Z−

)
, ‖·‖L∞w ) and (L∞ (Ω, `∞w (Rn)) , ‖·‖L∞w ) are

isomorphic. Additionally, as in Lemma 25, we have that for any z ∈ L∞w
(
Ω, (Rn)Z−

)
:

‖z‖L∞w := ess sup
ω∈Ω

{
sup
t∈Z−

{‖zt(ω)‖w−t}

}
= sup
t∈Z−

{
ess sup
ω∈Ω

{‖zt(ω)‖w−t}
}
. (4.10)

Deterministic filters in a stochastic setup. As we already pointed out, we consider filters U
that have almost surely bounded processes as inputs and outputs. The same conventions as in the
deterministic setup are used in the identification of the different signals, namely, z denotes the filter

input process and the symbol y is reserved for the output process. Let now Dn ⊂ Rn and let D
L∞Z
n ⊂

L∞(Ω, (Rn)Z) be a subset formed by processes whose paths take values in Dn almost surely. In the

sequel we will restrict our attention to intrinsically deterministic filters U : D
L∞Z
n −→ L∞(Ω,RZ) that

are obtained by presenting almost surely bounded stochastic inputs z ∈ DL∞Z
n ⊂ L∞(Ω, (Rn)Z) to filters

U : (Dn)
Z −→ RZ similar to those introduced in the previous section, which explains why we use the

same symbol for both. This is explicitly carried out by defining the output process U(z) ∈ L∞(Ω,RZ)
using the convention

(U(z))(ω) := U(z(ω)), ω ∈ Ω, (4.11)

where on the right hand side it is the filter U : (Dn)
Z −→ RZ which is applied to the paths z(ω) :=

{zt(ω) ∈ Rn | t ∈ Z} ∈ (Dn)
Z

of the process z. We call these filters deterministic because, in view
of (4.11) the dependence of the image process (U(z))(ω) ∈∈ L∞(Ω,RZ) on the probability space takes
place exclusively through the dependence z(ω) in the input. In this section we reserve the symbol U to

denote deterministic filters U : D
L∞Z
n −→ L∞(Ω,RZ). We draw attention to the fact that assuming that
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the filters map into almost surely bounded processes is a genuine hypothesis that needs to be verified
in each specific case considered.

The concepts of causality and time-invariance are defined as in the deterministic case by replacing
equalities by almost sure equalities in the corresponding identities. More explicitly, we say that the

filter U : D
L∞Z
n −→ L∞(Ω,RZ) is time-invariant when for any τ ∈ Z and any z ∈ DL∞Z

n , we have that

(Uτ ◦ U)(z) = (U ◦ Uτ )(z), almost surely.

Analogously, we say that the filter is causal with stochastic inputs when for any two elements z,w ∈ DL∞Z
n

that satisfy that zτ = wτ almost surely, for any τ ≤ t and for a given t ∈ Z, we have that U(z)t = U(w)t,
almost surely. Causal and time-invariant deterministic filters produce almost surely causal and time-
invariant filters when stochastic inputs are presented to them.

In this setup, there is also a correspondence between causal and time-invariant filters U : D
L∞Z
n −→

L∞(Ω,RZ) and functionals HU : D
L∞Z−
n −→ L∞(Ω,R), where D

L∞Z−
n := PZ−

(
D
L∞Z
n

)
.

Given a weighting sequence w : N −→ (0, 1] and a time-invariant filter U : D
L∞Z−
n −→ L∞(Ω,RZ) with

stochastic inputs, we will say that U has the fading memory property with respect to the weighting

sequence w when the corresponding functional HU :

(
D
L∞Z−
n , ‖ · ‖L∞w

)
−→ L∞(Ω,R) is a continuous

map.
Let M > 0 and define, using Lemma 25,

KL∞

M :=
{
z ∈ L∞(Ω, (Rn)Z−) | ‖z‖L∞ ≤M

}
=
{
z ∈ L∞(Ω, (Rn)Z−) | ‖zt‖L∞ ≤M, for all t ∈ Z−

}
.

(4.12)
The sets KL∞

M are the stochastic counterparts of the sets KM in the deterministic setup; we will say
that KL∞

M is a set of almost surely uniformly bounded processes. A stochastic analog of Lemma
1 can be formulated for them with KM replaced by KL∞

M , the norm ‖·‖ by ‖·‖L∞ , and the weighted
norm ‖·‖w by ‖·‖L∞w . Indeed, the following result shows that the fading memory and the universality
properties are naturally inherited by deterministic filters with almost surely uniformly bounded inputs.
We call this fact the deterministic-stochastic transfer principle.

Theorem 27 (Deterministic-stochastic transfer principle) Let M > 0 and let KM and KL∞

M be
the sets of deterministic and stochastic inputs defined in (2.3) and (4.12), respectively. The following
properties hold true:

(i) Let H : (KM , ‖·‖w) −→ R be a causal and time-invariant filter. Then H has the fading memory
property if and only if the corresponding filter with almost surely uniformly bounded inputs has
almost surely bounded outputs, that is, H : (KL∞

M , ‖ · ‖L∞w ) −→ L∞(Ω,R), and it has the fading
memory property.

(ii) Let T := {Hi : (KM , ‖·‖w) −→ R | i ∈ I} be a family of causal and time-invariant fading memory
filters. Then, T is dense in the set (C0(KM ), ‖ · ‖w) if and only if the corresponding family with
inputs in KL∞

M is universal in the set of continuous maps of the type H : (KL∞

M , ‖ · ‖L∞w ) −→
L∞(Ω,R).

A first universality result using RC systems. The following paragraphs contain a stochastic
analog of Theorem 8 which shows that any fading memory filter with almost surely uniformly bounded
inputs can be approximated using the elements of a polynomial algebra of reservoir filters with the
same kind of inputs, provided that it contains the constant functionals and has the separation property.
We note that, as in the deterministic case, the existence of the reservoir filter associated to a reservoir
system like (1.1)-(1.2) is guaranteed only in the presence of the echo state property. The next lemma
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shows that this property is inherited by deterministic fading memory reservoir filters with almost surely
bounded inputs.

Lemma 28 Consider a reservoir system determined by the relations (1.1)–(1.2) and the maps F :
DN × Bn(0,M) −→ DN and h : DN → R, for some n,N ∈ N, M > 0, and DN ⊂ RN . If this
reservoir system has the echo state and the fading memory properties then so does the corresponding
system with stochastic inputs in KL∞

M which, additionally, has an associated reservoir functional HF
h :

(KL∞

M , ‖ · ‖L∞w ) −→ L∞(Ω,R) with almost surely bounded outputs that satisfies the fading memory
property.

Theorem 29 Let M > 0 and let KL∞

M be the set of almost surely uniformly bounded processes introduced
in (4.12). Consider the set R

R := {HFi
hi

: KL∞

M −→ L∞(Ω,R) | hi ∈ Pol(RNi ,R), Fi : RNi × Rn −→ RNi , i ∈ I,Ni ∈ N} (4.13)

formed by deterministic fading memory reservoir filters with respect to a given weighted norm ‖ · ‖w and
driven by stochastic inputs in KL∞

M . Let A(R) be the polynomial algebra generated by R. If the algebra
A(R) has the separation property and contains all the constant functionals, then any deterministic,
causal, time-invariant fading memory filter H : (KL∞

M , ‖ · ‖L∞w ) −→ L∞(Ω,R) can be uniformly approx-
imated by elements in A(R), that is, for any ε > 0, there exist a finite set of indices {i1, . . . , ir} ⊂ I
and a polynomial p : Rr −→ R such that

‖H−HF
h ‖∞ := sup

z∈KL∞
M

{‖H(z)−HF
h (z)‖L∞} < ε with h := p(hi1 , . . . , hir ) and F := (Fi1 , . . . , Fir ).

In the next paragraphs we identify, as in the deterministic case, families of reservoirs that satisfy
the hypotheses of this theorem and where we will eventually impose linearity constraints on the readout
function. The following corollary to Theorem 29 is the stochastic analog of Corollary 9.

Corollary 30 Let M > 0 and let KL∞

M be the set of almost surely uniformly bounded processes intro-
duced in (4.12). Let

Rw := {HF
h : KL∞

M −→ L∞(Ω,R) | h ∈ Pol(RN ,R), F : RN × Rn −→ RN , N ∈ N} (4.14)

be the set of all the reservoir filters defined on KL∞

M that have the FMP with respect to a given weighted
norm ‖ · ‖L∞w . Then Rw is universal, that is, for any time-invariant fading memory filter H : (KL∞

M , ‖ ·
‖L∞w ) −→ L∞(Ω,R) and any ε > 0, there exists a reservoir filter HF

h ∈ Rw such that ‖H −HF
h ‖∞ :=

supz∈KL∞
M
{‖H(z)−HF

h (z)‖L∞} < ε.

Linear reservoir computers with stochastic inputs are universal. As it was the case in the
deterministic setup, we can prove in the stochastic case that the linear RC family introduced in (3.7)-
(3.8) suffices to achieve universality. The proof of the following statement is a direct consequence of
Corollary 11 and Theorem 27.

