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Abstract

Variational autoencoders (VAE) represent a popular, flexible form of deep generative model
that can be stochastically fit to samples from a given random process using an information-
theoretic variational bound on the true underlying distribution. Once so-obtained, the
model can be putatively used to generate new samples from this distribution, or to provide a
low-dimensional latent representation of existing samples. While quite effective in numerous
application domains, certain important mechanisms which govern the behavior of the VAE
are obfuscated by the intractable integrals and resulting stochastic approximations involved.
Moreover, as a highly non-convex model, it remains unclear exactly how minima of the
underlying energy relate to original design purposes. We attempt to better quantify these
issues by analyzing a series of tractable special cases of increasing complexity. In doing so,
we unveil interesting connections with more traditional dimensionality reduction models, as
well as an intrinsic yet underappreciated propensity for robustly dismissing sparse outliers
when estimating latent manifolds. With respect to the latter, we demonstrate that the VAE
can be viewed as the natural evolution of recent robust PCA models, capable of learning
nonlinear manifolds of unknown dimension obscured by gross corruptions.
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1. Introduction
We begin with a data set X = {m(i)}?zl composed of n i.i.d. samples of some random

variable £ € R? of interest, with the goal of estimating a tractable approximation for
pe(x), knowledge of which would allow us to generate new samples of . Moreover we
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assume that each sample is governed by unobserved latent variables z € R", such that
po(x) = [ po(x|2z)p(z)dz, where 0 are the parameters defining the distribution we would
like to estimate.

Given that this integral is intractable in all but the simplest cases, variational autoen-
coders (VAE) represent a powerful means of optimizing with respect to 8 a tractable upper
bound on — log pe(x) (Kingma and Welling, 2014; Rezende et al., 2014). Once these param-
eters are obtained, we can then generate new samples from py(x) by first drawing some 2
from p(z), and then a new (¥ from pe(x|2z()). The VAE upper bound itself is constructed
as

£0.6) = Y {KL g, (2127) lIpo (2127) | ~logpo(a™)} = — D logpa®). (1)

)

where g, (z]a:(i)) defines an arbitrary approximating distribution, parameterized by ¢, and
KL [-]|-] denotes the KL divergence between two distributions, which is always a non-negative
quantity. For optimization purposes, it is often convenient to re-express this bound as

£0,6) = Y (KL gy (2120) [1p(2)] ~ By, 2100y [logps (2712)] ). (2)

1

In these expressions, g, (z|x) can be viewed as an encoder model that defines a conditional
distribution over the latent ‘code’ z, while py (x|z) can be interpreted as a decoder model
since, given a code z it quantifies the distribution over .

By far the most common distributional assumptions are that p(z) = N (z;0,I) and the
encoder model satisfies ¢4 (z|z) = N (2z; p,, 2.), where the mean p, and covariance 3, are
some function of model parameters ¢ and the random variable . Likewise, for the decoder
model we assume py (|2) = N (x; p,, X,) for continuous data, with means and covariances
defined analogously.!

For arbitrarily parameterized moments p,, 3., p,, and 3, the KL divergence in (2)
computes to

2KL (g (2]2) [[p(2)] = tr (] + .l — log| ., 3)

excluding irrelevant constants. However, the remaining integral from the expectation term
admits no closed-form solution, making direct optimization over 8 and ¢ intractable. Like-
wise, any detailed analysis of the underlying objective function becomes problematic as
well.

At least for practical purposes, one way around this is to replace the troublesome expec-
tation with a Monte Carlo stochastic approximation (Kingma and Welling, 2014; Rezende
et al., 2014). More specifically we utilize

B ooy o (2912)] = 23 tog (201200, @
t=1

where z(#t) are samples drawn from 4o (z]w(i)). Using a simple reparameterization trick,
these samples can be constructed such that gradients with respect to p, and ¥, can be

1. For discrete data, a Bernoulli distribution is sometimes adopted instead.



EMERGENT SPARSITY IN VARIATIONAL AUTOENCODER MODELS

propagated through the righthand side of (4). Therefore, assuming all the required moments
., 2., n,, and 3, are differentiable with respect to ¢ and 6, the entire model can be
updated using SGD (Bottou, 2010).

While quite effective in numerous application domains that can apply generative models,
e.g., semi-supervised learning (Kingma et al., 2014; Maalge et al., 2016; Mansimov et al.,
2016), certain important mechanisms which dictate the behavior of the VAE are obfuscated
by the required stochastic approximation and the opaque underlying objective with high-
dimensional integrals. Moreover, it remains unclear to what extent minima remain anchored
at desirable locations in the non-convex energy landscape.

We take a step towards better quantifying such issues by probing the basic VAE model
under a few simplifying assumptions of increasing complexity whereby closed-form inte-
grations are (partially) possible. This process unveils a number of interesting connections
with more transparent, established generative models, each of which shed light on how the
VAE may perform under more challenging conditions. This mirrors the rich tradition of
analyzing deep networks under various simplifications such as linear layers or i.i.d. random
activation patterns (Choromanska et al., 2015a,b; Goodfellow et al., 2016; Kawaguchi, 2016;
Saxe et al., 2014), and results in the following key contributions:

1. We demonstrate that the canonical form of the VAE, including the Gaussian distri-
butional assumptions described above, harbors an innate agency for robust outlier
removal in the context of learning inlier points constrained to a manifold of unknown
dimension. In fact, when the decoder mean p, is restricted to an affine function of
z, we prove that the VAE model collapses to a form of robust PCA (RPCA) (Candes
et al., 2011; Chandrasekaran et al., 2011), a recently celebrated technique for separating
data into low-rank (low-dimensional) inlier and sparse outlier components.?

2. We elucidate two central, albeit underappreciated roles of the VAE encoder covari-
ance X,. First, through subtle multi-tasking efforts in both terms of (2), it facilitates
learning the correct inlier manifold dimension. Secondly, 3, can help to smooth out
undesirable minima in the energy landscape of what would otherwise resemble a more
traditional deterministic autoencoder (AE) (Bengio, 2009). This is true even in certain
situations where it provably does not actually alter the globally optimal solution itself.
Note that prior to this work the AE could ostensibly be viewed as the most natu-
ral candidate for instantiating extensions of RPCA to handle outlier-robust nonlinear
manifold learning. However, our results suggest that the VAE maintains pivotal ad-
vantages in mitigating the effects of bad local solutions and over-parameterized latent
representations, even in completely deterministic settings that require no generative
model per se.

As we will soon see, these points can have profound practical repercussions in terms of
how VAE models are interpreted and deployed. For example, one immediate consequence
is that even if the decoder capacity is not sufficient to capture the generative distribution
within some fixed, unknown manifold, the VAE can nonetheless still often find the correct
manifold itself, which is sufficient for deterministic recovery of uncorrupted inlier points.

2. RPCA represents a rather dramatic departure from vanilla PCA and is characterized by a challenging,
combinatorial optimization problem. A formal definition will be provided in Section 3.
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This is exactly analogous to RPCA recovery results, whereby it is possible to correctly
estimate an unknown low-dimensional linear subspace heavily corrupted with outliers even
if in doing so we do not obtain an actual generative model for the inliers within this subspace.
We emphasize that this is not a job description for which the VAE was originally motivated,
but a useful hidden talent nonetheless.

The remainder of this paper is organized as follows. In Section 2 we consider two affine
decoder models and connections with past probabilistic PCA-like approaches. Note that
the seminal work from (Rezende et al., 2014) mentions in passing that a special case of their
VAE decoder model reduces to factor analysis (Bartholomew and Knott, 1999), a cousin
of probabilistic PCA; however, no rigorous, complementary analysis is provided, such as
how latent-space sparsity can emerge as we will introduce shortly. Next we examine various
partially affine decoder models in Section 3, whereby only the mean p, is affine while ¥,
has potentially unlimited complexity; all encoder quantities are likewise unconstrained. We
precisely characterize how minimizers of the VAE cost, although not available in closed form,
nonetheless are capable of optimally decomposing data into low-rank and sparse factors akin
to RPCA while avoiding bad local optima. This section also discusses extensions as well as
interesting behavioral properties of the VAE.

Section 4 then considers degeneracies in the full VAE model that can arise even with a
trivially simple encoder and corresponding latent representation. Section 5 concludes with
experiments that directly corroborate a number of interesting, practically-relevant hypothe-
ses generated by our theoretical analyses, suggesting novel usages (unrelated to generating
samples) as a tool for deterministic manifold learning in the presence of outliers. We provide
final conclusions in Section 6. Note that our prior conference paper has presented the basic
demonstration that VAE models can be applied to tackling generalized robust PCA prob-
lems (Wang et al., 2017). However this work primarily considers empirical demonstrations
and high-level motivations, with minimal analytical support.

Notation: We use a superscript () to denote quantities associated with the i-th sample,
which at times may correspond with the columns of a matrix, such as the data X or related.
For a general matrix M, we refer to the i-th row as m;. and the j-th column as m.;.
Although technically speaking posterior moments are functions of the parameters {6, ¢}, the
random variables x, and the latent z, i.e., p, = p, (2;0), X, =3, (2;0), p, = p, (x; @),
and 3, = X, (x; @), except in cases where some ambiguity exists regarding the arguments,

these dependencies are omitted to avoid undue clutter; likewise for ;L,(Zi) = uz(m(i); ¢) and

29) 23 (29, ¢). Also, with some abuse of notation, we will use £ to denote a number of
different VAE-related objective functions and bounds, with varying arguments and context
serving as differentiating factors. Finally, the diag[-] operator converts vectors to a diagonal
matrix, and vice versa as in the Matlab computing environment.

2. Affine Decoder and Probabilistic PCA

If we assume that ¥, is fixed at some M, and force 3, = 0 (while removing the now
undefined log |X,| term), then it is readily apparent that the resultant VAE model reduces
to a traditional AE with squared-error loss function (Bengio, 2009), a common practical
assumption. To see this, note that if ¥, = 0, then ¢4 (z|w(i)) collapses to d(u,), i.e., a
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delta function at the posterior mean, and Eq¢(zlw(")) [log pe (z(V]2)] = logpe (m(i)mgz‘)),
which is just a standard AE with quadratic loss and representation pu, (., [x]). Moreover,
the only remaining (non-constant) regularization from the KL term is Y, ||:”||3. However,

given scaling ambiguities that may arise in the decoder when ¥, = 0, ug) can often be
made arbitrarily small, and therefore the effect of this quadratic penalty is infinitesimal.
With affine encoder and decoder models, the resulting deterministic network will simply
learn principal components like vanilla PCA, a well-known special case of the AE (Bourlard
and Kamp, 1988).

Therefore to understand the VAE, it is crucial to explore the role of non-trivial selections
for the encoder and decoder covariances, that serve as both enlightening and differentiating
factors. As a step in this direction, we will explore several VAE reductions that lead to
more manageable (yet still representative) objective functions and strong connections to
existing probabilistic models. In this section we begin with the following simplification:

Lemma 1 Suppose that the decoder moments satisfy p, = Wz + b and ¥, = M for
some parameters @ = {W b, \} of appropriate dimensions. Furthermore, we assume for
the encoder we have p, = f(x; @), X, = S.S!, and S, = g(x; ¢), where f and g are any
parameterized functional forms that include arbitrary affine transformations for some ar-
rangement of parameters. Under these assumptions, the objective from (2) admits optimal,
closed-form solutions for p, and X, in terms of W, b, and A such that the resulting VAE
cost collapses to

LW,b,A) = 3 Q0O(W,bAI) +nlog‘)\I+WWT‘, (5)

where

lI>

. . T -1 .

