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Abstract

Binary, or one-bit, representations of data arise naturally in many applications, and are
appealing in both hardware implementations and algorithm design. In this work, we study
the problem of data classification from binary data obtained from the sign pattern of
low-dimensional projections and propose a framework with low computation and resource
costs. We illustrate the utility of the proposed approach through stylized and realistic
numerical experiments, and provide a theoretical analysis for a simple case. We hope
that our framework and analysis will serve as a foundation for studying similar types of
approaches.
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1. Introduction

Our focus is on data classification problems in which only a binary representation of the
data is available. Such binary representations may arise under a variety of circumstances.
In some cases, they may arise naturally due to compressive acquisition. For example, dis-
tributed systems may have bandwidth and energy constraints that necessitate extremely
coarse quantization of the measurements (Fang et al., 2014). A binary data representation
can also be particularly appealing in hardware implementations because it is inexpensive
to compute and promotes a fast hardware device (Jacques et al., 2013b; Laska et al., 2011);
such benefits have contributed to the success, for example, of 1-bit Sigma-Delta converters
(Aziz et al., 1996; Candy and Temes, 1962). Alternatively, binary, heavily quantized, or
compressed representations may be part of the classification algorithm design in the inter-
est of data compression and speed (Boufounos and Baraniuk, 2008; Hunter et al., 2010;
Calderbank et al., 2009; Davenport et al., 2010; Gupta et al., 2010; Hahn et al., 2014).
The goal of this paper is to present a framework for performing learning inferences, such
as classification, from highly quantized data representations—we focus on the extreme case
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of 1-bit (binary) representations. Let us begin with the mathematical formulation of this
problem.

Problem Formulation. Let {xi}pi=1 ⊂ Rn be a point cloud represented via a matrix

X = [x1 x2 · · · xp] ∈ Rn×p.

Moreover, let A : Rn → Rm be a linear map, and denote by sign : R→ R the sign operator
given by

sign(a) =

{
1 a ≥ 0

−1 a < 0.

Without risk of confusion, we overload the above notation so the sign operator can apply
to matrices (entrywise). In particular, for an m by p matrix M , and (i, j) ∈ [m] × [p], we
define sign(M) as the m× p matrix with entries

(sign(M))i,j := sign(Mi,j).

We consider the setting where a classification algorithm has access to training data of the
form Q = sign(AX), along with a vector of associated labels b = (b1, · · · , bp) ∈ {1, . . . , G}p,
indicating the membership of each xi to exactly one of G classes. Here, A is an m by n
matrix. The rows of A define hyperplanes in Rn and the binary sign information tells us
which side of the hyperplane each data point lies on. Throughout, we will primarily take A to
have independent identically distributed standard Gaussian entries (though experimental
results are also included for structured matrices). Given Q and b, we wish to train an
algorithm that can be used to classify new signals, available only in a similar binary form
via the matrix A, for which the label is unknown.

1.1. Contribution

Our contribution is a framework for classifying data into a given number of classes using
only a binary representation (obtained as the sign pattern from low-dimensional projections,
as described above) of the data. This framework serves several purposes: (i) it provides
mathematical tools that can be used for classification in applications where data is already
captured in a simple binary representation, (ii) demonstrates that for general problems,
classification can be done effectively using low-dimensional measurements, (iii) suggests an
approach to use these measurements for classification using low computation, (iv) provides
a simple technique for classification that can be mathematically analyzed. We believe this
framework can be extended and utilized to build novel algorithmic approaches for many
types of learning problems. In this work, we present one method for classification using
training data, illustrate its promise on synthetic and real data, and provide a theoretical
analysis of the proposed approach in the simple setting of two-dimensional signals and two
possible classes. Under mild assumptions, we derive an explicit lower bound on the proba-
bility that a new data point gets classified correctly. This analysis serves as a foundation for
analyzing the method in more complicated settings, and a framework for studying similar
types of approaches.
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1.2. Organization

We proceed next in Section 1.3 with a brief overview of related work. Then, in Section 2
we propose a two-stage method for classifying data into a given number of classes using
only a binary representation of the data. The first stage of the method performs training
on data with known class membership, and the second stage is used for classifying new
data points with a priori unknown class membership. Next, in Section 3 we demonstrate
the potential of the proposed approach on both synthetically generated data as well as real
datasets with application to handwritten digit recognition and facial recognition. Finally,
in Section 4 we provide a theoretical analysis of the proposed approach in the simple setting
of two-dimensional signals and two classes. We conclude in Section 5 with some discussion
and future directions.

1.3. Prior Work

There is a large body of work on several areas related to the subject of this paper, ranging
from classification to compressed sensing, hashing, quantization, and deep learning. Due to
the popularity and impact of each of these research areas, any review of prior work that we
provide here must necessarily be non-exhaustive. Thus, in what follows, we briefly discuss
related prior work, highlighting connections to our work but also stressing the distinctions.

Support vector machines (SVM) (Christianini and Shawe-Taylor, 2000; Hearst et al.,
1998; Joachims, 1998; Steinwart and Christmann, 2008) have become popular in machine
learning, and are often used for classification. Provided a training set of data points and
known labels, the SVM problem is to construct the optimal hyperplane (or hyperplanes)
separating the data (if the data is linearly separable) or maximizing the geometric margin
between the classes (if the data is not linearly separable). Although loosely related (in the
sense that at a high level we utilize hyperplanes to separate the data), the approach taken
in this paper is fundamentally different than in SVM. Instead of searching for the optimal
separating hyperplane, our proposed algorithm uses many, randomly selected hyperplanes
(via the rows of the matrix A), and uses the relationship between these hyperplanes and the
training data to construct a classification procedure that operates on information between
the same hyperplanes and the data to be classified.

The process of transforming high-dimensional data points into low-dimensional spaces
has been studied extensively in related contexts. For example, the pioneering Johnson-
Lindenstrauss Lemma states that any set of p points in high dimensional Euclidean space
can be (linearly) embedded into O(ε−2 log(p)) dimensions, without distorting the distance
between any two points by more than a small factor, namely ε (Johnson and Lindenstrauss,
1982). Since the original work of Johnson and Lindenstrauss, much work on Johnson-
Lindenstrauss embeddings (often motivated by signal processing and data analysis applica-
tions) has focused on randomized embeddings where the matrix associated with the linear
embedding is drawn from an appropriate random distribution. Such random embeddings
include those based on Gaussian and other subgaussian random variables as well as those
that admit fast implementations, usually based on the fast Fourier transform (Ailon and
Chazelle, 2006; Achlioptas, 2003; Dasgupta and Gupta, 2003).

