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Abstract

The difficulty of multi-class classification generally increases with the number of classes.
Using data for a small set of the classes, can we predict how well the classifier scales as the
number of classes increases? We propose a framework for studying this question, assuming
that classes in both sets are sampled from the same population and that the classifier is
based on independently learned scoring functions. Under this framework, we can express
the classification accuracy on a set of k classes as the (k−1)st moment of a discriminability
function; the discriminability function itself does not depend on k. We leverage this result
to develop a non-parametric regression estimator for the discriminability function, which
can extrapolate accuracy results to larger unobserved sets. We also formalize an alterna-
tive approach that extrapolates accuracy separately for each class, and identify tradeoffs
between the two methods. We show that both methods can accurately predict classifier
performance on label sets up to ten times the size of the original set, both in simulations
as well as in realistic face recognition or character recognition tasks.

Keywords: Multi-class problems, face recognition, object recognition, transfer learning,
nonparametric models

1. Introduction

Many machine learning tasks are interested in recognizing or identifying an individual in-
stance within a large set of possible candidates. These problems are usually modeled as
multi-class classification problems, with a large and possibly complex label set. Leading ex-
amples include detecting the speaker from his voice patterns (Togneri and Pullella, 2011),
identifying the author from her written text (Stamatatos et al., 2014), or labeling the object
category from its image (Duygulu et al., 2002; Deng et al., 2010; Oquab et al., 2014). In
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all these examples, the algorithm observes an input x, and uses the classifier function h to
guess the label y from a large label set S.

There are multiple practical challenges in developing classifiers for large label sets. Col-
lecting high quality training data is perhaps the main obstacle, as the costs scale with the
number of classes. It can be more affordable to first collect data for a small set of classes,
even if the long-term goal is to generalize to a larger set. Furthermore, classifier devel-
opment can be accelerated by training first on fewer classes, as each training cycle may
require substantially less resources. Indeed, due to interest in how small-set performance
generalizes to larger sets, such comparisons can found in the literature (Oquab et al., 2014;
Griffin et al., 2007). A natural question is: how does changing the size of the label set affect
the classification accuracy?

We consider a pair of classification problems on finite label sets: a source task with label
set Sk1 of size k1, and a target task with a larger label set Sk2 of size k2 > k1. For each
label set Sk, one constructs the classification rule h(k) : X → Sk. Supposing that in each
task, the test example (X∗, Y ∗) has a joint distribution, define the generalization accuracy
for label set Sk as

GAk = Pr[h(k)(X∗) = Y ∗]. (1)

The problem of performance extrapolation is the following: using data from only the source
task Sk1 , predict the accuracy for a target task with a larger unobserved label set Sk2 .

A natural use case for performance extrapolation would be in the deployment of a
facial recognition system. Suppose a system was developed in the lab on a database of k1
individuals. Clients would like to deploy this system on a new larger set of k2 individuals.
Performance extrapolation could allow the lab to predict how well the algorithm will perform
on the clients’ problem, accounting for the difference in label set size.

Extrapolation should be possible when the source and target classifications belong to
the same problem domain. In many cases, the set of categories S is to some degree a
random or arbitrary selection out of a larger, perhaps infinite, set of potential categories Y.
Yet any specific experiment uses a fixed finite set. For example, categories in the classical
Caltech-256 image recognition data set (Griffin et al., 2007) were assembled by aggregating
keywords proposed by students and then collecting matching images from the web. The
arbitrary nature of the label set is even more apparent in biometric applications (face
recognition, authorship, fingerprint identification) where the labels correspond to human
individuals (Togneri and Pullella, 2011; Stamatatos et al., 2014). In all these cases, the
number of the labels used to define a concrete data set is therefore an experimental choice
rather than a property of the domain. Despite the arbitrary nature of these choices, such
data sets are viewed as representing the larger problem of recognition within the given
domain, in the sense that success on such a data set should inform performance on similar
problems.

In this paper, we assume that both Sk1 and Sk2 are samples consisting of independent
and identically distributed (i.i.d.) labels from a population (or prior distribution) π, which
is defined on the label space Y. We have no constraints on the dependence between Sk1 and
Sk2 : for example, Sk1 may be independent of Sk2 , or alternatively Sk1 may be a subsample
of Sk2 (the latter case is used in our experiments in Section 5). The sampling assumption
is an approximate characterization of the label selection process, which is often at least
partially manual. Nevertheless, it provides the exact properties we need without having
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to derive specialized metrics of how similar Sk2 is to Sk1 . This simplifies the theory, and
demonstrates that in a very general setting, extrapolation is possible. We also make the
assumption that the classifiers train a model independently for each class. This convenient
property allows us to characterize the accuracy of the classifier by selectively conditioning
on one class at a time.

Since we assume the label set is random, the generalization accuracy of a given clas-
sifier becomes a random variable. Performance extrapolation then becomes the problem
of estimating the average generalization accuracy AGAk of an i.i.d. label set Sk of size k.
Roughly speaking, the achievable accuracy of a classification problem depends on how well
the labels can be ‘separated’ based on the training data– that is, how different the empirical
distributions of the training data look at the points where new test instances are drawn.
The condition of i.i.d. sampling of labels ensures that the separation of labels in a random
set Sk2 can be inferred by looking at the empirical separation in Sk1 , and therefore that
some estimate of the average accuracy on Sk2 can be obtained.

Our paper presents several main contributions related to extrapolation within this frame-
work. First, we present a theoretical formula describing how average accuracy for smaller
k is linked to average accuracy for label set of size K > k. We show that accuracy at
any size depends on a discriminability function D, which is determined by properties of
the data distribution and the classifier but does not depend on k. Second, we propose an
estimation procedure that allows extrapolation of the observed average accuracy curve from
k1-class data to a larger number of classes, based on the theoretical formula. Under certain
conditions, the estimation method has the property of being an unbiased estimator of the
average accuracy. Third, we formalize an alternative approach (proposed by Kay et al.
(2008)) that extrapolates accuracy separately for each class, and discuss tradeoffs between
the two methods.

The paper is organized as follows. In the rest of this section, we discuss related work.
The framework of randomized classification is introduced in Section 2, and there we also
introduce a toy example which is revisited throughout the paper. Section 3 develops our
theory of extrapolation, and in Section 3.3 we suggest an estimation method. We evaluate
our method using simulations in Section 4. In Section 5, we demonstrate our method on a
facial recognition problem, as well as an optical character recognition problem. In Section
6 we discuss modeling choices and limitations of our theory, as well as potential extensions.

1.1. Related Work

Linking performance between two different but related classification tasks can be considered
an instance of transfer learning (Pan and Yang, 2010). Under Pan and Yang’s terminology,
our setup is an example of multi-task learning, because the source task has labeled data,
which is used to predict performance on a target task that also has labeled data. Applied
examples of transfer learning from one label set to another include Oquab et al. (2014),
Donahue et al. (2014), Sharif Razavian et al. (2014). However, there is little theory for
predicting the behavior of the learned classifier on a new label set. Instead, most research
of classification for large label sets deal with the computational challenges of jointly opti-
mizing the many parameters required for these models for specific classification algorithms
(Crammer and Singer, 2001; Lee et al., 2004; Weston and Watkins, 1999). Gupta et al.
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(2014) presents a method for estimating the accuracy of a classifier which can be used to
improve performance for general classifiers, but doesn’t apply for different set sizes.