QO (W, b, 0) (a:(’) . b) (\I: + WWT) (w(’) - b) . (6)
Additionally, if we enforce that off-diagonal elements of ¥, must be equal to zero (i.e.,
[Ez]ij =0 fori # j), then (5) further decouples/separates to

Lop(W,b,2) = Y QW b, M) +n | > log (A+ w]3) + (d — k) log A| . (7)

i J

All proofs are deferred to the appendices. The objective (5) is the same as that used
by certain probabilistic PCA models (Tipping and Bishop, 1999), even though the latter
is originally derived in a completely different manner. Moreover, it can be shown that
any minimum of this objective represents a globally optimal solution (i.e, no minima with
suboptimal objective function value exist). And with b and A fixed, the optimal W will
be such that span[W] equals the span of the singular vectors of X — b1' associated with
singular values greater than v/A. So the global optimum produces a principal subspace
formed by soft-thresholding the singular values of X — b1 T, with the rank one offset often
used to normalize samples to have zero mean.?

3. While the details are omitted here, optimal solutions for both b and A can be analyzed as well.
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In contrast, the alternative cost (7), which arises from the oft-used practical assumption
that X, is diagonal, represents a rigorous upper bound to (5), since

Zlog (A + [lw;]13) + (d— k) log A > log [A + ww' (8)
J

by virtue of Hadamard’s inequality (see proof of Theorem 2 below), with equality iff W' W
is diagonal. Interestingly, all minima of the modified cost nonetheless retain global opti-
mality of the original; however, it can be shown that there will be a combinatorial increase
in the actual number of distinct (disconnected) minima:*

Theorem 2 Let R € R*** denote an arbitrary rotation matriz and P € R*** an arbitrary
permutation matriz. Furthermore let W* be a minimum of (5) and W** any minimum of
(7) with b and X\ fixed. Then the following three properties hold:

1. L(W* b, A) = LW R, b,\) = Loep(W*, b, \)
= L(W*P,b,)\) = Lep( WP, b, \). (9)

K!
(k=r)!
distinct (disconnected) minima of (7) located at some U AP, where UA2UT represents
the SVD of W** (W*) and r = rank[W**].

2. For any W** (W**)" with distinct nonzero eigenvalues, there will exist at least

3. W** will have at most r nonzero columns, while W* can have any number in{r,... k}.

Although this result applies to relatively simplistic affine decoders (the encoder need not
be so constrained however), it nonetheless highlights a couple interesting principles. First,
the diagonalization of X, collapses the space of globally minimizing solutions to a subset of
the original. While the consequences of this may be minor in the fully affine decoder model
where all the solutions are still equally good, we surmise that with more sophisticated pa-
rameterizations this partitioning of the energy landscape into distinct basins-of-attraction
could potentially introduce suboptimal local extrema. And from a broader perspective,
Theorem 2 provides tangible validation of prior conjectures that variational Bayesian fac-
torizations of this sort can fragment the space of local minima (Hoffman, 2014).

But there is a second, potentially-advantageous counter-affect elucidated by Theorem 2
as well. Specifically, even if W is overparameterized, meaning that x is unnecessarily large,
there exists an inherent mechanism to prune superfluous columns to exactly zero, i.e.,
column-wise sparsity. And once columns of W become sparse, the corresponding elements
of p, can no longer influence the data fit. Consequently, the ||, |3 factor from (3) serves as
the only relevant influence, pushing these values to be exactly zero even though ¢s norms in
most regularization contexts tend to favor diverse, non-sparse representations (Rao et al.,
2003).

So ultimately, sparsity of p, is an artifact of the diagonal X, assumption and the
interaction of multiple VAE terms, a subtle influence we empirically demonstrate translates
to more complex regimes in Section 5. In any event, we have shown that both variants of
the affine decoder model lead to reasonable probabilistic PCA-like objectives regardless of
how overparameterized p, and 3, happen to be.

4. By disconnected we mean that, to traverse from one minimum to another, we must ascend the objective
function at some point along the way.
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3. Partially Affine Decoder and Robust PCA

Thus far we have considered tight limitations on the complexity allowable in the functional
forms of both p, and 3, while pu, and 3, were free-range variables granted arbitrary flex-
ibility. We now turn our gaze to the case where 3, can also be any parameterized, diagonal
matrix® while p, remains restricted. Although this administers considerable capacity to
the model at the potential risk of overfitting, we will soon see that the VAE is nonetheless
able to self-regularize in a very precise sense: Global minimizers of the VAE objective will
ultimately correspond with optimal solutions to

%ig n-rank [L] + ||S|lo, st. X =L+S, (10)

where ||-||o denotes the ¢y norm, or a count of the number of nonzero elements in a vector or
matrix. This problem represents the canonical form of robust principal component analysis
(RPCA) (Candes et al., 2011; Chandrasekaran et al., 2011), decomposing a data matrix X
into low-rank principal factors L = UV, with U and V low-rank matrices of appropriate
dimension, and a sparse outlier component S. However, we must emphasize that (10),
unlike traditional PCA, represents an NP-hard, discontinuous optimization problem with a
combinatorial number of potentially bad local minima. Still, it is seemingly quite remarkable
that the probabilistic VAE model shares any kinship with (10), even more so given that
some of the distracting local minimizers can be smoothed away, a key VAE advantage as
we will later argue.

Before elucidating this relationship, we require one additional technical caveat. Specif-
ically, since log 0 and % are both undefined, and yet we will soon require an alliance with
degenerate (or nearly so) covariance matrices that mimic the behavior of sparse and low-
rank factors through log-det and inverse terms, we must place the mildest of restrictions
on the minimal allowable singular values of ¥, and 3,. For this purpose we define S}
as the set of m x m covariance matrices with singular values all greater than or equal to
a, and likewise S™ as the subset of S”* containing only diagonal matrices. We also define
supp,(x) = {i : |x;| > a}, noting that per this definition, suppy(x) = supp(z), meaning
we recover the standard definition of support: the set of indices associated with nonzero
elements.

3.1 Main Result and Interpretation

Given the affine assumption from above, and the mild restriction X, € S and X, € S for
some small a > 0, the resulting constrained VAE minimization problem can be expressed
as
min £ (W, b=0,%, €8 1., 3. € Sg) , (11)
0.¢
where now 0 includes W as well as all the parameters embedded in ¥,, while g, and 3,
are parameterized as in Lemma 1. We have also set b = 0 merely for ease of presentation
as its role is minor. We then have the following:

5. A full covariance over  is infeasible given the high dimension, and can lead to undesirable degeneracies
anyway. Therefore a diagonal covariance is typically, if not always, used in practice.
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Theorem 3 Suppose that X = {x(i) . admits a feasible decomposition X = UV + S
that uniquely® optimizes (10). Then for some & sufficiently small, and all o € (0,a], any
global minimum {W 3., f1,, 3.} of (11) will be such thai”

span[|W) = span[U]  and  supp, <d7jag [23; ([LZ [:c(z)]ﬂ) = supp[s™] (12)
for all i provided that the latent representation satisfies k > rank[U].

Several important remarks are warranted here regarding the consequences and interpre-
tation of this result:

e The W satisfying (12) forms a linear basis for each inlier component 1@, and likewise,
a sample-dependent basis denoted E® can be trivially constructed for each outlier
component () using 3, and ft,. Specifically, each unique column of E® is a vector

of zeros with a one in the j-th position, with j € supp, (diag [ﬁ]x (;lz [a:(l)])D It
follows that
2@ = 1 4 g0 — [W E(ﬂ [W E(i)r:n(i), Vi=1,....n. (13)

Therefore if we can globally optimize the VAE objective, we can recover the correct
latent representation, or equivalently, the optimal solution to (10).

e The requirements ¥, € S? and X, € S% do not portend the need for specialized
tuning or brittleness of the result; these are merely technical conditions for dealing
with degenerate covariances that occur near optimal solutions. While it might seem
natural that 3, has diagonal elements pushed to zero in regions where near perfect data
fit is possible, less intuitively, global optima of (11) can be achieved with an arbitrarily
small 3, e.g., 3, = al, at least along latent dimensions needed to represent L (see
proof construction). And interestingly, this implies that in areas surrounding a global
optimum, the VAE objective can resemble that of a reqular AE. As we will discuss more
below, desirable smoothing effects of integration over 3, occur elsewhere in the energy
landscape while preserving extrema anchored at the correct latent representation.

e Even if k is large, meaning W is possibly overcomplete, the VAE will not overfit in the
sense that there exists an inherent regulatory effect pushing span[W] towards span[U].

e If the globally optimal solution to (10) is not unique (this is different from uniqueness
regarding the VAE objective), then a low-rank-plus-sparse model may not be the most
reasonable, parsimonious representation of the data to begin with, and exact recovery
of L and S will not be possible by any algorithm without further assumptions. More
concretely, an arbitrary data point (@ e R? requires d degrees of freedom to represent;
however, if the data succinctly adheres to the RPCA model, then for properly chosen
U, V,and S, we can have () = Uv® 4 s where |[v®|o + ||s®]|o < d. Arbitrary

6. Obviously only L and S will be unique; the actual decomposition of L into U and V is indeterminate
up to an inconsequential invertible transform.

7. Although somewhat cumbersome in print, the expression >, (ﬂz [me refers to 3, evaluated at o,

where the latter is evaluated at wm, the ¢-th sample.
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data in general position will never admit such a unique decomposition, and we should
only expect such structure in data well-represented by our VAE model, or the original
RPCA predecessor from (10).

e A number of celebrated results have stipulated conditions (Candes et al., 2011; Chan-
drasekaran et al., 2011) whereby global solutions of the convex relaxation into nuclear
and ¢; norm components given by

min /n-rank || L|, + ||S|1, st. X=L+S, (14)
LS
will equal global solutions of (10). While elegant in theory, and practically relevant
given that (10) is discontinuous, non-convex, and difficult to optimize, the required
conditions for this equivalence to hold place strong restrictions on the allowable struc-
ture in L and support pattern in S. In practice these conditions can never be verified
and are unlikely to hold, so an alternative modeling approach such as the VAE, which
can be viewed as a smoothed version of (10) when an affine decoder mean is used (more
on this later), remains attractive. Additionally, there is no clear way to modify (14) to
handle nonlinear manifolds, which is obviously the bread and butter of the VAE.

We emphasize that these conclusions are not the product of an overly contrived situation,
given that a significant restriction is only placed on p,; all other posterior quantities are
essentially unconstrained provided a sufficient lower complexity bound is exceeded, implying
that the result will hold whenever a sufficiently complex deep network is used. Moreover,
although we will defer to a formal treatment to future work for purposes of brevity here,
with some mild additional conditions, Theorem 3 can naturally be extended to the case
where the decoder mean function is generalized to subsume non-linear, union-of-subspace
models as commonly assumed in subspace clustering problems (Elhamifar and Vidal, 2013;
Rao et al., 2010). This then deviates substantially from any direct PCA-kinship, and
buttresses the argument that the analysis presented here transitions to broader scenarios.
The experiments from Section 5 will also provide complementary empirical confirmation.

