
Journal of Machine Learning Research 19 (2018) 1-39 Submitted 05/17; Revised 05/18; Published 07/18

Statistical Analysis and Parameter Selection for Mapper

Mathieu Carrière mathieu.carriere@inria.fr
Inria Saclay
91120 Palaiseau, France

Bertrand Michel bertrand.michel@ec-nantes.fr
LMJL UMR 6629– Ecole Centrale Nantes
44322 Nantes, France

Steve Oudot steve.oudot@inria.fr

Inria Saclay

91120 Palaiseau, France

Editor: Kevin Murphy and Bernhard Schölkopf

Abstract

In this article, we study the question of the statistical convergence of the 1-dimensional
Mapper to its continuous analogue, the Reeb graph. We show that the Mapper is an optimal
estimator of the Reeb graph, which gives, as a byproduct, a method to automatically tune
its parameters and compute confidence regions on its topological features, such as its loops
and flares. This allows to circumvent the issue of testing a large grid of parameters and
keeping the most stable ones in the brute-force setting, which is widely used in visualization,
clustering and feature selection with the Mapper.

Keywords: Topological Data Analysis, Mapper, Parameter Selection, Confidence Re-
gions, Extended Persistence

1. Introduction

In statistical learning, a large class of problems can be categorized into supervised or un-
supervised problems. For supervised learning problems, an output quantity Y must be
predicted or explained from the input measures X. On the contrary, for unsupervised
problems there is no output quantity Y to predict and the aim is to explain and model
the underlying structure or distribution in the data. In a sense, unsupervised learning can
be thought of as extracting features from the data, assuming that the latter come with
unstructured noise. Many methods in data sciences can be qualified as unsupervised meth-
ods, among the most popular examples are association methods, clustering methods, linear
and non linear dimension reduction methods and matrix factorization to cite a few (see
for instance Chapter 14 in Friedman et al. (2001)). Topological Data Analysis (TDA) has
emerged in the recent years as a new field whose aim is to uncover, understand and exploit
the topological and geometric structure underlying complex and possibly high-dimensional
data. Most of TDA methods can thus be qualified as unsupervised. In this paper, we study
a recent TDA algorithm called Mapper which was first introduced in Singh et al. (2007).

Starting from a point cloud Xn sampled from a metric space X , the idea of the Mapper
is to study the topology of the sublevel sets of a function f : Xn → R defined on the
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point cloud1. The function f is called a filter function and it has to be chosen by the user.
The Mapper construction depends on the choice of a cover I of the image of f by open
sets. Pulling back I through f gives an open cover of the domain Xn. It is then refined
into a connected cover by splitting each element into its various clusters using a clustering
algorithm whose choice is left to the user. Then, the Mapper is defined as the nerve of the
connected cover, having one vertex per element, one edge per pair of intersecting elements,
and more generally, one k-simplex per non-empty (k + 1)-fold intersection. It can also be
seen as a discrete approximation of its continuous counterpart called the Reeb graph, which
was originally introduced in Reeb (1946).

In practice, the Mapper has two major applications. The first one is data visualization
and clustering. Indeed, when the cover I is minimal in terms of cardinality, i.e. no more
than two cover elements can intersect at once, the Mapper provides a visualization of the
data in the form of a graph whose topology reflects that of the data. As such, it brings
additional information to the usual clustering algorithms by identifying flares and loops
that outline potentially remarkable subpopulations in the various clusters. See e.g. Yao
et al. (2009); Lum et al. (2013); Sarikonda et al. (2014); Hinks et al. (2015) for examples
of applications. The second application of Mapper is about feature selection. Indeed,
each feature of the data can be evaluated on its ability to discriminate the interesting
subpopulations mentioned above (flares, loops) from the rest of the data, using for instance
Kolmogorov-Smirnov tests. See e.g. Lum et al. (2013); Nielson et al. (2015); Rucco et al.
(2015) for examples of applications.

Unsupervised methods generally depend on parameters that need to be chosen by the
user, such as the number of selected dimensions for dimension reduction methods or the
number of clusters for clustering methods. Contrarily to supervised problems, it can be very
difficult to evaluate the output of unsupervised methods and thus to select parameters. Re-
garding Mapper, the only answer proposed in the literature consists in selecting parameters
in a range of values for which the Mapper seems to be stable—see for instance Nielson
et al. (2015). But with non trivial data sets, it is not easy to tune Mapper this way. The
problem is illustrated for instance in Figure 1 on a data set that we study further in Sec-
tion 5. More generally, we believe that such an approach is not satisfactory since it does
not provide statistical guarantees on the inferred Mapper. This major drawback of Mapper
is an important obstacle to its use in exploratory data analysis.

Contributions. Our main goal in this article is to provide a statistical method to tune the
parameters of the Mapper automatically in various settings (Equations (8), (9) and (10)) by
computing its rate of convergence (Propositions 11 and 13 and Corollary 14) to its continu-
ous counterpart called the Reeb graph, avoiding the computational cost of testing millions
of candidates and selecting the most stable ones in the brute-force setting of many practi-
tioners. We also provide methods to assess stability, rates of convergence and confidence
regions (Proposition 15) for the topological features of the Mapper. We believe that this
set of methods open the way to an accessible and intuitive utilization of Mapper for non
expert researchers in applied topology.

1. The Mapper was originally defined more generally for functions with values in Rd, with arbitrary d > 0.
In this work, we restrict the focus to scalar-valued functions, since the mathematical analysis is much
easier in that case, and since it also corresponds to many use cases of the Mapper.
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Figure 1: A collection of Mappers computed with various parameters. Left: crater data set.
Right: outputs of Mapper with various parameters. One can see that for some
Mappers (the ones with purple squares), topological features suddenly appear
and disappear. These are discretization artifacts, that we overcome in this article
by appropriately tuning the parameters.

Related work. Theoretical properties of Reeb graphs and Mappers have been the topic
of several recent articles. Reeb graphs are now well understood and have been used in a
wide range of applications. Algorithms for their computation have been proposed, as well as
studies of their homology groups, like in Dey et al. (2017), and metrics for their comparison,
such as the functional distortion distance of Bauer et al. (2014), the interleaving distance
of de Silva et al. (2016) and the edit distance of di Fabio and Landi (2016). We refer the
interested reader to the survey Biasotti et al. (2008) and to the introductions of Bauer et al.
(2014) and Bauer et al. (2015) for a comprehensive list of references.

Concerning the Mapper, Babu (2013) characterized the Mapper with coarsened levelset
zigzag persistence modules and showed that, as the lengths of the intervals in the cover I go
to zero uniformly, the Mapper of a real-valued function converges to the Reeb graph in the
bottleneck distance (defined in Section 2.2). Similarly, Munch and Wang (2016) recently
characterized the Mapper with constructible cosheaves and showed the same type of con-
vergence for the Mapper in the interleaving distance. Their result holds in the general case
of vector-valued functions. However, in both approaches, the quantification of convergence
is not precise enough to enable parameter selection.

Statistics in TDA have been so far focused on persistence diagrams, with the computa-
tion of rates of convergence, confidence regions and bootstrap—see e.g. Chazal et al. (2013);
Fasy et al. (2014); Chazal et al. (2015a,b). In this article, we build on this line of work
to provide results in the same vein for the Mapper. The integration of the Mapper in this
framework is not straightforward since it encodes a different type of information than per-
sistence diagrams. However, this is made possible by the recent work (in a deterministic
setting) of Carrière and Oudot (2017b) about the structure and the stability of the Map-
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per. In this article, the authors provide a way to go from the input space to the Mapper
using small perturbations. We build on this precise relation between the input space and
its Mapper to show that the Mapper is itself a measurable construction. In Carrière and
Oudot (2017b), the authors also show that the topological structure of the Mapper can
actually be predicted from the cover I by looking at appropriate signatures that take the
form of extended persistence diagrams. In this article, we use this observation, together
with an approximation inequality, to show that the Mapper, computed with a specific set of
parameters, is actually an optimal estimator of its continuous analogue, the so-called Reeb
graph. Moreover, these specific parameters act as natural candidates to obtain a reliable
Mapper with no artifacts.

Plan of the article. Section 2 presents the necessary background on the Reeb graph
and the Mapper, and it also gives an approximation inequality—Theorem 7—for the Reeb
graph with the Mapper. From this approximation result, we derive rates of convergences
as well as candidate parameters in Section 3, and we show how to get confidence regions in
Section 4. Section 5 illustrates the validity of our parameter tuning and confidence regions
with numerical experiments on smooth and noisy data.

2. Approximation of a Reeb graph with the Mapper

2.1 Background on the Reeb graph and the Mapper

We start with some background on the Reeb graph and the Mapper. In particular, we
present the specific Mapper algorithm that we study in this article.

Reeb graph. Let X be a topological space and let f : X → R be a continuous function.
Such a function on X is called a filter function in the following. Then, we define the
equivalence relation ∼f as follows: for all x and x′ in X , x and x′ are in the same class
(x ∼f x′) if and only if x and x′ belong to the same connected component of f−1(y), for
some y in the image of f .

Definition 1 The Reeb graph Rf (X ) of X computed with the filter function f is the quo-
tient space X/ ∼f endowed with the quotient topology.

See Figure 2 for an illustration. Note that, since f is constant on equivalence classes,
there is an induced map fR : Rf (X ) → R such that f = fR ◦ π, where π is the quotient
map X → Rf (X ). The topological structure of a Reeb graph can be described if the pair
(X , f) is regular enough. From now on, we will assume that the filter function f : X → R
is Morse-type. Morse-type functions are generalizations of classical Morse functions that
share some of their properties without having to be differentiable (nor even defined over a
smooth manifold).

Definition 2 Let f be a continuous real-valued function defined on a compact space X .
Then f is called of Morse type if:

(i) There is a finite set Crit(f) = {a1 < ... < an}, called the set of critical values,
such that over every open interval (a0 = −∞, a1), ..., (ai, ai+1), ..., (an, an+1 = +∞)
there is a compact and locally connected space Yi and a homeomorphism µi : Yi ×
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Figure 2: Example of Reeb graph computed on a double torus with the height function.
Connected components of the level sets of the function (such as the three different
ones drawn on the double torus) are contracted into single points.

