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Abstract

This paper presents a unified framework for smooth convex regularization of discrete op-
timal transport problems. In this context, the regularized optimal transport turns out to
be equivalent to a matrix nearness problem with respect to Bregman divergences. Our
framework thus naturally generalizes a previously proposed regularization based on the
Boltzmann-Shannon entropy related to the Kullback-Leibler divergence, and solved with
the Sinkhorn-Knopp algorithm. We call the regularized optimal transport distance the rot
mover’s distance in reference to the classical earth mover’s distance. By exploiting alternate
Bregman projections, we develop the alternate scaling algorithm and non-negative alter-
nate scaling algorithm, to compute efficiently the regularized optimal plans depending on
whether the domain of the regularizer lies within the non-negative orthant or not. We fur-
ther enhance the separable case with a sparse extension to deal with high data dimensions.
We also instantiate our framework and discuss the inherent specificities for well-known
regularizers and statistical divergences in the machine learning and information geometry
communities. Finally, we demonstrate the merits of our methods with experiments using
synthetic data to illustrate the effect of different regularizers, penalties and dimensions, as
well as real-world data for a pattern recognition application to audio scene classification.

Keywords: alternate projections, convex analysis, regularized optimal transport, rot
mover’s distance, statistical divergences

1. Introduction

A recurrent problem in statistical machine learning is the choice of a relevant distance
measure to compare probability distributions. Various information divergences are famous,
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among which Euclidean, Mahalanobis, Kullback-Leibler, Itakura-Saito, Hellinger, x?2, 4y
(quasi-)norm, total variation, logistic loss function, or more general Csiszar and Bregman
divergences and parametric families of such divergences such as a- and S-divergences.

An alternative family of distances between probability distributions can be introduced in
the framework of optimal transport (OT). Rather than performing a pointwise comparison
of the distributions, the idea is to quantify the minimal effort for moving the probability
mass of one distribution to the other, where the transport plan to move the mass is optimized
according to a given ground cost. This makes OT distances suitable and robust in certain
applications, notably in the field of computer vision where the discrete OT distance, also
known as earth mover’s distance (EMD), has been popularized to compare histograms of
features for pattern recognition tasks (Rubner et al., 2000).

Despite its appealing theoretical properties, intuitive formulation, and excellent perfor-
mance in various problems of information retrieval, the computation of the EMD involves
solving a linear program whose cost quickly becomes prohibitive with the data dimension.
In practice, the best algorithms currently proposed, such as the network simplex (Ahuja
et al., 1993), scale at least with a super-cubic complexity. Embeddings of the distributions
can be used to approximate the EMD with linear complexity (Indyk and Thaper, 2003;
Grauman and Darrell, 2004; Shirdhonkar and Jacobs, 2008), and the network simplex can
be modified to run in quadratic time (Gudmundsson et al., 2007; Ling and Okada, 2007; Pele
and Werman, 2009). Nevertheless, the distortions inherent to such embeddings (Naor and
Schechtman, 2007), and the exponential increase of costs incurred by such modifications,
make these approaches inapplicable for dimensions higher than four. Instead, multi-scale
strategies (Oberman and Ruan, 2015) and shortcut paths (Schmitzer, 2016a) can speed up
the estimation of the exact optimal plan. These approaches are yet limited to particular
convex costs such as fo, while other costs such as ¢; and truncated or compressed versions
are often preferred in practice for an increased robustness to data outliers (Pele and Wer-
man, 2008, 2009; Rabin et al., 2009). For general applications, a gain in performance can
also be obtained with a cost directly learned from labeled data (Cuturi and Avis, 2014).
The aforementioned accelerated methods that are dedicated to ¢9 or convex costs are thus
not adapted in this context.

On another line of research, the regularization of the transport plan, for example via
graph modeling (Ferradans et al., 2014), has been considered to deal with noisy data,
though this latter approach does not address the computational issue of efficiency for high
dimensions. In this continuity, an entropic regularization was shown to admit an efficient
algorithm with quadratic complexity that speeds up the computation of solutions by sev-
eral orders of magnitude, and to improve performance on applications such as handwritten
digit recognition (Cuturi, 2013). In addition, a tailored computation can be obtained via
convolution for specific ground costs (Solomon et al., 2015). Since the introduction of the
entropic regularization, OT has benefited from extensive developments in the machine learn-
ing community, with applications such as label propagation (Solomon et al., 2014), domain
adaptation (Courty et al., 2015), matrix factorization (Zen et al., 2014), dictionary learn-
ing (Rolet et al., 2016; Schmitz et al., 2018), barycenter computation (Cuturi and Peyré,
2016), geodesic principal component analysis (Bigot et al., 2013; Seguy and Cuturi, 2015;
Cazelles et al., 2017), data fitting (Frogner et al., 2015), statistical inference (Bernton et al.,
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2017), training of Boltzmann machines (Montavon et al., 2016) and generative adversarial
networks (Arjovsky et al., 2017; Bousquet et al., 2017; Genevay et al., 2017).

With the entropic regularization, the gain in computational time is only important for
high dimensions or large levels of regularization. For low regularization, advanced opti-
mization strategies can still be used to obtain a significant speed-up (Thibault et al., 2017;
Schmitz et al., 2018). It is also a well-known effect that the entropic regularization over-
spreads the transported mass, which may be undesirable for certain applications as in the
case of interpolation purposes. An interesting perspective of these works, however, is that
many more regularizers are worth investigating to solve OT problems both efficiently and
robustly (Galichon and Salanié, 2015; Muzellec et al., 2018; Blondel et al., 2017). This is
the idea we address in the present work, focusing on smooth convex regularization.

1.1 Notations

For the sake of simplicity, we consider distributions with same dimension d, and thus work
with the Euclidean space R%*? of square matrices. It is straightforward, however, to extend
all results for a different number of bins m, n by using rectangular matrices in R™*" instead.
We denote the null matrix of R**4 by 0, and the matrix full of ones by 1. The Frobenius
inner product between two matrices 7, & € R4*? is defined by:

d d
(m, &) = Zzﬂz‘jfzj : (1)

When the intended meaning is clear from the context, we also write 0 for the null vector of
R?, and 1 for the vector full of ones. The notation - represents the transposition operator
for matrices or vectors. The probability simplex of R? is defined as follows:

Sy={pecRi:p'1=1}. (2)
The operator diag(v) transforms a vector v € R? into a diagonal matrix 7 € R¥9 such
that m; = v;, for all 1 <4 < d. The operator vec(w) transforms a matrix = € R™? into a
vector x € RY” such that Tit(j—1)d = Tij, for all 1 <4, j < d. The operator sgn(x) for x € R
returns —1,0, +1, if = is negative, null, positive, respectively. Functions of a real variable,
such as the absolute value, sign, exponential or power functions, are considered element-
wise when applied to matrices. The max operator and inequalities between matrices should
also be interpreted element-wise. Matrix divisions are similarly considered element-wise,
whereas element-wise matrix multiplications, also known as Hadamard or Schur products,
are denoted by ® to remove any ambiguity with standard matrix multiplications. Lastly,
addition or subtraction of a scalar and a matrix should be understood element-wise by
replicating the scalar.

1.2 Background and Related Work

Given two probability vectors p,q € ¥4, and a cost matrix v € RiXd whose coefficients ~;;

represent the cost of moving the mass from bin p; to ¢;, the total cost of a given transport
plan, or coupling, 7 € II(p, q) can be quantified as (7, ~). An optimal cost is then obtained
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by solving a linear program:

d~(p,q) = min (, , 3
J(p) = min_(r.3) 3)
with the transport polytope of p and q, also known as the polytope of couplings between
p and q, defined as the following polyhedron:

I(p,q)={meR¥: 71=p,r'1=q} . (4)

The EMD associated to the cost matrix « is given by d~ and is a true distance metric on
the probability simplex >; whenever « is itself a distance matrix. In general, the optimal
plans, or earth mover’s plans, have at most 2d — 1 nonzero entries, and consist either of a
single vertex or of a whole facet of the transport polytope. One of the earth mover’s plans
can be obtained with the network simplex (Ahuja et al., 1993) among other approaches.
For a general cost matrix =, the complexity of solving an OT problem scales at least in
O(d3log d) for the best algorithms currently proposed, including the network simplex, and
turns out to be super-cubic in practice as well.

Cuturi (2013) proposed a new family of OT distances, called Sinkhorn distances, from
the perspective of maximum entropy. The idea is to smooth the original problem with a
strictly convex regularization via the Boltzmann-Shannon entropy. The primal problem
involves the entropic regularization as an additional constraint:

d. ,q) = min (m,7) , 5
N.a(Pd) ﬂena(p,q)< v) (5)

with the regularized transport polytope defined as follows:

,(p,q) = {m €I(p,q): E(w) < E(pq') +a} , (6)

where a > 0 is a regularization term and E is minus the Boltzmann-Shannon entropy as
defined in (28). It is also straightforward to prove that we have:

I,(p,q) = {w € l(p,q): K(x||1) < K(pq'|1)+a} , (7)
I,(p.q) = {w € (p,q): K(x|lpq’) < a} . (8)

where K is the Kullback-Leibler divergence as defined in (27). This enforces the solution to
have sufficient entropy, or equivalently small enough mutual information, by constraining it
to the Kullback-Leibler ball of radius K (pq'||1) + a, respectively a, and center the matrix
1 ¢ Riﬁd, respectively the transport plan pq' € Riﬁd, which have maximum entropy.
The dual problem exploits a Lagrange multiplier to relax the entropic regularization as a
penalty:

dya(pya) = (m4,7) (9)

with the regularized optimal plan 7 defined as follows:

) = argmin (m,vy) + AE(7w) , (10)
well(p,a)

where A > 0 is a regularization term. The problem can then be solved empirically in
quadratic complexity with linear convergence using the Sinkhorn-Knopp algorithm (Sinkhorn
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and Knopp, 1967) based on iterative matrix scaling, where rows and columns are rescaled
in turn so that they respectively sum up to p and q until convergence. Finally, it is easy
to prove that we have:

w4 = argmin (m,7) + AK (w]]1) | (11)
well(p,q)

% = argmin (m,~) + AK(r|pq") . (12)
well(p,q)

This again shows that the regularization enforces the solution to have sufficient entropy, or
equivalently small enough mutual information, by shrinking it toward the matrix 1 and the
joint distribution pq' which have maximum entropy.

Benamou et al. (2015) revisited the entropic regularization in a geometrical framework
with iterative information projections. They showed that computing a Sinkhorn distance
in dual form actually amounts to the minimization of a Kullback-Leibler divergence:

7y = argmin K (7| exp(—y/A)) . (13)
well(p,q)

Precisely, this amounts to computing the Kullback-Leibler projection of exp(—~y/\) € ]Rifrd
onto the transport polytope II(p, q). In this context, the Sinkhorn-Knopp algorithm turns
out to be a special instance of Bregman projection onto the intersection of convex sets via
alternate projections. Specifically, we see II(p,q) as the intersection of the non-negative
orthant with two affine subspaces containing all matrices with rows and columns summing
to p and q respectively, and we alternate projection on these two subspaces according to
the Kullback-Leibler divergence until convergence.

Kurras (2015) further studied this equivalence in the wider context of iterative pro-
portional fitting. He notably showed that the Sinkhorn-Knopp and alternate Bregman
projections can be extended to account for infinite entries in the cost matrix ~, and thus
null entries in the regularized optimal plan. Hence, it is possible to develop a sparse ver-
sion of the entropic regularization to OT problems. This becomes interesting to store the
d X d matrix variables and perform the required computations when the data dimension
gets large.

Dhillon and Tropp (2007) had already enlightened such an equivalence in the field of
matrix analysis. They actually considered the estimation of contingency tables with fixed
marginals as a matrix nearness problem based on the Kullback-Leibler divergence. In more
detail, they use a rough estimate & € Riﬁd to produce a contingency table 7v* that has fixed
marginals p, q by Kullback-Leibler projection of & onto II(p, q):

7 = argmin K(7||€) . (14)
well(p,q)

They showed that alternate Bregman projections specialize to the Sinkhorn-Knopp algo-
rithm in this context. However, no relationship to OT problems was highlighted.

1.3 Contributions and Organization

Our main contribution is to formulate a unified framework for discrete regularized optimal
transport (ROT) by considering a large class of smooth convex regularizers. We call the
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underlying distance the rot mover’s distance (RMD) and show that a given ROT problem
actually amounts to the minimization of an associated Bregman divergence. This allows the
derivation of two schemes that we call the alternate scaling algorithm (ASA) and the non-
negative alternate scaling algorithm (NASA), to compute efficiently the regularized optimal
plans depending on whether the domain of the regularizer lies within the non-negative
orthant or not. These schemes are based on the general form of alternate projections for
Bregman divergences. They also exploit the Newton-Raphson method to approximate the
projections for separable divergences. The separable case is further enhanced with a sparse
extension to deal with high data dimensions. We also instantiate our two generic schemes
with widely-used regularizers and statistical divergences.

The proposed framework naturally extends the Sinkhorn-Knopp algorithm for the reg-
ularization based on the Boltzmann-Shannon entropy (Cuturi, 2013), or equivalently the
minimization of a Kullback-Leibler divergence (Benamou et al., 2015), and their sparse ver-
sion (Kurras, 2015), which turn out to be special instances of ROT problems. It also relates
to matrix nearness problems via minimization of Bregman divergences, and it is straight-
forward to construct more general estimators for contingency tables with fixed marginals
than the classical estimator based on the Kullback-Leibler divergence (Dhillon and Tropp,
2007). Lastly, it brings some new insights between transportation theory (Villani, 2009) and
information geometry (Amari and Nagaoka, 2000), where Bregman divergences are known
to possess a dually flat structure with a generalized Pythagorean theorem in relation to
information projections.

The remainder of this paper is organized as follows. In Section 2, we introduce some
necessary preliminaries. In Section 3, we present our theoretical results for a unified frame-
work of ROT problems. We then derive the algorithmic methods for solving ROT problems
in Section 4. We also discuss the inherent specificities of ROT problems for classical reg-
ularizers and associated divergences in Section 5. In Section 6, we provide experiments
to illustrate our methods on synthetic data and real-world audio data in a classification
problem. Finally, in Section 7, we draw some conclusions and perspectives for future work.

2. Theoretical Preliminaries

In this section, we introduce the required preliminaries to our framework. We begin with
elements of convex analysis (Section 2.1) and of Bregman geometry (Section 2.2). We pro-
ceed with theoretical results for convergence of alternate Bregman projections (Section 2.3)
and of the Newton-Raphson method (Section 2.4).

2.1 Convex Analysis

Let £ be a Euclidean space with inner product (-,-) and induced norm || - ||. The boundary,
interior and relative interior of a subset X C £ are respectively denoted by bd(X), int(X),
and ri(X’), where we recall that for a convex set C, we have:

rilC)={xeC:VyelC,IA>1,xx+(1-NyeC} . (15)

In convex analysis, scalar functions are defined over the whole space £ and take values
in the extended real number line R U {—o00, +00}. The effective domain, or simply domain,
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of a function f is then defined as the set:
domf={xe&: f(x) < +oo} . (16)

A convex function f is proper if f(x) < 400 for at least one x € £ and f(x) > —oo for
all x € £, and it is closed if its lower level sets {x € £: f(x) < a} are closed for all a € R.
If dom f is closed, then f is closed, and a proper convex function is closed if and only if it is
lower semi-continuous. Moreover, a closed function f is continuous relative to any simplex,
polytope or polyhedral subset in dom f. It is also well-known that a convex function f is
always continuous in the relative interior ri(dom f) of its domain.

