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Abstract

We investigate the low-dimensional structure of deterministic transformations between
random variables, i.e., transport maps between probability measures. In the context of
statistics and machine learning, these transformations can be used to couple a tractable
“reference” measure (e.g., a standard Gaussian) with a target measure of interest. Direct
simulation from the desired measure can then be achieved by pushing forward reference
samples through the map. Yet characterizing such a map—e.g., representing and evaluat-
ing it—grows challenging in high dimensions. The central contribution of this paper is to
establish a link between the Markov properties of the target measure and the existence of
low-dimensional couplings, induced by transport maps that are sparse and/or decomposable.
Our analysis not only facilitates the construction of transformations in high-dimensional
settings, but also suggests new inference methodologies for continuous non-Gaussian graph-
ical models. For instance, in the context of nonlinear state-space models, we describe new
variational algorithms for filtering, smoothing, and sequential parameter inference. These
algorithms can be understood as the natural generalization—to the non-Gaussian case—of
the square-root Rauch–Tung–Striebel Gaussian smoother.

Keywords: transport map, variational inference, graphical models, sparsity, state-space
models, joint parameter and state estimation

1. Introduction

This paper studies the low-dimensional structure of transformations between random vari-
ables. Such transformations, which can be understood as transport maps between prob-
ability measures, are ubiquitous in statistics and machine learning. They can be used
for posterior sampling (Moselhy and Marzouk, 2012), possibly via deep neural networks
(Rezende and Mohamed, 2015); for accelerating Markov chain Monte Carlo or importance
sampling algorithms (Parno and Marzouk, 2018; Han and Liu, 2017); or as the building
blocks of implicit generative models (Kingma and Welling, 2013; Goodfellow et al., 2014)
and flexible methods for density estimation (Tabak and Turner, 2013; Dinh et al., 2016).

In the context of variational inference (Blei et al., 2016), a transport map can be used
to define a deterministic coupling between a tractable reference measure νη that we can
easily simulate (e.g., a standard Gaussian) and an arbitrary target measure νπ that we
wish to characterize (e.g., a posterior distribution). Given i.i.d. samples (Xi) from the
reference measure, we can evaluate the transport map to obtain i.i.d. samples (T (Xi)) from
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the target. In other words, the map allows any expectation
∫
g dνπ over the target measure

to be rewritten as an integral over the reference measure,∫
g(x) dνπ(x) =

∫
g(T (x)) dνη(x) ,

thus enabling the use of standard integration techniques for the tractable νη, including
Monte Carlo sampling (Meng and Schilling, 2002) and deterministic quadratures.

We focus on absolutely continuous measures (νη,νπ) on Rn, for which the existence of a
transport map T : Rn → Rn is guaranteed (Santambrogio, 2015). Such a map, however, is
seldom unique. Identifying a particular map requires imposing additional structure on the
problem. Optimal transport maps, for instance, define couplings that minimize a particular
integrated transport cost expressing the effort required to rearrange samples (Villani, 2008).
The analysis of such maps underpins a vast field that links geometry and partial differential
equations, with applications in fluid dynamics, economics, statistics (Douglas, 1999; Kan-
torovich, 1965), and beyond. In recent years, several other couplings have been proposed
for use in statistical problems, e.g., parametric approximations of the Knothe–Rosenblatt
rearrangement (Moselhy and Marzouk, 2012), couplings induced by the flows of ODEs (An-
deres and Coram, 2012; Heng et al., 2015), and couplings induced by the composition of
many simple maps, including deep neural networks (Rezende and Mohamed, 2015; Liu and
Wang, 2016). Yet the construction, representation, and evaluation of all these maps grows
challenging in high dimensions. In the setting considered here, a transport map is a function
from Rn onto itself; without specifying further structure, representing such a map or even
realizing its action is often intractable as n increases.

The central contribution of this paper is to establish a link between the conditional inde-
pendence structure of the reference-target pair—the so-called Markov properties (Lauritzen,
1996) of νη and νπ—and the existence of low-dimensional couplings. These couplings are
induced by transport maps that are sparse and/or decomposable. A sparse map consists of
scalar-valued component functions that each depend only on a few input variables, whereas
a decomposable map factorizes as the exact composition of finitely many functions of low
effective dimension (i.e., T = T1 ◦ · · · ◦ T`, where each Ti differs from the identity map only
along a subset of its components). These properties, and their combinations, dramatically
reduce the complexity of representing a transport map and can be deduced before the map
is explicitly computed.

The utility of these results is twofold. First, they make the construction of couplings—
and hence the characterization of complex probability distributions—tractable for a large
class of inference problems. In particular, these results can be exploited in state-of-the-
art approaches for the numerical computation of transport maps, including normalizing
flows or Stein variational algorithms (Rezende and Mohamed, 2015; Detommaso et al.,
2018). Second, these results suggest new algorithmic approaches for important classes of
statistical models. For instance, our analysis of sparse triangular maps provides a general
framework for describing continuous and non-Gaussian Markov random fields, and for ex-
ploiting the conditional independence structure of these fields in computation. Our analysis
of decomposable transport maps yields new variational algorithms for sequential inference
in nonlinear and non-Gaussian state space models. These algorithms characterize the full
Bayesian solution to the smoothing and joint state–parameter inference problems by means
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of a decomposable transport map, which is constructed (recursively) in a single forward
pass using local operations. These algorithms can be understood as the natural generaliza-
tion, to the non-Gaussian case, of the square-root Rauch-Tung-Striebel Gaussian smoother.
Moreover, the results presented in this paper underpin recent efforts in structure learning
for non-Gaussian graphical models (Morrison et al., 2017), and novel approaches to the
filtering of high-dimensional spatiotemporal processes (Spantini, 2017, Ch. 6). Overall, we
propose a range of techniques to address problems of inference in continuous non-Gaussian
graphical models.

The paper is organized as follows. Section 2 introduces some notation used through-
out the paper. Section 3 reviews the Knothe-Rosenblatt rearrangement, a key coupling for
our analysis, while Section 4 briefly recalls some standard terminology for Markov random
fields and graphical models. The main results are in Sections 5–7: Section 5 addresses the
sparsity of triangular transports, while Section 6 introduces and develops the concept of
decomposable transport maps for general Markov networks. These two sections can be read
independently. Section 7 specializes the theory of Section 6 to state-space models, introduc-
ing new variational algorithms for filtering, smoothing, and parameter inference. Section 8
illustrates aspects of the theory with numerical examples. A final discussion is presented in
Section 9. Appendix A collects some technical details on the Knothe-Rosenblatt rearrange-
ment and its generalizations. Appendix B contains the proofs of the main results. Appendix
C provides pseudocode for our variational algorithms applied to state-space models, and
additional numerical experiments are described in Appendix D. Code and all numerical
examples are available online.1

2. Notation

Here, we collect some useful notation used throughout the paper.
Notation for functions, sets, and graphs. For a pair of functions f and g, we

denote their composition by f ◦g. We denote by ∂kf the partial derivative of f with respect
to its kth input variable. By ∂kf = 0, we mean that the function f does not depend on
its kth input variable. Depending on the context, we can identify a matrix Q with its
corresponding linear map, given by x 7→ Qx.

For all n > 0, we let Nn = {1, . . . , n} denote the set of the first n integers. For any
pair of sets, A ⊂ B means that A is a subset of B (including the possibility of A = B). We
denote by |A| the cardinality of A.

Given a graph G = (V, E) with vertices V and edges E , we denote by Nb(k,G) the
neighborhood of a node k in G, while for any set A ⊂ V, we denote by GA = (V ′, E ′) the
subgraph given by V ′ = A and E ′ = E ∩ (A×A).

Notation for measures and densities. In this paper, we mostly consider probability
measures on Rn that are absolutely continuous with respect to the Lebesgue measure, λ,
and that are fully supported. We denote the set of such measures by M+(Rn). The density
of a measure will always be intended with respect to λ. For a pair of measures ν1,ν2,
ν1 � ν2 means that ν1 is absolutely continuous with respect to ν2.

For any measure ν and measurable map T , we denote by T]ν the pushforward measure
given by ν ◦ T−1, where for any set B, T−1(B) is the set-valued preimage of B under T .

1. http://transportmaps.mit.edu
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Similarly, we denote by T ]ν the pullback measure given by ν ◦ T . Given a measure ν with
density π and a map T , we denote by T]π the density of T]ν, provided it exists (depending on
T ). We call T]π the pushforward density of π by T . Similarly, we define the pullback density
T ]π as the density of T ]ν, provided it exists. Whether the map T preserves the absolute
continuity of the measure depends on the regularity of T . For instance, if T : Rn → Rn is
a diffeomorphism—i.e., a differentiable bijection with differentiable inverse—then one has:

T]π(x) = π(T−1(x)) |det∇T−1(x)|, T ]π(x) = π(T (x)) |det∇T (x)|, (1)

where ∇T (x) denotes the Jacobian of T at x. The regularity assumptions on T can be
substantially weakened as long as one modifies (1) appropriately (Fremlin, 2000). We
will give one such example shortly when dealing with triangular maps (see Section 3
or Appendix A). We denote by

∫
f(x)ν(dx) the integration of a measurable function

f : Rn → R with respect to a measure ν. For the Lebesgue measure, we simplify our
notation as

∫
f(x)λ(dx) =

∫
f(x) dx. Given a pair η, π of probability densities and a map

T : Rn → Rn, we say that T pushes forward η to π if and only if T couples the corresponding
probability measures, i.e., T]νη = νπ, with νη(B) =

∫
B η(x) dx and νπ(B) =

∫
B π(x) dx for

all measurable sets B. (Notice that T]η need not be given by (1) since we are not specifying
any regularity on T .)

When it is clear from context, we will freely omit the qualifier a.e. to indicate a property
that holds up to a set of measure zero.

Notation for random variables. We use boldface capital letters, e.g., X, to denote
random variables on Rn with n > 1, while we write scalar-valued random variables as X.
The law of a random variable X defined on a probability space (Ω,P) is given by X]P. For a
measure ν, X ∼ ν means that X has law ν. If X = (X1, . . . ,Xp) is a collection of random
variables and A ⊂ Np, then XA = (Xi, i ∈ A) denotes a subcollection of X. In the same
way, for j < k, Xj:k = (Xj ,Xj+1, . . . ,Xk). If X = (X1, . . . ,Xp) has joint density π and
A ⊂ Np, we denote by πXA the marginal of π along XA, i.e., πXA(xA) =

∫
π(x) dxNp\A.

If π is the density of Z = (X,Y ), we denote by πX|Y the density of X given Y , where

πX|Y (x|y) =

{
πX,Y (x,y)/πY (y) if πY (y) 6= 0

0 otherwise.
(2)

We denote independence of a pair of random variables X,Y by X ⊥⊥ Y . In the same way,
X ⊥⊥ Y |R means that X and Y are independent given a third random variable R.

3. Triangular Transport Maps: a Building Block

An important transport for our analysis is the Knothe-Rosenblatt (KR) rearrangement on
Rn (Rosenblatt, 1952). For a pair of measures νη,νπ ∈ M+(Rn), with densities η and
π, respectively, the KR rearrangement is the unique monotone increasing lower triangular
measurable map that pushes forward νη to νπ, i.e., T]νη = νπ (Carlier et al., 2010). Here,
monotonicity is with respect to the lexicographic order on Rn, while uniqueness is up to
νη-null sets. A lower triangular map T : Rn → Rn is a multivariate function whose kth
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component depends only on the first k input variables, i.e.,

T (x) =


T 1(x1)
T 2(x1, x2)
...
Tn(x1, x2, . . . xn)


for some collection of functions (T k) and for all x = (x1, . . . , xn).

The distinction between lower, upper, or other more general forms of triangular map is a
matter of convention. We will revisit this important point in Section 6. See Appendix A for
a constructive definition of the KR rearrangement based on a sequence of one-dimensional
transports. In our hypothesis, the KR rearrangement is always a bijection on Rn, while
each map

ξ 7→ T k(x1, . . . , xk−1, ξ) (3)

is homeomorphic (continuous bijection with continuous inverse), strictly increasing, and dif-
ferentiable a.e. (Santambrogio, 2015). Here, monotonicity with respect to the lexicographic
order is equivalent to each function (3) being increasing. The resulting rearrangement T
is far from being a diffeomorphism but is still regular enough to define a useful change of
variables, as the following lemma proven in Bogachev et al. (2005) shows.

Lemma 1 If T is a KR rearrangement pushing forward νη to νπ, then νη-a.e.,

T ]π(x) = π(T (x)) det∇T (x) = η(x), (4)

where det∇T :=
∏n
i=1 ∂kT

k exists a.e., and where T ]π is the density of T ]νπ.

In general, det∇T in (4) is not the determinant of the Jacobian of T since the map may not
be differentiable, in which case it would not be possible to define ∇T in the classical sense;
this is why det∇T is redefined in the lemma. Nevertheless, it is known that T inherits
the same regularity as η and π, but not more (Santambrogio, 2015). See Appendix A for
additional remarks on the regularity of the map.

An essential feature of the triangular transport map is its anisotropic dependence on
the input variables. That is, even though each component of the transport map does not
depend on all n inputs, the map is still capable of coupling arbitrary probability distribu-
tions. Informally, we can think of the KR rearrangement as imposing the sparsest possible
structure that preserves generality of the coupling—in that the rearrangement is guaranteed
to exist for any νη,νπ ∈M+(Rn). In Section 6, we will show that the anisotropy of the KR
rearrangement is crucial to proving that certain “complex” (and generally non-triangular)
transports can be factorized into compositions of a few lower-dimensional triangular maps.
Thus we can think of the KR rearrangement as the fundamental building block of a more
general class of non-triangular transports.

The KR rearrangement also enjoys many attractive computational features. As shown
in Marzouk et al. (2016), it can be characterized as the unique minimizer of the Kullback–
Leibler (KL) divergence DKL(T]νη ||νπ ) over the cone T4 of monotone increasing triangular
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maps. From the perspective of function approximation, parameterizing a monotone trian-
gular map is straightforward: it suffices to write each component of the map as2

T k(x) = ak(x1, . . . , xk−1) +

∫ xk

0
exp (bk(x1, . . . , xk−1, t)) dt, (5)

for some arbitrary functions ak : Rk−1 → R and bk : Rk → R (Ramsay, 1998). For example,
one could parameterize each ak, bk using a linear expansion

ak(x) =
∑
i

ak,i ψi(x), bk(x) =
∑
j

bk,j ψj(x)

in terms of multivariate Hermite polynomials (ψi) and unknown coefficients c = (ak,i, bk,j);
alternatively, one could use a neural network representation of ak and bk. The resulting
transport map T [c]—parameterized by the coefficients c—is monotone and invertible for
all choices of c. (In contrast, parameterizing general classes of monotone non-triangular
maps is a difficult task.) The minimization of DKL(T]νη ||νπ ) for a map in T4 and for a
pair of nonvanishing target (π) and reference (η) densities can be rewritten as

min
T

− E

[
log π(T (X)) +

∑
k

log ∂kT
k(X)− log η(X)

]
(6)

s.t. T ∈ T4,

where the expectation is with respect to the reference measure—which is the law of X.
Two aspects of (6) are particularly important. First, for the purpose of optimization,

the target density can be replaced with its unnormalized version π̄. (This replacement is es-
sential in Bayesian inference, where the posterior normalizing constant is usually unknown.)
Second, (6) can be treated as a stochastic program and solved by means of sample-average
approximation (SAA) or stochastic approximation (Shapiro, 2013; Kushner and Yin, 2003).
Recall that the reference measure is a degree of freedom of the problem and is chosen pre-
cisely to make the integration in (6) feasible using, for instance, quadrature, Monte Carlo,
or quasi-Monte Carlo methods (Dick et al., 2013).

Assuming some additional regularity for π (e.g., at least differentiability) and using the
monotone parameterization of (5), then (6) becomes an unconstrained and differentiable
optimization problem. In particular, we can use the gradient of log π to obtain an unbiased
estimator for the gradient of (6) (Asmussen and Glynn, 2007). Alternatively, if ∇ log π is
unavailable, we can use the score method (Glynn, 1990) to produce an estimator that is still
unbiased, but with higher variance. For concreteness, consider the realization of an i.i.d.
sample (xi)

M
i=1 from νη. Then a SAA of (6) reads as:

min
T

−
M∑
i=1

(
log π̄(T (xi)) +

∑
k

log ∂kT
k(xi)− log η(xi)

)
(7)

s.t. T ∈ T4,

2. For computational efficiency, one may substitue the exponential function with any other strictly positive
expression, like a positively shifted square function.
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which is now amenable to deterministic optimization techniques. The numerical solution
of (7) by means of an iterative method (e.g., BFGS, Wright and Nocedal, 1999) produces
a sequence of maps T̃1, T̃2, . . . that are increasingly better approximations of the KR rear-
rangement, in the sense defined by (7). In particular, we can interpret (T̃k)k as a discrete
time flow that pushes forward the collection of reference samples, (xi)

M
i=1, to the target

distribution. See Figure 1 for a simple illustration. As shown by Moselhy and Marzouk
(2012), the KL divergence DKL( T̃]νη ||νπ ) for an approximate map T̃ can be estimated as:

DKL( T̃]νη ||νπ ) ≈ 1

2
Var

[
log π̄(T̃ (X)) +

∑
k

log ∂kT̃
k(X)− log η(X)

]
, (8)

up to second-order terms, in the limit of DKL( T̃]νη ||νπ ) → 0, even if the normalizing
constant of π is unknown. This convergence criterion is rather useful for any variational
inference method, and is usually not available for techniques like MCMC. In the same way,
one can construct effective estimators for the normalizing constant β := π̄/π as

β̂ = expE

[
log π̄(T̃ (X)) +

∑
k

log ∂kT̃
k(X)− log η(X)

]
. (9)

We refer the reader to (Parno, 2015; Parno and Marzouk, 2018) for an alternative
construction of the transport map that is useful when only samples from the target measure
are available. An interesting application of the latter construction is the problem of density
estimation or Bayesian inference with intractable likelihoods (Tabak and Turner, 2013;
Csilléry et al., 2010). In this case, it turns out that the inverse transport S = T−1 can
be easily computed via convex optimization. (Notice that S is just an ordinary triangular
transport map that pushes forward νπ to νη. The “inverse” descriptor will help distinguish
S from the map T that pushes forward the reference to the target distribution. We refer to
T as the direct transport.) We can then invert S at x ∈ Rn to obtain the evaluation of the
direct transport T (x). Inverting a monotone triangular function is a computationally trivial
task since it requires the solution of a sequence of one-dimensional root finding problems.
In practice, one just needs to invert (3) for k = 1, . . . , n. It is also possible to compute the
inverse transport from the unnormalized target density, rather than from samples; here,
it suffices to minimize DKL(νη ||S]νπ ) for S ∈ T4. The resulting variational problem is
equivalent to (6) with the identity S = T−1. By symmetry of our formulation, S has the
same regularity as T . In particular, Lemma 1 holds for S as well, and gives a formula for
the pushforward density T]η as:

T]η(z) = η(S(z)) det∇S(z) = π(z),

where det∇S :=
∏n
i=1 ∂kS

k exists a.e., and where T]η is the density of T]νη.
There is a growing body of literature on the efficient numerical approximation of trans-

port maps (e.g., Rezende and Mohamed, 2015; Bigoni et al., 2019; Mendoza et al., 2018).
Essentially all of these approaches employ numerical optimization to construct or realize
the action of a map, and thus harness optimization to enhance integration. Yet all these
approaches face a fundamental challenge: the transport map is a function from Rn onto
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itself, and in high dimensions (i.e., for large n) the representation and approximation of such
functions becomes increasingly intractable. In the ensuing sections, on the other hand, we
will show that a large class of transport maps are in fact only superficially high-dimensional;
that is, they possess some hidden low-dimensional structure that can facilitate their fast and
reliable computation. This low-dimensional structure is linked to the Markov properties of
the target measure, which we briefly review in the next section.
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Figure 1: Computation of a simple transport map in two dimensions: The leftmost figure
shows contours of the reference density η, which is a standard Gaussian, and
of the target density π, which is a banana-shaped distribution in the tails of η.
The target distribution has a nonlinear dependence structure. The orange dots
in the leftmost figure correspond to 100 samples (xi) from η and are used to
make a sample-average approximation of (6). We adopt the triangular monotone
parameterization of (5) for the candidate transport map, where the functions
ak, bk are expanded in a multivariate Hermite polynomial basis of total degree
two (Xiu, 2010). The resulting optimization problem is solved with a quasi-
Newton method (BFGS). The kth figure from the left shows the pushforward of
the original reference samples through the approximate transport map, T̃k, after k
iterations of BFGS. The initial map T̃0 is chosen to be the identity. The reference
samples flow collectively towards the target density and eventually settle on the
support of π, capturing its structure after just a few iterations.

