
Journal of Machine Learning Research 19 (2018) 1-30 Submitted 7/17; Revised 9/18; Published 10/18

Hinge-Minimax Learner for the Ensemble of Hyperplanes

Dolev Raviv DOLEV.RAVIV@GMAIL.COM
Department of Computer Science
University of haifa
Haifa, 31905, Israel

Tamir Hazan TAMIR.HAZAN@TECHNION.AC.IL
Faculty of Industrial Engineering and Management
Technion - Israel Institute of Technology
Haifa, 32000, Israel

Margarita Osadchy RITA@CS.HAIFA.AC.IL

Department of Computer Science
University of haifa
Haifa, 31905, Israel

Editor: David Sontag

Abstract

In this work we consider non-linear classifiers that comprise intersections of hyperplanes. We learn
these classifiers by minimizing the “minimax” bound over the negative training examples and the
hinge type loss of the positive training examples. These classifiers fit typical real-life datasets that
consist of a small number of positive data points and a large number of negative data points. Such
an approach is computationally appealing since the majority of training examples (belonging to
the negative class) are represented by the statistics of their distribution, which is used in a single
constraint on the empirical risk, as opposed to SVM, in which the number of variables is equal to
the size of the training set. We first focus on intersection of K hyperplanes, for which we provide
empirical risk bounds. We show that these bounds are dimensionally independent and decay as
K/
√
m for m samples. We then extend the K-hyperplane mixed risk to the latent mixed risk for

training a union of C K-hyperplane models, which can form an arbitrary complex, piecewise linear
boundaries. We propose efficient algorithms for training the proposed models. Finally, we show
how to combine hinge-minimax training with deep architectures and extend it to multi-class settings
using transfer learning. The empirical evaluation of the proposed models shows their advantage
over the existing methods in a small training labeled data regime.

Keywords: Minimiax, Imbalanced Classification, Intersection of K Hyperplanes, Transfer Learn-
ing

1. Introduction

Many real-life binary classification problems involve imbalanced classes, for example object de-
tection in vision and fraud detection in security. In such problems it is easy to collect background
data (the negative class), while data representing the target class (the positive class) is rare or hard
(expensive) to obtain. The majority of existing classifiers (e.g., SVM, Neural Networks, includ-
ing deep ones) assume balanced training sets and when trained on imbalanced sets show degraded
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classification performance or require a long and tedious bootstrapping process of mining negative
examples (e.g. Malisiewicz et al. (2011); Girshick et al. (2014)) out of millions.

When there are (infinitely) many training examples, instead of minimizing the average sample
loss, it is more computationally appealing to apply minimax setting (Lanckriet et al. (2003); Hon-
orio and Jaakkola (2014)), which upper bounds the expected risk of a classifier assuming only the
knowledge of mean and covariance of the data distribution. The “minimax” bound provides an up-
per bound for every distribution with a given mean and covariance. Applying the minimax learning
(Lanckriet et al. (2003)) to the negative class (the majority class) allows to avoid bootstrapping pro-
cedure and makes learning more efficient, as it replaces loss evaluation on all negative samples with
a single “minimax” bound.

Due to the assumption that the positive class is rare, we cannot apply the minimax learning
to the positive class, as it completely relies on the mean and covariance of the data. Estimating
the covariance matrix in high-dimensional space from a small number of positive training samples
is problematic. Alternatively, we can use the hinge loss (Vapnik (2000); Zhang (2002); Bartlett
and Mendelson (2003); Bousquet et al. (2004); Kakade et al. (2008)) for the positive class as it is
computationally appealing when there are fairly small number of training samples.

We suggest to combine the hinge-like loss for the positive samples with the “minimax” bound
applied to the statistics of the negative samples to enjoy the best of both worlds and we call these
classifiers Hinge-Minimax classifiers.

The idea of combining “minimax” bound for the negative class and svm-like formulation for
the positive samples was introduced in Osadchy et al. (2012, 2016) for computing linear and kernel
classifiers. Kernel classifiers could be quite slow, as they require evaluating kernel on many support
vectors. In this work we focus on more efficient non-linear classifiers – ensembles of hyperplanes.
We first consider an intersection of hyperplanes and then extended it to more general ensembles of
hyperplanes.

Previous algorithms for intersection of hyperplanes are computationally costly when consider-
ing large sets of negative data points (Klivans and Sherstov (2009); Daniely et al. (2014)). To deal
with this computational difficulty we use the mixed risk. Namely, we extend the “minimax” bound
to deal with intersection of hyperplanes over (infinitely many) negative examples. For the positive
samples, we define a K-hyperplane hinge loss. We derive an empirical mixed-risk bound, that uses
the Rademacher complexities to bound the risk of the positive class and vector Bernstein’s inequali-
ties to bound the risk associated with the negative class. Note that we treat the positive and negative
samples differently because of the computational gain such separation provides.

Recently, Honorio and Jaakkola (2014) derived a generalization bound for the minimax setting
using PAC-Bayesian approach, which bounds the expected loss with respect to a posterior distribu-
tion over all possible classifiers. Our work differs as we use stronger assumptions - that the norm
of the data points is bounded by a constant, an assumption that is natural in many applications.1

Thus we are able to avoid the PAC-Bayesian approach that considers generalization bounds over
randomized predictors.

Intersection of positive half-spaces is a convex set. We generalize the mixed risk for a non-
convex classifier. We learn an ensemble of K-hyperplane models, that can form arbitrary, piece-wise
linear boundaries. We propose a training algorithm that minimizes this risk by simultaneously dis-
covering the convex components in the positive class and building K-hyperplane models to separate

1. Input normalization is a standard procedure, applied for faster learning.
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each component from the negative class. The learning is done by alternating between finding the
best partition of the data into hidden components and updating the model over this partition. We call
this novel classifier the Latent Hinge Minimax (LHM) classifier, as it discovers the latent structure
in the data and employs the Hinge-Minimax paradigm.

We show that the LHM model has an equivalent Neural Networks (NN) architecture. This
allows us 1) to use deep learning features via transfer learning and 2) to extend the proposed model
to the multi-class setting. For the multi-class problems, we build one-against-all classifiers for all
classes and combine them in a single model by mapping class specific LHM models to a multi-class
NN with a matching architecture. We then use the cross-entropy loss to adjust the weights in the
resulting LHM-NN combination.

We show that using LHM-NN in the transfer learning settings has significant benefits compared
to NN (standard settings), in both classification accuracy and training efficiency. The improved
accuracy stems from the ability of LHM model to learn from unlabeled data. The fast convergence
of the LHM-NN (just a handful of epochs) is due to a very good initialization of the upper layers
with class specific LHM classifiers. Note that class specific LHM models can be trained in parallel.
Moreover, adding a new class to LHM-NN is fast and easy: train a classifier for the new class, map it
to the corresponding LHM-NN architecture and run a very fast fine-tuning. Similarly to Kuzborskij
et al. (2013), which considered the transfer learning for the n + 1 category from a fully trained n-
category classifier, we use only a handful of training samples for tuning it. In contrast to Kuzborskij
et al. (2013), we do not restrict the new classifier to belong to the span of the previously learned
n classifiers. This allows us greater flexibility in adding a new, non-related class to the multi-class
model.

We performed empirical evaluation of the proposed models: the K-hyperplane, the LHM, and
the multi-class models. In all cases, the proposed models outperformed their counterparts in small
and imbalanced training data regime.

The rest of the paper is organized as follows. Section 2 introduces the K hyperplane Hinge-
Minimax classifier (KHHM). Specifically, we extend the “minimax” bound for the intersection of K
positive half-spaces in Section 2.1.1. Then in Section 2.2, we propose a novel training algorithm for
the KHHM classifier. We prove the uniform generalization bounds for the KHHM model in Section
2.3. Section 3 focuses on a non-convex generalization of the KHHM model – LHM classifier. We
introduce the latent mixed risk in Section 3.1, the training algorithm in Section 3.2, and we prove a
uniform generalization bound for the LHM classifier with a fixed assignment of the positive labeled
training set in Section 3.3. Section 4 discusses the mapping of the LHM classifier to a neural
network. Section 5 reports the experiments with KHHM, LHM, and LHM-NN classifiers. Section
6 discusses the efficiency of the proposed models and Section 7 concludes the paper.

2. K-Hyperplane Hinge-Minimax Classifier

In the following, for simplicity we assume that for a linear classifier which predicts y = sign(wTx),
b = 0 (or absorbed by w).

Definition 1 Let wi, i = 1, ..,K denote K hyperplanes. Let W be a matrix with wi as its ith
column. We define K-hyperplane classifier fW (x) as an intersection of these K half-spaces:

fW (x) =

{
1 if W>x ≥ ~0
−1 otherwise

(1)
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where ~0 denotes a vector of zeros.

2.1. Mixed Risk for K-Hyperplane Model

We are interested in a classification problem in which the positive class corresponds to a single
concept and the negative class is its complement and we refer to it as a background. We assume that
the sample of the positive class is relatively small while the negative sample is very large (it can be
represented by an unlabeled data as well, thus is easy to collect). Due to the specifics of the problem
we propose a mixed risk for the non-linear classifier in eq. 1. We first define its parts in Definitions
2 and 3 and then define the mixed risk in Definition 4.

