
Journal of Machine Learning Research 19 (2018) 1-32 Submitted 07/17; Revised 06/18; Published 07/18

Distributed Proximal Gradient Algorithm for Partially
Asynchronous Computer Clusters ∗

Yi Zhou zhou.1172@osu.edu
Yingbin Liang liang.889@osu.edu
Department of Electrical and Computer Engineering
The Ohio State University

Yaoliang Yu yaoliang.yu@uwaterloo.ca
Department of Computer Science
University of Waterloo

Wei Dai wdai@cs.cmu.edu
Eric P. Xing epxing@cs.cmu.edu
Machine Learning Department
Carnegie Mellon University

Editor: Tong Zhang

Abstract
With ever growing data volume and model size, an error-tolerant, communication efficient,
yet versatile distributed algorithm has become vital for the success of many large-scale
machine learning applications. In this work we propose m-PAPG, an implementation of the
flexible proximal gradient algorithm in model parallel systems equipped with the partially
asynchronous communication protocol. The worker machines communicate asynchronously
with a controlled staleness bound s and operate at different frequencies. We characterize
various convergence properties of m-PAPG: 1) Under a general non-smooth and non-convex
setting, we prove that every limit point of the sequence generated by m-PAPG is a critical
point of the objective function; 2) Under an error bound condition of convex objective
functions , we prove that the optimality gap decays linearly for every s steps; 3) Under
the Kurdyka- Lojasiewicz inequality and a sufficient decrease assumption , we prove that
the sequences generated by m-PAPG converge to the same critical point, provided that a
proximal Lipschitz condition is satisfied.
Keywords: proximal gradient, distributed system, model parallel, partially asynchronous,
machine learning

1. Introduction

The composite minimization problem

min
x∈Rd

f(x) + g(x) (1)

∗. The material in this paper is presented in part at the 19th International Conference on Artificial Intel-
ligence and Statistics (AISTATS), Cadiz, Spain, 2016.

c©2018 Yi Zhou, Yaoliang Yu, Wei Dai, Yingbin Liang and Eric Xing.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v19/17-444.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v19/17-444.html

Zhou, Yu, Dai, Liang and Xing

has drawn a lot of recent attention due to its ubiquity in machine learning and statistical
applications. Typically, the first term

f(x) := 1
n

n∑
i=1

fi(x) (2)

is a smooth loss function over n training samples that describes the fitness to data, and the
second term g is a nonsmooth regularization function that encodes a priori information.
We list below some popular examples under this framework.
• Lasso: least squares loss fi(x) = (yi − a>i x)2 and `1 norm regularizer g(x) = ‖x‖1;

• Logistic regression: logistic loss fi = log(1 + exp(−yia>i xi));

• Boosting: exponential loss fi(x) = exp(−yia>i x);

• Support vector machines: hinge loss fi(x) = max{0, 1− yia>i x} and (squared) `2 norm
regularizer g(x) = ‖x‖22.

Over the years there is also a rising interest in using nonconvex losses f (mainly for robust-
ness against outlying observations) Collobert et al. (2006); Wu and Liu (2007); Xu et al.
(2006); Yu et al. (2015) and nonconvex regularizers g (mainly for smaller bias in statistical
estimation) Fan and Li (2001); Zhang and Zhang (2012).

Due to the apparent importance of the composite minimization framework and the
rapidly growing size in both dimension (d) and volume (n) of data, there is a strong need to
develop a practical parallel system that can solve the problem in (1) efficiently and in a scale
that is impossible for a single machine Agarwal and Duchi (2011); Bertsekas and Tsitsiklis
(1989); Dean and Ghemawat (2008); Feyzmahdavian et al. (2014); Ho et al. (2013); Li et al.
(2014); Low et al. (2012); Zaharia et al. (2010). Existing systems can be categorized by
how communication among worker machines is managed: bulk synchronous (also called fully
synchronous) Dean and Ghemawat (2008); Valiant (1990); Zaharia et al. (2010); Lorenzo and
Scutari (2016), totally asynchronous Baudet (1978); Bertsekas and Tsitsiklis (1989); Low
et al. (2012), and partially asynchronous (a.k.a. stale synchronous or chaotic) Agarwal and
Duchi (2011); Bertsekas and Tsitsiklis (1989); Chazan and Miranker (1969); Feyzmahdavian
et al. (2014); Ho et al. (2013); Li et al. (2014); Tseng (1991). Bulk synchronous parallel
(BSP) systems explicitly force synchronization barriers so that the worker machines can stay
on the same page to ensure correctness. However, in a real deployed parallel system, BSP
usually suffers from the straggler problem, that is, the performance of the whole system is
bottlenecked at the bandwidth of communication and the slowest worker machine. On the
other hand, totally asynchronous systems do not put any constraint on synchronization,
hence achieve much greater throughputs by potentially sacrificing the correctness of the
algorithm. Partially asynchronous parallel (PAP) systems Bertsekas and Tsitsiklis (1989);
Chazan and Miranker (1969) are a compromise between the previous two: it allows the
worker machines to communicate asynchronously up to a controlled staleness and to perform
updates at different paces. PAP is particularly suitable for machine learning applications,
where iterative algorithms that are robust to small computational errors are usually favored
for finding an appropriate solution. Due to its flexibility, the PAP mechanism has been the
method of choice in many recent practical implementations Agarwal and Duchi (2011);

2

Asynchronous Distributed Proximal Gradient Algorithm

Feyzmahdavian et al. (2014); Ho et al. (2013); Li et al. (2014); Liu and Wright (2015);
Recht et al. (2011).

Existing parallel systems can also be categorized by how computation is divided among
worker machines: data parallel and model parallel. Data parallel systems usually distribute
the computation involving each component function fi in (2) into different worker machines,
which is suitable when n � d, i.e., large data volume but moderate model size. In this
setting the stochastic proximal gradient algorithm, along with the PAP protocol, has been
shown to be quite effective in solving the composite problem (1) Agarwal and Duchi (2011);
Feyzmahdavian et al. (2014); Ho et al. (2013); Li et al. (2014). Some other works developed
ADMM-based algorithms for data parallelism Hong et al. (2016) and stochastic variance-
reduced gradient algorithms under the PAP protocol Huo and Huang (2017); Fang and
Lin (2017), and proved their effectiveness both theoretically and empirically. In this
work, we focus on the “dual” model parallel regime where d � n, i.e., large model size
but moderate data volume. In modern machine learning and statistics applications, it is
not uncommon that the dimensionality of data largely exceeds its volume, for example, in
computational biology, conducting an experimental study that involves many patients can
be very expensive but for each patient, technology (e.g. next-generation genome sequencing)
has advanced to a stage where taking a large number of measurements (model parameters) is
relatively cheap. Deep neural networks are another example that calls for model parallelism.
Not surprisingly, the design of a model parallel system is fundamentally different from that
of a data parallel system, and so is the subsequent analysis.

To achieve model parallelism, the model x is partitioned into different (disjoint) blocks
and is distributed among many worker machines. In this setting, the block proximal gradient
algorithm has been proposed to solve the composite problem (1) Fercoq and Richtárik
(2015); Lu and Xiao (2015); Richtárik and Takáč (2014), although under the more restrictive
BSP protocol. Other works proposed ADMM-based algorithm for model parallelism to
solve the sparse PCA problem Hajinezhad and Hong (2015). Under the PAP protocol,
the only work that we are aware of is Bertsekas and Tsitsiklis (1989) which focused on a
special case of (1) where g is an indicator function of a convex set, and Tseng (1991) which
established a periodic linear rate of convergence under an error bound condition. Our main
goal in this work is to provide a formal convergence analysis of the model parallel proximal
gradient algorithm under the more flexible PAP communication protocol, and our results
naturally extend those in Bertsekas and Tsitsiklis (1989); Tseng (1991) to allow nonsmooth
and nonconvex functions.

Our main contributions in this work are: 1). We propose m-PAPG, an extension of the
proximal gradient algorithm to the model parallel and partially asynchronous setting. In
specific, the worker machines in the system can communicate with each other to synchronize
the model parameters with staleness. 2). We provide a rigorous analysis of the convergence
properties of m-PAPG, allowing both nonsmooth and nonconvex functions. In particular,
we prove in Theorem 7 that any limit point of the sequences generated by m-PAPG is a
critical point. 3) Under an additional error bound condition of convex objective functions,
we prove in Theorem 9 that the function values generated by m-PAPG decays periodically
linearly. 4) Lastly, using the Kurdyka- Lojasiewicz (K L) inequality Bolte et al. (2014) and
under a sufficient decrease assumption, we prove in Theorem 11 that for functions that

3

Zhou, Yu, Dai, Liang and Xing

satisfy a proximal Lipschitz condition the whole sequences of m-PAPG converge to a single
critical point.

This paper proceeds as follows: We first set up the notations and definitions in Section 2.
The proposed algorithm m-PAPG is presented in Section 3, and convergence analysis are
detailed in Sections 4 to 6. The implementation of m-PAPG on a distributed system is
detailed in Section 7, and numerical experiments are reported in Section 8. Section 9
concludes our work.

2. Preliminaries

We first recall some fundamental definitions that will be needed in our analysis. Throughout,
h : Rd → (−∞,+∞] denotes an extended real-valued function that is proper and closed,
i.e., its domain dom h := {x : h(x) < +∞} is nonempty and its sublevel set {x : h(x) ≤ α}
is closed for all α ∈ R. Since the function h may not be smooth or convex, we need the
following generalized notion of “derivative.”

Definition 1 (Subdifferential and critical point, e.g. Rockafellar and Wets (1997))
The Frechét subdifferential ∂̂h of h at x ∈ dom h is the set of u such that

lim inf
z 6=x,z→x

h(z)− h(x)− u>(z− x)
‖z− x‖ ≥ 0, (3)

while the (limiting) subdifferential ∂h at x ∈ dom h is the “closure” of ∂̂h:

{u : ∃xk → x, h(xk)→ h(x),uk ∈ ∂̂h(xk),uk → u}. (4)

The critical points of h are crith := {x : 0 ∈ ∂h(x)}.

When h is continuously differentiable or convex, the subdifferential ∂h and the set of
critical points crith coincide with the usual notions. For a closed function h, its subdiffer-
ential is either nonempty at any point in its domain or the subgradient diverges to some
“direction” (Rockafellar and Wets, 1997, Corollary 8.10).

Definition 2 (Distance and projection) The distance function w.r.t. a closed set Ω ⊆
Rd is defined as:

distΩ(x) := min
y∈Ω
‖y− x‖, (5)

while the metric projection onto Ω is defined as:

projΩ(x) := argmin
y∈Ω

‖y− x‖, (6)

where ‖ · ‖ is the usual Euclidean norm.

Note that projΩ(x) is single-valued for all x ∈ Rd if and only if Ω is convex.