4. Markov Networks

Let Z = (Z1, . . . , Zn) be a collection of random variables with law νπ and density π.
We can represent a list of conditional independences satisfied by Z—the so-called Markov
properties—using a simple undirected graph G = (V, E), where each node k ∈ V is associated
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with a distinct random variable, Zk, and where the edges in E encode a specific notion of
probabilistic interaction among these random variables (Koller and Friedman, 2009). In
particular, we say that Z is a Markov network—or a Markov random field (MRF)—with
respect to G if for any triplet A,S,B of disjoint subsets of V, where S is a separator set for
A and B,3 the subcollections ZA and ZB are conditionally independent given ZS , i.e.,

ZA ⊥⊥ ZB |ZS . (10)

The measure νπ is said to satisfy the global Markov property, relative to G, if (10) holds.
We can also say that νπ is globally Markov with respect to G. The corresponding graph is
then called an independence map (I-map) for νπ.

Intuitively, a sparse graph represents a family of distributions that enjoy many condi-
tional independence properties. I-maps are in general not unique. Of particular interest
are minimal I-maps, i.e., the sparsest graphs compatible with the conditional independence
structure of νπ.

Conditional independence is associated with factorization properties of π. For instance,
ZA ⊥⊥ ZB |ZS if and only if πZA,ZB|ZS = πZA|ZS πZB|ZS a.e. (Lauritzen, 1996). We then
say that νπ factorizes according to some graph G if there exists a version of the density of
νπ such that

π(z) =
1

c

∏
C∈C

ψC(zC), (11)

for some nonnegative functions (ψC) called potentials, where C is the set of maximal cliques4

of G and c is a normalizing constant. It is immediate to show that if νπ factorizes according
to G, then νπ satisfies the global Markov property relative to G (Lauritzen, 1996, Prop. 3.8).
The converse is true only under additional assumptions: for instance, if νπ admits a contin-
uous and strictly positive density (see the Hammersley-Clifford theorem; Hammersley and
Clifford, 1971; Lauritzen, 1996).

A critical question then is how to characterize a suitable I-map for a given measure.
There are several answers. First of all, in many applications that involve probabilistic
modeling, the target distribution is defined in terms of its potentials, as in (11), because
this is just a more convenient way to specify a high-dimensional distribution and to perform
inference (or general probabilistic reasoning) with it. Finding a graph for which νπ factorizes
is then a trivial task. See Figure 4 (left) for an example. Applications where this commonly
holds range from spatial statistics and image analysis to speech recognition (Koller and
Friedman, 2009; Rue and Held, 2005). In Section 7, for example, we focus exclusively on
discrete-time Markov processes, where the Markov structure of the problem is self-evident.
More specifically, Section 7 tackles the problem of recursive smoothing and static parameter
estimation for a state-space model. In this context, the target measure νπ could represent
the joint distribution of state and parameters, conditioned on all the available observations
(see Figures 4 and 8). The reader might want to consider this sequential inference problem

3. S is a separator set for A and B if (1) S is disjoint from A and B, and if (2) every path from α ∈ A to
β ∈ B intersects S. If A and B are disconnected components of G, then S = ∅ is a separator set for A
and B.

4. A clique is a fully connected subset of the vertices, whereas a maximal clique is a clique that is not a
strict subset of another clique.

9



Spantini, Bigoni, and Marzouk

as a guiding application while reading the forthcoming Sections 5 and 6. We emphasize,
however, that our theory is far more general and by no means restricted to any specific
Markov structure.

In other settings, the graph is unknown and must be estimated. When only samples
from νπ are available, this is a question of model learning (Koller and Friedman, 2009, Part
III)—a problem with various applications (Hyvärinen, 2005; Meinshausen and Bühlmann,
2006; Lin et al., 2015). In case of a known and smooth target density, we can characterize
pairwise conditional independence in terms of mixed second-order partial derivatives, as
shown by the following lemma.

Lemma 2 (Pairwise conditional independence) If Z ∼ νπ for a measure νπ with
smooth and strictly positive density π, we have:

Zi ⊥⊥ Zj |ZV\(i,j) ⇐⇒ ∂2
i,j log π = 0 on Rn.

Thus, if we can evaluate π and its derivatives (up to a normalizing constant), we can use
Lemma 2 to assess pairwise conditional independence and to define a minimal I-map for
νπ as follows: add an edge between every pair of distinct nodes unless the corresponding
random variables are conditionally independent (Koller and Friedman, 2009, Thm. 4.5).

Regardless of the many ways to obtain an I-map, there is a fundamental connection
between Markov properties of a distribution and the existence of low-dimensional transport
maps. The rest of the paper will elaborate precisely on this connection.

5. Sparsity of Triangular Transport Maps

We begin our investigation of low dimensional structure by considering the notion of sparse
transport map. A sparse map is a multivariate function where each component does not
depend on all of its input variables. According to this definition, a triangular transport is
already sparse. In this section, however, we show that the KR rearrangement can be even
sparser, depending on the Markov structure of the target distribution.

5.1. Sparsity Bounds

Given a lower triangular function T , we define its sparsity pattern, IT , as the set of all
integer pairs (j, k), with j < k, such that the kth component of the map does not depend
on the jth input variable, i.e., IT = {(j, k) : j < k, ∂jT

k = 0}. (We do not include pairs
j > k in the definition of IT since, for a lower triangular function, ∂j T

k = 0 for j > k by
construction.)

Knowing the sparsity pattern of the KR rearrangement before computing the actual
transport has important computational implications. For instance, in the variational char-
acterization of the transport described in (6), we can restrict the feasible domain to the
set of triangular maps with sparsity pattern given by IT , and still recover the desired KR
rearrangement. That is, if (j, k) ∈ IT , we can parameterize any candidate transport map
by removing the dependence on the jth input variable from the kth component of the map.
Thus, analyzing the Markov structure of the target distribution enables the representation
and computation of maps in possibly higher-dimensional settings.

10
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The following theorem, which is the main result of this section, characterizes bounds on
the sparsity patterns of triangular transport maps given an I-map for the target measure. In
the statement of the theorem, we denote the direct transport by T and the inverse transport
by S = T−1 (see Section 3). The theorem suggests that S and T can have quite different
sparsity patterns.5

Theorem 3 (Sparsity of Knothe–Rosenblatt rearrangements) Let X ∼ νη, Z ∼
νπ with νη,νπ ∈M+(Rn) and νη a product measure on ×ni=1R. Moreover, assume that νπ
is globally Markov with respect to G, and define, recursively, the sequence of graphs (Gk)nk=1

as: (1) Gn := G and (2) for all 1 ≤ k < n, Gk−1 is obtained from Gk by removing node k
and by turning its neighborhood Nb(k,Gk) into a clique. Then the following hold:

1. If IS is the sparsity pattern of the inverse transport map S, then

ÎS ⊂ IS , (12)

where ÎS is the set of integer pairs (j, k) such that j /∈ Nb(k,Gk).

2. If IT is the sparsity pattern of the direct transport map T , then

ÎT ⊂ IT , (13)

where ÎT is defined recursively as follows: for k = 2, . . . , n the pair (j, k) ∈ ÎT if and
only if (j, i) ∈ ÎT for all i ∈ Nb(k,Gk).

3. The predicted sparsity pattern of S is always greater than or equal to that of T , i.e.,

ÎT ⊂ ÎS . (14)

Several remarks are in order. First, we emphasize the fact that Theorem 3 characterizes
sparsity patterns using only an I-map for νπ, without requiring any actual computation
of the transports. One only needs to perform simple graph operations on G to build the
sequence of graphs (Gk). See Figure 2 for an illustration of this procedure, with the corre-
sponding sparsity patterns in Figure 3. We refer to (Gk) as the marginal graphs. In fact,
the sequence (Gk) is precisely the set of intermediate graphs produced by the variable elim-
ination algorithm (Koller and Friedman, 2009, Ch. 9), when marginalizing with elimination
ordering (n, n− 1, . . . , 1). This should not be surprising as the KR rearrangement is essen-
tially a sequence of ordered marginalizations (Villani, 2008). The hypothesis that νη is a
product measure is important for the theorem to hold. If we pick a reference measure with
an arbitrary Markov structure, there need not exist a sparse transport map coupling νη and
νπ, even if νπ has a sparse I-map. The role of a reference measure is somewhat peculiar
to the world of couplings and is usually not addressed in classical treatments of graphical
models. Nonetheless, this assumption on νη is not restrictive in the present framework,

5. A note: as we already saw, the KR rearrangement is unique up to a set of measure zero. Theorem 3
characterizes the sparsity pattern of a particular version of the map, the one given by Definition 14 in
Appendix A. We will implicitly make this assumption throughout the paper.

11
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since the reference distribution is considered a degree of freedom of the problem. Theorem
3 gives sufficient but not necessary conditions on (νη,νπ) for the existence of a sparse map.
And it could not be otherwise: if νη = νπ then the identity map—the sparsest possible
map—would be a valid coupling.

We also note that Theorem 3 does not provide the exact sparsity patterns of the trian-
gular transport maps; instead, (12) and (13) provide subsets of IT and IS . In other words,
the actual transport maps might be sparser than predicted by the sets ÎS and ÎT—but,
crucially, they cannot be less sparse. Thus, we can think of Theorem 3 as providing bounds
on the sparsity of triangular transports. An important fact is that, without additional in-
formation on νπ, these bounds are sharp. That is, we can always find a pair of measures
(νη,νπ) satisfying the hypotheses of Theorem 3 and such that the predicted and actual

sparsity patterns coincide, i.e., ÎT = IT or ÎS = IS .
Part 3 of Theorem 3 shows that the predicted sparsity pattern of the inverse KR rear-

rangement is always larger than or equal to that of the direct transport, i.e., ÎT ⊂ ÎS . This
does not mean that for every pair of measures (νη,νπ), the inverse triangular transport is
always at least as sparse as the direct transport; in fact, it is possible to provide simple
counterexamples. However, this result does imply that if we are only given an I-map for νπ,
then parameterizing candidate inverse triangular transports allows the imposition of more
sparsity constraints than parameterizing candidate direct transports. In general, sparser
transports are easier to represent. See Figure 4 (right) for a nontrivial example of sparsity
patterns for a stochastic volatility model.

Indeed, (14) hints at a typical trend: inverse transport maps tend to be sparser (in
many practical cases, much sparser) than their direct counterparts. Intuitively, the sparsity
of a direct transport is associated with marginal independence in Z, whereas the inverse
transport inherits sparsity from the conditional independence structure of Z. The latter is a
weaker condition than mutual independence; for instance, the correlation length of a process
modeled by a Markov random field may be much larger than the typical neighborhood
size (Rue and Held, 2005). Thus, given a sparse I-map for the target measure, it can
be computationally advantageous to characterize an inverse transport rather than a direct
one, because the inverse transport can inherit a larger sparsity pattern. Given an inverse
triangular transport S, we can then easily evaluate the direct transport T = S−1 at any
point x ∈ Rn by inverting S pointwise, as described in Section 3. There is no need to
have an explicit representation of the direct transport as long as it can be implicitly defined
through its inverse.

5.2. Connection to Gaussian Markov Random Fields

The reader familiar with Gaussian Markov random fields (GMRFs), might see links between
the preceding results and widespread approaches to the modeling of Gaussian fields. In this
section, we clarify the extent of these connections.

Many applications (e.g., image analysis, spatial statistics, time series) involve modeling
by means of high-dimensional Gaussian fields. Dealing with large and dense covariances,
however, is often impractical; both storage and sampling of the Gaussian field are problem-
atic. The usual workaround is to replace or approximate the Gaussian field with a sparse
GMRF—i.e., a Gaussian Markov network that enforces locality in the probabilistic interac-
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Figure 2: Sequence of graphs (Gk) described in Theorem 3 for a target measure in M+(R5)
with I-map illustrated by the leftmost graph, G5. Notice that to generate the
graph G2, we remove node 3 from G3 and turn its neighborhood into a clique by
adding the edge (1, 2).

Pjk = ∂jS
k Pjk = ∂jT

k

Figure 3: Sparsity patterns predicted by Theorem 3 for the target measure analyzed in
Figure 2. We represent the sparsity patterns using a symbolic matrix notation:
the (j, k)-th entry of the matrix is not colored if the kth component of the map
(S or T ) does not depend on the jth input variable, or, equivalently, if (j, k) ∈ ÎS
(resp. ÎT ) (12). (Since we are considering lower triangular transports, all entries
j > k are uncolored. Note also that Sk and T k are always functions of their kth
input by strict monotonicity of the map.) The predicted sparsity pattern for the
direct transport in this example is ÎT = ∅.

tions among the underlying random variables. The minimal I-map for the GMRF is thus
sparse, and so is the precision matrix Λ of the field (Rue and Held, 2005). The covariance
matrix is still in general dense, but dealing with the sparse precision matrix is much easier.
If LL> is a (sparse) Cholesky decomposition of Λ, then L> represents a linear triangular
transport that pushes forward the joint distribution of the GMRF, νπ = N (0,Λ−1), to a
standard normal, νη = N (0, I). The key point is that for many Markov structures of inter-
est, the Cholesky factor inherits sparsity from the underlying graph, so that sampling from
νπ can be achieved at low cost as follows: if X is a sample from νη, then we can obtain a
sample Z from νπ simply by solving the sparse triangular linear system L>Z = X. There
is no need to explicitly represent or store the dense factor L−>, since we can implicitly
represent its action by inverting a sparse triangular function.
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Z0 Z1 Z2 Z3 ZN

µ φ

Pjk = ∂jS
k

Figure 4: (left) Markov network for a stochastic volatility model (Kim et al., 1998). Blue
nodes represent the discrete-time latent log-volatility process (Zk)

N
k=0, which

obeys a simple autoregressive model with hyperparameters µ,φ. The graph above
is a minimal I-map for the posterior density described in Section 8, πµ,φ,Z0:N |y0:N ,
where y0:N are some (fixed) observations. (right) The predicted sparsity pattern
ÎS (only the top 6 × 6 block is shown) for the inverse transport corresponding
to the model on the left: the first column/row of the matrix refer jointly to all
of the hyperparameters. Each component Sk of the inverse transport can de-
pend at most on four input variables, namely µ,φ,Zk−1,Zk, regardless of the
overall dimension N of the problem. In order to apply the results of Theorem
3, we must select an ordering of the input variables; here, we used the ordering
(µ,φ,Z0, . . . ,ZN ). Optimal orderings are further discussed in Section 5.3.

Now the connection with Section 5.1 is clear: L> is an inverse triangular transport,6

while L−> is a direct one. Moreover, solving a triangular linear system is just a par-
ticular instance of inverting a nonlinear triangular function by performing a sequence of
one-dimensional root-findings. Thus the developments of the previous section, which con-
sider arbitrary nonlinear maps, are a natural generalization—to the non-Gaussian case—of
modeling and sampling techniques for high-dimensional GMRFs (Rue and Held, 2005).

5.3. Ordering of Triangular Maps

The results of Theorem 3 suggest that the sparsity of a triangular transport map depends
on the ordering of the input variables. See Figure 5 for a simple illustration. Indeed,
the triangular transport itself depends anisotropically on the input variables and requires
the definition of a proper ordering. A natural approach is then to seek the ordering that
promotes the sparsest transport map possible.

Consider a pair of measures (νη,νπ) that satisfies the hypotheses of Theorem 3. We
associate an ordering of the input variables with a permutation σ on Nn = {1, . . . , n}, and
define the reordered target measure νσπ as the pushforward of νπ by the matrix Qσ that
represents the permutation σ. In particular, (Qσ)ij = (eσ(i))j , where ei is the ith standard
basis vector on Rn. Moreover, if G is an I-map for νπ, then we denote an I-map for νσπ by

6. Actually, this transport is upper rather than lower triangular. This distinction plays no role in the
following discussion, and the fact that a KR rearrangement is a lower triangular function is merely a
matter of convention.
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Gσ. Notice that Gσ can be derived from G simply by relabeling its nodes according to the
permutation σ. Then we can cast a variational problem for the best ordering σ∗ as:

σ∗ ∈ arg maxσ |IS | (15)

s.t. S] ν
σ
π = νη

σ ∈ P(Nn),

where S is the KR rearrangement that pushes forward the reordered target νσπ to νη and
P(Nn) is the set of permutations of Nn. The goal is to maximize the cardinality of the
sparsity pattern of the inverse map, |IS |. We restrict our attention to the sparsity of the
inverse transport, since we know from Section 5.1 that the direct transport tends to be
dense, even for the most trivial Markov structures.

Ideally, we would like to determine a good ordering for the map before computing the
actual transport, and to use the resulting information about the sparsity pattern to sim-
plify the optimization problem for S. However, evaluating the objective function of (15)
requires computing a different inverse transport for each permutation σ. One possible way
to relax (15) is to replace IS with the predicted sparsity pattern ÎS introduced in (12). The
advantage of this approach is that the objective function of the relaxed problem can now be
evaluated in closed form without computing any transport map, but rather by performing
the simple sequence of graph operations on Gσ described by Theorem 3. The caveat is that,
in general, ÎS ⊂ IS , and thus maximizing |ÎS | amounts to seeking the tightest lower bound
on the sparsity pattern of the inverse transport. From the definition of ÎS , it follows that
the best ordering σ∗ for the relaxed problem is one that introduces the fewest edges in the
construction of the marginal graphs Gn, . . . ,G1, whenever Gn = Gσ∗ . Thus, for a given
I-map G, we denote by F(σ;G) the fill -in produced by the ordering σ. That is, F(σ;G) is
a set containing all the edges introduced in the construction of the marginal graphs (Gk)
from Gσ. A computationally feasible relaxation of (15) is then given by:

σ∗ ∈ arg minσ |F(σ;G)| (16)

s.t. σ ∈ P(Nn).

(16) is a standard problem in graph theory; it arises in a variety of practical settings,
including (most relatedly) finding the best elimination ordering for variable elimination in
graphical models, or finding the permutation that minimizes the fill-in of the Cholesky factor
of a positive definite matrix (George and Liu, 1989; Saad, 2003). From an algorithmic point
of view, (16) is NP-complete (Yannakakis, 1981). This should not be surprising, as best–
ordering problems are typically combinatorial in nature. Nevertheless, given its widespread
applicability, a host of effective polynomial-time heuristics for (16) have been developed in
past years (e.g., min-fill or weighted-min-fill, Koller and Friedman, 2009). Most importantly,
(16) can be solved without ever touching the target measure (assuming, of course, that an
I-map G for νπ is known). As a result, the cost of finding a good ordering is often negligible
compared to the cost of characterizing a nonlinear transport map via optimization.

6. Decomposability of Transport Maps

Thus far, we have investigated the sparsity of triangular transport maps and found that
inverse transports tend to inherit sparsity from the underlying Markov structure of the
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Figure 5: Illustration of how a simple re-ordering of the input variables can change the
(predicted) sparsity pattern of the inverse map. On the left, G represents an I-map
for the target measure considered in Figure 2, with ordering (Z1, Z2, Z3, Z4, Z5),
together with its sparsity pattern ÎS . (See Figure 3 for details on the “matrix”
representation of sparsity patterns.) On the right, G′ is an I-map for the same
target measure but with the ordering (Z1, Z2, Z5, Z4, Z3). The corresponding
sparsity pattern ÎS′ is now the empty set.

target measure. Though direct triangular transports also inherit some sparsity according
to Theorem 3, they tend to be more dense.