A function f is essentially smooth if it is differentiable on int(dom f) # () and verifies
limg 400 |V f(x%)|| = +00 for any sequence (Xj),cy from int(dom f) that converges to
a point x € bd(dom f). A function f is of Legendre type if it is a closed proper convex
function that is also essentially smooth and strictly convex on int(dom f).

The Fenchel conjugate f* of a function f is defined for all y € £ as follows:

ffly)= sup (x,y)— f(x) . (17)

x€int(dom f)

The Fenchel conjugate f* is always a closed convex function. Moreover, if f is a closed

convex function, then (f*)* = f, and f is of Legendre type if and only if f* is of Legendre

type. In this latter case, the gradient mapping V f is a homeomorphism between int(dom f)

and int(dom f*), with inverse mapping (V)™ = Vf*, which guarantees the existence of

dual coordinate systems x(y) = V f*(y) and y(x) = Vf(x) on int(dom f) and int(dom f*).
Finally, we say that a function f is cofinite if it verifies:

)\Erfoo FAX)/A =400 , (18)

for all nonzero x € £. Intuitively, it means that f grows super-linearly in every direction.
In particular, a closed proper convex function is cofinite if and only if dom f* =&

2.2 Bregman Geometry

Let ¢ be a convex function on & that is differentiable on int(dom ¢) # (. The Bregman
divergence generated by ¢ is defined as follows:

By(x|ly) = ¢(x) — ¢(y) — (x -y, Vo(y)) , (19)

for all x € dom¢ and y € int(dom¢). We have By(x||y) > 0 for any x € dom¢ and
y € int(dom ¢). If in addition ¢ is strictly convex on int(dom ¢), then By(x||y) = 0 if and
only if x = y. Bregman divergences are also always convex in the first argument, and are
invariant under adding an arbitrary affine term to their generator.

Bregman divergences are not symmetric and do not verify the triangle inequality in
general, and thus are not necessarily distances in the strict sense. However, they still
enjoy some nice geometrical properties that somehow generalize the Euclidean geometry.
In particular, they verify a four-point identity similar to a parallelogram law:

By(x|ly) + Bo(X'ly’) = Bo(X'lly) + Bo(x[ly") = (x = X', Vo(y) = Vé(y')) , (20)
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for all x,x’ € dom¢ and y,y’ € int(dom ¢). A special instance of this relation gives rise to
a three-point property similar to a triangle law of cosines:

By(x|ly) = Bo(xly') + Bs(¥'lly) — (x =¥, Vo(y) = Vé(y')) , (21)

for all x € dom ¢ and y,y’ € int(dom ¢).
Suppose now that ¢ is of Legendre type, and let C C £ be a closed convex set such that
C Nint(dom ¢) # (). Then, for any point y € int(dom ¢), the following problem:

Pe(y) = argmin By (x|ly) , (22)
xeC

has a unique solution, then called the Bregman projection of y onto C. This solution actually
belongs to C Nint(dom ¢), and is also characterized as the unique point y’ € C Nint(dom ¢)
that verifies the variational relation:

(x -y, Voly) = Vo(y')) <0, (23)

for all x € C Ndom¢. This characterization is equivalent to a well-known generalized
Pythagorean theorem for Bregman divergences, which states that the Bregman projection
of y onto C is the unique point y’ € C N int(dom ¢) that verifies the following inequality:

By(x|ly) = By(xly') + Bs(¥'lly) (24)

for all x € CNdom ¢. When C is further an affine subspace, or more generally when the
Bregman projection further belongs to ri(C), the scalar product actually vanishes:

(x -y, Vo(y) —Vo(y)) =0, (25)
leading to an equality in the generalized Pythagorean theorem:
By(x|ly) = By(xlly') + Bs(y'lly) - (26)

A famous example of Bregman divergence is the Kullback-Leibler divergence, defined
for matrices € RiXd and € € Riﬁd as follows:

K(w||¢) = ZZ(Wmlog< >mj+gij> : (27)

i=1 j=1

This divergence is generated by a function of Legendre type for w € R‘fd given by minus

the Boltzmann-Shannon entropy:
d d
E(m) = K(w|1) = ZZ mijlog(mij) —mi; +1) (28)
=1 j=1

with the convention 0log(0) = 0. Another well-known example is the Itakura-Saito diver-
gence, defined for matrices m, € € RiXd

. as follows:
rl) = Y5 (72 -tox (T4) 1) - (20)
; —1 glj Ezy

=17
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This divergence is generated by a function of Legendre type for € RdXd

the Burg entropy:

given by minus

d d
= ZZ (7rij — logmj - 1) . (30)

i=1 j=1

On the one hand, these examples belong to a particular type of so-called separable
Bregman divergences between matrices on R4*?, that can be seen as the aggregation of
element-wise Bregman divergences between scalars on R:

By (m[|§) = ZZB¢u (i 1€i5) (31)

=1 j5=1

d d
:ZZ ij (7ij) - (32)

Often, all element-wise generators ¢;; are chosen equal, and are thus simply written as ¢ with
a slight abuse of notation. Other examples of such divergences are discussed in Section 5,
and include the logistic loss function generated by minus the Fermi-Dirac entropy, or the
squared Euclidean distance generated by the Euclidean norm.

On the other hand, a classical example of non-separable Bregman divergence is half the
squared Mahalanobis distance, defined for matrices 7, & € R4*? as follows:

M(x(|§) = ‘*VeC(ﬂ' ¢) " Pvec(m —¢) (33)
for a positive-definite matrix P € R¥**d*  This divergence is generated by a function of
Legendre type for m € R?? given by a quadratic form:

Q) = %vec(w)TPvec(w) . (34)

This example is also discussed in Section 5.

2.3 Alternate Bregman Projections

Let ¢ be a function of Legendre type with Fenchel conjugate ¢* = . In general, computing
Bregman projections onto an arbitrary closed convex set C C & such that CNint(dom ¢) # ()
is nontrivial. Sometimes, it is possible to decompose C into the intersection of finitely many
closed convex sets:

c=(\a . (35)
=1

where the individual Bregman projections onto the respective sets Ci,...,Cs are easier
to compute. It is then possible to obtain the Bregman projection onto C by alternate
projections onto Cq,...,Cs according to Dykstra’s algorithm.

In more detail, let o: N — {1,..., s} be a control mapping that determines the sequence
of subsets onto which we project. For a given point xg € C N int(dom ¢), the Bregman
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projection Pe(xg) of x¢ onto C can be approximated with Dykstra’s algorithm by iterating
the following updates:

ki1 P, (Vo (Voxr) +y7 ™) (36)

where the correction terms y!, ..., y* for the respective subsets are initialized with the null
element of £, and are updated after projection as follows:

y'® — yo ) 4 Vo (xy) — Vé(xpi1) - (37)

Under some technical conditions, the sequence of updates (xj);cy then converges in norm
to Pe(xo) with a linear rate. Several sets of such conditions have been studied, notably by
Tseng (1993), Bauschke and Lewis (2000), Dhillon and Tropp (2007).

We here use the conditions proposed by Dhillon and Tropp (2007), which reveal to
be the less restrictive ones in our framework. Specifically, the convergence of Dykstra’s
algorithm is guaranteed as soon as the function ¢ is cofinite, the constraint qualification
ri(C1) N---Nr1i(Cs) Nint(dom ¢) # B holds, and the control mapping o is essentially cyclic,
that is, there exists a number ¢ € N such that o takes each output value at least once during
any t consecutive input values. If a given C; is a polyhedral set, then the relative interior
can be dropped from the constraint qualification. Hence, when all subsets C; are polyhedral,
the constraint qualification simply reduces to C Nint(dom ¢) # @, which is already enforced
for the definition of Bregman projections.

Finally, if all subsets C; are further affine, then we can relax other assumptions. Notably,
we do not require ¢ to be cofinite (18), or equivalently dom = &, but only dom ) to be
open. The control mapping need not be essentially cyclic anymore, as long as it takes each
output value an infinite number of times. More importantly, we can completely drop the
correction terms from the updates, leading to a simpler technique known as projections
onto convex sets (POCS):

Xit1 ¢ Fe, g (Xk) - (38)

2.4 Newton-Raphson Method

Let f be a continuously differentiable scalar function on an open interval I C R. Assume
f is increasing on a non-empty closed interval [z, 2] C I, and write y~ = f(z~) and
yT = f(z). Then, for any y € [y~,y "], the equation f(z) = y has at least one solution
x* € [z7,2T]. Such a solution can be approximated by iterative updates according to the
Newton-Raphson method:

xemax{m—,min{mtx—W}} , (39)

where the fraction takes infinite values when f/'(z) = 0 and f(z) # y, and a null value
by convention when f’(z) = 0 and f(z) = y. It is well-known that the Newton-Raphson
method converges to a solution x* as soon as x is initialized sufficiently close to z*. Con-
vergence is then quadratic provided that f’(z*) # 0. However, this local convergence has
little importance in practice because it is hard to quantify the required proximity to the
solution.

10
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A) Affine constraints B) Polyhedral constraints

( (

(A1) ¢ is of Legendre type. (B1) ¢ is of Legendre type.
(A2) (0,1)™¢ C dom ¢. (B2) (0,1)™ C dom ¢.
(A3) dom ¢ C R (B3) dom ¢ ¢ R4

(A4) dom 1 is open. (B4) dom ¢ = R¥*4,

(A5) R < dom 4.

Table 1: Set of assumptions for the considered regularizers ¢.

Thorlund-Petersen (2004) elucidated results on global convergence of the Newton-Raphson
method. He proved a necessary and sufficient condition of convergence for an arbitrary
value y € [y~,y™] and from any starting point x € [z, z™]. This condition is that for any
a,b € [z, 27], f(b) > f(a) implies:

f(b) = f(a)

b—a '
In particular, a sufficient condition is that the underlying function f is an increasing con-
vex or increasing concave function on [z7,z], or can be decomposed as the sum of such
functions. In addition, if f satisfies the necessary and sufficient condition and is strictly in-
creasing with f/(z) > 0 for all z € [z, "], then initializing with a boundary point z~ # z*
or 7 # z* ensures that the entire sequence of updates is interior to (z~,z™), so that we
can actually drop the min and max truncation operators in the updates:

f'la) + £'(b) > (40)

flz)—y (41)

T — —77 .

f'(x)

3. Mathematical Formulation

In this section, we develop a unified framework to define ROT problems. We start by
drawing some technical assumptions for our generalized framework to hold (Section 3.1).
We then formulate primal ROT problems and study their properties (Section 3.2). We
also formulate dual ROT problems and discuss their properties in relation to primal ones
(Section 3.3). Finally, we provide some geometrical insights to summarize our developments
in the light of information geometry (Section 3.4).

3.1 Technical Assumptions

Some mild technical assumptions are required on the convex regularizer ¢ and its Fenchel
conjugate ¥ = ¢* for the proposed framework to hold. Some assumptions relate to required
conditions for the definition of Bregman projections and convergence of the algorithms, while
others are more specific to ROT problems. In our framework, we also need to distinguish
between two situations where the underlying closed convex set can be described as the
intersection of either affine subspaces or polyhedral subsets. The two sets of assumptions
(A) and (B) are summarized in Table 1.

For the first assumptions (A1) and (B1), we recall that a closed proper convex function
is of Legendre type if and only if it is essentially smooth and strictly convex on the interior
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of its domain (Section 2.1). This is required for the definition of Bregman projections (Sec-
tion 2.2). In addition, it guarantees the existence of dual coordinate systems on int(dom ¢)
and int(dom ) via the homeomorphism V¢ = Vi)~ 1:

w(0) = Vi(0) , (42)
O(m) = Vo(w) . (43)

With a slight abuse of notation, we omit the reparameterization to simply denote corre-
sponding primal and dual parameters by 7 and 6.

The second assumptions (A2) and (B2) imply that ri(II(p,q)) C dom ¢ and ensure the
constraint qualification II(p, q) Nint(dom ¢) # () for Bregman projection onto the transport
polytope, independently of the input distributions p, q as long as they do not have null or
unit entries. We assume hereafter that this implicitly holds, and discuss in the practical
considerations (Section 4.6) how our methods actually generalize to deal explicitly with null
or unit entries in the input distributions.

The third assumptions (A3) and (B3) separate between two cases depending on whether
dom ¢ lies within the non-negative orthant or not for the alternate Bregman projections
(Section 2.3). In the former case, non-negativity is already ensured by the domain of the
regularizer, so that the underlying closed convex set is made of two affine subspaces for the
row and column sum constraints, and the POCS method can be considered. The fourth
assumption (A4) thus requires that dom v be open for convergence of this algorithm. In the
latter case, there is one additional polyhedral subset for the non-negative constraints and
Dykstra’s algorithm should be used. The fourth assumption (B4) hence further requires
that domt = R¥? or equivalently that ¢ be cofinite (18), for convergence. In both cases,
we remark that we necessarily have dom 1) = dom V.

The fifth assumption (A5) in the affine constraints ensures that —y /A belongs to dom V1)
for definition of ROT problems, independently of the non-negative cost matrix v and posi-
tive regularization term A. Notice that this is already guaranteed by the fourth assumption
in the polyhedral constraints. We also show in the sparse extension (Section 4.5) how to
deal with infinite entries in the cost matrix « for separable regularizers, so as to enforce
null entries in the regularized optimal plan.

On the one hand, some common regularizers under assumptions (A) are the Boltzmann-
Shannon entropy associated to the Kullback-Leibler divergence, the Burg entropy associated
to the Itakura-Saito divergence, and the Fermi-Dirac entropy associated to the logistic loss
function. To solve the underlying ROT problems, we employ our method called ASA
based on the POCS technique, where alternate Bregman projections onto the two affine
subspaces for the row and column sum constraints are considered (Section 4.3). On the
other hand, examples under assumptions (B) include the Euclidean norm associated to the
Euclidean distance, and the quadratic form associated to the Mahalanobis distance. For
these ROT problems, we use our second method called NASA based on Dykstra’s algorithm,
where correction terms and a further Bregman projection onto the polyhedral non-negative
orthant are needed (Section 4.4).

3.2 Primal Problem

We start our primal formulation with the following lemmas and definition for the RMD.
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Lemma 1 The reqularizer ¢ attains its global minimum uniquely at & = V1)(0).

Proof Using the assumptions (A4) and (A5), respectively (B4), we have that 0 € dom ) =
int(dom1)). Thus, there exists a unique & € int(dom ¢) such that V¢(¢') = 0, or equiv-
alently £ = V1)(0), via the homeomorphism V¢ = Vi1 ensured by assumption (A1),
respectively (B1). Hence, ¢ attains its global minimum uniquely at & by strict convexity
on int(dom ¢). [ |

Lemma 2 The restriction of the regqularizer ¢ to the transport polytope II(p,q) attains its
global minimum uniquely at the Bregman projection ©' of & onto Il(p,q).