Corollary 31 Let M > 0 and let KL∞

M be the set of almost surely uniformly bounded processes intro-
duced in (4.12). Let Lε be the family introduced in Corollary 11 and formed by all the linear reservoir
filters HA,c

p determined by matrices A ∈ MN such that σmax(A) < 1 − ε. The elements in Lε map

KL∞

M into L∞(Ω,R) and are time-invariant fading memory filters with respect to the weighted norm
‖ · ‖L∞wρ associated to wρt := (1 − ε)ρt, for any ρ ∈ (0, 1). Moreover, they are universal, that is, for any
time-invariant and causal fading memory filter H : (KL∞

M , ‖ · ‖L∞
wρ

) −→ L∞(Ω,R) and any ε > 0, there

exists HA,c
p ∈ Lε such that ‖H −HA,c

p ‖∞ := supz∈KL∞
M
{‖H(z)−HA,c

p (z)‖L∞} < ε.

The same universality result can be stated for the subfamily DLε ⊂ Lε, formed by the linear reservoir
systems in Lε determined by diagonal matrices, and for NL ⊂ Lε, formed by the linear reservoir systems
determined by nilpotent matrices.
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Remark 32 The linear reservoir filters in NL determined by nilpotent matrices have been used in
Gonon and Ortega (2018) to formulate a Lp version of these universality results.

Remark 33 The previous corollary has interesting consequences in the realm of time series analysis.
Indeed, many well-known parametric time series models consist in autoregressive relations, possibly
nonlinear, driven by independent or uncorrelated innovations. The parameter constraints that are
imposed on them in order to ensure that they have (second order) stationary solutions imply, in may
situations, that the resulting filter has the FMP. In those cases, Corollary 31 allows us to conclude that
when those models are driven by almost surely uniformly bounded innovations, they can be arbitrarily
well approximated by a polynomial function of a vector autoregressive model (VAR) of order 1. This
statement applies, for example, to any stationary ARMA (see Box and Jenkins (1976), Brockwell and
Davis (2006)) or GARCH model (see Engle (1982), Bollerslev (1986), Francq and Zakoian (2010)) driven
by almost surely uniformly bounded innovations.

State-affine reservoir computers with almost surely uniformly bounded inputs are univer-
sal. As it was the case in the deterministic setup, non-homogeneous SAS are universal time-invariant
fading memory filters in the stochastic framework with almost surely uniformly bounded inputs. Their
advantage with respect to the families proposed in the previous corollary is that they use a linear read-
out which is of major importance in practical implementations. More specifically, the following result
holds true as a direct consequence of Theorem 19 and the equivalence stated in Theorem 27.

Theorem 34 (Universality of SAS reservoir computers with almost surely uniformly bounded
inputs) Let KL∞

I ⊂ L∞(Ω,RZ−) be the set of almost surely and uniformly bounded processes in the
interval I = [−1, 1], that is,

KL∞

I :=
{
z ∈ L∞(Ω,RZ−) | ‖zt‖L∞ ≤ 1, for all t ∈ Z−

}
.

Let Sε be the family of functionals Hp,q
W : KL∞

I −→ L∞(Ω,R) induced by the state-affine systems defined
in (3.11)-(3.12) and that satisfy Mp := maxz∈I ‖p(z)‖ < 1 − ε and Mq := maxz∈I ‖q(z)‖ < 1 − ε. The
family Sε forms a polynomial subalgebra of Rwρ (as defined in (4.14)) with wρt := (1 − ε)ρt, made of
fading memory reservoir filters that map into L∞(Ω,R).

Moreover, for any time-invariant and causal fading memory filter H : (KL∞

I , ‖ · ‖L∞
wρ

) −→ L∞(Ω,R)
and any ε > 0, there exist a natural number N ∈ N, polynomials p(z) ∈ MN,N [z], q(z) ∈ MN,1[z] with
Mp,Mq < 1− ε, and a vector W ∈ RN such that

‖H −Hp,q
W ‖∞ := sup

z∈KL∞
I

{‖H(z)−Hp,q
W (z)‖L∞} < ε.

The same universality result can be stated for the smaller subfamily NSε ⊂ Sε formed by SAS
reservoir systems determined by nilpotent polynomials p(z) ∈ Nil[z].

5. Conclusion

This paper studies and proposes solutions for the universality problem in the approximation of fading
memory filters using reservoir computer (RC) systems. RCs are a particular type of recurrent neural
networks that have important applications both in machine learning and in signal processing where they
exhibit superb information processing performances. Their importance is also linked to the possibility
of building highly efficient hardware realizations. RC systems are in general defined as nonlinear state-
space systems determined by a reservoir and a readout map. In many supervised machine learning
applications the readout is chosen to be linear and the reservoir map is randomly generated, which
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reduces the training of a dynamic task to a static regression problem and allows to circumvent well-
known difficulties in the training of generic recurrent neural networks.

The universality question that we addressed consists in finding families of RCs as simple as possible
such that the set of input/output functionals that can be generated with them is dense in a suffi-
ciently rich class. The work presented here is the dynamic counterpart of a statement of this type for
neural networks in a static and deterministic setup in which they have been proved to be universal
approximators.

The RC universality results stated in the paper correspond to two different situations in which
the inputs are either deterministic and uniformly bounded or stochastic and almost surely uniformly
bounded. In both cases we proved two different universality statements. First, we showed that the
family of fading memory RCs is universal in the much larger fading memory filters category. The same
applies to the much smaller RC family containing just linear reservoirs with polynomial readouts, when
certain spectral restrictions are imposed on the reservoir maps. The second result concerns exclusively
reservoir computers with linear readouts, which are closer to the type of RCs used in applications
and hardware implementations. More specifically, we introduced the family of what we called non-
homogeneous state-affine systems and identified sufficient conditions that guarantee that the associated
reservoir computers with linear readouts are causal, time-invariant, and satisfy the echo state and the
fading memory properties. Finally, we stated a universality result for a subset of this class which
was shown to be universal in the same fading memory filters category as above. These universality
statements are then generalized to the stochastic setup for almost surely uniformly bounded inputs. In
particular, we showed that any discrete-time filter that has the fading memory property with almost
surely uniformly bounded stochastic inputs can be uniformly approximated by elements in the non-
homogeneous state-affine family. All the density statements in the paper are formulated with respect
to natural uniform approximation norms that appear in each of the different cases considered.

Despite preexisting work, these universality results are, to our knowledge, the first of their type in the
semi-infinite discrete-time inputs setup. In the stochastic case they open the door to new developments
in the learning theory of stochastic processes.

6. Appendices

6.1 Proof of Lemma 1

Let w : N −→ (0, 1] be an arbitrary weighting sequence. Then, for any z ∈ KM :

‖z‖w := sup
t∈Z−
{‖ztw−t‖} = sup

t∈Z−
{‖zt‖w−t} ≤M · 1 = M <∞.

Regarding the inequalities (2.4) and (2.5), notice that if wt = λt then:

∞∑
t=0

‖z−t‖wt =

∞∑
t=0

‖z−t‖λt =

∞∑
t=0

‖z−t‖(λ1−ρλρ)t =

∞∑
t=0

‖z−t‖λ(1−ρ)tλρt

≤
∞∑
t=0

sup
i∈N

{
‖z−i‖λ(1−ρ)i

}
λρt = sup

i∈N

{
‖z−i‖λ(1−ρ)i

} ∞∑
t=0

λρt = ‖z‖w1−ρ
1

1− λρ
,

which proves (2.4). The proof of (2.5) is similar and follows from noticing that:

∞∑
t=0

‖z−t‖λ(1−ρ)tλρt ≤
∞∑
t=0

sup
i∈N

{
‖z−i‖λρi

}
λ(1−ρ)t) = sup

i∈N

{
‖z−i‖λρi

} ∞∑
t=0

λ(1−ρ)t = ‖z‖wρ
1

1− λ1−ρ . �
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6.2 Proof of Lemma 2

We recall first that by Lemma 1 we have that ‖z‖w <∞, for any z ∈ KM . Second, since (`∞w (Rn), ‖·‖w)
is a Banach space (Grigoryeva and Ortega (2018)), it is hence metrizable and therefore so is (KM , ‖·‖w)
when endowed with the relative topology (see, for instance, Exercise 1, Chapter 2, §21, Munkres (2014)).
We will then conclude the compactness of (KM , ‖·‖w) by showing that this space is sequentially compact
(see, for example, Theorem 28.2 in Munkres (2014)). We proceed by using the strategy in the proof of
Lemma 1 in Boyd and Chua (1985).

For any m ∈ N, let Km
M be the set obtained by projecting into (Rn)

{−m,...,−1,0}
the elements of

KM ⊂ (Rn)Z− . Given an element z ∈ KM , we will denote by z(m) := (z−m, . . . , z0) its projection into

Km
M . Additionally, notice that Km

M = Bn(0,M)
m+1

is compact (and hence sequentially compact) with

the product topology, since it is a product of closed balls Bn(0,M) ⊂ Rn which are compact.
Let {z(n)}n∈N ⊂ KM be a sequence of elements in KM . The argument that we just stated proves

that for any k ∈ N, there is a subset Nk ⊂ N and an element z(k) ∈ Kk
M such that

max
t∈{−k,...,0}

∥∥∥zt(n)− z
(k)
t

∥∥∥ −→ 0, as n→∞, n ∈ Nk.