This section shows that direct transports enjoy a different form of low-dimensional
structure: decomposability. A decomposable transport map is a function that can be written
as the composition of a finite number of low-dimensional maps, e.g., T = T1 ◦ · · · ◦ T` for
some integer ` ≥ 2. We use a very specific notion of low-dimensional map, as follows.

Definition 4 (Low-dimensional map with respect to a set) A map M : Rn → Rn is
low-dimensional with respect to a nonempty set C ⊂ V ' Nn if

1. Mk(x) = xk for k ∈ C

2. ∂jM
k = 0 for j ∈ C and k ∈ V \ C.

The effective dimension of M is the minimum cardinality |V \C| over all sets C with respect
to which M is low-dimensional.

In particular, up to a permutation of its components, we can rewrite M as:

M(x) =

[
M C̄(xC̄)
xC

]
,

where C̄ = V \ C denotes the complement of C in V, and where for any map M and
set A = {a1, . . . , ak}, MA denotes the multivariate function x 7→ (Ma1(x), . . . ,Mak(x))
obtained by stacking together the components of M with index in A. Thus M is the
trivial embedding of a |C̄|-dimensional function into the identity map and has effective
dimension bounded by |C̄| < n. It is not surprising, then, that a decomposable transport
T = T1◦· · ·◦T` should be easier to represent than an ordinary map. A perhaps less intuitive
feature, however, is that the computation of a high-dimensional decomposable transport can
be broken down into multiple simpler steps, each associated with the computation of a low-
dimensional map Tj that accounts only for local features of the target measure.
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The forthcoming analysis will consider general, and hence possibly non-triangular, trans-
ports. Thus its scope is much broader than that of Section 5, where we only focused on
the sparsity of triangular transports. Yet, we will show that triangular maps are the build-
ing block of decomposable transports. The cornerstone of our analysis is Theorem 7, which
characterizes the existence and structure of decomposable transports given only the Markov
structure of the underlying target measure.

Our discussion will proceed in two stages: first, we show how to identify direct transports
that decompose into two maps, i.e., T = T1 ◦ T2, and then we explain how to apply this
result recursively to obtain a general decomposition of the form T = T1 ◦ · · · ◦ T`.

6.1. Preliminary Notions

Before addressing the decomposability of transport maps, we need to introduce two useful
concepts: proper graph decompositions and generalized triangular functions. The decom-
position of a graph is a standard notion (Lauritzen, 1996).

Definition 5 (Proper graph decomposition) Given a graph G = (V, E), a triple (A,S,B)
of disjoint subsets of the vertex set V forms a proper decomposition of G if (1) V = A∪S∪B,
(2) A and B are nonempty, (3) S separates A from B, and (4) S is a clique.

See Figure 6 (top left) for an example of a decomposition. Clearly, not every graph admits
a proper decomposition; for instance, a fully connected graph does not have a separator set
for nonempty A and B. The idea we will pursue here is that graph decompositions lead to
the existence of decomposable transports.

The notion of a generalized triangular function is perhaps less standard, but still rela-
tively straightforward:

Definition 6 (Generalized triangular function) A function T : Rn → Rn is said to
be generalized triangular, or simply σ-triangular, if there exists a permutation σ of Nn
such that the σ(k)th component of T depends only on the variables xσ(1), . . . , xσ(k), i.e.,

T σ(k)(x) = T σ(k)(xσ(1), . . . , xσ(k)) for all x = (x1, . . . , xn) and for all k = 1, . . . , n.

We can think of a generalized triangular function as a map that is lower triangular up to a
permutation. In particular, if σ is the identity on Nn, then a σ-triangular function is simply
a lower triangular map (see Section 3). To represent the permutation σ, we use the notation
σ({i1, . . . , ik}) = {σ(i1), . . . , σ(ik)} to denote an ordered set that collects the action of the
permutation on the elements (ij). For example, if T : R4 → R4 is a σ-triangular map with
σ defined as σ(N4) = {1, 4, 2, 3}, then T will be of the form:

T (x) =


T 1(x1)
T 2(x1, x4, x2)
T 3(x1, x4, x2, x3)
T 4(x1, x4)


for some collection (T k). We regard each component T σ(k) as a map Rk → R. We say
that a σ-triangular function T is monotone increasing if each component T k is a monotone
increasing function of the input xk. Moreover, for any νη,νπ ∈ M+(Rn) and for any
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permutation σ of Nn, there exists a (νη-unique) monotone increasing σ-triangular map—
which we call a σ-generalized KR rearrangement—that pushes forward νη to νπ. We give
a constructive definition for a generalized KR rearrangement in Appendix A.

A key property of a σ-generalized KR rearrangement is that it allows different sparsity
patterns to be engineered, depending on σ, in a map that is otherwise fully general—in the
sense of being able to couple arbitrary measures in M+(Rn). This feature will be essential
to characterizing decomposable transport maps.

6.2. Decomposition and Graph Sparsification

We now characterize transports that decompose into a pair of low-dimensional maps, as
described in the following theorem. We formulate the theorem for a generic target measure
νi. Later we will apply the theorem recursively to a sequence (νi) of different targets.

Theorem 7 (Decomposition of transport maps) Let X ∼ νη, Zi ∼ νi, with νη,νi ∈
M+(Rn) and νη tensor product measure. Denote by η, πi a pair of nonvanishing densities
for νη and νi, respectively, and assume that νi factorizes according to a graph Gi, which
admits a proper decomposition (A,S,B). Then the following hold:

1. There exists a factorization of πi of the form

πi(z) =
1

c
ψA∪S(zA∪S)ψS∪B(zS∪B), (17)

where ψA∪S is strictly positive and integrable, with c =
∫
ψA∪S .

2. For any factorization (17) and for any permutation σ of Nn with

σ(k) ∈


S if k = 1, . . . , |S|
A if k = |S|+ 1, . . . , |A ∪ S|
B otherwise,

(18)

there exists a nonempty family, Di, of decomposable transport maps T = Li ◦ R
parameterized by R ∈ Ri such that each T ∈ Di pushes forward νη to νi and where:

(a) Li is a σ-generalized KR rearrangement that pushes forward νη to a measure
with density ψA∪S(zA∪S) ηXB(zB)/c and is low-dimensional with respect to B.

(b) Ri is the set of maps Rn → Rn that are low-dimensional with respect to A and

that push forward νη to the pullback L]i νi ∈M+(Rn).

(c) If Zi+1 ∼ L]i νi, then Zi+1
A ⊥⊥ Zi+1

S∪B and Zi+1
A = XA in distribution.

(d) L]i νi factorizes according to a graph Gi+1 that can be derived from Gi as follows:

– Remove any edge from Gi that is incident to any node in A.

– For any maximal clique C ⊂ S∪B with nonempty intersection C∩S, let jC be
the maximum integer j such that σ(j) ∈ C∩S and turn C ∪{σ(1), . . . , σ(jC)}
into a clique.
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We first look at the theorem for i = 1 and let ν1 := νπ and G1 := G, where νπ denotes
our usual target measure with I-map G and where (A,S,B) denotes a decomposition of G.

Among the infinitely many transport maps from νη to νπ, Theorem 7 identifies a fam-
ily of decomposable ones. The existence of these maps relies exclusively on the Markov
structure of νπ: we just require G to admit a (proper) decomposition.7

Each transport T ∈ D1 pushes forward νη to νπ and is the composition of two low-
dimensional maps, i.e., T = L1 ◦ R for a fixed L1 defined in Theorem 7[Part 2a] and for
some R ∈ R1. (We also write D1 := L1 ◦ R1.8) The structure of these low-dimensional
maps is quite interesting. Up to a reordering of their components, Theorem 7[Parts 2a and
2b] show that L1 and R have an intuitive complementary form:

L1(x) =

 LA1 (xS ,xA)

LS1 (xS)

xB

 , R(x) =

 xARS(xS ,xB)

RB(xS ,xB)

 . (19)

(If S = ∅, one can just remove LS1 and RS from (19), and drop the dependence of the
remaining components on xS .) In particular, L1 and R have effective dimensions bounded
by |A∪S| and |S ∪B| = |V \A|, respectively (see Definition 4). Even though L1 and R are
low-dimensional maps, their composition is quite dense—in the sense of Section 5—and is
in general nontriangular:

T (x) = (L1 ◦R)(x) =

 LA1 (RS(xS ,xB), xA)

LS1 (RS(xS ,xB) )

RB(xS ,xB)

 ,
and thus more difficult to represent and to work with. The key idea of decomposable
transports is that they can be represented implicitly through the composition of their low-
dimensional factors, similar to the way that direct transports can be represented implicitly
through their sparse inverses (Section 5).

The sparsity patterns of L1 and R in (19) are needed for the theorem to hold. In
particular, L1 must be a σ-triangular function with σ specified by (18). Notice that (18) does
not prescribe an exact permutation, but just a few constraints on a feasible σ. Intuitively,
these constraints say that L1 should be a function whose components with indices in S
depend only on the variables in S (whenever S 6= ∅), and whose components with indices in
A depend only on the variables in A∪S. Thus, there is usually some freedom in the choice
of σ. Different permutations lead to different families of decomposable transports, and can
induce different sparsity patterns in an I-map, G2, for L]1 νπ (Theorem 7[Part 2d]).

Part 2d of the theorem shows how to derive a possible I-map G2—not necessarily
minimal—by performing a sequence of graph operations on G. There are two steps: one
that does not depend on σ and one that does. Let us focus first on the former: the idea is to
remove from G any edge that is incident to any node in A, effectively disconnecting A from
the rest of the graph. That is, if Z2 ∼ L]1νπ, then, regardless of σ, L1 makes Z2

A marginally

7. To obtain a proper decomposition of G, one is free to add edges to G in order to turn the separator set
S into a clique (see Definition 5); νπ still factorizes according to any less sparse version of G.

8. The notation here is intuitive: for a given g : Rn → Rn and for a given set of functions F from Rn to
Rn, g ◦ F denotes the set of maps that can be written as g ◦ f for some f ∈ F .
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independent of Z2
S∪B by acting locally on G. And not only that: L1 also ensures that the

marginals of νη and L]1νπ agree along A (see Theorem 7[Part 2c]). Thus we should really
interpret L1 as the first step towards a progressive transport of νη to νπ. L1 is a local map:
it can depend nontrivially only upon variables in xA∪S . Indeed, in the most general case,
|A∪S| is the minimum effective dimension of a low-dimensional map necessary to decouple
A from the rest of the graph. The more edges incident to A, the higher-dimensional a
transport is needed. This type of graph sparsification requires a peculiar “block triangular”
structure for L1 as shown by (19): any σ-triangular function with σ given by (18) achieves
this special structure. The second step of Part 2d shows that if S 6= ∅, then it might be
necessary to add edges to the subgraph GS∪B, depending on σ.9 The relevant aspect of σ
for this discussion is the definition of the permutation onto the first |S| integers. In general,
there are |S|! different permutations that could induce different sparsity patterns in G2. We
shall see that permutations that add the fewest edges possible are of particular relevance.

6.3. Recursive Decompositions

The sparsity of G2 is important because it affects the “complexity” of the maps in R1: each
R ∈ R1 pushes forward νη to L]1 νπ. More specifically, by the previous discussion, we can
see how the role of each R ∈ R1 is really only that of matching the marginals of νη and

L]1 νπ along V \A. A natural question then is whether we can break this matching step into
simpler tasks, or, in the language of this section, whether R1 contains transports that are
further decomposable. Intuitively, we are seeking a finer-grained representation for some of
the transports in R1. The following lemma (for i = 1) provides a positive answer to this
question as long as V \ A is not fully connected in G2. From now on, we denote (A,S,B)
by (A1,S1,B1), since we will be dealing with a sequence of different graph decompositions.

Lemma 8 (Recursive decompositions) Let νη,νi,Gi be defined as in the assumptions
of Theorem 7 for a proper decomposition (Ai,Si,Bi) of Gi, while let Gi+1 and Di = Li ◦Ri

be the resulting graph (Part 2d) and family of decomposable transports,10 respectively. Then
there are two possibilities:

1. Si ∪ Bi is not a clique in Gi+1. In this case, it is possible to identify a proper de-
composition (Ai+1,Si+1,Bi+1) of Gi+1 for some Ai+1 that is a strict superset of Ai
by (possibly) adding edges to Gi+1 in order to turn Si+1 into a clique. Let Di+1 =

Li+1 ◦Ri+1 be defined as in Theorem 7 for the pair of measures νη,νi+1 := L]i νi and
(Ai+1,Si+1,Bi+1). Then the following hold:

(a) Ri ⊃ Di+1 and Li ◦Ri ⊃ Li ◦ Li+1 ◦Ri+1.

(b) Li+1 is low-dimensional with respect to Ai ∪ Bi+1 and has effective dimension
bounded by |(Ai+1 \ Ai) ∪ Si+1|.

(c) Each R ∈ Ri+1 has effective dimension bounded by |V \ Ai+1|.
9. This is not always the case. For instance, if S is a subset of every maximal clique of G in S ∪ B that

has nonempty intersection with S, then, by Theorem 7[Part 2d], no edges need to be added.
10. Whenever we do not specify a permutation σi or a factorization (17) in the definition of Li, it means

that the claim holds true for any feasible choice of these parameters.
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2. Si ∪ Bi is a clique in Gi+1. In this case, the decomposition of Part 1 does not exist.

Lemma 8[Part 1] shows that if S1 ∪ B1 is not fully connected in G2, then there exists
a proper decomposition (A2,S2,B2) of G2 (obtained, possibly, by adding edges to G2 in
V \A1) for which A2 is a strict superset of A1. One can then apply Theorem 7 for the pair

νη,ν2 = L]1 ν1 and the decomposition (A2,S2,B2). As a result, Part 1a of the lemma shows
that R1 contains a subset D2 = L2 ◦ R2 of decomposable transport maps where both L2

and each R ∈ R2 are local transports on V \ A1, i.e., they are both low-dimensional with
respect to A1. In particular, L2 is responsible for decoupling A2 \ A1 from the rest of the

graph and for matching the marginals of νη and L]2 L
]
1 νπ = (L1 ◦ L2)] νπ along A2 \ A1.

The effective dimension of L2 is bounded above by the size of the separator set S2 plus the
number of nodes in A2\A1 (Part 1b of the lemma). The effective dimension of each R ∈ R2

is bounded by the cardinality of V \ A2 and is, in the most general case, lower than that
of the maps in R1 (Part 1c). Moreover, by Part 1a, D1 = L1 ◦R1 ⊃ L1 ◦ L2 ◦R2, which
means that among the infinitely many decomposable transports that push forward νη to νπ,
there exists at least one that factorizes as the composition of three low-dimensional maps
as opposed to two, i.e., T = L1 ◦ L2 ◦R for some R ∈ R2.

If, on the other hand, S1 ∪ B1 is fully connected in G2, then by Lemma 8[Part 2] we
know that the decomposition of Part 1 does not exist. As a result, we cannot use Theorem
7 to prove the existence of more finely decomposable transports in R1. In other words, if
we want to match the marginals of νη and L]1 νπ along V \ A1 = S1 ∪ B1, then we must do
so in one shot, using a single transport map.

The main idea, then, is to apply Lemma 8[Part 1], recursively, k times, where k is the
first integer (possibly zero) for which Sk+1 ∪ Bk+1 is a clique in Gk+2. After k iterations,
the following inclusion must hold:

D1 = L1 ◦R1 ⊃ L1 ◦ · · · ◦ Lk+1 ◦Rk+1, (20)

which shows that there exists a decomposable transport,

T = L1 ◦ · · · ◦ Lk+1 ◦R, (21)

for some R ∈ Rk+1, that pushes forward νη to νπ. (Note that we can apply Lemma 8[Part
1] only finitely many times since |V \Ai+1| is an integer function strictly decreasing in i and
bounded away from zero.) Each Li in (20) is a σi-triangular map for some permutation σi
that satisfies (21), and is low-dimensional with respect to Ai−1 ∪ Bi, i.e., for i > 1 and up
to a permutation of its components,

Li(x) =


xAi−1

L
Ai\Ai−1

i (xSi ,xAi\Ai−1
)

LSii (xSi)

xBi

 .
The map R is low-dimensional with respect to Ak+1 and can also be chosen as a generalized
triangular function. Intuitively, we can think of Li as decoupling nodes in Ai \ Ai−1 from
the rest of the graph in an I-map for (L1 ◦ · · · ◦ Li−1)]νπ. (Recall that by Lemma 8 all the
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sets (Ai) are nested, i.e., A1 ⊂ · · · ⊂ Ak+1.) Figure 6 illustrates the mechanics underlying
the recursive application of Lemma 8.

We emphasize that the existence and structure of (21) follow from simple graph opera-
tions on G, and do not entail any actual computation with the target measure νπ. Notice
also that even if each map in the decomposition (20) is σ-triangular, the resulting transport
map T need not be triangular at all. In other words, we obtain factorizations of general and
possibly non-triangular transport maps in terms of low-dimensional generalized triangular
functions. In this sense, we can regard triangular maps as a fundamental “building block”
of a much larger class of transport maps.

Decomposable transports are clearly not unique. In particular, there are two factors
that affect both the sparsity pattern and the number k of composed maps in the family
L1 ◦ · · · ◦ Lk+1 ◦ Rk+1: the sequence of decompositions (Ai,Si,Bi) and the sequence of
permutations (σi). Usually, there is a certain freedom in the choice of these parameters,
and each configuration might lead to a different family of decomposable transports. Of
course some families might be more desirable than others: ideally, we would like the low-
dimensional maps in the composition to have the smallest effective dimension possible.
Recall that by Lemma 8 the effective dimension of each Li can be bounded above by
|(Ai \ Ai−1) ∪ Si| (with the convention A0 = ∅). Thus we should intuitively choose a
decomposition (Ai,Si,Bi) of Gi and a permutation σi for Li that minimize the cardinality
of (Ai \ Ai−1) ∪ Si, and that, at the same time, minimize the number of edges added from
Gi to Gi+1. In principle, we should also account for the dimensions of all future maps in
the recursion. In the most general case, this graph theoretic question could be addressed
using dynamic programming (Bertsekas, 1995). In practice, however, we will often consider
graphs for which a good sequence of decompositions and permutations is rather obvious (see
Section 7). For instance, if the target distribution νπ factorizes according to a tree G, then
it is immediate to show the existence of a decomposable transport T = T1 ◦ · · · ◦ Tn−1 that
pushes forward νη to νπ and that factorizes as the composition of n−1 low-dimensional maps
(Ti)

n−1
i=1 , each associated to an edge of G: it suffices to consider a sequence of decompositions

(Ai,Si,Bi) with A1 ⊂ A2 ⊂ · · · , where, for a given rooted version of G, Ai \ Ai−1 consists
of a single node ai with the largest depth in GV\Ai−1

, and where Si contains the unique
parent of that node. Remarkably, each map Ti has effective dimension less than or equal to
two, independent of n—the size of the tree.

At this point, it might be natural to consider a junction tree decomposition of a trian-
gulation of G (Koller and Friedman, 2009) as a convenient graphical tool to schedule the
sequence of decompositions (Ai,Si,Bi) needed to apply Lemma 8 recursively. Decompos-
able graphs are in fact ultimately chordal (Lauritzen, 1996). However, the situation might
not be as straightforward. The problem is that the clique structure of Gi, an I-map for
νi, can be very different than that of Gi+1, an I-map for L]i νi; Theorem 7[Part 2d] shows
that Gi+1 might contain larger maximal cliques than those in Gi, even if Gi is chordal (see
Figure 6 for an example). Thus, working with a junction tree might require a bit of extra
care.
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6.4. Computation of Decomposable Transports

Given the existence and structure of a decomposable transport like (21), what to do with
it? There are at least two possible ways of exploiting this type of information. First, one
could solve a variational problem like (6) and enforce an explicit parameterization of the
transport map as the composition T = L1 ◦ · · · ◦ Lk+1 ◦ R. In this scenario, one need only
parameterize the low-dimensional maps (Li, R) and optimize, jointly, over their composition.
The advantage of this approach is that it bypasses the parameterization of a single high-
dimensional function, T , altogether. See the literature on normalizing flows (Rezende and
Mohamed, 2015) for possible computational ideas in this direction.