Proof Using the assumption (A2), respectively (B2), we have that I1(p, q)Nint(dom ¢) # ().
Since ¢’ € int(dom ¢) and TI(p,q) is a closed convex set, the Bregman projection 7’ of &’
onto II(p, q) according to the function ¢ of Legendre type is well-defined. Moreover, it is
characterized by the variational relation (23) as follows:

(m — o', Vo(r')) >0, (44)

for all w € TI(p,q) N dom ¢. We also have By(w||7’) > 0 when 7 # 7’ by strict convexity
of ¢ on int(dom ¢). As a result, we have:

¢(m) = ¢(n') > (w — «', V(n')) . (45)

Combining the two inequalities, we obtain ¢(m) > ¢(7’) and the restriction of ¢ to II(p, q)
attains its global minimum uniquely at =’. [ |

Lemma 3 The restriction of the cost (-,7) to the regularized transport polytope:

o s(p,q) = {m €Il(p,q): ¢(m) < ¢(n') +a} | (46)

where a > 0, attains its global minimum.

Proof The regularized transport polytope is the intersection of the compact set II(p, q)
with a lower level set of ¢ which is also closed since ¢ is closed. Hence, Il 4(p,q) is com-
pact and the restriction of (-,~) to Il, 4(p, q) attains its global minimum by continuity on
a compact set. |

Definition 4 The primal rot mover’s distance is the quantity defined as:

d = i ) 47
~.a.0(Prd) wenrﬁf%p,q)<“’ v) (47)

A minimizer ©'% is then called a primal rot mover’s plan.
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Remark 1 For the sake of notation, we omit the dependence on p,q,~y, ¢ in the index of
primal rot mover’s plans ©'%,.

The regularization enforces the associated minimizers to have small enough Bregman
information ¢(w'%) < ¢(x’) + a compared to the minimal one ¢(x’) for transport plans.
We also have a geometrical interpretation where the solutions are constrained to a Bregman
ball whose center &' is the matrix with minimal Bregman information.

Proposition 5 The reqularized transport polytope is the intersection of the transport poly-
tope with the Bregman ball of radius By(w'||€') + a and center &'

Moo(p, @) = {7 € TI(p,q): By(w[|€') < By(n'[[€") + a} . (48)

Proof Expanding the Bregman divergences from their definition (19), we obtain:

By(n||g) = o(m) — ¢(&) — (m — €, V(&) . (49)
By(m'||€) = o(n') — ¢(&') — (7' — &, Ve(£)) - (50)

Since V¢(¢') = 0, the last terms with scalar products vanish, leading to:
o(m) — ¢(n') = By(m||€') — By(n'|[€]) - (51)
Therefore, in the definition (46) of I1, 4(p, q), we have ¢(7) < ¢(7’) + « if and only if 7 is
in the Bregman ball of radius By(7'[|¢") + o and center &' |

Under some additional conditions, this geometrical interpretation still holds with a Breg-
man ball whose center 7/ has minimal Bregman information for transport plans.

Proposition 6 If n’ € ri(Il(p,q)), then the reqularized transport polytope is the intersec-
tion of the transport polytope with the Bregman ball of radius o and center m':

o g(p,a) = {m € (p,q): By(w||7') < a} . (52)

Proof Since 7’ € ri(II(p, q)), there is equality in the generalized Pythagorean theorem (26):

By(w||€') = By(w|n') + By(w'|1€') - (53)
The regularized transport polytope as seen from (48) is then the intersection of the trans-
port polytope II(p, q) with the Bregman ball of radius a and center =’. [ |

Remark 2 The proposition also holds trivially when the global minimum s attained on the
transport polytope, that is, when & = n’.

Corollary 7 Under assumptions (A), the regularized transport polytope is the intersection
of the transport polytope with the Bregman ball of radius o and center w':

o g(p,a) = {m € I(p,q): By(w|7') < a} . (54)
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Proof This is a result of «’ € TI(p, q) Nint(dom ¢) = ri(II(p, q)) when dom ¢ C R‘fd. In-
deed, we then have ri(Il(p, q)) C II(p, q) and ri(II(p, q)) C int(dom ¢), so that ri(II(p, q)) C
II(p,q) Nint(dom ¢). Conversely, let w € II(p,q) N int(dom ¢) so that w € Riﬁd. Then,
for a given ™ € II(p,q), let us pose wy = Aw + (1 — )& for A > 1. We easily have
w31 = p and 71{1 = q. Moreover, since all entries of 7 are positive and that of 7 are
non-negative, we can always choose a given A sufficiently close to 1 such that m) € R‘fd.
We then have m) € II(p,q) so that = € ri(Il(p,q)) as characterized by (15), and thus

II(p, q) Nint(dom ¢) C ri(Il(p, q)). u

Remark 3 Under assumptions (B), the Bregman projection w' does not necessarily lie
within ri(II(p, q)). Hence, the geometrical interpretation in terms of a Bregman ball might
break down, although the solutions are still constrained to have a small enough Bregman
information above that of w'.

Although Sinkhorn distances verify the triangular inequality when ~ is a distance ma-
trix, thanks to specific chain rules and information inequalities for the Bolzmann-Shannon
entropy and Kullback-Leibler divergence, it is not necessarily the case for the RMD with
other regularizations, even for separable regularizers. Hence, the RMD does not provide
a true distance metric on Y4 in general even if v is a distance matrix. Nonetheless, the
RMD is symmetric as soon as ¢ is invariant by transposition, which holds for separable
regularizers ¢;; = ¢, and < is symmetric. We now study some properties of the RMD that
hold for general regularizers.

Property 1 The primal rot mover’s distance d; o ¢(p, q) is a decreasing conver and con-
tinuous function of .

Proof The fact that it is decreasing is a direct consequence of the regularized transport
polytope I1, (P, q) growing with . The convexity can be proved as follows. Let ag, a1 > 0,
and 0 < A < 1. We pose ay = (1 — N)ag + Ay > 0. We also choose arbitrary rot mover’s

Elans T n T s Ty - We finally pose my = (1 — A\)n'%, + A’} . By convexity of ¢, we
ave:

o(my) < (1= N)o(n'y,) + As(w'3,) (55)

< (1= X)(ao + (') + A(ax + ¢(n')) (56)

=ax+o(n') . (57)

Hence, 7y € Il,, ¢(P,q), and by construction we have (7'}, ,v) < (mx,7), or equivalently:

(o) < (1= (w50, 7) + Mas, ) (58)

The continuity for o > 0 is a direct consequence of convexity for a > 0, since a convex
function is always continuous on the relative interior of its domain. Lastly, the continuity at
a = 0 can be seen as follows. Let (o), be a sequence of positive numbers that converges
to 0. We choose arbitrary rot mover’s plans (7%, ) ey By compactness of II(p,q), we can
extract a subsequence of rot mover’s plans that converges in norm to a point 7'* € Il(p, q).
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For the sake of simplicity, we do not relabel this subsequence. By construction, we have
o(m') < o(n'h,) < d(7') + ag, and ¢(w'Y, ) converges to ¢(n’). By lower semi-continuity
of ¢, we thus have ¢(7'*) < ¢(w’). Since the global minimum of ¢ on II(p,q) is attained
uniquely at 7/, we must have ©’* = «/, and the original sequence also converges in norm
to 7/, By continuity of the total cost (-,~) on R¥*9, (7’5, ) converges to (7',~). Hence,
the limit of the RMD when « tends to 0 from above is (w’,~), which equals the RMD for

« = 0 as shown in the next property. |

Property 2 When o = 0, the primal rot mover’s distance reduces to:

dy0.4(P ) = (7', 7) (59)

and the unique primal rot mover’s plan is the transport plan with minimal Bregman infor-
mation:

n't=7". (60)

Proof Since 7’ is the unique global minimizer of ¢ on II(p, q), the regularized transport
polytope reduces to the singleton Iy 4(p,q) = {w € II(p,q): ¢(7) < ¢(x')} = {#'}. The
property follows immediately. |

Property 3 When « tends to +oo, the primal rot mover’s distance converges to the earth
mover’s distance:

Jim d o (P, a) = dy(p.a) - (61)
Proof Let 7* € II(p, q) be an earth mover’s plan so that d(p,q) = (7*,~). By continuity
of the total cost (-,) on R¥*4 e have that for all € > 0, there exists an open neighborhood
of @* such that (m,~) < (7*,~) + € for any transport plan 7 within this neighborhood. We
can always choose a transport plan such that 7 € ri(Il(p, q)). Since ri(II(p,q)) C dom ¢,
¢(m) is finite and we can fix a. = ¢(7) — ¢(w’) > 0. Hence, 7 € II, 4(p, q) for any o > «,

and we have d‘y(p> q) S d»/-y’a7¢(p7 q) S <7'l', 7> S d‘Y(p> q) + e u

Property 4 If [0,1)dXd C dom ¢, then there exists a minimal o/ > 0 such that for all
a > o, the primal rot mover’s distance reduces to the earth mover’s distance:

4y 0.(P.a) = dy(p.q) - (62)
Proof The extra condition guarantees that II(p,q) C dom ¢, and thus that ¢ is bounded

on the closed set II(p, q). The property is then a direct consequence of I1,, 4(p,q) = II(p, q)
for « large enough. [ |
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Property 5 If [0, 1)dXd C dom¢ and ¢ is strictly convex on [0, l)dXd, then the unique
primal rot mover’s plan for a = o' is the earth mover’s plan wf with minimal Bregman
information:

't =mf . (63)

Proof First, we recall that the set of earth mover’s plans 7* is either a single vertex or

a whole facet of II(p,q). Hence, it forms a closed convex subset in II(p,q), and there is
a unique earth mover’s plan 7y with minimal Bregman information by strict convexity of
¢ on this subset. Second, it is trivial that all primal rot mover’s plan 7', must be earth
mover’s plans. If there is a single vertex as earth mover’s plan, then the property follows
immediately. Otherwise, we can see the property geometrically as follows. The whole facet
of earth mover’s plans is orthogonal to «y. Nevertheless, by strict convexity of ¢ on |0, 1)dXd,
the facet must be tangent to Il 4(p,q) at the unique earth mover’s plan 7§ with minimal
Bregman information ¢(7f5) = ¢(n') 4+, and 7f; is also the rot mover’s plan 7%,. Another
way to prove the property more formally is as follows. Suppose that a primal rot mover’s
plan 7* is not the earth mover’s plan with minimal Bregman information. We thus have
d(ml) < p(m*) < ¢(7') + /. We can then choose a smaller o’ such that ¢(7f) < ¢(w') + o/
and the RMD still equals the EMD for this smaller value, and actually all values in between
by monotonicity. This leads to a contradiction and 7r; must be the earth mover’s plan with
minimal Bregman information. |

Remark 4 When a > o/, the regularized transport polytope might grow to include several
earth mover’s plans with different Bregman information, which are then all minimizers
for the RMD. When we do not have strict convezity outside (0, 1)dXd, there might also be
multiple earth mover’s plans with minimal Bregman information.

If [0, 1)dXd C dom ¢, then it is easy to check that the strict convexity of ¢ on [0, 1)dXd

is always verified when ¢ is separable under assumptions (A) or (B), or when [0, 1)dXd -
int(dom ¢) under assumptions (B). This holds for almost all typical regularizers, notably
for all regularizers considered in this paper except from minus the Burg entropy as defined
in (30) and associated to the Itakura-Saito divergence in (29). For this latter regularizer, the
solutions for an increasing « all lie within ri(TII(p, q)), and the RMD never reaches the EMD.
In such cases where the minimal o’ does not exist, we can use the convention o/ = +o00
since the RMD always converges to the EMD in the limit when « tends to +00. We can
then prove that there is a unique rot mover’s plan ' as long as 0 < o < ¢, which can be
seen informally as follows. The solutions geometrically lie at the intersection of II, 4(p, q)
and of a supporting hyperplane with normal . By strict convexity of ¢ on ri(Il(p,q)),
this intersection is a singleton inside the polytope. When the intersection reaches a facet,
the only facet that can coincide locally with the hyperplane is the one that contains the
earth mover’s plans. Hence, we also have a singleton on the boundary of the polytope before
reaching an earth mover’s plan. We formally prove this uniqueness result next by exploiting
duality.

3.3 Dual Problem

We now present the following two lemmas before defining our dual formulation for the RMD.
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Lemma 8 The regularized cost (-,7y) + A¢(:), where X\ > 0, attains its global minimum
uniquely at € = Vip(—vy/N).

Proof The regularized cost is convex with same domain as ¢, and is strictly convex on
int(dom ¢). Thus, it attains its global minimum at a unique point & € int(dom ¢) if and
only if v + AV¢(&) = 0, or equivalently V@(€) = —y/A. By assumptions (A4) and (A5),
respectively (B4), —y/A € dom Vi, so that the global minimum is attained uniquely at
& = Viy(—~/A) in virtue of the homeomorphism in (42) and (43). [ |

Lemma 9 The restriction of the reqularized cost (-,7) + Ap(-) to the transport polytope
II(p, q) attains its global minimum uniquely.

Proof We notice that the regularized cost is equal to a Bregman divergence up to a positive
factor and additive constant:

(m,7) + Ao(m) — Ap(§) = ABy(w[|€) . (64)

Hence, its minimization over the closed convex set II(p,q) is equivalent to the Bregman
projection of £ € int(dom ¢) onto II(p,q) according to the function ¢ of Legendre type.
Since TI(p, q) Nint(dom ¢) # (B, this projection exists and is unique. [ |

Definition 10 The dual rot mover’s distance is the quantity defined as:

dyre(P.a) = (7},7) (65)

where the dual rot mover’s plan m is given by:

my = argmin (m,7y) + Ao(m) . (66)
well(p,q)

Remark 5 For the sake of notation, we omit the dependence on p,q,~y, ¢ in the index of
dual rot mover’s plans Y.

We proceed with the following proposition that enlightens the relation between the RMD
and associated Bregman divergence.

Proposition 11 The dual rot mover’s plan is the Bregman projection of & onto the trans-
port polytope:
) = argmin By(w|€) . (67)
w€ll(p,q)

Proof This is a consequence of the proof for Lemma 9. Indeed, from the definition in (66),
we see that the rot mover’s plan also minimizes (64). Therefore, it is the unique Bregman
projection of £ onto the transport polytope. |

We have a geometrical interpretation where the regularization shrinks the solution to-
ward the matrix ¢ that has minimal Bregman information.
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Proposition 12 The dual rot mover’s plan m can be obtained as:

74 = argmin (m,7) + ABy(€) . (68)
well(p,q)

Proof Developing the Bregman divergence based on its definition (19), we have:

By(w[|€) = d(m) — ¢(&) — (m — €', Ve(£)) - (69)

Since V@(¢') = 0, the last term with scalar product vanishes and we are left out with ¢(mr)
plus a constant term with respect to 7. Hence, we can replace ¢(m) by By(w||¢’) in the
minimization (66) that defines 7r}. [ |

Under some additional conditions, this interpretation can also be seen as shrinking
toward the transport plan 7’ with minimal Bregman information.

