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Christian Kümmerle c.kuemmerle@tum.de
Department of Mathematics
Technische Universität München
Boltzmannstr. 3, 85748 Garching/Munich, Germany

Juliane Sigl juliane.sigl@ma.tum.de

Department of Mathematics

Technische Universität München

Boltzmannstr. 3, 85748 Garching/Munich, Germany

Editor: Benjamin Recht

Abstract

We propose a new iteratively reweighted least squares (IRLS) algorithm for the recovery
of a matrix X P Cd1ˆd2 of rank r ! minpd1, d2q from incomplete linear observations, solv-
ing a sequence of low complexity linear problems. The easily implementable algorithm,
which we call harmonic mean iteratively reweighted least squares (HM-IRLS), optimizes a
non-convex Schatten-p quasi-norm penalization to promote low-rankness and carries three
major strengths, in particular for the matrix completion setting. First, we observe a re-
markable global convergence behavior of the algorithm’s iterates to the low-rank matrix
for relevant, interesting cases, for which any other state-of-the-art optimization approach
fails the recovery. Secondly, HM-IRLS exhibits an empirical recovery probability close to 1
even for a number of measurements very close to the theoretical lower bound rpd1`d2´rq,
i.e., already for significantly fewer linear observations than any other tractable approach in
the literature. Thirdly, HM-IRLS exhibits a locally superlinear rate of convergence (of order
2 ´ p) if the linear observations fulfill a suitable null space property. While for the first
two properties we have so far only strong empirical evidence, we prove the third property
as our main theoretical result.

Keywords: Iteratively Reweighted Least Squares, Low-Rank Matrix Recovery, Matrix
Completion, Non-Convex Optimization

1. Introduction

The problem of recovering a low-rank matrix from incomplete linear measurements or ob-
servations has gained considerable attention in the last few years due to the omnipresence
of low-rank models in different areas of science and applied mathematics. Low-rank models
arise in a variety of areas such as system identification (Liu et al., 2013; Liu and Vanden-
berghe, 2010), signal processing (Ahmed and Romberg, 2015), quantum tomography (Gross
et al., 2010; Gross, 2011) and phase retrieval (Candès et al., 2013; Candès et al., 2013; Gross
et al., 2015). An instance of this problem of particular importance, e.g., in recommender
systems (Srebro et al., 2005; Goldberg et al., 1992; Candès and Recht, 2009), is the matrix
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completion problem, where the measurements correspond to entries of the matrix to be
recovered.

Although the low-rank matrix recovery problem is NP-hard in general, several tractable
algorithms have been proposed that allow for provable recovery in many important cases.
The nuclear norm minimization (NNM) approach (Fazel, 2002; Candès and Recht, 2009),
which solves a surrogate semidefinite program, is particularly well-understood. For NNM,
recovery guarantees have been shown for a number of measurements on the order of the
information theoretical lower bound rpd1 ` d2 ´ rq, if r denotes the rank of a d1 ˆ d2-
matrix (Recht et al., 2010; Candès and Recht, 2009); i.e., for a number of measurements
m ě ρrpd1`d2´rq with some oversampling constant ρ ě 1. Even though NNM is solvable in
polynomial time, it can be computationally very demanding if the problem dimensions are
large, which is the case in many potential applications. Another issue is that although the
number of measurements necessary for successful recovery by nuclear norm minimization
is of optimal order, it is not optimal. More precisely, it turns out that the oversampling
factor ρ of nuclear norm minimization needs to be much larger than the oversampling factor
of some other, non-convex algorithmic approaches (Zheng and Lafferty, 2015; Tanner and
Wei, 2013).