The theoretical framework we adopt is one where there exists a family of classification
problems with increasing number of classes. This framework can be traced back to Shannon
(1948), who considered the error rate of a random codebook, which is a special case of
randomized classification. More recently, a number of authors have considered the problem
of high-dimensional feature selection for multi-class classification with a large number of
classes (Pan et al., 2016; Abramovich and Pensky, 2015; Davis et al., 2011). All of these
works assume specific distributional models for classification compared to our more general
setup. However, we do not deal with the problem of feature selection.

Perhaps the most similar method that deals with extrapolation of classification error
to a larger number of classes can be found in Kay et al. (2008). They trained a classifier
for identifying the observed stimulus from a functional MRI scan of brain activity, and
were interested in its performance on larger stimuli sets. They proposed an extrapolation
algorithm, based on per-class kernel density estimation, as a heuristic with little theoretical
discussion. In Section 3.5, we formalize their method within our framework, and implement
two variations of their algorithm. We present simulation results and theoretical arguments
to compare the algorithm to the regression approach we propose.

2. Randomized Classification

The randomized classification model we study has the following features. We assume that
there exists an infinite, perhaps continuous, label space Y and an example space X ⊆ Rp. In
the subsequent theory we assume that Y is continuous solely for the sake of mathematical
convenience, so that we can discuss probability integrals on the space without the use of
measure-theoretic notation. However, the theory would also approximately describe the
case of Y is a sufficiently large discrete space, as long as the probability mass of the largest
atom is suitably small.

We assume there exists a prior distribution π on the label space Y, and that for each
label y ∈ Y, there exists a distribution of examples Fy. In other words, for an example-label
pair (X,Y ), the conditional distribution of X given Y = y is given by Fy.

A random classification task can be generated as follows. The label set S = {Y (1), . . . , Y (k)}
is generated by drawing labels Y (1), . . . , Y (k) i.i.d. from π. Here we assume the number of
labels k to be deterministic. For each label, we sample a training set and a test set. The

test set is obtained by sampling r observations X
(i)
` i.i.d. from FY (i) for ` = 1, . . . , r. For

now, we can also assume that the training set is obtained by sampling rtrain observations

X
(i)
`,train i.i.d. from FY (i) for ` = 1, . . . , rtrain and i = 1, . . . , k. However, later we will relax

these assumptions on the sampling of the training sets, so that we can accommodate classes
have differing or stochastically determined number of instances, as long as the number of
training instances for different labels are conditionally independent.

Recalling the face recognition example, Y is the space of all people, π is some distribu-
tion for sampling over people, X is a photo of a person’s face, and FY is the conditional
distribution of photos for person Y . The goal of classification is to label the photo X with
the correct person Y .
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We assume that the classifier h(x) works by assigning a score to each label y(i) ∈ S, then
choosing the label with the highest score. That is, there exist real-valued score functions
my(i)(x) for each label y(i) ∈ S. Here we used the lower-case notation y(i) for the labels,
treating them as fixed for now. Since the classifier is allowed to depend on the training
data, it is convenient to view it (and its associated score functions) as random. We write
H(x) when we wish to work with the classifier as a random function, and likewise My(x)
to denote the score functions whenever they are considered as random. Since the classifier
works by choosing the label with the highest score, the classifier is correct for a given test
instance x∗ with true label y∗ whenever my∗(x

∗) = maxjmy(j)(x
∗), assuming that there are

no ties.
For a fixed instance of the classification task with labels S = {y(i)}ki=1 and associ-

ated score functions {my(i)}ki=1, recall the definition of the k-class generalization error (1).

We will use the assumption that the test labels are uniformly distributed1 over S, which
makes GAk(h,S) a balanced accuracy, which equally weights the accuracies of the individual
classes. Assuming that there are no ties, it can be written in terms of score functions as

GAk(h,S) =
1

k

k∑
i=1

Pr[my(i)(X
(i)) = max

j
my(j)(X

(i))],

where X(i) ∼ Fy(i) for i = 1, . . . , k.

However, it is often appropriate to model the labels {Y (i)}ki=1 as a random sample from a
distribution. Examples for such randomized classification problems include face recognition,
where faces are drawn from a larger population, and large multi-class problems where only
an arbitrary subset of labels have been collected.

Given our assumption that k is fixed, a natural target for prediction extrapolation is the
expected value of the generalization accuracy GAk(h,S) over the distribution of label sets.
We call this the k-class average generalization accuracy of the classifier, denoted AGAk,
and formally defined as

AGAk = E[GAk(H,Sk)]

=
1

k

k∑
i=1

Pr[MY (i)(X(i)) = max
j
MY (j)(X(i))]

= Pr[MY (X) >
k−1
max
j=1

MY (j)(X)]

where Y (1), . . . , Y (k) iid∼ π, and where (X,Y ) is an independent draw with the same joint
distribution as its superscripted counterparts (X(i), Y (i)). The last line follows from noting
that all k summands in the previous line are identical, as each Y (i) is drawn from the same
distribution π. The definition of average generalization accuracy is illustrated in Figure 1.

Note that in this framework, the role of the training and test sets is different than
how they are usually used machine learning. Our goal is to predict the accuracy achieved
on another (random) label set. Therefore, both the training and test data may be used

1. In Section 6, we discuss extensions of our framework that can accommodate the case that the test labels
are not uniformly drawn from S, i.e. that one has a non-uniform prior distribution over test labels.
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Figure 1: Average generalization accuracy: A diagram of the random quantities un-
derlying the average generalization accuracy for k labels (AGAk). At the training
stage (left), a set of k labels S is sampled from the prior π, and score functions are
trained from examples for these classes. At the test stage (right), one true class
Y ∗ is sampled uniformly from S, as well as a test example X∗. AGAk measures
the expected accuracy over these random variables.

in this estimation. Our approach, to be described in Section 2.3, uses the training data
exclusively to construct classifiers on label subsets, and test data exclusively to estimate
the distribution of favorability over test examples.

2.1. Marginal Classifier

The theoretical analysis of the average generalization accuracy is made much simpler if we
can assume that the learning of the scoring functions MY (i) occurs independently for each
labels–that is, there is no information shared between classes. For example, if there exists
some function g such that

My(i)(x) = g(x; y(i), (X
(i)
1,train, ..., X

(i)
rtrain,train

)),

the H is a marginal classifier since My(i)(x) only depends on the label y(i) and the class

training set X
(i)
j,train.

In our analysis however, we shall relax the assumption that the classifier H(x) is based
on a training set2. Instead, it is sufficient that the score functions {MY (i)}ki=1 associated

2. Due to this abstraction, our framework can accommodate scenarios where the classes have differing or
stochastically determined number of instances, as long as the number of training instances for different
labels are conditionally independent.
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Figure 2: Classification rule: Top: Score functions for three classes in a one-dimensional
example space. Bottom: The classification rule chooses between y(1), y(2) or y(3)

by choosing the maximal score function.

with the random label set {Y (i)}ki=1 are independent of the test instances. Under this
formalism, we define a marginal classifier as follows.