Definition 2 Let (x, y) ∼ D be a joint distribution of samples x ∈ Rn and labels y ∈ {−1, 1}. We
define the hinge risk of fW (x) as follows,

LHD(W ) = ED [`(W,x, y)1[y = 1] + 0 · 1[y = −1]] (2)

where `(W,x, y) = maxj∈{1,...,K}{max{0, 1− yw>j x}}.

Definition 3 Under the assumptions of Definition 2, let Dneg be a marginal distribution of samples
from a ball of radius C over the negative labels with mean µ and covariance matrix Σ. Let Ω(µ,Σ)
be a family of all distributions with mean µ and covariance matrix Σ. We assume that Dneg ∈
Ω(µ,Σ).

We define the background risk2 of fW (x) as follows,

LBµ,Σ(W ) =

[
sup

Z∈Ω(µ,Σ)
Prz∼Z(W>z ≥ ~0)

]
1[y = −1] + 0 · 1[y = 1] (3)

We derive the expression for the background risk in the next section.
According to the Definitions 2 and 3, the hinge risk is defined over the samples of the positive

class only and the background risk is defined over the distribution of the negative class only. Thus
we can sum the two to form the mixed risk over D.

Definition 4 Under the assumptions of Definitions 2 and 3, we define the mixed risk for the K-
hyperplane classifier as:

LHBD (W ) = LHD(W ) + LBµ,Σ(W ), (4)

2.1.1. THE EXPECTED RISK OF THE NEGATIVE CLASS

The extension of Theorem 3.1 from Marshall and Olkin (1960) to a nonzero mean variable (as
shown in Marshall and Olkin (1960) Eq. 7.7–7.8) states that for a random vector x with mean M
and covariance Γ,

sup
x∼(M,Γ)

Pr(x ∈ S) =
1

1 + d2
,

with d2 = infx∈S(x−M)>Γ−1(x−M), where S is a given convex set.
The intersection of K hyperplanes is a convex set, thus we can bound the probability of a

negative sample falling into the intersection of K hyperplanes using the above result and derive the
expression for LBµ,Σ(W ) as shown below in Theorem 1.

2. the name “background” is chosen to emphasize the fact that the negative class is the majority class, while the positive
class is rare.
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Figure 1: A 2D illustrative example of Theorem 1. z∗ is the closest point to the mean of the negative
distribution.

Theorem 1 For any finite number of hyperplanes wj ,

sup
Z∈Ω(µ,Σ)

Prz∼Z(W>z ≥ ~0) =
1

1 + d2

with d2 = µ>U(U>ΣU)−1U>µ, where U is a subset of columns of W that satisfy w>z∗ = 0,
where z∗ = arg minz(z − µ)>Σ−1(z − µ).

Before we proceed with the proof, let us consider the following 2D toy example to gain some
intuition into Theorem 1 (see Figure 2.1.1). Assume that the positive class lies inside an intersection
of three hyperplanesW = [w1, w2, w3] and the negative class is described by the normal distribution
with mean µ and covariance Σ. d2 is a square distance between the mean of the negative distribution
and the point on the boundary of the positive region of the classifier, which is closest to µ. In the
example, depicted in Figure 2.1.1, the closest point is denoted by z∗ and it’s an intersection of w1

and w2, thus U = [w1, w2].
Proof Let z ∼ Dneg ∈ Ω(µ,Σ) be a sample from the negative class. W>z ≥ ~0 defines a convex
set, thus we can apply the result due to Marshall and Olkin (1960) to obtain:

sup
Z∈Ω(µ,Σ)

Prz∼Z(W>z ≥ ~0) =
1

1 + d2
,

with d2 = infW>z≥~0(z − µ)>Σ−1(z − µ), where the supremum is taken over all distributions in
Ω(µ,Σ).

Next, we want to derive a closed-form expression for d2. We seek the solution for the primal
problem

min
z

(z − µ)>Σ−1(z − µ)

s.t. w>i z ≥ 0 for i = 1, ..,K. We construct the Lagrangian:

L(z, λi) = (z − µ)>Σ−1(z − µ) +
∑
i

λiw
>
i z, λi ≥ 0.

The optimality condition:

∂L

∂z
= 2Σ−1z − 2Σ−1µ+

∑
i

λiwi = 0,
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gives us z∗ = µ− 1
2

∑
i λiΣwi. The Lagrange dual function is as follows,

L(z∗, λ) =

(
1

2

∑
i

λiΣwi

)>
Σ−1

1

2

∑
j

λjΣwj

+
∑
i

λiw
>
i

µ− 1

2

∑
j

λjΣwj

 (5)

The optimality conditions are:

∂L(z∗, λ)

∂λt
= −1

2

∑
i

λiw
>
t Σwi + w>t µ = 0

for t such that λt > 0.
The function is optimized at

λ∗ = 2(UΣU)−1U>µ, (6)

where U is formed by a subset of columns of W for which λt > 0, and thus w>t z
∗ = 0.

For the last step we substitute the optimal λ, given in eq. 6 into the dual function in eq. 5 and
after simple algebraic manipulations we get:

d2 = max
λ≥0

(L(z∗, λ∗)) = µ>U(U>ΣU)−1U>µ

Given the result of Theorem 1, we can express the background part of the mixed risk of the
K-hyperplane classifier as follows,

LBµ,Σ(W ) = sup
Z∈Ω(µ,Σ)

Prz∼Z(W>z ≥ ~0) =
1

1 + µ>U(U>ΣU)−1U>µ

2.2. K-Hyperplane Hinge-Minimax (KHHM) Training

We aim to minimize the mixed risk in eq. 4. To this end, we minimize the empirical risk

LHBS = LBS (W ) + LHS (W ) (7)

regularized by the sum of L2 norms of the K hyperplanes: C
2

∑
i ‖wi‖2 + LHBS . This empirical

risk is a non convex and non smooth function, hence a gradient based optimization of it is difficult.
However, Osadchy et al. (2016) showed an algorithm for approximating this problem for a single
hyperplane w using the following convex formulation:

minimize
w

λ‖w‖2 +
∑
i

max{0, 1−w>xi}

subject to γ
√
w>Σw + w>µ ≤ 0.

(8)

where γ =
√

1−δ
δ . This formulation minimizes the regularized hinge loss on the positive samples

while constraining the probability of “background” data misclassified by the classifier w to be less
than a small threshold δ.
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We approximate the solution to the problem in eq. 7 by finding K hyperplanes W , which mini-
mize the regularized hinge loss LHS (W ) on the positive samples while constraining the probability
of “background” data misclassified by the intersection of these hyperplanes to be less than a small
threshold ε.

We propose an algorithm (Algorithm 1) that computes the hyperplane iteratively, each hyper-
plane at a time using Osadchy et al. (2016). Note that since the algorithm in Osadchy et al. (2016)
constraints the supremum over all distributions with given µ and Σ, it constraints an upper bound on
the true distribution of the negative class. However, for a Gaussian distribution the bound is tight.

The Algorithm 1 starts by trainingK hyperplanes in a greedy manner and then iteratively adjusts
each hyperplane to further reduce the loss.

Algorithm 1 KHHM Training
Input: {xi}, i = 1, ..,m+ a set of positive examples; {zi}, i = 1, ..,m− a set of negative
examples.

Initialization:
Estimate µ and Σ using {zi}m

−
i . Find w1 using Osadchy et al. (2016) with µ,Σ.

for t=2 to k do
Estimate µt and Σt using {zi | w>j zi > 0, j = 1, .., t− 1}
Find wt using Osadchy et al. (2016) with µt and Σt.

end for

Training:
for t=1, 2, 3... do

Let Pt be the probability Pr(W>z > 0) in iteration t
if (Pt−1 − Pt > ε)

Estimate µt and Σt using {zi | w>j zi > 0, j = 1, ..,K; j 6= t}.
Find wt using Osadchy et al. (2016) with µt and Σt.

else
Output W (K hyperplanes)

end if
end for

Lemma 2 Algorithm 1 minimizes the regularized hinge loss LHS (W ) on the positive samples while
keeping Pr(W>z ≥ ~0) ≤ ε (for a small ε).

Proof Let Z denote the distribution of the negative class and z ∼ Z denote a sample from this
distribution. Let St denote the part of negative class that falls inside the intersection of K − 1
hyperplanes (wt is not included):

St = {z|w>i z ≥ 0, ∀i ∈ {1, ...,K} \ {t}}.

In step i, Algorithm 1 finds wti that minimizes the hinge loss (which is always positive) of wti
over positive labels and constrains Pr(w>ti z ≥ 0)|z ∈ Sti) ≤ δ, while keeping the rest of the
hyperplanes fixed.
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The empirical risk of the intersection ofK hyperplanes over positive labels is the maximum over
K of hinge losses. Thus, the hinge loss of W is decreased at the iterations, in which the hyperplane
with the maximal loss is updated, and it remains unchanged otherwise. Consequently, Algorithm 1
minimizes the hinge loss of W .