Definition 3 (Proximal map, e.g. Rockafellar and Wets (1997)) The proximal map
of a closed and proper function h is (with parameter η > 0):

proxηh(x) := argmin
z∈Rd

h(z) + 1
2η‖z− x‖2. (7)

Occasionally, we will write proxh instead of prox1
h.

4

Asynchronous Distributed Proximal Gradient Algorithm

Clearly, for the indicator function h(x) = ιΩ(x), which takes the value 0 for x ∈ Ω and
∞ otherwise, its proximal map (with any η > 0) reduces to the metric projection projΩ.
If h decreases slower than a quadratic function (in particular, when h is bounded below),
then its proximal map is well-defined for all (small) η Rockafellar and Wets (1997). If h is
convex, then its proximal map is always a singleton while for nonconvex h, the proximal
map can be set-valued. In the latter case we will also abuse the notation proxηh(x) for an
arbitrary element from that set. For convex functions, the proximal map is nonexpansive:

∀x,y ∈ Rd, ‖proxηh(x)− proxηh(y)‖ ≤ ‖x− y‖, (8)

while for nonconvex functions this may not hold everywhere.
The proximal map is the key component of the proximal gradient algorithm Fukushima

and Mine (1981) (a.k.a. forward-backward splitting):

∀ t = 0, 1, . . . , x(t+ 1) = proxηg
(
x(t)− η∇f(x(t))

)
, (9)

where ∇f is the (sub)gradient of f , and η is a suitable step size (that may change with t). It
is known that when f is convex with L-Lipschitz continuous gradient and 0 < η < 2/L, then
Ft := f(x(t)) + g(x(t)) converges to the minimum at the rate O(1/t) and x(t) converges to
some minimizer x∗. Accelerated versions Beck and Teboulle (2009); Nesterov (2013) where
Ft converges at the faster rate O(1/t2) are also well-known. Recently, Bolte et al. (2014)
proved that x(t) converges to a critical point even for nonconvex f and nonconvex and
nonsmooth g as long as together they satisfy a certain K L inequality.

3. Formulation of m-PAPG

Recall the composite minimization problem:

min
x∈Rd

F (x), where F (x) = f(x) + g(x). (P)

We are interested in the case where d is so large that implementing the proximal gradient
algorithm (9) on a single machine is no longer feasible, hence distributed computation is
necessary.

We consider a model parallel system with p machines in total. The machines are fully
connected and can communicate with each other. Decompose the dmodel parameters into p
disjoint groups. Formally, consider the decompositionRd = Rd1×Rd2×· · ·×Rdp , and denote
xi and ∇if(x) : Rd → Rdi as the i-th component of x and ∇f(x), respectively. Clearly,
x = (x1, x2, . . . , xp) and ∇f = (∇1f,∇2f, · · · ,∇pf). The i-th machine is responsible for
updating the component xi ∈ Rdi , and for the purpose of evaluating the partial gradient
∇if(x) we assume the i-th machine also has access to a local, full model parameter xi ∈ Rd.
The last assumption is made only to simplify our presentation; it can be removed for many
machine learning problems, see for instance Richtárik and Takáč (2014); Zhou et al. (2016).

We make the following standard assumptions regarding problem (P):

Assumption 1 (Bounded Below) The function F =f + g is bounded below.

Assumption 2 (Smooth) The function f is L-smooth, i.e.,

∀x,y ∈ Rd, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖. (10)

5

Zhou, Yu, Dai, Liang and Xing

Assumption 3 (Separable) The function g is closed and separable, i.e., g(x) =
∑p
i=1 gi(xi).

Assumption 1 simply allows us to have a finite minimum value and is usually satisfied
in practice. The smoothness assumption is critical in two aspects: (1) It allows us to
upper bound f by its quadratic expansion at the current iterate—a standard step in the
convergence proof of gradient type algorithms:

∀x,y ∈ Rd, f(x) ≤ f(y) + 〈x− y,∇f(y)〉+ L
2 ‖x− y‖2. (11)

(2) It allows us to bound the inconsistencies in different machines due to asynchronous
updates, see Theorem 4 below. The separable assumption makes model parallelism inter-
esting and feasible, and is satisfied by many popular regularizers. Popular examples include
vector norms such as `0, `1, `1,2 (i.e., group norm), `22, elastic net, and matrix norms such
as Frobenious norm, etc. We remark that both Assumption 2 and Assumption 3 can be
relaxed using techniques in Beck and Teboulle (2012) and Yu et al. (2015), respectively. For
brevity we do not pursue these extensions here. Note that we do not assume convexity on
either f or g, and g need not even be continuous.

We now specify the m-PAPG algorithm for solving (P) under model parallelism and the
PAP protocol. The separable assumption on g implies that

proxηg(x) =
(
proxηg1(x1), . . . , proxηgp

(xp)
)
. (12)

Then, the update on machine i is defined as:

xi ← proxηgi
(xi − η∇if(xi)). (13)

That is, machine i computes a partial gradient mapping Nesterov (2013) w.r.t. the i-th
component using the local component xi and the local full model xi. To define the latter,
consider a global clock shared by all machines and denote Ti as the set of active clocks when
machine i performs an update. Note that the global clock is introduced solely for the purpose
of our analysis, and the machines need not maintain it in a practical implementation.
Denote τ ij(t) as the iteration of the block model xj that is accessed by machine i at its t-th
iteration. Then, the t-th iteration on machine i can be formally written as:

∀i, xi(t+ 1) =
{
xi(t), t 6∈ Ti
proxηgi

(xi(t)− η∇if(xi(t))), t ∈ Ti
,

(local) xi(t) =
(
x1(τ i1(t)), . . . , xp(τ ip(t))

)
,

(global) x(t) =
(
x1(t), . . . , xp(t)

)
.

(m-PAPG)

That is, machine i only performs its update operator at its active clocks. The local full
model xi(t) assembles all components from other machines, and is possibly a delayed version
of the global model x(t), which assembles the most up-to-date component in each machine.
Note that the global model is introduced for our analysis, and is not accessible in a real
implementation. More specifically, τ ij(t) ≤ t models the communication delay among ma-
chines: when machine i conducts its t-th update it only has access to xj(τ ij(t)), a delayed
version of the component xj(t) that is received by the i-th machine from the j-th machine.

6

Asynchronous Distributed Proximal Gradient Algorithm

We refer to the above algorithm as m-PAPG (for model parallel, Partially Asynchronous,
Proximal Gradient).

In a practical distributed system, communication among machines is much slower than
local computations, and the performance of a synchronous system is often bottlenecked at
the slowest machine, due to the need of synchronization in every step. The delays τ ij(t)
and active clocks Ti that we introduced in m-PAPG aim to address such issues. For our
convergence proofs, we need the following assumptions:

Assumption 4 (Bounded Delay) ∃s ∈ N, ∀i,∀j,∀t, 0 ≤ t− τ ij(t) ≤ s, τ ii (t) ≡ t.

Assumption 5 (Frequent Update) ∃s ∈ N, ∀i,∀t, Ti ∩ {t, t+ 1, · · · , t+ s} 6= ∅.

Intuitively, Assumption 4 guarantees the information that machine i gathered from other
machines at the t-th iteration are not too obsolete (bounded by at most s clocks apart).
The assumption τ ii (t) ≡ t is natural since the i-th worker machine is maintaining xi hence
would always have the latest copy. Assumption 5 requires each machine to update at least
once in every s + 1 iterations, for otherwise some component xi may not be updated at
all. We remark that Assumption 4 and Assumption 5 are very natural and have been
widely adopted in previous works Baudet (1978); Bertsekas and Tsitsiklis (1989); Chazan
and Miranker (1969); Feyzmahdavian et al. (2014); Tseng (1991). Clearly, when s = 0
(i.e., no delay), m-PAPG reduces to the fully synchronous, model parallel proximal gradient
algorithm.

Before closing this section, we provide a technical tool to control the inconsistency
between the local models xi(t) and the global model x(t). Recall that (t)+ = max{t, 0} is
the positive part of t.

Lemma 4 Let Assumption 4 hold, then the global model x(t) and the local models {xi(t)}pi=1
satisfy:

∀i = 1, · · · , p, ‖x(t)− xi(t)‖ ≤
t−1∑

k=(t−s)+

‖x(k + 1)− x(k)‖, (14)

‖xi(t+ 1)− xi(t)‖ ≤
t∑

k=(t−s)+

‖x(k + 1)− x(k)‖. (15)

Proof Indeed, by the definitions in (m-PAPG):

‖x(t)− xi(t)‖2 =
p∑
j=1
‖xj(t)− xj(τ ij(t))‖2

≤
p∑
j=1

 t−1∑
k=τ i

j (t)
‖xj(k + 1)− xj(k)‖


2

≤
p∑
j=1

 t−1∑
k=(t−s)+

‖xj(k + 1)− xj(k)‖

2

7

Zhou, Yu, Dai, Liang and Xing

=
p∑
j=1

t−1∑
k=(t−s)+

t−1∑
k′=(t−s)+

‖xj(k + 1)− xj(k)‖‖xj(k′ + 1)− xj(k′)‖

=
t−1∑

k=(t−s)+

t−1∑
k′=(t−s)+

p∑
j=1
‖xj(k + 1)− xj(k)‖‖xj(k′ + 1)− xj(k′)‖

≤
t−1∑

k=(t−s)+

t−1∑
k′=(t−s)+

‖x(k + 1)− x(k)‖‖x(k′ + 1)− x(k′)‖

=

 t−1∑
k=(t−s)+

‖x(k + 1)− x(k)‖

2

,

where the first inequality is due to the triangle inequality; the second inequality is due to
Assumption 4; and the last inequality follows from the Cauchy-Schwarz inequality.

Similarly,

‖xi(t)− xi(t+ 1)‖2 =
p∑
j=1
‖xj(τ ij(t))− xj(τ ij(t+ 1))‖2

≤
p∑
j=1

τ
i
j (t+1)−1∑
k=τ i

j (t)
‖xj(k + 1)− xj(k)‖


2

≤
p∑
j=1

 t∑
k=(t−s)+

‖xj(k + 1)− xj(k)‖

2

,

and the rest of the proof is completely similar to the previous case.

4. Characterizing the limit points

In this section, we characterize the convergence property of the sequences generated by
m-PAPG under very general conditions. Recall from Assumption 2 that ∇f is L-Lipschitz
continuous. Our first result is as follows:

Theorem 5 Let Assumptions 1 to 5 hold. If the step size η ∈
(
0, 1

L(1+2√ps)

)
, then the

sequence generated by m-PAPG is square summable, i.e.
∞∑
t=0
‖x(t+ 1)− x(t)‖2 <∞. (16)

In particular, lim
t→∞
‖x(t+ 1)− x(t)‖ = 0 and lim

t→∞
‖x(t)− xi(t)‖ = 0.