Moreover, the sets Nk can be constructed so that N ⊃ N1 ⊃ N2 ⊃ · · · and so that z(k) extends z(l) when
k ≥ l. This implies the existence of an element z ∈ KM such that, for each k ∈ N,

max
t∈{−k,...,0}

‖zt(n)− zt‖ −→ 0, as n→∞, n ∈ Nk,

and hence there exists an increasing subsequence nk such that nk ∈ Nk and that for each k0,

max
t∈{−k0,...,0}

‖zt(nk)− zt‖ −→ 0, as k −→∞. (6.1)

We conclude by showing that the sequence {z(nk)}k∈N converges in (KM , ‖·‖w) to the element z ∈ KM .
First, given that wt −→ 0 as t −→∞, then for any ε > 0 there exists k0 such that wk < ε/2M , for any
k ≥ k0. Additionally, since z(nk), z ∈ KM for any k ∈ N, we have that

sup
t≤−k0

{‖zt(nk)− zt‖w−t} ≤ 2Mwk0 < ε. (6.2)

Now, by (6.1) there exists k1 such that for any k ≥ k1

sup
t∈{−k0,...,0}

{‖zt(nk)− zt‖w−t} < sup
t∈{−k0,...,0}

{‖zt(nk)− zt‖} < ε. (6.3)

Consequently, (6.2) and (6.3) imply that for any k > max{k0, k1}, ‖z(nk)− z‖w < ε, as required. �

6.3 Proof of Lemma 7

Let δw(ε) be the epsilon-delta relation for the FMP associated to the weighting sequence w. We now
show that HU has the FMP with respect to w′ via the epsilon-delta relation given by δw

′
(ε) := δw(ε)/λ.

Indeed, for any ε > 0 and any z, s ∈ K such that ‖z− s‖w′ < δw
′
(ε), we have that

‖z−s‖w = sup
t∈Z−
{‖zt−st‖w−t} = sup

t∈Z−

{
‖zt − st‖

w−t
w′−t

w′−t

}
< λ sup

t∈Z−
{‖zt−st‖w′−t} < λ‖z−s‖w′ < λδw

′
(ε) = δw(ε),

and consequently, since HU has the FMP with respect to the weighting sequence w, we can conclude
that |HU (z)−HU (s)| < ε. This shows that the implication

‖z− s‖w′ < δw
′
(ε) =⇒ |HU (z)−HU (s)| < ε

holds, as required. �
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6.4 Proof of Theorem 8

Since the elements in R have the FMP with respect to a given weighted norm ‖ · ‖w, then so do those
in A(R) since polynomial combinations of continuous elements of the form HFi

hi
: (KM , ‖ · ‖w) −→ R

are also continuous. Therefore, under that hypothesis, A(R) is a polynomial subalgebra of the algebra
(C0(KM ), ‖·‖w) of real-valued continuous functions on (KM , ‖·‖w). Since by hypothesis A(R) contains
the constant functionals and separates the points in KM and, by Lemma 2, the set (KM , ‖ · ‖w) is
compact, the Stone-Weierstrass theorem (Theorem 7.3.1 in Dieudonné (1969)) implies that A(R) is
dense in (C0(KM ), ‖ · ‖w), which concludes the proof. �

6.5 Proof of Corollary 11

In order to show that the reservoir systems in Lε induce reservoir filters, we first show that they have
the echo state property by using the following lemma, whose proof can be found in Grigoryeva and
Ortega (2018).

Lemma 35 Let DN ⊂ RN and Dn ⊂ Rn and let F : DN ×Dn −→ DN be a continuous reservoir map.
Suppose that F is a contraction map with contraction constant 0 < r < 1, that is:

‖F (x, z)− F (y, z)‖ ≤ r ‖x− y‖ , for all x,y ∈ DN and all z ∈ Dn,

then the corresponding reservoir system has the echo state property.

We start now by noting that the condition σmax(A) < 1 − ε < 1 implies that the reservoir map
F (x, z) := Ax+cz associated to (3.7) is a contracting map with constant σmax(A) which, by hypothesis,
is smaller than one. Indeed,

‖F (x, z)− F (y, z)‖ = ‖A(x− y)‖ ≤ σmax(A) ‖x− y‖ for all x,y ∈ DN and all z ∈ Dn.

By Lemma 35 we can conclude that this reservoir system has a reservoir filter associated that we now
show is explicitly given by (3.9). We start by proving that the conditions σmax(A) < 1 − ε < 1 and
that the elements in KM are uniformly bounded by a constant M imply that the infinite sum in (3.9)
is convergent. Let n,m ∈ N be such that n < m and let Sn :=

∑n
i=0A

icz−i. Now:

‖Sn − Sm‖ =

∥∥∥∥∥∥
m∑

j=n+1

Aicz−i

∥∥∥∥∥∥ ≤
m∑

j=n+1

‖A‖i2 ‖c‖2 ‖z−i‖ ≤M ‖c‖2
m∑

j=n+1

σmax(A)i

≤M ‖c‖2
∞∑

j=n+1

σmax(A)i = M ‖c‖2
σmax(A)n+1

1− σmax(A)
.

The condition σmax(A) < 1−ε < 1 implies that M ‖c‖2
σmax(A)n+1

1−σmax(A) = M σmax(c)σmax(A)n+1

1−σmax(A) → 0 as n→∞
and hence {Sn}n∈N is a Cauchy sequence in RN that consequently converges.

The fact that the filter determined by the expression (3.9) is a solution of the recursions (3.7)-(3.8) is

a straightforward verification. In order to carry it out, it suffices to use that the filter UA,ch (z) associated

to the functional HA,c
h (z) is given by

UA,ch (z)t = h

( ∞∑
i=0

Aiczt−i

)
,

and that the time series x̃t defined by x̃t :=
∑∞
i=0A

iczt−i satisfies the recursion relation (3.7).
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We now verify by hand that the filters UA,ch are time-invariant. Let z ∈ KM and t, τ ∈ N arbitrary
and let Uτ be the corresponding time delay operator, then:

(
UA,ch ◦ Uτ

)
(z)t =

(
UA,ch (Uτ (z))

)
t

= h

( ∞∑
i=0

AicUτ (z)t−i

)
= h

( ∞∑
i=0

Aiczt−i−τ

)
(6.4)

At the same time,

(
Uτ ◦ UA,ch

)
(z)t =

(
Uτ

(
UA,ch (z)

))
t

= UA,ch (z)t−τ = h

( ∞∑
i=0

Aiczt−τ−i

)
,

which coincides with (6.4) and proves the time-invariance of UA,ch .
The next step consists in showing that the elements in Lε are λρ-exponential fading memory filters,

with λρ := (1 − ε)ρ, for any ρ ∈ (0, 1), that is, Lε ⊂ Rwρ , with wρ : N → (0, 1] the sequence given by
wρt := (1 − ε)ρt. Let ‖ · ‖wρ be the associated weighted norm in KM and let z ∈ KM be an arbitrary
element. We start by noting that the continuity of the readout map h : DN → R implies that for any
ε > 0 there exists an element δ(ε) > 0 such that for any v ∈ DN that satisfies∥∥∥∥∥v −

∞∑
i=0

Aiczt−i

∥∥∥∥∥ < δ(ε), then

∣∣∣∣∣h(v)− h

( ∞∑
i=0

Aiczt−i

)∣∣∣∣∣ < ε. (6.5)

We now show that for any s ∈ KM such that

‖s− z‖wρ <
δ(ε)

(
1− (1− ε)1−ρ)
σmax(c)

, then
∣∣∣HA,c

h (s)−HA,c
h (z)

∣∣∣ < ε. (6.6)

Indeed,∥∥∥∥∥
∞∑
i=0

Aicst−i −
∞∑
i=0

Aiczt−i

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
i=0

Aic(st−i − zt−i)

∥∥∥∥∥ ≤
∞∑
i=0

∥∥Aic(st−i − zt−i)
∥∥

≤
∞∑
i=0

σmax(Ai) ‖c(st−i − zt−i)‖ ≤
∞∑
i=0

σmax(A)i ‖c(st−i − zt−i)‖ ≤
∞∑
i=0

(1− ε)i ‖c(st−i − zt−i)‖ .

If we now use (2.5) in Lemma 1 and the hypothesis in (6.6), we can conclude that

∞∑
i=0

(1− ε)i ‖c(st−i − zt−i)‖ ≤ σmax(c)

∞∑
i=0

(1− ε)i ‖(st−i − zt−i)‖ ≤
σmax(c)‖s− z‖wρ

1− (1− ε)1−ρ < δ(ε),

which proves the continuity of the map HA,c
h : (KM , ‖ · ‖wρ) −→ R and hence shows that HA,c

h is a
λρ-exponential fading memory filter.