Moving forward, as a point of further comparison it is also interesting to examine how
a traditional AE, which emerges when X, is forced to zero, behaves under analogous con-
ditions to Theorem 3.

Corollary 4 Under the same conditions as Theorem 3, if we remove the log |3, | term and
assume X, = 0 elsewhere, then (11) admits a closed-form solution for 3, in terms of W
and ., such that minimizers of the VAE cost are minimizers of

LW, )= Z H:I:(") -Wn, (a:(i)) Ho in the limit o — 0. (15)

From this result we immediately observe that, provided p, enjoys a sufficiently rich param-
eterization, minimization of (15) is just a constrained version of (10), exactly equivalent to
solving
min ||S|lo, st. X =L+ S, rank[L] <k. (16)
LS
This expression immediately exposes one weakness of the AE; namely, if s is too large,
there is no longer any operation in place to prune away unnecessary dimensions, and the
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trivial solution L = X will be produced. In the large-x regime then, global VAE and
global AE solutions do in fact deviate, ultimately because of the removal of the —log|X.,|
term in the latter. So X, plays a critical role in determining the correct, low-dimensional
inlier structure, and ultimately it is this covariance that chaperons W during the learning
process.

3.2 Additional Local Minima Smoothing Effects

There is also a more important, yet subtle, advantage of the VAE over both (16) and the
original unconstrained RPCA model from (10). For both RPCA constructions, any feasible
support pattern, even the trivial ones associated with non-interesting decompositions satis-
fying [|v®]|g+|s®]|o > d for some i, will necessarily represent a local minimum, since there
is an infinite gradient to overcome to move from a zero-valued element of S to a nonzero
one.

Unlike these deterministic approaches, the behavior of the VAE reflects a form of dif-
ferential smoothing that rids the model of many of these pitfalls while retaining desirable
minima that satisfy (12).® Based on details of the proof of Theorem 3, it can be shown
that, excluding small-order terms dependent on other variables and a constant scale factor
of —loga, then a representative bound on the VAE objective associated with each sample
index ¢ behaves like

rank[W] + supp,, (diag [21 (uz [m(z)])D . (17)

But crucially, this behavior lasts only as long as (17) is strictly less than d and 3, is forced
to be small or degenerate. In contrast, when the value is at or above d, (17) no longer
reflects the energy function, which becomes relatively flat because of smoothing via 3.,
avoiding the pitfalls described above. This phenomena then has the potential to smooth
out a large constellation of bad locally optimal solutions.

To situate things in the narrative of (10), which is useful for illustration purposes, the
VAE can be viewed (at least to first order approximation) as minimizing the alternative
lower-bounding objective function

Z rank [LLT + diag (s(i))2] < Zrank [LLT} + Zrank [diag (s(i)>2]

(2

)

= n-rank[L]+ S|, (18)

or a smooth surrogate thereof, over the constraint set X = L + S. The advantages of this
lower bound are substantial: As long as a unique solution exists to the RPCA problem, the
globally optimal solution with ||v®||o + [|s®|¢ < d for all 4 will be unchanged; however,
any feasible solution with [|[v(® || 4 ||s(|¢ > d will have a constant cost via the expression
on the left of the inequality, truncating the many erratic peaks that will necessarily occur
with the energy on the righthand side.

8. A more rudimentary form of this smoothing has been observed in much simpler empirical Bayesian
models derived using Fenchel duality (Wipf, 2012).

10
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In fact, away from the strongly attractive basins of optimal VAE solutions, the KL term
from (2) is likely to push X, more towards
arg min KL [¢, (z]|x)||p(z)] = arg min tr[¥,] —log|¥,| = I. (19)
3.-0 3.-0
Experiments presented in Section 5 confirm that this is indeed the case. And once 3, moves
away from zero, it will generally contribute a strong smoothing effect via the expectation in
(2). However, there exists an important previously unobserved caveat here: If the decoder
mean function is excessively complex, it can potentially outwit all regulatory persuasions
from 3., leading to undesirable degenerate solutions with no representational value as
described next.

4. Degeneracies Arising from a Flexible Decoder Mean

In this section we consider the case where p,, is finally released from its affine captivity to
join with posterior colleagues in the wild. That simultaneously granting u,, ¥, @, and
32, unlimited freedom leads to overfitting may not come as a surprise; however, it turns out
that even if the latter three are severely constrained, overfitting will not be avoided when
W, is over-parameterized in a certain sense extending beyond a single affine layer. This is
because, at least at a high level, the once-proud regulatory effects of 3, can be completely
squashed in these situations leading to the following:

Theorem 5 Suppose k = 1 (i.e., a latent dimension of only one), ¥, = 02 = X, (a
scalar), p, = a'x for some fived vector a, X, = NI, and p, is an arbitrary piecewise
linear function with n segments. Then the VAE objective is unbounded from below at a
trivial solution {\;, @, Ay, f1,} such that the resulting posterior mean fi,(z;0) will satisfy
fi, (2 0) € {x ", with probability one for any z.

In this special case, 3, 02, and j, are all simple affine functions and the latent dimension
is minimal, and yet an essentially useless, degenerate solution can arbitrarily optimize the
VAE objective. This occurs because the VAE has limited power to corral certain types of
heavily over-parameterized decoder mean functions, even when all other degrees of freedom
are constrained, and in this regime the VAE essentially has no advantage over a traditional
autoencoder (its natural self-regulatory agency may sometimes break down). In contrast, as
we saw in a previous section, there is no problem taming the influences of an unlimited latent
representation (meaning « is large, e.g., even k > n) and its huge, attendant parameterized
mean function, provided the latter is affine, as in p, = Wz + b.

Indeed then, the issue is clearly not the degree of over-parameterization in p, per se,
but the actual structures in place. And the key problem is that, at least in some situations,
the model can circumvent the entire regulatory mechanism of the KL term, pushing the
latent variances towards zero even around undesirable solutions. For example, in the context
of Theorem 5, the piecewise linear structure of p, allows the decoder to act much like a
vector quantization process, encouraging z towards a scalar code that selects for piecewise
linear segments matched to training samples 2@, And because this will lead to perfect
reconstruction error if an optimal segment is found for a particular 2, 3, = A\, I ~ 0 serves
as a reasonable characterization of posterior uncertainty, pushing p(m(i)|z(i)) — 0 (:I:(i))
provided that z() ~ (w(i); a) = a2, meaning that 02 = ), is not too large.
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In this situation, loosely speaking the data term from (2) will behave like ndlog A,
bullying the over-matched KL term that will scale only as —nlogA,. This in turn leads
to a useless, degenerate solution as A\, = A\, — 0, either for the purposes of generating
representative samples, or for outlier removal as we have described herein.

One helpful caveat though, is that actually implementing such a complex piecewise linear
function fi,(z;60) using typical neural network components would require extremely wide
and/or deep structure beyond the first decoder mean layer. And the degrees of freedom in
such higher-layer structures would need to scale proportionally with the size of the training
data, which is not a practical VAE operational regime to begin with. In contrast, the first
layer of the decoder mean network more or less self-regularizes, at least in the affine and
related cases as described above. And we conjecture that this self-regularization preserves
in more complex networks of reasonable practical size as will be empirically demonstrated
in Section 5. So really it is excessive complexity in higher decoder mean layers, unrelated
to the dimensionality of the latent z bottleneck, where overfitting problems are more likely
to arise.

Of course an analogous issue exists with generative adversarial networks (GAN) as well,
a popular competing deep generative model composed of a generator network analogous to
the VAE decoder, and a discriminator network that replaces the VAE encoder in a loose
sense (Goodfellow et al., 2014). If the generator network merely learns a segmentation
of z-space such that all points in the i-th partition map to ¥, the discriminator will be
helpless to avert this degenerate situation even in principle. But there is an asymmetry when
it comes to the GAN discriminator network and the VAE encoder: Over-parameterization
of the former can be problematic (e.g., it can easily out-wit an affine or other proportionally
simple generator), but the latter not so, at least in the sense that a highly flexible VAE
encoder need not bully a simple decoder into trivial solutions as we have shown in previous
sections.

5. Experiments and Analysis

Theoretical examination of simplified cases can be viewed as a powerful vehicle for generat-
ing accessible hypotheses that describe likely behavior in more realistic, practical situations.
In this section we empirically evaluate and analyze three concrete hypotheses that directly
emanate from our previous technical results and the tight connections between RPCA and
VAE models. In aggregate, these hypotheses have wide-ranging consequences in terms of
how VAEs should be applied and interpreted.

Before stating these hypotheses, we summarize what can be viewed as two, theoretically-
accessible boundary cases considered thus far. First, building on Section 2, Section 3 demon-
strated that the VAE can self-regularize and produce useful, robust models provided that
restrictions are placed on only the decoder mean network. Conversely, Section 4 demon-
strated that, regardless of other model components, if the decoder mean network is unrea-
sonably complex beyond the first layer, then overfitting emerges as a potential concern. But
between these two extremes, there exists a large operational regime whereby practical VAE
behavior is both worth exploring and likely still informed by the original analysis of these
boundary cases.

12
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Within this context then, we conjecture that the desirable VAE properties exposed in
Sections 2 and 3 are inherited by models involving deeper decoder mean networks, but at
least constrained to practically-sized hidden-layer p, complexity such that the concerns
from Section 4 are not a significant factor (e.g., no networks where the degrees of freedom
in higher decoder mean layers scales as d x n, an absurd VAE structure by any measure).
More specifically, in this section will empirically examine the following three hypotheses:

(i) When the decoder mean function is allowed to have multiple hidden layers of sensible
size/depth, the VAE should behave like a nonlinear extension of RPCA, but with
natural regularization effects in place that help to avoid local minima and/or overfitting
to outliers. It is therefore likely to outperform either RPCA algorithms or, more
importantly, an AE on diverse manifold recovery/outlier discovery problems unrelated
to the probabilistic generative modeling tasks the VAE was originally designed for.

(ii) If the VAE latent representation z is larger than needed (meaning its dimension x
is higher than the true data manifold dimension), we have proven that unnecessary
columns of W in a certain affine decoder mean model p, = Wz + b will automatically
be pruned as desired. Analogously, in the extended nonlinear case we would then
expect that columns of the weight matrix from the first layer of the decoder mean
network should be pushed to zero, again effectively pruning away the impact of any
superfluous elements of z.

(iii) When granted sufficient capacity in both p, (p, [z]) and ¥, to model inliers and
outliers respectively, the VAE should have a tendency to push elements of the encoder
covariance X, to arbitrarily near zero along latent dimensions needed for representing
inlier points, selectively overriding the KL regularizer that would otherwise push these
values towards one. This counterintuitive behavior directly facilitates the VAE’s utility
as a nonlinear outlier removal tool (per Hypothesis (i)) by preserving exact adherence
to the manifold in the neighborhood of optimal solutions.