Remark 6 Our bound on the step size η is natural: If s = 0, i.e., there is no asynchronism
then we recover the standard step size rule η < 1/L (we can increase η by another factor of
2, had convexity on g been assumed). As staleness s increases, we need a smaller step size to

8

Asynchronous Distributed Proximal Gradient Algorithm

“damp” the system to still ensure convergence. The factor √p is another measurement of the
degree of “dependency” among worker machines: Indeed, we can reduce √p to

√∑
i L

2
i /L,

where Li is the Lipschitz constant of ∇if (cf. (21)).

Proof The last claim follows immediately from eq. (16) and eq. (14), so we only need to
prove (16).

Consider machine i and any t ∈ Ti. Combining eq. (13) with eq. (m-PAPG) gives

xi(t+ 1) = proxηgi

(
xi(t)− η∇if(xi(t))

)
. (17)

Then, from Definition 3 of the proximal map we have for all z ∈ Rdi :

gi
(
xi(t+ 1)

)
+ 1

2η‖xi(t+ 1)− xi(t) + η∇if
(
xi(t)

)
‖2 (18)

≤ gi
(
z
)

+ 1
2η

∥∥∥z − xi(t) + η∇if
(
xi(t)

)∥∥∥2
.

Set z = xi(t) and simplify, we obtain:

gi
(
xi(t+ 1)

)
−gi

(
xi(t)

)
(19)

≤ − 1
2η‖xi(t+ 1)− xi(t)‖2 −

〈
∇if

(
xi(t)

)
, xi(t+ 1)− xi(t)

〉
.

Note that if t /∈ Ti, then xi(t + 1) = xi(t) and eq. (19) still holds. On the other hand,
Assumption 2 implies that for all t (cf. (11)):

f
(
x(t+ 1)

)
− f

(
x(t)

)
≤ 〈x(t+ 1)− x(t),∇f

(
x(t)

)
〉+ L

2 ‖x(t+ 1)− x(t)‖2. (20)

Adding up eq. (20) and eq. (19) (for all i) and recall F = f +
∑
i gi, we have

F
(
x(t+ 1)

)
− F

(
x(t)

)
− 1

2(L− 1/η)‖x(t+ 1)− x(t)‖2

≤
p∑
i=1

〈
xi(t+ 1)− xi(t),∇if(x(t))−∇if

(
xi(t)

)〉
≤

p∑
i=1
‖xi(t+ 1)− xi(t)‖ · ‖∇if(x(t))−∇if

(
xi(t)

)
‖

(i)
≤

p∑
i=1
‖xi(t+ 1)− xi(t)‖ · L‖x(t)− xi(t)‖ (21)

(ii)
≤ L ·

p∑
i=1
‖xi(t+ 1)− xi(t)‖ ·

t−1∑
k=(t−s)+

‖x(k + 1)− x(k)‖

(iii)
≤ √pL‖x(t+ 1)− x(t)‖ ·

t−1∑
k=(t−s)+

‖x(k + 1)− x(k)‖ (22)

(iv)
≤
√
pL

2

t−1∑
k=(t−s)+

[
‖x(k + 1)− x(k)‖2 + ‖x(t+ 1)− x(t)‖2

]

9

Zhou, Yu, Dai, Liang and Xing

≤
√
pLs

2 ‖x(t+ 1)−x(t)‖2 +
√
pL

2

t−1∑
k=(t−s)+

‖x(k + 1)−x(k)‖2, (23)

where (i) is due to the L-Lipschitz continuity of ∇f , (ii) follows from eq. (14), (iii) is the
Cauchy-Schwarz inequality, and (iv) follows from the elementary inequality ab ≤ a2+b2

2 .
Summing the above inequality over t from 0 to m− 1 and rearranging we obtain

F
(
x(m)

)
− F

(
x(0)

)
≤ 1

2(L+√pLs− 1/η)
m−1∑
t=0
‖x(t+ 1)− x(t)‖2

+ L

2

m−1∑
t=0

t−1∑
k=(t−s)+

‖x(k + 1)− x(k)‖2

≤ 1
2(L+ 2√pLs− 1/η)

m−1∑
t=0
‖x(t+ 1)− x(t)‖2.

Therefore, if we choose 0 < η < 1
L(1+2√ps) , then let m→∞ we deduce

∞∑
t=0
‖x(t+ 1)− x(t)‖2 ≤ 2

1/η − L− 2√pLs [F
(
x(0)

)
− inf

z
F (z)]. (24)

By Assumption 1, F is bounded from below, hence the right-hand side is finite.

The first assertion of the above theorem states that the global sequence x(t) has square
summable successive differences, while the second assertion implies that both the successive
difference of the global sequence and the inconsistency between the local sequences and the
global sequence diminish as the number of iterations grows. These two conclusions provide
a prelimenary stability guarantee for m-PAPG.

Next, we prove that the limit points (if exist) of the sequences x(t) and xi(t), i = 1, . . . , p
coincide, and they are critical points of F . Recall that the set of critical points of the
function F is denoted as critF .

Theorem 7 Consider the same setting as in Theorem 5. Then, the sequences {x(t)} and
{xi(t)}, i = 1, . . . , p, generated by m-PAPG share the same set of limit points, which is a
subset of critF .

Proof It is clear from Theorem 5 that {x(t)} and {xi(t)}, i = 1, . . . , p, share the same set
of limit points, and we need to show that any limit point of {x(t)} is also a critical point
of F .

Let x∗ be a limit point of {x(t)}. By Theorem 1 it suffices to exhibit a sequence x(k)
satisfying1

x(k)→ x∗, F (x(k))→ F (x∗), 0← u(k) ∈ ∂F (x(k)). (25)

1. Technically, from Theorem 1 we should have the Frechét subdifferential ∂̂F in eq. (25), however, a
standard argument allows us to use the more convenient subdifferential (Rockafellar and Wets, 1997,
Proposition 8.7).

10

Asynchronous Distributed Proximal Gradient Algorithm

Let us first construct the subgradient sequence u(k). Consider machine i and any t̂ ∈ Ti,
the optimality condition of eq. (17) gives

ui(t̂+ 1) := − 1
η

[
xi(t̂+ 1)− xi(t̂) + η∇if

(
xi(t̂)

)]
∈ ∂gi(xi(t̂+ 1)). (26)

It then follows that

‖ui(t̂+ 1) +∇if(x(t̂+ 1))‖
≤ ‖ui(t̂+ 1) +∇if(x(t̂))‖+ ‖∇if(x(t̂+ 1))−∇if(x(t̂))‖
(i)
≤
∥∥∥ 1
η

[
xi(t̂+ 1)− xi(t̂)

]
+∇if

(
xi(t̂)

)
−∇if

(
x(t̂)

)∥∥∥+ L‖x(t̂+ 1)− x(t̂)‖
(ii)
≤ 1

η‖xi(t̂+ 1)− xi(t̂)‖+ L‖xi(t̂)− x(t̂)‖+ L‖x(t̂+ 1)− x(t̂)‖

(iii)
≤ 1

η‖xi(t̂+ 1)− xi(t̂)‖+ L
t̂∑

k=(t̂−s)+

‖x(k + 1)− x(k)‖, (27)

where (i) and (ii) are due to the L-Lipschitz continuity of ∇f , and (iii) follows from eq. (14).
Next, consider any other t 6∈ Ti and t ≥ s, we denote t̂ as the largest element in the set
{k ≤ t : k ∈ Ti}. By Assumption 5 t̂ always exists and t − t̂ ≤ s. Since no update is
performed on machine i at any clock in [t̂ + 1, t], we have xi(t + 1) = xi(t̂ + 1). Thus, we
can choose ui(t+ 1) = ui(t̂+ 1) ∈ ∂gi(xi(t̂+ 1)) = ∂gi(xi(t+ 1)), and obtain

‖ui(t+ 1) +∇if(x(t+ 1))−ui(t̂+ 1)−∇if(x(t̂+ 1))‖ (28)
= ‖∇if(x(t+ 1))−∇if(x(t̂+ 1))‖

≤
t∑

k=t̂+1

‖∇if(x(k + 1))−∇if(x(k))‖

≤
t∑

k=(t−s+1)+

‖∇if(x(k + 1))−∇if(x(k))‖

≤
t∑

k=(t−s+1)+

L‖x(k + 1)− x(k)‖. (29)

Combining the two cases in eq. (27) and eq. (29), we have for all t and all i:

‖ui(t+ 1) +∇if(x(t+ 1))‖ ≤ 1
η‖xi(t̂+ 1)− xi(t̂)‖+ L

t̂∑
k=(t̂−s)+

‖x(k + 1)− x(k)‖

+ L
t∑

k=(t−s+1)+

‖x(k + 1)− x(k)‖

≤ (1
η + 2L)

t∑
k=(t−2s)+

‖x(k + 1)− x(k)‖,

11

Zhou, Yu, Dai, Liang and Xing

where the last inequality uses the fact that t−s ≤ t̂ ≤ t. Observing that the right hand side
of the above inequality does not depend on i, we can sum the square of the above inequality
over i and further conclude that

‖u(t+ 1) +∇f(x(t+ 1))‖ ≤ √p(1
η + 2L)

t∑
k=(t−2s)+

‖x(k + 1)− x(k)‖, (30)

where u(t + 1) =
(
u1(t + 1), . . . , up(t + 1)

)
∈ ∂g(x(t + 1)). Therefore, by eq. (30) and

Theorem 5 we deduce

lim
t→∞

dist∂F (x(t+1))(0) ≤ lim
t→∞
‖u(t+ 1) +∇f(x(t+ 1))‖ = 0. (31)

Recall that x∗ is a limit point of {x(t)}, thus there exists a subsequence x(tm) → x∗.
Next we verify the function value convergence in eq. (25). The challenge here is that the
component function g is only closed, hence may not be continuous. For any t ∈ Ti, applying
eq. (18) with z = x∗i and rearranging gives

gi(xi(t+ 1)) ≤ gi
(
x∗i
)

+ 1
2η‖x

∗
i − xi(t)‖2 −

1
2η‖xi(t+ 1)− xi(t)‖2

+ 〈x∗i − xi(t+ 1),∇if(xi(t))〉

= gi
(
x∗i
)

+ 1
2η‖x

∗
i − xi(t)‖2 −

1
2η‖xi(t+ 1)− xi(t)‖2 (32)

+ 〈x∗i − xi(t+ 1),∇if(x∗)〉+ 〈x∗i − xi(t+ 1),∇if(xi(t))−∇if(x∗)〉.