An alternative—and perhaps more intriguing—possibility is to compute the maps (Li)
sequentially by solving separate low-dimensional optimization problems—one for each map
Li. By Theorem 7[Part 2a] and Lemma 8, there exists a factorization (17) of πi—a density

of L]i−1 νi−1—for which Li is a σi-generalized KR rearrangement that pushes forward νη to
a measure with density proportional to ψAi∪Si ηXBi , where (Ai,Si,Bi) is a decomposition

of Gi and Gi is an I-map for νi. In general ψAi∪Si depends on Li−1, and so the maps (Li)
must be computed sequentially.11 In essence, decomposable transports break the inference
task into smaller and possibly easier steps.

Note that we could define Li with respect to any factorization (17) with ψAi∪Si in-
tegrable: these different factorizations would lead to a family of decomposable transports
with the same low-dimensional structure and sparsity patterns (as predicted by Theorem 7).
Thus, as long as we have access to a sequence of integrable factors (ψAi∪Si), we can com-
pute each map Li individually by solving a low-dimensional optimization problem. (See
Appendix A for computational remarks on generalized triangular functions.) Intuitively,
since by Lemma 8[Part 1b] Li is low-dimensional with respect to Ai−1 ∪ Bi, we really only
need to optimize for a portion of the map, namely LCi for C = (Ai \ Ai−1) ∪ Si, which can
be regarded effectively as a multivariate map on R|C|. In the same way, the map R can
be computed as any transport (possibly triangular) that pushes forward νη to L]k+1 νk+1.
Theorem 7[Part 2b] tells us that once again we only need to optimize for a low-dimensional
portion of the map, namely, RSk+1∪Bk+1 .

While it might be difficult to access a sequence of factorizations (17) for a general
problem, there are important applications, such as Bayesian filtering, smoothing, and joint
parameter/state estimation, where the sequential computation of the transports (Li, R) is
always possible by construction. We discuss these applications in the next section.

7. Sequential Inference on State-Space Models: Variational Algorithms

In this section, we consider the problem of sequential Bayesian inference (or discrete-time
data assimilation; Reich and Cotter, 2015) for continuous, nonlinear, and non-Gaussian
state-space models.

Our goal is to specialize the theory developed in Section 6 to the solution of Bayesian fil-
tering and smoothing problems. The key result of this section is a new variational algorithm

11. This is not always the case. For instance, given a rooted version of G and a pair of consecutive depths
(see the discussion at the end of Section 6.3), all the maps (Li) associated with edges connecting nodes
at these two depths can be computed in parallel.
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Figure 6: Sequence of graph decompositions associated with the recursive application of
Lemma 8. On the (top left) there is an I-map, G1, for νπ, with νπ ∈ M+(R6).
We first decompose this graph into (A1,S1,B1) as indicated, and apply Theorem
7 to the pair νη,νπ. To do so, we first need to add edge (2, 3) to G1 in order
to turn (A1,S1,B1) into a proper decomposition of G1 with a fully connected
S1. The resulting graph, G1

?, is now chordal (in fact, a triangulation of G1,
Lauritzen, 1996), but still an I-map for νπ. The first map L1 is σ1-triangular
with σ1(N6) = {2, 3, 1, 4, 5, 6} and it is low-dimensional with respect to B1; The

(top right) figure shows the I-map, G2, for L]1 νπ as given by Theorem 7[Part 2d]:
as expected, A1 is disconnected from S1 ∪ B1; moreover, a new maximal clique
{2, 3, 4, 5} appears in G2. This new clique is larger than any of the maximal
cliques in G1

?, even though G1
? is chordal. (Notice that σ1 is not the permutation

that adds the fewest edges possible in G2. An example of such “best” permutation
would be σ(N6) = {3, 2, 1, 4, 5, 6}.) Though Theorem 7 guarantees the existence

of a low-dimensional map R ∈ R1 that pushes forward νη to L]1 νπ, we instead
proceed recursively by applying Lemma 8[Part 1] for a proper decomposition,
(A2,S2,B2), of G2, where A2 is a strict superset of A1 (bottom left). The lemma
shows that R1 ⊃ L2◦R2 for some σ2-triangular map L2, which is low-dimensional
with respect to A1∪B2, and where each R ∈ R2 pushes forward νη to (L1◦L2)]νπ.
Can we apply Lemma 8 one more time to characterize decomposable transports
in R2? The answer is no, as the I-map for (L1 ◦L2)]νπ (bottom right) consists of
a single clique in S2∪B2. Nevertheless, each R ∈ R2 is still low-dimensional with
respect to A2. Overall, we showed the existence of a transport map T : R6 → R6

pushing forward νη to νπ that decomposes as T = L1 ◦ L2 ◦ R, where L1, L2, R
are effectively {3, 4, 3}-dimensional maps, respectively.
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for characterizing the full posterior distribution of the sequential inference problem—e.g.,
not just a few filtering or smoothing marginals—via recursive lag–1 smoothing with trans-
port maps. The proposed algorithm builds a decomposable high-dimensional transport map
in a single forward pass by solving a sequence of local low-dimensional problems, without
resorting to any backward pass on the state space model (see Theorem 9). These results
extend naturally to the case of joint parameter and state estimation (see Section 7.3 and
Theorem 12). Pseudocode for the algorithm is given in Appendix C.

A state-space model consists of a pair of discrete-time stochastic processes (Zk,Yk)k≥0

indexed by the time k, where (Zk) is a latent Markov process of interest and where (Yk) is
the observed process. We can think of each Yk as a noisy and perhaps indirect measurement
of Zk. The Markov structure corresponding to the joint process (Zk,Yk) is shown in Figure
7. The generalization of the results of this section to the case of missing observations is
straightforward and will not be addressed here.

We assume that we are given the transition densities πZk+1|Zk for all k ≥ 0, sometimes re-
ferred to as the “prior dynamic,” together with the marginal density of the initial conditions
πZ0 . (For instance, the prior dynamic could stem from the discretization of a continuous
time stochastic differential equation; Oksendal, 2013.) We denote by πYk|Zk the likelihood
function, i.e., the density of Yk given Zk, and assume that Zk and Yk are random variables
taking values on Rn and Rd, respectively. Moreover, we denote by (yk)k≥0 a sequence of
realizations of the observed process (Yk) that will define the posterior distribution over the
unobserved (hidden) states of the model, and make the following regularity assumption in
our theorems: πZ0:k−1,Y0:k−1

> 0 for all k ≥ 1. (The existence of underlying fully supported
measures will be left implicit throughout the section for notational convenience.)

Z0 Z1 Z2 Z3 ZN

Y0 Y1 Y2 Y3 YN

X0 X1 X2 X3 XN

Figure 7: (above) I-map for the joint process (Zk,Yk)k≥0 defining the state-space model.
(below) I-map for the independent reference process (Xk)k≥0 used in Theorem 9.

7.1. Smoothing and Filtering: the Full Bayesian Solution

In typical applications of state-space modeling, the process (Yk) is only observed sequen-
tially, and thus the goal of inference is to characterize—sequentially in time and via a
recursive algorithm—the joint distribution of the current and past states given currently
available measurements, i.e.,

πZ0:k|y0:k(z0:k) := πZ0:k|Y0:k
(z0:k|y0:k) (22)
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for all k ≥ 0. That is, we wish to characterize πZ0:k|y0:k based on our knowledge of the
posterior distribution at the previous timestep, πZ0:k−1|y0:k−1

, and with an effort that is
constant over time. We regard (22) as the full Bayesian solution to the sequential inference
problem (Särkkä, 2013).

Usually, the task of updating πZ0:k−1|y0:k−1
to yield πZ0:k|y0:k becomes increasingly chal-

lenging over time due to the widening inference horizon, making characterization of the full
Bayesian solution impractical for large k. Thus, two simplifications of the sequential infer-
ence problem are frequently considered: filtering and smoothing (Särkkä, 2013). In filtering,
we characterize πZk|y0:k for all k ≥ 0, while in smoothing we recursively update πZj |y0:k for
increasing k > j, where Zj is some past state of the unobserved process. Both filtering
and smoothing deliver particular low-dimensional marginals of the full Bayesian solution
to the inference problem, and hence are often considered good candidates for numerical
approximation (Doucet and Johansen, 2009).

The following theorem shows that characterizing the full Bayesian solution to the se-
quential inference problem via a decomposable transport map is essentially no harder than
performing lag–1 smoothing, which, in turn, amounts to characterizing πZk−1,Zk|y0:k for all
k ≥ 0 (an operation only slightly harder than regular filtering). This result relies on the
recursive application of the decomposition theorem for couplings (Theorem 7) to the tree
Markov structure of πZ0:k|y0:k . In what follows, let (Xk)k≥0 be an independent (reference)
process with nonvanishing marginal densities (ηXk

), with each Xk taking values on Rn. See
Figure 7 for the corresponding Markov network.

Theorem 9 (Decomposition theorem for state-space models) Let (Mi)i≥0 be a se-
quence of (σi)-generalized KR rearrangements on Rn × Rn, which are of the form

Mi(xi,xi+1) =

[
M0

i (xi,xi+1)

M1
i (xi+1)

]
(23)

for some σi, M
0
i : Rn × Rn → Rn, M1

i : Rn → Rn, and that are defined by the recursion:

– M0 pushes forward ηX0,X1 to π0 = π̃0/c0,

– Mi pushes forward ηXi,Xi+1 to πi(zi, zi+1) = ηXi(zi) π̃
i(M1

i−1(zi), zi+1)/ci,

where ci is a normalizing constant and where (π̃i)i≥0 are functions on Rn × Rn given by:

– π̃0(z0, z1) = πZ0,Z1(z0, z1)πY0|Z0
(y0|z0)πY1|Z1

(y1|z1),

– π̃i(zi, zi+1) = πZi+1|Zi(zi+1|zi)πYi+1|Zi+1
(yi+1|zi+1) for i ≥ 1.

Then, for all k ≥ 0, the following hold:

1. The map M1
k pushes forward ηXk+1

to πZk+1|y0:k+1
. [filtering]

2. The map Mk, defined as (M1
k−1(x) = x for k = 0)

Mk(xk,xk+1) =

[
M1

k−1(M0
k(xk,xk+1))

M1
k(xk+1)

]
, (24)

pushes forward ηXk,Xk+1
to πZk,Zk+1|y0:k+1

. [lag–1 smoothing]
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3. The composition of transport maps Tk = T0 ◦ · · · ◦ Tk, where each Ti is defined as

Ti(x0, . . . ,xk+1) =



x0
...
xi−1

M0
i (xi,xi+1)

M1
i (xi+1)

xi+2
...
xk+1


, (25)

pushes forward ηX0:k+1
to πZ0:k+1|y0:k+1

. [full Bayesian solution]

4. The model evidence (marginal likelihood) is given by

πY0:k+1
(y0:k+1) =

k∏
i=0

ci. (26)

Theorem 9 suggests a variational algorithm for smoothing and filtering a continuous state-
space model: compute the sequence of maps (Mi), each of dimension 2n; embed them
into higher-dimensional identity maps to form (Ti) according to (25); then evaluate the
composition Tk = T0 ◦ · · · ◦ Tk to sample directly from πZ0:k+1|y0:k+1

(i.e., the full Bayesian
solution) and obtain information about any smoothing or filtering distribution of interest.

Successive transports in the composition (Tk)k≥0 are nested and thus ideal for sequential
assimilation: given Tk−1, we can obtain Tk simply by computing an additional map Mk of
dimension 2n—with no need to recompute (Mi)i<k. This step converts a transport map
that samples πZ0:k|y0:k into one that samples πZ0:k+1|y0:k+1

. This feature is important since

Mk is always a 2n-dimensional map, while πZ0:k+1|y0:k+1
is a density on Rn(k+2)—a space

whose dimension increases with time k. In fact, from the perspective of Section 6, Theorem
9 simply shows that each πZ0:k+1|y0:k+1

can be represented via a decomposable transport
Tk = T0 ◦ · · · ◦ Tk. The sparsity pattern of each map Mi, specified in (23), is necessary for
Theorem 9 to hold: Mi cannot be any transport map; it must be block upper triangular.

The proposed algorithm consists of a forward pass on the state-space model—wherein
the sequence of transport maps (Mi) are computed and stored—followed by a backward
pass where the composition Tk = T0 ◦ · · · ◦ Tk is evaluated deterministically to sample
πZ0:k+1|y0:k+1

. This backward pass does not re-evaluate the potentials of the state-space
model (e.g., transition kernels or likelihoods) at earlier times, nor does it perform any
additional computation other than evaluating the maps (Mi) in Tk.

Though each map Tj is usually trivial to evaluate—e.g., the map might be parameterized
in terms of polynomials (Marzouk et al., 2016) and differ from the identity along only 2n
components—it is true that the cost of evaluating Tk grows linearly with k. This is hardly
surprising since πZ0:k+1|y0:k+1

is a density over spaces of increasing dimension. A direct
approximation of Tk is usually a bad idea since the map is high-dimensional and dense (in
the sense defined by Section 6); it is better to store Tk implicitly through the sequence of
maps (Mi)

k
i≥0, and sample smoothed trajectories by evaluating Tk only when it is needed. If
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we are only interested in a particular smoothing marginal, e.g., πZ0|y0:k+1
for all k ≥ 0, then

we can define a general forward recursion to sample πZ0|y0:k+1
with a single transport map

that is updated recursively over time, rather than with a growing composition of maps—and
thus with a cost independent of k. This construction is given in Section 7.4.

Also, it is important to emphasize that in order to assimilate a new measurement, say
yk+1, we do not need to evaluate the full composition Tk−1; we only need to compute a
low-dimensional map Mk whose target density πk depends only on Mk−1. The previous
maps (Mi)i<k−1 are unnecessary at this stage. Thus the effort of assimilating a new piece
of data is constant in time—modulo the complexity of each Mk.

The distribution πZ0:k+1|y0:k+1
is not represented via a collection of particles as k ≥ 0 in-

creases, but rather via a growing composition of low-dimensional transport maps that yields
fully supported approximations of πZ0:k+1|y0:k+1

. These maps are computed via determin-
istic optimization: there are no importance sampling or resampling steps. Intuitively, the
optimization step for Mk moves the particles on which the map is evaluated, rather than
reweighing them.

Part 1 of Theorem 9 shows that the lower subcomponent M1
k : Rn → Rn of the map

Mk characterizes the filtering distribution πZk+1|y0:k+1
for all k ≥ 0, while Part 2 shows

that each Mk also characterizes the lag–1 smoothing distribution πZk,Zk+1|y0:k+1
up to an

invertible transformation of the marginal over Zk. Thus, Theorem 9 implies a deterministic
algorithm for lag–1 smoothing that in fact fully characterizes the posterior distribution of
the nonlinear state-space model—much in the same spirit as the Rauch-Tung-Striebel (RTS)
smoothing algorithm for Gaussian models. We clarify this connection in Section 7.2.

A related perspective on the proposed smoothing algorithm is that the composition of
maps Tk = T0 ◦ · · · ◦Tk implements the following factorization of the full Bayesian solution,

πZ0:k+1|y0:k+1
= πZk+1|y0:k+1

πZk|Zk+1,y0:k πZk−1|Zk,y0:k−1
· · · πZ0|Z1,y0 , (27)

wherein each map Mi, due to its block upper triangular structure, is associated with a
specific factorization of the lag–1 smoothing density,

πZi+1,Zi|y0:i+1
= πZi+1|y0:i+1

πZi|Zi+1,y0:i .

Evaluating Tk on samples drawn from the reference process ηX0:k+1
amounts to sampling

first from the final filtering marginal πZk+1|y0:k+1
and then from the sequence of “backward”

conditionals in (27). See also (Kitagawa, 1987; Doucet and Johansen, 2009; Godsill et al.,
2004) for alternative approximations of the forward–filtering backward–smoothing formulas.

Note that the proposed approach does not reduce to the ensemble Kalman filter (EnKF)
or to the ensemble Kalman smoother (EnKS) (Evensen, 2003; Evensen and Van Leeuwen,
2000), even if the maps {Mk} are constrained to be linear. For one, the EnKF implements
a two-step recursive approximation of each filtering marginal, which consists of (i) a particle
approximation of the “forecast” distribution πZk+1|y0:k obtained by simulating the transition
kernel πZk+1|Zk , followed by (ii) a linear approximation of the forecast-to-analysis update
(i.e., the update from πZk+1|y0:k to πZk+1|y0:k+1

). In contrast, our approach constructs a
recursive variational approximation of each lag–1 smoothing distribution, essentially us-
ing numerical optimization to minimize the KL divergence between πZk,Zk+1|y0:k+1

and its
transport map approximation. We do not make a particle approximation of the forecast
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distribution by integrating the model dynamics, but instead require explicit evaluations of
the transition density πZk+1|Zk . If, however, the dynamics of the state-space model are lin-
ear, with Gaussian transition/observational noise and Gaussian initial conditions, then the
proposed algorithm is equivalent to filtering and smoothing via “exact” Kalman formulas;
in this case, the EnKF and EnKS can be interpreted as Monte Carlo approximations of the
recursions defined by the proposed algorithm (Raanes, 2016).

Numerical approximations. In general, the maps (Mi) must be approximated nu-
merically (see Section 3). As a result, Monte Carlo estimators associated with the evaluation
of Tk = T0◦· · ·◦Tk are biased, although possibly with negligible variance, since it is trivial to
evaluate the map a large number of times. This bias is only due to the numerical approxima-
tion of (Mi), and not to the particular factorization properties of Tk. In practice, one might
either accept this bias or try to reduce it. The bias can be reduced in at least two ways: (1)
by enriching the parameterization of some (Mi), and thus increasing the accuracy of the
variational approximation, or (2) by using the map-induced proposal density (Tk)]ηX0:k+1

—
i.e., the pushforward of a marginal of the reference process through Tk—within importance
sampling or MCMC (see Section 8). For instance, the weight function

wk+1(x) =
πZ0:k+1|y0:k+1

(x)

(Tk)]ηX0:k+1
(x)

is readily available, and can be used to yield consistent estimators with respect to the
smoothing distribution. However, the resulting weights cannot be computed recursively in
time, because even though the small dimensional maps Mk are computed sequentially, the
map-induced proposal (Tk)]ηX0:k+1

changes entirely at every step.
In particle filters, the complexity of approximating the underlying distribution is given

by the number of particles N . In the proposed variational approach, the complexity of
the approximation depends on the parameterization of each map Mi. There is no single
parameter like N to describe the complexity of the latter—though, broadly, it should depend
on the number of degrees of freedom in the parameterization. In some cases, one might
think of using the total order of a multivariate polynomial expansion of each component of
the map as a tuning parameter. But this is far from general or practical in high dimensions.
The virtue of a functional representation of the transport map is the ability to carefully
select the degrees of freedom of the parameterization. For instance, we might model local
interactions between different groups of input variables using different approximation orders
or even different sets of basis functions. This freedom should not be frightening, but rather
embraced as a rich opportunity to exploit the structure of the particular problem at hand.
Spantini (2017, Ch. 6) gives an example of this practice in the context of filtering high-
dimensional spatiotemporal processes with chaotic dynamics.

In general, richer parameterizations of the maps are more costly to characterize because
they lead to higher-dimensional optimization problems (7). Yet, richer parameterizations
can yield arbitrarily accurate results. There is clearly a tradeoff between computational
cost and statistical accuracy. We investigate this tradeoff numerically in Section 8, where
we report the cost of computing a transport map under different parameterizations and
inference scenarios.

Another important note: the sequential approximation of the individual maps (Mi)
might present additional challenges due to the accumulation of error, since the target den-
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sity for the k-th map Mk depends on the numerical approximation of the previous map,
Mk−1. This is not an issue with the factorization of Tk per se, but rather with sequentially
computing each element of the factorization. The analysis of sequential Monte Carlo meth-
ods (e.g., Crisan and Doucet, 2002; Del Moral, 2004; Smith et al., 2013) addresses a similar
accumulation of error, but has not yet been extended to sequential variational inference
techniques. In Section 8, we empirically investigate the stability of variational transport
map approximations for a problem of very long time smoothing (see Figure 17), showing
excellent results—at least for the reconstruction of low-order smoothing marginals.