Proposition 13 If n’ € ri(Il(p,q)), then the dual rot mover’s plan 7% can be obtained as:

= argmin (m,7) + ABy(n|n') . (70)
well(p,q)

Proof If n' € ri(Il(p,q)), then we have equality in the generalized Pythagorean theo-
rem (26), leading to:

By(w[|§") = By(w[7') + By(n'[I€]) . (71)

Since the last term is constant with respect to 7, we can replace By(w||¢") by By(rw||n’) in
the minimization (68) that characterizes 3. |

Remark 6 The proposition also holds trivially when the global minimum is attained on the
transport polytope, that is, when & = =’.

Corollary 14 Under assumptions (A), the dual rot mover’s plan w5 can be obtained as:

w} = argmin (m,~) + ABy(w||n') . (72)
well(p,q)

Proof This is a result of @’ € II(p,q) N int(dom ¢) = ri(II(p, q)) when dom ¢ C RiXd, as
shown in the proof of Corollary 7. |

In the sequel, we also extend naturally the definition of the dual RMD for A = 0 as the
EMD. We then do not necessarily have uniqueness of dual rot mover’s plans for A = 0, and
the geometrical interpretation in terms of a Bregman projection does not hold anymore for
A = 0. However, we have the following theorem based on duality theory that shows the
equivalence between primal and dual ROT problems.
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Theorem 15 For all o > 0, there exists A > 0 such that the primal and dual rot mover’s
distances are equal:

@y 0P, @) = dyps(P,q) - (73)

Moreover, if a < o, then a corresponding value is such that X > 0, and the primal and dual
rot mowver’s plans are unique and equal:

L S (74)

Proof The primal problem can be seen as the minimization p* of the cost (m,~) on
II(p, q) subject to ¢(m) — ¢(7’) — @ < 0. The domain of this constrained convex problem
is D = II(p,q) Ndom ¢ # (). The Lagrangian on D x R is given by L(m,\) = (m,~) +
Mo (w) — ¢(7') — ), and its minimization over D for a fixed A > 0 has the same solutions
7 as the dual problem. In addition, Slater’s condition for convex problems, stating that
there is a strictly feasible point in the relative interior of the domain, is verified as long
as a > 0. Indeed, we have ri(D) = ri(II(p,q)). The existence of a strictly feasible point
od(m) < ¢(7') + a then holds by continuity of ¢ at " € int(dom ¢). As a result, we have
strong duality with a zero duality gap p* = d*, where d* is the maximization of g(\) subject
to A > 0. Moreover, if d* is finite, then it is attained at least once at a point A*. This is
the case since we already know that p* is finite. Since p* is also attained at least once at a
point 7v* solution of the primal problem, we have the following chain:

pr=d (75)
= min L(m, \¥) (76)
< L(m*,\) (77)
= (%, 7) + N(¢(7*) — ¢(n') — @) (78)
<(rm*,7) (79)
=p" (80)

Therefore, all inequalities are in fact equalities, w* also minimizes the Lagrangian over D
and thus is a solution of the dual problem. In other words, the primal and dual RMD
for @« and \* are equal, and the primal solutions must be dual solutions too. For a < o/,
the RMD has not reached the EMD yet, and thus we must have \* > 0. Hence, the dual
solution is unique, so that the primal solution is unique too and equal to the dual one. W

Remark 7 Corresponding values of a and A depend on p,q,~, ¢. In addition, there might
be multiple values of \ that correspond to a given c.

Again, the RMD does not verify the triangular inequality in general, and hence does not
provide a true distance metric on ¥4 even if v is a distance matrix. Nevertheless, we still
have the result that the RMD is symmetric as soon as ¢ is invariant by transposition, which
holds for separable regularizers ¢;; = ¢, and = is symmetric. We also obtain properties for
the dual RMD that are similar to the ones for the primal RMD.
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Property 6 The dual rot mover’s distance dy x4(P,q) is an increasing and continuous
function of A.

Proof The fact that it is increasing can be seen as follows. Let 0 < A1 < Ag2. By
construction, we have the following inequalities:

(T3 )+ Aio(mh,) < (73, 7) + Jo(my,) (81)
(T3 7) + Xad(m3,) < (73, 7) + ded(m),) (82)

Subtracting these two inequalities, we obtain that ¢(m} ) > ¢(73,). Reinserting this re-
sult in the first inequality, we finally get (7} ,~) < (m},,7). The continuity of the dual
RMD results from that of the primal RMD. Let A > 0, and choose an arbitrary dual rot
mover’s plan 7} and earth mover’s plan 7v*. On the one hand, we have (7*,~v) < (7w},7).
On the other hand, we have (7},7) + Ap(7}) < (7/,7) + A¢(n’), and thus (7},v) <
(7', y) + XMo(n") — o(7})) < (n',~). Suppose we have a discontinuity of the dual RMD at
A. Then by monotonicity, there is a value (w*,~) < d < (7’,7) that is not in the image of
the dual RMD. But d is in the image of the primal RMD for a given o > 0 by continuity.
It means that #\ > 0 such that (7%, C) = d, whereas, by continuity of the primal problem,
we know that there exist a > 0 such that (7}, C) > d. This is in contradiction with the
duality result in Theorem 15, which implies that the image of the primal RMD for o > 0
must be included in that of the dual RMD for A > 0. [ |

Property 7 When A tends to 400, the dual rot mover’s distance converges to:
lim d = (n’ 83
AiIfm ‘Y,)\«b(p’ q) <7T 77) s ( )

and the dual rot mover’s plan converges in norm to the transport plan with minimal Bregman
information:
lim 7} =7 . 84
A—~+00 A ( )

Proof Let (A\i),cy be a sequence of positive numbers that tends to +oo, and (ﬂ-;‘k)kEN
the associated rot mover’s plans. By compactness of II(p,q), we can extract a sub-
sequence of rot mover’s plans that converges in norm to a point «* € II(p,q). For
the sake of simplicity, we do not relabel this subsequence. By construction, we have
(37 T (') < () v) + Aoy, ) < (7',7) + Arod(n'). The scalar products are
bounded, so dividing the inequalities by A; and taking the limit, we obtain that gb(ﬂj\k)
converges to ¢(w’). By lower semi-continuity of ¢, we thus have ¢(7*) < ¢(x’). Since the
global minimum of ¢ on II(p,q) is attained uniquely at #’, we must have #* = «’; and
the original sequence also converges in norm to 7/. Hence, the dual rot mover’s plan 7y
converges in norm to 7t/ when \ tends to +oco. By continuity of the total cost (-,~) on R?*¢,
(m},,7Y) converges to (m', ). Hence, the limit of the RMD when A tends to +oo is (#',~). B

Property 8 When A tends to 0, the dual rot mowver’s distance converges to the earth
mover’s distance:

lim dyre(P;q) = dy(P;q) - (85)
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Proof This is a direct consequence of the dual RMD being continuous at A = 0. |

Property 9 If [0, 1)dXd C dom¢ and ¢ is strictly conver on |0, 1)dXd, then the dual rot
mover’s plan converges in norm when X tends to 0 to the earth mover’s plan 7§ with minimal

Bregman information:

)l\ig% T =T . (86)

Proof Let (\;),cn be a sequence of positive numbers that converges to 0, and (Trf\k)keN
the associated rot mover’s plans. By compactness of II(p,q), we can extract a sub-
sequence of rot mover’s plans that converges in norm to a point «* € II(p,q). For
the sake of simplicity, we do not relabel this subsequence. By construction, we have
(75 7) + Aep(m3, ) < (73 7) + Ag(my,) < (75, 7) + Akd(mg). The regularizer ¢ is
continuous on the polytope II(p,q) C dom ¢, so taking the limit, we obtain that <7r§\k,'y>
converges to (m(,7y). Therefore, 7* must be an earth mover’s plan. Now dividing by A
and taking the limit, we obtain that ¢(7*) < ¢(wfj). Since 7jj is the unique earth mover’s

plan with minimal Bregman information, we must have 7#* = j. |

3.4 Geometrical Insights

Our primal and dual formulations enlighten some intricate relations between optimal trans-
portation theory (Villani, 2009) and information geometry (Amari and Nagaoka, 2000),
where Bregman divergences are known to possess a dually flat structure with a general-
ized Pythagorean theorem for information projections. A schematic view of the underlying
geometry for ROT problems is represented in Figure 1, and can be discussed as follows.

Our constructions start from the global minimizer ¢ of the regularizer ¢ (Lemma 1).
The Bregman projection 7’ of & onto the transport polytope II(p, q) has minimal Bregman
information on II(p,q) (Lemma 2). The linear cost restricted to the regularized transport
polytope II, 4(p,q) also attains its global minimum (Lemma 3). Such a minimizer 7'}, is
a primal rot mover’s plan (Definition 4). We can interpret Il, 4(p,q) as the intersection
of II(p,q) with the Bregman ball of radius By(n'||¢’) + o and center & (Proposition 5).
In certain cases, I, 4(p,q) is also the intersection of II(p,q) with the Bregman ball of
radius « and center 7/, as a result of the generalized Pythagorean theorem By(m|€) =
By(m||7’) + By(w'||€’) (Proposition 6, Corollary 7). All in all, this enforces the solutions to
have small enough Bregman information, by constraining them to lie close to the matrix &’
or transport plan 7t/ with minimal Bregman information.

In our developments, we next introduce the global minimizer £ of the regularized cost
(Lemma 8). The regularized cost restricted to II(p,q) also attains its global minimum
uniquely (Lemma 9). This minimizer defines the dual rot mover’s plan 7} (Definition 10).
Actually, 7w} can be seen as the Bregman projection of £ onto II(p, q) (Proposition 11). The
regularization by the Bregman information is also equivalent to regularizing the solution
toward & (Proposition 12). In some cases, this can also be seen as regularizing toward
w’, as a result of the generalized Pythagorean theorem By (7||€') = By(m||w’) + By(w'||€')
(Proposition 13, Corollary 14). Again, this enforces the solutions to have small enough
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o = +OO‘“\‘ ‘\‘\‘ Ha,d)(pa q)

II(p, q)
Figure 1: Geometry of regularized optimal transport.

Bregman information, by shrinking them toward the matrix & or transport plan 7’ with
minimal Bregman information.

We have duality between the primal and dual formulations, so that primal and dual rot
mover’s plans follow the same path on II(p,q) from no regularization (v = +o00, A = 0) to
full regularization (o« = 0, A = +00) (Theorem 15). In the limit of no regularization, we
obviously retrieve an earth mover’s plan 7* for the cost matrix 4. By duality, it is also
intuitive that the additional constraint for the primal formulation, seen in the equivalent
forms of ¢(m), By(m||€') or By(w|w’), leads to an analog penalty for the dual formulation
in the same respective form.

Since ¢’ =1, 7' = pq', &€ = exp(—v/)), for minus the Boltzmann-Shannon entropy and
Kullback-Leibler divergence, we retrieve the existing results discussed in Section 1.2 as a
specific case (Cuturi, 2013; Benamou et al., 2015). In addition, we can readily generalize the
estimation of contingency tables with fixed marginals to a matrix nearness problem based on
other divergences than the Kullback-Leibler divergence (Dhillon and Tropp, 2007). Given
a rough estimate & € int(dom¢), a contingency table with fixed marginals p,q can be
estimated by Bregman projection of & onto II(p, q):

7 = argmin By(w|€) . (87)
well(p,a)

This simply amounts to solving a dual ROT problem with an arbitrary penalty A > 0 and
a cost matrix v = —AV¢(§).
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Finally, since Bregman divergences are invariant under adding an affine term to their
generator, it is straightforward to generalize ROT problems by shrinking toward an arbitrary
prior matrix &,¢" € int(dom ¢), or transport plan 7’ € II(p,q). This is indeed equivalent
to translating the regularizer by the appropriate amount ¢ () + (m,d), so that the global
minimizer is now attained at the desired point. Equivalently, this amounts to translating
the cost matrix as v + Ad instead.

4. Algorithmic Derivations

In this section, we introduce algorithmic methods to solve ROT problems. We focus without
lack of generality on the dual problem, which can be solved efficiently via alternate Bregman
projections. The primal problem can then easily be solved for 0 < a < o' by a bisection
search on A > 0. For a = 0, we could simply use alternate Bregman projections to project
V1 (0) instead of Vi)(—=/A) in virtue of Lemmas 1 and 2, which actually corresponds to
the special case v = 0 in our algorithms, though this is not really relevant in practice
since this completely removes the linear influence of the total cost from the ROT problem.
In the limit o > o/, a classical OT solver such as the network simplex can directly be
used. We first study the underlying Bregman projections in their generic form (Section 4.1)
and specifically develop the case of separable divergences (Section 4.2). We then derive
the two generic schemes of ASA (Section 4.3) and NASA (Section 4.4) to solve dual ROT
problems, depending on whether the domain of the smooth convex regularizer lies within
the non-negative orthant or not. We also enhance both algorithms in the separable case
with a sparse extension (Section 4.5), and finally discuss some practical considerations of
our methods (Section 4.6). To simplify notations, we omit the penalty value X in the index
and simply write 7w* for the rot mover’s plan.

4.1 Generic Projections

The closed convex transport polytope II(p, q) is the intersection of the non-negative orthant:

Co = R4 (88)

which is a polyhedral subset, with two affine subspaces:

C1 = {w e R¥: 1 =p} , (89)
Co={meR¥: xT1=q} . (90)

The Bregman projection 7* onto II(p,q) can then be obtained by alternate Bregman pro-

jections onto Cyp, C1,Cs, where we expect that these latter projections are easier to compute.
On the one hand, the Karush-Kuhn-Tucker conditions for Bregman projection = of a

given matrix 7 € int(dom ¢) onto Cy are necessary and sufficient, and write as follows:

75 >0, (91)
Vo(mg) =V ( )=0, (92)
(Vo(ng) — Vo(m)) ©mg =0 . (93)
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While these conditions are nontrivial to solve in general, we shall see that they admit an
elegant solver specific to the non-separable squared Mahalanobis distances defined in (33)
and generated by the quadratic form in (34). In addition, they also greatly simplify for
separable divergences, which encompass all other divergences used in this paper.

On the other hand, the Lagrangians with Lagrange multipliers p, v € R? for the Breg-
man projections 7w} and 73 of a given matrix 7 € int(dom ¢) onto C; and Cy respectively
write as follows:

Li(m, p) = ¢(m) — (w,Vo(®)) +p' (w1 —p) , (94)
Lo(m,v) = ¢(m) — (m,Vo(m)) + v (w1 —q) . (95)

Their gradients are given on int(dom ¢) by:

VLi(m, 1) = Vo(m) = V(7) + pl T, (96)
VLy(m,v) = Vo(n) — Vo(w) + 1v' | (97)

and vanish at 77, 5 € int(dom ¢) if and only if:

w = Vi (Vo(m) —pl') | (98)
w5 = V(Vo(m) —1v') . (99)

By duality, the Bregman projections onto C1,Co are thus equivalent to finding the unique
vectors p, v, such that the rows of 77 sum up to p, respectively the columns of 75 sum up
to q:

Vi(Vo(m) —plT)l=p , (100)
Ve(Vo@) — 1) 1=q . (101)

Similarly, solving for the Lagrange multipliers is an expensive problem in general, since
the search space is of dimension d and we evaluate matrix functions of size d x d. This is
because a given entry p;,v; can actually modify any entry of the d x d matrix functions
being evaluated. Again, we shall see that they can nevertheless be computed efficiently for
separable divergences as well as the non-separable Mahalanobis distances.