5.1 Hypothesis (i) Evaluation Using Specially-Designed Ground-Truth
Manifolds

If our theory is generally applicable, then a VAE with suitable parameterization should
be able to significantly outperform an analogous deterministic AE (i.e., an equivalent VAE
but with ¥, = 0) on the task of recovering data points drawn from a low-dimensional
nonlinear manifold, but corrupted with gross outliers. In other words, even if both models
have equivalent capacity to capture the intrinsic underlying manifold in principle, the VAE
is more likely to avoid bad minima and correctly estimate it. We demonstrate this VAE
capability here for the first time across an array of manifold dimensions and corruption
percentages, recreating a nonlinear version of what are commonly termed phase transition
plots in the vast RPCA literature (Candes et al., 2011; Ding et al., 2011; Kim et al., 2013;
Wipf, 2012). These plots evaluate the reconstruction quality of competing algorithms for
every pairing of subspace dimension and outlier ratio, creating a heat map that differentiates
success and failure regions.

Of course explicit knowledge of ground-truth low-dimensional manifolds is required to
accomplish this. With linear subspaces it is trivial to generate appropriate synthetic data
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by simply creating two low-rank random matrices U € R¥* and V' € R**" a sparse outlier
matrix S, and then computing X = L 4+ S with L = UV. Algorithms are presented with
only X and attempt to reconstruct L. Here we generalize this process to the nonlinear
regime using deep networks and the following non-trivial steps. In this revised context,
the generated L will now represent a data matrix with columns confined to a ground-truth
nonlinear manifold.

Data Generation: First we draw n low-dimensional samples z(9 € R* from A (2;0,1)
and pass them through a 3-layer network with ReLU activations (Nair and Hinton, 2010).
We express this structure as z(k)-D1(r1)-Da(r2)-1(d), where D and Dy are hidden layers,
[ here serves as the output layer, and the values inside parentheses denote the respective di-
mensionalities (these experiment-dependent values will be discussed later). Network weights
are set using the initialization procedure from (He et al., 2015). The d-dimensional output
produced by z(® is denoted as l(i), the collection of which form a matrix L, with columns
effectively lying on a x-dimensional nonlinear manifold. This network can be viewed as a
ground-truth decoder, projecting z(® to clean samples 10,

But we must also verify that there exists a known ground-truth encoder that can correctly
invert the decoder, otherwise we cannot be sure that any given VAE structure provably
maintains an optimal encoder within its capacity (this is very unlike the linear RPCA case
where an analogous condition is trivially satisfied). To check this, we learn the requisite
inverse mapping by training something like an inverted autoencoder. Basically, the decoder
described above now acts as an encoder, to which we append a new 3-layer ReLU network
structured as l(d)-E1(ry)-E2(r1)-2(k), where now E; and E5 denote candidate hidden
layers for a potentially optimal encoder. The entire intverted structure then becomes z(k)-
D1 (r1)-Ds(r2)-1(d)-E1(r2)-Eo(r1)-2(k). If any z() passes through this network with zero
reconstruction error, it implies that the corresponding 1% can pass through the flipped
network with zero reconstruction error, and we have verified our complete ground truth
network.

We could train the entire system end-to-end to accomplish this, which should be easy
since k < d; however, we found that although z() = 2 g obviously not difficult to
achieve, the corresponding learned samples 19 are pushed to very near a low-rank matrix
when assembled into L. This would imply that non-linear manifold learning is not actually
even required and RPCA would likely be sufficient.

To circumvent this issue, we instead hold the initial z(k)-D1(r1)-D2(r2)-1(d) structure
fixed, which ensures that the rank of L cannot be altered, and only train the second half
using a standard ¢ loss. In doing so we are able to obtain an L matrix, extracted from the
middle layer, that is both (a) not well-represented by a low-rank approximation, and (b)
does lie on a known low-dimensional non-linear manifold. And given that essentially zero
reconstruction error is in fact achievable (up to the expected small ripples introduced by
stochastic gradient descent or a similar surrogate), the learned decoder from this process
implicitly serves as the ground-truth encoder underlying the data structure. Hence any
VAE that includes I(d)-E1(r2)-E2(r1)-2(x) within its encoder mean network capacity, as
well as z(k)-D1(r1)-Da(ry)-1(d) within its decoder mean network capacity, will at least in
principle have the capability of zero reconstruction error as well.
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Finally, once L has been created in this manner, we then generate the noisy data matrix
X by randomly corrupting 100 - % of the entries, replacing the original value with samples
from a standardized Gaussian distribution. In doing so, the original ‘signal’ component
from L is completely swamped out at these locations.

Experimental Design: Given a data matrix X as generated above, we test the relative
performance of four competing models:

1. VAE: We form a VAE architecture with the cascaded encoder/decoder mean networks
. (1, [x]) assembled as x(100)-E1(2000)-E2(1000)-p,(50)-D1(1000)-D2(2000)-£, (100).
This mirrors the high-level structure used to generate the outlier-free data, and ulti-
mately will ensure that the ground-truth manifold is included within the network pa-
rameterization. Consistent with the design in (Kingma and Welling, 2014), a diagonal
encoder covariance X, is produced by sharing just the first two mean network layers.
An exponential layer is also appended at the output to produce non-negative values.
For consistency with AE models, the decoder covariance X, is addressed separately
via a special process described below.

2. AE-{5: We begin with the VAE model from above and fix 3, = 0. This reduces the KL
regularization term from (3) to simply |, ||3. If no other changes are included, then
the scaling ambiguity between p, and decoder layer D is such that g, can be made
arbitrarily small without any loss of generality, rendering any beneficial regularization
effect from ||p,||3 completely moot as discussed at the beginning of Section 2. There-
fore we add a standard weight decay term to the AE-f5 network parameters {0, ¢}
to ameliorate this scaling ambiguity, which is tantamount to including an additional
penalty factor C1||{0, ¢}||3. We also balance ||, |3 with a second tuning parameter
Ca, i.e., Co||p,||3. For the experiments in this section, we choose C; = 0.0005, a typical
default value for weight decay, and then tune Cy for optimal performance.”

Note also that once 3, = 0, at every sample ¥, can be solved for in closed form as

=],

4. We then plug this value into the AE-f5 cost, effectively optimizing E;(,;i) out of the
model altogether making it entirely deterministic. For direct comparison, we apply
the same procedure to the VAE from above, which can be interpreted as efficiently
modeling the infinite capacity limit for ¥, (i.e., even with infinite capacity in 3., the
VAE model could do no better than this).

: N 2
= (xy) — MEZ)) for j = 1,...,d assuming sufficient capacity per Corollary

3. AE-{1: To explicitly encourage sparse latent representations, which could potentially
be helpful in learning the correct manifold dimension, we begin with the AE-¢5 model

9. For direct comparison, we include the same weight decay factor C1|{0,¢}||3 with the VAE model
even though there is no equivalent issue with scaling ambiguity. In fact, this can be viewed as an
advantage of the VAE regularization mechanism, in that it directly prevents large decoder weights from
compensating for arbitrarily small values of u,, killing regularization effects. This is because there exists
a key dependence between the weights from D and the covariance 3. such that any large weights that
would accommodate pushing p, towards zero would equally amplify the random additive noise coming
from the stochastic encoder model, nullifying any benefit to the overall cost.
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from above and replace ||, ||3 with the ¢; norm ||, 1, a well-known sparsity-promoting
penalty function (Donoho and Elad, 2003). The corresponding parameter C is likewise
independently tuned for optimal performance.

4. RPCA: As an additional baseline, we also apply the convex RPCA formulation from (14)
to the same corrupted data. This model is implemented via an augmented Lagrangian
method using code from (Lin et al., 2010).

For the VAE, AE-/5, and AE-{; networks, all model weights were randomly initialized
S0 as not to copy any information from the ground-truth template. Training was conducted
over 200 epochs using the Adam optimization technique (Kingma and Ba, 2014) with a
learning rate of 0.0001 and a batch size of 100. We chose n = 10° training samples for each
separate experiment, across which we varied the manifold dimension from x = 2,4,...,20
while the outlier ratio ranged as v = 0.05,0.10,...,0.50. For each pair of experimental
conditions, we train/run all four models and measure performance recovering the true L as
quantified by the normalized MSE metric

NMSE £ |L - L|%/|IL|%. (20)

Note that although in practice we will not generally know the true manifold dimension « in
advance, because we choose dim|[p,] = 50 > k when constructing encoder networks for all
experiments, perfect reconstruction is still theoretically possible by any of the VAE or AE
models provided that outlier contributions can be successfully mitigated.

Results: Figure 1 displays the results estimating L, where the VAE outperforms RPCA
and the AE models by a wide margin. Perhaps most notably, the VAE performance domi-
nates both AE-f1 and AE-{5, supporting our theory that the smoothing effect of integrating
over X, has immense practical value in avoiding bad minimizing solutions through its unique
form of differential regularization. In fact, the AE-f5 objective is identical to the VAE once
3, = 0, at least up to the constant Cy applied to ||u,||3 which is only tuned to benefit the
former while remaining fixed for the latter.! So this smoothing effect is essentially the only
difference between the VAE and AE-/; models, and therefore, Figures 1(a) and 1(b) truly
isolate the benefits of the VAE in this regard.

To summarize then, by design all VAE and AE network structures are equivalent in
terms of their predictive capacity, but only the VAE is able to capitalize on the regularizing
effect of ¥, to actually reach a good solution in challenging conditions. Moreover, this is
even possible without the hassle of tuning tedious hyperparameters to balance regularization
effects as required by AE-f; and AE-f models.!! This confirms Hypothesis (i) and suggests
that VAEs are a viable candidate for replacing existing RPCA algorithms (Candes et al.,
2011; Ding et al., 2011; Kim et al., 2013; Wipf, 2012) in regimes where a single linear

10. If C2 = 1, the default value as produced by the VAE KL term, the AE-¢2 performance is much worse
(not shown) than when using the tuned value of C2 = 10® as was adopted in producing Figure 1. In
contrast, the VAE requires no such tuning at all, with the default C2 = 1 producing the results shown.

11. Of course we admittedly have not exhaustively ruled out the potential existence of some alternative
regularizer capable of outperforming the VAE when carefully tuned to appropriate conditions; however,
it is still nonetheless impressive that the VAE can naturally perform so well without such tuning on a
task that it was not even originally motivated for.
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Figure 1: Results recovering synthesized low-dimensional manifolds across different outlier
ratios (z-axis) and manifold dimensions (y-axis) for (a) the VAE, (b) the AE-/,
(¢) the AE-¢;, and (d) RPCA. In all cases, white color indicates normalized MSE
near 0.0, while dark blue represents 1.0 or failure. The VAE is dramatically su-
perior to each alternative, supporting Hypothesis (i). Additionally, it is crucial
to note here that the AE and RPCA solutions perform poorly for quite differ-
ent reasons. Not surprisingly, convex RPCA fails because it cannot accurately
capture the underlying nonlinear manifold using a linear subspace inlier model.
In contrast, both AE-¢; and AE-{5 have the exact same inlier model capacity as
the VAE and can in principle represent uncorrupted points perfectly; however,
they have inferior agency for pruning superfluous latent dimensions, discarding
outliers, or generally avoiding bad locally-optimal solutions.

subspace is an inadequate signal representation. And we stress that, prior to the analysis
herein, it was not at all apparent that a VAE could so dramatically outperform comparable
AE models on this type of deterministic outlier removal task.