As shown in (9), the computation of each Mi is also associated with an approximation
of the normalizing constant ci of its own target density, which then leads to a one-pass
approximation of the marginal likelihood using (26).

One last remark: the proof of Theorem 9 shows that the triangular structure hypothesis
for each Mi can be relaxed provided that the underlying densities are regular enough. The
following corollary clarifies this point.

Corollary 10 The results of Theorem 9 still hold if we replace every KR rearrangement
Mi with a “block triangular” diffeomorphism of the form (23) that couples the same distri-
butions, provided that such regular transport maps exist.

Filtering and smoothing are of course very rich problems, and in this section we have by
no means attempted to be exhaustive. Rather, our goal was to highlight some implications
of decomposable transports on problems of sequential Bayesian inference, in a general non-
Gaussian setting.

7.2. The Linear Gaussian Case: Connection with the RTS Smoother

In this section, we specialize the results of Theorem 9 to linear Gaussian state-space models,
and make explicit the connection with the RTS Gaussian smoother (Rauch et al., 1965).

Consider a linear Gaussian state-space model defined by

Zk+1 = Fk Zk + εk

Yk = Hk Zk + ξk

for all k ≥ 0, where εk ∼ N (0,Qk), ξk ∼ N (0,Rk), Fk ∈ Rn×n, Hk ∈ Rd×n, and Z0 ∼
N (µ0,Γ0). Both εk and ξk are independent of Zk, while Qk,Rk, and Γ0 are symmetric
positive definite matrices for all k ≥ 0.

If we choose an independent reference process (Xk) with standard normal marginals,
i.e., ηXk

= N (0, I), then the maps (Mk) of Theorem 9 can be chosen to be linear:

Mk(zk, zk+1) =

[
Ak Bk

0 Ck

]{
zk
zk+1

}
+

{
ak
ck

}
, (28)

for some matrices Ak,Bk,Ck ∈ Rn×n and ak, ck ∈ Rn. (Notice that in this case Corollary
10 applies and the matricesAk,Bk can be full and not necessarily triangular.) The following
lemma gives a closed form expression for the maps (Mk) with k ≥ 1. (M0 can be derived
analogously with simple algebra.)
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Lemma 11 (The linear Gaussian case) For k ≥ 1, the map Mk in (28) can be defined
as follows: if (ck,Ck) is the output of a square-root Kalman filter at time k (Bierman,
2006), i.e., if ck and Ck are, respectively, the mean and square root of the covariance of the
filtering distribution πZk+1|y0:k+1

, then one can set:

Ak = J
−1/2
k (29)

Bk = −J−1
k PkCk

ak = J−1
k Pk (Fk ck−1 − ck),

for Jk := I +C>k−1 F
>
k Q

−1
k FkCk−1 and Pk = −C>k−1 F

>
k Q

−1
k .

The formulas in Lemma 11 can be interpreted as one possible implementation of a square-
root RTS smoother for Gaussian models: at each step k of a forward pass, the filtering
estimates (ck,Ck) are augmented with a collection (ak,Ak,Bk) of stored quantities, which
can then be reused to sample the full Bayesian solution (or particular smoothing marginals)
whenever needed, and without ever touching the state-space model again. In this sense, the
algorithm proposed in Section 7.1 can be understood as the natural generalization—to the
non-Gaussian case—of the square-root RTS smoother.

7.3. Sequential Joint Parameter and State Estimation

In defining a state-space model, it is common to parameterize the transition densities of the
unobserved process or the likelihoods of the observables in terms of some hyperparameters
Θ. The Markov structure of the resulting Bayesian hierarchical model, conditioned on
the data, is shown in Figure 8. The state-space model is now fully specified in terms of
the conditional densities (πYk|Zk,Θ)k≥0, (πZk+1|Zk,Θ)k≥0, πZ0|Θ, and the marginal πΘ. We
assume that the hyperparameters Θ take values on Rp, and that the following regularity
conditions hold: πΘ,Z0:k−1,Y0:k−1

> 0 for all k ≥ 1.
Given such a parameterization, one often wishes to jointly infer the hidden states and

the hyperparameters of the model as observations of the process (Yk) become available.
That is, the goal of inference is to characterize, via a recursive algorithm, the sequence of
posterior distributions given by

πΘ,Z0:k|y0:k(zθ, z0:k) := πΘ,Z0:k|Y0:k
(zθ, z0:k|y0:k) (30)

for all k ≥ 0 and for a sequence (yk)k≥0 of observations. The following theorem shows that
we can characterize (30) by computing a sequence of low-dimensional transport maps in
the same spirit as Theorem 9. In what follows, let (Xk) be an independent process with
marginals (ηXk

) as defined in Theorem 9 and let XΘ be a random variable on Rp that is
independent of (Xk) and with nonvanishing density ηXΘ

.

Z0 Z1 Z2 Z3 ZN

Θ

Figure 8: I-map for πΘ,Z0,...,ZN |y0,...,yN , for any N > 0.
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Theorem 12 (Decomposition theorem for joint parameter and state estimation)
Let (Mi)i≥0 be a sequence of (σi)-generalized KR rearrangements on Rp × Rn × Rn, which
are of the form

Mi(xθ,xi,xi+1) =

 MΘ
i (xθ)

M0
i (xθ,xi,xi+1)

M1
i (xθ,xi+1)

 (31)

for some σi, M
Θ
i : Rp → Rp, M0

i : Rp × Rn × Rn → Rn, M1
i : Rp × Rn → Rn, and that are

defined by the recursion:

– M0 pushes forward ηXΘ,X0,X1 to

π0 = π̃0/c0, (32)

– Mi pushes forward ηXΘ,Xi,Xi+1 to

πi(zθ, zi, zi+1) = ηXΘ,Xi(zθ, zi) π̃
i(TΘ

i−1(zθ), M
1
i−1(zθ, zi), zi+1)/ci, (33)

where ci is a normalizing constant, the map TΘ
j := MΘ

0 ◦ · · · ◦MΘ
j for all j ≥ 0, and where

(π̃i)i≥0 are functions on Rp × Rn × Rn given by:

– π̃0(zθ, z0, z1) = πΘ,Z0,Z1(zθ, z0, z1)πY0|Z0,Θ(y0|z0, zθ)πY1|Z1,Θ(y1|z1, zθ),

– π̃i(zθ, zi, zi+1) = πZi+1|Zi,Θ(zi+1|zi, zθ)πYi+1|Zi+1,Θ(yi+1|zi+1, zθ) for i ≥ 1.

Then, for all k ≥ 0, the following hold:

1. The map M̃k, defined as

M̃k(xθ,xk+1) =

[
TΘ
k (xθ)

M1
k(xθ,xk+1)

]
, (34)

pushes forward ηXΘ,Xk+1
to πΘ,Zk+1|y0,...,yk+1

. [filtering]

2. The composition of transport maps Tk = T0 ◦ · · · ◦ Tk, where each Ti is defined as

Ti(xθ,x0, . . . ,xk+1) =



MΘ
i (xθ)

x0
...
xi−1

M0
i (xθ,xi,xi+1)

M1
i (xθ,xi+1)

xi+2
...
xk+1


, (35)

pushes forward ηXΘ,X0,...,Xk+1
to πΘ,Z0,...,Zk+1|y0,...,yk+1

. [full Bayesian solution]

32



Inference via Low-Dimensional Couplings

3. The model evidence (marginal likelihood) is given by (26).

Theorem 12 suggests a variational algorithm for the joint parameter and state estimation
problem that is similar to the one proposed in Theorem 9: compute the sequence of maps
(Mi), each of dimension 2n+p; embed them into higher-dimensional identity maps to form
(Ti) according to (35); then evaluate the composition Tk = T0 ◦ · · · ◦ Tk to sample directly
from πΘ,Z0:k+1|y0:k+1

(i.e., the full Bayesian solution). See Appendix C for more details.
Each map Mi is now of dimension twice that of the model state plus the dimension of the
hyperparameters. This dimension is slightly higher than that of the maps (Mi) considered
in Theorem 9, and should be regarded as the price to pay for introducing hyperparameters
in the state-space model and having to deal with the Markov structure of Figure 8 as
opposed to the tree structure of Figure 7. By Theorem 12[Part 1], the composition of maps
TΘ
k = MΘ

0 ◦ · · · ◦MΘ
k provides a recursive characterization of the posterior distribution

over the static parameters, πΘ|y0:k+1
, for all k ≥ 0. The latter is often the ultimate goal

of inference (Andrieu et al., 2010). In order to have a sequential algorithm for parameter
estimation, we also need to keep a running approximation of TΘ

k using the recursion TΘ
k =

TΘ
k−1 ◦MΘ

k —e.g., via regression—so that the cost of evaluating TΘ
k does not grow with k.

Even in the joint parameter and state estimation case, only a single forward pass with
local computations is necessary to gather all the information from the state-space model
needed to sample the collection of posteriors (πΘ,Z0:k+1|y0:k+1

). Notice that the accuracy
of the variational procedure is only limited by the accuracy of each computed map, and
that the proposed approach does not prescribe an artificial dynamic for the parameters
(Kitagawa, 1998; Liu and West, 2001), or an a priori fixed-lag smoothing approximation
(Polson et al., 2008). Yet there is no rigorous proof that the performance of the proposed
sequential algorithm for parameter estimation does not deteriorate with time. Indeed,
developing exact, sequential, and online algorithms for parameter estimation in general non-
Gaussian state-space models is among the chief research challenges in SMC methods (Jacob,
2015). See (Chopin et al., 2013; Crisan and Miguez, 2013; Del Moral et al., 2017) for recent
contributions in this direction and (Kantas et al., 2015) for a review of SMC approaches
to Bayesian parameter inference. See also (Erol et al., 2017) for a hybrid approach that
combines elements of variational inference with particle filters.

We refer the reader to Section 8 for a numerical illustration of parameter inference with
transport maps involving a stochastic volatility model.

7.4. Fixed-Point Smoothing

Consider again the problem of sequential inference in a state-space model without static pa-
rameters (see Figure 7), and suppose that we are interested only in the smoothing marginal
πZ0|y0:k for all k ≥ 0; this is the fixed-point smoothing problem.

In Section 7.1 we showed that computing a sequence of maps (Mi)—each of dimension
2n—is sufficient to sample the joint distribution πZ0:k+1|y0:k+1

by evaluating the composition
Tk = T0 ◦ · · · ◦ Tk, where each Ti is a trivial embedding of Mi into an identity map. If we
can sample πZ0:k+1|y0:k+1

, then it is easy to obtain samples from the marginal πZ0|y0:k+1
: in

fact, it suffices to evaluate only the first n components of Tk, which can be interpreted as
a map from Rn×(k+2) to Rn. To do so, however, we need to evaluate k maps. A natural
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question then is whether it is possible to characterize πZ0|y0:k+1
via a single transport map

that is updated recursively in time, as opposed to a growing composition of maps.
Here we propose a solution—certainly not the only possibility—based on the theory of

Section 7.3. The idea is to treat Z0 as a static parameter, i.e., to set Θ := Z0 and apply
the results of Theorem 12 to the Markov structure of Figure 9. The resulting algorithm
computes a sequence of maps (Mi) of dimension 3n, i.e., three times the state dimension,
and keeps a running approximation of TΘ

k via the recursion TΘ
k = TΘ

k−1 ◦ MΘ
k , where

each MΘ
k is just a subcomponent of Mk. These maps (Mi) are higher-dimensional than

those considered in Section 7.1, but they do yield the desired result: each TΘ
k : Rn → Rn

characterizes the smoothing marginal πZ0|y0:k+1
, for all k ≥ 0, via a single transport map

that is updated recursively in time with just one forward pass (see Theorem 12[Part 1]).

Z1 Z2 Z3 Z4 ZN

Z0

Figure 9: I-map (certainly not minimal) for πZ0,Z1:N |y0:N , for any N > 0. Orange edges
have been added compared to the tree structure of Figure 7.

8. Numerical Illustration

We illustrate some aspects of the preceding theory using a problem of sequential inference in
a non-Gaussian state-space model. In particular, we show the application of decomposable
transport maps (Sections 6 and 7) to joint state and parameter inference in a stochastic
volatility model. This example is intended as a direct and simple illustration of the theory.
The notion of decomposable transport maps is useful well beyond the sequential inference
setting, and entails the general problem of inference in continuous non-Gaussian graphical
models. We refer the reader to Morrison et al. (2017) for an application of the theory of
sparse transports (Section 5) to the problem of learning the Markov structure of a non-
Gaussian distribution, and we defer further numerical investigations to a dedicated paper
(Bigoni et al., 2019).

Following (Kim et al., 1998; Rue et al., 2009), we model the scalar log-volatility (Zk)
of the return of a financial asset at time k = 0, . . . , N using an autoregressive process
of order one, which is fully specified by Zk+1 = µ + φ (Zk − µ) + εk, for all k ≥ 0,
where εk ∼ N (0, 1/16) is independent of Zk, Z0|µ,φ ∼ N (µ, 1

1−φ2 ), and where φ and

µ represent scalar hyperparameters of the model. In particular, µ ∼ N (0, 1) and φ =
2 exp(φ?)/(1 + exp(φ?))− 1 with φ? ∼ N (3, 1). We define Θ := (µ,φ). The process (Zk)
and parameters Θ are unobserved and must be estimated from an observed process (Yk),
which represents the mean return on holding the asset at time k, Yk = ξk exp(1

2Zk), where
ξk is a standard normal random variable independent of Zk. As a data set (yk)

N
k=0, we use

the N + 1 daily differences of the pound/dollar exchange rate starting on 1 October 1981,
with N = 944 (Rue et al., 2009; Durbin and Koopman, 2000).
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Our goal is to sequentially characterize πΘ,Z0:k|y0:k , for all k = 0, . . . , N , as observations
(yk) become available. The Markov structure of πΘ,Z0:N |y0:N matches Figure 8. We solve the

problem using the algorithm introduced in Section 7.3: we compute a sequence, (Mj)
N−1
j=0 ,

of four-dimensional transport maps (n = dim(Zj) = 1 and p = dim(Θ) = 2) according to
their definition in Theorem 12 and using the variational form (6). All reference densities
are standard Gaussians. Then, by Theorem 12[part 1], for any k < N , we can easily
sample the filtering marginal πZk+1|y0:k+1

by pushing forward a standard normal through

the subcomponent M1
k of Mk, and we can also sample the posterior distribution over the

static parameters πΘ|y0:k+1
by pushing forward a standard normal through the map TΘ

k .

The map TΘ
k = MΘ

0 ◦ · · · ◦MΘ
k is updated sequentially over time (via regression) using the

recursion TΘ
k = TΘ

k−1 ◦MΘ
k , so that the cost of evaluating TΘ

k does not increase with k. The
resulting algorithm for parameter estimation is thus sequential. Moreover, if we want to
sample πΘ,Z0:k+1|Y0:k+1

—the full Bayesian solution at time k+ 1—we simply need to embed
each Mj into an identity map to form the transport Tj , for j = 0, . . . , k, and push forward
reference samples through the composition Tk = T0 ◦ · · · ◦ Tk (Theorem 12[part 2]). See
Appendix C for pseudocode of the relevant algorithms.

Figures 10 and 11 show the resulting smoothing and filtering marginals of the states
over time, respectively. Figures 12 and 13 collect the corresponding posterior marginals of
the static parameters over time. Figure 14 illustrates marginals of the posterior predictive
distribution of the data, together with the observed data (yk), showing excellent coverage
overall.

Our results rely on a numerical approximation of the desired transport maps. Each
component of Mk is parameterized via the monotone representation (5), with (ak) and (bk)
chosen to be Hermite polynomials and functions, respectively, of total degree seven.The
expectation in (6) is approximated using tensorized Gauss quadrature rules. The resulting
minimization problems are solved sequentially using the Newton–CG method (Wright and
Nocedal, 1999). This test case was run using the dedicated software package publicly avail-
able at http://transportmaps.mit.edu. The website contains details about additional
possible parameterizations of the maps.

There are several ways to investigate the quality of these approximations. Figures 10,
12, and 13 compare the numerical approximation (via a decomposable transport map)
of the smoothing marginals of the states and the posteriors of the static parameters to
a “reference” solution obtained via MCMC. The MCMC chain is run until it yields 105

effectively independent samples. The two solutions agree remarkably well and are almost
indistinguishable in most places. (Of course, MCMC in this context is not a data-sequential
algorithm; it requires that all the data (yk)

N
k=0 be available simultaneously.) An important

fact is that the MCMC chain is generated using an independence proposal (Robert and
Casella, 2013) given by the pushforward of a standard Gaussian through the numerical
approximation of TN−1 (denoted as T̃N−1). The resulting MCMC chain has an acceptance
rate slightly above 75%, confirming the overall quality of the variational approximation.
We notice, however, a slow accumulation of error in the posterior marginal for the static
parameter µ (Figure 13). This is not surprising since we are performing sequential parameter
inference (Jacob, 2015).

A second quality test can proceed as follows: since we use a standard Gaussian ref-
erence distribution νη, we expect the pullback of πΘ,Z0:N |y0:N through T̃N−1 to be close
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to a standard Gaussian. Figure 15 supports this claim by showing a collection of ran-
dom two-dimensional conditionals of the approximate pullback: these “slices” of the 947-
dimensional (N+1 states plus two hyperparameters) pullback distribution are identical to a
two-dimensional standard normal, as expected. The fact that we can evaluate the approx-
imate pullback density is one of the key features of this variational approach to inference.
Even more, we can use this approximate pullback density to estimate the KL divergence
between our target νπ (the full Bayesian solution at time N) and the approximating mea-
sure (T̃N−1)]νη, via the variance diagnostic in (8). A numerical realization of (8) yields

DKL( (T̃N−1)]νη ||νπ ) ≈ 1.07× 10−1, which confirms the good numerical approximation of
νπ, a 947-dimensional target measure. For comparison, we note that the KL divergence
from νπ to its Laplace approximation (a Gaussian approximation at the mode) is ≈ 5.68—
considerably worse than what is achieved through optimization of a nonlinear transport
map. Moreover, the Laplace approximation cannot be computed sequentially with a con-
stant effort per time step.

While a slow accumulation of errors is expected for sequential parameter inference,
we also wish to investigate the stability of our transport map approximation for recur-
sive smoothing without static parameters. We try the following experiment: (1) com-
pute the posterior medians of the static parameters after N + 1 = 945 days, i.e., θ∗ =
med[Θ|y0, . . . ,y944]; and then (2) use these parameters to characterize the smoothing distri-
bution πZ0,...,Z2500|θ∗,y0,...,y2500 of the log-volatility over (roughly) the next ten years worth
of exchanges, using the sequential algorithm proposed in Section 7.1, which in this case
amounts to computing only a sequence of two-dimensional maps (Mk). The resulting
smoothing marginals are shown in Figure 16 and compared to those of a reference MCMC
simulation with 105 effectively independent samples; we observe excellent agreement de-
spite the long assimilation window. We then repeat the same experiment for an even longer
assimilation window, i.e., 9009 steps or roughly 35 years. Figure 17 shows the remark-
able stability of the resulting smoothing approximation, at least for low-order marginals.
In fact, even the approximation of the joint distribution of the states is quite good, as re-
ported in the last column of Table 1. Understanding how errors propagate in this variational
framework—and what could be potential mechanisms for the “dissipation” of errors—is an
exciting avenue for future work.