In order to establish the universality statement in the corollary we will proceed, as in the proof
of Theorem 8, by showing that Lε is a polynomial algebra that contains the constant functionals and
separates the points in KM and then by invoking the Stone-Weierstrass theorem using the compactness
of (KM , ‖ · ‖wρ).

In order to show that (Lε, ‖ · ‖wρ) is a polynomial algebra, notice first that if A1, A2 ∈MN are such
that σmax(A1), σmax(A2) < 1− ε, then

σmax(A1 ⊕A2) = max (σmax(A1), σmax(A2)) < 1− ε. (6.7)
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If we now take ci ∈ MNi,n, i ∈ {1, 2} and h1, h2 two real-valued polynomials in N1 and N2 variables,
respectively, we have by the first part of the corollary that we just proved that the filter functionals
HA1,c1

h1
and HA2,c2

h2
are well defined. Additionally, by (3.3)-(3.4) so are the combinations HA1,c1

h1
·HA2,c2

h2

and HA1,c1

h1
+ λHA2,c2

h2
that satisfy:

HA1,c1

h1
·HA2,c2

h2
= HA1⊕A2,c1⊕c2

h1·h2
, HA1,c1

h1
+ λHA2,c2

h2
= HA1⊕A2,c1⊕c2

h1⊕λh2
, λ ∈ R. (6.8)

Using the relations (6.8) and (6.7), we can conclude that both HA1,c1

h1
· HA2,c2

h2
and HA1,c1

h1
+ λHA2,c2

h2

belong to Lε ⊂ Rwρ . This implies that (Lε, ‖ · ‖wρ) is a polynomial subalgebra of (Rwρ , ‖ · ‖wρ)
Since Lε contains the constant functionals (just take constant readout maps h), in order to conclude

the proof, it is enough to show that the elements in Lε separate points in KM . In the proof of this
statement we need the following elementary fact about analytic functions.

Lemma 36 Let M > 0 and let z ∈ [−M,M ]Z− . Define the real valued function fz(x) :=
∑∞
j=0 z−jx

j.
This function is real analytic in the interval (−1, 1). Moreover, if z 6= 0, then there exists a point
x0 ∈ (−1, 1) such that fz(x0) 6= 0.

Proof of the lemma. We note first that for any x ∈ (−1, 1) and any s ∈ N we have that∣∣∣∣∣∣
s∑
j=0

z−jx
j

∣∣∣∣∣∣ ≤
s∑
j=0

|z−j |
∣∣xj∣∣ ≤M s∑

j=0

|x|j ≤ M

1− |x|
.

Taking the limit s→∞, we obtain that

|fz(x)| ≤ M

1− |x|
, for all x ∈ (−1, 1),

which proves the first claim in the lemma. Now, by the uniqueness theorem for the representation of
analytic functions by power series (see Brown and Churchill (2009), page 217), the series

∑∞
j=0 z−jx

j

is the Taylor expansion around 0 of fz(x). Since z 6= 0 by hypothesis, some of the derivatives of fz(x)
are non-zero and hence this function cannot be flat, which implies that there exists a point x0 ∈ (−1, 1)
such that fz(x0) 6= 0. H

We now show that the elements in Lε separate points in KM . Take z1, z2 ∈ KM ⊂ (Rn)
Z− such that

z1 6= z2 and let A ∈ M(n, n), with σmax(A) < 1 − ε, and c := In. Let UA,c : KM −→ (Rn)
Z− be the

linear filter associated to A and c via the recursion (3.7). Using the preceding arguments we have that

UA,c(z)t =

∞∑
j=0

Ajzt−j . (6.9)

Since z1 6= z2, then there exists and index i ∈ {1, . . . , n} and t ∈ Z− such that
(
zi1
)
t
6=
(
zi2
)
t
. Let now

b ∈ (−1 + ε, 1− ε) and let Ab := diag (0, . . . , 0, b, 0, . . . , 0) ∈ Dn be the matrix that has the element b in
the i-th entry. It is easy to see using (6.9) that

UAb,c(z)t =

0, . . . , 0,

∞∑
j=0

bjzit−j , 0, . . . , 0

> , with

∞∑
j=0

bjzit−j in the i-th entry. (6.10)

Let s := z1 − z2 6= 0. Notice that by (6.10) we have that UAb,c(s)0 =
(

0, . . . , 0,
∑∞
j=0 b

jsi−j , 0, . . . , 0
)>

.

Given that the vector si ∈ RZ− is non-zero, Lemma 36, implies the existence of an element b0 ∈

24



Universal reservoir computers with linear readouts using non-homogeneous state-affine systems

(−1 + ε, 1 − ε) such that UAb0 ,c(s)0 6= 0, which is equivalent to UAb0 ,c(z1)0 6= UAb0 ,c(z2)0. Using the

polynomial h(x) := xi ∈ R, the previous relation implies that U
Ab0 ,c

h (z1)0 6= U
Ab0 ,c

h (z2)0 or, equivalently,

H
Ab0 ,c

h (z1) 6= H
Ab0 ,c

h (z2) , as required.

We conclude the proof by establishing the universality the families DLε and NL formed by the linear
reservoir filters generated by diagonal and nilpotent matrices, respectively. First, in the case of DLε,
the statement is a consequence of (6.8) and of the fact that when the matrices A1 and A2 are diagonal,
then the matrix associated to the linear map A1 ⊕ A2 is also diagonal. Additionally, notice that the
point separation property for Lε has been proved using diagonal matrices in (6.10) and hence it also
holds for DLε. The claim follows from the Stone-Weierstrass theorem.

Finally, in the case of NL, the proof also follows from (6.8) since it is straightforward to see that
when the matrices A1 and A2 are nilpotent, then the matrix associated to the linear map A1 ⊕ A2 is
also nilpotent. It is only the point separation property of N that requires a separate argument that
we provide in the following lines. Let z1, z2 ∈ KM such that z1 6= z2 and let t0 ∈ N be the first time
index for which (z1)−t0 6= (z2)−t0 , that is, (z1)−t = (z2)−t, for all t ∈ {0, 1, . . . , t0 − 1}. Let now

i0 ∈ {1, . . . , n} be such that
(
zi01
)
−t0
6=
(
zi02
)
−t0

. Let now At0+1 ∈ Nilt0+1
t0+1 be the upper shift matrix in

dimension t0 + 1, that is, At0+1 ∈Mt0+1 is by definition a superdiagonal matrix with a diagonal of ones
above the main diagonal, and construct an element c ∈ Mt0+1,n whose last row is given by a vector of
zeros with the exception of a one in the entry i0. The nilpotency of At0+1 implies

UAt0+1,c(z)0 =

t0∑
j=0

Ajt0+1cz−j .

When we apply this expression to z1 and z2, since (z1)−t = (z2)−t, for all t ∈ {0, 1, . . . , t0 − 1}, we
obtain that

UAt0+1,c(z1 − z2)0 = At0t0+1c(z1 − z2)−t0 =
(

0, . . . , 0,
(
zi01
)
−t0
−
(
zi02
)
−t0

)>
6= 0.

Using the polynomial h(x) := xt0+1, this relation implies that U
At0+1,c

h (z1)0 6= U
At0+1,c

h (z2)0 or, equiv-

alently, H
At0+1,c

h (z1) 6= H
At0+1,c

h (z2) , as required. �

6.6 Proof of Proposition 14

We start by noting, as we did in the proof of Corollary 11, that the condition (3.13) implies that the
reservoir map associated to (3.11) is a contraction and hence, by Lemma 35, it satisfies the echo state
property and has a well-defined associated filter.

We now prove that the condition (3.13) implies the convergence of the series in the expression (3.14).
Let K1 := maxz∈I ‖p(z)‖2 = maxz∈I σmax(p(z)) < 1 and K2 := maxz∈I ‖q(z)‖2 = maxz∈I σmax(q(z));
notice that K1 and K2 are well-defined due to the compactness of I. Let now n,m ∈ N be such that

n < m and let Sn :=
∑n
j=0

(∏j−1
k=0 p(zt−k)

)
q(zt−j) ∈ RN . Then,

‖Sn − Sm‖ =

∥∥∥∥∥∥
m∑

j=n+1

(
j−1∏
k=0

p(zt−k)

)
q(zt−j)

∥∥∥∥∥∥ ≤
m∑

j=n+1

∥∥∥∥∥
j−1∏
k=0

p(zt−k)

∥∥∥∥∥
2

‖q(zt−j)‖

≤
m∑

j=n+1

j−1∏
k=0

‖p(zt−k)‖2 ‖q(zt−j)‖ ≤ K2

m∑
j=n+1

Kj
1 ≤ K2

∞∑
j=n+1

Kj
1 =

K2K
n+1
1

1−K1
.
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The condition K1 < 1 implies that
K2K

n+1
1

1−K1
→ 0 as n → ∞ and hence {Sn}n∈N is a Cauchy sequence

in RN that consequently converges. This proves the convergence of the infinite series in (3.14) and
the causal character of the filter that it defines. The time-invariance can also be easily established by
mimicking the verification that we carried out in the proof of Corollary 11. We now prove that (3.14)
is indeed a solution of (3.11):

p(zt)xt−1 + q(zt) = p(zt)

 ∞∑
j=0

(
j−1∏
k=0

p(zt−1−k)

)
q(zt−1−j)

+ q(zt) = q(zt) + p(zt)q(zt−1)

+ p(zt)p(zt−1)q(zt−2) + p(zt)p(zt−1)p(zt−2)q(zt−3) + · · · =
∞∑
j=0

(
j−1∏
k=0

p(zt−k)

)
q(zt−j) = xt.