Another important line of related work is compressed sensing, in which it has been
demonstrated that far fewer linear measurements than dictated by traditional Nyquist sam-
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pling can be used to represent high-dimensional data (Candès et al., 2006b,a; Donoho, 2006).
For a signal x ∈ Rn, one obtains m < n measurements of the form y = Ax (or noisy mea-
surements y = Ax+z for z ∈ Rm), where A ∈ Rm×n, and the goal is to recover the signal x.
By assuming the signal x is s-sparse, meaning that ‖x‖0 = |supp(x)| = s� n, the recovery
problem becomes well-posed under certain conditions on A. Indeed, there is now a vast liter-
ature describing recovery results and algorithms whenA, say, is a random matrix drawn from
appropriate distributions (including those where the entries of A are independent Gaussian
random variables). The relationship between Johnson-Lindenstrauss embeddings and com-
pressed sensing is deep and bi-directional; matrices that yield Johnson-Lindenstrauss em-
beddings make excellent compressed sensing matrices (Baraniuk et al., 2006) and conversely,
compressed sensing matrices (with minor modifications) yield Johnson-Lindenstrauss em-
beddings (Krahmer and Ward, 2011). Some initial work on performing inference tasks like
classification from compressed sensing data shows promising results (Boufounos and Bara-
niuk, 2008; Hunter et al., 2010; Calderbank et al., 2009; Davenport et al., 2010; Gupta et al.,
2010; Hahn et al., 2014).

To allow processing on digital computers, compressive measurements must often be
quantized, or mapped to discrete values from some finite set. The extreme quantization
setting where only the sign bit is acquired is known as one-bit compressed sensing and was
introduced recently (Boufounos and Baraniuk, 2008). In this framework, the measurements
now take the form y = sign(Ax), and the objective is still to recover the signal x. Several
methods have since been developed to recover the signal x (up to normalization) from such
simple one-bit measurements (Plan and Vershynin, 2013a,b; Gopi et al., 2013; Jacques et al.,
2013b; Yan et al., 2012; Jacques et al., 2013a). Although the data we consider in this paper
takes a similar form, the overall goal is different; rather than signal reconstruction, our
interest is data classification.

More recently, there has been growing interest in binary embeddings (embeddings into
the binary cube (Plan and Vershynin, 2014; Yu et al., 2014; Gong et al., 2013; Yi et al.,
2015; Choromanska et al., 2016; Dirksen and Stollenwerk, 2016), where it has been observed
that using certain linear projections and then applying the sign operator as a nonlinear
map largely preserves information about the angular distance between vectors provided one
takes sufficiently many measurements. Indeed, the measurement operators used for binary
embeddings are Johnson-Lindenstrauss embeddings and thus also similar to those used in
compressed sensing, so they again range from random Gaussian and subgaussian matrices to
those admitting fast linear transformations, such as random circulant matrices (Dirksen and
Stollenwerk, 2016), although there are limitations to such embeddings for subgaussian but
non-Gaussian matrices (Plan and Vershynin, 2014, 2013a). Although we consider a similar
binary measurement process, we are not necessarily concerned with geometry preservation
in the low-dimensional space, but rather the ability to still perform data classification.

Deep Learning is an area of machine learning based on learning data representations
using multiple levels of abstraction, or layers. Each of these layers is essentially a function
whose parameters are learned, and the full network is thus a composition of such functions.
Algorithms for such deep neural networks have recently obtained state of the art results
for classification. Their success has been due to the availability of large training data sets
coupled with advancements in computing power and the development of new techniques
(Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al., 2015; Russakovsky
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et al., 2015). Randomization in neural networks has again been shown to give computa-
tional advantages and even so-called “shallow” networks with randomization and random
initializations of deep neural networks have been shown to obtain results close to deep net-
works requiring heavy optimization (Rahimi and Recht, 2009; Giryes et al., 2016). Deep
neural networks have also been extended to binary data, where the net represents a set of
Boolean functions that maps all binary inputs to the outputs (Kim and Smaragdis, 2016;
Courbariaux et al., 2015, 2016). Other types of quantizations have been proposed to reduce
multiplications in both the input and hidden layers (Lin et al., 2015; Marchesi et al., 1993;
Simard and Graf, 1994; Burge et al., 1999; Rastegari et al., 2016; Hubara et al., 2016).
We will use randomized non-linear measurements but consider deep learning and neural
networks as motivational to our multi-level algorithm design. Indeed, we are not tuning
parameters nor doing any optimization as is typically done in deep learning, nor do our
levels necessarily possess the structure typical in deep learning “architectures”; this makes
our approach potentially simpler and easier to work with.

Using randomized non-linearities and simpler optimizations appears in several other
works (Rahimi and Recht, 2009; Ozuysal et al., 2010). The latter work most closely re-
sembles our approach in that the authors propose a “score function” using binary tests in
the training phase, and then classifies new data based on the maximization of a class prob-
ability function. The perspective of this prior approach however is Bayesian rather than
geometric, the score functions do not include any balancing terms as ours will below, the
measurements are taken as “binary tests” using components of the data vectors (rather than
our compressed sensing style projections), and the approach does not utilize a multi-level
approach as ours does. We believe our geometric framework not only lends itself to easily
obtained binary data but also a simpler method and analysis.

2. The Proposed Classification Algorithm

The training phase of our algorithm is detailed in Algorithm 1. Here, the method may take
the binary data Q as input directly, or the training data Q = sign(AX) may be computed
as a one-time pre-processing step. For arbitrary matrices A, this step of course may incur
a computational cost on the order of mnp. In Section 3, we also include experiments using
structured matrices that have a fast multiply, reducing this cost to a logarithmic dependence
on the dimension n. Then, the training algorithm proceeds in L “levels”. In the `-th level,
m index sets Λ`,i ⊂ [m], |Λ`,i| = `, i = 1, ...,m, are randomly selected, so that all elements
of Λ`,i are unique, and Λ`,i 6= Λ`,j for i 6= j. This is achieved by selecting the multi-set of

Λ`,i’s uniformly at random from a set of cardinality
((m` )
m

)
. During the i-th “iteration” of

the `-th level, the rows of Q indexed by Λ`,i are used to form the ` × p submatrix of Q,
the columns of which define the sign patterns {±1}` observed by the training data. For
example, at the first level the possible sign patterns are 1 and -1, describing which side of
the selected hyperplane the training data points lie on; at the second level the possible sign

patters are

[
1
1

]
,

[
1
−1

]
,

[
−1
1

]
,

[
−1
−1

]
, describing which side of the two selected hyperplanes

the training data points lie on, and so on for the subsequent levels. At each level, there
are at most 2` possible sign patterns. Let t = t(`) ∈ {0, 1, 2, . . . } denote the sign pattern
index at level `, where 0 ≤ t ≤ 2`− 1. Then, the binary (i.e., base 2) representation of each
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t = (t` . . . t2t1)bin :=
∑`

k=1 tk2
k−1 is in one-to-one correspondence with the binary sign

pattern it represents, up to the identification of {0, 1} with the images {−1, 1} of the sign
operator. For example, at level ` = 2 the sign pattern index t = 2 = (10)bin corresponds

to the sign pattern

[
1
−1

]
.