Definition 1 The classifier H(x) is called a marginal classifier if and only if MY (i) are
independent of both Y (j) and MY (j) for j 6= i.

In marginal classifiers, classes “compete” only through selecting the highest score, but
not in constructing the score functions. Therefore, each My can be considered to have
been independently drawn from a distribution νy. The operation of a marginal classifier is
illustrated in Figure 2.

For marginal classifiers, we can prove especially strong results about the accuracy of the
classifier under i.i.d. sampling assumptions. And as we will see in the following section,
many well-known types of classifiers satisfy the marginal property.

2.2. Examples of Marginal Classifiers

Estimated Bayes classifiers are primary examples of marginal classifiers. By this, we mean
classifiers which output the class that maximizes the posterior probability for a class label
according to Bayes’ rule, but substituting in estimated distributions for the unknown true
distributions. Let f̂y be a density estimate of the example distribution under label y obtained
from the empirical distribution F̂y, and let π(y) be the prior distribution over labels. Then,
we can use the estimated density to produce the score functions:

MEB
y (x) = log(f̂y(x)) + log(π(y)).

The resulting empirical approximation for the Bayes classifier would be

HEB(x) = argmaxY ∈S(MEB
Y (x)).

Both Quadratic Discriminant Analysis (QDA) and näıve Bayes classifiers can be seen
as specific instances of an estimated Bayes classifier. For QDA, the score function is given
by

mQDA
y (x) = −(x− µ(F̂y))

TΣ(F̂y)
−1(x− µ(F̂y))− log det(Σ(F̂y)),

7



Zheng, Achanta and Benjamini

where µ(F ) =
∫
ydF (y) and Σ(F ) =

∫
(y − µ(F ))(y − µ(F ))TdF (y). Hence, QDA is

the special case of the estimated Bayes classifier when f̂y is obtained as the multivariate
Gaussian density with mean and covariance parameters estimated from the data.

In Näıve Bayes, the score function is

mNB
y (x) =

p∑
j=1

log f̂y,j(x),

where f̂y,j is a density estimate for the j-th component of F̂y. Hence, Näıve Bayes is the

estimated Bayes classifier when f̂y is obtained as the product of estimated componentwise
marginal distributions of p(xi|y).

For some classifiers, My is a deterministic function of y (and therefore νy is degenerate).
A prime example is when there exist fixed or pre-trained embeddings g, g̃ that map both
labels y and examples x into Rp. Then

M embed
y = −‖g(y)− g̃(x)‖2. (2)

This would be the case when features from publicly available embeddings (e.g. word em-
bedding vectors) are used for classification; see our example in Section 5. See also Pereira
et al. (2018) for an example using word embedding vectors. Note that if the embeddings g
or g̃ are informed by the specific set of classes in the experiment, this would no longer be a
marginal classifier.

There are many classifiers which do not satisfy the marginal property, such as multino-
mial logistic regression, multilayer neural networks, decision trees, and k-nearest neighbors.

2.3. Estimation of Average Accuracy

Before tackling extrapolation, it will be useful for us to discuss the simpler task of generaliz-
ing accuracy results when the target set is not larger than the source set. This allows us to
introduce several concepts and notations that are used in the harder problem of generalizing
to a larger set. We will also illustrate all of these concept in a toy example following this
section, which we shall revisit once more while tackling the problem of extrapolation.

Suppose we have training and test data for a classification task with k1 classes. That is,
we have a label set Sk1 = {y(i)}k1i=1, and we assume that the training data has been used to

obtain its associated set of score functions My(i) . The test set, composed of (x
(i)
1 , . . . , x

(i)
r )

for i = 1, . . . , k1 is also available to be used for this estimation task. What would be the
predicted accuracy for a new randomly sampled set of k2 ≤ k1 labels?

Note that AGAk2 is the expected value of the accuracy on the new set of k2 labels.
Therefore, any unbiased estimator of AGAk2 will be an unbiased predictor for the accuracy
on the new set.

Let us start with the case k2 = k1 = k. For each test observation x
(i)
` , define the ranks

of the candidate classes j = 1, . . . , k by

Ri,j` =

k∑
s=1

I{m(i,j)
` ≥ m(i,s)

` }.
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where we have defined m
(i,j)
` = my(j)(x

(i)
` ). The test accuracy is the fraction of observations

for which the correct class also has the highest rank

TAk =
1

rk

k∑
i=1

r∑
`=1

I{Ri,i` = k}. (3)

Taking expectations over both the test set and the random labels, the expected value of the
test accuracy is AGAk. Therefore, in this special case, TAk provides an unbiased estimator
for AGAk2 .

Next, let us consider the case where k2 < k1. Consider label set Sk2 obtained by sampling
k2 labels uniformly without replacement from Sk1 . Since Sk2 is unconditionally an i.i.d.
sample from the population of labels π, the test accuracy of Sk2 is an unbiased estimator
of AGAk2 . However, we can get a better unbiased estimate of AGAk2 by averaging over all
the possible subsamples Sk2 ⊂ Sk1 . This defines the average test accuracy over subsampled
tasks, ATAk2 .

Remark. Näıvely, computing ATAk2 requires us to train and evaluate
(
k1
k2

)
classification

rules. However, for marginal classifiers, retraining the classifier is not necessary. The rank

Ri,i` of the correct label i for x
(i)
` , allows us to determine how many subsets S2 will result in

a correct classification. Specifically, there are Ri,i` − 1 ≤ k2 labels with a lower score than
the correct label i. Therefore, as long as one of the classes in S2 is i, and the other k2 − 1

labels are from the set of Ri,i` − 1 labels with lower score than i, the classification of x
(i)
j

will be correct. This implies that there are
(Ri,i

` −1
k2−1

)
such subsets S2 where x

(i)
` is classified

correctly, and therefore the average test accuracy for all
(
k1
k2

)
subsets S2 is

ATAk2 =
1(
k1
k2

) 1

rk2

k1∑
i=1

r∑
`=1

(
Ri,i` − 1

k2 − 1

)
. (4)

2.4. Toy Example: Bivariate Normal

Let us illustrate these ideas using a toy example. Let (Y,X) have a bivariate normal joint
distribution,

(Y,X) ∼ N
((

0
0

)
,

(
1 ρ
ρ 1

))
,

as illustrated in Figure 3(a). Therefore, for a given randomly drawn label Y , the conditional
distribution of X for that label is univariate normal with mean ρY and variance 1− ρ2,

X|Y = y ∼ N(ρy, 1− ρ2).