We note that the above inequality holds only for the iterations t ∈ Ti. Next, observe that
limm→∞ ‖x(tm)− x∗‖ = 0. Since limt→∞ ‖x(t+ 1)− x(t)‖ = 0, we further conclude that

lim
m→∞

max
t∈[tm−s,tm+s]∩Ti

‖x(t)− x∗‖ = 0. (33)

Moreover, note that limt→∞ ‖x(t) − xi(t)‖ = 0. Then, the above equation further implies
that

lim
m→∞

max
t∈[tm−s,tm+s]∩Ti

‖∇if(xi(t))−∇if(x∗)‖

≤ L lim
m→∞

max
t∈[tm−s,tm+s]∩Ti

‖x∗ − xi(t)‖

≤ L lim
m→∞

max
t∈[tm−s,tm+s]∩Ti

[
‖x∗ − x(t)‖+ ‖x(t)− xi(t)‖

]
= 0. (34)

By Assumption 5, [tm − s, tm + s] ∩ Ti 6= ∅ for all i. We can now take the limsup on both
sides of eq. (32) and utilize eqs. (33) and (34) to obtain that

lim sup
m→∞

max
t∈[tm−s,tm+s]∩Ti

gi(xi(t+ 1)) ≤ gi(x∗i). (35)

Denote t̂m ∈ Ti as the largest element such that t̂m ≤ tm. Note that tm− s ≤ t̂m due to the
constraint on the maximum delay. It then follows that

max
t∈[tm,tm+s]

gi(xi(t+ 1)) = max
t∈[t̂m,tm+s]∩Ti

gi(xi(t+ 1)) ≤ max
t∈[tm−s,tm+s]∩Ti

gi(xi(t+ 1)),

12

Asynchronous Distributed Proximal Gradient Algorithm

where the first equality is due to the fact that no update is performed during [t̂m, tm] and
machine i updates only at its active clocks Ti, and the second inequality uses the fact that
t̂m ≥ tm − s. Hence, we further obtain from (35) that

lim sup
m→∞

max
t∈[tm,tm+s]

gi(xi(t+ 1)) ≤ gi(x∗i). (36)

To complete the proof, choose any km ∈ [tm, tm + s]. Since x(tm) → x∗, Theorem 5
implies that

x(km)→ x∗. (37)

From eq. (36) we know for all i, lim sup
m→∞

gi(xi(km)) ≤ gi(x∗i). On the other hand, it follows
from the closedness of the function gi (cf. Assumption 3) that lim inf

m→∞
gi(xi(km)) ≥ gi(x∗i),

thus in fact lim
m→∞

gi(xi(km)) = gi(x∗i). Since f is continuous, we know

lim
m→∞

F (x(km)) = lim
m→∞

f(x(km)) +
∑
i

gi(xi(km)) = F (x∗). (38)

Combining eq. (31), eq. (37) and eq. (38) we know from Theorem 1 that x∗ ∈ critF .

Theorem 7 further justifies m-PAPG by showing that any limit point it produces is
necessarily a critical point. Of course, for convex functions any critical point is a global
minimizer. The closest result to Theorem 5 and Theorem 7 we are aware of is (Bertsekas
and Tsitsiklis, 1989, Proposition 7.5.3), where essentially the same conclusion was reached
but under the much more restrictive assumption that g is an indicator function of a product
convex set. Thus, our result is new even when g is a convex function such as the `1 norm
that is widely used to promote sparsity. Furthermore, we allow g to be any closed separable
function (convex or not), covering the many recent nonconvex regularization functions in
machine learning and statistics (see e.g. Fan and Li (2001); Mazumder et al. (2011); Zhang
(2010); Zhang and Zhang (2012)). We also note that the proof of Theorem 7 (for nonconvex
g) involves significantly new ideas beyond those of Bertsekas and Tsitsiklis (1989).

We note that the existence of limit points can be guaranteed, for instance, if {x(t)} is
bounded or the sublevel set {x | F (x) ≤ α} is bounded for all α ∈ R. However, we have yet
to prove that the sequence {x(t)} generated by m-PAPG does converge to one of the critical
points, and we fill this gap under two complementary sets of assumptions on the objective
function in Sections 5 and 6, respectively.

5. Convergence under Error Bound

In this section we prove that the global sequence {x(t)} produced by m-PAPG converges
periodically linearly to a global minimizer, by assuming an error bound condition on the ob-
jective function in (P) and a convexity assumption that serves to simplify the presentation:

Assumption 6 (Convex) The functions f and g in (P) are convex.

13

Zhou, Yu, Dai, Liang and Xing

Note that for convex functions g the proximal mapping proxηg is single valued for any η > 0.
The error bound condition we need is as follows:

Assumption 7 (Error Bound) For every α > 0, there exist δ, κ > 0 such that for all
x ∈ Rd with f(x) ≤ α and ‖x− proxg(x−∇f(x))‖ ≤ δ,

distcritF (x) ≤ κ‖x− proxg(x−∇f(x))‖, (39)

where recall that critF is the set of critical points of F .

Equation (39) is a proximal extension of the Luo-Tseng error bound Luo and Tseng
(1993) where g is the indicator function of a closed convex set. A prototypic convex function
F satisfying (39) is the following:

F (x) = f(Ax) + g(x), (40)

where f is strongly convex (i.e., f− µ
2‖ ·‖

2 is convex for some µ > 0), A is a linear map, and
g is either an indicator function of a convex set Luo and Tseng (1993) or the `p norm for
p ∈ [1, 2]∪{∞} Zhou et al. (2015). Many machine learning formulations such as Lasso and
sparse logistic regression fit into this form. In fact, for convex functions F taking such form,
the error bound condition in eq. (39) is recently shown to be equivalent to the following
conditions Drusvyatskiy and Lewis (2016); Zhang (2016):

Restricted strong convexity : 〈x− proxg(x),x− projcritF (x)〉 ≥ µ · dist2
critF (x),

Quadratic growth : F (x)− F ∗ ≥ µ · dist2
critF (x),

where F ∗ is the minimum value of F and µ > 0 is a constant. In general, the error
bound condition in eq. (39) is not exclusive to convex functions. For instance, it holds for
f(x) = 1

2‖x‖
2 and any function g that has a unique global minimizer at 0 (such as the

cardinality function g(x) = ‖x‖0). However, it is often quite challenging to establish the
error bound condition for a large family of nonconvex functions.

We define the following nonnegative quantities that measure the progress of m-PAPG:

A(t) := F (x(t))− F ∗, F ∗ := inf
x
F (x), (41)

B(t) :=
t−1∑

k=(t−s−1)+

‖x(k + 1)− x(k)‖2, (42)

In the following key lemma we relate the gap quantities defined above inductively.

Lemma 8 Let Assumptions 1 to 7 hold. Then, we have

A(t+ s+ 1) ≤ A(t)− 1
2(1
η − L− 2sL√p)B(t+ s+ 1) + 1

2sL
√
pB(t)

0 ≤ A(t+ s+ 1) ≤ aηB(t+ s+ 1) + bB(t),

where aη and b are given in (53) below.

14

Asynchronous Distributed Proximal Gradient Algorithm

Proof The first inequality is obtained by summing the inequality eq. (23) over t, t+1, · · · , t+
s. So we need only prove the second inequality.

Let us introduce some notations to simplify the proof. For each machine i let ti be the
largest clock in [t, t+ s] ∩ Ti, and denote

z =
(
x1(t1), . . . , xp(tp)

)
(43)

z+ =
(
x1(t1 + 1), . . . , xp(tp + 1)

)
=
(
x1(t+ s+ 1), . . . , xp(t+ s+ 1)

)
, (44)

where the last equality is due to the maximality of each ti. From the optimality condition
of the proximal map z+

i = proxηgi
(zi − η∇if(xi(ti))) we deduce

η−1(zi − z+
i)−∇if(xi(ti)) ∈ ∂gi(z+

i). (45)

Since the gradient of f is L-Lipschitz continuous and the function g is convex, we obtain

f(z+)− f(z̄) ≤
p∑
i=1
〈z+
i − z̄i,∇if(z̄)〉+ L

2 ‖z
+ − z̄‖2,

g(z+)− g(z̄) ≤
p∑
i=1
〈z+
i − z̄i, η

−1(zi − z+
i)−∇if(xi(ti))〉,

where we define z̄ := projcritF (z), i.e., the projection of z onto the set of critical points of
F , and the last inequality follows from eq. (45). Adding up the above two inequalities we
obtain

F (z+)− F ∗ − L
2 ‖z

+ − z̄‖2 ≤
p∑
i=1
〈z+
i − z̄i,∇if(z̄) + η−1(zi − z+

i)−∇if(xi(ti))〉

(i)
≤

p∑
i=1

[‖z+
i − zi‖+ ‖zi − z̄i‖][‖∇if(xi(ti))−∇if(z̄)‖+ η−1‖zi − z+

i ‖]

(ii)
≤

p∑
i=1

4
[
‖z+
i − zi‖

2 + ‖zi − z̄i‖2 + η−2‖z+
i − zi‖

2 + ‖∇if(xi(ti))−∇if(z̄)‖2
]

≤ 4
[
‖z̄− z‖2 + (1 + η−2)‖z+ − z‖2 +

p∑
i=1

L2‖xi(ti)− z̄‖2
]
,

where (i) is due to the Cauchy-Schwarz inequality and the triangle inequality, (ii) is due to
the elementary inequality (a+ b)(c+d) ≤ 4(a2 + b2 + c2 +d2), and the last inequality is due
to the L-Lipschitz continuity of ∇f . Using again the triangle inequality we obtain from the
above inequality that

F (z+)− F ∗ ≤ (L+ 4)‖z̄− z‖2 + (L+ 4 + 4
η2)‖z+ − z‖2 + 4L2

p∑
i=1
‖xi(ti)− z̄‖2

(i)= (L+4)‖z̄−z‖2+
p∑
i=1

[(L+4+ 4
η2)‖xi(ti+1)−xi(ti)‖2+4L2‖xi(ti)−z̄‖2],

(ii)
≤ (L+4)‖z̄−z‖2 + (L+4+ 4

η2)B(t+ s+ 1) + 4L2
p∑
i=1
‖xi(ti)−z̄‖2, (46)

15

Zhou, Yu, Dai, Liang and Xing

≤ (L+4+8L2p)‖z̄−z‖2 + (L+4+ 4
η2)B(t+ s+ 1) + 8L2

p∑
i=1
‖xi(ti)−z‖2,

(47)

where (i) is due to our definition of z and z+ in (43) and (44), and (ii) is due to the fact
that ti ∈ [t, t+ s] for all i.