For the t-th sign pattern and g-th class, a membership index parameter r(`, i, t, g) that
uses knowledge of the number of training points in class g having the t-th sign pattern, is
calculated for every Λ`,i. Larger values of r(`, i, t, g) suggest that the t-th sign pattern is
more heavily dominated by class g; thus, if a signal with unknown label corresponds to the
t-th sign pattern, we will be more likely to classify it into the g-th class. In this paper, we
use the following choice for the membership index parameter r(`, i, t, g), which we found
to work well experimentally. Below, Pg|t= Pg|t(Λ`,i) denotes the number of training points
from the g-th class with the t-th sign pattern at the i-th set selection in the `-th level:

r(`, i, t, g) =
Pg|t∑G
j=1 Pj|t

∑G
j=1 |Pg|t − Pj|t|∑G

j=1 Pj|t
. (1)

Let us briefly explain the intuition for this formula. The first fraction in (1) indicates the
proportion of training points in class g out of all points with sign pattern t (at the `-th level
and i-th iteration). The second fraction in (1) is a balancing term that gives more weight
to group g when that group is much different in size than the others with the same sign
pattern. If Pj|t is the same for all classes j = 1, . . . , G, then r(`, i, t, g) = 0 for all g, and
thus no class is given extra weight for the given sign pattern, set selection, and level. If Pg|t
is nonzero and Pj|t = 0 for all other classes, then r(`, i, t, g) = G− 1 and r(`, i, t, j) = 0 for
all j 6= g, so that class g receives the largest weight. It is certainly possible that a large
number of the sign pattern indices t will have Pg|t = 0 for all groups (i.e., not all binary
sign patterns are observed from the training data), in which case r(`, i, t, g) = 0.

Remark 1 Note that in practice the membership index value need not be stored for all 2`

possible sign pattern indices, but rather only for the unique sign patterns that are actually
observed by the training data. In this case, the unique sign patterns at each level ` and
iteration i must be input to the classification phase of the algorithm (Algorithm 2).

Algorithm 1 Training

input: training labels b, number of classes G, number of levels L, binary training data
Q (or raw training data X and fixed matrix A)
if raw data: Compute Q = sign(AX)
for ` from 1 to L, i from 1 to m do

select: Randomly select Λ`,i ⊂ [m], |Λ`,i| = `
for t from 0 to 2` − 1, g from 1 to G do

compute: Compute r(`, i, t, g) by (1)
end for

end for

Once the algorithm has been trained, we can use it to classify new signals. Suppose
x ∈ Rn is a new signal for which the class is unknown, and we have available the quantized
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measurements q = sign(Ax). Then Algorithm 2 is used for the classification of x into
one of the G classes. Notice that the number of levels L, the learned membership index
values r(`, i, t, g), and the set selections Λ`,i at each iteration of each level are all available
from Algorithm 1. First, the decision vector r̃ is initialized to the zero vector in RG.
Then for each level ` and set selection i, the sign pattern, and hence the binary base 2
representation, can be determined using q and Λ`,i. Thus, the corresponding sign pattern
index t? = t?(`, i) ∈ {0, 1, 2, . . . } such that 0 ≤ t? ≤ 2` − 1 is identified. For each class g,
r̃(g) is updated via r̃(g) ← r̃(g) + r(`, i, t?, g). Finally, after scaling r̃ with respect to the
number of levels and measurements, the largest entry of r̃ identifies how the estimated label
b̂x of x is set. This scaling of course does not actually affect the outcome of classification,
we use it simply to ensure the quantity does not become unbounded for large problem sizes.
We note here that especially for large m, the bulk of the classification will come from the
higher levels (in fact the last level) due to the geometry of the algorithm. However, we
choose to write the testing phase using all levels since the lower levels are cheap to compute
with, may still contribute to classification accuracy especially for small m, and can be used
naturally in other settings such as hierarchical classification and detection (see remarks in
Section 5).

Algorithm 2 Classification

input: binary data q, number of classes G, number of levels L, learned parameters
r(`, i, t, g) and Λ`,i from Algorithm 1

initialize: r̃(g) = 0 for g = 1, . . . , G.
for ` from 1 to L, i from 1 to m do

identify: Identify the sign pattern index t? using q and Λ`,i
for g from 1 to G do

update: r̃(g) = r̃(g) + r(`, i, t?, g)
end for

end for
scale: Set r̃(g) = r̃(g)

Lm for g = 1, . . . , G

classify: b̂x = argmaxg∈{1,...,G} r̃(g)

3. Experimental Results

In this section, we provide experimental results of Algorithms 1 and 2 for synthetically gen-
erated datasets, handwritten digit recognition using the MNIST dataset, and facial recogni-
tion using the extended YaleB database. We note that for the synthetic data, we typically
use Gaussian clouds, but note that since our algorthms use hyperplanes to classify data, the
results on these type of datasets would be identical to any with the same radial distribution
around the origin. We use Gaussian clouds simply because they are easy to visualize and
allow for various geometries. Of course, our methods require no particular structure other
than being centered around the origin, which can be done as a pre-processing step (and
the framework could clearly be extended to remove this property in future work). The real
data like the hand-written digits and faces clearly have more complicated geometries and
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are harder to visualize. We include both types of data to fully characterize our method’s
performance.

We also remark here that we purposefully choose not to compare to other related meth-
ods like SVM for several reasons. First, if the data happens to be linearly separable it is
clear that SVM will outperform or match our approach since it is designed precisely for such
data. In the interesting case when the data is not linearly separable, our method will clearly
outperform SVM since SVM will fail. To use SVM in this case, one needs an appropriate
kernel, and identifying such a kernel is highly non-trivial without understanding the data’s
geometry, and precisely what our method avoids having to do.

Unless otherwise specified, the matrix A is taken to have i.i.d. standard Gaussian entries.
Also, we assume the data is centered. To ensure this, a pre-processing step on the raw data
is performed to account for the fact that the data may not be centered around the origin.
That is, given the original training data matrix X, we calculate µ = 1

p

∑p
i=1 xi. Then for

each column xi of X, we set xi ← xi−µ. The testing data is adjusted similarly by µ. Note
that this assumption can be overcome in future work by using dithers—that is, hyperplane
dither values may be learned so that Q = sign(AX + τ), where τ ∈ Rm—or even with
random dithers, as motivated by quantizer results (Baraniuk et al., 2017; Cambareri et al.,
2017).

3.1. Classification of Synthetic Datasets

In our first stylized experiment, we consider three classes of Gaussian clouds in R2 (i.e.,
n = 2); see Figure 1 for an example training and testing data setup. For each choice of
m ∈ {5, 7, 9, 11, 13, 15, 17, 19} and p ∈ {75, 150, 225} with equally sized training data sets
for each class (that is, each class is tested with either 25, 50, or 75 training points), we
execute Algorithms 1 and 2 with a single level and 30 trials of generating A. We perform
classification of 50 test points per group, and report the average correct classification rate
(ACCR) over all trials. Note that the ACCR is simply defined as the number of correctly
classified testing points divided by the total number of testing points (where the correct
class is known either from the generated distribution or the real label for real world data),
and then averaged over the trials of generating A. We choose this metric since it captures
both false negatives and positives, and since in all experiments we have access to the correct
labels. The right plot of Figure 1 shows that m ≥ 15 results in nearly perfect classification.