These limitations of convex relaxation approaches have led to a rapidly growing line
of research discussing the advantages of non-convex optimization for the low-rank matrix
recovery problem (Jain et al., 2010; Tanner and Wei, 2013; Haldar and Hernando, 2009;
Jain et al., 2013; Wen et al., 2012; Tanner and Wei, 2016; Vandereycken, 2013; Wei et al.,
2016; Tu et al., 2016). For several of these non-convex algorithmic approaches, recovery
guarantees comparable to those of NNM have been derived (Candès et al., 2015; Tu et al.,
2016; Zheng and Lafferty, 2015; Sun and Luo, 2016). Their advantage is a higher empirical
recovery rate and an often more efficient implementation. While there are some results
about global convergence of first-order methods minimizing a non-convex objective (Ge
et al., 2016; Bhojanapalli et al., 2016) so that a success of the method might not depend on
a particular initialization, the assumptions of these results are not always optimal, e.g., in
the scaling of the numbers of measurements m in the rank r (Ge et al., 2016, Theorem 5.3).
In general, the success of many non-convex optimization approaches relies on a distinct,
possibly expensive initialization step.

1.1 Contribution of this paper

In this spirit, we propose a new iteratively reweighted least squares (IRLS) algorithm for the
low-rank matrix recovery problem1 that strives to minimize a non-convex objective function
based on the Schatten-p quasi-norm

min
X
}X}pSp

subject to ΦpXq “ Y, (1)

for 0 ă p ă 1, where Φ : Cd1ˆd2 Ñ Cm is the linear measurement operator and Y P Cm is the
data vector defining the problem. The overall strategy of the proposed IRLS algorithm is
to mimic this minimization by a sequence of weighted least squares problems. This strategy

1. The algorithm and partial results were presented at the 12th International Conference on Sampling
Theory and Applications in Tallinn, Estonia, July 3–7, 2017. The corresponding conference paper has
been published in its proceedings (Kümmerle and Sigl, 2017).
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is shared by the related previous algorithms of (Fornasier et al., 2011; Mohan and Fazel,
2012) which minimize (1) by defining iterates as

Xpn`1q “ min
X
}W

pnq
L

1
2
X}2F subject to ΦpXq “ Y, (2)

where W
pnq
L « pXpnqXpnq˚q

p´2
2 is a so-called weight matrix which reweights the quadratic

penalty by operating on the column space of the matrix variable. Thus, we call this column-
reweighting type of IRLS algorithms IRLS-col. Due to the inherent symmetry, it is evident
to conceive, still in the spirit of (Fornasier et al., 2011; Mohan and Fazel, 2012), the algo-
rithm IRLS-row

Xpn`1q “ min
X
}W

pnq
R

1
2
X˚}2F subject to ΦpXq “ Y (3)

with W
pnq
R « pXpnq˚Xpnqq

p´2
2 , which reweights the quadratic penalty by acting on the row

space of the matrix variable. We note that even for square dimensions d1 “ d2, IRLS-col
and IRLS-row do not coincide.

In this paper, as an important innovation, we propose the use of a different type of

weight matrices, which can be interpreted as the harmonic mean of the matrices W
pnq
L and

W
pnq
R above. This motivates the name harmonic mean iteratively reweighted least squares

(HM-IRLS) for the corresponding algorithm. The harmonic mean of the weight matrices of
IRLS-col and of IRLS-row in HM-IRLS is able to use the information in both the column
and the row space of the iterates, and it also gives rise to a qualitatively better behavior than
the use of more obvious symmetrizations as, e.g., the arithmetic mean of weight matrices
would allow for both in theory and in practice.

We argue that the choice of harmonic mean weight matrices as in HM-IRLS leads to
an efficient algorithm for the low-rank matrix recovery problem with fast convergence and
superior performance in terms of sample complexity, also compared to algorithms based on
strategies different from IRLS.

On the one hand, we show that the accumulation points of the iterates of HM-IRLS con-
verge to stationary points of a smoothed Schatten-p functional under the linear constraint,
as it is known for, e.g., IRLS-col, c.f. (Fornasier et al., 2011; Mohan and Fazel, 2012).
On the other hand, we extend the theoretical guarantees which are based on a Schatten-p
null space property (NSP) of the measurement operator (Oymak et al., 2011; Foucart and
Rauhut, 2013) to HM-IRLS.

Our main theoretical result is that HM-IRLS exhibits a locally superlinear convergence
rate of order 2´p in the neighborhood of a low-rank matrix for the non-convexity parameter
0 ă p ă 1 connected to the Schatten-p quasi-norm, if the measurement operator fulfills the
mentioned NSP of sufficient order. For p ! 1, this means that the convergence rate is almost
quadratic.