Supposing we draw k = 3 labels {y(1), y(2), y(3)}, the classification problem will be to assign
a test instance X∗ to the correct label. The test instance X∗ would be drawn with equal
probability from one of three conditional distributions X|Y = y(i), as illustrated in Figure
3(b, top). The Bayes rule assigns X∗ to the class with the highest density p(x|y(i)), as
illustrated by Figure 3(b, bottom): it is therefore a marginal classifier, with score function

My(x) = log(p(x|y)) = −(x− ρy)2

2(1− ρ2)
+ const.
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Joint distribution of (X,Y ) Problem instance with k = 3
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Figure 3: Toy example: Left: The joint distribution of (X,Y ) is bivariate normal with
correlation ρ = 0.7. Right: A typical classification problem instance from the
bivariate normal model with k = 3 classes. (Top): the conditional density of X
given label Y , for Y = {y(1), y(2), y(3)}. (Bottom): the Bayes classification regions
for the three classes.
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Figure 4: Generalization accuracy for toy example: The distribution of the general-
ization accuracy for k = 2, 3, . . . , 10 for the bivariate normal model with ρ = 0.7.
Circles indicate the average generalization accuracy AGAk; the red curve is the
theoretically computed average accuracy.
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For this model, the generalization accuracy of the Bayes rule for any label set {y(1), . . . , y(k)}
is given by

GAk(h, {y(1), . . . , y(k)}) =
1

k

k∑
i=1

Pr
X∼p(x|y(i))

[p(X|y(i)) =
k

max
j=1

p(X|y(j))]

=
1

k

k∑
i=1

Φ

(
y[i+1] − y[i]

2
√

1− ρ2

)
− Φ

(
y[i−1] − y[i]

2
√

1− ρ2

)
,

where Φ is the standard normal cdf, y[1] < · · · < y[k] are the sorted labels, y[0] = −∞ and
y[k+1] =∞, and h is the maximum-margin classifier h(x) = argmaxy∈{y(1),...,y(k)}my(x). We

numerically computed GAk(h, {Y (1), . . . , Y (k)}) for randomly drawn labels Y (1), . . . , Y (k) iid∼
N(0, 1), and the distributions of GAk for k = 2, . . . , 10 are illustrated in Figure 4. The mean
of the distribution of GAk is the k-class average accuracy, AGAk. The theory presented in
the next section deals with how to analyze the average accuracy AGAk as a function of k.

3. Extrapolation

The section is organized as follows. We begin by introducing an explicit formula for the
average accuracy AGAk. The formula reveals that AGAk is determined by moments of a
one-dimensional function D(u). Using this formula, we can estimate D(u) using subsampled
accuracies. These estimates allow us to extrapolate the average generalization accuracy to
an arbitrary number of labels.

The result of our analysis is to expose the average accuracy AGAk as the weighted
average of a function D(u), where D(u) is independent of k, and where k only changes the
weighting.

One of the assumptions we rely on is the tie-breaking condition, which allows us to
neglect specifying the case when margins are tied.

Definition 2 Tie-breaking condition: for all x ∈ X , MY (x) 6= MY ′(x) with probability one
for Y, Y ′ independently drawn from π.

In practice, one can simply break ties randomly, which is mathematically equivalent to
adding a small amount of random noise ε to the function M .

The result is stated as follows.

Theorem 3 Suppose π, {Fy}y∈Y , and score functions My satisfy the tie-breaking condition.
Then, there exists a cumulative distribution function D(u) defined on the interval [0, 1] such
that

AGAk = 1− (k − 1)

∫ 1

0
D(u)uk−2du. (5)

3.1. Analysis of Average Accuracy

Recall that for marginal classifiers, the model MY should be independent of the other
labels and independent of the test instances. We often consider a random label (Y ) with its
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associated score function (MY ) and an example vector (X) drawn from label Y . Explicitly,
this sampling can be written:

Y ∼ π, MY |Y ∼ νY , X|Y ∼ FY .

Similarly we use (Y ′,MY ′ , X
′) and (Y ∗,MY ∗ , X

∗) for two more triplets with independent
and identical distributions. Specifically, X∗ will typically note the test example, and there-
fore Y ∗ the true label and MY ∗ its score function.

The function D is related to a favorability function. Favorability measures the probabil-
ity that the score for the example x is going to be maximized by a particular score function
my, compared to a random competitor MY ′ . Formally, we write

Ux(my) = Pr[my(x) > MY ′(x)]. (6)

Note that for fixed example x, favorability is monotonically increasing in my(x). If
my(x) > my†(x), then Ux(y) > Ux(y†), because the event {my(x) > MY ′(x)} contains the
event {my†(x) > MY ′(x)}.

Therefore, given labels y(1), . . . , y(k) and test instance x, we can think of the classifier
as choosing the label with the greatest favorability:

ŷ = argmaxy(i)∈Smy(i)(x) = argmaxy(i)∈SUx(my(i)).

Furthermore, via a conditioning argument, we see that this is still the case even when the
test instance and labels are random, as long as the random example X∗ is independent of
Y . (Recall that in our notation, X and Y are dependent, but X∗ ⊥ Y .)

Ŷ = argmaxY (i)∈SMY (i)(X∗) = argmaxY (i)∈SUX∗(MY (i)).

The favorability takes values between 0 and 1, and when any of its arguments are
random, it becomes a random variable with a distribution supported on [0, 1]. In particular,
we consider the following two random variables:

a. the incorrect-label favorability Ux∗(MY ) between a given fixed test instance x∗, and
the score function of a random incorrect label MY , and

b. the correct-label favorability UX∗(MY ∗) between a random test instance X∗, and the
score function of the correct label, MY ∗ .

3.1.1. Incorrect-Label Favorability

The incorrect-label favorability can be written explicitly as

Ux∗(MY ) = Pr[MY (x∗) > MY ′(x
∗)|MY (x∗)]. (7)

Note that MY and MY ′ are identically distributed, and both are unrelated to x∗ that is
fixed. This leads to the following result:

Lemma 4 Under the tie-breaking condition, the incorrect-label favorability Ux∗(MY ) is uni-
formly distributed for any x∗ ∈ X , meaning

Pr[Ux∗(MY ) ≤ u] = u (8)

for all u ∈ [0, 1].

12
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Proof Write Ux∗(MY ) = Pr[Z > Z ′|Z], where Z = MY (x) and Z ′ = MY ′(x) for

Y, Y ′
i.i.d.∼ π. The tie-breaking condition implies that Pr[Z = Z ′] = 0. Now observe that

for independent random variables Z,Z ′ with Z
D
= Z ′ and Pr[Z = Z ′] = 0, the conditional

probability Pr[Z > Z ′|Z] is uniformly distributed.

3.1.2. Correct-Label Favorability

The correct-label favorability is

U∗ = UX∗(MY ∗) = Pr[MY ∗(X
∗) > MY ′(X

∗)|Y ∗,MY ∗(X
∗), X∗]. (9)

The distribution of U∗ will depend on π, {Fy}y∈S and {νy}y∈S , and generally cannot be
written in a closed form. However, this distribution is central to our analysis–indeed, we
will see that the function D appearing in theorem 3 is defined as the cumulative distribution
function of U∗.

The special case of k = 2 shows the relation between the distribution of U∗ and the
average generalization accuracy, AGA2. In the two-class case, the average generalization
accuracy is the probability that a random correct label score function gives a larger value
than a random distractor:

AGA2 = Pr[MY ∗(X
∗) > MY ′(X

∗)].

where Y ∗ is the correct label, and Y ′ is a random incorrect label. If we condition on Y ∗,
MY ∗ and X∗, we get

AGA2 = E[Pr[MY ∗(X
∗) > MY ′(X

∗)|Y ∗,MY ∗ , X
∗]].

Here, the conditional probability inside the expectation is the correct-label favorability.
Therefore,

AGA2 = E[U∗] =

∫
D(u)du,

where D(u) is the cumulative distribution function of U∗, D(u) = Pr[U∗ ≤ u]. Theorem 3
extends this to general k; we now give the proof.