Note also that perfect reconstruction, as consistently exhibited by the VAE in Figure
1(a), does not actually require learning the correct generative model within the estimated
manifold. Rather it only requires that as 3, — 0 selectively along appropriate dimensions
(consistent with Hypothesis (iii) as will be discussed in Section 5.3), the encoder and decoder
mean networks project onto the correct manifold while ignoring outliers. Hence although
random samples z will likely lie on the true manifold when passed through the decoder
network, they need not be perfectly distributed according to the full generative process
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unless sufficient additional capacity exists beyond that needed to represent the manifold
itself. We are not aware of this distinction being discussed in previous works, where VAE
and related models are typically evaluated by either the overall quality of their generated
samples (Dosovitskiy and Brox, 2016; Larsen et al., 2015; Oord et al., 2016), or by the value
of the likelihood bound (Kingma and Welling, 2014; Kingma et al., 2016; Burda et al.,
2015).12

Before proceeding to the next set of experiments, we address a tangential issue related
to the RPCA performance as exhibited in Figure 1(d). When the outlier ratio is zero,
RPCA can recover the ground-truth by simply defaulting to a full-rank inlier model without
actually learning anything about the true manifold itself (the VAE and AE models do
not have this luxury since they are forced to represent L using at most dim[u,] = 50 <
rank[L] = 100 dimensions by design). In contrast, as the outlier ratio increases, it becomes
increasingly difficult for RPCA to find any linear subspace representation that is both
sufficiently high dimensional to include the majority of the inlier variance along the manifold
while simultaneously excluding the outlier contributions. This explains the steep drop-off
in performance moving from left to right within Figure 1(d). But there is noticeably no
change in RPCA performance as we move from top to bottom in the same plot. This is
because the clean data L is full-rank regardless of the manifold dimension x, and so any
linear subspace approximation is more or less equally bad across all k.

5.2 Hypothesis (ii) Evaluation Using Ground-Truth Manifolds and MNIST
Data

Synthetic Data Example: To evaluate Hypothesis (ii), we train analogous AE and VAE
models as the number of decoder and encoder hidden layers vary, in each case with ground-
truth available per the procedure described above. To generate each observed data point
@, we sample z() from a 20-dimensional standard Gaussian distribution and pass it
through a neural network structured as z(20)-D1(200)-D2(200)-x(400), again with ReLU
activations. We then train VAE models of variable depth, with concatenated mean net-
works p, (p, [x]) designed as x(400)-E1(200)-...-E y,(200)-p,(30)-D1(200)-...-D n,(200)-
w1, (400), where N, and Ny represent the number of hidden layers in the encoder and decoder
respectively. The corresponding covariances are modeled as in Section 5.1, and likewise, the
training protocol is unchanged. Note also that dim[u,] = 30 is considerably larger than the
ground-truth dimension of 20.
The first layer of the decoder mean network (before the nonlinearity) can be expressed
as
hi =Wz + by, (21)

which in isolation is equivalent to the affine decoder mean model. If the VAE has the ability
to find the true underlying manifold dimension, then the number of nonzero columns in
W should be 20, indicating that 30 — 20 = 10 dimensions of z are actually useless for

12. Learning the correct distribution within the manifold, as required for full recovery of the entire generative
process and the production of realistic samples, is a topic largely orthogonal to the analysis presented
herein. Still, to at least partially address these important issues, we have recently derived relatively
broad conditions whereby provable recovery within a manifold itself is possible even in situations where
3. tends towards zero. However, we defer presentation of this topic, which involves many additional
subtleties, to a future publication.
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N;=0 N;=1 N;=2 N;=3
30.0 21.1 21.0 20.0
30.0 21.0 20.0 20.0
30.0 21.0 20.0 20.0
30.0 20.4 20.0 20.0

SRS

Il
W RO

Table 1: Number of nonzero columns in the VAE decoder mean first-layer weights W
learned using different encoder and decoder depths applied to data with a ground-
truth latent dimension of 20. Provided that the VAE model is sufficiently complex,
the correct estimate is automatically obtained. We have not found an analogous
AE model with similar capability.

any subsequent representation, i.e., we can estimate the intrinsic dimension of the latent
code by counting the number of nonzero columns in W, exactly analogous to the affine
case. Of course in practice it is unlikely that a column of W converges all the way to
exactly 0 via any stochastic optimization method. Therefore we define a simple threshold
as thr = 0.05 x maxj_; [[w|[2. If [Jw;|[2 < thr, we regard it as a zero column. But this
heuristic notwithstanding, the partition between zero and non-zero columns is generally
quite obvious as will be illustrated later.

Table 1 reports the estimated number of non-zero columns in Wy as N, and N, are
varied, where we have run 10 trials for every pairing and averaged the results. When there is
no hidden layer in the decoder (i.e., Ny = 0), which implies that the decoder mean is affine,
all the columns are nonzero since the network is overly-simplistic and all degrees of freedom
are being utilized to compensate. However, once we increase the depth, especially of the
decoder within which W actually resides, the number of nonzero columns of W tends
to exactly 20, which is the correct ground-truth manifold dimension by design, directly
supporting Hypothesis (ii). Similar conclusions can be drawn from models of different sizes
and configurations as well (not shown). In contrast, we did not find a corresponding AE
model with this capability.

Note that prior work has loosely suggested that the KL regularizer indigenous to VAEs
could potentially mute the impact of superfluous latent dimensions as part of the model
optimization process (Burda et al., 2015; Sgnderby et al., 2016). However, there has been
no theoretical or empirical demonstration of why this should happen, nor any rigorous
explanation of a precise pruning mechanism built into the aggregate VAE cost function
itself. And as mentioned previously, the KL term is characterized by an ¢5 norm penalty on
., (see (3)), which we would normally expect to promote low-energy latent representations
with mostly small, but nonzero values (Chen et al., 1999), the exact opposite of any sparsity-
promotion or pruning agency. But of course if columns of W are set to zero, then no
information about z can pass through these dimensions to the hidden layers of the decoder.
Therefore the KL term can now be minimized in isolation along these dimensions with
the corresponding elements of p, set to exactly zero. Hence it is only the counterintuitive
co-mingling of all energy terms that leads to this desirable VAE pruning effect as we have
meticulously characterized.
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Figure 2: (a) Validation of thresholding heuristic for determining nonzero columns in W.
With N, = 3 and the settings from Table 1, the sorted column norms of W
are plotted. Clearly for Ny € {2,3} the gap between zero and nonzero values is
extremely clear and any reasonable thresholding heuristic will suffice. () Number
of nonzero columns in the decoder mean first-layer weights W as the latent
dimension k is varied for both AE and VAE models trained on MNIST data.
Only the VAE automatically self-regularizes when s becomes sufficiently large
(here at k ~ 15), consistent with Hypothesis (ii).

Finally, Figure 2(a) provides validation for our heuristic criterion for classifying columns
of W as zero or not. Under the same experimental conditions as were used for creating
Table 1, we plot the sorted column norms of W for the cases where N, = 3 and Ny €
{0,1,2,3}. Especially when Ny € {2,3}, meaning the model is of (or nearly of) sufficient
capacity, zero and nonzero values are easily distinguishable and any reasonable thresholding
heuristic would be adequate. Likewise for Ny = 0 it is clear that all values are significantly
distant from zero. In contrast, when Ny = 1 (green curve) it is admittedly more subjective
whether or not the smallest 9 or 10 elements should be classified as zero. Regardless,
the overall trend is unequivocal, with any heuristic threshold only influencing the Ny = 1
boundary case.

MNIST Example: To further verify Hypothesis (ii), we train VAE models on the
MNIST data set of handwritten digit images (Lecun et al., 1998) as « is varied. We use all
n = 70000 samples, each of size 28 x 28. We structure 4-layer cascaded VAE mean networks
W (o, [x]) as z(d)-E1(1000)-E3(500)-E3(250)-p, (k)-D1(250)-D2(500)-D3(1000)-p,,(d), where
d = 28 x 28 = 784 and ReLU activations are used. Covariances and training protocols are
handled as before. We draw values of k from {3,5,8, 10, 15, 20, 25, 30, 35, 40}.

Figure 2(b) displays the number of nonzero columns in W produced by each k-
dependent model, again across 10 trials. We observe that when x« > 15, the number of
nonzero columns plateaus for the VAE consistent with Hypothesis (ii). Of course unlike the
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Figure 3: Log-scale histograms of {EZ } diagonal elements as outlier ratios and man-
1=

ifold dimensions are varying for the corrupted manifold recovery experiment
corresponding with Figure 1. The three columns represent outlier ratios of
v € {0.0,0.25,0.50} from left to right. The four rows represent manifold di-
mensions of £ € {2,8,14,20} from top to bottom. All plots demonstrate the
predicted clustering of variance values around either zero or one. Likewise, the
relative sizes of these clusters, including observed changes across experimental
conditions, conforms with our theoretical predictions (see detailed description in
Section 5.3).

synthetic case, we no longer have access to ground truth for determining what the optimal
manifold dimension should be.

We also applied an analogous AE model trained with Cy = 0, i.e., a standard AE with no
additional regularization penalty added. Not surprisingly, the number of nonzero columns
in W is always equal to k since there is no equivalent agency for column-wise pruning as
implicitly instilled by the VAE. Note that tuning Cs with either ¢1- or £2-norm penalties is of
course always possible; however, the optimal value can be k-dependent making subsequent
results less interpretable. Moreover, in general we have not found a setting whereby the
penalties lead to correct latent dimensionality estimation in situations where the ground-
truth is known.
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5.3 Hypothesis (iii) Evaluation Using Covariance Statistics from Corrupted
Manifold Recovery Task

If some columns of W tend to zero as we have argued both empirically and theoretically,
then the corresponding diagonal elements of 3, like p,, can no longer influence the de-
coder. And with only the lingering KL term to offer guidance, along these coordinates
the optimal variance will then equal one by virtue of (19). But for nonzero columns of
W, the behavior of ¥, is much more counter-intuitive. Despite the —log|3,| factor from
the KL divergence that contributes an unbounded cost as any [3.] ;7 — 0, we nonetheless
have proven for the affine decoder mean case a natural tendency of the VAE to push these
variance values arbitrarily close to zero when approaching globally optimal solutions, at
least along latent dimensions required for representing inlier points lying on ground-truth
manifolds (i.e, dimensions where W is nonzero).

We now empirically verify that this same effect is inherited by general VAE models
with more sophisticated, nonlinear decoder mean networks. For this purpose, we created

)
histograms of all diagonal elements of {E,(;)}, obtained from the experiments described

in Section 5.1 where the outlier ratios and manzifolld dimensions vary. The results are plotted
in Figure 3 for all pairs of outlier ratios v € {0.0,0.25,0.50} (columns) and ground-truth
manifold dimensions k € {2,8,14,20} (rows). These results directly conform with our
theoretical predictions per the following explanations.