4.2 Separable Case

Assuming that the regularizer ¢ is separable, the underlying Bregman projections can be
computed more efficiently. To keep notations simple, we focus on separable divergences with
same element-wise regularizer, and thus chiefly omit the indices ¢;; = ¢. We emphasize,
however, that it is straightforward to apply all our methods for separable divergences with
different element-wise regularizers, which notably enables weighting a given element-wise
regularizer.

In case of separability, the Karush-Kuhn-Tucker conditions for projection onto Cy sim-
plify to provide a closed-form solution on primal parameters:
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Since ¢’ is increasing, this is equivalent on dual parameters to:
05..; = max{¢'(0), 0} . (103)

Now turning to projections onto Cq,Cy for primal parameters 7riij, 7T§7Z~j, we can divide
the initial problems into d parallel subproblems in search space of dimension 1 each. This
is much more efficient to solve than in the non-separable case. This can be summarized as
looking for d separate Lagrange multipliers u;, respectively v;, such that:

d
> WO — i) =pi (104)
=1
]d i
> WOy —vi) =5 - (105)
=1

Finding the optimal values p;,v; € R through ¢’ and the sums over rows or columns,
however, is still nontrivial in general.

An analytical solution can be obtained in specific cases. Intuitively, we need to factor
i, vj out of ¥ as additive or multiplicative terms. This is related to Pexider’s functional
equations, which hold only for functions with a linear form /() = af + b, or exponential
form ¢'(6) = aexp(bf), with a,b € R. This leads to regularizers with a quadratic form
é(7) = an®+br+c, or entropic form ¢(7) = arwlog T+br+c, with a, b, ¢ € R. The constants
a, b actually only scale and translate the cost matrix, whereas the constant ¢ has no effect.
Referring to Table 1, the quadratic case holds under assumptions (B), and thus requires
Dykstra’s algorithm for alternate Bregman projections with correction terms to ensure non-
negativity by projection onto the polyhedral non-negative orthant. The entropic case holds
under assumptions (A), using the POCS technique for alternate Bregman projection with no
correction terms since the non-negativity is already ensured by the domain of the regularizer.
The latter case reduces to the regularization of Cuturi (2013) and Benamou et al. (2015),
so that we actually end up with the Sinkhorn-Knopp algorithm. Hence, the Euclidean
norm associated to the squared Euclidean distance, and the entropic case associated to the
Kullback-Leibler divergence, are reasonably the only two existing analytical schemes to find
the sum constraint projections. For other ROT problems, available solvers for line search
can be employed instead.

For simplicity, we assume hereafter that 1) is twice continuously differentiable with )"
positive and 1)’ verifying the necessary and sufficient condition (40) on its whole domain.
Therefore, we can use the Newton-Raphson method with guarantees of global convergence.
This encompasses most of the common regularizers, and notably all regularizers used in this
paper except from the Fermi-Dirac entropy, £, norms and Hellinger distance. When the
condition (40) for global convergence is not met on the whole domain, it is still possible to
apply the Newton-Raphson method after careful initialization, so as to restrict to a smaller
interval where the condition holds. This is discussed in more detail with practical examples
for the Fermi-Dirac entropy, ¢, norms and Hellinger distance in Section 5, where the first-
order derivatives are increasing convex on half of the domain and increasing concave on the
other half. When the second-order derivatives do not exist, are not continuous or vanish at
some points, a similar strategy can be applied. This is again discussed for the £, norms in
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Section 5, where the second-order derivative is undefined or vanishes at 0 depending on the
value of the parameter. If such an initialization is not possible, then a bisection search can
always be applied instead of the Newton-Raphson method.

To apply the Newton-Raphson method, we exploit the following functions:

d
Flu) == 0 (O — i) (106)
=1
d p—
9(vj) = =Y w0 —vy) (107)
i=1

defined respectively on the open intervals (éz —0, +00) and (éj —0,+00), where 0 < § < +o0
is such that domv¢ = (—00,0), and 6; = max{0;;}1<;<d, éj = max{0;;}1<i<a. Their
continuous derivatives are given by:

d
Fu) = 0" 05 — i) (108)
i=1
d p—
g w)=> "0y —v;) (109)
i=1

and are positive, so that f, g are strictly increasing on their whole domain, and thus on any
closed interval with endpoints consisting of a feasible point and a solution. By construction,
f, g also verify the necessary and sufficient condition (40) for global convergence, and we
know that there are unique solutions to f(u;) = —p; and g(v;) = —¢;. Hence, the Newton-
Raphson updates:

d _
Zj:l V(0 — i) — pi
7 —
Ej:l V(05 — i)
4 _
21 V(0 —vi) — g
y] —
Zizl W/(eij - Vj)
converge to the optimal solutions with a quadratic rate for any feasible starting points. By
construction, we also know that initialization can be done with y; < 0, v; <~ 0. To avoid

storing the intermediate Lagrange multipliers, the updates can then directly be written on
dual parameters:

i — i + , (110)

Vj < Vj -+ s (111)

« < Z?:l P'( fzg) — Di ’ (112)

Lij < 0 — —=a
> v (07 )
d
. . > ¥( E,ij) —4j
2,ij = V2,45 — S w05 )
i=1 2,ij

: (113)

after initialization by 67, < 05, 03 < 0i5.
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Algorithm 1 Alternate scaling algorithm.
0" — —vy/\
repeat
0* < 6* — ul1', where p uniquely solves V)(0* — ulT)1 =p

0* < 6* — 1v", where v uniquely solves V) (6* — 11/T)T1 =q
until convergence

7« V)(0)

4.3 Alternate Scaling Algorithm

Under assumptions (A), we can drop the non-negative constraint since it is already ensured
by dom ¢ C R‘fd (Table 1). The POCS technique in its basic form (38) then states that
the projection of & onto II(p,q) can be obtained by alternate Bregman projections onto
the affine subspaces C; and Cy with linear convergence. Clearly, the underlying control
mapping takes each output value an infinite number of times. Since we have just two sets,
the only possible alternative in the control mapping is to swap the order of projections
starting from Cy instead of Cy, which actually amounts to swapping the input distributions
P, q and transposing the cost matrix -y, to obtain the transposed of the rot mover’s plan.
We thus focus on the first choice without lack of generality.

Starting from & and writing the successive vectors p®), v*) along iterations, we have
the following sequence:

Vi (=v/A) —>V¢( v/ = ut ) (114)
VY ( y /A — pW1T - 11/(1)T) (115)

(116)

Vi ( A /A= pW1T — 10T u(km) (117)

" ( y/A = pM1T — 1T T lu(k)T> (118)

(119)

o (120)

In other terms, we obtain the rot mover’s plan v* by scaling iteratively the rows and columns
of the successive estimates through Vi. An efficient algorithm, called ASA, is to store a
unique d X d matrix in dual parameter space and update it by alternating the projections
in primal parameter space (Algorithm 1). The updates have a complexity in O(d?) once
the vectors u, v are obtained.

In the separable case, the projections can be obtained by iterating the respective Newton-
Raphson update steps, which can be written compactly with matrix and vector operations
(Algorithm 2). The complexity for the updates are now clearly in O(d?). In more detail,
each update step features one vector row or column replication, one vector element-wise
division, one vector subtraction, one matrix subtraction, two matrix row or column sums,
and two element-wise matrix function evaluations. Because of separability, we can expect
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Algorithm 2 Alternate scaling algorithm in the separable case.

0" — —y/\
repeat
repeat
* *x _ P(09)1-p 4T
0' — 0 DO 1
until convergence
repeat
* * 17 (6*)—q "

until convergence
until convergence

e (6)

the required number of iterations for convergence in the different loops to be independent
of the data dimension, and thus expect a quadratic empirical complexity as well.

4.4 Non-negative Alternate Scaling Algorithm

Under assumptions (B), we must now include the non-negative constraint since dom ¢ ¢
R‘fd (Table 1). We suggest to ensure non-negativity of each update, and thus follow a cycle
of projections onto Cpy,C1,Cp,Ce. The underlying control mapping is a fortiori essentially
cyclic. For practical reasons, we also ensure non-negativity of the output solution with a
final projection onto Cy. Again, swapping the order of projections onto Cy,Cs is equivalent
to swapping the input distributions p,q and transposing the cost matrix < to obtain the
transposed of the rot mover’s plan. Other control mappings could also be exploited, for
example by ensuring non-negativity every two or more sum constraint projections. We do
not discuss such variants here and focus on the above-mentioned sequence. The non-negative
orthant being polyhedral but not affine, we also need to incorporate correction terms 4, g, ¢
for all three projections. In more detail, the projections are computed after correction
so that we do not directly project the obtained updates 6* but the corrected updates
0=0"+19,0 =0"+ p, and 0 = 0* + ¢ for the respective subsets. The correction terms
are also updated as the difference @ — 8* between the projected point and its projection.
Dykstra’s algorithm (36) for Bregman divergences with corrections (37) then guarantees
that the projection of & onto II(p, q) is obtained with linear convergence.

A general algorithm, called NASA, is to store d x d matrices for projected points,
projections and correction terms in dual parameter space, update them accordingly and
finally go back to primal parameter space (Algorithm 3). The updates have a complexity
in O(d?) once the Karush-Kuhn-Tucker conditions are solved or Lagrange multipliers u, v
are obtained.

In the separable case, the non-negativity constraint can be obtained analytically and the
sequence of updates greatly simplifies. Starting from & and writing the successive vectors
p1®) u*) along iterations, we have:

W/(=9/A) = ¥/ (max{¢/(0), —7/A})
= ' (max{¢/(0), —y/A} - pV17)
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Algorithm 3 Non-negative alternate scaling algorithm.

0" — —y/\
v+ 0
0+ 0
s+ 0
00"+
0* + 0, where 0 uniquely solves V() > 0,0 >0, (0 —0) ® V(0) =0
90— 0
repeat
060"+
0* < 6 — ul1", where p uniquely solves V(0 — ulT)1 =p
0+ 0 —6"
0+ 60" +9
0* « 0, where 0 uniquely solves V() > 0,0 >0, (6 —0) ® V(0) =0
90— 60"
0« 0"+
0* < 6 —1v", where v uniquely solves V1)(8 — 11/T)T1 =q
s+ 6-06"
0« 60"+9
0* < 0, where 0 uniquely solves V/(0) > 0,0 >0, (8 —0) ©Vy(0) =0
90— 6
until convergence

7« Vip(6)

:
"
—_
S
o
|
2
~
>
|
x
C)
—
-
|
—
S
=
—_
N—

— )

)
)

max{¢/(0), —y/A — pF V1T — 10T}
)
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Algorithm 4 Non-negative alternate scaling algorithm in the separable case.
0« —y/A ~
0* + max{¢'(0), 6}
repeat
T+ 0
repeat

Y(0*—7117)1-p
(O —71T)1
until convergence
06717 B
0* + max{¢'(0), 6}
o<+ 0
repeat
1T,¢,/(9*710.T)7qT
o + 1T,¢//(9*_10.T)

until convergence
0—6—10" B
0* + max{¢'(0), 6}

until convergence

e (6)

T~ T+

— (Inax{df(o)’ —y /X = pFFOLT 1V(k:+1)'|'})

— ...

— 7.
An efficient algorithm then exploits the differences *) = p®) — p*=1) and o) = p*) —
v=1) to scale the rows and columns (Algorithm 4). We store d x d matrices as well as
difference vectors instead of correction matrices. The algorithm can then be interpreted as
producing interleaved updates between the projections according to the max operator and
according to the respective scalings. The updates in NASA now clearly have a complexity
in O(d?) when using the Newton-Raphson method for scaling, with similar matrix and
vector operations to ASA in the separable case, and an expected empirical complexity that
is quadratic.

4.5 Sparse Extension

In the separable case, it is possible to develop a sparse extension of both our methods
ASA and NASA. Storing and updating full d x d matrices becomes expensive with the data
dimension. Instead, we allow for infinite entries in the cost matrix ~, meaning that the
transport of mass between certain bins is proscribed. As a result, the corresponding entries
of 7 must be null. Eventually, we can drop all these entries so that we just need to store
and update the remaining ones. The RMD via the Frobenius inner product (7*,~) is then
computed without accounting for discarded entries, or equivalently by setting indefinite
element-wise products 0 x oo = 0 by convention, so it naturally costs nothing to move no
mass on a path that is forbidden. This leads to an expected complexity in O(r), where r is
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the number of finite entries in «. Typically, r can be chosen in the order of magnitude of
d, so as to obtain a linear instead of quadratic empirical complexity.

In practice, both ASA and NASA are compatible with this strategy. We always have
limg_, oo 9'(#) = 0 under assumptions (A) for ASA. Under assumptions (B) for NASA,
this limit might be finite or infinite but is necessarily negative, so also leads to 0 after
enforcing non-negativity by projection onto the non-negative orthant. As a result, the
obtained sequence of projections preserves the desired zeros in both algorithms, and an
infinite element-wise cost does lead to no mass transport at all between the corresponding
bins. In theory, we can understand this extension in light of the dual formulation seen
as a Bregman projection in (67). Under assumptions (B), we always have 0 € int(dom ¢)
and thus Bg(0]|0) = 0. Hence, Dykstra’s algorithm is readily applicable in the sparse
version. Under assumptions (A), however, we have 0 ¢ int(dom ¢), and even sometimes
0 ¢ dom ¢ as for the Itakura-Saito divergence. We can nonetheless extend the domain of
the element-wise divergence at the origin by continuity on the diagonal, that is, by setting
it null as B4(0//0) = 0. This is akin to considering absolutely continuous measures, also
known as dominated measures, and Radon-Nikodym derivatives to generalize the definition
of Bregman divergences. Kurras (2015) then showed that the POCS method still holds with
this convention by introducing a notion of locally affine spaces.

With such a sparse extension, however, we must take care that a sparse solution does
exist, meaning that there is a transport plan in the transport polytope that has the desired
zeros. For example, if all entries of « are infinite, then there are obviously no possible
sparse solutions since we enforce all entries of the plan to be null. A necessary condition
for the existence of a sparse solution is that for any entry g;, all entries p; from which
we are allowed to transport mass must provide enough total mass to fill g; completely.
Similarly, for any entry p;, all entries g to which we are allowed to transport mass must
require enough total mass to empty p; completely. Unfortunately, sufficient conditions are
not so intuitive. Idel (2016, Theorem 4.1) studied such problems thoroughly and elucidated
several necessary and sufficient conditions for sparse solutions to exist, but these conditions
are nontrivial to use from in practice. Kurras (2015) advocates trying first to compute a
solution with the desired sparsity, and if no solution can be found, then gradually reduce
sparsity until a solution is found. This might still speed up computation drastically because
of the linear instead of quadratic complexity. Lastly, we remark that it is not evident to
propose a sparse extension for the non-separable case in general, since a given entry of -~
might influence all entries of 7*.