We next bound the terms ‖z̄− z‖2 and ‖xi(ti)− z‖2. We recall that xi(ti) corresponds
to the local model on machine i at the iteration ti. Since ti ∈ Ti, the update rule for the
i-th machine implies that

‖xi(ti + 1)− xi(ti)‖ = ‖proxηgi
(xi(ti)− η∇if(xi(ti)))− xi(ti)‖

≥ ‖proxηgi
(xi(ti)− η∇if(z))− xi(ti)‖

− ‖proxηgi
(xi(ti)− η∇if(xi(ti)))− proxηgi

(xi(ti)− η∇if(z))‖
(i)
≥ ‖proxηgi

(xi(ti)− η∇if(z))− xi(ti)‖ − ηL‖z− xi(ti)‖,

where (i) follows from the non-expansiveness of proxηg (recall that g is convex) and the
L-Lipschitz continuity of ∇f . Rearranging the above inequality and summing over all i, we
obtain

‖proxηg(z− η∇f(z))− z‖2 ≤
p∑
i=1

[
‖xi(ti + 1)− xi(ti)‖+ ηL‖z− xi(ti)‖

]2
≤ 2

p∑
i=1

[
‖xi(ti + 1)− xi(ti)‖|2 + η2L2‖z− xi(ti)‖2

]
. (48)

The last term ‖z− xi(ti)‖2 can be further bounded as follows:

‖z− xi(ti)‖2 =
p∑
j=1
‖xj(tj)− xj(τ ij(ti))‖2

=
p∑
j=1

∥∥∥max{tj ,τ i
j (ti)}−1∑

k=min{tj ,τ i
j (ti)}

xj(k + 1)− xj(k)
∥∥∥2

≤
p∑
j=1

[max{tj ,τ i
j (ti)}−1∑

k=min{tj ,τ i
j (ti)}

‖xj(k + 1)− xj(k)‖
]2

(i)
≤

p∑
j=1

2s
t+s−1∑
k=t−s

‖xj(k + 1)− xj(k)‖2

= 2s
t+s−1∑
k=t−s

‖x(k + 1)− x(k)‖2

≤ 2s[B(t) +B(t+ s+ 1)], (49)

where (i) is due to the fact that tj ∈ [t, t+ s] and τ ij(ti) ∈ [t− s, t+ s]. Combining (48) and
(49) we obtain

‖proxηg(z− η∇f(z))− z‖2 ≤ 2B(t+ s+ 1) + 4psη2L2[B(t) +B(t+ s+ 1)]. (50)

16

Asynchronous Distributed Proximal Gradient Algorithm

Thanks to Theorem 5, we know for t sufficiently large, ‖proxηg(z−η∇f(z))−z‖ ≤ ηδ. Since
the function η 7→ 1

η‖proxηg(z−η∇f(z))−z‖ is monotonically decreasing Sra (2012), we can
apply the error bound condition in Assumption 7 for η < 1 and t sufficiently large, and
obtain

‖z̄− z‖2 ≤ κ‖z− proxg(z−∇f(z))‖2 ≤ κη−2‖z− proxηg(z− η∇f(z))‖2. (51)

Finally, combining (46), (49), (50) and (51) we arrive at:

F (x(t+s+1))− F ∗ = F (z+)− F ∗

≤ (L+4 + 8L2p)‖z̄−z‖2 + (L+4+ 4
η2)B(t+s+1) + 8L2

p∑
i=1
‖xi(ti)−z‖2,

≤ aηB(t+ s+ 1) + bB(t), (52)

where the coefficients are

aη = L+ 4 + 16psL2 + 4psκL2(L+ 4 + 8L2p) + 2
η2 (2 + 4κ+ κL), (53)

b = 16psL2 + 4psκL2(L+ 4 + 8L2p). (54)

Theorem 8 improves the analysis of Tseng (1991) in three aspects: (1) it is shorter
and simpler; (2) it allows any convex function g; and (3) the leading coefficient for B(t) is
reduced from O(1/η) to O(1). The two recursive relations in Lemma 8, as shown in (Tseng,
1991, Lemma 4.5), easily imply the following convergence guarantee.

Theorem 9 Let Assumptions 1 to 7 hold. Then, there exists some η0 > 0 such that if 0 <
η < η0, then the sequences {A(t), B(t)} generated by m-PAPG satisfy for all r = 0, 1, 2, · · ·

A(r(s+ 1)) ≤ C1(1− γη)r, B(r(s+ 1)) ≤ C2(1− γη)r, (55)

where C1, C2, γ < 1/η are positive constants.

Hence, the gaps A(t) and B(t) that measure the progress of m-PAPG decrease by a
constant factor (1 − γη) for every s + 1 steps, which makes intuitive sense since in the
worst case each worker machine only performs one update in every s + 1 steps. In other
words, (s + 1) is the natural time scale for measuring progress here. Note that since
‖x(t + s + 1) − x(t)‖2 ≤ (s + 1)B(t + s + 1), it follows easily that the global sequence
x(t) and consequently also the local sequences {xi(t)} all converge to the same limit point
in critF at a (s+ 1)-periodically linear rate.

6. Convergence with K L inequality

The error bound condition considered in the previous section is not easy to verify in general.
It has been discovered recently that the error bound condition is equivalent to other notions
in optimization that can be verified in alternative ways Drusvyatskiy and Lewis (2016);

17

Zhou, Yu, Dai, Liang and Xing

Zhang (2016), see e.g. (40). However, for nonconvex functions, sometimes even the simple
ones, it remains a challenging task to verify if the error bound condition holds. This failure
motivates us to investigate another property, the Kurdyka- Lojasiewicz (K L) inequality, that
has been shown to be quite effective in dealing with nonconvex functions.

Definition 10 (K L property, (Bolte et al., 2014, Lemma 6)) Let Ω ⊂ domh be a
compact set on which the function h is a constant. We say that h satisfies the K L property
if there exist ε, λ > 0 such that for all x̄ ∈ Ω and all x ∈ {z ∈ Rd : distΩ(z) < ε} ∩ [z :
h(x̄) < h(z) < h(x̄) + λ], it holds that

ϕ′(h(x)− h(x̄)) · dist∂h(x)(0) ≥ 1, (56)

where the function ϕ : [0, λ)→ R+, 0 7→ 0, is continuous, concave, and has continuous and
positive derivative ϕ′ on (0, λ).

The K L inequality in eq. (56) is an important tool to bound the trajectory length of a
dynamical system (see Bolte et al. (2010); Kurdyka (1998) and the references therein for
some historic developments). It has recently been used to analyze discrete-time algorithms
in Absil et al. (2005) and proximal algorithms in Attouch and Bolte (2009); Attouch et al.
(2010); Bolte et al. (2014). As we shall see, the function ϕ will serve as a Lyapunov potential
function. Quite conveniently, most practical functions, in particular, the quasi-norm ‖ · ‖p
for positive rational p, as well as convex functions with certain growth conditions, are K L.
For a more detailed discussion of K L functions, including many familiar examples, see (Bolte
et al., 2014, Section 5) and (Attouch et al., 2010, Section 4).

Following the recipe in Bolte et al. (2014), we need the following assumption to guarantee
the algorithm is making sufficient progress:

Assumption 8 (Sufficient decrease) There exists α > 0 such that for all large t,

F (x(t+ 1)) ≤ F (x(t))− α‖x(t+ 1)− x(t)‖2. (57)

The sufficient decrease assumption is automatically satisfied in many descent algorithms,
e.g., the proximal gradient algorithm. However, in the partially asynchronous parallel (PAP)
setting, it is highly nontrivial to satisfy the sufficient decrease assumption because of the
complication due to communication delays and update skips. Note also that none of the
worker machines actually has access to the global sequence x(t), so even verifying the
sufficient decrease property is not trivial. To simplify the presentation, we first analyze the
performance of m-PAPG using the K L inequality and taking the sufficient decrease property
for granted, and later we we will give some verifiable conditions to justify this simplification.

Our first result in this section strengthens the convergence properties in Theorems 5
and 7 for m-PAPG:

Theorem 11 (Finite Length) Let Assumptions 1 to 5 and 8 hold for m-PAPG, and let
F satisfy the K L property in Theorem 10. Then, with step size η ∈

(
0, 1

L(1+2√ps)

)
, every

bounded sequence {x(t)} generated by m-PAPG satisfies
∞∑
t=0
‖x(t+ 1)− x(t)‖ <∞, (58)

18

Asynchronous Distributed Proximal Gradient Algorithm

∀i = 1, . . . , p,
∞∑
t=0
‖xi(t+ 1)− xi(t)‖ <∞. (59)

Furthermore, {x(t)} and {xi(t)}pi=1 converge to the same critical point of F .

Proof We first show that eq. (58) implies eq. (59). Indeed, recall from (15):

‖xi(t+ 1)− xi(t)‖ ≤
t∑

k=(t−s)+

‖x(k + 1)− x(k)‖.

Therefore, summing for t = 0, 1, · · · , n gives
n∑
t=0
‖xi(t+ 1)− xi(t)‖ ≤

n∑
t=0

t∑
k=(t−s)+

‖x(k + 1)− x(k)‖

≤ (2s+ 1)
n∑
t=0
‖x(t+ 1)− x(t)‖.

The claim then follows by letting n tend to infinity.
By Theorem 5, the limit points of {x(t)} and {xi(t)}pi=1 coincide and are critical points

of F . Thus, the only thing left to prove is the finite length property in eq. (58). By
Assumption 8 and Assumption 1, the objective value F (x(t)) decreases to a finite limit
F ∗. Since {x(t)} is assumed to be bounded, the set of its limit points Ω is nonempty and
compact. Summing eq. (18) over all i and set z ∈ Ω, we obtain

g(x(t+ 1)) ≤ g(z)− 1
2η‖x(t+ 1)− x(t)‖2 −

p∑
i=1
〈∇if(xi(t)),x(t+ 1)− x(t)〉.

Note that x(t + 1) − x(t) → 0. Also, since {x(t)} is bounded and x(t) − xi(t) → 0
for all i, {xi(t)}pi=1 are all bounded. we then take limsup on both sides and obtain that
lim supt→∞ g(x(t + 1)) ≤ g(z). Together with the closedness of g we further obtain that
limt→∞ g(x(t+1)) = g(z). Note that f is continuous, we thus conclude that limt→∞ F (x(t+
1)) = F (z) for all z ∈ Ω. Note that F (x(t)) ↓ F ∗. Thus for all x∗ ∈ Ω, we have F (x∗) ≡ F ∗.
Now fix ε > 0. Since Ω is compact, for t sufficiently large we have distΩ(x(t)) ≤ ε. We now
have all ingredients to apply the K L inequality in Theorem 10: for all sufficiently large t,

ϕ′
(
F (x(t))− F ∗

)
· dist∂F (x(t))(0) ≥ 1. (60)

Since ϕ is concave, we obtain

∆t,t+1 := ϕ
(
F (x(t))− F ∗

)
− ϕ

(
F (x(t+ 1))− F ∗

)
≥ ϕ′

(
F (x(t))− F ∗

)(
F (x(t))− F (x(t+ 1))

)
(i)
≥ α‖x(t+ 1)− x(t)‖2

dist∂F (x(t))(0) , (61)

where (i) follows from Assumption 8 and eq. (60). It is clear that the function ϕ (composed
with F) serves as a Lyapunov function. Using the elementary inequality 2

√
ab ≤ a + b we

obtain from eq. (61) that for t sufficiently large,

2‖x(t+ 1)− x(t)‖ ≤ δ
α∆t,t+1 + 1

δdist∂F (x(t))(0),

19

Zhou, Yu, Dai, Liang and Xing

where δ > 0 will be specified later. Recalling the bound for ∂F (x(t)) in eq. (30), and
summing over t from m (sufficiently large) to n gives:

2
n∑

t=m
‖x(t+ 1)− x(t)‖ ≤

n∑
t=m

δ

α
∆t,t+1 +

n∑
t=m

1
δ

dist∂F (x(t))(0)

(i)
≤ δ

α
ϕ
(
F (x(m))− F ∗

)
+

n∑
t=m

√
p(1/η + 2L)

δ

t∑
k=(t−2s)+

‖x(k + 1)− x(k)‖

≤ δ

α
ϕ
(
F (x(m))− F ∗

)
+

(2s+ 1)√p(1/η + 2L)
δ

m−1∑
k=(m−2s)+

‖x(k + 1)− x(k)‖

+
(2s+ 1)√p(1/η + 2L)

δ

n∑
t=m
‖x(t+ 1)− x(t)‖,

where (i) is due to eq. (30). Setting δ = (2s+ 1)√p(1/η + 2L) and rearranging gives

n∑
t=m
‖x(t+ 1)− x(t)‖ ≤

(2s+ 1)√p(1/η + 2L)
α

ϕ
(
F (x(m))− F ∗

)
+

m−1∑
k=(m−2s)+

‖x(k + 1)− x(k)‖.