Although parts of our theoretical results, as in the case of the IRLS algorithms algo-
rithms of Fornasier et al. (2011) and Mohan and Fazel (2012), do not apply to the matrix
completion setting, due to the popularity of the problem and for reasons of comparability
with other algorithms, we conduct numerical experiments to explore the empirical perfor-
mance of HM-IRLS also for this setting. Surprisingly enough we observe that the theoretical
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results comply with our numerical experiments also for matrix completion. In particu-
lar, the theoretically predicted local convergence rate of order 2 ´ p can be observed very
precisely for this important measurement model as well (see Figures 3 to 5).

This local superlinear convergence rate of HM-IRLS is unprecedented by previous IRLS
variants such as IRLS-col or those that use the arithmetic mean of the one-sided weight
matrices: this means that neither can a superlinear rate be verified numerically, nor is it
possible to show such a rate by our proof techniques for any other previsouly considered
IRLS variant designed for the low-rank matrix recovery problem.

To the best of our knowledge, HM-IRLS is the first algorithm for low-rank matrix recovery
which achieves superlinear rate of convergence for low complexity measurements as well as
for larger problems.

Additionally, we conduct extensive numerical experiments comparing the efficiency of
HM-IRLS with previous IRLS algorithms as IRLS-col, Riemannian optimization techniques
(Vandereycken, 2013), alternating minimization approaches (Haldar and Hernando, 2009;
Tanner and Wei, 2016), algorithms based on iterative hard thresholding (Kyrillidis and
Cevher, 2014; Blanchard et al., 2015), and others (Park et al., 2016), in terms of sample
complexity, again for the important case of matrix completion.

The experiments lead to the following observation: HM-IRLS recovers low-rank matrices
systematically with an optimal number of measurements that is very close to the theoret-
ical lower bound on the number of measurements that is necessary for recovery with high
empirical probability. We consider this result to be remarkable, as it means that for prob-
lems of moderate dimensionality (matrices of « 107 variables, e.g. pd1 ˆ d2q-matrices with
d1 « d2 « 3 ¨ 103) the proposed algorithm needs fewer measurements for the recovery of a
low rank matrix than all the state-of-the-art algorithms we included in our experiments (see
Figure 6).

An important practical observation of HM-IRLS is that its performance is very robust
to the choice of the initialization and that it can be used as a stand-alone algorithm to
recover low-rank matrices also starting from a trivial initialization. This is suggested by our
numerical experiments since even for random or adversary initializations, HM-IRLS converges
to the low-rank matrix, even though it is based on an objective function which is highly non-
convex. While a complete theoretical understanding of this behavior is not yet achieved, we
regard the empirical evidence in a variety of interesting cases as strong. In this context, we
consider a proof of the global convergence of HM-IRLS for non-convex penalizations under
appropriate assumptions as an interesting open problem.

1.2 Organization of the paper

We proceed in the paper as follows. In Section 2, we introduce some notation to be used
and provide some background about different reformulations of the Schatten-p quasi-norm
in terms of weighted `2-norms. This leads to the derivation of the harmonic mean iteratively
reweighted least squares (HM-IRLS) algorithm in Section 3. We present our main theoretical
results, the convergence guarantees and the locally superlinear convergence rate for the
algorithm in Section 4. Numerical experiments and comparisons to state-of-the-art methods
for low-rank matrix recovery are carried out in Section 5. In Section 6, we interpret the
algorithm’s different steps as minimizations of an auxililary functional with respect to its
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arguments and show theoretical guarantees for HM-IRLS extending similar guarantees for
IRLS-col. After this, we detail the proof of the locally superlinear convergence rate under
appropriate assumptions on the null space of the measurement operator.

In Appendix A, we provide a short overview about Kronecker and Hadamard products,
and end with some deferred proofs in Appendix B and Appendix C.

2. Notation and background

2.1 General notation, Schatten-p and weighted norms

In this section, we explain some of the notation we use in the course of this paper.