4.6 Practical Considerations

As noticed by Cuturi (2013) and Benamou et al. (2015), the Sinkhorn-Knopp algorithm
might fail to converge because of numerical instability when the penalty A gets small. In
particular, unless taking special care of numerical stabilization (Schmitzer, 2016b), a direct
limitation is the machine precision under which some entries of exp(—-/\) are represented
as zeros in memory. Such issues occur similarly for other regularizations, notably via the
representation Vi)(—=/\) of the unconstrained solution to project. Therefore, the proposed
methods are actually competitive in a range where the penalty A is not too small, and for
which the rot mover’s plan 7* exhibits a significant amount of smoothing. Hence, we do
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not target the same problems as traditional schemes such as interior point methods or the
network simplex.

In addition, the different Bregman projections in our algorithms are most of the time
approximate up to a given tolerance depending on the termination criterion used for conver-
gence. Exceptions occur for the sum constraints with the Euclidean distance or Kullback-
Leibler divergence, as well as the non-negativity constraints in the separable case, which
are obtained analytically. A natural question to raise is then whether our algorithms still
converge when the projections are approximate only. However, this is relatively hard to
answer in theory. We did not observe in practice any problem of convergence when using
sufficiently good approximations. Furthermore, first approximations can be quite rough
without affecting convergence as long as final approximations are good enough. Sometimes,
even alternating a single or two steps of the Newton-Raphson method throughout the main
iterations the algorithm still works, though this is not systematic. Thus, we advocate for
safety to use a tight tolerance for the auxiliary projections.

We also observed numerical instability of the Newton-Raphson updates for separable
divergences under assumptions (A). This is due to the denominator being based on )" with
limit limg_, o, ¢"(6) = 0, that is, for entries 7 close to zero. It is possible, however, to make
the updates of j;, v; much more stable in practice by using the max truncation operator,
despite theoretical guarantees of convergence without it. Specifically, we know that the
entries 77 ;. must lie between 0 and p;, and 73 ,;; between 0 and ¢;. Hence, we can lower

bound p; and v; by 0; — ¢/ (p;) and éj — ¢'(qj), respectively. Interestingly, this also speeds
up the convergence of the updates significantly when the initialization by 0 is far from the
actual solution.

A possible termination criterion for the main and auxiliary iterations is to compute the
marginal difference between the updated matrix and p,q. In the auxiliary iterations for
the two scaling projections, we compare the sums of rows or columns to p or q respectively,
and in the main iterations of the algorithm, we compare both marginals simultaneously.
Typically, we can use the £, (quasi-)norm with 0 < p < +00 to assess the marginal difference,
and the auxiliary tolerance should be at least the main one for sufficient precision of the
approximations. Two alternative quantities in absolute or relative scales can also be used
for termination, either the variation with ¢, (quasi-)norm in the updated matrix or in the
updated distance. Here the auxiliary tolerance should be at least the square of the main
one. This seems reasonable for w* given the quadratic rate of convergence for the Newton-
Raphson method versus the linear one for alternate Bregman projections, as well as for
(m*,~) under the Cauchy-Schwarz inequality. In all cases, convergence can be checked
either after each iteration or after a given number of iterations to reduce the underlying
cost of computing the termination criterion. We can also fix a maximum number of main
and auxiliary iterations to limit the overall running time.

Regarding implementation, the matrix and vector operations used for ASA and NASA
in the separable case are well-suited for fast calculation on a GPU and for processing of
multiple input distributions in parallel. By working directly in the primal parameter space,
the Sinkhorn-Knopp algorithm is also readily suited for dealing with sparse plans, based
on existing libraries. In more general ROT problems, however, a specific library should be
written for the sparse extension because null entries in the transport plan are not represented
by null entries in the dual parameter space, so that tailored data structures and operations
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for such matrices need to be coded. Therefore, we only implemented and will focus in our
experiments on the non-sparse version of our methods.

Finally, although we implicitly assumed throughout that the entries of p and q are
strictly comprised between 0 and 1 for theoretical issues, it is often possible in practice
to deal explicitly with null or unit entries in the input distributions. Intuitively, no mass
can be moved from or to a null entry, so the transport plans have null rows and columns
for the corresponding null entries of p and q, respectively. In the separable case, we can
thus simply remove these entries, solve the reduced ROT problem, and reinsert the cor-
responding null entries in the rot mover’s plan 7w*. The same reasoning as for the sparse
extension can be made to show that our two algorithms still hold with this strategy from
a theoretical standpoint. In the non-separable case, however, this is not as straightforward
again because the influences of the different entries of w* are interleaved through the reg-
ularizer ¢. Nonetheless, as long as we have [0,1)**? C int(dom ¢) under assumptions (B),
then we have II(p,q) C int(dom ¢) and we can apply NASA without modification. This is
notably the case for the Mahalanobis distances whose domain is R%*?. For a non-separable
regularizer under assumptions (A), it is not easy to account for null entries because the con-
straint qualification II(p, q) N int(dom ¢) # () never holds due to mandatory null entries in
the transport plans. Nevertheless, common regularizers under assumptions (A), including
the ones used in this paper, are separable in general. Lastly, it is direct to cope with unit
entries in p or q in all cases, since the transport polytope then reduces to a singleton, so
that there is a unique transport plan pq' which is the rot mover’s plan.

5. Classical Regularizers and Divergences

In this section, we discuss the specificities of the ASA (Algorithm 1) and NASA (Algo-
rithm 3) methods to solve ROT problems for classical regularizers and associated diver-
gences. We start with several separable regularizers under assumptions (A), based on the
Boltzmann-Shannon entropy related to the Kullback-Leibler divergence (BSKL, Section 5.1),
the Burg entropy related to the Itakura-Saito divergence (BIS, Section 5.2), and the Fermi-
Dirac entropy related to a logistic loss function (FDLOG, Section 5.3), as well as the para-
metric families of -potentials related to the §-divergences (BETA, Section 5.4). We then
discuss the separable ¢, quasi-norms (LPQN, Section 5.5), which require a slight adapta-
tion of assumptions (A). We also consider separable regularizers under assumptions (B)
related to ¢, norms (LPN, Section 5.6), as well as the Euclidean norm related to the Eu-
clidean distance (EUC, Section 5.7) and the Hellinger distance (HELL, Section 5.8). Finally,
we study a non-separable regularizer under assumptions (B) via quadratic forms in relation
to Mahalanobis distances (Section 5.9). We plot all separable regularizers in Figure 2. All
regularizers and their corresponding divergences are also summed up in Table 2. Lastly, we
provide in Table 3 the related terms based on derivatives that are needed to instantiate the
separable versions of ASA (Algorithm 2) or NASA (Algorithm 4) accordingly.

5.1 Boltzmann-Shannon Entropy and Kullback-Leibler Divergence

Assumptions (A) hold for minus the Boltzmann-Shannon entropy 7log 7 — m + 1 associated
to the Kullback-Leibler divergence. Hence, the ROT problem can be solved with the ASA
scheme. In addition, the updates in the POCS technique can be written analytically, leading
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o(m) | ¢(m) By (w[l§) / By(w|€) dom¢ domy
Boltzmann-Shannon entropy  Kullback-Leibler divergence

mlogm —m+1 Wlog%—ﬂ—i—g R4 R
Burg entropy Ttakura-Saito divergence

m—logm—1 F—logg—1 Ryt (—00,1)
Fermi-Dirac entropy Logistic loss function

mlogm + (1 — ) log(1l — ) 7Tlog%+(1—7r)log:§_f7T [0,1] R
B-potentials (0 < 5 < 1) B-divergences

s (™’ — BT+ -1) g (™ + (B -1 = pref) Ry (—o0, i)
¢y quasi-norms (0 < p < 1)

—nP —7tP 4 préP~L — (p — 1)€P Ry R__

¢, norms (1 < p < +00)

[ml? 7" —pr sgn@)lel”" + (- DI R R
Euclidean norm Euclidean distance

%7‘(’2 %(7[' —¢)? R R
Hellinger distance

~(1- )= A-m)(1-€)F-(1-r:  [-L1] R
Quadratic forms (P = 0) Mahalanobis distances

%VGC(W)TP vec() Tvec(m — &) TP vec(mw — £) Réxd  Rdxd

Table 2: Convex regularizers and associated Bregman divergences.

\/
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Figure 2: Separable regularizers on (0, 1).

to the Sinkhorn-Knopp algorithm. Specifically, the two projections amount to normalizing
in turn the rows and columns of 7v* so that they sum up to p and q respectively:

. p
7 + diag (7&'*1) T, (121)

7 < m* diag ( (122)

.
11
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¢(m) ¢/(m) V'(0) P"(6)
Boltzmann-Shannon entropy
mlogm—m+1 log 7 exp 6 exp 6

Burg entropy
m—logm—1 1—nt (1-6)"" (1—6)"2

Fermi-Dirac entropy

s exp 6 exp 6
mlogm + (1 — ) log(1l — ) log 17— (1+e1)3(p9) m
B-potentials (0 < 8 < 1)
1 1
S (P B+ B-1) g -1) (B-DP+1FT (B-1o+ 1)
¢, quasi-norms (0 < p < 1) 1
—? —prr ! e s
¢, norms (1 < p < +00)
— __1 _1 “p—1 _1
ml” psgu(mnl’~t p 7T sgu(O)lo|7T EpT(e
Euclidean norm
%7?2 T 0 1
Hellinger distance
1 1 1 3
—(1—7?%)2 r(l—n%)"2 O(1+6%)"2 (1+6%) 2

Table 3: Separable regularizers and related terms based on derivatives.

This can be optimized by remarking that the iterates (k)

tions verify:

after each couple of projec-

% = diag(u®)¢ diag(v?)) | (123)
where &€ = exp(—v/)), and vectors u*), v(¥) satisfy the following recursion:
k) - P
u v D) (124)
= _4 125
v £Tu(k) ) ( )
with convention v(?) = 1. This allows a fast implementation by performing only matrix-
vector multiplications using a fixed matrix & = exp(—v/A). We can further save one
element-wise vector multiplication per update:
1
U —— < (126)
diag <5> Ev
1
Ve ——————— (127)
diag <%) ¢ u
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where the matrices diag (%) £ and diag (%) ¢" are precomputed and stored.

5.2 Burg Entropy and Itakura-Saito Divergence

Assumptions (A) also hold for minus the Burg entropy m—log m—1 associated to the Itakura-
Saito divergence, so the ROT problem can be solved with the ASA scheme. Eventually,
the Newton-Raphson steps to update the alternate projections in POCS technique can be
written as follows:

*\—1 1
0% — 6" — (1(1 0 ;*)_12 - 1% 1T , (128)
* 17 (1_9*)_1 _qT
0" — 0 — 1 Ao (129)

Each step can be optimized by computing first an element-wise matrix inverse (1 — 9*)_1
for the numerator, and then performing an element-wise matrix multiplication of this matrix
by itself to obtain a matrix for the denominator instead of applying an additional element-
wise matrix power. Since 1)’ is convex and strictly increasing with 1" positive everywhere,
the convergence of the updates is guaranteed.

5.3 Fermi-Dirac Entropy and Logistic Loss Function

Assumptions (A) again hold for minus the Fermi-Dirac entropy 7logm + (1 — m) log(1 — ),
also known as bit entropy, associated to a logistic loss function. The ROT problem can thus
be solved with the ASA scheme, and the Newton-Raphson steps to update the alternate
projections in the POCS technique can be written as follows:

exp 0* 1-p
0 g — LFepO T 74T (130)
exp 0 1 )
(1+exp 6*)?
exp@* qT
0 — 0 —1 10— (131)
(14-exp 6*)?

Each step can be optimized by storing first the element-wise matrix exponential exp 68,
then applying an element-wise matrix division by the temporary matrix 1+exp 8* to obtain
a matrix for the numerator, and lastly performing an element-wise matrix division of these
two matrices to obtain a matrix for the denominator and thus save an additional element-
wise matrix power as well as several element-wise matrix exponentials. However, even if
1’ is strictly increasing with ¢ positive everywhere, 1)’ is neither convex nor concave and
does not verify the necessary and sufficient condition (40) for global convergence of the
Newton-Raphson method.

Nevertheless, ¢’ is convex on R_ and concave on R.. It thus divides for a given 1 <
i < d, respectively 1 < 5 < d, the real line into at most d 4+ 1 intervals —oo < égl) < é§2) <
e < égdil) < égd) < 400, respectively —oo < égl) < é§2) <... < éj(-dfl) < éj(»d) < +o00, with
the values (95“)1 <peq from row i of @, respectively (é§k)) L<peq frOm column j of 6, sorted
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in increasing order. On each of these intervals, the necessary and sufficient condition (40) is
verified since we can decompose f(u;), respectively ¢g(v;), as the sum of an increasing convex
and an increasing concave function. Hence, we have global convergence on the interval that
contains the solution. It is further possible to restrict the search to the two last intervals only.
Indeed, we have 4 /(8 — 01) = /(0 — 8170y 4 (0P — 17V = 244(0) = 1,

so that Hl(d V< pi < +oo. Similarly, we have Zz 1 1//( i — 9(d 1 ) > w (0; gla-b) éj(d_l)) +

w’(éj(.d) —éj(d 2 ) > 2¢/(0) = 1, so that HJ(- < vj < 400. As aresult, it suffices to initialize

i with 6; = égd) = max {gij}1<j<d7 respectively v; with §; = 9]@ = max {0} ;g tO

guarantee convergence of the updates.

5.4 (-potentials and S-divergences

Assumptions (A) hold for the S-potentials (7% — gz 4+ 3 —1)/(B(8 — 1)) with 0 < 8 < 1,
associated to the so-called S-divergences. Hence, the ROT problem can be solved with the
ASA scheme, and the Newton-Raphson steps to update the alternate projections in the
POCS technique can be written as follows:

(B-1)8"+1)771—p
(8- 1o + 1)*‘1 1
1T (B8 + )71 —q”

17 (8 —1)8* + )71

Each step can be optimized by computing first the temporary matrix (5 —1)0*+ 1, then
applying an element-wise matrix power of 1/(5 —1) — 1 to this temporary matrix to obtain
a matrix for the denominator, and lastly performing an element-wise matrix multiplication
of these two matrices to obtain a matrix for the numerator and thus save one element-wise
matrix power. Since 1)’ is convex and strictly increasing with " positive, the convergence
of the updates is guaranteed.

Interestingly, the regularizer tends to minus the Burg and Boltzmann-Shannon entropies
in the limit 8 = 0 and 8 = 1, respectively. Therefore, the S-divergences interpolate between
the Itakura-Saito and Kullback-Leibler divergences. We finally remark that the regularizer
can also be defined for other values of the parameter § using the same formula, but do not
verify assumptions (A) for these values.