Since the right-hand side is finite, let n tend to infinity completes the proof for eq. (58).

Compared with (16) in Theorem 5, we now have the successive differences to be abso-
lutely summable (instead of square summable). This is a significantly stronger result as it
immediately implies that the whole sequence is Cauchy and hence convergent, whereas we
cannot get the same conclusion from the square summable property in Theorem 5. We note
that local maxima are excluded from being the limit in Theorem 11, due to Assumption 8.
Also, the boundedness assumption on the trajectory {x(t)} is easy to satisfy, for instance,
when F has bounded sublevel sets. We refer to (Attouch et al., 2010, Remark 3.3) for more
conditions that imply the boundedness condition. Moreover, following similar arguments
in Attouch et al. (2010) we can also determine the local convergence rates of the sequences
generated by m-PAPG.

In the remaining part of this section we provide some justifications for the sufficient
decrease property in Assumption 8. For simplicity we assume all worker machines perform
updates in each time step t:

Assumption 9 ∀i = 1, · · · , p,∀t, t ∈ Ti.

Note that Assumption 9 is commonly adopted in the analysis of many recent parallel systems
Agarwal and Duchi (2011); Feyzmahdavian et al. (2014); Ho et al. (2013); Li et al. (2014);
Liu and Wright (2015); Recht et al. (2011). In fact, Assumption 9 is somewhat necessary
to justify Assumption 8. This is because Assumption 8 requires a sufficient decrease of the
function value at every iteration k, which may not hold under the PAP as all machines can
be idle for s iterations in the worst case. In other words, to achieve convergence of {xk}k

20

Asynchronous Distributed Proximal Gradient Algorithm

to a critical point in nonconvex optimization under the KL inequality, the parallel system
should make a steady progress per-iteration. As we show next, this is guaranteed under
Assumptions 9 and 10.

We will replace the sufficient decrease property in Assumption 8 with the following key
property that turns out to be easier to verify:

Assumption 10 (Proximal Lipschitz) We say a pair of functions f and g satisfy the
proximal Lipschitz property on a sequence {x(t)} if for all η sufficiently small, there exists
Lη ∈ o(1), i.e. Lη → 0 as η → 0, such that for all large t,

‖∆η(x(t))−∆η(x(t+ 1))‖ ≤ Lη‖x(t)− x(t+ 1)‖, (62)

where2 ∆η(x) ∈ proxηg(x− η∇f(x))− x.

The proximal Lipschitz assumption is motivated by the special case where g ≡ 0 and
hence ∆η(x) = −η∇f(x) is η-Lipschitz, thanks to Assumption 2. As we have seen in previ-
ous sections, Lipschitz continuity plays a crucial role in our proof where a major difficulty
is to control the inconsistencies among different worker machines due to communication de-
lays. Similarly here, the proximal Lipschitz property, as we show next, allows us to remove
the sufficient decrease property in Assumption 8—the seemingly strong assumption that we
needed in proving our main result Theorem 11.

Let us first present a quick justification for Assumption 10.

Lemma 12 Suppose the functions f and g both have Lipschitz continuous gradient, then
Assumption 10 holds for any sequence {x(t)}.

Proof Let us denote Lf and Lg as the Lipschitz constant of the gradient ∇f and ∇g,
respectively. Since ∆η(x) ∈ proxηg(x− η∇f(x))− x, using the optimality condition for the
proximal map, see for instance (Yu et al., 2015, Proposition 7(iii)), we have

x + ∆η(x) + η∇g
(
x + ∆η(x)

)
= x− η∇f(x),

and similarly
z + ∆η(z) + η∇g

(
z + ∆η(z)

)
= z− η∇f(z).

Subtracting one inequality from another, we obtain

‖∆η(x)−∆η(z)‖ = ‖η∇g
(
z + ∆η(z)

)
− η∇g

(
x + ∆η(x)

)
+ η∇f(z)− η∇f(x)‖

≤ ηLg‖z− x + ∆η(z)−∆η(x)‖+ ηLf‖z− x‖
≤ ηLg‖∆η(z)−∆η(x)‖+ η(Lf + Lg)‖z− x‖.

Rearranging we obtain

‖∆η(x)−∆η(z)‖ ≤ η(Lf + Lg)
1− ηLg

‖z− x‖,

when 0 < η < 1/Lg. Clearly, when η is mall, the leading coefficient η(Lf +Lg)
1−ηLg

∈ O(η) ⊆ o(1),
and our proof is complete.

2. Should the proximal map be multi-valued, we contend with any single-valued selection.

21

Zhou, Yu, Dai, Liang and Xing

It is clear that Lemma 12 captures the motivating case g ≡ 0, but also many other important
functions, such as the widely-used regularization function g = ‖ · ‖pp for any p > 1. We can
now continue with our next result in this section.

Theorem 13 Let Assumptions 1 to 4 and 9 hold for m-PAPG, and let F satisfy the K L
property in Theorem 10. Fix any r > 1 with C = rs+1−1

r−1 and step size η such that η <
1

L(1+2√pC+2√ps) . If for each local sequence {xi(t)} generated by m-PAPG, Assumption 10
holds with Lη ≤ r2−1

2pr2C2 , and the global sequence {x(t)} is bounded, then the finite length
properties in (58) and (59) hold. Then, Assumption 8 holds, and consequently, {x(t)} and
{xi(t)}pi=1 converge to the same critical point of F based on Theorem 11.

Theorem 13 assumes that Lη ≤ r2−1
2pr2C2 . We note that Lη implicitly depends on the stepsize

η, i.e., Lη → 0 as η → 0 (see Assumption 10). Thus, one can tune the stepsize η to be
small enough such that Lη satisfies the requirement. As an example, if g = ‖x‖22, then one
can calculate that Lη = O(η). In this case, we should choose the stepsize to be roughly
η ≤ r2−1

2pr2C2 .
Proof Using the elementary inequality ‖a‖2 − ‖b‖2 ≤ 2‖a‖‖a− b‖, we have for all t:

‖x(t+ 1)−x(t)‖2 − ‖x(t+ 2)− x(t+ 1)‖2

≤ 2 ‖x(t+ 1)− x(t)‖ · ‖(x(t+ 1)− x(t))− (x(t+ 2)− x(t+ 1))‖

≤ 2 ‖x(t+ 1)− x(t)‖ ·
p∑
i=1
‖(xi(t+ 1)− xi(t))− (xi(t+ 2)− xi(t+ 1))‖

(i)
≤ 2 ‖x(t+ 1)− x(t)‖ ·

p∑
i=1

∥∥∥∆η(xi(t))−∆η(xi(t+ 1))
∥∥∥

(ii)
≤ 2 ‖x(t+ 1)− x(t)‖

(p∑
i=1

Lη‖xi(t)− xi(t+ 1)‖
)

(iii)
≤ 2pLη ‖x(t+ 1)− x(t)‖ ·

t∑
k=(t−s)+

‖x(k + 1)− x(k)‖, (63)

where (i) is due to Assumption 9 hence t ∈ Ti for all t, (ii) follows from Assumption 10,
and (iii) is due to (15).

If for some r > 1 there exists some T such that for all t ≥ T ,

t∑
k=(t−s)+

‖x(k + 1)− x(k)‖ ≥ C‖x(t+ 1)− x(t)‖, (64)

where C = rs+1−1
r−1 > s+ 1 (since r > 1 and w.l.o.g. s > 0). Summing the index t from T to

n yields

C
n∑
t=T
‖x(t+ 1)− x(t)‖ ≤

n∑
t=T

t∑
k=(t−s)+

‖x(k + 1)− x(k)‖

22

Asynchronous Distributed Proximal Gradient Algorithm

≤ (s+ 1)
n∑

t=(T−s)+

‖x(t+ 1)− x(t)‖ ,

which after rearranging terms becomes

(C − s− 1)
n∑
t=T
‖x(t+ 1)− x(t)‖ ≤ (s+ 1)

T−1∑
t=(T−s)+

‖x(t+ 1)− x(t)‖ .

Since the right hand side does not depend on n, letting n tend to infinity we conclude
∞∑
t=0
‖x(t+ 1)− x(t)‖ <∞, (65)

and the proof of the finite length property would be complete.
Therefore, in the remaining part of the proof, we can assume (64) fails for infinitely

many t. Take any such t = t̂, we have
t∑

k=(t−s)+

‖x(k + 1)− x(k)‖ ≤ C‖x(t+ 1)− x(t)‖ ≤ C2‖x(t+ 1)− x(t)‖, (66)

since C > 1. Combining (63) and (66) we have for t = t̂:

‖x(t+ 1)− x(t)‖2 − ‖x(t+ 2)− x(t+ 1)‖2 ≤ 2pLηC2 ‖x(t+ 1)− x(t)‖2

≤
(

1− 1
r2

)
‖x(t+ 1)− x(t)‖2 ,

if η is small enough (recall that Lη = o(1)). After rearranging terms we conclude that for
t = t̂:

‖x(t+ 1)− x(t)‖ ≤ r‖x(t+ 2)− x(t+ 1)‖. (67)

Using induction we can continue the same process for any t ≥ t̂. Indeed, suppose (67) is
true for any t ≤ m− 1, then (63) holds (for any t), and (66) also holds: If m ≤ t̂+ s, then

m∑
k=(m−s)+

‖x(k+1)−x(k)‖ =
t̂∑

k=(m−s)+

‖x(k + 1)− x(k)‖+
m∑

k=t̂+1

‖x(k + 1)− x(k)‖

(i)
≤

t̂∑
k=(t̂−s)+

‖x(k+1)−x(k)‖+
m∑

k=t̂+1

rm−k‖x(m+1)−x(m)‖

(ii)
≤ C

‖x(t̂+ 1)− x(t̂)‖+
m∑

k=t̂+1

rm−k‖x(m+ 1)− x(m)‖


(iii)
≤ C

m∑
k=t̂

rm−k‖x(m+ 1)− x(m)‖

(iv)
≤ C2‖x(m+ 1)− x(m)‖,

23

Zhou, Yu, Dai, Liang and Xing

where (i) is due to the induction hypothesis, (ii) is due to the definition of t̂ and the fact
that C > 1, (iii) is due to again the induction hypothesis, and finally (iv) is due to the
definition of C (recall m ≤ t̂+ s). If m > t̂+ s, the same inequality, with C2 replaced by C,
would still hold (essentially dropping all the first terms on the right hand side of the above
inequalities). Thus, (63) and (66) would imply again (67) for t = m.