(ai, ai+1)→ f−1((ai, ai+1)) such that ∀i = 0, ..., n, f |f−1((ai,ai+1)) = π2 ◦µ−1
i , where π2

is the projection onto the second factor;

(ii) ∀i = 1, ..., n−1, µi extends to a continuous function µ̄i : Yi×[ai, ai+1]→ f−1([ai, ai+1])
and similarly µ0 extends to µ̄0 : Y0 × (−∞, a1] → f−1((−∞, a1]) and µn extends to
µ̄n : Yn × [an,+∞)→ f−1([an,+∞));

(iii) Each levelset f−1(t) has a finitely-generated homology.

Key fact 1a. (Proposition 2.10 in de Silva et al. (2016)) For f : X → R a Morse-type
function, the Reeb graph Rf (X ) is a multigraph.

For our purposes, in the following we further assume that X is a smooth and compact
submanifold of RD. The set of Reeb graphs computed with Morse-type functions over such
spaces is denoted R in this article. Whenever it is necessary, it will be equipped with extra
structures in the following, such as pseudometrics or topologies.

Mapper. The Mapper is introduced in Singh et al. (2007) as a statistical version of the
Reeb graph Rf (X ) in the sense that it is a discrete and computable approximation of the
Reeb graph computed with some filter function. Assume that we observe a point cloud
Xn = {X1, . . . , Xn} ⊂ X with known pairwise distances. A filter function is chosen and
can be computed on each point of Xn. The generic version of the Mapper algorithm on Xn
computed with the filter function f can be summarized as follows:

1. Cover the range of values Yn = f(Xn) with a set of consecutive intervals {Is}1≤s≤S
which overlap.

2. Apply a clustering algorithm to each pre-image f−1(Is), s ∈ {1, ..., S}. This defines
a pullback cover C = {C1,1, . . . , C1,k1 , . . . , CS,1, . . . , CS,kS} of the point cloud Xn, where
Cs,k denotes the kth cluster of f−1(Is).

3. The Mapper is then the nerve of C. Each vertex vs,k of the Mapper corresponds to
one element Cs,k and two vertices vs,k and vs′,k′ are connected if and only if Cs,k∩Cs′,k′
is not empty, i.e. they have common points.
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Figure 3: Example of Mapper computed on a sampling of the double torus with the height
function f and a cover I of its range with four open intervals. Clusters are given
by a neighborhood graph built on the sampling. Note that the rightmost green
vertex is not connected to the other vertices of the Mapper since its corresponding
cluster (which contains only one point) has no common points with the others.

See Figure 3 for an illustration. Even for one given filter function, many versions of the
Mapper algorithm can be proposed depending on how one chooses the intervals that cover
the image of f , and which method is used to cluster the pre-images. Moreover, note that
the Mapper can be defined as well for continuous spaces. The definition is strictly the same
except for the clustering step, which is replaced by taking the connected components of
each pre-image f−1(Is), s ∈ {1, ..., S}.

Our version of Mapper. In this article, we focus on a Mapper algorithm that uses
neighborhood graphs. Of course, more sophisticated versions of Mapper can be used in
practice but then the statistical analysis is more tricky. We assume that there exists a
distance on Xn and that the matrix of pairwise distances is available. First, from the
distance matrix we compute the δ-neighborhood graph built on top of Xn, i.e. we draw
an edge between two different points whenever their pairwise distance is less than δ. This
object plays the role of an approximation of the underlying and unknown metric space X
on which the data are sampled. Second, given Yn = f(Xn) the set of filter values, we choose
a regular cover of Yn with open intervals, where no more than two intervals can intersect
at a time. More precisely, we use open intervals with same length r (apart from the first
and the last one, which can have any positive length): ∀s ∈ {2, . . . , S − 1},

r = `(Is) (1)

where ` is the Lebesgue measure on R. The overlap g between two consecutive intervals is
also a fixed constant: ∀s ∈ {1, . . . , S − 1},

0 < g =
`(Is ∩ Is+1)

r
<

1

2
. (2)
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The parameters g and r are generally called the gain and the resolution in the literature on
the Mapper algorithm. Finally, for the clustering step, we simply consider the connected
components of the pre-images f−1(Is) that are induced by the δ-neighborhood graph. The
corresponding Mapper is denoted Mr,g,δ(Xn,Yn) or Mn for short in the following. When
dealing with a continuous space X , there is no need to compute a neighborhood graph since
the connected components are well-defined, so we let Mr,g(X , f) denote our version of the
Mapper in this case.

Key fact 1b. The Mapper Mr,g,δ(Xn,Yn) is a combinatorial graph.

Moreover, following Carrière and Oudot (2017b), we can define a function on the nodes
of Mn as follows.

Definition 3 Let v be a node of Mn, i.e. v represents a connected component of f−1(Is)
for some s ∈ {1, . . . , S}. Then, we let

fI(v) = mid(Ĩs),

where Ĩs = Is \ (Is−1 ∪ Is+1) and mid(Ĩs) denotes the midpoint of the interval Ĩs.

Filter functions. In practice, it is common to choose filter functions that are coordinate-
independent, in order to avoid depending on solid transformations of the data like rotations
or translations. The two most common filters that are used in the literature are:

• the eccentricity: x 7→ supy∈Xd(x, y),

• the eigenfunctions of the covariance matrix as used in Principal Component Analysis.

2.2 Extended persistence signatures and the persistence metric

In this section, we introduce extended persistence and its associated metric, the bottleneck
distance, which we will use later to compare Reeb graphs and Mappers. We merely provide
a short introduction containing the necessary definitions since the statement of our results
does not require a deep understanding of these notions. The understanding of the proofs of
these results is more demanding, so we refer the reader willing to read proofs and already
familiar with homology to Appendix C for more details, and to Edelsbrunner and Harer
(2010); Oudot (2015) for a thorough treatment of extended persistence.

Extended persistence. Given any graph G = (V,E) and a function defined on its nodes
f : V → R, the so-called extended persistence diagram Dg(G, f), originally defined in Cohen-
Steiner et al. (2009), is a multiset of points in the Euclidean plane R2 that can be computed
with extended persistence theory. Each of the diagram points has a specific type, which
is either Ord0, Rel1, Ext+

0 or Ext−1 . A rigorous connection between the Mapper and the
Reeb graph was drawn recently by Carrière and Oudot (2017b), who show how extended
persistence provides a relevant and efficient framework to compare a Reeb graph with a
Mapper. We summarize below the main points of this work in the perspective of the
present article.
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Figure 4: Example of correspondences between topological features of a graph and points in
its corresponding extended persistence diagram. Note that ordinary persistence
is unable to detect the blue upwards branch.

Topological dictionary. Given a topological space X and a Morse-type function f :
X → R, there is a nice interpretation of Dg(Rf (X ), fR) in terms of the structure of Rf (X ).
Orienting the Reeb graph vertically so fR is the height function, we can see each connected
component of the graph as a trunk with multiple branches (some oriented upwards, others
oriented downwards) and holes. Then, one has the following correspondences, where the
vertical span of a feature is the span of its image by fR:

• The vertical spans of the trunks are given by the points in Ext+
0 (Rf (X ), fR);

• The vertical spans of the branches that are oriented downwards are given by the points
in Ord0(Rf (X ), fR);

• The vertical spans of the branches that are oriented upwards are given by the points
in Rel1(Rf (X ), fR);

• The vertical spans of the holes are given by the points in Ext−1 (Rf (X ), fR).

These correspondences provide a dictionary to read off the structure of the Reeb graph from
the corresponding extended persistence diagram. See Figure 4 for an illustration.

Note that it is a bag-of-features type descriptor, taking an inventory of all the features
(trunks, branches, holes) together with their vertical spans, but leaving aside the actual
layout of the features. As a consequence, it is an incomplete descriptor: two Reeb graphs
with the same persistence diagram may not be isomorphic.

Bottleneck distance. We now define the commonly used metric between persistence
diagrams.
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Definition 4 Given two persistence diagrams D,D′, a partial matching between D and D′

is a subset Γ of D ×D′ such that:

∀p ∈ D, there is at most one p′ ∈ D′ such that (p, p′) ∈ Γ,

∀p′ ∈ D′, there is at most one p ∈ D such that (p, p′) ∈ Γ.

Furthermore, Γ must match points of the same type (ordinary, relative, extended) and of
the same homological dimension only. Let ∆ be the diagonal ∆ = {(x, x) : x ∈ R}. The
cost of Γ is:

cost(Γ) = max

{
max
p∈D

δD(p), max
p′∈D′

δD′(p
′)

}
,

where

δD(p) = ‖p− p′‖∞ if ∃p′ ∈ D′ such that (p, p′) ∈ Γ, otherwise δD(p) = inf
q∈∆
‖p− q‖∞,

δD′(p
′) = ‖p− p′‖∞ if ∃p ∈ D such that (p, p′) ∈ Γ, otherwise δD′(p

′) = inf
q∈∆
‖p′ − q‖∞.

Definition 5 Let D,D′ be two persistence diagrams. The bottleneck distance between D
and D′ is:

d∆(D,D′) = inf
Γ

cost(Γ),

where Γ ranges over all partial matchings between D and D′.

Note that d∆ is only a pseudometric and not a true metric, because diagrams which
only differ at the diagonal will have zero distance.

Definition 6 Let G1 = (V1, E1) and G2 = (V2, E2) be two combinatorial graphs with real-
valued functions f1 : V1 → R and f2 : V2 → R attached to their nodes. The persistence
metric d∆ between the pairs (G1, f1) and (G2, f2) is:

d∆(G1, G2) = d∆ (Dg(G1, f1),Dg(G2, f2)) .

For a Morse-type function f defined on X and for a finite point cloud Xn ⊂ X , we can
thus consider Dg(Rf (X )) = Dg(Rf (X ), fR) and Dg(Mn) = Dg(Mn, fI), with fI as in Defi-
nition 3. In this context the bottleneck distance d∆(Rf (X ),Mn) = d∆(Dg(Rf (X )),Dg(Mn))
is well defined and we use this quantity to assess if the Mapper Mn is a good approximation
of the Reeb graph Rf (X ). Moreover, note that, even though d∆ is only a pseudometric, it
has been shown to be a true metric locally for Reeb graphs by Carrière and Oudot (2017a).