0* — 0" — 1", (132)

0" — 6" -1

(133)

5.5 {, quasi-norms

Considering regularizers —7? with 0 < p < 1, all assumptions (A) are verified except from
(A5) since R>? ¢ dome = R¥?. Hence, our primal formulation does not hold here
because 0 ¢ dom V). However, it is straightforward to check that our dual formulation for
ROT problems with the ASA scheme can still be applied as long as the cost matrix « does
not have null entries so that —y/A € dom V. Eventually, the Newton-Raphson steps to
update the alternate projections in the POCS technique can be written as follows:

1 1
(-07)rT1—prip

0" +— 0" + -
(617

(134)
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0" — 0" +1 (135)

Each step can be optimized by computing first the temporary matrix —6*, then applying
an element-wise matrix power of 1/(p — 1) — 1 to obtain a matrix for the denominator, and
lastly performing an element-wise matrix multiplication of these two matrices to obtain
a matrix for the numerator and thus save one element-wise matrix power. Since v’ is
convex and strictly increasing with " positive everywhere, the convergence of the updates
is guaranteed.

5.6 /, norms

Assumptions (B) hold for the ¢, norms |7|P with 1 < p < +00, so the ROT problem can
be solved with the NASA scheme. For p # 2, the Newton-Raphson steps to update the
alternate projections in Dykstra’s algorithm can be written as follows:

1
{sgn(@* —111) 0|0 - T1T|ﬁ} 1- pp%l p

T+ T+ , (136)

1
e 1T
p
_1 1
17 {sgn(@* —711) 06" — 71T |7 T } —pr1q'
o +— o+

Y (137)
A 116" — 71T

Denoting @ = 6* — 71" or @ = 6* — 10" in the respective updates, each step can
be optimized by computing first the temporary matrix ||, then applying an element-wise
matrix power of 1/(p—1) —1 to obtain a matrix for the denominator, and lastly performing
an element-wise matrix multiplication of these two matrices and of sgn @ to obtain a matrix
for the numerator and thus save one element-wise matrix power as well as several vector
replications and matrix subtractions. However, even if ¢/ is strictly increasing with ¢" > 0
on R*, ¢/ is neither convex nor concave and does not verify the necessary and sufficient con-
dition (40) for global convergence of the Newton-Raphson method. Moreover, 1" vanishes
at 0 for p < 2, and ¢’ is not differentiable at 0 for p > 2.

Nevertheless, ¢’ is concave on R_ and convex on Ry for p < 2, as well as convex on R_
and concave on Ry for p > 2. It thus divides for a given 1 <14 < d, respectively 1 < j < d,
the real line into at most d + 1 intervals —oo < HAEI) < é?) < - < égd_l) < HAZ(-d) < 400,
respectively —oo < §§1) < éj(?) <. < Hv‘gd*l) < é](d) < 400, with the values (égk))1<k<d
from row i of @, respectively (ij(k)) \<k<d
necessary and sufficient condition (40) is verified on the interior of each of these intervals
since we can decompose f(y;), respectively g(v;), as the sum of an increasing convex and
an increasing concave function. Hence, we have global convergence on the interior of the
interval that contains the solution. In both cases, we must remove the finite endpoints
to ensure differentiability of ¢’ and positivity of ¥”. It is also further possible to prune

the last interval from the search. Indeed, we have Z?Zl V' (0;; — él(d)) < Z?:l P'(0) =
0, so that pu; < 0; = égd) = max {gij}1<j<d' Similarly, we have Y%, ¢/ (6;; — 9§d)) <

from column j of @, sorted in increasing order. The
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Z?Zl ¥'(0) = 0, so that v; < 0; = 93@ = max {0;;},.,., Lastly, we can restrict the first
interval with a finite lower bound instead. Indeed, we have Z;lzl V(05 — égl) + ¢ (pi/d)) >
S W& (pifd)) = pi, so that p; > 01 — ¢ (pi/d). Similarly, we have % v/(8;; —
67](-1) + ¢'(g;/d)) > Zle Y (¢'(gj/d)) = gj, so that v; > é](-l) — ¢'(g;/d). As a result, we can
perform at most d binary searches in parallel to determine within which of the remaining
bounded intervals the solutions p;, respectively v;, lie. Initialization is then done with the
midpoint to guarantee convergence of the updates. A given search thus requires a worst-
case logarithmic number of tests, each of which requires a linear number of operations, for
a total complexity in O(d?logd) instead of O(d?) if no such binary search were needed.

Now for p = 2, the regularizer specializes to the Euclidean norm, leading to the squared
Euclidean distance as the associated divergence. In addition, the formula for " still holds
with the convention 0° = 1, and " is actually constant equal to 1/2. Eventually, the pro-
jections can be written in closed form, and we can resort to the analytical algorithm derived
in the next example specifically for the Euclidean distance, after doubling the penalty A to
account for the regularizer being halved.

5.7 Euclidean Norm and Euclidean Distance

Assumptions (B) hold for half the Euclidean norm 72/2 associated to half the squared
Euclidean distance. Therefore, the ROT problem can be solved with the NASA scheme,
where Dykstra’s algorithm can actually be written in closed form. Specifically, the non-
negative projection reduces to:

7+ max{0,7} , (138)

and is interleaved with the scaling projections which amount to offsetting the rows and
columns of 7 by an amount such that the rows and columns of v* sum up to p and q
respectively:

(w1—p)17 (139)
117n*—q") . (140)

As a remark, we notice that half the squared Euclidean distance can be seen as a
B-divergence using the provided formula for 8 = 2. However, the S-divergence generated is
not of Legendre type because the domain is restricted to Ry, whereas it could actually be

extended to R so that the regularizer would then be of Legendre type. This is why we fall
under assumptions (B) rather than assumptions (A) in this case.

5.8 Hellinger Distance

1
Assumptions (B) hold for the regularizer —(1 — 72)2 akin to a Hellinger distance. Hence,
the ROT problem can be solved with the NASA scheme, and the Newton-Raphson steps to
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update the alternate projections in Dykstra’s algorithm can be written as follows:
{(9* —7r17) e (1 + (6" — TlT)z)_;} 1-p

(1 (0" — T1T)2)7 1
17 {(0* EEPANTC (1 (6" — 1aT)2>5} —q'

oot — . (142)
17 (1 + (6" — 1aT)2) 2

T T+ , (141)

Njw

Denoting @ = 8* — 71" or @ = 8* — 10 ' in the respective updates, each step can be op-
timized by computing first the temporary matrix 1/(1+ 62), then applying an element-wise
matrix square root to this temporary matrix, performing an element-wise matrix multiplica-
tion of these two matrices to obtain a matrix for the denominator, and lastly an element-wise
matrix multiplication of the temporary matrix with @ to obtain a matrix for the numerator
and thus save one element-wise matrix power as well as several vector replications and ma-
trix subtractions. However, even if 1)’ is strictly increasing with 1" positive everywhere, 1/
is neither convex nor concave and does not verify the necessary and sufficient condition (40)
for global convergence of the Newton-Raphson method.

Nevertheless, ¢’ is convex on R_ and concave on Ry. It thus divides for a given 1 <
1 < d, respectively 1 < j < d, the real line into at most d 4+ 1 intervals —oo < é(l) < é(z) <

e < égd_l) < égd) < 400, respectively —oo < Ov](-l) < 9](-2) <... < OVJ(d_l) < 9]@ < 400, with

the values (éz(k))lgkgd from row i of @, respectively (9j(-k))1§k§d
in increasing order. On each of these intervals, the necessary and sufficient condition (40)
is verified since we can decompose f(1;), respectively g(v;), as the sum of an increasing
convex and an increasing concave function. Hence, we have global convergence on the
interval that contains the solution. It is further possible to prune the last interval from the
search. Indeed, we have 2?21 V'(0;5 — él(»d)) < Z?:l ¢/(0) = 0, so that y; < 6; = égd) =
max {gij}lgjgd' Similarly, we have 3% /(6,5 — é](-d)) <S4 ¢/(0) =0, so that v; < §; =
é§-d> = max {0;;}, <i<q- Lastly, we can restrict the first interval with a finite lower bound
instead. Indeed, we have 27:1 V'(0;5 — 951) + ¢ (pi/d)) > Z;l:l V' (¢ (pi/d)) = p;, so that
i > 6 ¢/ (pi/d). Stmilarly, we have S, o/ (8, — 6, +¢/(¢;/d)) > S, ¥/(6/(4;/d) =
qj, so that v; > é;l) — ¢'(gj/d). As a result, we can perform d binary searches in parallel
to determine within which of the remaining intervals the solutions p;, respectively v;, lie.
Initialization is then done with the midpoint to guarantee convergence of the updates. A
given search requires a worst-case logarithmic number of tests, each of which requires a
linear number of operations, for a total complexity in O(d? log d) instead of O(d?) if no such
binary search were needed.

from column j of 8, sorted

5.9 Quadratic Forms and Mahalanobis Distances

Assumptions (B) hold for the quadratic forms (1/2) vec(w) ' P vec(s) with positive-definite
matrix P € ]RdQXCP, associated to the Mahalanobis distances, so the ROT problem can be
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B

Figure 3: Earth mover’s plan 7* for the cost matrix v and input distributions p, q.

solved with the NASA scheme. For a diagonal matrix P, the regularizer is separable and
the Newton-Raphson steps to update the alternate projections in Dykstra’s algorithm are
similar to that for the Euclidean distance with appropriate weights. For a non-diagonal
matrix P, however, the regularizer is not separable anymore and we must resort to the
generic NASA scheme.

In this general case, the scaling projections amount to convex quadratic programs with
linear equality constraints. They can be solved using classical techniques such as the range-
space and null-space approaches, Krylov subspace methods or active set strategies. The
non-negative projection reduces to a convex quadratic program with a linear inequality
constraint. It can be solved elegantly with an iterative algorithm for non-negative quadratic
programming proposed by Sha et al. (2007) using multiplicative updates with a complexity
in O(d*). All in all, we recommend using a sparse matrix P with a block-diagonal structure
and an order of magnitude of d? non-null entries, so as to obtain a quadratic instead of
quartic empirical complexity.

6. Experimental Results

In this section, we present the results of our methods on different experiments. We first
design an synthetic test to showcase the behavior of different regularizers and penalties
on the output solutions or computational times (Section 6.1). We then consider a pattern
recognition application to audio scene classification on a real-world dataset (Section 6.2).

6.1 Synthetic Data

We start by visualizing the effects of different regularizers ¢ and varying penalties A on
synthetic data. For the input distributions, we discretize and normalize continuous densities
on a uniform grid (x;);-,<, of [0,1] with dimension d = 256. We use for p a univariate
normal with mean 0.5 and variance 0.2, and for q a mixture of two normals with equal
weights, respective means 0.25 and 0.75, and same variance 0.1. We set the cost matrix
~ as the squared Euclidean distance v;; = (x; — :Uj)2 on the grid. The input distributions
(bottom left and top right), cost matrix (top left) and unique earth mover’s plan (bottom
right) computed for classical OT using the solver of Rubner et al. (2000) with standard
settings, are shown in Figure 3.
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We test all separable regularizers ¢ introduced in Section 5. Because these regularizers
have different ranges in the sensible values of the rot mover’s plans 7w*, we manually tune the
penalties A so that they feature similar amounts of regularization. For ease of comparison,
we set A = A X, with X constant for each ¢, and N varying similarly for all ¢. The limit case
when A tends to infinity is simply obtained by setting /A = 0 in the algorithms, except
from ¢, quasi-norms for which we use A = 10'°. The null values of « are also fixed to 10712
for £, quasi-norms. We do not limit the number of iterations in the different algorithms, and
use a small tolerance of 102 for convergence with the £, norm on the marginal difference
checked after each iteration as a termination criterion.

The rot mover’s plans obtained for ROT for d = 256 with the different regularizers and
penalties are visualized in Figure 4. We first observe that all rot mover’s plans converge to
the earth mover’s plan for low values of the penalty as shown theoretically in Property 9.
Nevertheless, the rot mover’s plans exhibit different shapes depending on the regularizers for
intermediary and large values of the penalty. In the limit when the penalty grows to infinity,
we obtain the transport plan with minimal Bregman information as shown theoretically in
Property 7. In particular, this leads to pq' with an ellipsoidal shape for BSKL (Boltzmann-
Shannon entropy and Kullback-Leibler divergence), meaning that the mass is relatively
spread among neighbor bins. The same pattern is observed for FDLOG (Fermi-Dirac entropy
and logistic loss function), which can be explained in this synthetic example by the rot
mover’s plans having low values and the two regularizers being equivalent up to a constant
in the neighborhood of zero. The profile gets more rectangular for BIS (Burg entropy and
Itakura-Saito divergence), implying that the mass is even more spread across the different
bins. Using an intermediary value § = 0.5 in BETA ((-potentials and S-divergences) allows
the interpolation between these two limits of a rectangle for 8 = 1 and an ellipsoid for 5 = 0,
so that the parameter 8 actually helps to control the spread of mass in the regularization.
We observe similar results for LPQN (¢, quasi-norms) with an ellipsoid for p = 0.9, a rectangle
for p = 0.1, and a shape in between for p = 0.5. When the power parameter further increases
in LPN (£, norms), we obtain new shapes that feature less spread of mass. These shapes for
p = 1.1 and p = 1.5 now interpolate up to a lozenge for p = 2 in EUC (Euclidean norm and
Euclidean distance), so that the parameter p also provides control on the spread of mass.
A similar diamond profile is obtained for HELL (Hellinger distance), which is due again to
the rot mover’s plans having low values and the two regularizers being equivalent up to a
constant in the neighborhood of zero. Lastly, we remark that varying the penalty between
the two extremes allows a smooth interpolation of the earth mover’s plan and optimal plan
with minimal Bregman information, while keeping similar shapes and effects in terms of
spreading of mass.

We next report in Table 4 the computational times required to reach convergence for the
different regularizers and penalties. As a stopping criterion, we use the relative variation
with tolerance 1072 in /5 norm for the main loop of alternate Bregman projections, and the
absolute variation with tolerance 107 in f5 norm for the auxiliary loops of the Newton-
Raphson method. We use the same synthetic data as above but also vary the dimension d to
assess its influence on speed. As already observed specifically for Sinkhorn distances (Cuturi,
2013), computing ROT distances is faster for important regularization with larger values
of A\. The regularizers under assumptions (A) do not require the extra projections onto the
non-negative orthant, and thus intuitively require less computational effort than the ones
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that verify assumptions (B). In addition, we notice that when the projections have closed-
form expressions, the algorithms are also faster. The results further illustrate the influence
of the data dimension d and the difference between ROT and classical OT performances. For
a low dimension d, the RMD is competitive with EMD in his historical implementation EMD
OLD (Rubner et al., 2000). The super-cubic complexity of the EMD with EMD OLD becomes
prohibitive as the data dimension increases in contrast to the RMD which scales better. It
should nevertheless be underlined that for reasonable dimensions, fast computation of the
EMD can be obtained with a more recent, optimized implementation of the network simplex
solver EMD NEW (Bonneel et al., 2011). For higher dimensions, the super-cubic complexity
makes EMD NEW less attractive, though it stays competitive with the RMD under a dimension
d = 4096.