The set of matrices X P Cd1ˆd2 is denoted by Md1ˆd2 . Unless stated otherwise, vec-
tors x P Cd are considered as column vectors. We also use the vectorized form Xvec “
”

XT
1 , . . . , X

T
j , . . . , X

T
d2

ıT
P Cd1d2 of a matrix X PMd1ˆd2 with columns Xj , j P t1, . . . , d2u.

The reverse recast of a vector x P Cd1d2 into a matrix of dimension d1 ˆ d2 is denoted
by xmatpd1,d2q “ rX1, . . . , Xj , . . . , Xd2s, where Xj “ rxpd1´1q¨j`1, . . . , xpd1´1q¨j`d1s

T , j “
1, . . . , d2 are column vectors, or Xmat if the dimensions are clear from the context. Obvi-
ously, it holds that X “ pXvecqmat.

The identity matrix in dimension d ˆ d is denoted by Id. With 0d1ˆd2 P Md1ˆd2 and
1d1ˆd2 P Md1ˆd2 we denote the matrices with only 0- or 1-entries respectively. The set of
Hermitian matrices is denoted by Hdˆd :“ tX PMdˆd | X “ X˚u. We write X` PMd1ˆd2

for the Moore-Penrose inverse of the matrix X PMd1ˆd2 .

Let Ud “ tU P Cdˆd;UU˚ “ Idu denote the set of unitary matrices. Then the singular
value decomposition of a matrix X P Md1ˆd2 can be written as X “ UΣV ˚ with U P Ud1 ,
V P Ud2 and Σ P Md1ˆd2 , where Σ is diagonal and contains the singular values of X such
that Σii “ σipXq ě 0 for i P t1, . . . ,minpd1, d2qu. We define the Schatten-p (quasi-)norm of
X PMd1ˆd2 as

}X}Sp :“

$

’

’

&

’

’

%

rankpXq, for p “ 0,
”

řminpd1,d2q
j“1 σpj pXq

ı1{p
, for 0 ă p ă 8,

σmaxpXq, for p “ 8.

(4)

Note that for p “ 1, the Schatten-p norm is also called nuclear norm, written as }X}˚ :“
}X}S1 . The trace trrXs of a matrix X P Md1ˆd2 is defined by the sum of its diagonal

elements, trrXs “
řminpd1,d2q
j“1 Xjj . It can be seen that the p-th power of the Schatten-p

norm coincides with }X}pSp
“ tr

“

pX˚Xqp{2
‰

. The Schatten-2 norm is also called Frobenius

norm and has the property that it is induced by the Frobenius scalar product xX,Y yF “
tr rX˚Y s, i.e., }X}F “ }X}S2 “

a

xX,XyF . We define the weighted Frobenius scalar
product of two matrices X,Y PMd1ˆd2 weighted by the the positive definite weight matrix
W P Hd1ˆd1 as xX,Y yF pW q :“ xWX,Y yF “ xX,WY yF . This scalar product induces the

weighted Frobenius norm }X}F pW q “
b

xX,XyF pW q “
a

trrpWXq˚Xs. It is clear that the

Frobenius norm of a matrix X coincides with the `2-norm of its vectorization Xvec, i.e.,
}X}F “ }Xvec}`2 .
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Similar to weighted Frobenius norms, we define the weighted `2-scalar product of vectors
x, y P Cd weighted by the positive definite weight matrixW P Hdˆd as xx, yy`2pW q “ x˚Wy “

y˚Wx and its induced weighted `2-norm as }x}`2pW q “
?
x˚Wx. We use the notation X ą 0

for a positive definite matrix X P Hdˆd. Furthermore, we denote the range of a linear map
Φ : Md1ˆd2 Ñ Cm by RanpΦq “

 

Y P Cm; there is X P Md1ˆd2 such that Y “ ΦpXq
(

and
its null space by N pΦq “

 

X PMd1ˆd2 ; ΦpXq “ 0
(

.

2.2 Problem setting and characterization of Sp- and reweighted Frobenius
norm minimizers

Given a linear map Φ : Md1ˆd2 Ñ Cm such that m ! d1d2, we want to uniquely identify and
reconstruct an unknown matrix X0 from its linear image Y :“ ΦpX0q P Cm. However, basic
linear algebra tells us that this is not possible without further assumptions, since Φ is not
injective if m ă d1d2. Indeed, there is a pd1d2 ´mq-dimensional affine space tX0u `N pΦq
fulfilling the linear constraint

ΦpXq “ Y.