Next, we present a suite of experiments where we again construct the classes as Gaussian
clouds in R2, but utilize various types of data geometries. In each case, we set the number
of training data points for each class to be 25, 50, and 75. In Figure 2, we have two classes
forming a total of six Gaussian clouds, and execute Algorithms 1 and 2 using four levels and
m ∈ {10, 30, 50, 70, 90, 110, 130}. The classification accuracy increases for larger m, with
nearly perfect classification for the largest values of m selected. A similar experiment is
shown in Figure 3, where we have two classes forming a total of eight Gaussian clouds, and
execute the proposed algorithm using five levels.

In the next two experiments, we display the classification results of Algorithms 1 and 2
when using m ∈ {10, 30, 50, 70, 90} and one through four levels, and see that adding levels
can be beneficial for more complicated data geometries. In Figure 4, we have three classes
forming a total of eight Gaussian clouds. We see that from both L = 1 to L = 2 and L = 2
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Figure 1: Synthetic classification experiment with three Gaussian clouds (G = 3), L = 1,
n = 2, 50 test points per group, and 30 trials of randomly generating A. (Left) Example
training and testing data setup. (Right) Average correct classification rate versus m and
for the indicated number of training points per class.
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Figure 2: Synthetic classification experiment with six Gaussian clouds and two classes
(G = 2), L = 4, n = 2, 50 test points per group, and 30 trials of randomly generating A.
(Left) Example training and testing data setup. (Right) Average correct classification rate
versus m and for the indicated number of training points per class.
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to L = 3, there are huge gains in classification accuracy. In Figure 5, we have four classes
forming a total of eight Gaussian clouds. Again, from both L = 1 to L = 2 and L = 2
to L = 3 we see large improvements in classification accuracy, yet still better classification
with L = 4. We note here that in this case it also appears that more training data does not
improve the performance (and perhaps even slightly decreases accuracy); this is of course
unexpected in practice, but we believe this happens here only because of the construction
of the Gaussian clouds—more training data leads to more outliers in each cloud, making
the sets harder to separate.
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Figure 3: Synthetic classification experiment with eight Gaussian clouds and two classes
(G = 2), L = 5, n = 2, 50 test points per group, and 30 trials of randomly generating A.
(Left) Example training and testing data setup. (Right) Average correct classification rate
versus m and for the indicated number of training points per class.

3.2. Handwritten Digit Classification

In this section, we apply Algorithms 1 and 2 to the MNIST (LeCun, 2018) dataset, which
is a benchmark dataset of images of handwritten digits, each with 28× 28 pixels. In total,
the dataset has 60, 000 training examples and 10, 000 testing examples.

First, we apply Algorithms 1 and 2 when considering only two digit classes. Fig-
ure 6 shows the correct classification rate for the digits “0” versus “1”. We set m ∈
{10, 30, 50, 70, 90, 110}, p ∈ {50, 100, 150} with equally sized training data sets for each
class, and classify 50 images per digit class. Notice that the algorithm is performing very
well for small m in comparison to n = 28×28 = 784 and only a single level. Figure 7 shows
the results of a similar setup for the digits “0” and “5”. In this experiment, we increased
to four levels and achieve classification accuracy around 90% at the high end of m values
tested. This indicates that the digits “0” and “5” are more likely to be mixed up than “0”
and “1”, which is understandable due to the more similar digit shape between “0” and “5”.
In Figure 7, we include the classification performance when the matrix A is constructed
using the two-dimensional Discrete Cosine Transform (DCT) in addition to our typical
Gaussian matrix A (note one could similarly use the Discrete Fourier Transform instead of
the DCT but that requires re-defining the sign function on complex values). Specifically, to
construct A from the n× n two-dimensional DCT, we select m rows uniformly at random
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Figure 4: Synthetic classification experiment with eight Gaussian clouds and three classes
(G = 3), L = 1, . . . , 4, n = 2, 50 test points per group, and 30 trials of randomly generating
A. (Top) Example training and testing data setup. Average correct classification rate
versus m and for the indicated number of training points per class for: (middle left) L = 1,
(middle right) L = 2, (bottom left) L = 3, (bottom right) L = 4.
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Figure 5: Synthetic classification experiment with eight Gaussian clouds and four classes
(G = 4), L = 1, . . . , 4, n = 2, 50 test points per group, and 30 trials of randomly generating
A. (Top) Example training and testing data setup. Average correct classification rate
versus m and for the indicated number of training points per class for: (middle left) L = 1,
(middle right) L = 2, (bottom left) L = 3, (bottom right) L = 4.
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and then apply a random sign (i.e., multiply by +1 or -1) to the columns. We include these
two results to illustrate that there is not much difference when using the DCT and Gaussian
constructions of A, though we expect analyzing the DCT case to be more challenging and
limit the theoretical analysis in this paper to the Gaussian setting. The advantage of using
a structured matrix like the DCT is of course the reduction in computation cost in acquiring
the measurements.
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Testing Data

Figure 6: Classification experiment using the handwritten “0” and “1” digit images from
the MNIST dataset, L = 1, n = 28 × 28 = 784, 50 test points per group, and 30 trials of
randomly generating A. (Top left) Training data images when p = 50. (Top right) Average
correct classification rate versus m and for the indicated number of training points per class.
(Bottom) Testing data images.

Next, we apply Algorithms 1 and 2 to the MNIST dataset with all ten digits. We
utilize 1, 000, 3, 000, and 5, 000 training points per digit class, and perform classifica-
tion with 800 test images per class. The classification results using 18 levels and m ∈
{100, 200, 400, 600, 800} are shown in Figure 8, where it can be seen that with 5, 000 train-
ing points per class, above 90% classification accuracy is achieved for m ≥ 200. We also see
that larger training sets result in slightly improved classification.