We can write

Pr(W>z ≥ 0) = Pr(w>ti z ≥ 0)|z ∈ Sti)Pr(z ∈ Sti) + 0 · Pr(z /∈ Sti).

P r(z ∈ Sti) = a which is constant (does not depend on wti) and Pr(w>ti z ≥ 0)|z ∈ Sti) ≤ δ.
Thus, Pr(W>z ≥ 0) ≤ aδ. Setting ε = aδ concludes the proof.

2.3. Generalization Bound for KHHM Model

In the following we bound the mixed risk of the KHHM classifier by its finite sample. We show
that the discrepancy between the risk LHBD (W ) and its empirical estimation LHBS (W ) decays at the

rate of O(K

√
log(1/δ)

m ) where δ is the confidence over the samples of the training data and m is
the training data size. The main difficulty in deriving a generalization bound arises from mixing
the hinge risk for the positive examples and the background risk for the negative examples. We
approach this problem by deriving the uniform generalization bounds separately for the positive
and negative classes.

2.3.1. UNIFORM GENERALIZATION BOUND FOR THE EMPIRICAL BACKGROUND RISK

Recall that Dneg is the distribution of the negative data points, and µ and Σ are its mean and
covariance respectively. Let µ̂ and Σ̂ be the mean and covariance estimates from the training data
points that are associated with negative labels. We bound the background risk by its training sample
estimation. The generalization bound is dominated by the discrepancy

∆ = LBµ,Σ(w)− LB
µ̂,Σ̂

(w)

To provide uniform generalization bound to the background risk, we show that the discrepancy ∆
decreases when the size of the training sample increases. Therefore we represent the discrepancy
with ‖µ̂− µ‖ and ‖Σ̂− Σ‖ that decrease as a function of the training sample.

Let U denote a subset of columns of W that satisfy w>z∗ = 0, where z∗ = arg minz(z −
µ)>Σ−1(z − µ). We make two additional assumptions on U : First, the number of hyperplanes
KU comprising U is smaller than the dimension of the features and second, the hyperplanes in
U are linearly independent. Both assumptions hold in practice. The number of hypeplanes must
be small to make the classifier computationally efficient and KU ≤ K (while the dimension of
the feature space is usually large). The same reason justifies the independence assumption, as
linearly dependent hyperplanes are redundant and do not contribute to the classifier, thus should be
removed/avoided.

Using the result of Theorem 1, we can write the discrepancy ∆ as follows:

∆ =
1

1 + µ>U(U>ΣU)−1U>µ
− 1

1 + µ̂>U(U>Σ̂U)−1U>µ̂
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By noting that the denominator of both terms is greater than 1 we can upper bound ∆ by omitting the
denominator. Then,

∆ ≤ µ̂U(U>Σ̂U)−1U>µ̂− µ>U(U>ΣU)−1U>µ

Next, we denote A , U(U>ΣU)−1U> and Â , U(U>Σ̂U)−1U>. By adding and subtracting µ>Aµ̂ and
rearranging the terms, we obtain

∆ ≤ µ>A(µ̂− µ) + µ̂>(Â−A)µ̂+ (µ̂− µ)>Aµ̂. (9)

Denote
∆1 , µ>A(µ̂− µ) + (µ̂− µ)>Aµ̂

and
∆2 , µ̂>(Â−A)µ̂.

Going back to the original notations, we obtain

∆1 = µ>U(U>ΣU)−1U>(µ̂− µ) + (µ̂− µ)>U(U>ΣU)−1U>µ̂ (10)

∆2 = µ̂>(U(U>Σ̂U)−1U> − U(U>ΣU)−1U>)µ̂ (11)

In the following, let ‖ · ‖F denote the Frobenius norm of a matrix (the `2− norm of matrix vectorized form).

Lemma 3 Assume x ∼ Dneg is a distribution over data points x with negative labels such that ‖x‖ ≤ C
holds with probability 1. Denote by µ its mean and by Σ its covariance. Let S1 denote a training sample
of size m1 and let µ̂ = 1

m1

∑
x∈S1

x be its sampled mean and Σ̂ = 1
m1

∑
x∈S1

(x − µ̂)(x − µ̂)> be its
sampled covariance. Define ∆1 as in eq. 10, where matrix U has KU linearly independent columns (KU ≤
n) . Assume that the minimal eigenvalues of Σ, Σ̂ are lower bounded by α = λmin(Σ), α̂ = λmin(Σ̂),
respectively. Then, with probability at least 1 − δ over the draws of the training set S1, the following holds
uniformly for all W

∆1 ≤
2C

α

√
32C4(log(1/δ) + 1/4)

m1

Proof First, we show the upper bound

‖U(U>ΣU)−1U>‖ ≤ 1

α
(12)

Following the assumption that the columns of U are linearly independent and that their number is smaller
than the dimension of the feature space, we can derive that U =

∑KU

i=1 sivit
>
i , where v1, ..., vKU

are left
singular vectors, t1, ..., tKU

are right singular vectors, and s1, ..., sKU
are singular values of U which are all

non-zero. Let V be n × KU matrix of left singular vectors v1, ..., vKU
, T be a KU × KU matrix of right

singular vectors t1, ..., tKU
, and S be a KU ×KU diagonal matrix of singular values s1, ..., sKU

, then

U(U>ΣU)−1U> = V ST>(TSV >ΣV ST>)−1TSV > = V (V >ΣV )−1V > (13)

‖V (V >ΣV )−1V >‖2 = max
‖β‖≤1

‖V (V >ΣV )−1V >β‖2 (14)

= max
‖β‖≤1

(β>V (V >ΣV )−1V >V (V >ΣV )−1V >β)

= max
‖β‖≤1

((V >β)>(V >ΣV )−2(V >β)) ≤ ‖V >ΣV )−1‖2

Since V is a projection operator, the last inequality in Eq. 14 is due to ‖V β‖ ≤ ‖β‖ ≤ 1.

‖V >ΣV )−1‖2 =
1

λmin(V >ΣV )2
≤ 1

λmin(Σ)2
(15)

9
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The last inequality in Eq. 15 follows from Poincaré Separation Theorem (Bellman (1970)).
Combining equations 13, 14, and 15, we obtain

‖U(U>ΣU)−1U‖ = ‖V (V >ΣV )−1V >‖ ≤ ‖(V >ΣV )−1‖ ≤ 1

α

Then applying the above upper bound and the Cauchy-Schwarz inequality, we obtain:

∆1 ≤
(‖µ̂‖+ ‖µ‖)‖µ̂− µ‖

α
.

Since ‖x‖ ≤ C, then ‖µ̂‖+ ‖µ‖ ≤ 2C and we get:

∆1 ≤
2C

α
‖µ− µ̂‖.

Finally, we use the Bernstein inequality for vectors (cf. Candes and Plan (2011) Theorem 2.6) which
states that for vectors v1, ..., vm1

with Evk = 0 and ‖vk‖ ≤ B and
∑
k E‖vk‖2 ≤ σ2 it holds that for all

0 ≤ t ≤ σ2/B that P [‖
∑
k vk‖ ≥ t] ≤ exp(− t2

8σ2 + 1
4 ). Here ‖v‖2 =

∑
i v

2
i .

To fit the Bernstein inequality for vectors to our setting, we set vk = 1
m1

(xk − Ex∼Dneg
x) for any

xk ∈ S1. To see that the conditions of Candes and Plan (2011) Theorem 2.6 hold, we note that since
‖x‖ ≤ C then ‖vk‖ ≤ 2C/m1

def
= B and therefore ‖vk‖2 ≤ 4C2

m2
1

and
∑m1

k=1E‖vk‖2 ≤
4C2

m1

def
= σ2.

Consequently it holds for 0 ≤ t ≤ 2C that

P [‖µ̂− µ‖ ≥ t] ≤ exp

(
−m1t

2

32C2
+

1

4

)
.

The result follows when setting δ = exp(−m1t
2

32C2 + 1
4 ), or equivalently t =

√
32C2(log(1/δ)+1/4)

m1
.

We turn to handle the second term ∆2 of the discrepancy.

Lemma 4 Under the conditions of Lemma 3, define ∆2 as in eq. 11. Then, with probability at least 1 − δ
over the draws of the training set S1, the following holds uniformly for all W

∆2 ≤
C2

αα̂

(
2C‖µ̂− µ‖+

√
32C4(log(1/δ) + 1/4)

m1

)
Proof

∆2 = µ̂>U
(

(U>Σ̂U)−1 − (U>ΣU)−1
)
U>µ̂ (16)

≤
∣∣∣µ̂>U(U>Σ̂U)−1(U>ΣU − U>Σ̂U)(U>ΣU)−1U>µ̂

∣∣∣
=
∣∣∣µ̂>U(U>Σ̂U)−1U>(Σ− Σ̂)U(U>ΣU)−1U>µ̂

∣∣∣
Applying the Cauchy-Schwarz inequality and the upper bound in eq. 12, we obtain:

∆2 ≤
‖µ̂‖2‖Σ̂− Σ‖

αα̂
.