Proof Without loss of generality, suppose that the true label is Y ∗ and the incorrect labels
are Y (1), . . . , Y (k−1). We have

AGAk = Pr[MY ∗(X
∗) >

k−1
max
i=1

MY (i)(X∗)] = Pr[U∗ >
k−1
max
i=1

UX∗(MY (i))],

recalling that U∗ = UX∗(MY ∗). Now, if we condition on X∗ = x∗, Y ∗ = y∗ and MY ∗ = my∗ ,
then the random variable U∗ becomes fixed, with value

u∗ = Ux∗(my∗).

13
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Therefore,

AGAk = E[Pr[U∗ >
k−1
max
i=1

UX∗(MY (i))|X∗ = x∗, Y ∗ = y∗,MY ∗ = my∗ ]]

= E[Pr[U∗ >
k−1
max
i=1

UX∗(MY (i))|X∗ = x∗, U∗ = u∗]].

Now define Umax,k−1 = maxk−1i=1 UX∗(MY (i)). Since by Lemma 4, UX∗(MY (i)) are i.i.d.
uniform conditional on X∗ = x∗, we know that

Umax,k−1|X∗ = x∗ ∼ Beta(k − 1, 1). (10)

Furthermore, Umax,k−1 is independent of U∗ conditional on X∗. Therefore, the conditional
probability can be computed as

Pr[U∗ > Umax,k−1|X∗ = x∗, U∗ = u∗] =

∫ u∗

0
(k − 1)uk−2du.

Consequently,

AGAk = E[Pr[U∗ >
k−1
max
i=1

UX∗(MY (i))|X∗ = x∗, U∗ = u∗]] (11)

= E[

∫ U∗

0
(k − 1)uk−2du|U∗ = u∗] (12)

= E[

∫ 1

0
I{u ≤ U∗}(k − 1)uk−2du] (13)

= (k − 1)

∫ 1

0
Pr[u ≤ U∗]uk−2du (14)

= 1− (k − 1)

∫ 1

0
Pr[u ≥ U∗]uk−2du. (15)

By defining D(u) as the cumulative distribution function of U∗ on [0, 1],

D(u) = Pr[UX∗(MY ∗) ≤ u], (16)

and substituting this definition into (15), we obtain the identity (5).

Theorem 3 expresses the average accuracy as a weighted integral of the function D(u).
Essentially, this theoretical result allows us to reduce the problem of estimating AGAk to
one of estimating D(u). But how shall we estimate D(u) from data? We propose using
non-parametric regression for this purpose in Section 3.3.

3.2. Favorability and Average Accuracy for the Toy Example

Recall that for the toy example from Section 2.4, the score function My was a non-random
function of y that measures the distance between x and ρy

My(x
∗) = log(p(x∗|y)) = −(x∗ − ρy)2

2(1− ρ2)
.

14
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For this model, the favorability function Ux∗(my) compares the distance between x∗ and
ρy to the distance between x∗ and ρY ′ for a randomly chosen distractor Y ′ ∼ N(0, 1):

Ux∗(my) = Pr[|ρy − x∗| < |ρY ′ − x∗|]

= Φ

(
x∗ + |ρy − x∗|

ρ

)
− Φ

(
x∗ − |ρy − x∗|

ρ

)
,

where Φ is the standard normal cumulative distribution function. Figure 5(a) illustrates the
level sets of the function Ux∗(my). The highest values of Ux∗(my) are near the line x∗ = ρy
corresponding to the conditional mean of X|Y , and as one moves farther from the line,
Ux∗(my) decays. Note, however, that large values of x∗ and y (with the same sign) result
in larger values of Ux∗(my) since it becomes unlikely for Y ′ ∼ N(0, 1) to exceed Y = y.

Using the formula above, we can calculate the correct-label favorability U∗ = UX∗(MY ∗)
and its cumulative distribution function D(u). The function D is illustrated in Figure 5(b)
for the current example with ρ = 0.7. The red curve in Figure 4 was computed using the
formula

AGAk = 1− (k − 1)

∫
D(u)uk−2du.

It is illuminating to consider how the average accuracy curves and the D(u) functions
vary as we change the parameter ρ. Higher correlations ρ lead to higher accuracy, as seen
in Figure 6(a), where the accuracy curves are shifted upward as ρ increases from 0.3 to 0.9.
The favorability Ux∗(my) tends to be higher on average as well, which leads to lower values
of the cumulative distribution function–as we see in Figure 6(b), where the function D(u)
decreases as ρ increases, and therefore accuracy increases.

3.3. Estimation

Next, we discuss how to use data from smaller classification tasks to extrapolate average
accuracy. We are seeking an unbiased estimator ÂGAk such that

E[ÂGAk] = AGAk.

Assume that we have data from a k1-class random classification task, and would like to
estimate the average accuracy AGAk2 for k2 > k1 classes. Our estimation method will use
the k-class average test accuracies, ATA2, ...,ATAk1 (see Eq 4), for its inputs.

The key to understanding the behavior of the average accuracy AGAk is the function
D. We adopt a linear model

D(u) =
m∑
`=1

β`h`(u), (17)

where h`(u) are known basis functions, and β` are the linear coefficients to be estimated. The
linearity assumption (17) means that linear regression can be used to estimate the average
accuracy curve. This the the idea behind our proposed method ClassExReg, meaning
Classification Extrapolation using Regression.
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U∗x(My) for ρ = 0.7 D(u) for ρ = 0.7
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Figure 5: Favorability for toy example: Left: The level curves of the function Ux∗(My)
in the bivariate normal model with ρ = 0.7. Right: The function D(u) gives the
cumulative distribution function of the random variable UX∗(MY ).
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Conveniently, AGAk can also be expressed in terms of the β` coefficients. If we plug in
the assumed linear model (17) into the identity (5), then we get

1−AGAk = (k − 1)

∫
D(u)uk−2du (18)

= (k − 1)

∫ 1

0

m∑
`=1

β`h`(u)uk−2du (19)

=

m∑
`=1

β`H`,k, (20)

where

H`,k = (k − 1)

∫ 1

0
h`(u)uk−2du. (21)

The constantsH`,k are moments of the basis function h`. Note thatH`,k can be precomputed
numerically for any k ≥ 2.

Now, since the test accuracies ATAk are unbiased estimates of AGAk, this implies that
the regression estimate

β̂ = argminβ

k1∑
k=2

(
(1−ATAk)−

m∑
`=1

β`H`,k

)2

,

is unbiased for β. The estimate of AGAk2 is similarly obtained from (20), via

ÂGAk2 = 1−
m∑
`=1

β̂`H`,k2 . (22)

3.4. Model Selection

Accurate extrapolation using ClassExReg depends on a good fit between the linear model
(17) and the true discriminability function D(u). However, since the function D(u) depends
on the unknown joint distribution of the data, it makes sense to let the data help us choose
a good basis {hu} from a set of candidate bases.

Let B1, . . . , Bs be a set of candidate bases, with Bi = {h(i)u }mi
u=1. Ideally, we would like

our model selection procedure to choose the Bi that obtains the best root-mean-squared
error (RMSE) on the extrapolation from k1 to k2 classes. As an approximation, we estimate
the RMSE of extrapolation from k1

2 source classes to k1 target classes, by means of the
“bootstrap principle.” This amounts to a resampling-based model selection approach, where
we perform extrapolations from k0 = bk12 c classes to k1 classes, and evaluate methods based

on how closely the predicted ÂGAk1 matches the test accuracy ATAk1 . To elaborate, our
model selection procedure is as follows.