Lastly, we recall from eq. (22) that for large t,

F
(
x(t+ 1)

)
− F

(
x(t)

)
≤ 1

2(L− 1/η)‖x(t+ 1)− x(t)‖2

+√pL‖x(t+ 1)− x(t)‖
t−1∑

k=(t−s)+

‖x(k + 1)− x(k)‖.

≤ 1
2(L− 1/η)‖x(t+ 1)− x(t)‖2 +√pCL‖x(t+ 1)− x(t)‖2.

≤ −α‖x(t+ 1)− x(t)‖2,

where α = 1
2(1/η − L − 2√pCL) > 0 if η is small. Hence, the sufficient decrease property

in Assumption 8 is verified and the finite length properties follow from Theorem 11.

Lastly, we show that Assumption 10 also holds for the important cardinality function
‖x‖0 (number of nonzero entries).
Lemma 14 Consider the same setting as in Theorem 5, then Assumption 10 holds for any
function f and g = ‖ · ‖0 on all local sequences {xi(t)} of m-PAPG.
Proof The crucial observation here is that for the cardinality function g = ‖·‖0, its proximal
map on the j-th entry can be chosen as:

proxηgj
(zj) =

{
zj , if |zj | >

√
2η

0, otherwise . (68)

However, Theorem 5 implies that lim
t→∞
‖xi(t+ 1)−xi(t)‖ = 0. Thus, for t sufficiently large,

the sequence {xi(t)} will have the same support Ω (indices that have nonzero entries), for
otherwise ‖xi(t+ 1)− xi(t)‖ ≥

√
2η even if one index in the support changes. Therefore,

‖∆η(xi(t+ 1))−∆η(xi(t))‖
(i)
≤
∑
j∈Ω
‖proxηgj

(xij(t+ 1)− η∇jf(xi(t+ 1)))− xij(t+ 1)

− proxηgj
(xij(t)− η∇jf(xi(t)))− xij(t)‖

(ii)
≤
∑
j∈Ω
‖η∇jf(xi(t+ 1))− η∇jf(xi(t))‖

(iii)
≤ ηpL‖xi(t+ 1)− xi(t)‖,

where (i) is the triangle inequality, (ii) uses the property of the proximal map (68), and (iii)
is due to Assumption 2.

Note that similar results as Theorem 14 can be derived for the rank function, and
more generally for functions whose proximal map is discontinuous with pieces satisfying
Theorem 12 (for instance, the group cardinality norm ‖ · ‖0,2).

24

Asynchronous Distributed Proximal Gradient Algorithm

7. Economical Implementation for Linear Models

In this section, we provide an economical implementation of m-PAPG on a distributed
system for the widely used linear models:

minx∈Rd f(Ax) + g(x), (69)

where A ∈ Rn×d corresponds to the data matrix. Typically f : Rn → R is the likelihood
function and g : Rd → R is the regularizer. The data matrix A consists of n sample
points and we have suppressed the labels in classification or the responses in regression.
Support vector machines (SVM), Lasso, logistic regression, boosting, etc., all fit under this
framework. Our interest here is when the model dimension d is much higher than the
number of samples n (d can be up to hundreds of millions and n can be up to millions).
This is also the usual setup in many computational biology and health care problems.

A direct implementation of m-PAPG can be inefficient in terms of both network com-
munication and parameter storage. First, each machine needs to communicate with every
other machine to synchronize the model blocks. This leads to a peer-to-peer network topol-
ogy and result in a dense connection when the system holds hundreds of machines. Second,
each machine needs to keep a local copy of the full model (i.e. xi(t)), which incurs a high
storage cost when the dimension is high. Note that the local models xi(t) are kept solely
for the convenience of evaluating the partial gradient ∇if : Rd → Rdi . For some problems
such as the Lasso, a seemingly workaround is to pre-compute the Hessian H = A>A and
distribute the corresponding row blocks of H to each worker machine. This scheme, how-
ever, is problematic in the high dimensional setting: the pre-computation of the Hessian
can be very costly, and each row block of H has a very large size (di × d).

The above issues can be avoided by exploiting the structure of the linear model in
eq. (69) and adopting the parameter server distributed system Ho et al. (2013); Li et al.
(2014). The system dedicates a central server to store the key parameters, and let each
worker machine to communicate only with the server. To be specific, we partition the data
matrix A into p column blocks A = [A1, . . . , Ap] and distribute the block Ai ∈ Rn×di to
machine i Boyd et al. (2010); Richtárik and Takáč (to appear) . Note the local update
computed by machine i at the t-th iteration is

Ui(xi(t)) = proxηgi

(
xi(t)− ηA>i f ′(Axi(t))

)
− xi(t). (70)

Since machine i is in charge of updating the i-th block xi(t) of the global model, it suffices
to have the matrix-vector product Axi(t) to compute the local update in eq. (70) . If we
initialize ∀i, xi(0) ≡ 0, then Axi(t) can be written in a cumulative form as

Axi(t) =
p∑
j=1

Aj [xi(t)]j =
p∑
j=1

τ i
j (t)∑
k=0

AjI{k∈Tj}Uj(x
j(k))︸ ︷︷ ︸

∆j(k)

,

where recall that machine i only has access to a delayed copy xj(τ ij(t)) of the parameters
in machine j. Hence, to evaluate the matrix-vector product, every machine needs to accu-
mulate ∆j(k) over all machines upto a delayed clock. Thus, we aggregate ∆j(t) ∈ Rn on
the parameter server whenever it is generated and sent by the worker machines. In details,

25

Zhou, Yu, Dai, Liang and Xing

Algorithm 1 Economic Implementation of m-PAPG
1: For the server:
2: while recieves update ∆i from machine i do
3: N← N + ∆i

4: end while
5: while machine i sends a pull request do
6: send N to machine i
7: end while
8: For machine i at active clock t ∈ Ti:
9: pull N from the server

10: Ui ← proxηgi

(
xi − ηA>i f ′(N)

)
− xi

11: send ∆i = AiUi to the server
12: update xi ← xi + Ui

the worker machines first pull this matrix-vector product (denoted as N) from the server to
conduct the local computation in eq. (70). Then machine i performs the local update:

xi(t+ 1) = xi(t) + Ui(xi(t)). (71)

Note that machine i does not maintain or update other blocks of parameters xj(t), j 6= i.
Lastly, machine i computes and sends the vector ∆i(t) = AiUi(xi(t)) ∈ Rn to the server,
and the server immediately performs the aggregation:

N← N + ∆i(t). (72)

We summarize the above economical implementation in Algorithm 1, where N denotes
the aggregated matrix-vector product. The storage cost for each worker machine is O(ndi)
(for storing Ai only). Each iteration requires two matrix-vector products that cost O(ndi)
in the dense case, and the communication of a length n vector between the server and the
worker machines. Note that the cost is significantly lower than the direct implementation.

8. Experiments

In this section, we empirically verify the convergence properties and time efficiency of m-
PAPG. All data are generated via normal distribution with the columns being normalized
to have unit norm. We first test the convergence properties of m-PAPG via a non-convex
Lasso problem with the group regularizer ‖ · ‖0,2, which takes the form

minx∈Rd
1
2‖Ax− b‖2 + λ‖x‖0,2, (73)

where we set sample size n = 1000 and dimension size d = 2000, and the group norm divides
the whole model into 20 groups with equal dimension. We use 4 machines (cores) with each
handling five groups of coordinates, and consider maximal staleness s = 0, 10, 20, 30, re-
spectively. To better demonstrate the effect of staleness, we let machines only communicate
when exceed the maximum staleness. This can be viewed as the worst case communication
scheme and a larger s brings more staleness into the system. We set the learning rate to

26

Asynchronous Distributed Proximal Gradient Algorithm

have the form η(αs) = 1/(Lf + 2Lαs), α > 0, that is, a linear dependency on staleness
s as suggested by Theorem 5. Then we run Algorithm 1 with different staleness and use
η(0), η(10), η∗(αs), respectively, where η∗(αs) is the largest step size we tuned for each s
that achieves a stable convergence. We track the global model x(t) and plot the results
in Figure 1. Note that with the large step size η(0) all instances (with nonzero staleness)
diverge hence are not presented. With η(10) (Figure 1, left), the staleness does not sub-
stantially affect the convergence in terms of the objective value. We note that the objective
curves converge to slightly different minimal values due to the non-convexity of problem
(73). With η∗(αs) (Figure 1, middle), it can be observed that adding a slight penalty αs
on the learning rate suffices to achieve a stable convergence, and the penalty grows as s
increases, which is intuitive since a larger staleness requires a smaller step size to cancel the
inconsistency. In particular, for s = 10 the best convergence is comparable to the bulk syn-
chronized case s = 0. (Figure 1, right) further shows the asymptotic convergence behavior
of the global model x(t) under the step size η∗(αs). It is clear that a linear convergence is
eventually attained, which confirms the finite length property in Theorem 11.

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of iterations

o
b
je
ct
iv
e
va
lu
e

learning rate = η(10)

s=0
s=10
s=20
s=30

0 50 100 150 200 250 300 350 400 450 500 550
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of iterations

ob
je
ct
iv
e
va
lu
e

learning rate = η
∗(αs)

s=0, αs=0
s=10, αs=0.094
s=20, αs=0.25
s=30, αs=0.45

0 500 1000 1500 2000 2500 3000
−14

−12

−10

−8

−6

−4

−2

0

number of iterations

lo
g(
‖x

c
−
x
∗
‖)

learning rate η
∗(αs)

s=0 αs=0
s=10 αs=0.094
s=20 αs=0.25
s=30 αs=0.45

Figure 1: Convergence curves of m-PAPG under different staleness parameter s and step
size η.

0 5 10 15 20 25 30 35
2

4

6

8

10

12

14
x 10

4

number of iterations

o
b
je
ct
iv
e
v
a
lu
e

Objective vs Iteration

s=0

s=1

s=3

s=5

s=7

100 200 300 400 500 600 700 800 900 1000
3

4

5

6

7

8

9

10

11
x 10

4

seconds

o
b
je
ct
iv
e
v
a
lu
e

Objective vs Seconds

s=0
s=1
s=3
s=5
s=7

0 1 2−3 4−5 6−7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

staleness

p
er
ce
n
ta
g
e

Staleness Distributions

s = 0
s = 1
s = 3
s = 5
s = 7

Figure 2: Efficiency of m-PAPG on a large scale Lasso problem.