We now consider ‖Σ− Σ̂‖:

Σ̂ =
1

m1

m1∑
k=1

(xk − µ̂)(xk − µ̂)> =
1

m1

m1∑
k=1

xkxk − µ̂µ̂>

Σ = Ex∼Dneg (x− µ)(x− µ)> = Ex∼Dnegxx
> − µµ>

‖Σ− Σ̂‖ ≤ ‖Σ̂− Σ‖F ≤ ‖ 1

m1

m1∑
k=1

xkx
>
k − Ex∼Dneg

xx>‖F + ‖µ̂µ̂> − µµ>‖F

10
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For the second component in the bound: µ̂µ̂> − µµ> = µ̂(µ̂ − µ)> + (µ̂ − µ)µ> therefore ‖µ̂µ̂> −
µµ>‖F ≤ ‖µ̂(µ̂− µ)>‖F + ‖(µ̂− µ)µ>‖F ≤ 2C‖µ̂− µ‖.

For the first component in the bound, we use the Bernstein inequality for vectors (Candes and Plan (2011)
Theorem 2.6) in the same manner it is applied in Lemma 3. We set vk to be the vectorization of 1

m1
xkx

>
k −

Ex∼Dnegxx
> for any xk ∈ S1. To see that the conditions of Candes and Plan (2011) in Theorem 2.6 hold,

we note that since ‖x‖ ≤ C then ‖vk‖ ≤ 2C2

m1

def
= B and therefore ‖vk‖2 ≤ 4C4

m2
1

and
∑m1

k=1E‖vk‖2 ≤
4C4

m1

def
= σ2. Consequently it holds for 0 ≤ t ≤ 2C2 that

P
[∥∥∥ 1

m1

m1∑
k=1

xkx
>
k − Ex∼Dnegxx

>
∥∥∥ ≥ t] ≤ exp(−m1t

2

32C4
+

1

4
)

The result follows when setting δ = exp(−m1t
2

32C4 + 1
4 ) or equivalently t =

√
32C4(log(1/δ)+1/4)

m1
.

The upper bound for ∆ relies on the lower bound on the minimal eigenvalue of covariance Σ = Ex∼Dneg
(x−

µ)(x− µ)> and of the sampled covariance Σ̂ = 1
m1

∑
x∈S1

(x− µ̂)(x− µ̂)>. While the minimal eigenvalue
of Σ, say α = λmin(Σ), can be set to be away from zero, the minimal eigenvalue of the sampled covariance
α̂ = λmin(Σ̂) is a random variable. We show that α̂ is close to α with high probability:

Lemma 5 Assume the conditions of Lemma 3 hold. Assume that the minimal eigenvalue of α = λmin(Σ) is
positive. Let α̂ = λmin(Σ̂) be the minimal eigenvalue of the random covariance matrix Σ̂. Then α̂ ≥ α/2

with probability at least 1− 2 exp(− m1α
2

32·36C4 + 1
4 ) over the draws of the training set S1.

Proof Using Cauchy-Schwartz inequality we obtain

‖U>ΣU‖ − ‖U>Σ̂U‖ ≤
∣∣∣‖U>ΣU‖ − ‖U>Σ̂U‖

∣∣∣ ≤ ‖U>ΣU − U>Σ̂U‖ ≤ ‖Σ− Σ̂‖‖U‖2.

Therefore,
‖U>Σ̂U‖ ≥ ‖U>ΣU‖ − ‖Σ− Σ̂‖‖U‖2.

Following Lemma 4 we note that

‖Σ̂− Σ‖ ≤ ‖Σ̂− Σ‖F ≤ ‖
1

m1

m1∑
k=1

xkx
>
k − Ex∼Dnegxx

>‖F + ‖µ̂µ̂> − µµ>‖F

We use Bernstein inequality for vectors with t = α/6 to bound

P [‖ 1

m1

m1∑
k=1

xkx
>
k − Ex∼Dnegxx

>‖ ≥ α/6] ≤ exp(−m1α
2/(36 · 32) + 1/4)

for any α/6 ≤ 4m1. We also use Bernstein inequality for vectors with t = α/(2C · 3) to bound

P [‖µ̂− µ‖ ≥ α/(2C · 3)] ≤ exp

(
− m1α

2

36 · 32C4
+

1

4

)
.

Thus with error probability of 2 exp
(
− m1α

2

36·32C4 + 1
4

)
there hold ‖ 1

m1

∑m1

k=1 xkx
>
k − Ex∼Dnegxx

>‖ ≤ α/6

and 2C‖µ̂ − µ‖ ≤ α/3. In particular, the sum of both is upper bounded by α/2, hence ‖Σ̂ − Σ‖ ≤ α/2,
resulting in ‖U>Σ̂U‖ ≥ (α− α/2)‖U‖2. Therefore α̂‖U‖2 ≥ α/2‖U‖2.

Bounds on the discrepancy between the expected and the empirical background risks that are uniform
for any U guarantee generalization. The above lemmas suggest that the penalty of observing a finite sample
space decreases as 1/m1. This is summarized in the following theorem.

11
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Theorem 6 Under the conditions of Lemma 3, for α ≥
√

1152(log(2/δ)+1/4)
m1

with probability at least 1− 3δ

over m1 the i.i.d. samples from Dneg the following holds uniformly for all W with K linearly independent
hyperplanes:

LBµ,Σ(U) ≤ LB
µ̂,Σ̂

(U) +
(2C2

α
+

6C4

α2

)√32(log(1/δ) + 1/4)

m1
.

Proof Following Eq. 9, we note that LBµ,Σ(U)− LB
µ̂,Σ̂

(U) ≤ ∆1 + ∆2, for ∆1,∆2 defined in Lemmas 3, 4.
The proof applies the bounds on ∆1,∆2, where each of these bounds holds with an error probability at most
δ. The proof is concluded by bounding α̂ ≥ α/2 with an error probability at most δ. Formally, with error
probability at most 3δ:

∆1 ≤ 2C2

α

√
32 log(1/δ) + 1/4

m1

∆2 ≤ 3C4

αα̂

√
32(log(1/δ) + 1/4)

m1
≤ 6C4

α2

√
32(log(1/δ) + 1/4)

m1

The generalization guarantees of the background risk penalize a finite sample sizem by
√

1/m1. It decays to
zero when the number of the negative labels in the training sample tends to infinity. In our setting, we assume
that m ≈ m1, thus we get favorable guarantees with respect to the training size.

2.3.2. UNIFORM GENERALIZATION BOUND FOR THE EMPIRICAL RISK OF THE HINGE-LOSS

We derive a uniform generalization bound for the expected risk over the positive examples using Rademacher
complexity. The Rademacher complexity of a bounded set A ⊂ RK is

R(A) =
1

m
Eσ

[
max
a∈A

m∑
i=1

σiai

]
,

while σi ∈ {−1,+1} are i.i.d. and equally probable random variables.
Let F denote a family of functions:

F , {(x, y)→ `(W,x, y) : W = [w1, ..., wk], wj ∈ Rd,∀j}.

Let S = {(x1, y1), ..., (xm, ym)} be a training sample. Let F ◦ S be the set of all possible evaluations a
function f ∈ F can achieve on a sample S:

F ◦ S = {f(x1, y1), ..., f(xm, ym)}.

The Rademacher complexity of F with respect to S is defined as follows:

R(F ◦ S) ,
1

m
Eσ∼{±1}m

[
sup
f∈F

m∑
i=1

σif(xi, yi)

]

SinceLHD is zero for y = −1, we consider only the positive subset of S, denoted as, S2 , {(xi, 1), ...(xm2
, 1)}.

Theorem 7 3 Consider a K−hyperplanes loss function

`(W,x, y) = max
j∈{1,...,K}

{max{0, 1− yw>j x}}

3. Theorem 4 in the ICML’15 version of the paper had a typo. Here we present a corrected version of the theorem with
a detailed proof.

12
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for which each hyperplane satisfies ‖wj‖ ≤ 1 and each data point satisfies ‖x‖ ≤ 1. Then,

R(F ◦ S2) ≤ K
√
m2

,

where m2 is the number of positive examples.

Proof

m2R(F ◦ S2) =

Eσ∼{±1}m

 max
‖w1‖≤1
...

‖wk‖≤1

m∑
i=1

σi max
j∈{1,...,K}

{max(0, 1− w>j xi)}

 ≤

Eσ∼{±1}m

 max
‖w1‖≤1
...

‖wk‖≤1

m∑
i=1

σi

K∑
j=1

max(0, 1− w>j xi)

 ≤
K∑
j=1

Eσ∼{±1}m

[
m∑
i=1

σi max(0, 1− w>j xi)

]
≤ K
√
m2

The bound follows from the Contraction Lemma (Ledoux and Talagrand, 1991), applied to max(0, 1−w>x),
which is 1-Lipschitz function.
Hence, R(F ◦ S2) ≤ K√

m2
.

Next we provide the uniform generalization bound for the empirical risk of the maximum over hinge
losses.