1. For ` = 1, . . . , L resampling steps:

(a) Subsample S(`)k0 from Sk1 uniformly with replacement.

(b) Compute average test accuracies ATA
(`)
2 , . . . ,ATA

(`)
k0

from the subsample S(`)k0 .
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(c) For each candidate basis Bi, with i = 1, . . . , s:

i. Compute β̂(i,`) by solving the least-squares problem

β̂(i,`) = argminβ

k0∑
k=2

(1−ATA
(`)
k )−

mi∑
j=1

βjH
(i)
j,k

2

.

ii. Estimate ÂGA
(i,`)

k1 by

ÂGA
(i,`)

k1 =

mi∑
`=1

β̂
(i,`)
j H

(i)
j,k1

.

2. Select the basis Bi∗ by

i∗ = argminsi=1

L∑
`=1

(ÂGA
(i,`)

k1 −ATAk1)2.

3. Use the basis Bi∗ to extrapolate from k1 classes (the full data) to k2 classes.

3.5. The Kay KDE-based estimator

In their paper,3 Kay et al. (2008) proposed a method for extrapolating classification ac-
curacy to a larger number of classes. The method depends on repeated kernel-density
estimation (KDE) steps. Because the method is only briefly motivated in the original text,
we present it in our notation.

The idea of the method is to estimate separately for each example x
(i)
` associated with

class y(i) the probability of outscoring a random competitor:

Acc2(x
(i)
` ;m) := Pr[m

(i,i)
` > mY (x

(i)
` )],

recalling that we defined m
(i,j)
` = my(j)(x

(i)
` ). For a given example, accurate classification

against k − 1 independent (random) distractor classes is equivalent to k − 1 independent
accurate classifications of a single random competitor. Therefore,

Acck(x
(i)
` ;my(i)) := Pr[m

(i,i)
` > maxj 6=i m

(i,j)
` ] = Acc2(x

(i)
` ;my(i))

k−1.

Given estimated accuracy values a
(i)
` = Âcc2(x

(i)
` ), ` = 1, . . . , r, i = 1, ..., k1, we can average

the k − 1 powers:

ÂGAk =
1

rk1

k1∑
i=1

r∑
`=1

(1− (1− a(i)` )k−1)

Note that if we have noisy but unbiased estimates of Acc2(x
(i)
` ;my(i)), then the estimates

for Acck(x
(i)
` ;my(i)) and ÂGAK will be upward biased because E[XK ] ≥ E[X]K .

Accuracy for each example Acc2(x
(i)
` ) is estimated in two steps:

3. The KDE extrapolation method is described in page 29 of supplement to Kay et al. (2008). While
the method is only described for a one-nearest neighbor classifier and for the setting where there is at
most one test observation per class, we have taken the liberty of extending it to a generic multi-class
classification problem.
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1. The density of the wrong-class scores is estimated by smoothing the observed scores
with a kernel function K(·, ·) and bandwidth h

f̂
(i)
` (m) =

1

k1 − 1

∑
j 6=i

Kh(m
(i,j)
` ,m).

2. The density f̂
(i)
` (m) is integrated below the observed true value m

(i,i)
` :

a
(i)
` = Âcc2(x

(i)
` ) =

∫ m
(i,i)
`

−∞
f̂
(i)
` (m)dm.

The smoothed density usually over-estimates the size of the right-tail of wrong class distri-
bution compared to the observed proportion of errors, biasing downward the accuracy of
each individual example.

Briefly, let us point out several key differences between our regression method and Kay’s
KDE method:

i. The KDE method balances two biases: an upward bias in exponentiating the estimated
accuracy, and a downward bias in smoothing the wrong-class densities. The upward

bias occurs because even if Âcc2(x
(i)
` ) is unbiased, Âcc2(x

(i)
` )k will not be unbiased

for Acc2(x
(i)
` )k, and will typically be larger. The bias becomes more prominent for

larger k, but decreases as the true accuracy approaches 1. The result of the KDE
method therefore depends non-trivially on the choice of smoothing bandwidth used
in the density estimation step. (Without smoothing, however, any example that was

correctly estimated in the smaller set would have ÂccK = 1). The method relies on

smoothing of each class to generate the tail density that exceeds m
(i,i)
` , and therefore

it is highly dependent on the choice of kernel bandwidth.

ii. The KDE method estimates the accuracy separately for every class. When the source-
set size k is small, this might lead to less stable estimation for each class and therefore a
larger bias after extrapolating. The regression estimator, on the other hand, estimates
the average accuracy pooling together information across classes. This might lead to
higher variance.

iii. The regression method does not look at the scores directly, only at the rankings. It
is therefore blind to monotone transformations on the score functions. The KDE
method, on the other hand, is sensitive to the distribution of observed scores.

4. Simulation Study

We ran simulations to check how the proposed extrapolation method, ClassExReg, performs
in different settings. The results are displayed in Figure 7. We varied the number of
classes k1 in the source data set, the difficulty of classification, and the basis functions.
We generated data according to a mixture of isotropic multivariate Gaussian distributions:
labels Y were sampled from Y ∼ N(0, I10), and the examples for each label sampled from
X|Y ∼ N(Y, σ2I10). The noise-level parameter σ determines the difficulty of classification.
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Similarly to the real-data example, we consider a 1-nearest neighbor classifier, which is
given a single training instance per class.

For the estimation, we use the model selection procedure described in Section 3.4 to
select the parameter h of the “radial basis”

h`(u) = Φ

(
Φ−1(u)− t`

h

)
.

where t` are a set of regularly spaced knots which are determined by h and the problem
parameters. Additionally, we add a constant element to the basis, equivalent to adding an
intercept to the linear model (17).

The rationale behind the radial basis is to model the density of Φ−1(U∗) as a mixture
of Gaussian kernels with variance h2. To control overfitting, the knots are separated by at
least a distance of h/2, and the largest knots have absolute value Φ−1(1 − 1

rk21
). The size

of the maximum knot is set this way since rk21 is the number of ranks that are calculated
and used by our method. Therefore, we do not expect the training data to contain enough
information to allow our method to distinguish between more than rk21 possible accuracies,
and hence we set the maximum knot to prevent the inclusion of a basis element that has
on average a higher mean value than u = 1 − 1

rk21
. However, in simulations we find that

the performance of the basis depends only weakly on the exact positioning and maximum
size of the knots, as long as sufficiently large knots are included. As is the case throughout
non-parametric statistics, the bandwidth h is the most crucial parameter. In the simulation,
we use a grid h = {0.1, 0.2, . . . , 1} for bandwidth selection.

Meanwhile, for the KDE method, we used a Gaussian kernel, with the bandwidth chosen
via pseudolikelihood cross-validation (Cao et al., 1994), as recommended by Kay et al.
(2008). Specifically, we used the two methods for cross-validated KDE estimation provided
in the stats package in the R statistical computing environment: biased cross-validation
and unbiased cross-validation (Scott, 1992).