As noted in Carrière and Oudot (2017b), the choice of fI is in some sense arbitrary
since any function defined on the nodes of the Mapper that respects the ordering of the
intervals of I carries the same information in its extended persistence diagram. To avoid
this issue, Carrière and Oudot (2017b) define a pruned version of Dg(Rf (X ), fR) as a
canonical descriptor for the Mapper. The problem with this approach is that computing
this canonical descriptor requires to know the critical values of fR beforehand. Here, by
considering Dg(Mn, fI) instead, the descriptor becomes computable. Moreover, one can
see from the proofs in the Appendix that the canonical descriptor and its arbitrary version
actually enjoy the same rate of convergence, up to some constant.
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2.3 An approximation inequality for Mapper

We are now ready to give the key ingredient of this paper to derive a statistical analysis
of the Mapper. The ingredient is an upper bound on the bottleneck distance between the
Reeb graph of a pair (X , f) and the Mapper computed with the same filter function f and
a specific cover I of a sampled point cloud Xn ⊂ X . From now on, it is assumed that the
underlying space X is a smooth and compact submanifold embedded in RD, and that the
filter function f is Morse-type on X .

Regularity of the filter function. Intuitively, approximating a Reeb graph computed
with a filter function f that has large variations is more difficult than for a smooth filter
function, for some notion of regularity that we now specify. Our result is given in a general
setting by considering the modulus of continuity of f . In our framework, f is assumed to
be Morse-type and thus uniformly continuous on the compact set X . Following for instance
Section 6 in DeVore and Lorentz (1993), we define the exact modulus of continuity of f as:

ωf (δ) = sup
‖x−x′‖≤δ

|f(x)− f(x′)|

for any δ > 0, where ‖ · ‖ denotes the Euclidean norm in RD. Then ωf satisfies :

1. ωf (δ)→ ω(0) = 0 when δ → 0 ;

2. ωf is non-negative and non-decreasing on R+ ;

3. ωf is subadditive : ωf (δ1 + δ2) ≤ ωf (δ1) + ωf (δ2) for any δ1, δ2 > 0;

4. ωf is continous on R+.

In this paper we say that a function ω defined on R+ is a modulus of continuity if it satisfies
the four properties above and we say that it is a modulus of continuity for f if, in addition,
we have

|f(x)− f(x′)| ≤ ω(‖x− x′‖),
for any x, x′ ∈ X .

Theorem 7 Assume that X has positive reach rch and convexity radius ρ. Let Xn be a
point cloud of n points, all lying in X . Assume that the filter function f is Morse-type on
X . Let ω be a modulus of continuity for f . Finally, let r, g be Mapper parameters defined
as per Equations (1) and (2). If the three following conditions hold:

δ ≤ 1

4
min {rch, ρ} , (3)

max{|f(X)− f(X ′)| : X,X ′ ∈ Xn and ‖X −X ′‖ ≤ δ} < gr, (4)

4dH(X ,Xn) ≤ δ, (5)

where dH denotes the Hausdorff distance, then the Mapper Mn = Mr,g,δ(Xn,Yn) with pa-
rameters r, g and δ is such that:

d∆ (Rf (X ),Mn) ≤ r + 2ω(δ). (6)

Remark 8 Using the edge-based MultiNerve Mapper—as defined in Section 8 of Carrière
and Oudot (2017b)—allows to weaken Assumption (4) since gr can be replaced by r in the
corresponding equation, and r can be replaced by r/2 in Equation (6).
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Analysis of the hypotheses. On the one hand, the scale parameter δ of the neigh-
borhood graph could not be smaller than the approximation error corresponding to the
Hausdorff distance between the sample and the underlying space X (Assumption (5)). On
the other hand, it must be smaller than the reach and convexity radius to provide a correct
estimation of the geometry and topology of X (Assumption (3)). The quantity gr corre-
sponds to the minimum scale at which the filter’s codomain is analyzed. This minimum
resolution has to be compared with the regularity of the filter at scale δ (Assumption (4)).
Indeed the pre-images of a filter with strong variations will be more difficult to analyze than
when the filter does not vary too fast.

Analysis of the upper bound. The upper bound given in (6) makes sense in that
the approximation error is controlled by the resolution level in the codomain and by the
regularity of the filter. If one uses a filter with strong variations, or if the grid in the
codomain has a too rough resolution, then the approximation will be poor. On the other
hand, a sufficiently dense sampling is required in order to take r small, as prescribed in the
assumptions.

Lipschitz filters. A large class of filters used for the Mapper are actually Lipschitz func-
tions and of course, in this case, one can take ω(δ) = cδ for some positive constant c.
In particular, c = 1 for linear projections (PCA, SVD, Laplacian or coordinate filter for
instance). The distance to a measure (DTM) is also a 1-Lipschitz function, see Chazal
et al. (2011). On the other hand, the modulus of continuity of filter functions defined from
estimators, e.g. density estimators, is less obvious although still well-defined.

Filter approximation. In some situations, the filter function f̂ used to compute the
Mapper is only an approximation of the filter function f with which the Reeb graph is
computed. In this context, the pair (Xn, f̂) appears as an approximation of the pair (X , f).
The following result is directly derived from Theorem 7 and Theorem 5.1 in Carrière and
Oudot (2017b) (that derives stability for Mappers building on the stability theorem of
extended persistence diagrams proved by Cohen-Steiner et al. (2009)):

Corollary 9 Let f̂ : X → R be a Morse-type filter function approximating f . Assume that
Assumptions (3) and (5) of Theorem 7 are satisfied, and assume moreover that

max{max{|f(X)− f(X ′)|, |f̂(X)− f̂(X ′)|} : X,X ′ ∈ Xn, ‖X −X ′‖ ≤ δ} < gr. (7)

Then, the Mapper M̂n = Mr,g,δ(Xn, f̂(Xn)) built on Xn with filter function f̂ and parameters
r, g, δ satisfies:

d∆(Rf (X ), M̂n) ≤ 2r + 2ω(δ) + max
1≤i≤n

|f(Xi)− f̂(Xi)|.

3. Statistical Analysis of Mapper

From now on, the set of observations Xn is assumed to be composed of n independent points
X1, ..., Xn sampled from a probability distribution P in RD (endowed with its Borel algebra).
We assume that each point Xi comes with a filter value which is represented by a random
variable Yi. Contrarily to the Xi’s, the filter values Yi’s are not necessarily independent.
In the following, we consider two different settings: in the first one, Yi = f(Xi), where the
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filter f is a deterministic function, in the second one, Yi = f̂(Xi) where f̂ is an estimator
of the filter function f . In the latter case, the Yi’s are obviously dependent. We first
provide the following proposition, whose proof is deferred to Appendix A.4, which states
that computing probabilities on the Mapper makes sense:

Proposition 10 For any fixed choice of parameters r, g, δ and for any fixed n ∈ N, the
function

Φ :

{
(RD)n × Rn → R

(Xn,Yn) 7→ Mr,g,δ(Xn,Yn)

is measurable, where R denotes the set of Reeb graphs computed from Morse-type functions.

3.1 Statistical Model for the Mapper

In this section, we study the convergence of the Mapper for a general generative model
and a class of filter functions. We first introduce the generative model and next we present
different settings depending on the nature of the filter function.

Generative model. The set of observations Xn is assumed to be composed of n indepen-
dent points X1, ..., Xn sampled from a probability distribution P in RD. The support of P
is denoted XP and is assumed to be a smooth and compact submanifold of RD with positive
reach and positive convexity radius, as in the setting of Theorem 7. We also assume that
0 < diam(XP) ≤ L. Next, the probability distribution P is assumed to be (a, b)-standard for
some constants a > 0 and b ≥ D, that is for any Euclidean ball B(x, t) centered on x ∈ X
with radius t :

P (B(x, t)) ≥ min(1, atb).

This assumption is popular in the literature about set estimation (see for instance Cuevas,
2009; Cuevas and Rodŕıguez-Casal, 2004). It is also widely used in the TDA literature
(Chazal et al., 2015b; Fasy et al., 2014; Chazal et al., 2015a). For instance, when b = D,
this assumption is satisfied when the distribution is absolutely continuous with respect to
the Hausdorff measure on XP. We introduce the set Pa,b = Pa,b,κ,ρ,L which is composed of
all the (a, b)-standard probability distributions for which the support XP is a smooth and
compact submanifold of RD with reach larger than κ, convexity radius larger than ρ and
diameter less than L.

Filter functions in the statistical setting. The filter function f : XP → R for the
Reeb graph is assumed as before to be a Morse-type function. Two different settings
have to be considered regarding how the filter function is defined. In the first setting,
the same filter function is used to define the Reeb graph and the Mapper. The Mapper
can be defined by taking the exact values of the filter function at the observation points
f(X1), . . . , f(Xn). Note that this does not mean that the function f is completely known
since, in our framework, knowing f would imply to know its domain and thus XP would
be known which is of course not the case in practice. This first setting is referred to as
the exact filter setting in the following. It corresponds to the situations where the Mapper
algorithm is used with coordinate functions for instance. In the second setting, the filter
function used for the Mapper is not available and an estimation of this filter function has to
be computed from the data. This second setting is referred to as the inferred filter setting in
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the following. It corresponds to PCA or Laplacian eigenfunctions, distance functions (such
as the DTM), or regression and density estimators.

Risk of the Mapper. We study, in various settings, the problem of inferring a Reeb
graph using Mappers and we use the metric d∆ to assess the performance of the Mapper,
seen as an estimator of the Reeb graph. Hence, we study the following quantity:

E [d∆ (Mn,Rf (XP))] ,

where Mn is computed with the exact filter f or the inferred filter f̂ , depending on the
context.

3.2 Reeb graph inference with exact filter and known generative model

We first consider the exact filter setting in the simplest situation where the parameters a
and b of the generative model are known. In this setting, for a given neighborhood graph
parameter δ, gain g and resolution r, the Mapper Mn = Mr,g,δ(Xn,Yn) is computed with
Yn = f(Xn).

Parameter selection. We now tune the triple of parameters (r, g, δ) depending on the
parameters a and b. More precisely, we take:

an arbitrary g ∈
(

1

3
,
1

2

)
, δn = 8

(
2log(n)

an

)1/b

, rn =
Vn(δn)+

g
, (8)

where Vn(δn) = max{|f(X)− f(X ′)| : X,X ′ ∈ Xn, ‖X −X ′‖ ≤ δn}, and Vn(δn)+ denotes
a value that is strictly larger but arbitrarily close to Vn(δn).

Upper bound. We give below a general upper bound on the risk of Mn with these
parameters, which depends on the regularity of the filter function and on the parameters
of the generative model. We show a uniform convergence over a class of possible filter
functions. This class of filters necessarily depends on the support of P, so we define the
class of filters for each probability measure in Pa,b. For any P ∈ Pa,b, we let F(P, ω) denote
the set of filter functions f : XP → R such that f is Morse-type on XP with ωf ≤ ω.