Theorem 8 LetLHD(W ) = ED [`(W,x, y)1[y = 1] + 0 · 1[y = −1]] be the expected risk, and letLHS (W ) =
1
m2

∑m
i=1 `(W,xi, 1) be the empirical risk over a positive label training sample of size m2. Then, for any

δ ∈ (0, 1] with probability at least 1 − δ over the i.i.d. sample of size m2 it holds simultaneously for all
‖w1‖, ..., ‖wk‖ ≤ 1 that whenever ‖x‖ ≤ 1:

LHD(W ) ≤ LHS (W ) +
2K
√
m2

+ 8K

√
2 log(2/δ)

m2

Proof By noting that |`(W,x, y)| ≤ 2K and that a maximum over positive numbers is upper bounded by
their sum, the result follows immediately, from Bartlett and Mendelson (2003).

3. Latent Hinge-Minimax Classifier
The intersection of K positive half-spaces forms a convex set. For non-convex sets, KHHM will produce
many false positives (as show in Figure 2 left). To accommodate classes that form non-convex or disjoint
sets, we propose a non-convex classifier, which is an ensemble of KHHM models that we call the Latent
Hinge-Minimax (LHM) classifier. Specifically, we define the LHM classifier as a union of intersections of
positive half-spaces. We assume that each intersection is composed of K hyperplanes: W i = [wi1, ..., w

i
K ]

and there are C components in the union (see Figure 2 right). Let WLHM , (W 1, . . . ,WC) denote the LHM
model.

13
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Figure 2: Schematic comparison of KHHM (left) and LHM (right) classifiers on a non-convex pos-
itive class. The LHM classifier iteratively discovers a partition of the positive set into
convex components and builds KHHM model for each convex component.

3.1. Expected Latent Mixed Risk
Similarly to K-hyperplane model, the latent mixed risk is also composed of the hinge and background parts.
However, we extend the risk in Eq. 4 to contain multiple components Qi , {x ∈ Rn|W iTx ≥ ~0} and
a latent variable ϕ(x) = i (i ∈ {1, . . . , C}) which assigns each positive sample x ∈ Rn to one of the C
components.

LD(WLHM ;ϕ) = LBµ,Σ(WLHM ) + LHD(WLHM ;ϕ), (17)

The background part of the latent mixed risk bounds the probability of the negative class in all components
Qi:

LBµ,Σ(WLHM ) =

C∑
i=1

LBµ,Σ(W i) =

C∑
i=1

sup
z∼Z(µ,Σ)

Pr(z ∈ Qi) (18)

The hinge part of the latent mixed risk aggregates the K-hyperplane hinge risk over C components:

LHD(WLHM ;ϕ) = E(x,y)∈D

[
C∑
i=1

`(W i;x, y)1 [ϕ(x) = i]

]
(19)

where
`(W ;x, y) = max

j∈{1..K}
{max{0, α− ywTj x}}

is the modified K-hyperplane hinge loss (in Eq. 2). We replaced 1 with α to accommodate comparison
between different norms of the hyperplanes.

3.2. Empirical Latent Mixed Risk
Recall that S is a training sample of size m, where S2 = {(x, y) ∈ S : y = 1}, and S1 = {(x, y) ∈ S : y =
−1} are the positive and negative training sets correspondingly, m2 is the size of S2 and m1 be the size of
S1. We define the empirical risk over S as follows:

LHBS (WLHM , ϕ) = LHS2
(WLHM , ϕ) + LBS1

(WLHM ) (20)

14
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Both parts of the empirical latent mixed risk are aggregated over C latent components. Specifically, the
background part of the risk is defined as a sum of background empirical risks of the model’s components:

LBS1
(WLHM ) =

C∑
i=1

LB
µ̂,Σ̂

(W i) (21)

where LB
µ̂,Σ̂

(W i) = supZ∈Ω(µ̂,Σ̂) Prz∼Z(z ∈ Qi) and µ̂, Σ̂ are the empirical mean and covariance matrix,
estimated from the negative training sample S1.

Let Xi , {x : ϕ(x) = i} define a subset of positive samples. The hinge part of the empirical risk is
defined as the follows:

LHS2
(WLHM , ϕ) =

C∑
i=1

LHS2
(W i) (22)

where LHS2
(W i) =

∑
x∈Xi `(W i, x, 1).

Using the above notations, we can define a component empirical risk, as

LHB(W i) = LHS2
(W i) + LB

µ̂,Σ̂
(W i) (23)

Next, we formalize the loss function for a positive sample which we use in the training algorithm in
Section 3.3. Each sample with positive label encounters a loss only in a single latent component, specified
by its latent variable ϕ(x). The hinge part of this loss is `(W i, x, 1). The background empirical risk of a
componentLM

µ̂,Σ̂
(W i) depends on µ̂, Σ̂ andW i. W i depends on the latent assignment of the positive samples.

Thus the optimal assignment should minimize also the background part of the risk. We implement this by
dividing the empirical risk LM

µ̂,Σ̂
(W i) equally among the positive samples with ϕ(x) = i. Hence the sample

loss (for positive samples) is defined as follows:

L(Wϕ(x);x, 1, ϕ(x)) = `(Wϕ(x), x, 1) +
1

|Si|
LM
µ̂,Σ̂

(Wϕ(x)) (24)

where |Si| is the number of samples with ϕ(x) = i.

3.3. LHM Training Algorithm

The training aims to minimize the empirical risk in Eq. 20 over the parametersWLHM and the hidden variables
ϕ. We propose an iterative algorithm, which reaches fast convergence and shows good results in practice.
The algorithm iterates between two steps: First, given an assignment it produces a model WLHM , second, it
updates the latent variables ϕ(x),∀(x, y) ∈ S2 to better represent the latent structure of the data.

The first step updates the LHM model W t
LHM in iteration t given the latent variables ϕ from iteration

t − 1. Namely, for each hidden component i = 1, ..., C, we find the hyperplanes W i separating the training
samples in Si from Dneg by minimizing the empirical risk in Eq. 23. This risk is minimized by the training
algorithm proposed in Algorithm 1.

The second step updates the latent variable assignment, given the current W t
LHM . For each positive

sample, it finds the best component w.r.t. the risk in Eq 20. Specifically, the hinge risk for x is simply
`(W i, x, 1). The background part of the assignment function for x /∈ Qi should consider the probability
that this point adds when it is included in the component i (as shown in Figure 3, left). For x ∈ Qi, the
background part should consider the amount of probability released when the component shrinks as a result
of change in the assignment of x (as shown in Figure 3, right). The optimal assignment should take both
cases into consideration for all components. To define the assignment function we introduce the following
notations.

W def is a deflated model derived from W i by parallel translation of the hyperplane closest to x such that
wT∗ x + b∗ = 0. W inf is an inflated model derived from W i by parallel translation of the hyperplanes for
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Figure 3: The orange ellipses represent the negative distribution Z(µ̂, Σ̂), the red triangles corre-
sponds to Qix and the blue ones to Qi. Left: wi1, wi2 are moved to pass through x, causing
the probability Qi to increase. Right:wi∗ is moved to pass through x, causing the proba-
bility Qi to decrease.

which wTk x+ bk < 0, until they intersect in x, namely, wTk x+ b′k = 0. W i
x is a surrogate model, defined as

follows,

W i
x ,

{
W def if x ∈ Qi

W inf if x /∈ Qi

and Qix , {x : W i
x
T
x ≥ ~0}. Using the above notations, we define the assignment function as follows,

ϕ(x) = argmin
i∈{1..C}

Prz∼Z(z ∈ Qix) + λ`(W i;x, 1) (25)

where λ is a balancing parameter. The full training algorithm is summarized in Algorithm 2.

Lemma 9 Algorithm 2 reduces the empirical risk LHBS (WLHM ;ϕ) in each iteration.

Proof Since latent mixed risk is a sum of risks over the latent components (Eq. 20), it is minimized by
minimizing the empirical risk of each component. In step (5) of the Algorithm 2, we trainW i,t model for each
latent component i = 1, ..., C using Algorithm 1 (Section 2.2). It is easy to see that LHBS (W i) = LHBS (W )
(in Eq. 7), thus step (5) of the Algorithm 2 minimizes the component’s risk in Eq. 23.