4.1. Simulation Results

We see in Figure 7 that ClassExReg and the KDE methods with unbiased and biased
cross-validation (KDE-UCV, KDE-BCV) perform comparably in the Gaussian simulations.
We studied how the difficulty of extrapolation relates to both the absolute size of the
number of classes and the extrapolation factor k2

k1
. Our simulation has two settings for

k1 = {500, 5000}, and within each setting we have extrapolations to 2 times, 4 times, 10
times, and 20 times the number of classes.

Within each problem setting defined by the number of source and target classes (k1, k2),
we use the maximum RMSE across all signal-to-noise settings to quantify the overall per-
formance of the method, as displayed in Table 1.

The results also indicate that more accurate extrapolation appears to be possible for
smaller extrapolation ratios k2

k1
and larger k1. ClassExReg improves in worst-case RMSE

when moving from k1 = 500 to k1 = 5000 while keeping the extrapolation factor fixed, most
dramatically in the case k2

k1
= 2 when it improves from a maximum RMSE of 0.032± 0.001

(k1 = 500) to 0.009 ± 0.000 (k1 = 5000), which is 3.5-fold reduction in worst-case RMSE,
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k1 k2 ClassExReg KDE-BCV KDE-UCV

500 1000 0.032 (0.001) 0.090 (0.001) 0.067 (0.001)
500 2000 0.044 (0.002) 0.088 (0.001) 0.059 (0.001)
500 5000 0.073 (0.004) 0.079 (0.001) 0.051 (0.001)
500 10000 0.098 (0.004) 0.076 (0.001) 0.045 (0.001)

5000 10000 0.009 (0.000) 0.038 (0.000) 0.028 (0.000)
5000 20000 0.015 (0.001) 0.028 (0.000) 0.019 (0.000)
5000 50000 0.032 (0.002) 0.035 (0.000) 0.053 (0.000)
5000 100000 0.054 (0.003) 0.065 (0.000) 0.086 (0.000)

Table 1: Maximum RMSE (se) across all signal-to-noise-levels in predicting TAk2 from k1
classes in multivariate Gaussian simulation. Standard errors were computed by
nesting the maximum operation within the bootstrap, to properly account for the
variance of a maximum of estimated means.

but also benefiting from at least a 1.8-fold reduction in RMSE when going from the smaller
problem to the larger problem in the other three cases.

The kernel-density method produces comparable results, but is seen to depend strongly
on the choice of bandwidth selection: KDE-UCV and KDE-BCV show very different per-
formance profiles, although they differ only in the method used to choose the bandwidth.
This matches our analysis in Section 3.5 (item i), where we noted the sensitivity of the tail
densities to the bandwidth. Also, the KDE methods show significant estimation bias, as
can be seen from Figure 8. As we discussed in 3.5 (item i), this is due to the fact that
the KDE method ignores the bias introduced by exponentiation. Meanwhile, ClassExReg
avoids this source of bias by estimating the (k−1)st moment of D(u) directly. As we see in
Figure 8, correcting for the bias of exponentiation helps greatly to reduce the overall bias.
Indeed, while ClassExReg shows comparable bias for the 500 to 10000 extrapolation, the
bias is very well-controlled in all of the k1 = 5000 extrapolations.

5. Experimental Evaluation

We demonstrate the extrapolation of average accuracy in two data examples: (i) predicting
the accuracy of a face recognition on a large set of labels from the system’s accuracy on
a smaller subset, and (ii) extrapolating the performance of various classifiers on an optical
character recognition (OCR) problem in the Telugu script, which has over 400 glyphs.

The face-recognition example takes data from the “Labeled Faces in the Wild” data set
(Huang et al. (2007)), where we selected the 1672 individuals with at least 2 face photos.

We form a data set consisting of photo-label pairs (x
(i)
j , y

(i)) for i = 1, . . . , 1672 and j = 1, 2
by randomly selecting 2 face photos for each individual. We used the OpenFace (Amos
et al. (2016)) embedding for feature extraction.4 In order to identify a new photo x∗, we
obtain the feature vector g(x∗) from the OpenFace network, and guess the label ŷ with the

4. For each photo x, a 128-dimensional feature vector g(x) is obtained as follows. The computer vision
library DLLib is used to detect landmarks in x, and to apply a nonlinear transformation to align x to a
template. The aligned photograph is then downsampled to a 96 × 96 image. The downsampled image
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Extrapolating from k1 = 500
Predicting AGA1000 Predicting AGA2000

Predicting AGA5000 Predicting AGA10000

Extrapolating from k1 = 5000
Predicting AGA10000 Predicting AGA20000

Predicting AGA50000 Predicting AGA100000

Figure 7: Simulation results (RMSE): Simulation study consisting of multivariate Gaus-
sian Y with nearest neighbor classifier. Prediction RMSE vs true k2-class accu-
racy for ClassExReg with radial basis (ClassExReg), KDE-based methods with
biased cross-validation (KDE BCV) and unbiased cross-validation (KDE UCV).

22



Extrapolating Expected Accuracies

Extrapolating from k1 = 500
Predicting AGA2000 Predicting AGA5000 Predicting AGA10000

Extrapolating from k1 = 5000
Predicting AGA20000 Predicting AGA50000 Predicting AGA100000

Figure 8: Simulation results (biases): Simulation study consisting of multivariate Gaus-
sian Y with nearest neighbor classifier. Bias (mean predicted minus true accu-
racy) vs true k2-class accuracy for ClassExReg with radial basis (ClassExReg),
KDE-based methods with biased cross-validation (KDE BCV) and unbiased cross-
validation (KDE UCV).
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Label Training Test

y(1)=Amelia x
(1)
0 = x

(1)
1 =

y(2)=Jean-Pierre x
(2)
0 = x

(2)
1 =

y(3)=Liza x
(3)
0 = x

(3)
1 =

y(4)=Patricia x
(4)
0 = x

(4)
1 =

Figure 9: Face recognition setup (top): Examples of labels and features from the La-
beled Faces in the Wild data set. Telugu OCR (bottom): exemplars from six
of the glyph classes, along with intermediate features and final transformations
from the deep convolutional network.

minimal Euclidean distance between g(y(i)) and g(x∗), which implies a score function

My(i)(x
∗) = −||g(x

(i)
1 )− g(x∗)||2.

In this way, we can compute the test accuracy on all 1672 classes, TA1672, but we also
subsample k1 = {100, 200, 400} classes in order to extrapolate from k1 to 1672 classes.

In the Telugu optical character recognition example (Achanta and Hastie (2015)), we
consider the use of three different classifiers: logistic regression, linear support-vector ma-
chine (SVM), and a deep convolutional neural network.5 The full data consists of 400 classes
with 50 training and 50 test observations for each class. We create a nested hierarchy of
subsampled data sets consisting of (i) a subset of 100 classes uniformly sampled without
replacement from the 400 classes, and (ii) a subset consisting of 20 classes uniformly sam-
pled without replacement from the size-100 subsample. We therefore study three different
prediction extrapolation problems:

1. Predicting the accuracy on k2 = 100 classes from k1 = 20 classes, comparing the
predicted accuracy to the test accuracy of the classifier on the 100-class subsample as
ground truth.

is fed into a pre-trained deep convolutional neural network to obtain the 128-dimensional feature vector
g(x). More details are found in Amos et al. (2016).