Nevertheless, under the additional assumption that the matrix X0 P Md1ˆd2 has rank
r ă minpd1, d2q and under appropriate assumptions on the map Φ, the recovery of X0 is
possible by solving the affine rank minimization problem

min rankpXq subject to ΦpXq “ Y. (5)

The unique solvability of (5) is given with high probability if, for example, Φ is a linear
map whose matrix representation has i.i.d. Gaussian entries (Eldar et al., 2012) and m “

Ωprpd1 ` d2qq. Unfortunately, solving (5) is intractable in general, but the works (Candès
and Recht, 2009; Recht et al., 2010; Candès and Plan, 2011) suggest solving the tractable
convex optimization program

min }X}S1 subject to ΦpXq “ Y, (6)

also called nuclear norm minimization (NNM), as a proxy.
As discussed in the introduction, there are empirical as well as theoretical results (e.g., in

(Daubechies et al., 2010; Chartrand, 2007)) coming from the related sparse vector recovery
problem that suggest alternative relaxation approaches. These results indicate that it might
be even more advantageous to solve the non-convex problem

minF ppXq :“ }X}pSp
subject to ΦpXq “ Y, (7)

for 0 ă p ă 1, i.e., minimizing the p-th power of the Schatten-p quasi-norms under the
affine constraint. Heuristically, the choice of p ă 1 relatively small can be motivated by the
observation that by the definition (4) of the Schatten-p quasi-norm

}X}pSp

pÑ0
ÝÝÝÑ rankpXq “: }X}S0 .

The above consideration suggests that the solution of (7) might be closer to (5) than (6)
for small p. On the other hand, again, it is in general computationally intractable to find
a global minimum of the non-convex optimization problem (7) if p ă 1. Therefore it is a
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natural and very relevant question to ask which optimization algorithm to use to find global
minimizers of (7).

In this paper, we discuss an algorithm striving to solve (7) that is based on the following
observations: Assume for the moment that we are given a square matrix X PMd1ˆd2 with
d1 “ d2 of full rank. Then, we can rewrite the p-th power of its Schatten-p quasi-norm as
a squared weighted Frobenius norm, or, using Kronecker product notiation as explained in
Appendix A, as a squared weighted `2-norm (if we use the vectorized notation Xvec): It
turns out that

(i) }X}pSp
“ trrpXX˚q

p
2 s “ trrpXX˚q

p´2
2 pXX˚qs “ trpWLXX

˚q “ }W
1
2
LX}

2
F

“ }X}2F pWLq
“ }pId2 bWLq

1
2Xvec}

2
`2 “ }Xvec}

2
`2pId2bWLq

,

where WL is the symmetric weight matrix pXX˚q
p´2
2 in Md1ˆd1 and Id2 bWL is the

block diagonal weight matrix in Md1d2ˆd1d2 with d2 instances of WL on the diagonal
blocks, but also that

(ii) }X}pSp
“ trrpX˚Xq

p
2 s “ trrpX˚XqpX˚Xq

p´2
2 s “ trpX˚XWRq “ }XW

1
2
R }

2
F

“ }X˚}2F pWRq
“ }pWR b Id1q

1
2Xvec}

2
`2 “ }Xvec}

2
`2pWRbId1 q

,

where WR is the symmetric weight matrix pX˚Xq
p´2
2 in Md2ˆd2 . It follows from the

definition of the Kronecker product that the weight matrix WR b Id1 P Md1d2ˆd1d2

is a block matrix of diagonal blocks of the type diag
`

pWRqij , . . . , pWRqij
˘

P Md1ˆd1 ,
i, j P rd2s.

(a) Id2 b WL (b) WR b Id1

Figure 1: Sparsity structure of the weight matrices PMd1d2ˆd1d2

The sparsity structures of Id2 bWL and WR b Id1 are illustrated in Fig. 1. Note that a
representation of }X}pSp

by squares of Frobenius norms can be achieved by multiplying X

by W
1
2
L from the left in (i), or by W

1
2
R from the right in (ii).