Proposition 11 Let ω be a modulus of continuity for f such that ω(x)/x is a non-increasing
function on R+. For n large enough, the Mapper computed with parameters (rn, g, δn) as
per Equation (8) satisfies

sup
P∈Pa,b

E

[
sup

f∈F(P,ω)
d∆ (Rf (XP),Mn)

]
≤ C ω

(
2 · 8b

a

log(n)

n

)1/b

where the constant C only depends on a, b, and on the geometric parameters of the model.

Assuming that ω(x)/x is non-increasing is not a very strong assumption. This property
is satisfied in particular when ω is concave, as in the case of concave majorant (see for
instance Section 6 in DeVore and Lorentz (1993)). As expected, we see that the rate of
convergence of the Mapper to the Reeb graph directly depends on the regularity of the
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filter function and on the parameter b which roughly represents the intrinsic dimension
of the data. For Lipschitz filter functions, the rate is similar to the one for persistence
diagram inference in Chazal et al. (2015b), namely it corresponds to the one of support
estimation for the Hausdorff metric (see for instance Cuevas and Rodŕıguez-Casal (2004))
and Genovese et al. (2012a)). In the other cases where the filters only admit a concave
modulus of continuity, we see that the “distortion” created by the filter function slows
down the convergence of the Mapper to the Reeb graph.

We now give a lower bound that matches with the upper bound of Proposition 11.

Proposition 12 Let ω be a modulus of continuity for f . Then, for any estimator R̂n of
Rf (XP),, we have

sup
P∈Pa,b

E

[
sup

f∈F(P,ω)
d∆

(
Rf (XP), R̂n

)]
≥ C ω

(
1

an

) 1
b

,

where the constant C only depends on a, b and on the geometric parameters of the model.

Propositions 11 and 12 together show that, with the choice of parameters given before,
Mn is minimax optimal up to a logarithmic factor log(n) inside the modulus of continuity.
Note that the lower bound is also valid whether or not the coefficients a and b and the filter
function f and its modulus of continuity are given.

3.3 Reeb graph inference with exact filter and unknown generative model

We still assume that the exact values Yn = f(Xn) of the filter on the point could can be
computed and that at least a modulus of continuity for the filter is known. However, the
parameters a and b are not assumed to be known anymore. We adapt a subsampling ap-
proach proposed by Fasy et al. (2014). As before, for a given neighborhood graph parameter
δ, gain g and resolution r, the Mapper Mn = Mr,g,δ(Xn,Yn) is computed with Yn = f(Xn).

Parameter selection. We introduce the sequence sn = n
(logn)1+β

for some fixed value

β > 0. Let X̂snn be an arbitrary subset of Xn that contains sn points. Then, we take:

an arbitrary g ∈
(

1

3
,
1

2

)
, δn = dH(X̂snn ,Xn), rn =

Vn(δn)+

g
, (9)

where V +
n is defined as in Equation (8).

Upper bound. Using these parameters, we can then derive the following upper bound:

Proposition 13 Let ω be a modulus of continuity for f such that x 7→ ω(x)/x is a non-
increasing function. Then, using the same notations as in the previous section, the Mapper
Mn computed with parameters (rn, g, δn) as per Equation (9) satisfies

sup
P∈Pa,b

E

[
sup

f∈F(P,ω)
d∆ (Rf (XP),Mn)

]
≤ C ω

(
C ′log(n)2+β

n

)1/b

,

where the constants C,C ′ only depends on a, b, and on the geometric parameters of the
model.
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Up to logarithmic factors inside the modulus of continuity, we find that this Mapper is
still minimax optimal over the class Pa,b by Proposition 12.

3.4 Reeb graph inference with inferred filter and unknown generative model

One of the nice properties of the Mapper is that it can be easily computed with any filter
function, including estimated filter functions such as PCA eigenfunctions, eccentricity func-
tions, DTM functions, Laplacian eigenfunctions, density estimators, regression estimators,
and many other filters directly estimated from the data. In this section, we assume that the
true filter f is unknown but can be estimated from the data using an estimator f̂ . Without
loss of generality, we assume that both f and f̂ are defined on RD. As before, parameters a
and b are not assumed to be known and we have to tune the triple of parameters (rn, g, δn).

Parameter selection. In this context, the quantity V +
n of Equations (8) and (9) cannot

be computed as before because there is no direct access to the values of f : we only know an
estimation f̂ of it. However, in many cases, a modulus of continuity ω1 for f is known, which
makes possible the tuning of the parameters. For instance, PCA (and kernel) projectors,
eccentricity functions, DTM functions (see Chazal et al. (2011)) are all 1-Lipschitz functions,
and Corollary 14 below can be applied.

Let V̂n(δn) = max{|f̂(X) − f̂(X ′)| : X,X ′ ∈ Xn, ‖X − X ′‖ ≤ δn}, and let ω1 be a
modulus of continuity for f . Then, we take:

an arbitrary g ∈
(

1

3
,
1

2

)
, δn = dH(X̂snn ,Xn), rn =

max{ω1(δn), V̂n(δn)}+

g
. (10)

Upper bound. Following the lines of the proof of Proposition 13 and applying Corol-
lary 9, we obtain:

Corollary 14 Let f : RD → R be a Morse-type filter function and let f̂ : RD → R be a
Morse-type estimator of f . Let ω1 (resp. ω2) be a modulus of continuity for f (resp. f̂).
Let ω = max{ω1, ω2} such that x 7→ ω(x)/x is a non-increasing function. Let also M̂n =
Mrn,g,δn(Xn, f̂(Xn)) be the Mapper built on Xn with function f̂ and parameters g, δn, rn as

in Equation (10). Then, M̂n satisfies

E
[
d∆

(
Rf (XP), M̂n

)]
≤ Cω

(
C ′log(n)2+β

n

) 1
b

+ E
[

max
1≤i≤n

|f(Xi)− f̂(Xi)|
]
,

where the constants C,C ′ only depends on a, b, and on the geometric parameters of the
model.

Note that ω1 has to be known to compute M̂n in Corollary 14 since it appears in the
definition of rn. On the contrary, ω2—and thus ω—is not required to tune the parameters.

PCA eigenfunctions. In the setting of this article, the measure µ has a finite second mo-
ment. Following Biau and Mas (2012), we define the covariance operator Γ(·) = E(〈X, ·〉X)
and we let Πk denote the orthogonal projection onto the space spanned by the k-th eigen-
vector of Γ. In practice, we consider the empirical version of the covariance operator

Γ̂n(·) =
1

n

n∑
i=1

〈Xi, ·〉Xi
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and the empirical projection Π̂k onto the space spanned by the k-th eigenvector of Γ̂n.
According to Biau and Mas (2012)(see also Blanchard et al. (2007); Shawe-Taylor et al.
(2005)), we have

E
[
‖Πk − Π̂k‖∞

]
= O

(
1√
n

)
.

This, together with Corollary 14 and the fact that both Πk and Π̂k are 1-Lipschitz, gives
that the rate of convergence of the Mapper of Π̂k(Xn) computed with parameters δn, g and
rn as in Equation (10) (which gives rn = g−1δ+

n ) satisfies

E
[
d∆

(
RΠk(XP),Mrn,g,δn(Xn, Π̂k(Xn))

)]
= O

(
max

{(
log(n)2+β

n

) 1
b

,
1√
n

})
.

Hence, the rate of convergence of Mapper is not deteriorated by using Π̂k instead of Πk if
the intrinsic dimension b of the support of µ is at least 2.

The distance to measure. It is well known that TDA methods may fail completely in
the presence of outliers. To address this issue, Chazal et al. (2011) introduced an alterna-
tive distance function which is robust to noise, the distance-to-measure (DTM). A similar
analysis as with the PCA filter can be carried out with the DTM filter using the rates of
convergence proven in Chazal et al. (2016b).

4. Confidence sets for Reeb signatures

4.1 Confidence sets for extended persistence diagrams

In practice, computing a Mapper Mn and its signature Dg(Mn, fI) is not sufficient: we need
to know how accurate these estimations are. One natural way to answer this problem is to
provide a confidence set for the Mapper using the bottleneck distance. For α ∈ (0, 1), we
look for some value ηn,α such that

P (d∆(Mn,Rf (XP)) ≥ ηn,α) ≤ α

or at least such that

lim sup
n→∞

P (d∆(Mn,Rf (XP)) ≥ ηn,α) ≤ α.

Let

Mα = {R ∈ R : d∆(Mn,R) ≤ α}

be the closed ball of radius α in the bottleneck distance and centered at the Mapper Mn in
the space of Reeb graphs R. Following Fasy et al. (2014), we can visualize the signatures
of the points belonging to this ball in various ways. One first option is to center a box
of side length 2α at each point of the extended persistence diagram of Mn—see the right
columns of Figure 5 and Figure 6 for instance. An alternative solution is to visualize the
confidence set by adding a band at (vertical) distance 2α from the diagonal (the bottleneck
distance being defined for the `∞ norm). The points outside the band are then considered
as significant topological features, see Fasy et al. (2014) for more details.
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Several methods have been proposed in Fasy et al. (2014) and Chazal et al. (2014)
to define confidence sets for persistence diagrams. We now adapt these ideas to provide
confidence sets for Mappers. Except for the bottleneck bootstrap (see Section 4.3), all the
methods proposed in these two articles rely on the stability results for persistence diagrams,
which say that persistence diagrams equipped with the bottleneck distance are stable under
Hausdorff or Wasserstein perturbations of the data. Confidence sets for diagrams are then
directly derived from confidence sets in the sample space. Here, we follow a similar strategy
using Theorem 7, as explained in the next section.

4.2 Confidence sets derived from Theorem 7

In this section, we always assume that an upper bound ω on the exact modulus of continuity
ωf of the filter function is known. We start with the following remark: if we can take δ of
the order of dH(XP,Xn) in Theorem 7 and if all the conditions of the theorem are satisfied,
then d∆(Mn,Rf (XP)) can be bounded in terms of ω(dH(XP,Xn)). This means that we can
adapt the methods of Fasy et al. (2014) to Mappers.

Known generative model. Let us first consider the simplest situation where the param-
eters a an b are also known. Following Section 3.2, we choose for g, δn, rn as per Equation (8).
Let εn = dH(XP,Xn). As shown in the proof of Proposition 11 (see Appendix A.5), for n
large enough, Assumption (3) and (4) are always satisfied and then

P (d∆(Mn,Rf (XP)) ≥ η) ≤ P
(
δn ≥ ω−1

(
η

g−1 + 2

))
.