5. The network architecture is as follows: 48x48-4C3-MP2-6C3-8C3-MP2-32C3-50C3-MP2-200C3-SM.
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k1 ClassExReg KDE-BCV KDE-UCV

100 0.113 (0.002) 0.053 (0.001) 0.082 (0.001)

200 0.058 (0.002) 0.037 (0.001) 0.057 (0.001)

400 0.050 (0.001) 0.024 (0.001) 0.035 (0.001)

Table 2: Face-recognition extrapolation RMSEs: RMSE (se) on predicting TA1672

from k1 classes

2. Same as (1), but setting k2 = 400 and k1 = 20, and using the full data set for the
ground truth.

3. Same as (2), but setting k2 = 400 and k1 = 100.

Note that unlike in the case of the face recognition example, here the assumption of marginal
classification is satisfied for none of the classifiers. We compare the result of our model to
the ground truth obtained by using the full data set.

5.1. Results

The extrapolation results for the face recognition problem can be seen in Figure 10, which
plots the extrapolated accuracy curves for each method for 100 different subsamples of size
k1. As can be seen, for all three methods, the variances decrease rapidly as k1 increases.

The root-mean-square errors at k2 = 1672 can be seen in Table 2. KDE-BCV achieves
the best extrapolation for all three cases k1 = {100, 200, 400} with KDE-UCV consistently
achieving second place. These results differ from the ranking of the RMSEs for the analagous
simulation when predicting k2 = 2000 from k1 = 500 for accuracies around 0.45: in the
first row and second column of Figure 7, where the true accuracy is 0.43 (from setting
σ2 = 0.2), the lowest RMSE belongs to KDE-UCV (RMSE=0.0361±0.001), followed closely
by ClassExReg (RMSE=0.0372 ± 0.002), and KDE-BCV (RMSE=0.0635 ± 0.001) having
the highest RMSE. These discrepancies could be explained by differences between the data
distributions between the simulation and the face recognition example, and also by the fact
that we only have access to the k2 = 1672-class ground truth for the real data example.

The results for Telugu OCR classification are displayed in Table 3. If we rank the three
extrapolation methods in terms of distance to the ground truth accuracy, we see a consistent
pattern of rankings between the 20-to-100 extrapolation and the 100-to-400 extrapolation.
As we remarked in the simulation, the difficulty of extrapolation appears to be primarily
sensitive to the extrapolation ratio k2

k1
, which are similar (5 versus 4) in the 20-to-100 and

100-to-400 problems. In both settings, ClassExReg comes closest to the ground truth for
the Deep CNN and the SVM, but KDE-BCV comes closest to ground truth for the Logistic
regression. However, even for logistic regression, ClassExReg does better or comparably to
KDE-UCV.

In the 20-to-400 extrapolation, which has the highest extrapolation ratio (k2k1 = 20),
none of the three extrapolation methods performs consistently well for all three classifiers.
It could be the case that the variability is a dominating effect given the small training
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ClassExReg KDE-BCV KDE-UCV

k1 = 100

k1 = 200

k1 = 400

Figure 10: Predicted accuracy curves for face-recognition example: The plots show
predicted accuracies. Each red curve represents the predicted accuracies using
a single subsample of size k1. The black curve shows the average test accuracy
obtained from the full data set.

set, making it difficult to compare extrapolation methods using the 20-to-400 extrapolation
task.

Unlike in the face recognition example, we did not resample training classes here, be-
cause that would require retraining all of the classifiers–which would be prohibitively time-
consuming for the Deep CNN. Thus, we cannot comment on the robustness of the compar-
isons from this example, though it is likely that we would obtain different rankings under a
new resampling of the training classes.

These empirical results indicate that in comparison to the KDE methods of Kay et al.,
ClassExReg has lower bias and better performance at small k (up to 500 classes), while the
KDE methods start to achieve comparable results to ClassExReg when k is around 5,000
or more classes. This matches the theoretical intuition we developed in Section 3.5 (item
ii): since the Kay et al. method works by estimating each the favorability of each example
separately, that it requires more data (meaning more classes in the training set) to achieve
robust estimation.
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k1 k2 Classifier True ClassExReg KDE-BCV KDE-UCV

20 100 Deep CNN 0.9908 0.9905 0.7138 0.6507
Logistic 0.8490 0.8980 0.8414 0.8161

SVM 0.7582 0.8192 0.6544 0.5771

20 400 Deep CNN 0.9860 0.9614 0.4903 0.3863
Logistic 0.7107 0.8824 0.7467 0.7015

SVM 0.5452 0.6725 0.5163 0.4070

100 400 Deep CNN 0.9860 0.9837 0.8910 0.8625
Logistic 0.7107 0.7214 0.7089 0.6776

SVM 0.5452 0.5969 0.4369 0.3528

Table 3: Telugu OCR extrapolated accuracies: Extrapolating from k1 to k2 classes
in Telugu OCR for three different classifiers: logistic regression, support vector
machine, and deep convolutional network

6. Discussion

In this work, we suggest treating the class set in a classification task as random, in order
to extrapolate classification performance on a small task to the expected performance on a
larger unobserved task. We show that average generalized accuracy decreases with increased
label set size like the (k−1)th moment of a distribution function. Furthermore, we introduce
an algorithm for estimating this underlying distribution, that allows efficient computation
of higher order moments. We additionally implement a kernel-density estimation based
extrapolation, and discuss different regimes were the methods are useful. Code for the
methods and the simulations can be found in https://github.com/snarles/ClassEx.

There are many choices and simplifying assumptions used in the description of the
method. Here we discuss these decisions and map some alternative models or strategies for
future work.

Two important practical aspects of real-world problems not currently handled by our
analysis are (i) non-uniform prior distributions on the labels, and (ii) cost functions other
than zero-one loss. In fact, a theory for arbitrary cost functions can double as a theory for
non-uniform priors, because the risk incurred under non-uniform priors is equivalent to the
risk incurred under a uniform prior but with a weighted cost function. Hence, we address
both (i) and (ii) in forthcoming work that shows how performance extrapolation is possible
under arbitrary cost functions.

Since our analysis is currently restricted to i.i.d. sampling of classes, one direction for
future work is to generalize the sampling mechanism, such as to cluster sampling. More
broadly, the assumption that the labels in Sk are a random sample from a homogeneous
distribution π may be inappropriate. Many natural classification problems arise from hi-
erarchically partitioning a space of instances into a set of labels. Therefore, rather than
modeling Sk as a random sample, it may be more suitable to model it as a random hierar-
chical partition of Y, such as one arising from an optional Pólya tree process (Wong and
Ma, 2010). Finally, note that we assume no knowledge about the new class-set except for
its size. Better accuracy might be achieved if some partial information is known.
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A third direction of exploration is to impose additional modeling assumptions for specific
problems. ClassExReg adopts a non-parametric model of the discriminability functionD(u),
in the sense that D(u) was defined via a spline expansion. However, an alternative approach
is to assume a parametric family for D(u) defined by a small number of parameters. In
forthcoming work, we show that under certain limiting conditions, D(u) is well-described
by a two-parameter family. This substantially increases the efficiency of estimation in cases
where the limiting conditions are well-approximated.
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