The results presented so far are very accurate, but also expensive. Table 1 collects the
computational times for the joint state-parameter inference problem (approximately two
days) and for the long-time (9009 step) smoothing problem (approximately 40 minutes),
using a degree-seven map. While there remains a tremendous opportunity to develop more
performance-oriented versions of our transport map code, specialized to the problem of
sequential inference, the present framework also offers a practical and powerful tradeoff
between computational cost and accuracy. In Appendix D, we re-run all our test cases
using linear, rather than degree seven, parameterizations of the maps {Mk}. Table 1 shows
that the computational times are dramatically reduced: from two days to approximately
one minute for the joint state-parameter inference problem, and from 40 minutes to 7
minutes for the long-time smoothing problem. The reduction in computational time comes,
of course, at the price of accuracy; see last column of Table 1. This reduction in accuracy
may or may not be acceptable. For instance, in Figure 24, it is difficult to distinguish the
linear map approximation from the reference MCMC solution. Quantitatively, we know
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from Table 1 that a linear map is worse at approximating the full Bayesian solution than
a degree-7 transformation. Yet, as far as quantiles of low-order marginals are concerned,
the two solutions are indistinguishable (Figure 24); in an applied setting, this accuracy may
be more than sufficient. In other cases, however, a linear map might be inadequate. For
example, the parameter marginals in Figures 20 and 22, estimated using linear maps, are
much worse than their degree-7 counterparts (Figures 12 and 13). In these cases, we need
nonlinear transformations.

Clearly, there is a rich spectrum of possibilities between a linear and a high-order trans-
port map. Some parameterizations can scale with dimension (e.g., separable but nonlinear
representations), while others cannot (e.g., total-degree polynomial expansions). Depend-
ing on the problem, some parameterizations will lead to accurate results, while others will
not. Yet, the cost-accuracy tradeoff in the transport framework can be controlled, e.g., by
estimating the quality of a given approximation using (8).

0 200 400 600 800
time
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Z t
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N

Figure 10: Comparison between the {5, 95}–percentiles (dashed lines) and the mean (solid
line) of the numerical approximation of the smoothing marginals πZk|y0:N via
transport maps (red lines) versus a “reference” MCMC solution (black lines),
for k = 0, . . . , N . The two solutions are indistinguishable.
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Figure 11: At each time k, we illustrate the {5, 95}–percentiles (dotted lines) and the mean
(solid line) of the numerical approximation of the filtering distribution πZk|y0:k .
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Figure 12: (Horizontal plane) At each time k, we illustrate the {5, 25, 40, 60, 75, 95}–
percentiles (shaded regions) and the mean (solid line) of the numerical approx-
imation of πφ|y0:k , the posterior marginal of the static parameter φ. (Vertical
axis) At several times k we also compare the transport map numerical approx-
imation of πφ|y0:k (solid lines) with a reference MCMC solution (dashed lines).
The two distributions agree remarkably well.
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Type # steps Order Time [m : s] # cores Figures Var. diag. (8)

S/P 945
Laplace 00 : 04 1 5.68

7 ≈ 2 days 64 10 – 15 1.07× 10−1

linear 01 : 14 1 18 – 23 1.77

S 9009
Laplace 00 : 42 1 10.0

7 42 : 50 1 17 1.19× 10−1

linear 06 : 40 1 24 5.01

Table 1: Computational effort required to compute a decomposable transport map for dif-
ferent complexities of the transformations Mk—linear versus degree seven—and for
different inference scenarios—smoothing and static parameter estimation (top row)
or long-time smoothing without static parameters (bottom row), for the stochastic
volatility model of Section 8. The last column reports the variance diagnostic
(8) for the corresponding joint posterior, not just a few marginals. It highlights
a tradeoff between cost and accuracy, typical of the transport map approach to
variational inference. For comparison, we also report the cost and accuracy of a
simple Laplace approximation, which requires no formal optimization.
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Figure 13: Same as Figure 12, but for the static parameter µ.
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Figure 14: Shaded regions represent the {5, 25, 40, 60, 75, 95}–percentiles of the marginals
of the posterior predictive distribution (conditioning on all the data), along with
black dots that represent the observed data (yk)

N
k=0.

Random conditionals

Figure 15: Randomly chosen two-dimensional conditionals of the pullback of πΘ,Z0:N |y0:N
through the numerical approximation of TN−1. Since we use a standard normal
reference distribution, the numerical approximation of TN−1 should be deemed
satisfactory if the pullback density is close to a standard normal, as it is here.
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Figure 16: Comparison between the {5, 95}–percentiles (dashed lines) and the mean (solid
line) of the transport map numerical approximation of the smoothing marginals
πZk|θ∗,y0:2500 , with θ∗ = med[Θ|y0, . . . ,yN ] (red lines), and a reference MCMC
solution (black lines). The two solutions are indistinguishable.
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9. Discussion

This paper has focused on the problem of coupling a pair (νη,νπ) of absolutely continuous
measures on Rn, for the purpose of sampling or integration. If νη is a tractable measure
(e.g., an isotropic Gaussian) and νπ is an intractable measure of interest (e.g., a posterior
distribution), then a deterministic coupling enables principled approximations of integrals
via the identity

∫
g dνπ =

∫
g ◦ T dνη. In other words, a deterministic coupling provides a

simple way to simulate νπ by pushing forward samples from νη through a transport map
T . This idea, modulo some variations, has been exploited in a variety of statistical and
machine learning applications—some old, some new—including random number generation
(Marsaglia and Tsang, 2000), variational inference (Moselhy and Marzouk, 2012; Schillings
and Schwab, 2016; Rezende and Mohamed, 2015), the computation of model evidence (Meng
and Schilling, 2002), model learning and density estimation (Laparra et al., 2011; Anderes
and Coram, 2012; Stavropoulou and Müller, 2015), non-Gaussian proposals for MCMC
or importance sampling (Parno and Marzouk, 2018; Bardsley et al., 2014; Oliver, 2015),
multiscale modeling (Parno et al., 2016), and filtering (Daum and Huang, 2008; Chorin and
Tu, 2009; Reich, 2013), to name a few. Indeed there are infinitely many ways to transport
one measure to another (Villani, 2008) and as many ways to compute one. Yet these maps
are not equally easy to characterize.

This paper establishes an explicit link between the conditional independence structure
of (νη,νπ) and the existence of low-dimensional couplings induced by transport maps that
are sparse and/or decomposable. These results can enhance a wide array of numerical
approaches to the transportation of measures, including (Tabak and Turner, 2013; Rezende
and Mohamed, 2015; Liu and Wang, 2016; Bigoni et al., 2019), and thus facilitate simulation
with respect to complex distributions in high dimensions. We briefly discuss our main results
below.

Sparse transports. A sparse transport is a map whose components do not depend on
all input variables. Section 5 derives tight bounds on the sparsity pattern of the Knothe–
Rosenblatt (KR) rearrangement (a triangular transport map) based solely on the Markov
structure of νπ, provided that νη is a product measure (Theorem 3). This analysis shows
that the inverse of the KR rearrangement is the natural generalization to the non-Gaussian
case of the Cholesky factor of the precision matrix of a Gaussian MRF—in that both the
inverse KR rearrangement (a potentially nonlinear map) and the Cholesky factor (a linear
map) have the same sparsity pattern given target measures with the same Markov structure.
Thus the KR rearrangement can be used to extend well-known modeling and sampling tech-
niques for high-dimensional Gaussian MRFs (Rue and Held, 2005) to non-Gaussian fields
(Section 5.2). These results are particularly useful when constructing a transport map from
samples via convex optimization (Parno, 2015) and suggest novel approaches to model learn-
ing (Morrison et al., 2017) and high-dimensional filtering (Spantini, 2017, Ch. 6). Section 5
shows that sparsity is usually a feature of inverse transports, while direct transports tend to
be dense, even for the most trivial Markov structures. In fact, the sparsity of direct trans-
ports stems from marginal (rather than conditional) independence—a property frequently
exploited in localization schemes for high-dimensional covariance estimation (Gaspari and
Cohn, 1999; Hamill et al., 2001).
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Decomposable transports. A decomposable map is a function that can be writ-
ten as the composition of finitely many low-dimensional maps that are triangular up to a
permutation—i.e., T = T1 ◦ · · · ◦ T`, where each Ti differs from the identity only along a
small subset of its components and is a generalized triangular function as defined in Section
6. Theorem 7 shows that every target measure whose Markov network admits a graph
decomposition can be coupled with a product (reference) measure via a decomposable map.
Decomposable maps are important because they are much easier to represent than arbitrary
multivariate functions on Rn. In general, these maps are non-triangular, even though each
map in the composition is generalized triangular.

The notion of a decomposable map is different from the composition-of-maps approaches
advocated in the literature for the approximation of transport maps, e.g., consider normal-
izing flows (Rezende and Mohamed, 2015) or Stein variational algorithms (Anderes and
Coram, 2012; Liu and Wang, 2016; Detommaso et al., 2018), but also (Tabak and Turner,
2013; Laparra et al., 2011). In these approaches, very simple maps (Mi)i≥1 are composed in
growing number to define a transport map of increasing complexity, M = M1◦· · ·◦Mk. The
number of layers in M depends on the desired accuracy of the transport and can be arbi-
trarily large. On the other hand, a decomposable coupling is induced by a special transport
map that can be written exactly as the composition of finitely many maps, T = T1 ◦ · · · ◦T`,
where each Ti has a specific sparsity pattern that makes it low-dimensional. This definition
does not specify a representation for Ti. In fact, each Ti could itself be approximated by
the composition of simple maps using any of the aforementioned techniques. The advan-
tage of targeting a decomposable transport is the fact that the (Ti) are guaranteed to be
low-dimensional.

Approximate Markov properties. Sparsity and decomposability of certain trans-
port maps are induced by the Markov properties of the target measure. A natural ques-
tion is: what happens when νπ satisfies some Markov properties only approximately? In
particular, let νπ be Markov with respect to G, and assume that there exists a measure
ν̂ ∈ M+(Rn) which is Markov with respect to a graph Ĝ that is sparser than G and such
that DKL( ν̂ ||νπ ) < ε, for some ε > 0. For small ε, we would be tempted to use Ĝ to char-
acterize couplings of (νη,νπ) that are possibly sparser or more decomposable than those
associated with G. Concretely, if we are interested in a triangular transport that pushes
forward νη to νπ, we could minimize DKL(T] νη ||νπ ) over the set of maps whose inverse
has the same sparsity pattern as the KR rearrangement between ν̂ and νη. Bounds on

this sparsity pattern are given by Theorem 3 using only graph operations on Ĝ; no explicit
knowledge of ν̂ is required. Alternatively, if we are interested in decomposable transports
that push forward νη to νπ, we could minimize DKL(T] νη ||νπ ) over the set of maps that
factorize as any of the decomposable transports between νη and ν̂. The shapes of these low-
dimensional factorizations are given by Theorem 7 using, once again, only graph operations
on Ĝ.

Now let T̂ denote the set of maps whose structure is constrained by Ĝ in terms of
sparsity or decomposability. It is easy to show that

min
T∈T̂
DKL(T] νη ||νπ ) < ε,

which means that the price of assuming that the coupling is either sparser or more decom-
posable than it ought to be is just a small error in the approximation of νπ.
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Of course, the pending question is whether νπ can be well approximated by a measure
that satisfies additional Markov properties. There is some work on this topic, e.g., Johnson
and Willsky, 2008; Jog and Loh, 2015; Cheng et al., 2015—especially in the case of Gaussian
measures—but a more thorough investigation of the problem remains an open and important
direction for future work. Interestingly, the transport map framework also allows one to
adaptively discover information about low-dimensional couplings. For instance, one might
start with a very sparse transport map and then incrementally decrease the sparsity level
of the map until the resulting approximation of νπ becomes satisfactory. The same can be
done for decomposable transports. See Bigoni et al. (2019) for some details on this idea.

Filtering and smoothing. Section 6.4 shows how not only the representation, but also
the computation, of a decomposable map, T = T1 ◦ · · · ◦ T`, can be broken into a sequence
of ` simpler steps, each associated with a low-dimensional optimization problem whose
solution yields Ti. We give a concrete example of this idea for filtering, smoothing, and
joint state–parameter inference in nonlinear and non-Gaussian state-space models (Section
7). In this context, Theorems 9 and 12 introduce variational approaches for characterizing
the full posterior distribution of the sequential inference problem, essentially by performing
only recursive lag–1 smoothing with transport maps. The proposed approaches consist of a
single forward pass on the state-space model, and generalize the square-root Rauch-Tung-
Striebel smoother to non-Gaussian models (see Section 7.2). In practice, we should think of
Theorems 9 and 12 as providing “meta-algorithms” within which all kinds of approximations
can be introduced, e.g., linearizations of the forward model, restriction to linear maps, and
approximate flows (Daum and Huang, 2008; Liu and Wang, 2016), to name a few. These
approximations are the workhorse of modern approaches to large-scale filtering, e.g., data
assimilation in geophysical applications (Särkkä, 2013; Evensen, 2007), and may play a key
role in further instantiations of the “meta-algorithms” proposed in Section 7. Of course,
it would be desirable to complement such variational approximations with a rigorous error
analysis, analogous to the analysis available for SMC methods (Crisan and Doucet, 2002;
Del Moral, 2004; Smith et al., 2013). It is also important to note that one can always use
functionals like (8) to estimate the quality of a given approximate map, or use the map itself
to build sophisticated proposals for sampling techniques like MCMC (Parno and Marzouk,
2018).

A recent approach that constructs an approximation of the KR rearrangement for se-
quential inference is the “Gibbs flow” of Heng et al. (2015); here, the authors define a
proposal for SMC (or MCMC) methods using the solution map of a discretized ordinary dif-
ferential equation (ODE) whose drift term depends only on the full conditionals of the target
distribution. Evaluating the solution map only requires the evaluation of one-dimensional
integrals, and the action of this map implicitly defines a transport, without any explicit
parameterization of the transformation. Several other filtering approaches in the litera-
ture, e.g., (Daum and Huang, 2012; Yang et al., 2013), rely on the solution of ODEs that
are different from Heng et al. (2015), but also inspired by ideas from mass transporta-
tion. Implicit sampling for particle filters (Chorin and Tu, 2009) also implicitly constructs
a transport map, from a standard Gaussian to a particular approximation of the filtering
distribution; the action of this transport is realized by solving an optimization/root-finding
problem for each sample (Morzfeld et al., 2012).
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One of the first contributions to use optimal transport in filtering is due to Reich (2013),
who constructs an optimal transport plan between an empirical approximation of the fore-
cast distribution (given by simulating the prior dynamic) and a corresponding empirical
approximation of the filtering distribution, obtained by reweighing the forecast ensemble
according to the likelihood. Thus, Reich (2013) solves a discrete Kantorovich optimal
transport problem instead of a continuous problem for a transport map (cf. Section 7.1).
A linear transformation of the forecast ensemble is then derived from the optimal plan. In
this approach, the explicit construction of couplings is used only to update the forecast
distribution, instead of the previous filtering marginal.

Further extensions. We envision many additional ways to extend the present work.
For instance, it would be interesting to investigate the low-dimensional structure of deter-
ministic couplings between pair of measures (νη,νπ) that are not absolutely continuous and
that need not be defined on the same space Rn. Such couplings are usually induced by
“random” maps and can be particularly effective for approximating multi-modal distribu-
tions; see the warp bridge transformations in (Meng and Schilling, 2002; Wang and Meng,
2016) for some examples.

Finally, we emphasize that this paper characterizes some classes of low-dimensional
maps, but certainly not all. In particular, low dimensionality need not stem from the
Markov properties of the underlying measures. In ongoing work we are exploring the notion
of low-rank couplings: these are induced by transport maps that are low-dimensional up to a
rotation of the space, i.e., maps whose action is nontrivial only along a low-dimensional sub-
space. This type of structure appears quite naturally in certain high-dimensional Bayesian
inference problems—e.g., inverse problems (Stuart, 2010) and spatial statistics—where the
data may be informative only about a few linear combinations of the latent parameters
(Spantini et al., 2015; Cui et al., 2014; Spantini et al., 2017). Low-rank structure can be
detected via certain average derivative functionals (Samarov, 1993; Constantine et al., 2014)
but cannot be deduced, in general, from the Markov structure of (νη,νπ).
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Appendix A. Generalized Knothe-Rosenblatt Rearrangement

In this section we first review the classical notion of KR rearrangement (Rosenblatt, 1952),
and then give a formal definition for a generalized KR rearrangement, i.e., a transport map
that is lower triangular up to a permutation. A disclaimer: these transports can also be
defined under weaker conditions than those considered here, at the expense, however, of
some useful regularity (Bogachev et al., 2005).
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The following definition introduces the one-dimensional version of the KR-rearrangement,
and it is key to extend the transport to higher dimensions.

Definition 13 (Increasing rearrangement on R) Let νη,νπ ∈ M+(R), and let F,G
be their respective cumulative distribution functions, i.e., F (t) = νη((−∞, t)) and G(t) =
νπ((−∞, t)). Then the increasing rearrangement on R is given by T = G−1 ◦ F .

Under the hypothesis of Definition 13, it is easy to see that both F and G are homeomor-
phisms, and that T is a strictly increasing map that pushes forward νη to νπ (Santambrogio,
2015).

Definition 14 (Knothe-Rosenblatt rearrangement) Given X ∼ νη, Z ∼ νπ, with
νη,νπ ∈ M+(Rn), and a pair η, π of strictly positive densities for νη and νπ, respectively,
the corresponding KR rearrangement is a triangular map T : Rn → Rn defined, recursively,
as follows. For all x1:k−1 ∈ Rk−1, the map ξ 7→ T k(x1:k−1, ξ)—the restriction of the kth
component of T onto its first k− 1 inputs—is defined as the increasing rearrangement on R
that pushes forward ξ 7→ ηXk|X1:k−1

(ξ|x1:k−1) to ξ 7→ πZk|Z1:k−1
(ξ|T 1(x1), . . . , T k−1(x1:k−1)),

where ηXk|X1:k−1
and πZk|Z1:k−1

are conditional densities defined as in (2).

Notice that for any measure ν in M+(Rn) there always exists a strictly positive version of
its density. By considering such positive densities in Definition 14, we can define the KR
rearrangement on the entire Rn (Bogachev et al., 2005). In fact, we should really think
of Definition 14 as providing a possible version of the KR rearrangement (recall that the
increasing triangular transport is unique up to sets of measure zero). Since in this case νπ is
equivalent to the Lebesgue measure (νπ(A) =

∫
A π(x)λ(dx) = 0⇒ λ(A) = 0 if π > 0 a.e.),

the component (3) is also absolutely continuous on all compact intervals (Bogachev et al.,
2005, Lemma 2.4). As a result, the rearrangement can be used to define general change
of variables as well as pullbacks and pushforwards with respect to arbitrary densities, as
shown by the following lemma adapted from Bogachev et al. (2005).

Lemma 15 Let T be an increasing triangular bijection on Rn such that the functions

ξ 7→ T k(x1, . . . , xk−1, ξ)

are absolutely continuous on all compact intervals for a.e. (x1, . . . , xk−1) ∈ Rk−1. Then for
any integrable function ϕ, it holds:∫

ϕ(y) dy =

∫
ϕ(T (x)) det∇T (x) dx,

where det∇T :=
∏n
k=1 ∂kT

k. In particular, if νρ is a measure on Rn with density ρ, then
we also have T ]νρ � λ with density (a.e.):

T ]ρ(x) = ρ(T (x)) det∇T (x). (36)

The lemma can also be applied to the inverse KR rearrangement T−1 to show that T]νρ � λ,
where the form of the corresponding pushforward density T]ρ is given by replacing T with
T−1 in (36). We will use these results extensively in the proofs of Appendix B. Notice,
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however, that Lemma 15 does not hold for a generic triangular function: the map must be
somewhat regular, in the sense specified by the lemma. Bogachev et al. (2005) give an in
depth discussion on this topic.

We now give a constructive definition for a generalized KR rearrangement.

Definition 16 (Generalized Knothe-Rosenblatt rearrangement) Given X ∼ νη, Z ∼
νπ, with νη,νπ ∈ M+(Rn), a pair η, π of strictly positive densities for νη and νπ, respec-
tively, and a permutation σ of Nn, the corresponding σ-generalized KR rearrangement is a
σ-triangular map12 T : Rn → Rn defined at any x ∈ Rn using the following recursion in k.
The map ξ 7→ T σ(k)(xσ(1), . . . , xσ(k−1), ξ) is defined as the increasing rearrangement on R
that pushes forward ξ 7→ ηXσ(k)|Xσ(1:k−1)

(ξ|xσ(1:k−1)) to

ξ 7→ πZσ(k)|Zσ(1:k−1)
(ξ|T σ(1)(xσ(1)), . . . , T

σ(k−1)(xσ(1:k−1))),

where xσ(1:k−1) = xσ(1), . . . , xσ(k−1).