It is now left to show that the assignment ϕt in iteration t, will cause the reduction in the empirical risk
in iteration t+ 1. Since the empirical risk is aggregated over positive samples, it is enough to prove the claim
for a single sample. We consider two cases:
1. The assignment of sample x does not change, formally ϕt(x) = ϕt+1(x).
In this case L(W t+1

LHM ;ϕt+1(x)) will only be affected by the W i,t+1 training, thus

L
(
W t

LHM ;ϕt(x)
)
≥ L

(
W t+1

LHM ;ϕt+1(x)
)

(26)

2. The assignment of sample x is changed. Formally, in iteration t: ϕt(x) = i and in iteration t + 1, exists
j 6= i, such that

ϕt+1(x) = j = argmin
k∈{1..C}

LBS1

(
W k,t
x

)
+ λLHS2

(
W k,t;x

)
. (27)

Since x ∈ Qi, reassigning it to a different component will cause the Prz∼Z(z ∈ Qix) to decrease (or stay the
same), thus

LBS1
(W i,t

x )− LBS2
(W i,t) ≤ 0. (28)
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Algorithm 2 LHM Training. T is the threshold on the empirical risk change.
Input: C, K, S1, S2,T
Initialization:

t← 1
L(W t=0

LHM ;ϕt=0)←∞
ϕt ← Init(S2, C)

Training:
while L(W t

LHM ;ϕt)− L(W t−1
LHM ;ϕt−1) ≥ T do

{Model Step}
for i=1 to C do
W i,t =KHHM-training(S1,Xi) {in Algorithm 1}

end for
{Assignment Step}
for(x, y) ∈ S2

ϕt+1(x) as defined in Eq. 25
end for
t← t+ 1

end while
Output: WLHM , ϕ

Hence, the sample loss in component i is larger than the sample loss in the deflated component:

L
(
W i,t;x

)
≥ LBS1

(
W i,t
x

)
+ λLHS2

(
W i,t;x

)
. (29)

At the same time, j is the optimal assignment, thus

LBS1

(
W i,t
x

)
+ λLHS2

(
W i,t;x

)
≥ LBS1

(
W j,t
x

)
+ λLHS2

(
W j,t;x

)
. (30)

SinceW j,t
x is a naive inflation ofW j,t to include x, the solutionW j,t+1, provided by KHHM training, would

have lower (or same) empirical risk, thus

LBS1

(
W j,t
x

)
≥ LBS1

(W j,t+1). (31)

In iteration t+ 1, x is included in Xj for training the j’th latent component, consequently

LHS2

(
W j,t;x

)
≥ LHS2

(W j,t+1;x). (32)

(as we assume that x ∈ Xj leads to x ∈ Qj,t+1). Finally, by combining the inequalities in Eq. 29–32, we
obtain:

L
(
W i,t;x

)
≥ L

(
W j,t+1;x

)
. (33)

3.4. Generalization Bound for LHM Model with Fixed Assignment
For a fixed ϕ(x),∀(x, y) ∈ S2, we can derive a uniform generalization bound for the union of the K-
hyperplane models. Similarly to KHHM model (in Section 2.3), we derive the uniform generalization bounds
separately for the positive and negative classes. We start with the positive class, for which we use the hinge
part of the latent mixed risk.
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Theorem 10 Letϕ∗ denote a fixed assignment of the positive training samples to components. LetLHD(WLHM ;ϕ∗) =

E(x,y)∈D

[∑C
i=1 `(W

i;x, y)1 [ϕ∗(x) = i]
]

be the expected risk, and let LHS2
(WLHM , ϕ

∗) =
∑C
i=1 L

H
S2

(W i)

be the empirical risk over a positive label training sample of size m2 for a fixed assignment ϕ∗ of the positive
samples to C components. Then, for any δ ∈ (0, 1] with probability at least 1 − δ over the i.i.d. sample of
size m2 it holds simultaneously for all ‖wi‖ ≤ 1 (i = 1, ..., C ·K) that whenever ‖x‖ ≤ 1:

LHD(WLHM ;ϕ∗) ≤ LHS2
(WLHM , ϕ

∗) +

√
log 1/δ

2m2
LHS2

(WLHM , ϕ
∗) + max

i∈{1,...,C}

 2K√
mi

+ 8K

√
2 log(2/δ)

m2


Proof Let pi = E(x,1)∼D

[
1[ϕ∗(x) = i]

]
, and let mi

m+ be its estimated mean. Then,

LHD(WLHM ;ϕ∗)− LHS2
(WLHM , ϕ

∗) =

C∑
i=1

(
piL

H
D(W i)− mi

m2
LHS+(W i)

)

=

C∑
i=1

[
pi
(
LHD(W i)− LHS2

(W i)
)]

+

C∑
i=1

[
(pi −

mi

m+
)LHS2

(W i)
]

(34)

We can bound the discrepancy between the expected and empirical risks in a component using Theorem 8.

Hence, the first term in Eq. 34 is upper bounded by maxi∈{1,...,C}

(
2K√
mi

+ 8K
√

2 log(2/δ)
m2

)
. We can upper

bound (pi − mi

m2
) using the Hoeffding inequality. Rearranging the terms and noting that

∑C
i=1 L

H
S2

(W i) =

LHS2
(WLHM , ϕ

∗) conclude the proof.

We formulate the uniform generalization bound for the negative class below.

Theorem 11 Suppose thatD is a distribution overX×Y such that Y = {−1,+1} andX = {x : ‖x‖ ≤ G}.
LetLBµ,Σ(WLHM ;ϕ∗) be the background risk over the negative labels, where µ,Σ are the mean and covariance
of the marginal distribution of x over the negative labels and the positive labeled samples have a fixed
assignment ϕ∗. Consider a training sample S of size m, m1 of which have negative label and let

LB
µ̂,Σ̂

(WLHM ;ϕ∗) =

C∑
i=1

LB
µ̂,Σ̂

(W i)

be the empirical background risk over the negative labels (µ̂, Σ̂ are the empirical mean and covariance
estimation of Dneg). With probability at least 1 − 3δ over m1 the i.i.d. samples from Dneg the following
holds uniformly for all W including C components, each with K independent hyperplanes:

LBµ,Σ(WLHM ;ϕ∗) ≤ LB
µ̂,Σ̂

(WLHM ;ϕ∗) + C
(2G2

α
+

6G4

α2

)√32(log(1/δ) + 1/4)

m1
.

The proof is straightforward as the assignment ϕ∗ does not affect negative samples, and thus the bound is a
simple summation of bounds for each component which is derived using Theorem 6.

4. Mapping LHM Classifier to a Neural Network
Deep Neural Networks and Convolutional Neural Networks (CNN) in particular have shown impressive re-
sults in a variety of domains, including images, speech, text, etc. CNN enables learning very good features
for these domains, but requires a lot of labeled training samples. One way to reduce the number of examples
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Figure 4: An example of NN equivalent to LHM for two components and three hyperplanes in each.

needed for training of a specific classification task is to pre-train a CNN on a different classification problem
in a similar domain and then change the last layer of the CNN to fit the target classification problem and
fine-tune the network on a smaller training set associated with the target problem. This approach is referred
to as transfer learning.

When the target classification problem is less similar to that used to train CNN features, the classification
accuracy of the fine-tuned network could be quite poor. This is because the high-level representation of the
original and the target networks are different. One way to approach this problem is by employing a non-linear
classifier, such as LHM classifier, on CNN features. In order to fine-tune the feature layers with the LHM
classifier, we need to combine them in a single architecture. To this end we propose to map LHM Classifier
to a Neural Network and stack it on top of the pre-trained convolutional layers. This enables end-to-end
training of feature extraction and classifier. As we show below, mapping of LHM classifier to NN also allows
extending it to multi-class problems.

4.1. Binary NN

A union of the intersections of positive half spaces can be implemented by a NN with three hidden layers.
The first fully connected hidden layer hasK×C neurons with a sigmoid activation, whereK is the number of
hyperplanes in an intersection andC is the number of components. The second hidden layer hasC nodes with
a sigmoid activation, connected only to the neurons associated with hyperplanes forming the corresponding
intersection. The weights on these connections and the biases are fixed and mimic AND operation, namely,
all weights of this layer are equal to 1/K and the biases are equal to −1 + 1/(2K). The last hidden layer
has two neurons, which are fully connected to the previous layer with the fixed weights and biases, one of
which mimics OR operation, and the other NOT OR. Namely, the neuron, corresponding to OR has weights
equal to 1/C and the bias of −1/(2C). The neuron corresponding to NOT OR has weights equal to −1/C
and the bias of 1/(2C). The network has two outputs, one for the positive class (with label 1) and one for the
negative class (with label 0). An example of such network for C = 2 and K = 3 is depicted in Figure 4.

4.2. Multi-Class NN

For a multi-class setting, we suggest to train LHM model for each class using an additional unlabeled data
for estimating the statistics of the negative class. We then map these models to a multi-class NN with the
following architecture. The first hidden layer is a fully connected layer with C × K neurons per class,
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C×K×G neurons in total, whereG is the number of classes. These are equivalent toC×K×G hyperplanes
in the LHM model. For each hidden component, all hyperplanes in the intersection are connected to their
corresponding node in the AND layer (as detailed in Section 4.1). The AND layer comprises C×G neurons.
The next layer is a fully connected layer, comprising G nodes. The weights on the connections to the C
components of the corresponding class are initialized with 1’s, and the weights on the remaining connections
are initialized with very small values from a Gaussian distribution. The network has G outputs and is trained
using the cross-entropy loss.

To provide an end-to-end training, one can consider stacking the feature extraction layers of CNN (up to
fully connected layers) with one of the above networks.

5. Experiments

We start by evaluating the simple K-hyperplane model (Section 5.1) and then move to a more general LHM
model (Section 5.2). Both models are tested on synthetic and real data. Then we show how the hinge-
minimax training can be combined with a CNN (Section 5.3) for approaching problems that require more
powerful features but do not have large enough data to train a deep model from scratch. We demonstrate this
for both binary and multi-class settings.

5.1. K-Hyperplane Hinge-Minimax Classifier

To test the proposed KHHM classifier, we ran experiments in three different scenarios: synthetic 2D data,
letter recognition, and large scale scene classification.