First, consider the upper-left panel displaying the simplest case from an estimation

standpoint, since v = 0.0 (no outliers) and k = 2 (very low-dimensional manifold). Here
n

we observe a clear partitioning between elements of {29} ) going to either zero or one.

Moreover, given that dim[p,] = 50 while the ground—trutﬁ involves k = 2, 48 out of 50
dimensions are actually unnecessary. Hence we should expect that only about 4% of variance
values should concentrate around zero, with the remainder forced towards one. In fact,
this is precisely the general partitioning we observe (note the log scaling of the y-axis).
Additionally, if we examine the other panels in the left-most column of Figure 3, we notice
that as the ground-truth x increases, the percentage of variance values shifts from one to
zero roughly proportional to x/50. In other words, as more dimensions are required to
represent the more challenging, higher-dimensional manifolds, more diagonal elements of

i .
each E(z) are pushed towards zero to enforce accurate reconstructions.

Next, we observe that in the top row of Figure 3, each of the three panels are more or
less the same, indicating that the inclusion of outliers has not disrupted the VAE’s ability to
model the ground-truth manifold. In contrast, the bottom row presents a somewhat different
story. Given the more challenging conditions with a much higher dimensional ground-truth
manifold (x = 20), the inclusion of additional outliers (as we move from left to right) shifts
more variance elements from zero to one. This implies that the VAE, when confronted with
both a higher-dimensional manifold and severe outliers (bottom-right panel), is settling
on a relatively lower-dimensional approximation. This behavior is reasonable in the sense
that accurately estimating a complex manifold via any method becomes problematic when
50% of the data is corrupted, and a low-dimensional approximation is all that is feasible
to avoid simply fitting all the outliers. In this situation some manifold dimensions of lesser
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Figure 4: Diagonal values of % S 23) sorted in ascending order for a VAE model trained
with ground-truth x = dim[p,] = 10 on the recovery task from Section 5.1. When
the outlier proportion is v < 0.30, the average variance is near zero across all la-
tent dimensions. However, for v > 0.30, some variance values are pushed towards
one, indicating that the VAE is defaulting to a lower-dimensional approximation.

importance can be viewed as expendable, and consequently we will likely have additional
Ny
elements of {29)}, . tending to one.
1=

To further elucidate this phenomena, we include one additional supporting visualization
involving the special case where the ground-truth manifold dimension equals 10 while the
outlier ratio v varies. However, we slightly modify the testing conditions from Section 5.1.
Instead of choosing dim[u,| = 50, we set this value to the ground-truth value £ = 10. In this
constrained setting, we expect that perfect recovery should require all diagonal elements of
3. to be pushed towards zero, since there are no longer any superfluous degrees of freedom.
Therefore, if any covariance elements tend to one, we have isolated the emergence of a
low-dimensional approximation as presumably necessitated by increasing outlier levels.

Figure 4 displays the diagonal values of %Z?:l ES) sorted in ascending order along
the x-axis. When v < 0.30, the average variance is near zero across all latent dimensions.
However, for v > 0.30, some variance values are pushed towards one, indicating that the
VAE is defaulting to a lower-dimensional approximation.

To summarize then, the results of this section help to confirm a rather curious behav-
ior of the VAE: If u, (p, [x]) is suitably parameterized to model inlier samples, and X,
is sufficiently complex to model outlier locations, then elements of 3, can be selectively
pushed towards zero in the neighborhood of global minima. This involves overpowering the
—log |X. || factor from the KL divergence that would otherwise seemingly prevent this from
happening. Moreover, in this degenerate regime, the VAE will exhibit deterministic behav-
ior and can perfectly represent original clean training data samples via a low-dimensional
manifold provided that the outlier level is not too high.
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6. Discussion

Although originally developed as a viable deep generative model or tractable bound on the
data likelihood, in this work we have revealed certain properties and abilities of the VAE
that are not obvious from first inspection. For example, in addition to its putative role in
driving diversity into the learned generative process, the latent covariance 3, also serves as
an important smoothing mechanism that aids in the robust recovery of corrupted samples,
even if sometimes this requires exhibiting behavior (i.e., selective convergence towards zero)
that may seem counterintuitive. And although the VAE only adopts an 5 norm penalty on
1, that in isolation should favor low energy solutions with all or mostly nonzero values, the
latent mean estimator nonetheless tends to be highly sparse because of subtle, non-obvious
interactions with other factors in the energy function such as the first-layer decoder mean
network weights W . Likewise, outliers can be estimated and completely removed via the
action of 3, despite no traditional, additive sparsity penalty applied across each data point.

In general, our results speak to many under-appreciated aspects of VAE behavior, have
wide ranging practical consequences, and suggest novel usages beyond the original VAE
design principles. These include:

e The VAE can be applied to estimating deterministic nonlinear manifolds heavily cor-
rupted with outliers.

e The self-regularization effects of the VAE can largely handle excessive degrees of free-
dom when it comes to the latent representation z as produced by the full encoder and
processed by the first layer of the decoder mean network, as well as an arbitrarily-
parameterized decoder covariance X,. Conversely, only excessive complexity specifi-
cally localized in higher decoder mean network layers can, at least in principle, lead to
potential problems with overfitting.

e The latent covariance X, can serve as an approximate bellwether for determining the
true dimensionality of a manifold, provided that excessive outliers/corruptions do not
lead to an under-estimate. This is because typically near global solutions, we observe
[X.];; — 0 for useful dimensions, while for useless dimensions we have shown that
[¥.];; — 1, a clear bifurcation.

Although the primary purpose of this paper is not to build a better generative model per se,
we nevertheless hope that ideas introduced here will help to ensure that VAEs are not under
or improperly utilized. Additionally, in closing we should also mention that the focus herein
has been almost entirely on the analysis of the VAE energy function itself, independent of
the specifics of how this energy function might ultimately be optimized in practice. But we
believe the latter to be an equally-important, complementary topic, and further study is
undeniably warranted. For example, if an optimization trajectory is somehow lured astray
by the Siren’s song of a bad local minimum in the VAE energy landscape, then obviously
many of our conclusions predicated on global optima will not necessarily still hold.
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Figure 5: (a) Singular value spectrum of MNIST data revealing (approximately) low-rank
structure. (b) Normalized MSE recovering MNIST digits from corrupted samples.
The VAE is able to reduce the reconstruction error by better modeling more fine-
grain details occupying the low end of the singular value spectrum.

Appendix A. Additional MNIST Data Set Experiment

Here we examine practical denoising of MNIST data corrupted with outliers using a VAE
model. Outliers are added to MNIST handwritten digit data (Lecun et al., 1998) by ran-
domly replacing from 5% to 50% of the pixels with a value uniformly sampled from [0, 255]
to create X. We choose k = 30 for the dimension of z and apply the same VAE structure
as applied to MNIST data in Section 5.2. The model is trained using both 7 = 1 and
7 =5 latent samples {z(i’t)}[:1 for each (), observing that the latter, which more closely
approximates the posterior, should perform significantly better.

We compare the VAE against convex RPCA on the task of recovering the original, un-
corrupted digits. Note that RPCA is commonly used for unsupervised cleaning of this type
of data (Elhamifar and Vidal, 2013), and MNIST is known to have significant low-rank
structure (Lu et al., 2013) as shown in Figure 5(a). Regardless, we observe in Figure 5(b)
that the VAE performs significantly better in terms of normalized MSE by capturing ad-
ditional manifold details that deviate from a purely low-rank representation. Furthermore,
we hypothesize that using extra latent samples (the 7 = 5 case) may work better on out-
lier removal tasks given the strong need for accurate smoothing of the VAE objective as
described previously.
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Appendix B. Proof of Lemma 1

Proof Under the stated assumptions, the VAE cost can be simplified as
4 2
L£(6,¢) = Z {Eq¢(z|m(i)) [}\ H:B(Z) -Wz-— bHQ] + dlog A

+otr [zgﬂ ~log ’29

+ 13}

-y {; |~ wud [ + 1 [SOWTW] + dog A

+otr [zgﬂ ~log ’23‘)

+ P13} (22)
where ,u,(zi) 2, (w(i); d)) and 29) £y, (w(i); ¢). Given that

log ’AAT

= arg inf tr [AATI‘A} +log T, (23)
I'-o

when optimization is carried out over positive definite matrices I', minimization of (22) with

)

respect to 29 leads to the revised objective

. . 2 .
£(0,¢) = Z{;Hw@—wug)—bH2+1og];WTW+I\+dlogA+|yu$>H§},
. . 2 .
> {i | — W —b| +10g |[WWT +a1|+ Hué“H%} , (24)

ignoring constant terms. This expression only requires that 29 = [%WTW +1 }—1’ or
a constant parameterization, independent of (9. Similarly we can optimize over ng) in
terms of the other variables. This is just a ridge regression problem, with optimal solution

pd =wT </\I + WWT)_1 (m@ - b) , (25)

or a simple linear function of (. Hence as long as the parameterization of both ,ug)

and
ES) allows for arbitrary affine functions as stipulated in the lemma statement, these optimal
solutions are feasible. Plugging (25) into (24) and applying some basic linear algebra, we

arrive at
. T -1 .
£©o.0) = Y («V-b) (WWT+I) (200 ~b) +nlog|[WWT +21|. (26)
Finally, in the event that we enforce that 29) be diagonal, (24) must be modified via

»0) = [%diag (diag [WTWD + I} T ilog (A + |w.;||3) — klog A, (27)
j=1

where the diag[-] operator converts vectors to diagonal matrices, and a matrix to a vector
formed from its diagonal (just as in the Matlab computing environment), leading to the
stated result. |
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Appendix C. Proof of Theorem 2

Proof First, for part 1 on the theorem, given that WRR' W' =WPP W' =WW '
for any rotation R and permutation P, then obviously if W* is a minimum of (5), W*R
and WP must also be. Likewise, since 377, log (A + ||w.;||3) is invariant to the order of
the summation, then if W** is a minimum of (7), W** P must be as well.

We also have that

Loop(W™ b, \) = Zﬂ(i)(W**’b’ M) +n Zlog (A + Hw*J*H%) + (d — k) log A
i L J

= > QW™ b A) +n | log (1 + }llw?|3) + dlog A
i J

> 3" QOW b AL 4+ 0 [log ‘; (W) T W™ 4 I‘ +dlog )\]
= 3" QOW* b, A\I) + nlog ‘AI +W™R (W**R)T‘
> 3" QOW*,b,AT) +nlog(AI+ W*R(W*R)"|, (28)

where the the second inequality follows from the fact that W* is an optimal solution to (5).
The first inequality stems from Hadamard’s inequality (Garling, 2007) applied to

Lw)T WL I1=M"M (29)

for some square matrix M of appropriate dimension. This results in
log |3 (W) W™ + 1| = 21og|M| < 210g | [T Imjll2 | =3 tog (1+ Fllw13), (30)
J J

with equality iff M T M is diagonal. We can further manipulate the log-det term in (28)
via

nlog’/\I—i—W*R(W*R)T‘ — log §(W*R)TW*R+I‘+d10gA

.
— log|} (UAVTR) UAVTR+I‘ + dlog A

— 1og|LRTVA2V R+ I’ +dlog A,

where UAV' T is the SVD of W*. Now if we choose R = V and define W £ WV, then
Aj; = ||@.;||3 and this expression further reduces via

log|iRTVA?VTR+1| +dlogh = Y log(1+ +A;;) +dlog )

= Ylog (At [@,lB) +(@-mlogh (B
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Of course we cannot have

ST QW b AL +n |3 log (A+ [w][3) + (d — x) log A (32)
i J

> Y QUW, b A +n | log (A w,]3) + (d— k) log A |,
i J

otherwise W** would not be a minimum of (7). Therefore, W must also be a minimum of
(7), from which the remaining parts of (9) immediately follows.