Existence of a generalized KR rearrangement follows trivially from its definition. More-
over, the transport map satisfies all the regularity properties discussed for the classic KR
rearrangement, including Lemmas 1 and 15. Thus we will often cite these two results when
dealing with generalized KR rearrangements in our proofs. The following lemma shows that
the computation of a generalized KR rearrangement is also essentially no different than the
computation of a lower triangular transport (and thus all the discussion of Section 3 readily
applies).

Lemma 17 Given νη,νπ ∈ M+(Rn), let T be a σ-generalized KR rearrangement that
pushes forward νη to νπ for some permutation σ. Then T = Q>σ ◦ T` ◦ Qσ a.e., where
Qσ ∈ Rn×n is a matrix representing the permutation, i.e., (Qσ)ij = (eσ(i))j, and where T`
is a (lower triangular) KR rearrangement that pushes forward (Qσ)]νη to (Qσ)]νπ.

Proof If T` pushes forward (Qσ)]νη to (Qσ)]νπ, then νη ◦ Q>σ ◦ T−1
` = νπ ◦ Q>σ , and

so T = Q>σ ◦ T` ◦ Qσ must push forward νη to νπ. Moreover, notice that T σ(k)(x) =
T k` (x>eσ(1), . . . ,x

>eσ(k)), which shows that T is a monotone increasing σ-generalized tri-
angular function (see Definition 6). The lemma then follows by νη-uniqueness of a KR
rearrangement.

Appendix B. Proofs of the Main Results

In this section we collect the proofs of the main results and claims of the paper, together
with useful additional lemmas to support the technical derivations.

Proof of Lemma 2 The general solution of ∂2
i,j log π = 0 on Rn is given by log π(z) =

g(z1:i−1, zi+1:n) + h(z1:j−1, zj+1:n) for some functions g, h : Rn−1 → R. Hence Zi ⊥
⊥ Zj |ZV\(i,j) (Lauritzen, 1996). Conversely, if Zi ⊥⊥ Zj |ZV\(i,j), then π—which is the

12. See Definition 6.
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density of νπ with respect to a tensor product Lebesgue measure (Lauritzen, 1996)—must
factor as

π = πZi|ZV\(i,j)πZj |ZV\(i,j)πZV\(i,j) ,

so that ∂2
i,j log π = 0 on Rn.

Proof of Theorem 3 We begin with Part 1 of the theorem. Let η, π be a pair of strictly
positive densities for νη and νπ, respectively (these positive densities exist since the measures
are fully supported). Now consider a version of the KR rearrangement, S, that pushes
forward νπ to νη as given by Definition 14 for the pair η, π (Appendix A). By definition, and
for all z1:k−1 ∈ Rk−1, the map ξ 7→ Sk(z1:k−1, ξ) is the monotone increasing rearrangement
that pushes forward ξ 7→ πZk|Z1:k−1

(ξ|z1:k−1) to the marginal ηXk (recall that νη is a tensor
product measure). Moreover, it follows easily from (Lauritzen, 1996, Prop. 3.17), that each
marginal πZ1:k

—or better yet, the corresponding measure—is globally Markov with respect
to Gk, and that πZ1:k

(z1:k)πC(zC) = πZk,ZC(zk, zC)πZ1:k−1
(z1:k−1), where C := Nb(k,Gk),

possibly empty. Thus, the conditional πZk|Z1:k−1
(zk|z1:k−1) is constant along any input zj

with j /∈ Nb(k,Gk). For any such j, Sk must be constant along its jth input, so that
(j, k) ∈ ÎS .

Part 2 of the theorem follows similarly. Consider the KR rearrangement, T , that pushes
forward νη to νπ as given by Definition 14. For all x1:k−1 ∈ Rk−1, the map ξ 7→ T k(x1:k−1, ξ)
is the monotone increasing rearrangement that pushes forward ηXk to

ξ 7→ πZk|Z1:k−1
(ξ|T 1(x1), . . . , T k−1(x1:k−1)).

We already know that πZk|Z1:k−1
(zk|z1:k−1) can only depend (nontrivially) on zk and on zj

for j ∈ Nb(k,Gk). Hence, if none of the components T i, with i ∈ Nb(k,Gk), depends on
the jth input, then T k is constant along its jth input as well, so that (j, k) ∈ ÎT .

For Part 3, let (j, k) ∈ ÎT . Then, by definition, (j, i) ∈ ÎT for all i ∈ Nb(k,Gk), which
also implies that j /∈ Nb(k,Gk) since j 6= i for all (j, i) ∈ ÎT . Hence (j, k) ∈ ÎS and this
shows the inclusion ÎT ⊂ ÎS .

These arguments show that there exists at least a version of the KR rearrangement that
is exactly at least as sparse as predicted by the theorem.

The following lemma specializes the results of Theorem 3[Part 2] to the case of I-maps
G with a disconnected component, and will be useful in the proofs of Section 6.

Lemma 18 Let X ∼ νη, Z ∼ νπ with νη,νπ ∈ M+(Rn) and νη tensor product measure,
and let σ be any permutation of Nn. Moreover, assume that νπ is globally Markov with
respect to G = (V, E), and assume that there exists a nonempty set A ⊂ V ' Nn such that
ZA ⊥⊥ ZV\A and ZA = XA in distribution. Then the σ-generalized KR rearrangement T
given by Definition 16 (for a pair η, π of nonvanishing densities for νη and νπ, respectively)
is low-dimensional with respect to A, i.e.,

1. T k(x) = xk for k ∈ A

2. ∂jT
k = 0 for j ∈ A and k ∈ V \ A.
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Proof It suffices to prove the lemma for a lower triangular KR rearrangement; the result
for an arbitrary σ then follows trivially. If A = V, then T is simply the identity map. Thus
we assume that V \ A is nonempty.

We begin with Part 1 of the lemma and use the results of Theorem 3[Part 2] to charac-
terize the sparsity of the rearrangement. Let k ∈ A and notice that Nb(k,Gk) = ∅, where Gk
is the marginal graph defined in Theorem 3. Thus (j, k) ∈ ÎT ⊂ IT for all j = 1, . . . , k − 1,
so that T k(x) = xk for all k ∈ A.

Now let us focus on Part 2 and prove that (j, k) ∈ ÎT for all j ∈ A and k ∈ V \ A. We
proceed by contradiction. Assume that there exists some pair (j, k) ∈ A × (V \ A) such
that (j, k) /∈ ÎT . In particular, let K be the set of k ∈ V \ A for which there exists at least
a j ∈ A such that (j, k) /∈ ÎT . Clearly K is nonempty and finite. Let s be the minimum
integer in K, and let j ∈ A be a corresponding index for which (j, s) /∈ ÎT . In this case,
by Theorem 3[Part 2], there must exist an i ∈ Nb(s,Gs) such that (j, i) /∈ ÎT . Now there
are two cases: either i ∈ A (for which we reach a contradiction by part 1 of the lemma) or
i ∈ V \A. In the latter case, we also reach a contradiction since i < s and s was defined as
the smallest index for which (j, s) /∈ ÎT for some j ∈ A.

Proof of Theorem 7 For notational convenience, we drop the subscript and superscript i
from νi, πi, Z

i, and Gi. Consider a factorization of π of the form

π(z) =
1

c
ψA∪S(zA∪S)ψS∪B(zS∪B), (37)

where ψA∪S is strictly positive and integrable, with c =
∫
ψA∪S < ∞. A factorization

like (37) always exist since ν factorizes according to G—thus G is an I-map for ν—and
since (A,S,B) is a proper decomposition of G. For instance, one can set ψA∪S = πZA∪S ,
c = 1, and ψS∪B = πZB|ZS since ZA ⊥⊥ ZB|ZS and since π is a nonvanishing density of ν.
However, this is not the only possibility. See Section 7 for important examples where it is
not convenient to assume that ψA∪S corresponds to a marginal of π. This proves Part 1 of
the theorem.

By (Lauritzen, 1996, Prop. 3.16), we can rewrite ψS∪B as:

ψS∪B(zS∪B) =
∏

C∈CS∪B

ψC(zC) (38)

for some nonvanishing functions (ψC), where CS∪B denotes the set of maximal cliques of
the subgraph GS∪B. Since S is a fully connected separator set (possibly empty) for A and
B, the maximal cliques of GS∪B are precisely the maximal cliques of G that are a subset of
S ∪ B. We are going to use (38) shortly.

Define π̃ : Rn → R as π̃(z) = ψA∪S(zA∪S) ηXB(zB)/c, and notice that π̃ is a nonva-
nishing probability density. Denote the corresponding measure by ν̃ ∈ M+(Rn). For an
arbitrary permutation σ of Nn that satisfies (18), let Li be the σ-generalized KR rearrange-
ment that pushes forward νη to ν̃ as given by Definition 16 in Appendix A. By Lemma 18,

Li is low-dimensional with respect to B (Part 2a of the theorem). To see this, let Z̃ ∼ ν̃,
and notice that Z̃B ⊥⊥ Z̃A∪S and Z̃B = XB in distribution. By Lemma 15, we can write a
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density of the pullback measure L]iν as:

L]i π = π ◦ Li |det∇Li| (39)

=
(
L]i π̃

) ∏
C∈CS∪B ψC ◦ L

C
i

ηXB

= ηXA∪S
∏

C∈CS∪B

ψC ◦ LCi ,

where we used the identity π = π̃ ψS∪B/ηXB together with (38) and the fact that Lki (x) =
xk for k ∈ B (Part 2a), and where, for any C = {c1, . . . , c`} ∈ CS∪B with ψC(zC) =
ψC(zc1 , . . . , zc`), L

C
i is a map Rn → R` given by x 7→ (Lc1i (x), . . . , Lc`i (x)).

If Z ′ ∼ L]i ν, then (39) shows that Z ′A ⊥⊥ Z ′S∪B and that Z ′A = XA in distribution
(Part 2c of the theorem). Moreover, from the factorization in (39), we can easily construct

a graph for which L]i ν factorizes: it suffices to consider the scope of the factors (ψC ◦ LCi ),
i.e., the indices of the input variables that each ψC ◦ LCi can depend on. Recall that for a
σ-triangular map, the σ(k)th component can only depend on the variables xσ(1), . . . , xσ(k).
For each C ∈ CS∪B there are two possibilites: Either C ∩ S = ∅, in which case the scope of
ψC ◦ LCi is simply C since Lki (x) = xk for k ∈ B. Or C ∩ S is nonempty, in which case let jC
be the maximum integer j such that σ(j) ∈ C ∩ S, and notice that the scope of ψC ◦ LCi is

simply C ∪{σ(1), . . . , σ(jC)}. Thus, we can modify G to obtain an I-map for L]i ν as follows:
(1) Remove any edge that is incident to any node in A because of Part 2c. (2) For every
maximal clique C in G that is a subset of S ∪ B and that has nonempty intersection with
S, turn C ∪ {σ(1), . . . , σ(jC)} into a clique. This proves Part 2d of the theorem.

Now let Ri be the set of maps Rn → Rn that are low-dimensional with respect to A and
that push forward νη to L]i ν. Ri is nonempty. To see this, let R be the σ-generalized KR

rearrangement that pushes forward νη to L]i ν, for an arbitrary permutation σ, as given by

Definition 16 (for the pair of nonvanishing densities η and L]iπ). By Part 2c and Lemma
18, R is low-dimensional with respect to A. Thus R ∈ Ri (Part 2b of the theorem).

Let Di := Li ◦Ri be the set of maps that can be written as Li ◦R for some R ∈ Ri. By
construction, each T ∈ Di pushes forward νη to ν (part 2 of the theorem).

In the following corollary every symbol should be interpreted as in Theorem 7.

Corollary 19 Given the hypothesis of Theorem 7, assume that there exists A⊥ ⊂ A such
that Zi

A⊥ ⊥⊥ Zi
V\A⊥ and Zi

A⊥ = XA⊥ in distribution. Then Li is low-dimensional with

respect to A⊥ ∪ B, while each T ∈ Di is low-dimensional with respect to A⊥.

Proof By Theorem 7[Part 2a], Li is low-dimensional with respect to B, while Lemma 18
shows that Li is also low-dimensional with respect to A⊥. Moreover, notice that if A⊥ is
nonempty, then for all T = Li ◦R in Di, we have T k(x) = xk for k ∈ A⊥ since Lki (x) = xk
and Rk(x) = xk for k ∈ A⊥ (Theorem 7[Parts 2b]). Additionally, ∂j T

k = 0 for j ∈ A⊥ and
k ∈ V \ A⊥. To see this, notice that T k(x) = Lki (R(x)) and that the following two facts
hold: (1) The component Lki , for k ∈ V \ A⊥, does not depend on input variables whose
index is in A⊥ since Li is low-dimensional with respect to A⊥; (2) The `th component of
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R with ` /∈ A⊥ also does not depend on xA⊥ since R is low-dimensional with respect to A
(Theorem 7[Parts 2b]). Hence, T must be a low-dimensional map with respect to A⊥.

Proof of Lemma 8 Let νη,νi, πi,Gi,Di, Li,Ri, and Gi+1 be defined as in Theorem 7 for
a proper decomposition (Ai,Si,Bi) of Gi, a permutation σi that satisfies (18), and for any
factorization (17) of πi.

We first want to prove that Si ∪ Bi is fully connected in Gi+1 if and only if the de-
composition (Ai+1,Si+1,Bi+1) of Part 1 does not exist. Let us start with one direction.
Assume that a decomposition like the one in Part 1 does not exist, despite the possibility
to add edges to Gi+1 in V \ Ai. We want to show that in this case Si ∪ Bi must be a
clique in Gi+1. Since Bi is nonempty, there are two possibilities: either |Si ∪ Bi| = 1 or
|Si ∪ Bi| > 1. If |Si ∪ Bi| = 1, then Si ∪ Bi consists of a single node and thus it is a trivial
clique. If |Si ∪Bi| > 1, then Si ∪Bi contains at least two nodes. In this case, let us proceed
by contradiction and assume that Si ∪ Bi is not fully connected in Gi+1 = (V, E i+1), i.e.,
there exist a pair of nodes α, β ∈ Si ∪ Bi such that (α, β) /∈ E i+1. Let Ai+1 = Ai ∪ {α},
Bi+1 = {β}, and Si+1 = (V \ Ai+1) \ Bi+1. Notice that (Ai+1,Si+1,Bi+1) forms a partition
of V, with nonempty Ai+1,Bi+1 and with Ai+1 strict superset of Ai. Moreover Si+1 must
be a separator set for Ai+1 and Bi+1 since (α, β) /∈ E i+1 and Ai is disconnected from Si∪Bi
in Gi+1 (Theorem 7[Part 2d]). Now there are two cases: If Si+1 = ∅, then (Ai+1,Si+1,Bi+1)
is a decomposition that satisfies Part 1 of the lemma (contradiction). If Si+1 6= ∅, then
we can always add enough edges to Gi+1 in Si ∪ Bi ⊃ Si+1 in order to make Si+1 fully
connected. Also in this case, the resulting decomposition (Ai+1,Si+1,Bi+1) satisfies Part 1
of the lemma and thus leads to a contradiction.

Now the reverse direction. Assume that Si ∪Bi is a clique in Gi+1. If |Si ∪Bi| = 1, then
the decomposition of Part 1 cannot exist since both Ai+1\Ai and Bi+1 should be nonempty.
Hence, let |Si ∪ Bi| > 1 and proceed by contradiction. That is, let (Ai+1,Si+1,Bi+1) be a
proper decomposition that satisfies Part 1 of the lemma. Notice that this decomposition
must have been achieved without adding any edge to Gi+1 in Si∪Bi since this set is already
fully connected. By hypothesis, there must exist α, β such that α ∈ Ai+1 \Ai and β ∈ Bi+1.
However, both α and β are also in Si ∪ Bi, and so they must be connected by an edge in
Gi+1. Hence, Si+1 is not a separator set for Ai+1 and Bi+1 (contradiction).

The latter result proves directly Part 2 of the lemma. Moreover, it shows that if Si ∪Bi
is not a clique in Gi+1, then there exists a proper decomposition (Ai+1,Si+1,Bi+1) of Gi+1,
where Ai+1 is a strict superset of Ai, obtained, possibly, by adding edges to Gi+1 in order to
turn Si+1 into a clique. Note that even if we add edges to Gi+1, L]i νi still factorizes according

to the resulting graph, which is then an I-map for L]i νi. Moreover we can really only add
edges in V \Ai since Ai must be a strict subset of Ai+1, and thus Ai remains disconnected
from Si∪Bi in Gi+1. Let Di+1, Li+1,Ri+1 be defined as in Theorem 7 for the pair of measures
νη,νi+1 = L]i νi, the decomposition (Ai+1,Si+1,Bi+1) of Gi+1, a permutation σi+1 that

satisfies (18), and for any factorization (17) (note that L]i νi ∈M+(Rn) by Theorem 7[Part

2b]). Fix T ∈ Di+1. By Theorem 7[Part 2], T pushes forward νη to νi+1 = L]i νi. Moreover,

if Zi+1 ∼ L]i νi, then by Theorem 7[Part 2c] we have Zi+1
Ai ⊥⊥ Z

i+1
Si∪Bi and Zi+1

Ai = XAi in
distribution. Then by Corollary 19 it must also be that T is low-dimensional with respect
to Ai. Thus T ∈ Ri, and this proves the inclusion Ri ⊃ Di+1.
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Now fix any T ∈ Li ◦ Li+1 ◦ Ri+1 = Li ◦ Di+1. It must be that T = Li ◦ g for some
g ∈ Di+1 ⊂ Ri, so that T ∈ Li ◦Ri, which shows the inclusion Li ◦Ri ⊃ Li ◦ Li+1 ◦Ri+1

(Part 1a of the lemma). By Corollary 19, we have that Li+1 is low-dimensional with re-
spect to Ai ∪ Bi+1, and so its effective dimension is bounded above by |V \ (Ai ∪ Bi+1)| =
|(Ai+1 \ Ai) ∪ Si+1| (Part 1b). Finally, by Theorem 7[Part 2b], each R ∈ Ri+1 is low-
dimensional with respect to Ai+1, and so its effective dimension is bounded by |V \ Ai+1|
(Part 1c).

Proof of Theorem 9 For the sake of clarity, we divide the proof in two parts: First, we
show that the maps (Mi)i≥0 are well-defined. Then, we prove the remaining claims of the
theorem.

The maps (Mi)i≥0 are well-defined as long as, for instance, we show that πi is a proba-
bility density for all i ≥ 0, and as long as there exist permutations (σi) that guarantee the
block upper triangular structure of (23). As for the permutations, it suffices to consider
σ = σ1 = σ2 = · · · with σ(N2n) = {2n, 2n−1, . . . , 1}, i.e., upper triangular maps. (If n > 1,
then there is some freedom in the choice of σ.) As for the targets (πi), we now show that
πi is a nonvanishing density and that the marginal

∫
πi(zi, zi+1) dzi = πZi+1|y0:i+1

, for all
i ≥ 0, using an induction argument over i. For the base case (i = 0), just notice that

c0 =

∫
π̃0(z0, z1) dz0:1 = πY0,Y1(y0,y1) <∞, (40)

so that π0 = π̃0/c0 > 0 is a valid density. Moreover, we have the desired marginal, i.e.,∫
π0(z0, z1) dz0 =

∫
πZ0,Z1|Y0,Y1

(z0, z1|y0,y1) dz0 = πZ1|Y0,Y1
(z1|y0,y1).

Now assume that πi is a nonvanishing density and that the marginal
∫
πi(zi, zi+1) dzi =

πZi+1|y0:i+1
for some i > 0. The map Mi is then well-defined. In particular, by definition of

KR rearrangement, the submap M1
i pushes forward ηXi+1 to the marginal

∫
πi(zi, zi+1) dzi.