During classification, the K-hyperplane classifier incurs only K times the computational complexity
of a linear classifier (just K inner products), hence its “natural competitors” are linear classifiers, and we
choose linear SVM for the benchmark. We have also compared the hinge-minimax classifiers to kernel SVM
and ensemble-based methods, which incur far longer running times (this is especially true for kernel SVM).
The classification rates of the hinge-minimax classifier in all our experiments were comparable to ensemble
classifiers which required 100-170 basic classifiers in order to reach similar performance. In experiments
with high-dimensional data, the KHHM classifiers preformed as well as kernel SVM.

The SVM classifiers were trained using C-SVC in LIBSVM 4. We used the CVX optimization package
5 to find a single hyperplane in Algorithm 1. The ensemble classifiers were trained using the Matlab Statistic
toolbox.

5.1.1. SYNTHETIC DATA EXAMPLE

We construct the KHHM classifier for 2D data to illustrate Algorithm 1. We samples 5000 data points
from two highly overlapping Gaussians (see Figure 5) with varying ratio of positive (shown in red) and
negative (shown in blue) examples. Each class was equally partitioned into training, validation, and test
sets. We estimated the mean and covariance from the training data and tuned the parameters (C and γ) and
the bias using the validation set. Table 1 shows the AUC for the different ratios of positive and negative
examples using an intersection of 5 hyperplanes. These results demonstrate the robustness of the algorithm
to imbalanced sets.

Positive 0.01 0.1 0.2 0.3 0.4 0.5
fraction

AUC 94.68 94.91 95.07 94.96 94.89 95.83

Table 1: AUC for different size partitions of positive and negative classes

4. http : //www.csie.ntu.edu.tw/cjlin/libsvm/
5. http : //cvxr.com/cvx/download/
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Figure 5: Illustration of KHHM classifier construction on a toy example.The first 5 figures show the
greedy initial step. The last figure shows the final classifier after 25 iterations. The con-
tour lines show the covariance matrix of the negative distribution inside the intersection
of hyperplane, which is used to find the optimal hyperplane, depicted in black.

The first five plots in Figure 5 show the result of the initial greedy step for the first, second, third, forth,
and fifth hyperplanes respectively. The contour lines in Figure 5 illustrate the covariance of the negative
distribution inside the intersection, which is used to find the optimal separation hyperplane, depicted in black.
The last plot in Figure 5 shows the final classifier after 25 iterations. It illustrates that the approximation
algorithm succeeds in separating the positive set from the background, and that the refinement iterations
improve the separation boundary.

5.1.2. LETTER RECOGNITION

The following tests were performed on a data set of letters from the UCI Machine Learning Repository
(Murphy and Aha (1994)), which includes 16-dimensional feature vectors for the 26 letters in the English
alphabet. The letter images were based on 20 different fonts and each letter within these 20 fonts was
randomly distorted to produce 20,000 samples. For each letter, we used 100 samples for training, 250 for
validation, and the rest for test (about 400 samples per letter). The parameters of all methods have been
chosen using the validation set. Since the test set includes 25 times more negatives than positives, which
leads to about 96% classification rate by just classifying all inputs as negative, we used EER as a more
faithful measure of performance. Table 2 shows the classification rate at EER , averaged over 26 letters, and
the average classification times of the tested classifiers.

The KHHM classifiers improve over the linear SVM for allK, and forK > 1 outperforms Adaboost with
much shorter classification time. For this data set, kernel SVM outperform all methods. However, the KHHM
classifier with K = 4 comes fairly close to the performance of the kernel SVM, while its classification time
is three magnitudes faster.
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Method Classification Classification
rate at EER time

KHHM K = 1 89.32 5.6e-07
KHHM K = 2 92.98 1.4e-06
KHHM K = 3 93.93 1.5e-06
KHHM K = 4 94.48 1.7e-06

Linear SVM 84.87 4.6e-07
RBF kernel SVM 96.47 1.7e-03

AdaBoost 92.26 1.0e-03

Table 2: Letter experiments. K corresponds to the number of hyperplanes used in the hinge-
minimax classifier. The times are in sec. AdaBoost uses 100 decision trees.

Method AUC classification
time

KHHM K = 1 88.89 9.8e-05
KHHM K = 2 90.99 1.34e-04

Linear SVM 88.20 8.6e-05
RBF kernel SVM 90.77 23.97

RUSBoost 90.76 0.08

Table 3: Scene classification with 300 dim. features. The classification time of RBF kernel SVM
is very high, since it chooses about 15,000 SVs from 19850 training examples. The RUS-
Boost uses 100 decision trees.

5.1.3. LARGE SCALE SCENE RECOGNITION

In this test we used 397 scene categories of the SUN data base, which have at least 100 images per category
(Xiao et al. (2010)). We represent the images as BOW of dense HOG features with 300 words. We down-
loaded the features from the SUN web page6, containing spatial pyramid of BOWs, and used the bottom
layer (the details of the feature extraction can be found in Xiao et al. (2010)). The data is divided into 50
training and 50 test images in 10 folds. Training one-against-all classifiers for 397 categories with 50 training
samples per category uses very unbalanced training sets. Thus we defined different weights for positive and
negative samples in SVM training and we used RUSBoost (Seiffert et al. (2008)) as an ensemble method (it
is designed for skewed data and performed significantly better than AdaBoost on this data set). Note that the
KHHM classifier naturally handles imbalanced sets. KHHM classifier with more than two hyperplanes didn’t
improve the performance. Table 5.1.3 shows the average AUC of the tested methods and their running times.

Using a pyramid of BOWs with the histogram intersection kernel improves over the RBF kernel applied
to the bottom layer of the pyramid, but then the dimension of the feature vector increases to 6300. The AUC
of the KHHM classifier with K = 2 is 92.99% and of histogram kernel is 92.85%. Figure 6 shows the ROCs
of the first three categories produced by the KHHM classifier and the histogram intersection kernel SVM
classifiers.

6. http : //vision.cs.princeton.edu/projects/2010/SUN/
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Figure 6: ROCs of the first three categories of the SUN data set, represented by a spatial pyramid
of BOWs, obtained from dense HOG. The solid lines correspond to the hinge-minimax
classifier, dotted lines correspond to the histogram intersection kernel SVM.

Figure 7: A qualitative comparison of the latent hinge minimax classifier (on the left) to the union
of LDA classifiers (on the right).

5.2. Latent Hinge Minimax Classifier

We first show a 2D toy example (Section 5.2.1) to illustrate the ability of the LHM classifier to discover
the hidden components in the positive class and to separate each of them from the negative class using a
K-hyperplane model.

Then, we compare LHM model to alternative ensembles of hyperplanes (in shallow architectures) on the
PASCAL-VOC 2007 dataset (Everingham et al. (2010)) (Section 5.2.2), and show its advantage over those
methods and its robustness to the choice of the number of latent components.

5.2.1. SYNTHETIC DATA

A simpler alternative to the LHM model is a two-step algorithm which first finds the structure of the target
class by applying some kind of unsupervised learning (e.g, k-means clustering) and then builds a model
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Figure 8: First four iterations of the LHM training on toy example and the corresponding loss con-
vergence.

Figure 9: Comparison of the LHM classifier to the equivalent NN for a varying number of hidden
components (from 2 to 5) on PASCAL VOC 2007. The points above the diagonal line
show the advantage of LHM classifier.

for each component. Such a simple approach was employed in Hariharan et al. (2012) with LDA classifier
(Hastie et al. (2001)) trained per cluster. Unless the clusters are very small7, it relies heavily on the results of
the clustering. If an initial clustering is incorrect (as in Figure 7, right), LDA (or any other convex classifier)
cannot separate the resulting components from the background without including many false positives. The
LHM training finds the underlying structure of the data and the model iteratively, improving both (Figure 7,
left). Furthermore, LHM is quite robust to the initial assignment. Figure 8 shows a few iterations and the
corresponding loss convergence when the initial assignment of the positive samples to components is chosen
at random. Note the LHM training discovers the underlying structure in a 3-4 iterations.

7. as in time consuming exemplar-based approach(Malisiewicz et al. (2011))
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LHM Union of LDAs NN KHHM
71.48% 65.17% 67.19% 69.45%

Table 4: The table reports the accuracy at the EER point averaged over 20 classes and different
hidden partitions (except for KHHM) on PASCAL VOC-2007 classification task using
80-dimensional HOG features.

5.2.2. ENSEMBLES OF HYPERPLANES

Next, we compared the LHM classifier to alternative ensembles of linear classifiers on PASCAL VOC 2007
dataset (Everingham et al. (2010)). To compare the raw performance of the classifiers we designed the
experiment to separate the contribution of the classifier from that of features and the detection system (which
usually involves various engineering steps that obscure the actual contribution of the classifier). To this end
we used simple features, such as Dalal-Triggs variant of the HOG features (Dalal and Triggs (2005)) with a
fixed number of cells (thus keeping the classification problem difficult), and we compared the classification
accuracy on the bounding boxes of 20 VOC object categories in test images (instead of running a full detection
system).
LDA Union (as a baseline model): We applied k-means clustering on whitened features to find the partition.
We then learned an LDA classifier for each cluster in that partition. We varied the number of clusters from 2
to 5.
NN with an architecture equivalent to LHM: We used the model described in Section 4.1 with K = 2 and
H = 2, .., 5, but the weights were initialized at random.
KHHM model This is essentially an LHM model with a single component, thus it is theoretically inferior to
LHM. However, we ran this experiment to test the benefits of modeling the hidden structure of the positive
class. We varied the number of hyperplanes from 2 to 5.
LHM model: We set the number of hyperplanes in each component to 2 and varied the number of com-
ponents from 2 to 5. An initial assignment to the components was done using k-means with the Euclidian
distance.