We next confront the arrangement of disconnected minima for part 2 of the theorem.
It is not difficult to show that (5), and by virtue of the analysis above (7), will be uniquely
minimized by U and A arising from the SVD of either W™ or equivalently W**. Let
W* = UAV " via such a decomposition. So any partitioning into disconnected minimizers
must come at the hands of V', which only influences the }, log (A + lw;]|3) term in (7).

At stated above, if W** is a minimum, then W** P must also be a minimum. Assume for
the moment that W** is full column rank. There will obviously be 7! unique permutations
of its columns, with r = rank[W™**]. Moreover, any transition from some permutation P’
to another P” will necessarily involve some non-permutation-matrix rotation V. Given our
assumption of distinct eigenvalues, this will ensure that

Lw) T w1 1=1VA VT 41 (33)

is non-diagonal. While this will not increase (5), it must increase (7) when diagonalized
by Hadamard’s inequality. Therefore every permutation will reflect a distinct, disconnected
minimizer. If W** also has k — r zero-valued columns, then the resulting number of unique
permutations increases to N’%'r by standard rules of combinatorics.

Finally, part 3 of the theorem follows directly from part 2: Given that any minimizer
of (7) must be of the form UAP, then there cannot be more than r nonzero columns. In
contrast, for (5) we may apply any arbitrary rotation to W*, and hence all columns can be
nonzero even if the rank is smaller than . |

Appendix D. Proof of Theorem 3

Proof For convenience we will adopt the notation f(a) = O(h(«)) to indicate that there
exists a positive & and some constant C' independent of a such that |f(«a)| < Ch(«a) for
all & € (0,a]. Similarly, we use f(a) = Q(h(«)) to convey that |f(«)| > Ch(a) under
equivalent conditions. We then say f(a) = O(h(«a)) iff f(a) = O(h(e)) and f(z) = Q(h(a)).
Additionally, if the input argument to one of these expressions is a vector, the result is
understood to apply element-wise.

The basic high-level strategy here is as follows: We first present a candidate solution that
satisfies (12) and carefully quantify the achievable objective function value for a € (0, @],
and & small. We then analyze a lower bound on the VAE cost and demonstrate that no
solution can do significantly better, namely, any solution that can match the performance
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of our original proposal must necessarily also satisfy (12). Given that this is a lower bound,
this implies that no other solution can both minimize the VAE objective and not satisfy
(12). We now proceed to the details.

Define ugi) 2, (w(i); q’)) and 29) £y, (w(i); qb). We first note that if z = p,gi) + Sg)e,
) ) . T )
with S satisfying » = gt (Sg)) , and € ~ p(e) = N(€0,I), then z ~ ¢, (z|az(z)).
With this reparameterization and
pl £ Wl + wsle,
v (ug) + Sle; 9) for some function v

o
e
&

LCH
M

85

>

f (a:(i); ¢) for some function f (34)

g(w(i); ¢) for some function g,

> >

the equivalent VAE objective becomes

L£(8,¢p) = Z {Ep(é) [(m(z‘) — Wl — ngz‘)E)T (Eg))fl (a:(i) W) - ngi)e)]

7

+ Ep(e) [log ‘ng)

] + tr [29} —log ‘29)

+ 13} (35)

when b = 0 as stipulated.!® For now assume that x, the dimension of the latent z, satisfies
k = rank[U] (later we will relax this assumption).

D.1 A Candidate Solution

Here we consider a candidate solution that, by design, satisfies (12). For the encoder
parameters we choose

OO

z ) z

=ol. (36)

where « is a non-negative scalar and () is defined in conjunction with a matrix ¥ such
that

supp,, [m(i) - \Ilr(i)} = supp [s(i)]
span [U| = span[¥]. (37)

All quantities in (36) can be readily computed via X applied to an encoder module provided
that k = dim[z] = rank [U] as stipulated, and sufficient representational complexity for p,
and X,. Additionally, for the encoder we only need to define the posterior moments at
specific points (¥, hence the indexing via i in (36).

In contrast, for the decoder we consider the solution defined over any z given by

W - @
fr, = Wz
diag [24 — A=), (38)

13. The extension to arbitrary b is trivial but clutters the presentation.
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where A € R4 ig a diagonal matrix with

, e @)
[A(Z)] _ ) q if s; = 0, - (39)
JJ 1, otherwise, Vj.

and hr : R® — {1,...,n} is a function satisfying

hz(z) £ arg min , |z — 7@||s. (40)

% I ()
Again, given sufficient capacity, this function can always be learned by the decoder such

that (38) is computable for any z. Given these definitions, then the index-specific moments

[J,g(f) and ES) are of course reduced to functions of € given by

a0 = i, (50 +57€0)

5 = 5 (a0 +5V0). (41)

We next analyze the behavior of (35) at this specially parameterized solution as &

becomes small, in which case by design all covariances will be feasible by design. For this

purpose, we first consider the integration across all cases where ZA)S) does not reflect the

correct support, meaning € ¢ S () where
S 2 {e: [Eg)} =« iff s() =0, V]} (42)
Ji
With this segmentation in mind, the VAE objection naturally partitions as
£(0,9) =Y {00 ¢ic ¢ SV)+LO(0, g € SN}, (43)
where £)(0, ¢; e ¢ SW) denotes the Cost for the i-th sample when integrated across those

samples not in S®, and L") (0, p;e € SW) is the associated complement.

D.2 Evaluation of £ (8, ¢;e ¢ SW)

First we define

= i Hw® — 7z0) »
min o - ’
ig€{1,mm} i 2 I 2 (44)

which is just half the minimum distance between any two distinct coefficient expansions.
If any z is within this distance of w(®, it will necessarily be quantized to this value per

our previous definitions. Therefore if Hss)eHz < p, we are guaranteed that the correct

generating support pattern will be mapped to ﬁlg(cz), and so it follows that
P(egs) < p (||| > ) = PUIvacl: > p) (45)
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at our candidate solution. We also make use of the quantity

nE max |z — ¥x®|3, (46)
i€{1,...,n}

which represents the maximum data-fitting error. Then for the i-th sample we have
L9, e ¢ SY)

= / s [(m@ - Wil - WS Fj)e)T (ﬁzf))_l (2 — Wi~ wsle)
egst

+ og |2+ 0 [5] —10g [£] + 120 13] pe)de
[ S0 () i -l
+ log 2|+ 0[] —10g [£] + 120 13] ple)de
< / [; (20— wa — vawe) " (29 - wn) - awe)
IV €ll2>p

+ k= wloga+ |7 O|3] ple)de, (47)

(@)

. = ol (its smallest possible value) in

where the second inequality comes from setting >
(1)

the inverse term and X" = I (its largest value) in the log-det term. Next, given that
l2® — exD3 < g
NT T
/ (71'(2)) ¥ ' ¥e-pe)de = 0 (48)
lvVa€ll2>p

| Te|2p(e)de < tr [qﬁw}
IVaell>p

it follows that the bound from (47) can be further reduced via
L(i)(ﬂ, ¢ ¢ S(i)) < tr {\IIT\II} + / [én + ka — kloga + Hﬂ'(Z)H%} p(€)de
[[v/€ll2>p

— 0+ [Ln+wa—nlogat 7013 [ peyae
lVa€ll2>p

< O(1)+ [Ln+ra—kloga+ |7 V|3] 5
= O(1) +6(a?) —O(aloga)
= 0O(1) asa—0, (49)

where the second inequality holds based on the vector version of Chebyshev’s inequality,
which ensures that

ple)de = P([Vaelz > p) < . (50)
[Vo€l2>p
Clearly then, as « becomes small, we have established that
L0, ¢;¢ ¢ SY) - 0(1). (51)
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D.3 Evaluation of £®) (8, ¢;e € SM)
In analyzing £ (0, ¢; e € S@), we note that

/665<i> (cc@ — W — WSS)e)T (2?)71 <$(i) — W) — WS’S)e) p(e)de

IN

IN

/ (2 — )" (AD) " (20— wx®) plepde + tx [@7 ]
< n4tr [\IJT\II]
= o1

/ (20— wxt) — awe) (A0) " (2 - wx) - Vawe) ple)de

(52)

given the alignment of AY with zero-valued elements in (¥ — ¥x(). Furthermore, the

remaining terms in £(0, ¢; e € S®) are independent of € giving

/ [log ‘ﬁ)g)
€cS()

e [57] ~ tog|[EL] + 140 1] p(e)de

— [log ‘A(i) +ra — rloga + ||7f(i)||§} / p(e)de
L lvVee€ll2<p

= (r(i) —k)loga + ka + ||7f(z)||§} / ple)de
L [Va€ll2<p

= [0 —moga] [ plede+ O+ 00,
L lVee€ll2<p

where

O

{788 =a}|=a= 15Dl

Therefore, since f” Ja€llz<p p(e)de — 1 as a becomes small, we may conclude that
L0, re e SV <d k- |ys<i>uo> log a + O(1).

D.4 Compilation of Candidate Solution Cost
After combining (51) and (55) across all ¢ we find that

£6.9) =" (4=~ lslo) loga +0(1)

(56)

for any o € (0,a] as @ becomes small. If d > « + ||s(||o, then this expression will tend
towards minus infinity, indicative of an objective value that is unbounded from below,
certainly a fertile region for candidate minimizers. Note that per the theorem statement,

L =UYV and S must represent a unique feasible solution to

min d-rank[L]+||S|lo st. X =L+ S.
LS
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Given that each column = has d degrees of freedom, then with U fixed there will be an
infinite number of feasible solutions (¥ = Uv® + s such that dim[v®] + ||s?]jg = & +
|s@|lo > d and a combinatorial number such that k4 |||y = d. Therefore for uniqueness
we require that k + ||s)||g < d, so it follows that indeed £(8, ¢) will be unbounded from
below as & and therefore oz becomes small, with cost given by (56) as a candidate solution
satisfying the conditions of the theorem.

Of course it still remains possible that some other candidate solution could exist that
violates one of these conditions and yet still achieves (56) or an even lower cost. We tackle
this issue next. For this purpose our basic strategy will be to examine a lower bound on
L(0,¢) and show that essentially any candidate solution violating the theorem conditions
will be worse than (56).