As a consequence, a numerical alternative to our algorithms for solving ROT problems
with reasonable dimensions is to rely on conditional gradient methods similar to (Ferradans
et al., 2014). Indeed, such methods imply the iterative resolution of linearized ROT prob-
lems, that can be reformulated as EMD problems and therefore be solved with the fast
network simplex approach (Bonneel et al., 2011). Lastly, for a fair interpretation of the
above timing results, we must mention that the two EMD schemes tested were run under
MATLAB from native C/C++ implementations':? via compiled MEX files®#. Hence, these
EMD codes are quite optimized in comparison to our pure MATLAB prototype codes® for
the RMD. It is thus plausible that optimized C/C++ implementations of our algorithms
would be even more competitive in this context.

6.2 Audio Classification

We now assess our methods in the context of audio classification, and specifically address
the task of acoustic scene classification where the goal is to assign a test recording to one of
predefined classes that characterizes the environment in which it was captured. We consider
the framework of the DCASE 2016 IEEE AASP challenge with the TUT Acoustic Scenes
2016 database (Mesaros et al., 2016). The data set consists of audio recordings at 44.1 kHz
sampling rate and 24-bit resolution. The metadata contains ground-truth annotations on
the type of acoustic scene for all files, with a total of 15 classes: home, office, library,
café/restaurant, grocery store, city center, residential area, park, forest path, beach, car,
train, bus, tram, metro station. The audio material is cut into 30-second segments, and
is split into two subsets of 75%-25% containing respectively 78-26 segments per class for
development and evaluation, resulting in a total of 1170-390 files for training and testing.
A 4-fold cross-validation setup is given with the training set. The classification accuracy,
that is, the number of correctly classified segments among the total number of segments, is
used as a score to evaluate systems.

A baseline system is also provided with the database for comparison. This system is
based on Mel-frequency cepstral coefficient (MFCC) timbral features with Gaussian mixture
model (GMM) classification. One GMM with diagonal covariance matrix is learned per class

"http://robotics.stanford.edu/~rubner/emd/default.htm
’http://liris.cnrs.fr/~nbonneel/FastTransport/
Shttps://github.com/francopestilli/life/tree/master/external/emd
‘https://arolet.github.io/code/
Shttps://www.math.u-bordeaux.fr/~npapadak/GOTMI/codes . php
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d | —128— 256 — — 512 —
Algorithm —— ¢ — B/p A/X [1072]1071|10*0| 1072|1071 | 1070|1072 |10~ | 10*0
RMD —  FDLOG — 10720.366]0.079/0.044|1.091|0.311[0.116/1.865]0.571|0.273
RMD BSKL BETA 1.00 10~ [0.105]0.0130.008]0.259/0.055[0.017]0.680/0.100/0.038
RMD — BETA 0.50 10-%]0.971]0.1020.044]1.922[0.251]0.147|3.526|1.339]0.281
RMD BIS BETA 0.00 10-%]0.916]0.106/0.019|1.466/0.108|0.053|2.598]0.398|0.096
RMD — LPQN 0.10 10~*0.968]0.068|0.055(0.732]0.173[0.152/0.416]0.3090.305
RMD — LPQN 0.50 10~ 0.404]0.057|0.042[0.778]0.163]0.160|0.780[0.305|0.304
RMD — LPQN 0.90 10~1]0.226/0.047/0.040[0.751[0.178[0.131|1.110|2.492[0.214
RMD — LPN 110 1070 [1.570/0.349]0.148[5.941[1.557]0.4926.357]0.293]0.926
RMD — LPN  1.50 10%1]0.399]0.099/0.053[1.170]0.474[0.1666.688|2.163]0.532
RMD EUC LPN  2.00 10%20.074]0.043/0.043]0.253]0.240(0.237|7.308]3.190/0.966
RMD — HELL — 107210.197/0.097]0.087]0.429]0.316]0.299|5.570|1.826]0.823
EMD OLD — —  — — | —0231— | —1912— | —10.95 —
EMD NW — —  — — | — 0003 — | —0.011 — [ —0.076 —

d | —1024 — | — 2048 — | — 4096 —
Algorithm —— ¢ — B/p A/X [1072]107!|10%0| 1072|107 | 1070|1072 |10~ | 10*0
RMD — FDLOG — 1072 [4.156|3.517|1.410|15.85[9.663|5.109|54.19|33.87|17.24
RMD BSKL BETA 1.00 10~2[2.992(0.705]0.192[13.42]1.923]0.63049.95|7.074|2.548
RMD — BETA 0.50 10*8.015]2.769]0.888[42.95|7.538[3.557|101.3]21.13]10.86
RMD BIS BETA 0.00 10~°]4.439/0.777]0.550(6.590|3.262|2.218|41.80]12.96]6.742
RMD — LPQN 0.10 10~* [4.0682.174]1.291[6.962[4.890|4.334|51.15]15.86]14.02
RMD — LPQN 0.50 1073 |7.819]4.198]1.314]26.34]6.129|4.301|53.74]15.65|11.98
RMD — LPQN 0.90 10~1 [3.5842.264]1.054]13.80[4.571[3.285|43.83|14.22[11.51
RMD — LPN 110 1077 [9.110/4.924]1.956|38.98]16.47|8.400|145.6]65.95|32.82
RMD — LPN 150 1071 [18.97/9.509(2.539]61.92[20.41[9.314|236.6|77.87]45.94
RMD EUC LPN  2.00 10%211.90(5.805]2.161|31.43]14.22]4.906|117.1]50.88|27.67
RMD — HELL — 1072[18.22/6.629]3.456]35.45(20.03]7.199|205.048.42[31.75
EMD OLD — —  — — | —8556— | — 4822 — [ — 00—
EMD NEW — —  — — | — 0482 — | — 2760 — | — 1323 —

Table 4: Computational times in seconds required to reach convergence for different regu-
larizers ¢ and penalties A = A\, with varying dimensions d.

by expectation-maximization (EM), after concatenating and normalizing in mean and vari-
ance the extracted MFCCs from the training segments in that class. A test file is assigned
to the class whose trained GMM leads to maximum likelihood for the extracted MFCCs
for that file, where the MFCCs are considered as independent samples and normalized with
the learned mean and variance for the respective classes. The baseline system is ran with
its default parameters: 40 ms frame size, 20 ms hop size, 60-dimensional MFCCs comprising
20 static (including energy) plus 20 delta and 20 acceleration coefficients extracted with
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standard settings in RASTAMAT, 16 GMM components learned with standard settings in
VOICEBOX.

Since MFCCs potentially take negative values, OT tools cannot be applied directly to
this kind of features. Therefore, the common approach is to compute OT appropriately on
GMDMs estimated from MFCCs instead. Our proposed system follows this principle, and
is implemented in the very same pipeline as the baseline for a fair comparison, with the
following differences. One GMM is learned by EM for each training segment instead of
class. Any normalization on the MFCCs per class is thus removed. Since less components
are typically required to model one segment compared to one class, the spurious GMM
components are further discarded as post-processing by keeping only those with weight and
variances all greater than 10~2. Instead of applying a GMM classifier, all individual models
are exploited to train a support vector machine (SVM) classifier. An exponential kernel for
the SVM is designed by introducing a distance between two mixtures P, based on the
RMD as follows:

A(P,Q) = exp(—dy s (w.0)/7) . (143)

where the exponential decay rate 7 > 0 is a kernel parameter, and w,v € ¥, are the
respective weights of the d = 16 (or less) components for the two GMMs P, Q. The cost
matrix v € Rﬂl:(d depends on P, () and is the square root of a symmetrized Kullback-Leibler
divergence, called the Jeffrey divergence, between the pairwise Gaussian components:

, (144)

EN

2 2
. : (U?k - %2]4;) + (U?k + gjgk)(/lz‘k — Vjk)
=7 2

2 2
k=1 TikSik

where p; and a?, respectively v; and q?, are the means and variances of the [ = 60 MFCC
features for component i in the first mixture P, respectively component j in the second
mixture ). The SVM classifier is implemented with standard settings in LIBSVM, and
requires an additional soft-margin parameter C' > 0 to be tuned. Notice that, even if
the kernel is not positive-definite, LIBSVM is still able to provide a relevant classification
by guaranteeing convergence to a stationary point (Lin and Lin, 2003; Haasdonk, 2005;
Alabdulmohsin et al., 2014). All separable regularizers ¢ from Section 5 with different
penalties A > 0 are tested for the RMD in comparison to the EMD. The two distances
between p,q and q,p with cost matrix « transposed are computed and averaged, so as
to remove any asymmetry due to practical issues. The number of iterations is limited to
100 for the main loop of the algorithm and to 10 for the auxiliary loops of the Newton-
Raphson method, and the tolerance is set to 107 in all loops for convergence with the
£so norm on the marginal difference checked after each iteration as a termination criterion.
The parameters 7, C € 101-110+5+42} and penalty A € A, where A is a manually chosen
set of four successive powers of ten depending on the range of the regularizer ¢, are tuned
automatically by cross-validation.

The obtained results on this experiment in terms of accuracy per system are reported
in Table 5. The optimal penalties A € A selected by cross-validation for each regularizer ¢
are also included, while the optimal parameters 7, C' are not displayed since they actually
all equal 10*! independently of the kernel used. We first notice that the proposed system
SVM (support vector machine classifier) consistently outperforms the baseline system GMM
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(Gaussian mixture model classifier). This proves the benefits of incorporating individual
information per sound via an SVM rather than exploiting global information per class with
a GMM. This further demonstrates the relevance of OT and more general ROT problems
for the design of kernels between GMMs in the SVM pipeline. We also notice that RMD (rot
mover’s distance kernel) is at least competitive with EMD (earth mover’s distance kernel) for
all proposed regularizers, except from EUC which does not perform as well. This might be a
consequence of the regularization profile for EUC, or equivalently LPN with p = 2, which does
not spread enough mass across similar bins, implying a lack of robustness to slight variations
in the means and variances of the GMM components. Reducing the power parameter in
LPN brings back to a competitive system with EMD for p = 1.1, and even a better trade-off
with improved accuracy for p = 1.5. We obtain similar results for LPQN with p = 0.9 and
p = 0.5, with now the best compromise for the lowest power value p = 0.1 which clearly
outperforms EMD. As a remark, the accuracy for LPN and LPQN is not unimodal with respect
to p which controls the spread of mass in the regularization. We suspect this is because
the performance is a function of both the spread of mass and the amount of regularization,
whose coupling allows for similar compromises in terms of results within different regimes
of use. Concerning BETA now, we observe that the existing Sinkhorn-Knopp algorithm BSKL
for 5 = 1 does not improve the accuracy compared to EMD. Increasing the spread of mass
with 8 = 0 in BIS is even worse. The best performance is obtained with a range in between
for g = 0.5, which slightly improves results over EMD. Using LOG here slightly degrades the
performance compared to EMD and BSKL. Interestingly, the overall best accuracy on this
application is obtained for HELL which beats all other systems, including EUC, by a safe
margin. In contrast to the experiment on synthetic data with dimension 256 presented in
Section 6.1, where both BSKL and LOG, respectively EUC and HELL, behave similarly due
to equivalence up to a constant for low values in the transport plans, the range of the
transport plans here is much higher since the dimension of the input distributions is at
most 16 (typically less than 10). This raises the importance of choosing a good regularizer
depending on the actual task and its inherent design criteria such as the data dimension.

7. Conclusion

In this paper, we formulated a unified framework for smooth convex regularization of discrete
OT problems. We also derived some algorithmic methods to solve such ROT problems,
and detailed their specificities for classical regularizers and associated divergences from the
literature. We finally designed a synthetic experiment to illustrate our proposed methods,
and proved the relevance of ROT problems and the RMD on a real-world application to
audio scene classification. The obtained results are encouraging for further development of
the present work, and we now discuss some interesting perspectives for future investigation.

Firstly, we want to assess the effect of other regularizers on the solutions, notably when
adding an affine term. From a geometrical viewpoint, such a transformation is equivalent to
simply translating the cost matrix, with no effect on the Bregman divergence itself. For a
given regularizer, we could therefore parametrize a whole family of interpolating regularizers,
and tune the translation parameter according to the application. In particular, a recent work
developed independently of ours makes use of Tsallis entropies to regularize OT problems
with ad hoc solvers (Muzellec et al., 2018). These regularizers could be integrated readily to
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Classifier - — B/p A A Accuracy
GMM — — — — — — 77.2%
EMD — — — — — 81.3%
—  FDLOG —  108727L4041} 1071 81.0%

BSKL BETA 1.00 10{-2-L+0+1} 19+0 g1 3%
— BETA 0.50 10{-3-2-1L+0} 102  81.5%
BIS BETA 0.00 10{-%-3-2-1} 10-2  81.3%
— LPQN  0.10 100-2-L+0+1} 19-1  821%
RMD LPQN  0.50 10{-2-L+0+1} 191 81.3%
— LPQN  0.90 100-2-L+0+1}  19+0 81 0%
— LPN 1.10 10t-L+0+1L+2} 10+0  81.0%
— LPN 1.50 10{+0+1L4+243} 1o+l 81 8%
EUC LPN  2.00 10{+LH+2+3+4} q0+3  77.4%
— HELL  —  100+L+243+4} 102 82.8%

Table 5: Results of the experiment on audio classification.

our more general framework based on alternate Bregman projections, since Tsallis entropies
are equivalent to -potentials and ¢, (quasi)-norms up to an affine term.

In another direction, we would like to extend some theoretical results that hold for the
Boltzmann-Shannon entropy and associated Kullback-Leibler divergence. Specifically, it
is known that the related rot mover’s plan converges in norm to the earth mover’s plan
with an exponential rate as the penalty decreases (Cominetti and San Martin, 1994). It
is not straightforward, however, to generalize this to other regularizers and divergences.
In addition, it would be worth elucidating some technical restrictions under which metric
properties such as the triangular inequality can be proved similarly to Sinkhorn distances.

We also plan to study other pattern recognition tasks in text, image and audio signal
processing. Intuitive possibilities include retrieval and classification for various kinds of
data modeled via histograms of features or GMMs. Among potential approaches, this can
be addressed by exploiting the RMD either directly in a nearest-neighbor search, or in the
design of kernels for an SVM as done here for acoustic scenes. For such tasks, it would be
relevant to provide insight into the choice of a good regularizer for the actual problem, or
develop methods for automatic tuning of regularization parameters, and for learning the
cost matrix from the data as can be done for the EMD (Cuturi and Avis, 2014). Even if we
mostly focused on separable regularizers, it would be relevant to further use the quadratic
forms associated to Mahalanobis distances in certain applications, and maybe propose a
parametric learning scheme for the quadratic regularizer from the data.

Lastly, a more prospective idea is to use the RMD instead of Sinkhorn distances in
the recent works built on the entropic regularization mentioned in Section 1. We also
think that variational ROT problems could be formulated for statistical inference, notably
parameter estimation in finite mixture models by minimizing loss functions based on the
RMD (Dessein et al., 2017). This would leverage new applications of our ROT framework for
more general machine learning problems. Such developments are yet involved and require
some theoretical effort before reaching enough maturity to address practical setups.
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