3.3. Facial Recognition

Our last experiment considers facial recognition using the extended YaleB dataset (Cai
et al., 2007b,a, 2006; He et al., 2005). This dataset includes 32×32 images of 38 individuals
with roughly 64 near-frontal images under different illuminations per individual. We select
four individuals from the dataset, and randomly select images with different illuminations
to be included in the training and testing sets (note that the same illumination was included
for each individual in the training and testing data). We execute Algorithms 1 and 2 using
four levels with m ∈ {10, 50, 100, 150, 200, 250, 300}, p ∈ {20, 40, 60} with equally sized
training data sets for each class, and classify 30 images per class. The results are displayed
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Figure 7: Classification experiment using the handwritten “0” and “5” digit images from
the MNIST dataset, L = 4, n = 28 × 28 = 784, 50 test points per group, and 30 trials
of randomly generating A. (Top) Training data images when p = 50. (Middle) Testing
data images. Average correct classification rate versus m and for the indicated number of
training points per class (bottom left) when using a Gaussian matrix A and (bottom right)
when using a DCT matrix A.
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Figure 8: Correct classification rate versus m when using all ten (0-9) handwritten digits
from the MNIST dataset, L = 18, n = 28 × 28 = 784, 1,000, 3,000, and 5,000 training
points per group, 800 test points per group (8,000 total), and a single instance of randomly
generating A.
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in Figure 9. Above 90% correct classification is achieved for m ≥ 150 when using the largest
training set.
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Figure 9: Classification experiment using four individuals from the extended YaleB dataset,
L = 4, n = 32× 32 = 1024, 30 test points per group, and 30 trials of randomly generating
A. (Top left) Training data images when p = 20. (Top right) Average correct classification
rate versus m and for the indicated number of training points per class. (Bottom) Testing
data images.

4. Theoretical Analysis for a Simple Case

4.1. Main Results

We now provide a theoretical analysis of Algorithms 1 and 2 in which we make a series of
simplifying assumptions to make the development more tractable. We focus on the setting
where the signals are two-dimensional, belonging to one of two classes, and consider a single
level (i.e., ` = 1, n = 2, and G = 2). Moreover, we assume the true classes G1 and G2

to be two disjoint cones in R2 and assume that regions of the same angular measure have
the same number (or density) of training points. Of course, the problem of non-uniform
densities relates to complicated geometries that may dictate the number of training points
required for accurate classification (especially when many levels are needed) and is a great
direction for future work. However, we believe analyzing this simpler setup will provide a
foundation for a more generalized analysis in future work.

Let A1 denote the angular measure of G1, defined by

A1 = max
x1,x2∈G1

∠(x1, x2),
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where ∠(x1, x2) denotes the angle between the vectors x1 and x2; define A2 similarly for
G2. Also, define

A12 = min
x1∈G1,x2∈G2

∠(x1, x2)

as the angle between classes G1 and G2. Suppose that the test point x ∈ G1, and that we
classify x using m random hyperplanes. For simplicity, we assume that the hyperplanes can
intersect the cones, but only intersect one cone at a time. This means we are imposing the
condition A12 +A1 +A2 ≤ π. See Figure 10 for a visualization of the setup for the analysis.
Notice that A1 is partitioned into two disjoint pieces, θ1 and θ2, where A1 = θ1 + θ2. The
angles θ1 and θ2 are determined by the location of x within G1.

Figure 10: Visualization of the analysis setup for two classes of two dimensions. If a
hyperplane intersects the θ1 region of G1, then x is not on the same side of the hyperplane
as G2. If a hyperplane intersects the θ2 region of G1, then x is on the same side of the
hyperplane as G2. That is, θ1 and θ2 are determined by the position of x within G1, and
θ1 + θ2 = A1.

The membership index parameter (1) is still used; however, now we have angles instead
of numbers of training points. That is,

r(`, i, t, g) =
Ag|t∑G
j=1Aj|t

∑G
j=1 |Ag|t −Aj|t|∑G

j=1Aj|t
, (2)

where Ag|t= Ag|t(Λ`,i) denotes the angle of the part of class g with the t-th sign pattern
index at the i-th set selection in the `-th level. Throughout, let t?i denote the sign pattern
index of the test point x with the i-th hyperplane at the first level, ` = 1; i.e. t?i = t?Λ`,i

with the identification Λ`,i = {i} (since ` = 1 implies a single hyperplane is used). Letting

b̂x denote the classification label for x after running the proposed algorithm, Theorem 2
describes the probability that x gets classified correctly with b̂x = 1. Note that for simplicity,
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in Theorem 2 we assume the classes G1 and G2 are of the same size (i.e., A1 = A2) and
the test point x lies in the middle of class G1 (i.e., θ1 = θ2). These assumptions are for
convenience and clarity of presentation only (note that (3) is already quite cumbersome),
but the proof follows analogously (albeit without easy simplifications) for the general case;
for convenience we leave the computations in Table 1 in general form and do not utilize the
assumption θ1 = θ2 until the end of the proof. We first state a technical result in Theorem
2, and include two corollaries below that illustrate its usefulness.

Theorem 2 Let the classes G1 and G2 be two cones in R2 defined by angular measures
A1 and A2, respectively, and suppose regions of the same angular measure have the same
density of training points. Suppose A1 = A2, θ1 = θ2, and A12 + A1 + A2 ≤ π. Then, the
probability that a data point x ∈ G1 gets classified in class G1 by Algorithms 1 and 2 using
a single level and a measurement matrix A ∈ Rm×2 with independent standard Gaussian
entries is bounded as follows,

P[̂bx = 1] ≥ 1−
m∑
j=0

m∑
k1,1=0

m∑
k1,2=0

m∑
k2=0

m∑
k=0

j+k1,1+k1,2+k2+k=m, k1,2≥9(j+k1,1)

(
m

j, k1,1, k1,2, k2, k

)(
A12

π

)j (A1

2π

)k1,1+k1,2

×
(
A1

π

)k2 (π − 2A1 −A12

π

)k
. (3)

Figure 11 displays the classification probability bound of Theorem 2 compared to the (sim-
ulated) true value of P[̂bx = 1]. Here, A1 = A2 = 15◦, θ1 = θ2 = 7.5◦, and A12 and m
are varied. Most importantly, notice that in all cases, the classification probability is ap-
proaching 1 with increasing m. Also, the result from Theorem 2 behaves similarly as the
simulated true probability, especially as m and A12 increase.

The following two corollaries provide asymptotic results for situations where P[̂bx = 1]
tends to 1 when m→∞. Corollary 3 provides this result whenever A12 is at least as large
as both A1 and π−2A1−A12, and Corollary 4 provides this result for certain combinations
of A1 and A12. These results of course should match intuition, since as m grows large, our
hyperplanes essentially chop up the space into finer and finer wedges. Below, the dependence
on the constants on A1, A12 is explicit in the proofs.

Corollary 3 Consider the setup of Theorem 2. Suppose A12 ≥ A1 and 2A12 ≥ π − 2A1.
Then P[̂bx = 1] → 1 as m → ∞. In fact, the probability converges to 1 exponentially, i.e.
P[b̂x = 1] ≥ 1− Ce−cm for positive constants c and C that may depend on A1, A12.

Corollary 4 Consider the setup of Theorem 2. Suppose A1+A12 > 0.58π and A12+ 3
4A1 ≤

π
2 . Then P[̂bx = 1] → 1 as m → ∞. In fact, the probability converges to 1 exponentially,

i.e. P[b̂x = 1] ≥ 1− Ce−cm for positive constants c and C that may depend on A1, A12.