We conclude by proving the inequality in (3.16). Note first that for any m ∈ N,∥∥∥∥∥∥
m∑
j=0

(
j−1∏
k=0

p(zt−k)

)
q(zt−j)

∥∥∥∥∥∥ ≤
m∑
j=0

∥∥∥∥∥
j−1∏
k=0

p(zt−k)

∥∥∥∥∥
2

‖q(zt−j)‖

≤
m∑
j=0

j−1∏
k=0

‖p(zt−k)‖2 ‖q(zt−j)‖ ≤
K2

(
1−Km+1

1

)
1−K1

,

and hence, by the continuity of the norm and for any t ∈ Z:

‖xt‖ = lim
m→∞

∥∥∥∥∥∥
m∑
j=0

(
j−1∏
k=0

p(zt−k)

)
q(zt−j)

∥∥∥∥∥∥ ≤ lim
m→∞

K2

(
1−Km+1

1

)
1−K1

=
K2

1−K1
. �

6.7 Proof of Lemma 15

(i) =⇒ (ii): ‖A0‖2 + ‖A1‖2 + · · ·+ ‖An1
‖2 <

∑n1

i=0 λ = λ(n1 + 1) < 1.
(ii) =⇒ (iii): ‖p(z)‖2 = ‖A0 + zA1 + z2A2 + · · · + zn1An1‖2 ≤ ‖A0‖2 + |z|‖A1‖2 + |z2|‖A2‖2 + · · · +
|zn1 |‖An1‖2 < ‖A0‖2 + ‖A1‖2 + · · ·+ ‖An1‖2 < 1. �

6.8 Proof of Proposition 16

We start by formulating and proving an elementary result that will be needed later on.

Lemma 37 Let f : U ⊂ Rn −→ Mm be a differentiable function defined on the convex set U . For any
z ∈ U denote by ∂if(z) ∈ Mm the matrix containing the partial derivatives of the components of f with
respect to their ith-entry, i ∈ {1, . . . , n}. Then, for any x,y ∈ U we have:

‖f(y)− f(x)‖2 ≤
√
nm max

i∈{1,...,n}

(
sup
z∈U
{‖∂if(z)‖2}

)
‖x− y‖ . (6.11)

Proof. Given A = (Ai,j) ∈ Mn,m, let ‖A‖F := tr
(
A>A

)
=
∑n
i=1

∑m
j=1A

2
i,j be its Frobenius norm.

Recall (see Theorem 5.6.34 and Exercise 5.6.P24 in Horn and Johnson (2013)) that

‖A‖2 ≤ ‖A‖F ≤
√
r ‖A‖2 , (6.12)
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where r is the rank of A. Consider now x,y ∈ U arbitrary and let Df(z) : Rn −→Mm be the differential
of f evaluated at z ∈ U . The convexity of U implies that the Mean Value Inequality holds (see Theorem
2.4.8 in Abraham et al. (1988)) and hence:

‖f(y)− f(x)‖F ≤ sup
t∈[0,1]

{‖Df((1− t)x + ty)‖2 ‖x− y‖}. (6.13)

The first inequality in (6.12) and (6.13) imply that

‖f(y)− f(x)‖2 ≤ sup
z∈U
{‖Df(z)‖2 ‖x− y‖}. (6.14)

At the same time, notice that by (6.12)

‖Df(z)‖22 ≤ ‖Df(z)‖2F =

n∑
i=1

m∑
j=1

m∑
k=1

∂if
2
jk(z) =

n∑
i=1

‖∂if(z)‖2F

≤ m
n∑
i=1

‖∂if(z)‖22 ≤ mn max
i∈{1,...,n}

(
‖∂if(z)‖22

)
.

This inequality, together with (6.14), imply the statement (6.11) since the maximum and the supremum
can be trivially exchanged. H

We now carry out the proof of the proposition under the hypothesis (iii) in Lemma 15 which is
implied by the other two. The modifications necessary to establish the result under the other two
hypotheses are straightforward. Consider two arbitrary elements z, s ∈ IZ− . Then, by the Cauchy-
Schwarz and Minkowski inequalities:

|Hp,q
W (z)−Hp,q

W (s)| =

∣∣∣∣∣∣W>

 ∞∑
j=0

((
j−1∏
k=0

p(z−k)

)
q(z−j)−

(
j−1∏
k=0

p(s−k)

)
q(s−j)

)∣∣∣∣∣∣
≤ ‖W‖

∞∑
j=0

∥∥∥aj(z−j+1)q(z−j)− aj(s−j+1)q(s−j)
∥∥∥ , where aj(z−j+1) :=

j−1∏
k=0

p(z−k). (6.15)

We now bound the right hand side of (6.15) as follows:

∞∑
j=0

∥∥∥aj(z−j+1)q(z−j)− aj(s−j+1)q(s−j)
∥∥∥

=

∞∑
j=0

∥∥∥aj(z−j+1)q(z−j) + aj(z−j+1)q(s−j)− aj(z−j+1)q(s−j)− aj(s−j+1)q(s−j)
∥∥∥

≤
∞∑
j=0

∥∥∥aj(z−j+1)
∥∥∥

2
‖q(z−j)− q(s−j)‖+

∥∥∥aj(z−j+1)− aj(s−j+1)
∥∥∥

2
‖q(s−j)‖ (6.16)

If Lq is a Lipschitz constant of q : I −→ RN then∥∥∥aj(z−j+1)
∥∥∥

2
‖q(z−j)− q(s−j)‖ ≤M j

pLq |z−j − s−j | , (6.17)

which inserted in (6.16) and in (6.15) implies that

|Hp,q
W (z)−Hp,q

W (s)| ≤ ‖W‖Lq

 ∞∑
j=0

M j
p |z−j − s−j |+

∞∑
j=0

∥∥∥aj(z−j+1)− aj(s−j+1)
∥∥∥

2

 (6.18)
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We now bound above the second summand in (6.18) using the inequality (6.11) in the statement of
Lemma 37 as well as the following identity:

aj(z−j+1)− aj(s−j+1) =

j−1∑
l=0

(p(s0) · · · p(s−(l−1)) · p(z−l) · p(z−(l+1)) · · · p(z−(j−1))

− p(s0) · · · p(s−(l−1)) · p(s−l) · p(z−(l+1)) · · · p(z−(j−1))). (6.19)

This equality simply follows from writing:

aj(z−j+1)−aj(s−j+1) =

j−1∏
l=0

p(z−l)−
j−1∏
l=0

p(s−l) = p(z0)p(z−1) · · · p(z−(j−1))−p(s0)p(s−1) · · · p(s−(j−1))

= p(z0)p(z−1) · · · p(z−(j−1))− p(s0)p(s−1) · · · p(s−(j−1))

+

{
p(s0)p(z−1) · · · p(z−(j−1))− p(s0)p(z−1) · · · p(z−(j−1))

+ p(s0)p(s−1)p(z−2) · · · p(z−(j−1))− p(s0)p(s−1)p(z−2) · · · p(z−(j−1))

+· · ·+p(s0) · · · p(s−(l−1))p(z−l)p(z−(l+1)) · · · p(z−(j−1))−p(s0) · · · p(s−(l−1))p(z−l)p(z−(l+1)) · · · p(z−(j−1))

+ · · ·+ p(s0) · · · p(s−(j−2))p(z−(j−1))− p(s0) · · · p(s−(j−2))p(z−(j−1))

}

=

j−1∑
l=0

(p(s0) · · · p(s−(l−1)) · p(z−l) · p(z−(l+1)) · · · p(z−(j−1))

− p(s0) · · · p(s−(l−1)) · p(s−l) · p(z−(l+1)) · · · p(z−(j−1))),

where the 2(j − 1) summands inside the braces are obtained by adding and subtracting polynomials
recursively constructed out of aj(z−j+1) by changing the variables of the first k factors, k ∈ {1, · · · , j−1}.
We then combine all the (2k−1)-th with the (2k+2)−th summands of the resulting expression in order to
obtain the first j−1 terms in the sum in (6.19). Then the last j-th term results from combining the second
with the one before last summands, that is, p(s0)p(s−1) · · · p(s−(j−1)) and p(s0) · · · p(s−(j−2))p(z−(j−1)),
respectively.