Next, we verify the time and communication efficiency of m-PAPG via an l1 regularized
quadratic programming problem with very high dimensions, taking the form

minx
1
2x>A>Ax + λ‖x‖1. (74)

27

Zhou, Yu, Dai, Liang and Xing

We generate samples of size n = 1Million and dimension d = 100Millions. We implement
Algorithm 1 on Petuum Ho et al. (2013); Dai et al. (2014) — a stale synchronous parallel
system which updates the local parameter caches via stale synchronous communications.
The system contains 100 computing nodes and each is equipped with 16 AMD Opteron
processors and 16GB RAM linked by 1Gbps ethernet. We fix the learning rate η = 10−3

and consider maximum staleness s = 0, 1, 3, 5, 7, respectively. (Figure 2, left) shows that per-
iteration progress is virtually indistinguishable among various staleness settings, which is
consistent with our previous experiment. (Figure 2, middle) shows that system throughput
is significantly higher when we introduce staleness. This is due to lower synchronization
overheads, which offsets any potential loss due to staleness in progress per iteration. We also
track the distributions of staleness during the experiments, where we record in N the clocks
of the freshest updates that accumulate from all the machines. Then whenever a machine
pulls N from the server, it compares its local clock with these clocks and records the clock
differences. (Figure 2, right) shows the distributions of staleness under different maximal
staleness settings. Observe that bulk synchronous (s = 0) peaks at staleness 0 by design,
and the distribution concentrates in small staleness area due to the eager communication
mechanism of Petuum. It can be seen that a small amount of staleness is sufficient to relax
the communication bottlenecks without affecting the iterative convergence rate much.

9. Conclusion

We have proposed m-PAPG as an extension of the proximal gradient algorithm to the
model parallel and partially asynchronous setting. m-PAPG allows worker machines to
operate asynchronously as long as they are not too far apart, hence greatly improves the
system throughput. The convergence properties of m-PAPG are thoroughly analyzed. In
particular, we proved that: 1) every limit point of the sequences generated by m-PAPG
is a critical point of the objective function; 2) under an additional error bound condition,
the function values decay periodically linearly; 3) under the additional Kurdyka- Lojasiewicz
inequality, the sequences generated by m-PAPG converge to the same critical point, provided
that a proximal Lipschitz condition is satisfied. In the future we plan to further weaken
the proximal Lipschitz condition so that our analysis can handle many more nonsmooth
functions.

Acknowledgment

This work of Y. Zhou and Y. Liang is supported in part by the grants AFOSR FA9550-16-
1-0077, NSF ECCS-1818904 and CCF-1761506.

References

P.-A. Absil, R. Mahony, and B. Andrews. Convergence of the iterates of descent methods
for analytic cost functions. SIAM Journal on Optimization, 16(2):531–547, 2005.

Alekh Agarwal and John C. Duchi. Distributed delayed stochastic optimization. In Advances
in Neural Information Processing Systems 24, pages 873–881. 2011.

28

Asynchronous Distributed Proximal Gradient Algorithm

Hedy Attouch and Jerome Bolte. On the convergence of the proximal algorithm for nons-
mooth functions involving analytic features. Mathematical Programming, 116(1-2):5–16,
2009. ISSN 0025-5610.

Hedy Attouch, Jerome Bolte, Patrick Redont, and Antoine Soubeyran. Proximal alternating
minimization and projection methods for nonconvex problems: An approach based on
the Kurdyka- Lojasiewicz inequality. Mathematics of Operations Research, 35(2):438–457,
2010.

Gérard M. Baudet. Asynchronous iterative methods for multiprocessors. Journal of the
Association for Computing Machinery, 25(2):226–244, 1978.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Img. Sci., 2(1):183–202, 2009.

Amir Beck and Marc Teboulle. Smoothing and first order methods: A unified framework.
SIAM Journal on Optimization, 22(2):557–580, 2012.

Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation: Numer-
ical Methods. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.

Jéróme Bolte, Aris Danilidis, Olivier Ley, and Laurent Mazet. Characterizations of
 Lojasiewicz inequalities and applications: Subgradient flows, talweg, convexity. Transac-
tions of the American Mathematical Society, 362(6):3319–3363, 2010.

Jerome Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized mini-
mization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1-2):
459–494, 2014.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122, 2010.

D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and Its Applications, 2:
199–222, 1969.

Ronan Collobert, Fabian Sinz, Jason Weston, and Léon Bottou. Trading convexity for
scalability. pages 201–208, 2006.

Wei Dai, Abhimanu Kumar, Jinliang Wei, Qirong Ho, Garth Gibson, and Eric P. Xing.
High-performance distributed ml at scale through parameterserver consistency models.
In AAAI, 2014.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clus-
ters. Communications of ACM, 51(1):107–113, 2008.

Dmitriy Drusvyatskiy and Adrian S. Lewis. Error bounds, quadratic growth, and linear
convergence of proximal methods, 2016.

29

Zhou, Yu, Dai, Liang and Xing

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American Statistical Association, 96(456):1348–1360,
2001.

Cong Fang and Zhouchen Lin. Parallel asynchronous stochastic variance reduction for
nonconvex optimization, 2017.

Olivier Fercoq and Peter Richtárik. Accelerated, parallel, and proximal coordinate descent.
SIAM Journal on Optimization, 25(4):1997–2023, 2015.

H.R. Feyzmahdavian, A. Aytekin, and M. Johansson. A delayed proximal gradient method
with linear convergence rate. In IEEE International Workshop on Machine Learning for
Signal Processing, 2014.

Masao Fukushima and Hisashi Mine. A generalized proximal point algorithm for certain
non-convex minimization problems. International Journal of Systems Science, 12(8):
989–1000, 1981.

D. Hajinezhad and M. Hong. Nonconvex alternating direction method of multipliers for
distributed sparse principal component analysis. In Proc. IEEE Global Conference on
Signal and Information Processing (GlobalSIP), pages 255–259, Dec 2015.

Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B. Gibbons,
Garth A Gibson, Greg Ganger, and Eric P Xing. More effective distributed ml via a stale
synchronous parallel parameter server. In Advances in Neural Information Processing
Systems 26, pages 1223–1231. 2013.

Mingyi Hong, Zhi Quan Luo, and Meisam Razaviyayn. Convergence analysis of alternating
direction method of multipliers for a family of nonconvex problems. SIAM Journal on
Optimization, 26(1):337–364, 1 2016.

Zhouyuan Huo and Heng Huang. Asynchronous mini-batch gradient descent with variance
reduction for non-convex optimization, 2017.

Krzysztof Kurdyka. On gradients of functions definable in o-minimal structures. Annales
de l’institut Fourier, 48(3):769–783, 1998.

Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josi-
fovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed machine
learning with the parameter server. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 583–598, 2014.

Ji Liu and Stephen J. Wright. Asynchronous stochastic coordinate descent: Parallelism and
convergence properties. SIAM Journal on Optimization, 25(1):351–376, 2015.

P. D. Lorenzo and G. Scutari. NEXT: In-network nonconvex optimization. IEEE Transac-
tions on Signal and Information Processing over Networks, 2(2):120–136, June 2016.

Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M. Hellerstein. Distributed graphlab: A framework for machine learning and
data mining in the cloud. Proc. VLDB Endow., 5(8):716–727, 2012.

30

Asynchronous Distributed Proximal Gradient Algorithm

Zhaosong Lu and Lin Xiao. On the complexity analysis of randomized block-coordinate
descent methods. Mathematical Programming, 152:615–642, 2015.

Zhi-Quan Luo and Paul Tseng. Error bounds and convergence analysis of feasible descent
methods: A general approach. Annals of Operations Research, 46(1):157–178, 1993.

Rahul Mazumder, Jerome H. Friedman, and Trevor Hastie. Sparsenet: Coordinate descent
with nonconvex penalties. Journal of the American Statistical Association, 106(495):
1125–1138, 2011.

Yurii Nesterov. Gradient methods for minimizing composite functions. Mathematical Pro-
gramming, Series B, 140:125–161, 2013.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in Neural Information
Processing Systems 24, pages 693–701. 2011.

P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1-2):1–38,
2014.

P. Richtárik and M. Takáč. Distributed Coordinate Descent Method for Learning with Big
Data. Journal of Machine Learning Research, to appear.

R.T. Rockafellar and R.J.B. Wets. Variational Analysis. Springer, 1997.

Suvrit Sra. Scalable nonconvex inexact proximal splitting. In Advances of Neural Informa-
tion Processing Systems, 2012.

Paul Tseng. On the rate of convergence of a partially asynchronous gradient projection
algorithm. SIAM Journal on Optimization, 1(4):603–619, 1991.

Leslie G. Valiant. A bridging model for parallel computation. Communications of ACM,
33(8):103–111, 1990.

Yichao Wu and Yufeng Liu. Robust truncated hinge loss support vector machines. Journal
of the American Statistical Association, 102(479):974–983, 2007.

Linli Xu, Koby Crammer, and Dale Schuurmans. Robust support vector machine training
via convex outlier ablation. 2006.

Yaoliang Yu, Xun Zheng, Micol Marchetti-Bowick, and Eric P. Xing. Minimizing nonconvex
non-separable functions. In The 17th International Conference on Artificial Intelligence
and Statistics (AISTATS), 2015.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. pages 10–10, 2010.

Cun-Hui Zhang. Nearly unbaised variable selection under minimax concave penalty. Annals
of Statistics, 38(2):894–942, 2010.

31

Zhou, Yu, Dai, Liang and Xing

Cun-Hui Zhang and Tong Zhang. A general theory of concave regularization for high-
dimensional sparse estimation problems. Statistical Science, 27(4):576–593, 2012.

Hui Zhang. The restricted strong convexity revisited: analysis of equivalence to error bound
and quadratic growth. Optimization Letters, pages 1–17, 2016.

Y. Zhou, Y.L. Yu, W. Dai, Y.B. Liang, and E.P. Xing. On convergence of model parallel
proximal gradient algorithm for stale synchronous parallel system. In The 19th Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), 2016.

Zirui Zhou, Qi Zhang, and Anthony Man-Cho So. `1,p-norm regularization: Error bounds
and convergence rate analysis of first-order methods. In Proceedings of the 32nd In-
ternational Conference on Machine Learning, pages 1501–1510. JMLR Workshop and
Conference Proceedings, 2015.

32

	Introduction
	Preliminaries
	Formulation of m-PAPG
	Characterizing the limit points
	Convergence under Error Bound
	Convergence with KŁ inequality
	Economical Implementation for Linear Models
	Experiments
	Conclusion