All ensembles were trained in one-against-all manner. Similarly to (Hariharan et al. (2012); Osadchy
et al. (2012)), we learned the background mean and covariance using bounding boxes from all classes and
used them to represent the negative class in LDA union, KHHM, and LHM training. We tested all ensemble
classifiers on all bounding boxes from the test set. Table 4 summarizes the accuracy at the EER points of all
ensembles averaged over classes and different parameters. It shows that LHM model outperforms all other
classifiers. Figure 9 compares LHM to NN on 20 categories (as one-against-all binary classifiers) for varying
number of hidden components. The plot shows that LHM outperforms NN independently of the number of
components.

5.3. Hinge-Minimax Training in Deep Architecture

In the following experiments, we show that LHM classifier can be combined with CNN via transfer learning.
Specifically, we test the LHM classifier on top of the pre-trained CNN feature extraction in imbalanced binary
problems and in multi-class tasks with a small number of labeled examples.

We explore the following transfer learning settings. The first setting refers to the best case scenario
in which the source and the target classification tasks operate on the same set of features but differ in the
classification problem. The second setting refers to the worst case scenario for the transfer learning where
the source and the target classification problems share very little similarity. The “worst case” scenario is
very common in practice, as many classification tasks do not have a large, comprehensive training set (such
as ImageNet (Deng et al. (2009)) in object recognition) to be used in transfer learning. No good solution
currently exists for such problems.
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Figure 10: Binary imbalanced classification: left – the “best-case” transfer learning setting, right –
the “worst-case” transfer learning setting.

We used the CIFAR-10, composed of 10 categories (airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck) as the source problem. Specifically, we trained the LeNet model implemented in
MatConvNet Vedaldi and Lenc (2015) on CIFAR-10. Then we removed the last fully-connected layer and
the soft-max and used this trimmed network as a feature extractor which converts images to a 64-dimensional
feature vectors.

For the best case transfer learning, we defined a new set of classes by coupling i and i + 5 indexes of
CIFAR-10 classes. CNN trained on CIFAR-10 maps individual classes to linearly separable sub-spaces, thus
using pairs of classes as a target classification problem makes it non-linear. Consequently, we get a new
classification problem over the same space of features.

For the worst case transfer learning, we picked a subset of 5 classes (train, bottle, cattle, forest, and
sweet peppers) from the CIFAR-100, which do not overlap (in their visual appearance) with the CIFAR-10
categories, to be the target classification task. CIFAR-10 data set is not rich enough to enable learning of
features that can be used for an arbitrary category, thus we believe that such setting is especially difficult.

We tested the LHM binary and multi-class classifiers in the best and the worst case transfer learning
scenarios and compared their performance to two baselines. One is an NN with a single fully connected layer
and the cross-entropy loss (NN linear) and the other is the NN with the architecture matching the LHM model
(NN matching). We repeated each experiment 50 times over different random subsets of training samples and
random initialization of NN and averaged the results.

5.3.1. BINARY IMBALANCED SETTING

The “Best Case” Transfer Learning: We trained binary classifiers for pairs of classes from CIFAR-10
using imbalanced training sets, in which the negative class included all samples from all other classes (40,000
examples) and the positive class included a varying number of samples (140, 300, 600, 1400, 2000, 5000-all).
This resulted in imbalance ratios from 1:256 to 1:4.

LHM model was trained with 2 hidden components and 3 hyperplanes per component. The matching NN
mimicked the configuration of LHM model, but the weights were allowed to change in training. Figure 10-left
shows the 1-EER (averaged over 5 classification problems) of the LHM classifier and the two NN baselines
as a function of the positive training sample size.
The “Worst Case” Transfer Learning for Binary Imbalanced Problems: Since the number of samples per
class in CIFAR-100 is significantly smaller, this experiment tests the robustness to imbalanced training data
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Figure 11: Multi-class classification: left – the “best-case” transfer learning setting, right – “worst-
case” transfer learning setting.

and to a small number of examples. We varied the size of the positive training set between 20, 50, 100, 250,
500(all) samples and we used all 2,000 samples of other classes as the negative training set. We compared the
LHM model trained with 2 hidden components and 2 hyperplanes per component to NN baselines. Figure 10-
right shows the 1-EER of the classifiers averaged over 5 classification problems as a function of the positive
training set size.

5.3.2. MULTI-CLASS SETTING

The “Best Case” Transfer Learning: We mapped the LHM binary classifiers trained for 5 pairs of categories
to a multi-class NN as described in Section 4.2. We fine-tuned the weights with a very fast training (just a
handful of epochs, while training from scratch requires two orders of magnitude more training epochs).
Figure 11-left shows the accuracy of the LHM models mapped to a multi-class NN (LHM-NN) with the two
baseline NNs as a function of the size of the training set.

The “Worst Case” Transfer Learning for Multi-Class Problems: We mapped the LHM binary classifiers
trained for the 5 categories from CIFAR-100 (using CIFAR-10 features) to a multi-class NN and fine-tuned
the weights with a small number of epochs.

To test the complexity of the transfer learning problem we also trained a CNN (LeNet model implemented
in MatConvNet (Vedaldi and Lenc (2015))) on the target problem. We hoped that due to the small size of the
target classification problem, 500 training examples per class would yield relatively good accuracy. Figure 11-
right compares the accuracy of LHM-NN, two baseline NNs, and CNN (trained from scratch) as a function of
the training sample size. It shows that CNN trained on the target problem is indeed the best as it succeeds to
learn features specific for the task, but its accuracy drops very abruptly when the number of training samples
becomes smaller. This suggests that when the number of training examples is small, using transfer learning
even in a such difficult setting is a better solution than training a CNN from scratch.

The results in Figures 10 and 11 show that the NN models either heavily overfit when the number of
training samples is small (NN matching) or they are not expressive enough when the number of training
samples increases (NN linear). LHM classifiers are expressive enough to learn from a large set of examples
and are more robust to overfitting when the number of examples is small.

27



DOLEV RAVIV,TAMIR HAZAN, AND MARGARITA OSADCHY

6. Training Efficiency
Another advantage of LHM-NN is its training efficiency. A class-specific LHM model converges in 5-10
iterations. Its training time primarily depends on the number of positive samples and the dimension. The
negative samples are used to estimate the mean and covariance of the background. The initial estimation
(which involves a large number of samples) is done only once and used for all classes. Since the probability
of the negative class is evaluated inside the positive region using false positives, the number of which drops
very fast, the estimation time of the mean and covariance during the training is negligible. Training of a
binary classifier per class is independent of other classes, thus their training can be done in parallel. Finally,
the fine-tuning of the multi-class network after mapping is very fast, due to the initialization of all layers
(using supervized learning): feature extraction layers with pre-trained CNN and classifier’s layers with LHM
models.

The LHM-NN is also beneficial for the problems in which classes are dynamically added or removed
from the classification task. Adding a class requires training a single binary classifier and fast fine-tuning;
removing a class requires only fine-tuning.

7. Conclusions and Future Work
We proposed an efficient method for learning an intersection of finite number of hyperplanes which combines
the hinge-risk (for the small number of positive data) with the background risk, based on the “minimax bound”
(for a large number of negative data points) and derived a generalization bound for the mixed risk. We showed
that the proposed classifier yields results comparable to the popular non-linear classifiers, but at much lower
(order of magnitude) computational cost of classification.

We generalized this model to a non-convex classifier (Latent Hinge-Minimax classifier), which discovers
the hidden components in the positive class and separates them from the negative class with the intersections
of positive half spaces. The main advantage of this classifier is its ability to incorporate unlabeled data in
training which improves the robustness to imbalanced sets.

We showed that for multi-class tasks, class-specific LHM models can be mapped to a multi-class NN
with matching architecture requiring only a few iterations of fine-tuning. Finally, the showed that LHM
architecture can be integrated with CNN features via transfer learning. The entire training procedure is very
efficient. Our experiments showed that such classifiers are much more robust to the number of labeled training
samples than the equivalent NNs.

This work cay be extended in various directions. A lower Rademacher complexity was shown for the
k-fold maxima of hyperplanes in Kontorovich (2018). We plan to extend this result to the maximum over
hinge losses and improve the generalization bound for the positive sample. Structured output learning have
had an impact on machine vision and can be applied to this framework while improving the multiclass pro-
cedure. Another direction is devising a unified probabilistic framework to include both the hinge-loss and
background-loss. Also, extensions of Marshall-Olkin theorem to non-convex sets might have a significant
impact on robust deep learning methods.
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