Consequently,

P (d∆(Mn,Rf (XP)) ≥ η) ≤ P (d∆(Mn,Rf (XP)) ≥ η ∩ εn ≤ 4δn) + P (εn > 4δn)

≤ Iω(δn)≥ g
1+2g

η + min

{
1,

2b

2log(n)n

}
= Φn(η).

where Φn depends on the parameters of the model (or some bounds on these parameters)
which are here assumed to be known. Hence, given a probability level α, one has:

P
(
d∆(Mn,Rf (XP)) ≥ Φ−1

n (α)
)
≤ α.

Unknown generative model. We now assume that a and b are unknown. To com-
pute confidence sets for the Mapper in this context, we approximate the distribution of
dH(XP,Xn) using the distribution of dH(X̂snn ,Xn) conditionally to Xn. There are N1 =

(
n
sn

)
subsets of size sn inside Xn, so we let X1

sn , . . . ,X
N1
sn denote all the possible configurations.

Define

Ln(t) =
1

N1

N1∑
k=1

IdH(Xksn ,Xn)>t.

Let s be the function on N defined by s(n) = sn and let s2
n = s(s(n)). There are N2 =

(
n
s2n

)
subsets of size s2

n inside Xn. Again, we let Xks2n , 1 ≤ k ≤ N2, denote these configurations
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and we also introduce

Fn(t) =
1

N2

N2∑
k=1

I
dH

(
Xk
s2n
,Xsn

)
>t
.

Proposition 15 Let η > 0. Then, one has the following confidence set:

P (d∆(Rf (XP),Mn) ≥ η) ≤ Fn
(

1

4
ω−1

(
g

1 + 2g
η

))
+ Ln

(
1

4
ω−1

(
g

1 + 2g
η

))
+ o

(sn
n

) 1
4
.

Both Fn and Ln can be computed in practice, or at least approximated using Monte
Carlo procedures. The upper bound on P (d∆(Rf (XP),Mn) ≥ η) then provides an asymp-
totic confidence region for the persistence diagram of the Mapper Mn, which can be explic-
itly computed in practice. See the green squares in the first row of Figure 5. The main
drawback of this approach is that it requires knowing a modulus of continuity ω and, more
importantly, the number of observations has to be very large, which is not the case on our
examples in Section 5.

Modulus of continuity of the filter function. As shown in Proposition 15, the mod-
ulus of continuity of the filter function is a key quantity to describe the confidence regions.
Inferring the modulus of continuity of the filter from the data is a tricky problem. For-
tunately, in practice, even in the inferred filter setting, a modulus of continuity for the
function is known in many situations. For instance, projections such as PCA eigenfunctions
and DTM functions are 1-Lipschitz.

4.3 Bottleneck Bootstrap

The two methods given before both require an explicit upper bound on the modulus of
continuity of the filter function. Moreover, these methods both rely on the approximation
result Theorem 7, which often leads to conservative confidence sets. An alternative strategy
is the bottleneck bootstrap introduced in Chazal et al. (2014), and which we now apply to
our framework.

Bootstrap. The bootstrap is a general method for estimating standard errors and com-
puting confidence intervals. Let Pn be the empirical measure defined from the sample
(X1, Y1), . . . , (Xn, Yn). Let (X∗1 , Y

∗
1 ) . . . , (X∗n, Y

∗
n ) be a sample from Pn and let also M∗n be

the random Mapper defined from this sample. We then take for η̂n,α the quantity η̂∗n,α
defined by

P
(
d∆(M∗n,Mn) > η̂∗n,α |X1, . . . , Xn

)
= α. (11)

Note that η̂∗n,α can be easily estimated with Monte Carlo procedures. It has been shown
in Chazal et al. (2014) that the bottleneck bootstrap is valid when computing the sublevel
sets of a density estimator. The validity of the bottleneck bootstrap has not been proven for
the extended persistence diagram of any distance function. For Mapper, it would require
writing d∆(M∗n,Mn) in terms of the distance between the extrema of the filter function and
the ones of the interpolation of the filter function on the δ-neighborhood graph. We leave
this problem open in this article.

18



Statistical Analysis and Parameter Selection for Mapper

Extension of the analysis. As pointed out in Section 2.1, many versions of the Mapper

exist in the literature. One of them, called the edge-based MultiNerve Mapper M
4
r,g,δ(Xn,Yn),

is described in Section 8 of Carrière and Oudot (2017b). The main advantage of this ver-
sion is that it allows for finer resolutions than the usual Mapper while remaining fast to
compute. Our analysis can actually handle this version as well by replacing gr by r in
Assumption (4) of Theorem 7—see Remark 8, and changing constants accordingly in the
proofs. In particular, this improves the resolution rn in Equation (9) since g−1Vn(δn)+ be-
comes Vn(δn)+. Hence, we use this edge-based version in Section 5, where this improvement
on the resolution rn allows us to compensate for the low number of observations.

5. Numerical experiments

In this section, we provide few examples of parameter selections and confidence regions
(which are unions of squares in the extended persistence diagrams) obtained with bot-
tleneck bootstrap. The interpretation of these regions is that squares that intersect the
diagonal, which are drawn in pink color, represent topological features in the Mappers that
may be horizontal or artifacts due to the cover, and that may not be present in the Reeb
graph. We show in Figure 5 various Mappers (in each node of the Mappers, the left num-
ber is the cluster ID and the right number is the number of observations in that cluster)
and 85 percent confidence regions computed on various data sets. All δ parameters and
resolutions were computed with Equation (9) (the δ parameters were also averaged over
N = 100 subsamplings with β = 0.001), and all gains were set to 40%. The code we used
is available in the Gudhi open source library (see Carrière (2017)). The confidence regions
were computed by bootstrapping data 100 times. Note that computing confidence regions
with Proposition 15 is possible, but the numbers of observations in all of our data sets were
too low, leading to conservative confidence regions that did not allow for interpretation.

5.1 Mappers and confidence regions

Synthetic example. We computed the Mapper of an embedding of the Klein bottle
into R4 with 10,000 points with the height function. In order to illustrate the conserva-
tivity of confidence regions computed with Proposition 15, we also plot these regions for
an embedding with 10,000,000 points using the fact that the height function is 1-Lipschitz.
Corresponding squares are drawn in green color. Their very large sizes show that Propo-
sition 15 requires a very large number of observations in practice. See the first row of
Figure 5.

3D shapes. We computed the Mapper of an ant shape and a human shape from Chen
et al. (2009) embedded in R3 (with 4,706 and 6,370 points respectively) Both Mappers were
computed with the height function. One can see that the confidence squares for the features
that are almost horizontal (such as the small branches in the Mapper of the ant) intersect
indeed the diagonal. See the second and third rows of Figure 5.

Miller-Reaven data set. The first data set comes from the Miller-Reaven diabetes study
that contains 145 observations of patients suffering or not from diabete. Observations were
mapped into R5 by computing various medical features. Data can be obtained in the “locfit”
R-package. In Reaven and Miller (1979), the authors identified two groups of diseases with
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Figure 5: Mappers computed with automatic tuning (middle) and 85 percent confidence
regions for their topological features (right) are provided for an embedding of the
Klein Bottle into R4 (first row), a 3D human shape (second row) and a 3D ant
shape (third row).
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Figure 6: Mappers computed with automatic tuning (middle) and 85 percent confidence
regions for their topological features (right) are provided for the Reaven-Miller
data set (first row) and the COIL data set (second row).

the projection pursuit method, and in Singh et al. (2007), the authors applied Mapper
with hand-crafted parameters to get back this result. Here, we normalized the data to zero
mean and unit variance, and we obtained the two flares in the Mapper computed with the
eccentricity function. Moreover, these flares are at least 85 percent sure since the confidence
squares on the corresponding points in the extended persistence diagrams do not intersect
the diagonal. See the first row of Figure 6.

COIL data set. The second data set is an instance of the 16,384-dimensional COIL data
set of Nene et al. (1996). It contains 72 observations, each of which being a picture of a duck
taken at a specific angle. Despite the low number of observations and the large number of
dimensions, we managed to retrieve the intrinsic loop lying in the data using the first PCA
eigenfunction. However, the low number of observations made the bootstrap fail since the
confidence squares computed around the points that represent this loop in the extended
persistence diagram intersect the diagonal. See the second row of Figure 6.

5.2 Noisy data

Denoising Mapper. An important drawback of Mapper is its sensitivity to noise and
outliers. See the crater data set in Figure 7, for instance. Several answers have been
proposed for recovering the correct persistence homology from noisy data. The idea is to
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Figure 7: Mappers computed with automatic tuning (middle) and 85 percent confidence
regions for their topological features (right) are provided for a noisy crater in the
Euclidean plane.

use an alternative filtration of simplicial complexes instead of the Rips filtration. A first
option is to consider the upper level sets of a density estimator rather than the distance
to the sample (see Section 4.4 in Fasy et al. (2014)). Another solution is to consider the
sublevel sets of the DTM and apply persistence homology inference in Chazal et al. (2014).

Crater data set. To handle noise in our crater data set, we simply smoothed the data
set by computing the empirical DTM with 10 neighbors on each point and removing all
points with DTM less than 40 percent of the maximum DTM in the data set. Then we
computed the Mapper with the height function. One can see that all topological features
in the Mapper that are most likely artifacts due to noise (like the small loops and con-
nected components) have corresponding confidence squares that intersect the diagonal in
the extended persistence diagram. See Figure 7.

6. Conclusion

In this article, we provided a statistical analysis of the Mapper. Namely, we proved the
fact that the Mapper is a measurable construction in Proposition 10, and we used the ap-
proximation Theorem 7 to show that the Mapper is a minimax optimal estimator of the
Reeb graph in various contexts—see Propositions 11, 12 and 13—and that corresponding
confidence regions can be computed—see Proposition 15 and Section 4.3. Along the way,
we derived rules of thumb to automatically tune the parameters of the Mapper with Equa-
tions (8), (9) and (10). Finally, we provided few examples of our methods on various data
sets in Section 5.

Future directions. We plan to investigate several questions for future work.

• We will work on adapting results from Chazal et al. (2014) to prove the validity of
bootstrap methods for computing confidence regions on the Mapper, since we only
used bootstrap methods empirically in this article.
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• We believe that using weighted versions of δ-neighborhood graphs, as defined in Buchet
et al. (2015), would improve the quality of the confidence regions on the Mapper fea-
tures, and would probably be a better way to deal with noise that our current solution.