Using the relation (6.19) we can write:

∥∥∥aj(z−j+1)− aj(s−j+1)
∥∥∥

2
≤

j−1∑
l=0

∥∥p(s0) · · · p(s−(l−1)) · (p(z−l)− p(s−l)) · p(z−(l+1)) · · · p(z−(j−1))
∥∥

2

≤
j−1∑
l=0

‖p(s0)‖2 · · ·
∥∥p(s−(l−1))

∥∥
2
· ‖p(z−l)− p(s−l)‖2 ·

∥∥p(z−(l+1))
∥∥

2
· · ·
∥∥p(z−(j−1))

∥∥
2

≤M j−1
p

√
N sup

z∈I
{‖p′(z)‖2}

j∑
l=1

|z−j+l − s−j+l| ,

where the last inequality is a consequence of (6.11). Let Mp′ :=
√
N supz∈I{‖p′(z)‖2}, then

∥∥∥aj(z−j+1)− aj(s−j+1)
∥∥∥

2
≤ Mp′

Mp
M j
p

j∑
l=1

|z−j+l − s−j+l| =
Mp′

Mp

j∑
l=1

M l
pM

j−l
p

∣∣z−(j−l) − s−(j−l)
∣∣
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Since the last term in this inequality is one summand of the Cauchy product of the series with general
terms M j

p and M j
p |z−j − s−j | and these two series are absolutely convergent (recall the statement (2.4)),

we can conclude (see, for instance, §8.24 in Apostol (1974)) that

∞∑
j=0

∥∥∥aj(z−j+1)− aj(s−j+1)
∥∥∥

2
≤ Mp′

Mp

∞∑
j=0

j∑
l=1

M l
pM

j−l
p

∣∣z−(j−l) − s−(j−l)
∣∣

=
Mp′

Mp

1

1−Mp

∞∑
j=0

M j
p |z−j − s−j | .

If we now substitute this relation in (6.18) and we use Lemma 1 with weighting sequences wρt := Mρt
p ,

for any ρ ∈ (0, 1), we obtain that:

|Hp,q
W (z)−Hp,q

W (s)| ≤ ‖W‖Lq
(

1 +
Mp′

Mp

1

1−Mp

) ∞∑
j=0

M j
p |z−j − s−j |

≤ ‖W‖Lq
(

1 +
Mp′

Mp

1

1−Mp

)(
1

1−M1−ρ
p

)
‖z− s‖wρ ,

which proves the continuity of the map Hp,q
W : (IZ− , ‖ · ‖wρ) −→ R, as required. �

6.9 Proof of Proposition 17

We first recall that since by hypothesis the reservoir functionals Hp1,q1
W1

, Hp2,q2
W2

are well-defined then, by
the comments that follow (3.5), so are Hp1,q1

W1
+ λHp2,q2

W2
and Hp1,q1

W1
·Hp2,q2

W2
.

The proof of (i) is a straightforward verification. As to (ii), denote first by y1
t , y

2
t and x1

t ,x
2
t the

outputs and the state variables, respectively, of the SAS corresponding to the two functionals that we
are considering. We note first that by (3.12):

y1
t · y2

t = W>
1 x1

t ·W>
2 x2

t = (W1 ⊗W2)
>

(x1
t ⊗ x2

t ).

Using (3.11) it can be readily verified that the time evolution of the tensor product x1
t ⊗ x2

t is given by

x1
t ⊗ x2

t = (p1(zt)⊗ p2(zt))(x
1
t−1 ⊗ x2

t−1) + p1(zt)x
1
t−1 ⊗ q2(zt) + q1(zt)⊗ p2(zt)x

2
t−1 + q1(zt)⊗ q2(zt),

= (p1 ⊗ p2)(zt)(x
1
t−1 ⊗ x2

t−1) + p1(zt)x
1
t−1 ⊗ q2(zt) + q1(zt)⊗ p2(zt)x

2
t−1 + (q1 ⊗ q2)(zt),

which proves (3.23) and hence (3.22).
In order to show that the reservoir functionals on the right hand side of (3.21) and (3.22) are

well-defined we prove the following lemma.

Lemma 38 Let p1(z) ∈ MN1,M1
[z] and p2(z) ∈ MN2,M2

[z] be two polynomials with matrix coefficients
and assume that they satisfy that ‖p1(z)‖2 < 1 − ε and ‖p2(z)‖2 < 1 − ε for all z ∈ I := [−1, 1] and a
given 0 < ε > 1. Then:

(i) ‖p1 ⊕ p2(z)‖2 < 1− ε,

(ii) ‖p1 ⊗ p2(z)‖2 < 1− ε,

for all z ∈ I := [−1, 1].
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Proof of the lemma. Let x = x1 ⊕ x2 ∈ RM1 ⊕ RM2 . Then, in order to prove part (i) note that

‖(p1 ⊕ p2)(z) · x‖2 = ‖(p1(z) · x1, p2(z) · x2)‖2 = ‖p1(z) · x1‖2 + ‖p2(z) · x2‖2

≤ ‖p1(z)‖22‖x1‖2 + ‖p2(z)‖22‖x2‖2 ≤ (1− ε)2
(
‖x1‖2 + ‖x2‖2

)
= (1− ε)2‖x‖2.

This inequality implies that

‖p1 ⊕ p2(z)‖2 = sup
x6=0

{
‖(p1 ⊕ p2)(z) · x‖

‖x‖

}
≤ sup

x6=0

{
(1− ε)‖x‖
‖x‖

}
= 1− ε, as required.

As to the statement in part (ii):

‖p1 ⊗ p2(z)‖2 = σmax(p1 ⊗ p2(z)) = σmax(p1(z))σmax(p2(z)) = ‖p1(z)‖2‖p2(z)‖2 < (1− ε)2 < (1− ε). H

Now, the first part of this lemma and Proposition 14 guarantee that Hp1⊕p2,q1⊕q2
W1⊕λW2

is well-defined.

The same conclusion holds for H
p,q1⊕q2⊕(q1⊗q2)
0⊕0⊕(W1⊗W2) because due to the block diagonal character of (3.23)

then σmax(p(z)) = σmax((p1(z)⊕ p2(z)⊕ (p1 ⊗ p2) (z)) = ‖p1(z)⊕ p2(z)⊕ (p1 ⊗ p2) (z)‖2. By parts (i)
and (ii) in Lemma 38 we can conclude that ‖p(z)‖2 < 1− ε for all z ∈ [−1, 1] and, again by Proposition

14, the reservoir functional H
p,q1⊕q2⊕(q1⊗q2)
0⊕0⊕(W1⊗W2) is well-defined. �

6.10 Proof of Theorem 19

Note first that the hypothesis Mp < 1 − ε < 1 on the polynomials p associated to the elements in Sε
implies, by Propositions 14 and 16, that this family is made of time-invariant reservoir filters that have
the FMP with respect to weighting sequences of the form wpt := Mρt

p , ρ ∈ (0, 1). Additionally, using
Lemma 7 and the hypothesis Mp < 1 − ε, for a fixed given ε ∈ (0, 1), we can conclude that all the
reservoir filters in Sε have the FMP with the common weighting sequence wρt := (1− ε)ρt, ρ ∈ (0, 1).

The elements in Sε form a polynomial algebra as a consequence of Lemma 38 and Proposition 17.
Moreover, the family Sε has the point separation property and contains all the constant functionals.
Indeed, since Sε includes the linear family Lε, we recall that in Appendix 6.5 we proved that given
z1, z2 ∈ KM ⊂ (Rn)

Z− such that z1 6= z2, there exists A ∈ M(n, n), with σmax(A) < 1 − ε and c := In
such that UA,c(z1)0 6= UA,c(z2)0. The point separation property follows from choosing any vector

W ∈ RN such that W>(UA,c(z1))0 6= W>(UA,c(z2))0, which implies that UA,cW (z1)0 6= UA,cW (z2)0 and
hence HUA,c

W
(z1) 6= HUA,c

W
(z2), as required.

All the constant functionals can be obtained by taking for p the zero polynomial and for q the
constant polynomials (q has degree zero). In that case, the state variables are a constant sequence
xt = q and the associated functional is the constant map H0,q

W (z) = W>q, for all z ∈ KM .
The universality result follows hence from the Stone-Weierstrass Theorem and the compactness of

(IZ− , ‖ · ‖wρ) established in Lemma 2.
Finally, we prove the statement regarding the family NSε determined by nilpotent polynomials p.