4.2. Proof of Main Results

4.2.1. Proof of Theorem 2

Proof Using our setup, we have five possibilities for any given hyperplane: (i) the hyper-
plane completely separates the two classes, i.e., the cones associated with the two classes
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Figure 11: P[̂bx = 1] versus the number of hyperplanes m when A12 is varied (see legend),
A1 = A2 = 15◦, and θ1 = θ2 = 7.5◦. The solid lines indicate the probability (5) with the
multinomial probability given by (6) and the conditional probability (9) simulated over 1000
trials of the uniform random variables. The dashed lines indicate the result (3) provided in
Theorem 2.

fall on either side of the hyperplane, (ii) the hyperplane completely does not separate the
two classes, i.e., the cones fall on the same side of the hyperplane, (iii) the hyperplane cuts
through G2, (iv) the hyperplane cuts through G1 via θ1, or (v) the hyperplane cuts through
G1 via θ2. Using this observation, we can now define the event

E(j, k1,1, k1,2, k2) (4)

whereby from among the m total hyperplanes, j hyperplanes separate the cones, k1,1 hy-
perplanes cut G1 in θ1, k1,2 hyperplanes cut G1 in θ2, and k2 hyperplanes cut G2. See
Table 1 for an easy reference of these quantities. Note that we must distinguish between
hyperplanes that cut through θ1 and those that cut through θ2; k1,1 hyperplanes cut G1

and land within θ1 so that x is not on the same side of the hyperplane as G2 whereas k1,2

hyperplanes cut G1 and land within θ2 so that x is on the same side of the hyperplane as
G2. These orientations will affect the computation of the membership index. Using the
above definition of (4), we use the law of total probability to get a handle on P[̂bx = 1], the
probability that the test point x gets classified correctly, as follows,

P[̂bx = 1] = P

[
m∑
i=1

r(`, i, t?i , 1) >

m∑
i=1

r(`, i, t?i , 2)

]

=
∑

j,k1,1,k1,2,k2

j+k1,1+k1,2+k2≤m

P

[
m∑
i=1

r(`, i, t?i , 1) >

m∑
i=1

r(`, i, t?i , 2) |E(j, k1,1, k1,2, k2)

]
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× P [E(j, k1,1, k1,2, k2)] . (5)

The latter probability in (5) is similar to the probability density of a multinomial random
variable:

P [E(j, k1,1, k1,2, k2)]

=

(
m

j, k1,1, k1,2, k2,m− j − k1,1 − k1,2 − k2

)(
A12

π

)j (θ1

π

)k1,1 (θ2

π

)k1,2
×
(
A2

π

)k2 (π −A1 −A2 −A12

π

)m−j−k1,1−k1,2−k2
, (6)

where
(

n
k1,k2,...,km

)
= n!

k1!k2!···km! .

To evaluate the conditional probability in (5), we must determine the value of r(`, i, t?i , g),
for g = 1, 2, given the hyperplane cutting pattern event. Table 1 summarizes the possible
cases. In the cases where the hyperplane cuts through either G1 or G2, we model the
location of the hyperplane within the class by a random variable defined on the interval
[0, 1], with no assumed distribution. We let u, u′, uh, u′h ∈ [0, 1] (for an index h) denote
independent copies of such random variables.

Hyperplane Case Number in event (4) Class g Value of r(`, i, t?i , g) (see (2))

(i) separates j
1 1
2 0

(ii) does not separate m− j − k2 − k1,1 − k1,2
1 A1|A1−A2|

(A1+A2)2

2 A2|A1−A2|
(A1+A2)2

(iii) cuts G2 k2
1 A1|A1−A2u′|

(A1+A2u′)2

2 A2u′|A1−A2u′|
(A1+A2u′)2

(iv) cuts G1, θ1 k1,1
1 1
2 0

(v) cuts G1, θ2 k1,2
1 (θ1+θ2u)|θ1+θ2u−A2|

(θ1+θ2u+A2)2

2 A2|θ1+θ2u−A2|
(θ1+θ2u+A2)2

Table 1: Summary of (2) when up to one cone can be cut per hyperplane, where u, u′ are
independent random variables defined over the interval [0, 1].

Using the computations given in Table 1 and assuming j hyperplanes separate (i.e.
condition (i) described above), k1,1 hyperplanes cut G1 in θ1 (condition (iv) above), k1,2

hyperplanes cut G1 in θ2 (condition (v) above), k2 hyperplanes cut G2 (condition (iii)
above), and m− j − k1,1 − k1,2 − k2 hyperplanes do not separate (condition (ii) above), we
compute the membership index parameters defined in (2) as:

m∑
i=1

r(`, i, t?i , 1) = j + (m− j − k1,1 − k1,2 − k2)
A1|A1 −A2|
(A1 +A2)2

+ k1,1
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+

k1,2∑
h=1

(θ1 + θ2uh)|θ1 + θ2uh −A2|
(θ1 + θ2uh +A2)2

+

k2∑
h=1

A1|A1 −A2u
′
h|

(A1 +A2u′h)2

= j + k1,1 +

k1,2∑
h=1

(θ1 + θ2uh)|θ1 + θ2uh −A1|
(θ1 + θ2uh +A1)2

+

k2∑
h=1

A1|A1 −A1u
′
h|

(A1 +A1u′h)2
(7)

and
m∑
i=1

r(`, i, t?i , 2) = (m− j − k1,1 − k1,2 − k2)
A2|A1 −A2|
(A1 +A2)2

+

k1,2∑
h=1

A2|θ1 + θ2uh −A2|
(θ1 + θ2uh +A2)2

+

k2∑
h=1

A2u
′
h|A1 −A2u

′
h|

(A1 +A2u′h)2

=

k1,2∑
h=1

A1|θ1 + θ2uh −A1|
(θ1 + θ2uh +A1)2

+

k2∑
h=1

A1u
′
h|A1 −A1u

′
h|

(A1 +A1u′h)2
, (8)

where in both cases we have simplified using the assumption A1 = A2. Thus, the conditional
probability in (5), can be expressed as:

P

j + k1,1 +

k1,2∑
h=1

|θ1 + θ2uh −A1|(θ1 + θ2uh −A1)

(θ1 + θ2uh +A1)2
+

k2∑
h=1

|A1 −A1u
′
h|(A1 −A1u

′
h)

(A1 +A1u′h)2
> 0

 ,
(9)

where it is implied that this probably is conditioned on the hyperplane configuration as in
(5). Once the probability (9) is known, we can calculate the full classification probability
(5).

Since by assumption, θ1 +θ2 = A1, we have θ1 +θ2u−A1 ≤ 0 and A1−A1u
′ ≥ 0. Thus,

(9) simplifies to

P

j + k1,1 −
k1,2∑
h=1

(θ1 + θ2uh −A1)2

(θ1 + θ2uh +A1)2
+

k2∑
h=1

(A1 −A1u
′
h)2

(A1 +A1u′h)2
> 0

 ≥ P[γ > β] (10)

where

β = k1,2

(
θ2

A1 + θ1

)2

and γ = j + k1,1.