• We plan to adapt our statistical setting to the question of selecting variables, which
is one of the main applications of the Mapper in practice.
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Appendix A. Proofs

A.1 Preliminary results

In order to prove the results of this article, we need to state several preliminary definitions
and theorems. All of them can be found, together with their proofs, in Dey and Wang
(2013) and Carrière and Oudot (2017b). In this section, we let Xn ⊂ X be a point cloud of
n points sampled on a smooth and compact submanifold X embedded in RD, with positive
reach rch and convexity radius ρ. Since δ-neighborhood graphs can be seen as 1-skeletons
of Rips complexes with parameter δ, as per Definition 55 in Carrière and Oudot (2017b),
and since many results are phrased with Rips complexes in the literature, we also use these
complexes to state our results in this section. Let f : X → R be a Morse-type filter function,
I be an open cover of the range of f with resolution r and gain g < 1

2 (which ensures that
no more than two cover elements can intersect at once, i.e. the cover is minimal), and
|Ripsδ(Xn)| denote a geometric realization of the Rips complex built on top of Xn with
parameter δ, and fPL : |Ripsδ(Xn)| → R be the piecewise-linear interpolation of f on the
simplices of Ripsδ(Xn).

Definition 16 Let G = (Xn, E) be a graph built on top of Xn. Let e = (X,X ′) ∈ E be an
edge of G, and let I(e) be the open interval (min{f(X), f(X ′)},max{f(X), f(X ′)}). Then
e is said to be intersection-crossing if there is a pair of consecutive intervals I, J ∈ I such
that ∅ 6= I ∩ J ⊆ I(e).

Theorem 17 (Lemma 61 and 62 in Carrière and Oudot (2017b)). Let Rips1
δ(Xn) de-

note the 1-skeleton of Ripsδ(Xn). If Rips1
δ(Xn) has no intersection-crossing edges, then

Mr,g,δ(Xn, f(Xn)) and Mr,g(|Ripsδ(Xn)|, fPL) are isomorphic as combinatorial graphs.

Theorem 18 (Theorem 54 in Carrière and Oudot (2017b)). Let f : X → R be a Morse-type
function. Then, we have the following inequality between extended persistence diagrams:

d∆(Dg(Rf (X ), fR),Dg(Mr,g(X , f), fI)) ≤ r. (12)

Moreover, given another Morse-type function f̂ : X → R, we have:

d∆(Dg(Mr,g(X , f), fI),Dg(Mr,g(X , f̂), f̂I)) ≤ r + ‖f − f̂‖∞. (13)
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Theorem 19 (Theorem 4.6, Remark 2 in Dey and Wang (2013) and Theorem 59 in Carrière
and Oudot (2017b)). If 4dH(X ,Xn) ≤ δ ≤ min{rch/4, ρ/4}, then:

d∆(Dg(Rf (X ), fR),Dg(RfPL(|Ripsδ(Xn)|), fPL
R )) ≤ 2ω(δ).

Note that the original version of this theorem is only proven for Lipschitz functions
in Dey and Wang (2013), but it extends at no cost to functions with modulus of continuity.

A.2 Proof of Theorem 7

Let |Ripsδ(Xn)| denote a geometric realization of the Rips complex built on top of Xn
with parameter δ. Moreover, let fPL : |Ripsδ(Xn)| → R be the piecewise-linear interpola-
tion of f on the simplices of Ripsδ(Xn), whose 1-skeleton is denoted by Rips1

δ(Xn). Since
(|Ripsδ(Xn)|, fPL) is a metric space, we also consider its Reeb graph RfPL(|Ripsδ(Xn)|),
with induced function fPL

R , and its Mapper Mr,g(|Ripsδ(Xn)|, fPL), with induced function
fPL
I . See Figure 8. Then, the following inequalities lead to the result:

d∆(Rf (X ),Mn) = d∆ (Dg(Rf (X ), fR),Dg(Mn, fI))

= d∆

(
Dg(Rf (X ), fR),Dg(Mr,g(|Ripsδ(Xn)|, fPL), fPL

I )
)

(14)

≤ d∆

(
Dg(Rf (X ), fR),Dg(RfPL(|Ripsδ(Xn)|), fPL

R )
)

+ d∆

(
Dg(RfPL(|Ripsδ(Xn)|), fPL

R ),Dg(Mr,g(|Ripsδ(Xn)|, fPL), fPL
I )
)

(15)

≤ 2ω(δ) + r. (16)

Let us prove every (in)equality:

Equality (14). Let X1, X2 ∈ Xn such that (X1, X2) is an edge of Rips1
δ(Xn) i.e. ‖X1 −

X2‖ ≤ δ. Then, according to (4): |f(X1)−f(X2)| < gr. Hence, there is no s ∈ {1, . . . , S−1}
such that Is∩ Is+1 ⊆ [min{f(X1), f(X2)},max{f(X1), f(X2)}]. It follows that there are no
intersection-crossing edges in Rips1

δ(Xn). Then, according to Theorem 17, there is a graph
isomorphism i : Mn = Mr,g,δ(Xn, f(Yn)) → Mr,g(|Ripsδ(Xn)|, fPL). Since fI = fPL

I ◦ i by
definition of fI and fPL

I , the equality follows.

Inequality (15). This inequality is just an application of the triangle inequality.

Inequality (16). According to (3), we have δ ≤ min{rch/4, ρ/4}. According to (5), we
also have δ ≥ 4dH(X ,Xn). Hence, we have

d∆(Dg(Rf (X ), fR),Dg(RfPL(|Ripsδ(Xn)|), fPL
R )) ≤ 2ω(δ),

according to Theorem 19. Moreover, we have

d∆(Dg(RfPL(|Ripsδ(Xn)|), fPL
R ),Dg(Mr,g(|Ripsδ(Xn)|, fPL), fPL

I )) ≤ r,

according to Equation (12).
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f fR

fPL fPL
R

fPL
I

fI

Figure 8: Examples of the function defined on the original space (left column), its induced
function defined on the Reeb graph (middle column) and the function defined on
the Mapper (right column). Note that the Mapper computed from the geomet-
ric realization of the Rips complex (middle row, right) is not isomorphic to the
standard Mapper (last row), since there are two intersection-crossing edges in the
Rips complex (outlined in orange).
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A.3 Proof of Corollary 9

Let |Ripsδ(Xn)| denote a geometric realization of the Rips complex built on top of Xn with
parameter δ. Moreover, let fPL : |Ripsδ(Xn)| → R be the piecewise-linear interpolation of f
on the simplices of Ripsδ(Xn), whose 1-skeleton is denoted by Rips1

δ(Xn). Similarly, let f̂PL

be the piecewise-linear interpolation of f̂ on the simplices of Rips1
δ(Xn). As before, since

(|Ripsδ(Xn)|, fPL) and (|Ripsδ(Xn)|, f̂PL) are metric spaces, we also consider their Mappers
Mr,g(|Ripsδ(Xn)|, fPL) and Mr,g(|Ripsδ(Xn)|, f̂PL). Then, the following inequalities lead to
the result:

d∆(Rf (X ), M̂n) ≤ d∆(Rf (X ),Mn) + d∆(Mn, M̂n) by the triangle inequality

= d∆(Rf (X ),Mn) + d∆(Mr,g(|Ripsδ(Xn)|, fPL),Mr,g(|Ripsδ(Xn)|, f̂PL)) (17)

≤ r + 2ω(δ) + d∆(Mr,g(|Ripsδ(Xn)|, fPL),Mr,g(|Ripsδ(Xn)|, f̂PL)) by Theorem 7

≤ r + 2ω(δ) + r + ‖fPL − f̂PL‖∞ by Equation (13)

= 2r + 2ω(δ) + max{|f(X)− f̂(X)| : X ∈ Xn}

Let us prove Equality (17). By definition of r, there are no intersection-crossing edges
for both f and f̂ . According to Theorem 17, Mr,g(|Ripsδ(Xn)|, fPL) and Mn are isomorphic

and similarly for Mr,g(|Ripsδ(Xn)|, f̂PL) and M̂n. See also the proof of Equality (14).

A.4 Proof of Proposition 10

We check that not only the topological signature of the Mapper but also the Mapper itself
is a measurable object and thus can be seen as an estimator of a target Reeb graph. This
problem is more complicated than for the statistical framework of persistence diagram
inference, for which the existing stability results give for free that persistence estimators
are measurable for adequate sigma algebras.

Let R̄ = R ∪ {+∞} denote the extended real line. Given a fixed integer n ≥ 1, let C[n]

be the set of abstract simplicial complexes over a fixed set of n vertices. We see C[n] as a

subset of the power set 22[n] , where [n] = {1, · · · , n}, and we implicitly identify 2[n] with the
set [2n] via the map assigning to each subset {i1, · · · , ik} the integer 1 +

∑k
j=1 2ij−1. Given

a fixed parameter δ > 0, we define the application

Φ1 :

{
(RD)n × Rn → C[n] × R̄2[n]

(Xn,Yn) 7→ (K, fK)

where K is the abstract Rips complex of parameter δ over the n labeled points in RD, minus
the intersection-crossing edges and their cofaces, and where fK is a function defined by:

fK :


2[n] → R̄

σ 7→

{
maxi∈σ Yi if σ ∈ K
+∞ otherwise.
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The space (RD)n×Rn is equipped with the standard topology, denoted by T1, inherited

from R(D+1)n. The space C[n]× R̄2[n] is equipped with the product, denoted by T2 hereafter,
of the discrete topology on C[n] and the topology induced by the extended distance d(f, g) =

max{|f(σ) − g(σ)| : σ ∈ 2[n], f(σ) or g(σ) 6= +∞} on R̄2[n] . In particular, K 6= K ′ ⇒
d(fK , fK′) = +∞.

Note that the map (Xn,Yn) 7→ K is piecewise-constant, with jumps located at the
hypersurfaces defined by ‖Xi −Xj‖2 = δ2 (for combinatorial changes in the Rips complex)
or Yi = cst ∈ End((r, g)) (for changes in the set of intersection-crossing edges) in (RD)n×Rn,
where End((r, g)) denotes the set of endpoints of elements of the gomic (r, g). We can then
define a finite measurable partition (C`)`∈L of (RD)n × Rn whose boundaries are included
in these hypersurfaces, and such that (Xn,Yn) 7→ K is constant over each set C`. As a
byproduct, we have that (Xn,Yn) 7→ f is continuous over each set C`.