First, by expressions (3.21), (3.22), and (3.23), it is easy to show that this family is a polynomial algebra.
The only point that requires some detail is the fact that the k-th power of the polynomial p in (3.23)
that is obtained in the product of the two SAS reservoir functionals Hp1,q1

W1
and Hp2,q2

W2
is given by

pk(z) :=

 pk1(z) 0 0
0 pk2(z) 0

pk1 ⊗ qk−1
2 (z) qk−1

1 ⊗ pk2(z) pk1 ⊗ pk2(z)

 ,

which shows that if p1 and p2 are nilpotent then so is the associated polynomial p. The point separation
property is, again, inherited from the proof of linear case provided in the Appendix 6.5. �
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6.11 Proof of Lemma 24

(i) Let A :=
{
ρ ∈ R+ | ‖X‖B ≤ ρ almost surely

}
. It suffices to show that ‖X‖L∞ := inf A ∈ A, which

implies that ‖X‖B ≤ ‖X‖L∞ almost surely. Indeed, consider the sequence ‖X‖L∞ + 1/j, j ∈ N. By the
approximation property of the infimum, there exists a decreasing sequence of numbers {ρj}j∈N ⊂ A in
A satisfying ‖X‖L∞ ≤ ρj < ‖X‖L∞ + 1/j for all j ∈ N. Define F := {ω ∈ Ω | ‖X(ω)‖B > ‖X‖L∞} and
Fj := {ω ∈ Ω | ‖X(ω)‖B > ρj}. It is easy to see that Fj ⊂ Fj+1, j ∈ N and that limj→∞ Fj = F and,
consequently, (see Lemma 5, page 7 in Grimmett and Stirzaker (2001)) limj→∞ P(Fj) = P(F ). Since
by construction P(Fj) = 0 for all j ∈ N then P(F ) = 0 necessarily, which shows that ‖X‖L∞ ∈ A, as
required.
(ii) If ‖X‖L∞ ≤ C then by part (i), ‖X‖B ≤ ‖X‖L∞ ≤ C almost surely. Conversely, if ‖X‖B ≤ C almost

surely, then C ∈ A =
{
ρ ∈ R+ | ‖X‖B ≤ ρ almost surely

}
. Consequently, ‖X‖L∞ = inf A ≤ C ∈ A,

as required.
(iii) Suppose first that ‖X‖B ≤ C almost surely and define F := {ω ∈ Ω | ‖X(ω)‖B > C}. By hypoth-
esis, we have that P(F ) = 0 and P(Ω \ F ) = 1. Then,

E
[
‖X‖kB

]
=

∫
Ω

‖X‖kB dP =

∫
Ω\F
‖X‖kB dP +

∫
F

‖X‖kB dP

=

∫
Ω\F
‖X‖kB dP ≤

∫
Ω\F

CkdP = CkP(Ω \ F ) = Ck,

as required. Conversely, assume that E
[
‖X‖kB

]
≤ Ck, for any k ∈ N, and define

Fn :=

{
ω ∈ Ω | ‖X(ω)‖B > C +

1

n

}
,

for all n ≥ 1. It is easy to see that Fn ⊂ Fn+1 and that limn→∞ Fn = F and, consequently, (see Lemma
5, page 7 in Grimmett and Stirzaker (2001)) limn→∞ P(Fn) = P(F ). Now,

Ck ≥ E
[
‖X‖kB

]
=

∫
Ω

‖X‖kB dP =

∫
Ω\Fn

‖X‖kB dP +

∫
Fn

‖X‖kB dP

≥
∫
Fn

‖X‖kB dP ≥
∫
Fn

(
C +

1

n

)k
dP =

(
C +

1

n

)k
P(Fn),

which implies that P(Fn) ≤ Ck/
(
C + 1

n

)k
for any k ∈ N and hence, by taking the limit k → ∞, we

can conclude that P(Fn) = 0. Consequently, P(F ) = limn→∞ P(Fn) = 0, which shows that ‖X‖B ≤ C
almost surely.
(iv) Let || · || denote the Euclidean norm on Rn. Since |Xi| ≤ ‖X‖ always and by part (i) ‖X‖ ≤ ‖X‖L∞
almost surely, we can conclude that |Xi| ≤ ‖X‖L∞ almost surely. This implies that Xi ∈ L∞(Ω,R) and
hence the statement follows from part (iii). �

6.12 Proof of Lemma 25

We start by proving by contradiction that

ess sup
ω∈Ω

{
sup
t∈Z
{‖zt(ω)‖}

}
≥ sup

t∈Z

{
ess sup
ω∈Ω

{‖zt(ω)‖}
}
. (6.20)

Indeed, suppose that

ess sup
ω∈Ω

{
sup
t∈Z
{‖zt(ω)‖}

}
< sup

t∈Z

{
ess sup
ω∈Ω

{‖zt(ω)‖}
}
. (6.21)
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By the approximation property of the supremum (see Theorem 1.14 in Apostol (1974)), there exists
t0 ∈ Z such that

ess sup
ω∈Ω

{
sup
t∈Z
{‖zt(ω)‖}

}
< ess sup

ω∈Ω
{‖zt0(ω)‖} ≤ sup

t∈Z

{
ess sup
ω∈Ω

{‖zt(ω)‖}
}
. (6.22)

However, ‖zt0(ω)‖ ≤ supt∈Z{‖zt(ω)‖} for all ω ∈ Ω and hence by part (i) in Lemma 24

‖zt0(ω)‖ ≤ sup
t∈Z
{‖zt(ω)‖} ≤ ess sup

ω∈Ω

{
sup
t∈Z
{‖zt(ω)‖}

}
, almost surely.

Now, by part (ii) in Lemma 24, this implies that

ess sup
ω∈Ω

{‖zt0(ω)‖} ≤ ess sup
ω∈Ω

{
sup
t∈Z
{‖zt(ω)‖}

}
.

However, this expression is in contradiction with the first inequality in (6.22) and hence the assumption
(6.21) cannot be correct. This argument implies that the inequality (6.20) holds.

We now prove the reverse inequality, that is,

ess sup
ω∈Ω

{
sup
t∈Z
{‖zt(ω)‖}

}
≤ sup

t∈Z

{
ess sup
ω∈Ω

{‖zt(ω)‖}
}
. (6.23)

By part (ii) of Lemma 24, this inequality holds if and only if

sup
t∈Z
{‖zt(ω)‖} ≤ sup

t∈Z

{
ess sup
ω∈Ω

{‖zt(ω)‖}
}
, almost surely. (6.24)

Now, by part (i) in Lemma 24, we have that ‖zt(ω)‖ ≤ ess supω∈Ω {‖zt(ω)‖}, almost surely and for
each fixed t ∈ Z. Let At ⊂ Ω be the zero-measure set such that ‖zt(ω)‖ > ess supω∈Ω {‖zt(ω)‖} for all
ω ∈ At. Let A :=

⋃
t∈ZAt. Notice that P(A) = P

(⋃
t∈ZAt

)
≤
∑
t∈Z P(At) = 0 and hence B := Ac has

measure one and
‖zt(ω)‖ ≤ ess sup

ω∈Ω
{‖zt(ω)‖} , for all ω ∈ B and all t ∈ Z.

Since B has measure one, this inequality is equivalent to (6.24), which guarantees that (6.23) holds.
The inequalities (6.20) and (6.23) that we just proved imply that the equality (4.7) holds true. �

6.13 Proof of Lemma 26

It is obvious that S`∞(Rn) ⊂ S(Rn)Z and hence the inclusion map

ι : S`∞(Rn) ↪→ S(Rn)Z , (6.25)

is well-defined. The equivariance with respect to the equivalence relations ∼`∞(Rn) and ∼(Rn)Z follows
trivially from noticing that if z1, z2 ∈ S`∞(Rn) are such that z1 ∼`∞(Rn) z2 one obviously have that
ι(z)1 ∼(Rn)Z ι(z2). This shows the existence of the projected map φ that makes the diagram

S`∞(Rn)
⊂

ι
> S(Rn)Z

L∞ (Ω, `∞(Rn))

Π∼`∞(Rn)
∨

φ
> L∞

(
Ω, (Rn)Z

)
,

Π∼
(Rn)Z∨
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commutative where Π∼`∞(Rn)
and Π∼

(Rn)Z
map the elements in S`∞(Rn) and S(Rn)Z onto their corre-

sponding equivalence classes with respect to the associated equivalence relations. One can easily prove
that the norm preservation following the diagram. It is a straightforward exercise to verify that φ is
injective and preserves the norm ‖·‖L∞ . In order to show that φ is surjective, let z ∈ L∞

(
Ω, (Rn)Z

)
.

Given that ‖z‖L∞ <∞ or, equivalently, ess supω∈Ω {supt∈Z {‖zt(ω)‖}} <∞, by part (i) in Lemma 24,
this implies that

sup
t∈Z
{‖zt(ω)‖} <∞, almost surely. (6.26)

Since the elements in the spaces in L∞ (Ω, `∞(Rn)) and L∞
(
Ω, (Rn)Z

)
are equivalence classes containing

almost surely equal random variables, we can take another representative z∗ : Ω −→ (Rn)Z for the class
containing z ∈ L∞

(
Ω, (Rn)Z

)
defined as

z∗(ω) :=

{
z(ω), when supt∈Z{‖zt(ω)‖} <∞,

0, otherwise.