The above calculations are not well-defined if X is not of full rank or if d1 ‰ d2, since
in these cases at least one of the matrices XX˚ P Md1ˆd1 or X˚X P Md2ˆd2 is singular,

prohibiting the definition of the matrices WR “ pX
˚Xq

p´2
2 or WL “ pXX

˚q
p´2
2 for p ă 2.

However, these issues can be overcome by introducing a smoothing parameter ε ą 0 and
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smoothed weight matrices WLpX, εq PMd1ˆd1 and WRpX, εq PMd2ˆd2 defined by

WLpX, εq :“ pXX˚ ` ε2Id1q
p´2
2 , (8)

WRpX, εq :“ pX˚X ` ε2Id2q
p´2
2 . (9)

Remark 1 The weight matrices WLpX, εq and WRpX, εq are symmetric and positive defi-
nite.

The possibility to rewrite the p-th power of the Schatten-p of a matrix as a squared weighted
Frobenius norm gives rise to the general strategy of IRLS algorithms for low-rank matrix
recovery: Weighted least squares problems of the type

min
XPMd1ˆd2
ΦpXq“Y

}X}2F pWLq
or min

XPMd1ˆd2
ΦpXq“Y

}X˚}2F pWRq

are solved and weight matrices WL are updated alternatingly, leading to the algorithms
column-reweighting IRLS-col and row-reweighting IRLS-row, respectively (Mohan and
Fazel, 2012; Fornasier et al., 2011).

2.3 Averaging of weight matrices

While the algorithms IRLS-col and IRLS-row provide a tractable local minimization strat-
egy of smoothed Schatten-p functionals under the linear constraint, we argue that it is
suboptimal to follow either one of the two approaches as they do not exploit the symmetry
of the problem in an optimal way: They either use low-rank information in the column
space or in the row space.

A first intuitive approach towards a symmetric exploitation of the low-rank structure
is inspired by the following identity, by combing the calculations (i) and (ii) carried out in
Section 2.2.

Lemma 2 Let 0 ă p ď 2 and X PMd1ˆd2 with d “ d1 “ d2 be a matrix of full rank. Then

}X}pSp
“

1

2

ˆ

}W
1
2
LX}

2
F ` }XW

1
2
R }

2
F

˙

“

›

›

›

›

›

ˆ

WL ‘WR

2

˙
1
2

Xvec

›

›

›

›

›

2

`2

“ }Xvec}
2
`2pWparithqq

,

where
1

2
pId2 bWL `WR b Id1q “

WL ‘WR

2
“: Wparithq

is the arithmetic mean matrix of the symmetric and positive definite weight matrices Id2bWL

and WR b Id1, WL :“ pXX˚q
p´2
2 , and WR :“ pX˚Xq

p´2
2 .

Unfortunately, the introduction of arithmetic mean weight matrices does not prove to
be particularly advantageous compared to one-sided reweighting strategies. Convincing
improvements could be noted neither in numerical experiments nor in the theoretical inves-
tigations for the convergence rate of IRLS for low-rank matrix recovery, cf. also Section 5.2
and Remark 22.
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In contrast, we want to promote the usage of the harmonic mean of the weight matrices

Id2 bWL and WR b Id1 , i.e., weight matrices of the type 2
`

W´1
R b Id1 ` Id2 bW

´1
L

˘´1
“

2
`

W´1
L ‘W´1

R

˘´1
“: Wpharmq. In the remaining parts of the paper, we explain why Wpharmq

is able to significantly outperform other weighting variants both theoretically and practi-
cally.

The following lemma verifies that the harmonic mean Wpharmq of the weight matrices
Id2 bWL and WR b Id1 leads to a legitimate reformulation of the Schatten-p quasi-norm
power, as it we already saw for the arithmetic mean Wparithq.