We now define the operator

Φ2 :

{
C[n] × R̄2[n] → A

(K, f) 7→ (|K|, fPL)

where A denotes the class of topological spaces filtered by Morse-type functions, and where
fPL is the piecewise-linear interpolation of f on the geometric realization |K| of K. For
a fixed simplicial complex K, the extended persistence diagram of the lower-star filtration
induced by f and of the sublevel sets of fPL are identical—see e.g. Morozov (2008), therefore
the map Φ2 is distance-preserving (hence continuous) in the pseudometrics d∆ on the domain
and codomain. Since the topology T2 on C[n]× R̄2n is a refinement2 of the topology induced

by d∆, the map Φ2 is also continuous when C[n] × R̄2[n] is equipped with T2.
Let now Φ3 : A → R map each Morse-type pair (X , f) to its Mapper Mf (X , I), where

I = (r, g) is the gomic induced by r and g. Note that, similarly to Φ1, the map Φ3

is piecewise-constant, since combinatorial changes in Mf (X , I) are located at the regions
Crit(f) ∩ End(I) 6= ∅. Hence, Φ3 is measurable in the pseudometric d∆. For more details
on Φ3, we refer the reader to Definition 7.6 in Carrière and Oudot (2017b).

Moreover, MfPL(|K|, I) is isomorphic to Mr,g,δ(Xn,Yn) by Theorem 17 since all of the
intersection-crossing edges were removed in the construction of K. Hence, the map Φ
defined by Φ = Φ3 ◦ Φ2 ◦ Φ1 is a measurable map that sends (Xn,Yn) to Mr,g,δ(Xn,Yn).

A.5 Proof of Proposition 11

We fix some parameters a > 0 and b ≥ 1. First note that Assumption (4) is always satisfied
by definition of rn. Next, there exists n0 ∈ N such that for any n ≥ n0, Assumption (3) is
satisfied because δn → 0 and ω(δn)→ 0 as n→ +∞. Moreover, n0 can be taken the same
for all f ∈

⋃
P∈P(a,b)F(P, ω).

Let εn = dH(X ,Xn). Under the (a, b)-standard assumption, it is well known that (see
for instance Cuevas and Rodŕıguez-Casal (2004); Chazal et al. (2015b)):

P (εn ≥ u) ≤ min

{
1,

4b

aub
e−a(

u
2 )
b
n

}
, ∀u > 0. (18)

2. This is because singletons are open balls in the discrete topology, and also because of the stability
theorem for persistence diagrams—see Chazal et al. (2016a); Cohen-Steiner et al. (2007)
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In particular, regarding the complementary of (5) we have:

P
(
εn >

δn
4

)
≤ min

{
1,

2b

2log(n)n

}
. (19)

Recall that diam(XP) ≤ L. Let C̄ = ω(L) be a constant that only depends on the
parameters of the model. Then, for any P ∈ P(a, b), we have:

sup
f∈F(P,ω)

d∆ (Rf (XP),Mn) ≤ C̄. (20)

For n ≥ n0, we have :

sup
f∈F(P,ω)

d∆ (Rf (XP),Mn) = sup
f∈F(P,ω)

d∆ (Rf (XP),Mn) Iεn>δn/4

+ sup
f∈F(P,ω)

d∆ (Rf (XP),Mn) Iεn≤δn/4

and thus

E

[
sup

f∈F(P,ω)
d∆ (Rf (XP),Mn)

]
≤ C̄P

(
εn >

δn
4

)
+ rn + 2ω(δn)

≤ C̄ min

{
1,

2b

2log(n)n

}
+

(
1 + 2g

g

)
ω(δn) (21)

where we have used (20), Theorem 7 and the fact that Vn(δn)+ can be chosen less or equal
to ω(δn). For n large enough, the first term in (21) is of the order of δbn, which can be upper
bounded by δn and thus by ω(δn) (up to a constant) since ω(δ)/δ is non-increasing. Since
1+2g
g < 6 because 1

3 < g < 1
2 , we get that the risk is bounded by ω(δn) for n ≥ n0 up to

a constant that only depends on the parameters of the model. The same inequality is of
course valid for any n by taking a larger constant, because n0 itself only depends on the
parameters of the model.

A.6 Proof of Proposition 12

The proof follows closely Section B.2 in Chazal et al. (2015b). Let X0 = [0, a−1/b] ⊂ RD.
Obviously, X0 is a smooth and compact submanifold of RD. Let U(X0) be the uniform
measure on X0. Let Pa,b,X0 denote the set of (a, b)-standard measures whose support is
included in X0. Let x0 = 0 ∈ X0 and {xn}n∈N∗ ∈ XN

0 such that ‖xn−x0‖ = (an)−1/b. Now,
let

f0 :

{
X0 → R
x 7→ ω(‖x− x0‖)

By definition, we have f0 ∈ F(U(X0), ω) because Dg(X0, f0) = {(0, ω(a−1/b))} since f0

is increasing by definition of ω. Finally, given any measure P ∈ Pa,b,X0 , we let θ0(P) =
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Rf0|XP
(XP). Then, we have:

sup
P∈Pa,b

E

[
sup

f∈F(P,ω)
d∆

(
Rf (XP), R̂n

)]

≥ sup
P∈Pa,b,X0

E

[
sup

f∈F(P,ω)
d∆

(
Rf (XP), R̂n

)]
≥ sup

P∈Pa,b,X0
E
[
d∆

(
Rf0|XP

(XP), R̂n

)]
= sup

P∈Pa,b,X0
E
[
ρ
(
θ0(P), R̂n

)]
,

where ρ = d∆. For any n ∈ N∗, we let P0,n = δx0 be the Dirac measure on x0 and
P1,n = (1− 1

n)P0,n + 1
nU([x0, xn]). As a Dirac measure, P0,n is obviously in Pa,b,X0 . We now

check that P1,n ∈ Pa,b,X0 .

• Let us study P1,n(B(x0, r)).

Assume r ≤ (an)−1/b. Then

P1,n(B(x0, r)) = 1− 1

n
+

1

n

r

(an)−1/b
≥
(

1− 1

n
+

1

n

)(
r

(an)−1/b

)b
≥
(

1

2
+

1

n

)
anrb ≥ arb.

Assume r > (an)−1/b. Then

P1,n(B(x0, r)) = 1 ≥ min{arb}.

• Let us study P1,n(B(xn, r)). Assume r ≤ (an)−1/b. Then

P1,n(B(xn, r)) =
1

n

r

(an)−1/b
≥ 1

n

(
r

(an)−1/b

)b
= arb.

Assume r > (an)−1/b. Then

P1,n(B(xn, r)) = 1 ≥ min{arb}.

• Let us study P1,n(B(x, r)), where x ∈ (x0, xn). Assume r ≤ x. Then

P1,n(B(x, r)) ≥ 1

n

r

(ab)−1/b
≥ arb (see previous case).

Assume r > x. Then P1,n(B(x, r)) = 1− 1
n + 1

n
(x+min{r, (an)−1/b−x})

(an)−1/b .

If min{r, (an)−1/b − x} = r, then we have

P1,n(B(x, r)) ≥ 1− 1

n
+

1

n

r

(ab)−1/b
≥ arb (see previous case).

Otherwise, we have
P1,n(B(x, r)) = 1 ≥ min{arb}.
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Thus P1,n is in Pa,b,X0 as well. Hence, we apply Le Cam’s lemma (see Section B) to get:

sup
P∈Pa,b,X0

E
[
ρ
(
θ0(P), R̂n

)]
≥ 1

8
ρ(θ0(P0,n), θ0(P1,n)) [1− TV(P0,n,P1,n)]2n .

By definition, we have:

ρ(θ0(P0,n), θ0(P1,n)) = d∆

(
Rf0|{x0}

({x0}),Rf0|[x0,xn]
(U [x0, xn])

)
.

Since Dg
(

Rf0|{x0}
({x0})

)
= {(0, 0)} and Dg

(
Rf0|[x0,xn]

(U [x0, xn])
)

= {(f(x0), f(xn))} be-

cause f0 is increasing by definition of ω, it follows that

ρ(θ0(P0,n), θ0(P1,n)) =
1

2
|f(xn)− f(x0)| = 1

2
ω
(

(an)−1/b
)
.

It remains to compute TV(P0,n,P1,n) =
∣∣1− (1− 1

n

)∣∣+ 1
n(an)−1/b = 1

n + o
(

1
n

)
. The propo-

sition follows then from the fact that [1− TV(P0,n,P1,n)]2n → e−2.

A.7 Proof of Proposition 13

Let P ∈ Pa,b and ω a modulus of continuity for f . Using the same notation as in the
previous section, we have

P (δn ≥ u) ≤ P
(
dH(Xn,XP) ≥ u

2

)
+ P

(
dH(Xsnn ,XP) ≥ u

2

)
≤ P

(
εn ≥

u

2

)
+ P

(
εsn ≥

u

2

)
. (22)

Note that for any f ∈ F(P, ω), according to (6) and (20)

d∆ (Rf (XP),Mn) ≤ [r + 2ω(δ)] IΩn + C̄ IΩcn (23)

where Ωn is the event defined by

Ωn = {4δn ≤ min{κ, ρ}} ∩ {4εn ≤ δn}.

This gives

E

[
sup

f∈F(P,ω)
d∆ (Mn,Rf (X ))

]
≤
∫ C̄

0
P
(
ω(δn) ≥ g

1 + 2g
α

)
dα︸ ︷︷ ︸

(A)

+ C̄P
(
εn ≥

δn
4

)
︸ ︷︷ ︸

(B)

+ C̄P
(
δn ≥ min

{κ
4
,
ρ

4

})
︸ ︷︷ ︸

(D)

.

Let us bound the three terms (A), (B) and (C).

• Term (C). It can be bounded using (22) then (18).
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• Term (B). Let tn = 2
(

2log(n)
an

)1/b
and An = {εn < tn}. We first prove that δn ≥ 4εn

on the event An, for n large enough. We follow the lines of the proof of Theorem 3 in
Section 6 in Fasy et al. (2014).

Let qn be the tn-packing number of XP, i.e. the maximal number of Euclidean balls
B(X, tn)∩XP, where X ∈ XP, that can be packed into XP without overlap. It is known
(see for instance Lemma 17 in Fasy et al. (2014)) that qn = Θ(t−dn ), where d is the
(intrinsic) dimension of XP. Let Packn = {c1, · · · , cqn} be a corresponding packing
set, i.e. the set of centers of a family of balls of radius tn whose cardinality achieves
the packing number qn. Note that dH(Packn,XP) ≤ 2tn. Indeed, for any X ∈ XP,
there must exist c ∈ Packn such that ‖X − c‖ ≤ 2tn, otherwise X could be added
to Packn, contradicting the fact that Packn is maximal. By contradiction, assume
εn < tn and δn ≤ 4εn. Then:

dH(Xsnn ,Packn) ≤ dH(Xsnn ,Xn) + dH(Xn,XP) + dH(XP,Packn)

≤ 5dH(Xn,XP) + 2tn ≤ 7tn.