To obtain the inequality in (10), we used the fact that

j+k1,1−
k1,2∑
h=1

(θ1 −A1)2

(θ1 + θ2uh +A1)2
+

k2∑
h=1

(A1 −A1u
′
h)2

(A1 +A1u′h)2
≥ j+k1,1−

k1,2∑
h=1

(θ1 −A1)2

(θ1 +A1)2
+0 = γ−β.

By conditioning on γ > β, the probability of interest (5) reduces to (note the bounds on
the summation indices):

P[̂bx = 1] =
∑

j,k1,1,k1,2,k2
j+k1,1+k1,2+k2≤m

P

[
m∑
i=1

r(`, i, t?i , 1) >

m∑
i=1

r(`, i, t?i , 2) |E(j, k1,1, k1,2, k2)

]
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× P [E(j, k1,1, k1,2, k2)] (11)

≥
∑

j,k1,1,k1,2,k2
j+k1,1+k1,2+k2≤m,

β−γ<0

(
m

j, k1,1, k1,2, k2,m− j − k1,1 − k1,2 − k2

)(
A12

π

)j (θ1

π

)k1,1

×
(
θ2

π

)k1,2 (A2

π

)k2 (π −A1 −A2 −A12

π

)m−j−k1,1−k1,2−k2
. (12)

The condition β − γ < 0 is equivalent to k1,2( θ2
A1+θ1

)2 − (j + k1,1) < 0, which implies

k1,2( θ2
A1+θ1

)2 < j + k1,1. Assuming θ1 = θ2 simplifies this condition to depend only on

the hyperplane configuration (and not A1, θ1, and θ2) since θ2
A1+θ1

= θ2
3θ2

= 1
3 . Thus, the

condition β − γ < 0 reduces to the condition k1,2 < 9(j + k1,1) and (12) then simplifies to

∑
j+k1,1+k1,2+k2≤m,
k1,2<9(j+k1,1)

(
m

j, k1,1, k1,2, k2,m− j − k1,1 − k1,2 − k2

)(
A12

π

)j (θ1

π

)k1,1+k1,2

×
(
A2

π

)k2 (π − 2A1 −A12

π

)m−j−k1,1−k1,2−k2
(13)

=
∑

j+k1,1+k1,2+k2+k=m,
k1,2<9(j+k1,1)

(
m

j, k1,1, k1,2, k2, k

)(
A12

π

)j (θ1

π

)k1,1+k1,2 (A2

π

)k2 (π − 2A1 −A12

π

)k
,

(14)

=
∑

j+k1,1+k1,2+k2+k=m,
k1,2<9(j+k1,1)

(
m

j, k1,1, k1,2, k2, k

)(
A12

π

)j (A1

2π

)k1,1+k1,2 (A1

π

)k2 (π − 2A1 −A12

π

)k
,

(15)

where we have introduced k to denote the number of hyperplanes that do not separate nor
cut through either of the groups, and simplified using the assumptions that θ1 = A1

2 and
A1 = A2.

Note that if we did not have the condition k1,2 < 9(j + k1,1) in the sum (15) (that is,
if we summed over all terms), the quantity would sum to 1 (this can easily be seen by the
Multinomial Theorem). Finally, this means (15) is equivalent to (3), thereby completing
the proof.

4.2.2. Proof of Corollary 3

Proof We can bound (3) from below by bounding the excluded terms in the sum (i.e.,
those that satisfy k1,2 ≥ 9(j + k1,1)) from above. One approach to this would be to count
the number of terms satisfying k1,2 ≥ 9(j+k1,1) and bound them by their maximum. Using
basic combinatorics (see the appendix, Section A.1), that the number of terms satisfying
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k1,2 ≥ 9(j + k1,1) is given by

W1 =
1

12

(⌊m
10

⌋
+ 1
)(⌊m

10

⌋
+ 2
)(

150
⌊m

10

⌋2
− 10(4m+ 1)

⌊m
10

⌋
+ 3(m2 + 3m+ 2)

)
∼ m4.

(16)

Then, the quantity (3) can be bounded below by

1−W1 max

((
m

j, k1,1, k1,2, k2, k

)(
A12

π

)j (A1

2π

)k1,1+k1,2 (A1

π

)k2 (π − 2A1 −A12

π

)k)
=

1−W1 max

((
m

j, k1,1, k1,2, k2, k

)(
1

2

)k1,1+k1,2 (A12

π

)j (A1

π

)k1,1+k1,2+k2 (π − 2A1 −A12

π

)k)
,

(17)

where the maximum is taken over all j, k1,1, k1,2, k2, k = 0, . . . ,m such that k1,2 ≥ 9(j+k1,1).
Ignoring the constraint k1,2 ≥ 9(j + k1,1), we can upper bound the multinomial coefficient
using the trivial upper bound of 5m:(

m

j, k1,1, k1,2, k2, k

)
≤ 5m. (18)

Since we are assuming A12 is larger than A1 and π − 2A1 − A12 (from the assumption
that 2A12 ≥ π − 2A1), the strategy is to take j to be as large as possible while satisfying
k1,2 ≥ 9j and j + k1,2 = m. Since k1,2 ≥ 9j, we have j + 9j ≤ m which implies j ≤ m

10 . So,
we take j = m

10 , k1,2 = 9m
10 , and k1,1 = k2 = k = 0. Then(

1

2

)k1,1+k1,2 (A12

π

)j (A1

π

)k1,1+k1,2+k2 (π − 2A1 −A12

π

)k
(19)

≤
(

1

2

)9m/10(A12

π

)m/10(A1

π

)9m/10

=

(
1

29

A12

π

(
A1

π

)9
)m/10

. (20)

Combining (17) with the bounds given in (18) and (20), we have

≥ 1−W15m

(
1

29

A12

π

(
A1

π

)9
)m/10

∼ 1−m45m

(
1

29

A12

π

(
A1

π

)9
)m/10

= 1−m2

(
510 1

29

A12

π

(
A1

π

)9
)m/10

. (21)
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For the above to tend to 1 as m → ∞, we need 510

29
A12
π

(
A1
π

)9
< 1. This is equivalent

to A12

(
A1
2

)9
< π10

510
, which implies A12θ

9
1 <

(
π
5

)10
= π

5

(
π
5

)9
. Note that if θ1 = π

5 , then
A1 = A2 = 2θ1 = 2π

5 . Then A12 could be at most π
5 . But, this can’t be because we

have assumed A12 ≥ A1. Thus, we must have θ1 < π
5 . In fact, θ1 = π

6 is the largest

possible, in which case A12 = A1 = A2 = π
3 . If θ1 = π

6 , then A12θ
9
1 < π

5

(
π
5

)9
becomes

A12 <
π
5

(
6
5

)9 ≈ 3.24. Therefore, since we are already assuming A12 + 2A1 ≤ π, this is
essentially no further restriction on A12, and the same would be true for all θ1 ≤ π

6 . This
completes the proof.