D.5 Evaluation of Other Candidate Solutions

To begin, we first observe that if granted the flexibility to optimize 25,5) independently over

all values of € inside the integral for computing £(8, ¢), we immediately obtain a rigorous
lower bound.'* For this purpose we must effectively solve decoupled problems of the form

inf €
Inf 5 +log7, (58)
to which the optimal solution is just
v =balw) 2 e aly +a (59)

where the operator [-]; retains only the positive part of its argument, setting negative values
to zero. Plugging this solution back into (58), we find that

inf £ +logy = logéu(c)+O(1). (60)
y>a Y

In the context of our bound, this leads to

[,(0, ¢)) > Z Ep(e) Zlog 504 <|::L‘§l) o ijIISj) _ szgl)e] 2)
J

7

+ tr [29)} —log ‘29)

+ 113} +00). (61)

From this expression, it is clear that the lowest objective value we could ever hope to

(4) (@)

obtain cannot involve arbitrarily large values of 33’ and uzi since the respective trace and

quadratic terms grow faster than log-det terms. Likewise u,(;) cannot be unbounded for
analogous reasons. Therefore, optimal solutions to (61) that will be unbounded from below
must involve the first term becoming small, at least over a range of € values with significant
probability measure. Although the required integral admits no closed-form solution, we can

simplify things further using refinements of the above bound.

14. Note that this is never exactly achievable in practice, even with an infinite capacity network for computing
ng), since it would require a unique network for each data sample; however, it nonetheless serves as a
useful analysis tool.
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For this purpose consider any possible candidate solution W =¥ and ,19) =7 (not
necessarily one that coincides with U and the optimal subspace), and define

AD (¥, 7r) £ supp,, [az(i) — \Pw} : (62)
Without loss of generality we also specify that
S 2 =0 p@) (63)

where 2 € R¥* has orthonormal columns and D@ is a diagonal matrix with

0], = ). o

(4) ()

and o = (017, ... 0’]" € R% is an arbitrary non-negative vector. Any general EQ)

. AN T
Sg) (S,(Z)) , with singular values bounded by «, is expressible via this format. We then

reexpress (61) as

- , N2
LO,d) > > Eyqe > 10g £a <[x§> — D) —ap, =) Dme} )
‘ jEAg)(\I’,ﬂ'(i))
12
+ Eue Z log &, ([O(Q)-ij.E(’)D(Z)e} ) (65)

j#al) (B,

+ ot [Em (D)’ (Eu))T] log
2
= Z Epe) Z log &, ([xgl) _ 'l,bj.ﬁ(i) _ Z 7jk £ <U](€i)> 'Ek] )
) k

: jead (¥,

= (D)’ (sm)T‘ n ||7r<i>u%} o),

2
+ Ep(e) Z log &a O(a) + Z 1%(;) : f\/a (U,g”) : 6k] ) (66)
k

jEA? (T mo) :
A 2 .
(o) } + ||vr<“||%} +0(1),

+

%:ﬁa [(0;(;))2] - %:bgéa

where 1;](2 is the k-th element of the vector ¢jE(i). We can now analyze any given point

(@, 7, =0, a(i)}?zl as a becomes small. The first term can be shown to be ©(1) with all
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other variables fixed,'® leading to the revised bound

‘C(07¢) > Z IEp(ﬁ) Z log£a<
)

' ¢l (T

2

0(@)+ Y v -&a (o)) k] ) 67)

k

A\ 2
- s ()]} o
k
where the terms ), &, |:(0'](€Z)) } and ||7(®||3 have also been absorbed into ©(1).
Given that
T 12 T
E,ce) |logéa [O(a) +a e] = log &, [a a} +0(1) >loga+ 0O(1) (68)

for any vector a, we have the new bound

L£(6,9) (69)

> ) 3 log £, <zk: [@@(2 €ya (g](:))r> B Zk:logga {(gg)ﬂ +O(1).

v gal (B)

If then we choose a,(:) =0foralli=1,...nand k =1,...,k, then
(i AN 2
log &, (Z Mk) £ (g,yﬂ ) = loga+ 6(1) (70)
k

and we obtain the lower bound

L(6,4) > Z(d—n—‘Ag) (‘Il,w(i)>‘)loga+®(1). (71)

%

Additionally, if any set Aﬁf) (\Il, w(i)) exists such that

> (= n—[a0 (w,70)]) <37 (d = ~l1sb). ()

(2 K3

then s cannot be part of the unique, feasible solution to (10), i.e., we could use the
support pattern from each A(ai) (\If, ) ) to find a different feasible solution with equal or
lower value of n - rank [L] + ||.S||o, which would violate either the uniqueness or optimality
of the original solution. Therefore, we have established that with al(f) = O(«) for all i and
k, the resulting bound on £(8, ¢) is essentially no better than (56), or the same bound we

15. Note that z{” — ¢, ) = ©(1) for all j € AY (\Il,‘rr(”) and [logéa [(O(1) 4 2)*] N(;0,~)da = ©(1)
for any variance v > 0.
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had before from our feasible trial solution. Moreover, the resulting W = W that maximizes
this bound, as well as the implicit

ﬁlg) (/fl,z [as(i)D = diag [(m(i) - \Ilﬂ'(i)>2] , (73)

will necessarily satisfy (12). We then only need consider whether other choices for al(j) can
do better.(,)
(i 4 - ,
Let ¥~ denote the the rows of ¥ associated with row indeces j ¢ Ag) (‘I’,ﬂ'(z)),

meaning the indices at which we assume no sparse corruption term exists. Additionally,
define B® 2 &2 This implies that

> s (a5 (o)) - me o] o
JEAY (B, @) -
= ouse (e[ 6 (o)]) - o )]
’ k

Contrary to our prior assumption o = 0, now consider any solution with ||[c® | = 8 > 0.
For the time being, we also assume that B is full column rank. These conditions imply
that

> logéa (m’?x By ¢ (a,(j)>r> > (d—ﬂ—‘Ag) (w,7)|) toga+ (1) (75)
J

since at least 8 elements of the summation over j must now be order ©(1). By assumption
A\ 2
we also have ), log &, [(Ulgl)) ] = (k — ) loga + ©(1). Combining with (75), we see that

such a solution is equivalent or worse than (71). So the former is the best we can do at any
value of {¥, ("), =0, a(i)}?zl, provided that B® is full rank, and obtaining the optimal
value of A((lz) (‘I’,ﬂ'(i)) implies that (12) holds.

However, if B () is not full rank it would indeed entail that (74) could be reduced further,
since a nonzero element of o would not increase the first summation, while it would reduce
the second. But if such a solution were to exist, it would violate the uniqueness assumption

of the theorem statement. To see this, note that rank[B®] = rank[@(l)] since 27 is

orthogonal, so if the former is not full column rank, neither is the latter. And if {Ivl(l) is not
full column rank, there will exist multiple solutions such that ||z — @@y = ||s® || or
equivalently || — Uv®||g = ||s®||o in direct violation of the uniqueness clause.

Therefore to conclude, a lower bound on the VAE cost is in fact the same order as that
obtainable by our original trial solution. If this lower bound is not achieved, we cannot be
at a minimizing solution, and any solution achieving this bound must satisfy (12).

D.6 Generalization to Case where x > rank[U]

Finally, we briefly consider the case where x > rank[U] £ 7, meaning that W contains
redundant columns that are unnecessary in producing an optimal solution to (10). The
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candidate solution described in Section D.1 can be expanded via W = [‘I’, O[dX(H_T)ﬂ,

pg) = [(Tr(i))T, O[lx(H_T)}]T, and EA]S) = diag [alp;xl], IFEK_T)X”] such that the same
objective function value is obtained.

Now consider the general case where k > rank[W] > 1. If we review the lower bound
described in Section D.5, with this general %% replacing W, it can be shown that ﬁ]iz) will
be forced to have additional diagonal elements lowered to «, increasing the achievable ob-
jective by at least —log a per sample. The details are not especially enlighteniI}g and we

omit them here for brevity. Consequently, at any minimizer we must have rank[W] =7. R

Appendix E. Proof of Corollary 4

Proof Under the stated conditions, the partially-affine VAE cost simplifies to the function

C Zep) = S { (- Wil) (30) (20 - W) + o504 1012}
> { (20— wp ) (50) 7 (20 - W gul))
+ 1og[=0| + A2ul3} (76)

where 8 > 0 is an arbitrary scaler, n 2 hI ( (Zi); 9), and p,g,i) L (29, ¢). Taking the

limit as 3 — 0%, we can minimize (76) while ignoring the 32| u,(ZZ)H% regularization factor.
Consequently, we can without loss of generality consider minimization of
b

LW ) =Y {(a,w ~wu)' (50) 7 (2 - W) 1 10g |50
(4)

ignoring any explicit reparameterization by 8 for convenience. If we optimize over X3’ in
the feasible region S¢ and plug in the resulting value, then (77) reduces to the new cost

, 12
LW, )= Zlogfa ([xgz) — wj-ug)} ) , (78)
i?j
an immaterial constant notwithstanding. Given that lim; g % (]a;\t - 1) = log|z|, and
lim0 3, [25|” = [[zlo, then up to an irrelevant scaling factor and additive constant, the
stated result follows. [ |

Appendix F. Proof of Theorem 5
Proof Based on the stated conditions, the VAE objective simplifies to

L£(6,¢) = z; {Eqd,(zm?(i)) {Al

2 — (2 9)”2] +dlog Ay + A, —log A\, + (aTas(i))Q} (79)
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Now choose some a such that ﬂg) = a'z® has a unique value for every sample x(?) (here

we assume that each sample is unique, although this assumption can be relaxed). We then
define the function h: R — {1,...,n} as

R (30)

20ty

and the piecewise linear decoder mean function
1, (:0) = 2D, (s1)

Given these definitions, (79) becomes
L(e,qﬁ):Z{E S (e42) [;I o9 - ath
[l vz e
_Z{ o [H () _ bl +vAze)

Now define the set

]+dlog)\ 2.~ log . + () }

2 AN 2
‘ } +dlog Ay + A, —log A\, + <ﬂ§l)> } (82)

S & {e h (gg’? + \/Ee) - z} , (83)

which represents the set of € that quantize to the correct index. We then have

. NG 2
E, [f L0 (Al +vAzd) ‘ }
- / [1 (@) _ phlal+vAzd) ]2] ple)de + / [; 20 _ (A +vAzd) ﬂ ple)de
Ao egS@ 17"
— / [ 2@ h[u RERVWE)) ‘ ]p(g)de
< / Lp(e (84)
- &p ( ¢ 3@))
where
= max z — 20 2, 85
U i’je{lp_”n}’iﬁll 12 (85)
the maximal possible quantization error. Now we also define
P2 max Al — 0|3, (86)

7]6{17 7n} Z# 2

which is half the minimum distance between any two ug) and ,u(J ), with i # j. Then

P(e ¢ S(i)> < P (\//\7Z€ > p)
< % (87)
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by Chebyshev’s inequality as was used in proving Theorem 3. This implies that (82) can
be bounded via

L(6,9)

IN

Z {/\ZP (e ¢ S(i)> +dlog A, + A, —log A\, + (,&g)f}

- Z{;—k(d—l)loga—l—a—i-(ﬂg))z} (88)

)

assuming we are at the trial solution 5\3; = ;\Z = «a. As we allow o — 0, this expression is
unbounded from below, and as an upper bound on the VAE objective, the theorem follows.
Incidentally, it should also be possible to prove that for « sufficiently small, no other so-
lution can do appreciably better in terms of the dominate (d — 1) log « factor, but we will
reserve this for future work. [ |
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