Since the processes z and z∗ differ by (6.26) only in a set of zero measure, they are equal in L∞
(
Ω, (Rn)Z

)
but, this time, z∗ ∈ L∞ (Ω, `∞(Rn)) and φ(z∗) = z, as required. �

6.14 Proof of Theorem 27

Proof of part (i). All along this proof we will denote the elements in KM with a lower bold case
(z ∈ KM ) and those in KL∞

M with an upper bold case (Z ∈ KL∞

M ).
We first assume that the functional H : (KM , ‖·‖w) −→ R has the fading memory property. This

means that H is a continuous map and since by Lemma 2 the space (KM , ‖·‖w) is compact, then so is
the image H(KM ) as a subset of the real line. This implies that there exists a finite real number L > 0
such that H(KM ) ⊂ [−L,L]. Let now Z ∈ KL∞

M ; the condition ‖Z‖L∞ ≤M is equivalent to ‖Zt‖ ≤M ,
for all t ∈ Z−, almost surely, and hence implies that H (Z) ∈ [−L,L], almost surely or, equivalently,
that ‖H (Z)‖L∞ ≤ L. This, in turn, implies that H(Z) ∈ L∞(Ω,R) for any Z ∈ KL∞

M , as required.
We now show that H : (KL∞

M , ‖ · ‖L∞w ) −→ L∞(Ω,R) has the FMP. The FMP hypothesis on
H : (KM , ‖·‖w) −→ R implies that for any z ∈ KM and any ε > 0 there exists a δ(ε) > 0 such that for
any s ∈ KM that satisfies that

‖z− s‖w = sup
t∈Z−
{‖(zt − st)w−t‖} < δ(ε), then |H(z)−H(s)| < ε. (6.27)

Moreover, since by Lemma 2 the space (KM , ‖·‖w) is compact, the Uniform Continuity Theorem
(Theorem 7.3 in Munkres (2014)) guarantees that the relation δ(ε) does not depend on the point z ∈ KM .

We now prove the statement by showing that for any ε > 0 and Z ∈ KL∞

M then ‖H(Z)−H(S)‖L∞ < ε,
for all S ∈ KL∞

M such that ‖Z− S‖L∞w < δ(ε). Indeed, the inequality ‖Z− S‖L∞w < δ(ε) holds if and

only if supt∈Z−{‖Zt − St‖L∞ w−t} < δ(ε). Given that for any l ∈ Z− we have that ‖Zl − Sl‖L∞ w−l ≤
supt∈Z−{‖Zt − St‖L∞ w−t} < δ(ε), part (ii) in Lemma 24 implies that ‖Zl − Sl‖w−l < δ(ε) almost
surely for any l ∈ Z− and hence supt∈Z−{‖Zt − St‖w−t} = ‖Z− S‖w < δ(ε), almost surely. This
implies, using (6.27), that |H(Z)−H(S)| < ε, almost surely, which by part (ii) in Lemma 24 implies
that ‖H(Z)−H(S)‖L∞ < ε, as required.

Conversely, if H : (KL∞

M , ‖ · ‖L∞w ) −→ L∞(Ω,R) has the fading memory property then so does

H : (KM , ‖·‖w) −→ R because KM ⊂ KL∞

M and ‖z‖ = ‖z‖L∞ for the elements z ∈ KM .

Proof of part (ii). We suppose first that T is dense in the set (C0(KM ), ‖ · ‖w) and show that the
corresponding family with intputs in KL∞

M is universal. Let H : (KL∞

M , ‖ · ‖L∞w ) −→ L∞(Ω,R) be
an arbitrary causal and time-invariant FMP filter and let HS ∈ T be such that supz∈KM {‖H(z) −
HS(z)‖L∞} < ε. The existence of HS is ensured by the density hypothesis on T . We show that
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this ensures that supZ∈KL∞
M
{‖H(Z) − HS(Z)‖L∞} < ε. Indeed, this conclusion is true if ‖H(Z) −

HS(Z)‖L∞ < ε for any Z ∈ KL∞

M which, by part (ii) in Lemma 24 is equivalent to |H(Z)−HS(Z)| < ε
almost surely, for any Z ∈ KL∞

M . This condition is in turn true because as Z ∈ KL∞

M , then ‖Zt‖ ≤ M
almost surely for all t ∈ Z− and hence Z ∈ KM almost surely. SinceHS approximatesH for deterministic
inputs, we have that |H(Z)−HS(Z)| < ε almost surely, as required.

Conversely, if the family T with intputs in KL∞

M is universal in the set of continuous maps of the
type H : (KL∞

M , ‖ · ‖L∞w ) −→ L∞(Ω,R) we can easily show that T is dense in (C0(KM ), ‖ · ‖w). Let

H ∈ (C0(KM ), ‖ · ‖w) and let HS : (KL∞

M , ‖ · ‖L∞w ) −→ L∞(Ω,R) be the element that, for a given
ε > 0, satisfies ‖H −HS‖L∞ = supZ∈KL∞

M
{‖H(Z) −HS(Z)‖L∞} < ε. Given that, as we pointed out,

KM ⊂ KL∞

M and ‖z‖ = ‖z‖L∞ , for the elements z ∈ KM , we have

‖H −HS‖ = sup
z∈KM

{‖H(z)−HS(z)‖} = sup
z∈KM

{‖H(z)−HS(z)‖L∞} ≤ sup
Z∈KL∞

M

{‖H(Z)−HS(Z)‖L∞} < ε. �

6.15 Proof of Lemma 28

As we pointed out in Section 2, if the reservoir system determined by F : DN ×Bn(0,M) −→ DN and
h : DN → R has the echo state property, a result in Grigoryeva and Ortega (2018) guarantees that the
associated filter is automatically causal and time-invariant. This implies the existence of a functional
HF
h : (Rn)

Z− −→ R that, by hypothesis, has the fading memory property. The rest of the statement is
a consequence of part (i) in Theorem 27. �

6.16 Proof of Theorem 29

We first notice that the polynomial algebra A(R) is, by Theorem 8 and the first part of Theorem 27,
made of fading memory reservoir filters that map into L∞(Ω,R). Using the other hypotheses in the
statement we can easily conclude that the family A(R) satisfies the thesis of Theorem 8 and it is hence
universal in the deterministic setup. The result follows from the second part of Theorem 27. �
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Glossary of Symbols

`∞w (Rn) Banach space of semi-infinite sequences with finite weighted norm

D Space of diagonal matrices of any order

Dn Space of diagonal matrices of order n ∈ N

Mn Space of square matrices of order n ∈ N

Mm,n[z] Mm,n-valued polynomials on z with coefficients in Mm,n
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Mn,m Space of real n×m matrices with m,n ∈ N

Nil Space of nilpotent matrices of any order and any index

Nil[z] Space of matrix-valued nilpotent polynomials on z of any order and any index

Nilkn Space of nilpotent matrices of index k ∈ N in Mn

Nilkn[z] Space of nilpotent Mn-valued polynomials on z with coefficients in Mn of index k

A(R) Polynomial algebra generated by the set R of reservoir filters defined on KM

DLε Set of linear reservoir systems determined by diagonal matrices A ∈ D such that
σmax(A) < 1− ε

Lε Set of linear reservoir systems determined by matrices A ∈ MN such that σmax(A) <
1− ε

NL Set of linear reservoir systems determined by nilpotent matrices A ∈ Nil

NSε Subfamily of Sε formed by SAS reservoir systems determined by nilpotent polynomials
p

R Set of reservoir filters defined on KM

Sε State affine reservoir systems (SAS) Hp,q
W : IZ− −→ R with Mp < 1−ε and Mq < 1−ε

Bn(0,M) Ball of radius M and center 0 in Rn with respect to the Euclidean norm

F : RN × Rn −→ RN Reservoir map

HU : (Rn)Z− −→ R Functional associated to the causal and time-invariant filter U : (Rn)Z −→ RZ

h : RN → R Generic readout map

HA,c
h : KM −→ R Linear reservoir functional determined by A, c, and the polynomial h

Hp,q
W : IZ− −→ R SAS reservoir functional

KM Space of semi-infinite sequences that are uniformly bounded by M

KL∞
M Space of semi-infinite processes that are almost surely uniformly bounded by M

L∞ (
Ω, (Rn)Z

)
Space of almost surely bounded time series or discrete-time stochastic processes with
values in Rn

L∞
w

(
Ω, (Rn)Z−

)
Space of time series or discrete-time stochastic processes with values in Rn with finite
L∞
w -norm

N Number of virtual neurons. Dimension of the reservoir state vectors

n Dimension of the elements of the input signal

UFh : (Rn)Z −→ RZ Reservoir filter

UF : (Rn)Z −→ (RN )Z Filter determined by the reservoir map F

U : (Rn)Z −→ RZ Filter with inputs in Rn and outputs in R

UA,ch : KM −→ RZ Linear reservoir filter determined by A, c, and the polynomial h

UH : (Rn)Z −→ RZ Causal and time-invariant filter associated to the functional H : (Rn)Z− −→ R

Up,qW : IZ −→ RZ SAS reservoir filter

w : N −→ (0, 1] Weighting sequence

x (Semi)-infinite sequence containing the reservoir states. The elements of this sequence
are denoted by xt ∈ RN

y (Semi)-infinite output signal. The elements of this sequence are denoted by yt ∈ R

z (Semi)-infinite input signal. The elements of this sequence are denoted by zt ∈ Rn
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