4.2.3. Proof of Corollary 4

Proof Consider (3) and set j′ = j+k1,1 and r = k2 +k. Then we view (3) as a probability
equivalent to

1−
2m∑
j′=0

m∑
k1,2=0

2m∑
r=0

j′+k1,2+r=m, k1,2≥9j′

(
m

k1,2, j′, r

)(
A12 + A1

2

π

)j′ (
A1

2π

)k1,2 (π −A1 −A12

π

)r
. (22)

Note that multinomial coefficients are maximized when the parameters all attain the same
value. Thus, the multinomial term above is maximized when k1,2, j′ and r are all as
close to one another as possible. Thus, given the additional constraint that k1,2 ≥ 9j′,
the multinomial term is maximized when k1,2 = 9m

19 , j′ = m
19 , and r = 9m

19 (possibly with
ceilings/floors as necessary if m is not a multiple of 19), (see the appendix, Section A.2, for
a quick explanation), which means(

m

k1,2, j′, r

)
≤ m!

(9m
19 )!(m19)!(9m

19 )!
(23)

∼
√

2πm(me )m

2π 9m
19 ( 9m

19e)
18m/19

√
2πm19( m

19e)
m/19

(24)

=
19
√

19

18πm

(
(
19

9
)18/19191/19

)m
≈ 19

√
19

18πm
2.37m, (25)

where (24) follows from Stirling’s approximation for the factorial (and we use the notation
∼ to denote asymptotic equivalence, i.e. that two quantities have a ratio that tends to 1 as
the parameter size grows).

Now assume A12 + 3
4A1 ≤ π

2 , which implies π − A1 − A12 ≥ A12 + A1
2 . Note also that

π − A1 − A12 ≥ A1 since it is assumed that π − 2A1 − A12 ≥ 0. Therefore, we can lower
bound (22) by

1−W2
19
√

19

18πm
2.37m

(
π −A1 −A12

π

)m
, (26)
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where W2 is the number of terms in the summation in (22), and is given by

W2 =
1

6

(⌊m
10

⌋
+ 1
)(

100
⌊m

10

⌋2
+ (5− 30m)

⌊m
10

⌋
+ 3(m2 + 3m+ 2)

)
∼ m3. (27)

Thus, (26) goes to 1 as m→∞ when 2.37
(
π−A1−A12

π

)
< 1, which holds if A1 +A12 > 0.58π.

5. Discussion and Conclusion

In this work, we have presented a supervised classification algorithm that operates on binary,
or one-bit, data. Along with encouraging numerical experiments, we have also included a
theoretical analysis for a simple case. We believe our framework and analysis approach is
relevant to analyzing similar, multi-level-type algorithms. Future directions of this work
include the use of dithers for more complicated data geometries, identifying settings where
real-valued measurements may be worth the additional complexity, analyzing geometries
with non-uniform densities of data, as well as a generalized theory for high dimensional data
belonging to many classes and utilizing multiple levels within the algorithm. In addition,
we believe the framework will extend nicely into other applications such as hierarchical
clustering and classification as well as detection problems. In particular, the membership
function scores themselves can provide information about the classes and/or data points
that can then be utilized for detection, structured classification, false negative rates, and so
on. We believe this framework will naturally extend to these types of settings and provide
both simplistic algorithmic approaches as well as the ability for mathematical rigor.
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Appendix A. Elementary Computations

A.1. Derivation of (16)

Suppose we have M objects that must be divided into 5 boxes (for us, the boxes are the 5
different types of hyperplanes). Let ni denote the number of objects put into box i. Recall
that in general, M objects can be divided into k boxes

(
M+k−1
k−1

)
ways.

How many arrangements satisfy n1 ≥ 9(n2 + n3)? To simplify, let n denote the total
number of objects in boxes 2 and 3 (that is, n = n2 + n3). Then, we want to know how
many arrangements satisfy n1 ≥ 9n?

If n = 0, then n1 ≥ 9n is satisfied no matter how many objects are in box 1. So, this
reduces to the number of ways to arrange M objects into 3 boxes, which is given by

(
M+2

2

)
.

Suppose n = 1. For n1 ≥ 9n to be true, we must at least reserve 9 objects in box 1.
Then M−10 objects remain to be placed in 3 boxes, which can be done in

(
(M−10)+2

2

)
ways.

But, there are 2 ways for n = 1, either n2 = 1 or n3 = 1, so we must multiply this by 2.
Thus,

(
(M−10)+2

2

)
× 2 arrangements satisfy n1 ≥ 9n.

Continuing in this way, in general for a given n, there are
(
M−10n+2

2

)
× (n+ 1) arrange-

ments that satisfy n1 ≥ 9n. There are n+ 1 ways to arrange the objects in boxes 2 and 3,
and

(
M−10n+2

2

)
ways to arrange the remaining objects after 9n have been reserved in box 1.

Therefore, the total number of arrangements that satisfy n1 ≥ 9n is given by

bM
10
c∑

n=0

(
M − 10n+ 2

2

)
× (n+ 1). (28)

To see the upper limit of the sum above, note that we must have M − 10n+ 2 ≥ 2, which
means n ≤ M

10 . Since n must be an integer, we take n ≤ bM10c. After some heavy algebra
(i.e. using software!), one can express this sum as:

W =
1

12

(⌊
M

10

⌋
+ 1

)(⌊
M

10

⌋
+ 2

)(
150

⌊
M

10

⌋2

− 10(4M + 1)

⌊
M

10

⌋
+ 3(M2 + 3M + 2)

)
(29)

∼M4. (30)

A.2. Derivation of (23)

Suppose we want to maximize (over the choices of a, b, c) a trinomial m!
a!b!c! subject to a +

b + c = m and a > 9b. Since m is fixed, this is equivalent to choosing a, b, c so as to
minimize a!b!c! subject to these constraints. First, fix c and consider optimizing a and b
subject to a + b = m − c =: k and a > 9b in order to minimize a!b!. For convenience,
suppose k is a multiple of 10. We claim the optimal choice is to set a = 9b (i.e. a = 9

10k
and b = 1

10k). Write a = 9b + x where x must be some non-negative integer in order to
satisfy the constraint. We then wish to compare (9b)!b! to (9b + x)!(b− x)!, since the sum
of a and b must be fixed. One readily observes that:

(9b+x)!(b−x)! =
(9b+ x)(9b+ x− 1) · · · (9b+ 1)

b(b− 1) · · · (b− x+ 1)
·(9b)!b! ≥ 9b · 9b · · · 9b

b · b · · · b
·(9b)!b! = 9x·(9b)!b!.
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Thus, we only increase the product a!b! when a > 9b, so the optimal choice is when a = 9b.
This holds for any choice of c. A similar argument shows that optimizing b and c subject
to 9b + b + c = m to minimize (9b)!b!c! results in the choice that c = 9b. Therefore, one
desires that a = c = 9b and a+ b+ c = m, which means a = c = 9

19m and b = 1
19m.
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