Moreover, by Lemma 15, we have:

ci+1 =

∫
ηXi+1(zi+1) π̃i+1(M1

i (zi+1), zi+2) dzi+1:i+2 (41)

=

∫
πZi+2,Yi+2|Y0:i+1

(zi+2,yi+2|y0:i+1) dzi+2

= πYi+2|Y0:i+1
(yi+2|y0:i+1) <∞,

where we used the change of variables xi+1 = M1
i (zi+1) and the fact that (M1

i )] ηXi+1 =
πZi+1|y0:i+1

(induction hypothesis). Thus πi+1 is a nonvanishing density and by (41) we can
easily verify that πi+1 has the desired marginal, i.e.,

∫
πi+1(zi+1, zi+2) dzi+1 = πZi+2|y0:i+2

.
This argument completes the induction step and shows that not only the maps (Mi)i≥0

are well-defined—together with the maps (Ti)i≥0 in (25)—but also that (M1
i )] ηXi+1 =

πZi+1|y0:i+1
for all i ≥ 0 (Part 1 of the theorem).

Now we move to Part 3 of the theorem and use another induction argument over k ≥ 0.
For the base case (k = 0), notice that T0 = T0 = M0, and that, by definition, M0 pushes
forward ηX0,X1 to π0 = πZ0,Z1|y0,y1 .
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Assume that Tk pushes forward ηX0:k+1
to πZ0:k+1|y0:k+1

for some k > 0 (Tk is well-
defined for all k since the maps (Ti)i≥0 in (25) are also well-defined), and notice that

πZ0:k+2|y0:k+2
= πZ0:k+1|y0:k+1

πyk+2|Zk+2
πZk+2|Zk+1

πyk+2|y0:k+1

= πZ0:k+1|y0:k+1

π̃k+1

ck+1
,

where we used (41) and the definition of the collection (π̃i). Let Tk+1 = T0 ◦ · · · ◦ Tk+1 be
defined as in Part 3 of the theorem, and observe that Tk+1 = Ak+1 ◦ Tk+1 with

Ak+1(x0:k+2) =

[
Tk(x0:k+1)

xk+2

]
, Tk+1(x0:k+2) =


x0
...
xk

M0
k+1(xk+1,xk+2)

M1
k+1(xk+2)

 .

Thus the following hold:

T]k+1 πZ0:k+2|Y0:k+2
= T ]k+1

((
T]k πZ0:k+1|y0:k+1

) πk+1

ηXk+1

)
= T ]k+1

(
ηX0:k

πk+1
)

= ηX0:k
M]

k+1 π
k+1 = ηX0:k+2

,

where we used the fact that by Lemma 15 (applied iteratively) it must be that (Ak+1 ◦
Tk+1)]ρ = T ]k+1A

]
k+1ρ for all densities ρ. (Notice that Ak+1 is the composition of functions

which are trivial embeddings into the identity map of KR rearrangements that couple a pair
of measures in M+(Rn×Rn), and thus each map in the composition satisfies the hypothesis
of Lemma 15.) In particular, (Tk+1)] ηX0:k+2

= πZ0:k+2|y0:k+2
(Part 3 of the theorem).

Now notice that each Tk can also be written as

Tk(x0:k+1) =

[
Bk(x0:k+1)

Mk(xk,xk+1)

]
for a multivariate function Bk—whose particular form is not relevant to this argument—
and for a map, Mk, defined in (24) as a function on Rn × Rn. Since (Tk)] ηX0:k+1

=

πZ0:k+1|y0:k+1
, the map Mk must also push forward ηXk,Xk+1

to the lag-1 smoothing marginal
πZk,Zk+1|y0:k+1

. This proves Part 2 of the theorem.
For Part 4, just notice that

πY0:k+1
(y0:k+1) = πY0,Y1(y0,y1)

k∏
i=1

πYi+1|Y0:i
(yi+1|y0:i) =

k∏
i=0

ci, (42)

where we used both (40) and (41).

Proof of Lemma 11 First a remark about notation: we denote by N (x;µ,Σ) the density
(as a function of x) of a Gaussian with mean µ and covariance Σ.
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Now let k > 0 and notice that πZk+1|Zk(zk+1|zk) = N (zk+1;Fk zk,Qk), πYk+1|Zk+1
(yk+1|zk+1) =

N (yk+1;Hk+1 zk+1,Rk+1) and ηXk
(zk) = N (zk; 0, I). By definition of the target πk in

Theorem 9, we have:

πk(zk, zk+1) = ηXk
(zk)πYk+1|Zk+1

(yk+1|zk+1)πZk+1|Zk(zk+1|M1
k−1(zk))

= N (zk; 0, I)N (yk+1;Hk+1 zk+1,Rk+1)

N (zk+1;Fk (Ck−1 zk + ck−1),Qk)

∝ exp(−1

2
z>J z + z>h),

where z = (zk, zk+1) ∈ R2n, and where J ∈ R2n×2n,h ∈ R2n are defined as

J =

[
J11 J12

J>12 J22

]
, h =

[
h1

h2

]
,

with: 

J11 = I +C>k−1 F
>
k Q

−1
k FkCk−1

J12 = −C>k−1 F
>
k Q

−1
k

J22 = Q−1
k +H>k+1R

−1
k+1Hk+1

h1 = J12 Fk ck−1

h2 = Q−1
k Fk ck−1 +H>k+1R

−1
k+1 yk+1.

In particular, we can rewrite πk in information form (Koller and Friedman, 2009) as πk(z) =
N−1(z;h,J). Moreover we know by Theorem 9[Part 1], that the submap M1

k(zk+1) =
Ck zk+1 + ck pushes forward ηXk+1

to the filtering marginal πZk+1|y0:k+1
. Hence (ck,Ck)

should be, respectively, the mean and a square root of the covariance of πZk+1|y0:k+1
—

thus the output of any square-root Kalman filter at time k + 1. Now we just need to
determine the submap M0

k(zk, zk+1) = Ak zk + Bk zk+1 + ak. Given that Mk is a block
upper triangular function, the map zk 7→ M0

k(zk, zk+1) should push forward ηXk
to zk 7→

πkZk|Zk+1
(zk|M1

k(zk+1)). Notice that πkZk|Zk+1
(zk|zk+1) = N−1(zk;h1 − J12 zk+1,J11) =

N (zk;J
−1
11 (h1−J12 zk+1),J−1

11 ). Hence πkZk|Zk+1
(zk|M1

k(zk+1)) = N (zk;J
−1
11 J12(Fk ck−1−

Ck zk+1 − ck),J−1
11 ), and so:

M0
k(zk, zk+1) = J−1

11 J12(Fk ck−1 −Ck zk+1 − ck) + J
−1/2
11 zk.

Simple algebra then leads to (29).

Proof of Theorem 12 We use a very similar argument to Theorem 9. We first show that
the maps (Mi)i≥0 are well-defined. These maps are well-defined as long as, for instance, we
show that πi is a probability density for all i ≥ 0, and as long as there exist permutations (σi)
that guarantee the generalized block triangular structure of (31). As for the permutations, it
suffices to consider σ = σ1 = σ2 = · · · with σ(Np+2n) = {1, . . . , p, p+2n, p+2n−1, . . . , p+1}.
As for the targets (πi), we now use a (complete) induction argument over i to show that, for
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all i ≥ 0, πi is a nonvanishing density and
∫
πi(zθ, zi, zi+1) dzi = A]i πΘ,Zi+1|y0:i+1

(zθ, zi+1)
for a map Ai defined on Rp × Rn as

Ai(xθ,xi+1) =

[
TΘ
i−1(xθ)

xi+1

]
,

with TΘ
i−1(xθ) = xθ if i = 0.

For the base case (i = 0), just notice that c0 = πY0,Y1(y0,y1) <∞, so that π0 = π̃0/c0 >
0 is a valid density. Moreover, we have the desired marginal, i.e.,∫

π0(zθ, z0, z1) dz0 = πΘ,Z1|Y0,Y1
(zθ, z1|y0,y1) = A]0 πΘ,Z1|y0,y1(zθ, z1),

since A0 is the identity map on Rp × Rn. Now assume that πj is a nonvanishing density
for all j ≤ i (complete induction) with i > 0, and that the marginal

∫
πi(zθ, zi, zi+1) dzi =

A]i πΘ,Zi+1|y0:i+1
(zθ, zi+1). Under this hypothesis, the maps (Mj)j≤i are well-defined, and

so are Ai, Ai+1 since TΘ
i = MΘ

0 ◦ · · · ◦MΘ
i . Before checking the integrability of πi+1, notice

that by definition of Mi (a KR rearrangement), the map Bi, given by

Bi(xθ,xi+1) =

[
MΘ

i (xθ)

M1
i (xθ,xi+1)

]
,

pushes forward ηXΘ,Xi+1 to the marginal
∫
πi(zθ, zi, zi+1) dzi, which equals A]i πΘ,Zi+1|y0:i+1

(inductive hypothesis), i.e., (Bi)] ηXΘ,Xi+1 = A]i πΘ,Zi+1|y0:i+1
. In particular, it must also

be that (Ai ◦Bi)] ηXΘ,Xi+1 = πΘ,Zi+1|y0:i+1
, where Ai ◦Bi corresponds precisely to the map

M̃i defined in (34), so that (M̃i)] ηXΘ,Xi+1 = πΘ,Zi+1|y0:i+1
.

Now we can prove that ci+1 <∞ using the following identities:

ci+1 =

∫
ηXΘ,Xi+1(zθ, zi+1) (43)

π̃i+1(TΘ
i (zθ),M

1
i (zθ, zi+1), zi+2) dzθ dzi+1:i+2

=

∫
(M̃i)] ηXΘ,Xi+1(xθ,xi+1)πZi+2|Zi+1,Θ(zi+2|xi+1,xθ)

πYi+2|Zi+2,Θ(yi+2|zi+2,xθ) dxθ dxi+1 dzi+2

=

∫
πΘ,Zi+1|y0:i+1

(xθ,xi+1)

πZi+2,Yi+2|Zi+1,Θ(zi+2,yi+2|xi+1,xθ) dxθ dxi+1 dzi+2

= πYi+2|Y0:i+1
(yi+2|y0:i+1) <∞,

where we used the change of variables:[
xθ

xi+1

]
=

[
TΘ
i (zθ)

M1
i (zθ, zi+1)

]
= M̃i(zθ, zi+1), (44)

and the fact that (M̃i)] ηXΘ,Xi+1 = πΘ,Zi+1|y0:i+1
(induction hypothesis). (The change of

variables in (44) is valid for the following reason: the map M̃i can be factorized as the
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composition of i+ 1 (generalized) triangular functions, all that fit the hypothesis of Lemma
15, so that (44) should really be interpreted as a sequence of i+1 change of variables—each
associated with one map in the composition and justified by Lemma 15.) Therefore πi+1 is
a nonvanishing density. Following the same derivations as in (43), it is not hard to show
that πi+1 has also the desired marginal, i.e.,∫

πi+1(zθ, zi+1, zi+2) dzi+1 = A]i+1 πΘ,Zi+2|y0:i+2
(zθ, zi+2).

This argument completes the induction step and shows that not only the maps (Mi)i≥0

are well-defined—together with the maps (Ti)i≥0 in (35)—but also that (M̃1
i )] ηXΘ,Xi+1 =

πΘ,Zi+1|y0:i+1
for all i ≥ 0 (Part 1 of the theorem).

Now we prove Part 2 of the theorem using another induction argument on k ≥ 0. For
the base case (k = 0), notice that T0 = T0 = M0, and that, by definition, M0 pushes
forward ηXΘ,X0,X1 to π0 = πΘ,Z0,Z1|y0,y1 .

Assume that Tk pushes forward ηXΘ,X0:k+1
to πΘ,Z0:k+1|y0:k+1

for some k > 0 (Tk is
well-defined for all k since the maps (Ti)i≥0 in (35) are also well-defined), and notice that

πΘ,Z0:k+2|y0:k+2
= πΘ,Z0:k+1|y0:k+1

πyk+2|Zk+2,Θ πZk+2|Zk+1,Θ

πyk+2|y0:k+1

= πΘ,Z0:k+1|y0:k+1

π̃k+1

ck+1
,

where we used (43) and the definition of the collection (π̃i). Let Tk+1 = T0 ◦ · · · ◦ Tk+1 be
defined as in Part 2 of the theorem, and observe that Tk+1 = Ck+1 ◦ Tk+1 with

Ck+1(xθ,x0:k+2) =

[
Tk(xθ,x0:k+1)

xk+2

]
, Tk+1(xθ,x0:k+2) =



MΘ
k+1(xθ)

x0
...
xk

M0
k+1(xθ,xk+1,xk+2)

M1
k+1(xθ,xk+2)


.

Thus the following hold:

T]k+1 πΘ,Z0:k+2|y0:k+2
= T ]k+1

((
T]k πΘ,Z0:k+1|y0:k+1

) πk+1

ηXΘ,Xk+1

)
= T ]k+1

(
ηX0:k

πk+1
)

= ηX0:k
M]

k+1 π
k+1 = ηXΘ,X0:k+2

,

where we used the fact that by Lemma 15 (applied iteratively) it must be that (Ck+1 ◦
Tk+1)]ρ = T ]k+1C

]
k+1ρ for all densities ρ. (Notice that Ck+1 is the composition of functions

which are trivial embeddings into the identity map of KR rearrangements that couple a
pair of measures in M+(Rp×Rn×Rn), and thus each map in the composition satisfies the
hypothesis of Lemma 15.) Thus (Tk+1)] ηXΘ,X0:k+2

= πΘ,Z0:k+2|y0:k+2
, and this concludes

the induction argument and the proof of Part 2 of the theorem.
The proof of Part 3 follows from c0 = πY0,Y1(y0,y1), (43), and (42).
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Appendix C. Algorithms for Inference on State-Space Models

Here we digest the smoothing and joint state-parameter inference methodologies discussed
in Section 7 into a handful of algorithms, described with pseudocode. Algorithms 1 and 2
below are building blocks: they describe, respectively, how to approximate a transport map
given an (unnormalized) target density, and how to project a given transport map onto a set
of monotone transformations. Algorithm 3 shows how to build a recursive approximation
of πΘ,Z0:k+1|y0:k+1

—i.e., the full Bayesian solution to the problem of sequential inference
in state-space models with static parameters—using a decomposable transport map. See
details in Section 7.3. For simplicity, we always use a standard normal reference process
ηX , although more general choices are possible. Algorithm 4 shows how to sample from
the resulting approximation of the joint distribution πΘ,Z0:k+1|y0:k+1

, whereas Algorithm 5
focuses on a particular “filtering” marginal, i.e., πΘ,Zk+1|y0:k+1

. The problem of sequential
inference on state-space models without static parameters (see Section 7.1) can be tackled
via a simplified version of Algorithm 3, wherein the formal dependence on Θ is dropped. The
actual implementation of these algorithms is available online at http://transportmaps.

mit.edu.

Algorithm 1 (Computation of a monotone map)
Given an unnormalized target density π̄ and a parametric triangular monotone map T [c] of
the form (5), defined by an arbitrary set of coefficients c ∈ RN , find the optimal coefficients
c? according to (7).

1: procedure ComputeMap(π̄, T [c], m)

2: Generate samples (xi)
m
i=1

i.i.d.∼ N (0, I)
3: Solve (e.g., via a quasi-Newton or Newton method),

c? = argmin
c∈RN

− 1

m

m∑
i=1

(
log π̄(T [c](xi)) +

∑
k

log ∂kT [c]k(xi)

)

4: return T [c?]
5: end procedure

Algorithm 2 (Regression of a monotone map)
Given a map M and a parametric triangular monotone map T [c] of the form (5) , defined
by an arbitrary set of coefficients c ∈ RN , find the coefficients c? minimizing the discrete
L2 norm between the two maps.

1: procedure RegressionMap(M , T [c], m)

2: Generate samples (xi)
m
i=1

i.i.d.∼ N (0, I)
3: Solve

c? = argmin
c∈RN

1

m

m∑
i=1

(M(xi)− T [c](xi))
2

4: return T [c?]
5: end procedure
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Algorithm 3 (Joint parameter and state inference)
Given observations (yi)

k+1
i=0 , construct a transport map approximation of the smoothing

distribution πΘ,Z0,...,Zk+1|y0,...,yk+1
in terms of a list of maps (Mj)

k
j=0.

1: procedure Assimilate((yi)
k+1
i=0 , m)

2: for i← 0 to k do . see Thm. 12
3: if i = 0 then
4: Define T̃Θ

i−1 to be the identity map
5: Define πi as in (32)
6: else
7: T̃Θ

i−1[c?]← RegressionMap( T̃Θ
i−2 ◦MΘ

i−1, T̃Θ
i−1[c], m )

8: Define πi as in (33)
9: end if

10: Mi[c
?]← ComputeMap(πi, Mi[c], m)

11: Append Mi to the list (Mj)
i−1
j=0

12: end for
13: return (Mj)

k
j=0 , T̃

Θ
k−1

14: end procedure

Algorithm 4 (Sample the smoothing distribution)
Generate a sample from the smoothing distribution πΘ,Z0,...,Zk+1|y0,...,yk+1

using the maps
computed in Algorithm 3.

procedure SampleSmoothing( (Mj)
k
j=0)

Generate x ∼ N (0, I), with I the identity in dθ + k · dz dimensions
for j ← k to 0 do . see Thm. 12 Part. 2
xθ ←MΘ

j (xθ)

xj ←M0
j (xθ,xj ,xj+1)

xj+1 ←M1
j (xθ,xj+1)

end for
return x

end procedure
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Algorithm 5 (Sample the filtering distribution)
Generate a sample from the marginal distribution πΘ,Zk+1|y0,...,yk+1

using the maps com-
puted in Algorithm 3.

procedure SampleFiltering( Mk, T̃
Θ
k−1)

Generate x ∼ N (0, I), with I the identity in dθ + dz dimensions
Define

M̃k(xθ,xk+1) :=

[
T̃Θ
k−1(MΘ

k (xθ))
M1

k(xθ,xk+1)

]
y ← M̃k(xθ,xk+1) . see Thm. 12 Part. 1
return y

end procedure

Appendix D. Additional Results for the Stochastic Volatility Model

We revisit the numerical example of Section 8 and re-run both the joint state/parameter
inference problem and the long-time smoothing problem with linear rather than nonlinear
maps. The results are less accurate, but substantially faster; see Table 1 and the discussion
of this comparison in Section 8.

0 200 400 600 800
time

3

2

1

0

1

Z t
|Y

0:
N

Figure 18: Same as Figure 10, but using linear maps. Compared to a high-order map, there
seems to be only a minimal loss of accuracy, more prominent at earlier times.

60



Inference via Low-Dimensional Couplings

0 200 400 600 800
time
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2

1

0

1
Z t

|Y
0:

t

Figure 19: Comparison of the {5, 95}–percentiles (dashed lines) and the mean (solid line)
of the numerical approximation of the filtering marginals using linear transport
maps (blue lines) with those of a “reference” solution obtained via seventh-order
maps (as shown in Figure 11). The two solutions look remarkably similar despite
the enormous difference in computational cost (see Table 1).

time
0 200 400 600 800

0.650.700.750.800.850.900.951.00

|Y
0 : t

0

10

20

30

40

Figure 20: Same as Figure 12, but using linear maps. Here, the loss of accuracy is more dra-
matic than for the smoothing distribution of the state in Figure 18. Even though
the approximate marginal captures the bulk of the true parameter marginals,
for this specific problem of static parameter inference, a linear map is largely
inadequate; hence the need for a higher-order nonlinear transformation.
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Figure 21: The horizontal plane of Figure 20 (black lines) overlaid with a selected number
of box-and-whisker plots associated with the marginals of a “reference” MCMC
solution. The ends of the whiskers represent the {5, 95}–percentiles, while the
green dots correspond to the means of the reference distribution. Linear maps
are insufficient to correctly characterize the parameter marginals, especially the
transition at time 74 (cf. Figures 12 and 20)

time
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Figure 22: Same as Figure 13, but using linear maps. Once again, the linear map provides
plausible, but somewhat inaccurate, results for sequential parameter inference.
A nonlinear transformation is better suited for this problem.
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Figure 23: The horizontal plane of Figure 22 (black lines) overlaid with a selected number
of box-and-whisker plots associated with the marginals of a “reference” MCMC
solution. See Figure 21 caption for more details.
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