Now, one has sn
qn

= Θ
(

n1−b/d

log(n)1−b/d+β

)
. Since b ≥ D ≥ d by definition, it follows that

sn = o(qn). In particular, this means that dH(Xsnn ,Packn) > 7tn for n large enough,
which yields a contradiction.

Hence, one has δn ≥ 4εn on the event An. Thus, one has:

P
(
εn ≥

δn
4

)
≤ P

(
εn ≥

δn
4
| An

)
︸ ︷︷ ︸

=0

P (An) + P (Acn) = P (Acn) .

Finally, the probability of Acn is bounded with (18):

P (Acn) ≤ 2b

2log(n)n
.

• Term (A). This is the dominating term. First, note that since ω is increasing, one
has for all u > 0:

P (ω(δn) ≥ u) = P
(
δn ≥ ω−1(u)

)
. (24)

Then, using (22) and (24), we have:

(A) ≤
∫ C̄

0
P
(
εn ≥

1

2
ω−1

(
gα

1 + 2g

))
dα+

∫ C̄

0
P
(
εsn ≥

1

2
ω−1

(
gα

1 + 2g

))
dα.

We only bound the first integral, but the analysis extends verbatim to the second
integral when replacing n by sn. Let

αn =
1 + 2g

g
ω

[(
4blog(n)

an

)1/b
]
.
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Since x 7→ ω(x)
x is non-increasing, it follows that x 7→ ω−1(x)

x is non-decreasing, and

ω−1(x) ≥ x

y
ω−1(y), ∀x ≥ y > 0. (25)

Taking inspiration from Section B.2 in Chazal et al. (2015b) and using (18), we have
the following inequalities:∫ C̄

0
P
(
εn ≥

1

2
ω−1

(
gα

1 + 2g

))
dα

≤ αn +
8b

a

∫ C̄

αn

1

ω−1
(

gα
1+2g

)b exp

[
−an

4b
ω−1

(
gα

1 + 2g

)b]
dα

≤ αn +
8b

a

∫ C̄

αn

αbn[
αω−1

(
gαn
1+2g

)]b exp

[
− anαb

(4αn)b
ω−1

(
gαn

1 + 2g

)b]
dα

≤ αn + αn
2b4n1−1/b

ba1/bω−1
(
gαn
1+2g

) ∫
u≥an

4b
ω−1

(
gαn
1+2g

)b u1/b−2e−udu

= αn + αn
2bn

blog(n)1/b

∫
u≥log(n)

u1/b−2e−udu ≤
(

1 +
2b

b log(n)2

)
αn since b ≥ 1

≤ C(b)αn,

where we used (25) with x = gα
1+2g and y = gαn

1+2g for the second inequality. The
constant C(b) only depends on b.

Hence, since 1+2g
g < 6, there exist constants K,K ′ > 0 that depend only of the

geometric parameters of the model such that:

(A) ≤ Kω
(
K ′log(sn)

sn

)1/b

.

Final bound. Since sn = nlog(n)−(1+β), by gathering all four terms, there exist con-
stants C,C ′ > 0 such that:

E

[
sup

f∈F(P,ω)
d∆ (Rf (XP),Mn)

]
≤ Cω

(
C ′log(n)2+β

n

)1/b

.

A.8 Proof of Proposition 15

We have the following bound by using (23) in the proof of Proposition 13:

P (d∆(,Rf (XP),Mn) ≥ η)

≤ P
(
ω(δn) ≥ g

1 + 2g
η

)
+ P

(
εn ≥

δn
4

)
+ P

(
δn ≥ min

{κ
4
,
ρ

4

})
≤ P

(
εn ≥

1

2
ω−1

(
g

1 + 2g
η

))
+ P

(
εsn ≥

1

2
ω−1

(
g

1 + 2g
η

))
+ o

(
1

nlog(n)

)
.
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Following the lines of Section 6 in Fasy et al. (2014), subsampling approximations give

P
(
εn ≥

1

2
ω−1

(
g

1 + 2g
η

))
≤ Ln

(
1

4
ω−1

(
g

1 + 2g
η

))
+ o

(sn
n

)1/4
,

and

P
(
εsn ≥

1

2
ω−1

(
g

1 + 2g
η

))
≤ Fn

(
1

4
ω−1

(
g

1 + 2g
η

))
+ o

(
s2
n

sn

)1/4

.

The result follows by taking sn = nlog(n)−(1+β).

Appendix B. Le Cam’s lemma

The version of Le Cam’s lemma given below is from Yu (1997) (see also Genovese et al.,
2012b). Recall that the total variation distance between two distributions P0 and P1 on a
measured space (X ,B) is defined by

TV(P0,P1) = sup
B∈B
|P0(B)− P1(B)|.

Moreover, if P0 and P1 have densities p0 and p1 for the same measure λ on X , then

TV(P0,P1) =
1

2
`1(p0, p1) =

∫
X
|p0 − p1|dλ.

Lemma 20 Let P be a set of distributions. For P ∈ P, let θ(P) take values in a pseudo-
metric space (X, ρ). Let P0 and P1 in P be any pair of distributions. Let X1, . . . , Xn be
drawn i.i.d. from some P ∈ P. Let θ̂ = θ̂(X1, . . . , Xn) be any estimator of θ(P), then

sup
P∈P

EPn
[
ρ(θ, θ̂)

]
≥ 1

8
ρ (θ(P0), θ(P1)) [1− TV(P0,P1)]2n .

Appendix C. Extended Persistence

Let f be a real-valued function on a topological space X . Given an interval I and a scalar
value t ∈ R, we let X I denote f−1(I) and X t = f−1(t). The family {X (−∞,α]}α∈R of
sublevel sets of f defines a filtration, that is, it is nested with respect to the inclusion:
X (−∞,α] ⊆ X (−∞,β] for all α ≤ β ∈ R. The family {X [α,+∞)}α∈R of superlevel sets of f
is also nested but in the opposite direction: X [α,+∞) ⊇ X [β,+∞) for all α ≤ β ∈ R. We
can turn it into a filtration by reversing the real line. Specifically, let Rop = {x̃ | x ∈ R},
ordered by x̃ ≤ ỹ ⇔ x ≥ y. We index the family of superlevel sets by Rop, so now we have
a filtration: {X [α̃,+∞)}α̃∈Rop , with X [α̃,+∞) ⊆ X [β̃,+∞) for all α̃ ≤ β̃ ∈ Rop.

Extended persistence connects the two filtrations at infinity as follows. Replace each
superlevel set X [α̃,+∞) by the pair of spaces (X ,X [α̃,+∞)) in the second filtration. This

maintains the filtration property since we have (X ,X [α̃,+∞)) ⊆ (X ,X [β̃,+∞)) for all α̃ ≤ β̃ ∈
Rop. Then, let RExt = R t {+∞} t Rop, where the order is completed by α < +∞ < β̃
for all α ∈ R and β̃ ∈ Rop. This poset is isomorphic to (R,≤). Finally, define the extended
filtration of f over RExt by:
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Fα = X (−∞,α] for α ∈ R

F+∞ = X ≡ (X , ∅)

Fα̃ = (X ,X [α̃,+∞)) for α̃ ∈ Rop,

where we have identified the space X with the pair of spaces (X , ∅). This is a well-

defined filtration since we have X (−∞,α] ⊆ X ≡ (X , ∅) ⊆ (X ,X [β̃,+∞)) for all α ∈ R and
β̃ ∈ Rop. The subfamily {Fα}α∈R is called the ordinary part of the filtration, and the
subfamily {Fα̃}α̃∈Rop is called the relative part. See Figure 9 for an illustration.

b0

bh1

bv1

b2

d0

dh1

dv1

d2

Figure 9: The extended filtration of the height function on a torus. The upper row displays
the ordinary part of the filtration while the lower row displays the relative part.
The red and blue cycles both correspond to extended points in dimension 1. The
point corresponding to the red cycle is located above the diagonal (dh1 > bh1), while
the point corresponding to the blue cycle is located below the diagonal (dv1 > bv1).

Applying the homology functor H∗ to this filtration gives the so-called extended persis-
tence module V of f :

Vα = H∗(Fα) = H∗(X (−∞,α]) for α ∈ R

V+∞ = H∗(F+∞) = H∗(X ) ∼= H∗(X , ∅)

Vα̃ = H∗(Fα̃) = H∗(X ,X [α̃,+∞)) for α̃ ∈ Rop,

and where the linear maps between the spaces are induced by the inclusions in the
extended filtration.

For Morse-type functions, the extended persistence module can be decomposed as a
finite direct sum of half-open interval modules—see e.g. Chazal et al. (2016a):
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V '
n⊕
k=1

I[bk, dk),

where each summand I[bk, dk) is made of copies of the field of coefficients at each index
α ∈ [bk, dk), and of copies of the zero space elsewhere, the maps between copies of the field
being identities. Each summand represents the lifespan of a homological feature (connected
component, hole, void, etc.) within the filtration. More precisely, the birth time bk and
death time dk of the feature are given by the endpoints of the interval. Then, a convenient
way to represent the structure of the module is to plot each interval in the decomposition
as a point in the extended plane, whose coordinates are given by the endpoints. Such a plot
is called the extended persistence diagram of f , denoted Dg(f). The distinction between
ordinary and relative parts of the filtration allows to classify the points in Dg(f) in the
following way:

• points whose coordinates both belong to R are called ordinary points; they correspond
to homological features being born and then dying in the ordinary part of the filtration;

• points whose coordinates both belong to Rop are called relative points; they correspond
to homological features being born and then dying in the relative part of the filtration;

• points whose abscissa belongs to R and whose ordinate belongs to Rop are called
extended points; they correspond to homological features being born in the ordinary
part and then dying in the relative part of the filtration.

Note that ordinary points lie strictly above the diagonal ∆ = {(x, x) | x ∈ R} and relative
points lie strictly below ∆, while extended points can be located anywhere, including on ∆,
e.g. cc that lie inside a single critical level. It is common to decompose Dg(f) according to
this classification:

Dg(f) = Ord(f) t Rel(f) t Ext+(f) t Ext−(f),

where by convention Ext+(f) includes the extended points located on the diagonal ∆.
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