Lemma 3 Let 0 ă p ď 2 and X P Cd1ˆd2 with d “ d1 “ d2 be a full rank matrix. Then

}X}pSp
“ 2

›

›

›

›

`

W´1
L ‘W´1

R

˘´ 1
2 Xvec

›

›

›

›

2

`2

“ }Xvec}
2
`2pWpharmqq

,

where
2
`

W´1
R b Id1 ` Id2 bW

´1
L

˘´1
“ 2

`

W´1
L ‘W´1

R

˘´1
“: Wpharmq

is the harmonic mean matrix of the symmetric and positive definite weight matrices Id2bWL

and WR b Id2, WL :“ pXX˚q
p´2
2 and WR :“ pX˚Xq

p´2
2 .

Proof Let X “ UΣV ˚ “
řd
i“1 σiuiv

˚
i P Mdˆd be the singular value decomposition of X.

Therefore for the vectorized version, Xvec “ pV b UqΣvec holds true. By the definitions of
WL and WR, we can write W´1

L “
řd
i“1 σ

2´p
i uiu

˚
i and W´1

R “
řd
i“1 σ

2´p
i viv

˚
i . Using the

Kronecker sum inversion formula of Lemma 23 in Appendix A, we obtain

}Xvec}
2
`2pWpharmqq

“ }W
1
2

pharmqXvec}
2
`2 “ 2

›

›

›

›

`

W´1
L ‘W´1

R

˘´ 1
2 Xvec

›

›

›

›

2

`2

“ 2 tr
´´

`

W´1
L ‘W´1

R

˘´1
Xvec

¯˚

mat
X
¯

“

d
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

2σk

σ2´p
i ` σ2´p

j

vjv
˚
i vku

˚
kuiu

˚
i

d
ÿ

l“1

σlulv
˚
l

“ 2

˜

d
ÿ

i“1

σ2
i

2σ2´p
i

¸

“ }X}pSp
,

which finishes the proof.

3. Harmonic mean iteratively reweighted least squares algorithm

In this section, we use this idea to formulate a new iteratively reweighted least squares
algorithm for low-rank matrix recovery. The so-called harmonic mean iteratively reweighted
least squares algorithm (HM-IRLS) solves a sequence of weighted least squares problems to
recover a low-rank matrix X0 P Md1ˆd2 from few linear measurements ΦpX0q P Cm. The
weight matrices appearing in the least squares problems can be seen as the harmonic mean
of the weight matrices in (8) and (9), i.e., the ones used by IRLS-col and IRLS-row.

9
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More precisely, for 0 ă p ď 1 and d “ minpd1, d2q, D “ maxpd1, d2q, given a non-
increasing sequence of non-negative real numbers pεpnqq8n“1 and the sequence of iterates
pXpnqq8n“1 produced by the algorithm, we update our weight matrices such that

ĂW pnq “ 2
”

U pnqpsΣ
pnq
d1
q2´pU pnq˚ ‘ V pnqpsΣ

pnq
d2
q2´pV pnq˚

ı´1
, (10)

with the diagonal matrices sΣ
pnq
dt
PMdtˆdt for dt “ td1, d2u such that

psΣ
pnq
dt
qii “

#

pσipX
pnqq2 ` εpnq2q

1
2 if i ď d,

0 if d ă i ď D,
(11)

and the matrices U pnq P Ud1 and V pnq P Ud2 containing the left and right singular vectors of
Xpnq in its columns, respectively.

We note that this definition of ĂW pnq can be seen as a stabilized version of the harmonic
mean weight matrix Wpharmq of Lemma 3. This stabilization is necessary as ĂW pnq becomes

very ill-conditioned as soon as some of the singular values of Xpnq approach zero and, related

to that, pXpnqXpnq˚q
2´p
2 ‘ pXpnq˚Xpnqq

2´p
2 would even be singular as soon as Xpnq is not of

full rank.
Additionally, for the formulation of the algorithm it is convenient to define the linear

operator pĂWpnqq´1 : Md1ˆd2 ÑMd1ˆd2 for any n P N such that

pĂWpnqq´1pXq :“
1

2

”

U pnqpsΣ
pnq
d1
q2´pU pnq˚X `XV pnqpsΣ

pnq
d2
q2´pV pnq˚

ı

, (12)

describing the operation of the inverse of ĂW pnq on Md1ˆd2 .
Finally, HM-IRLS can be formulated in pseudo code as follows.

Algorithm 1 Harmonic Mean IRLS for low-rank matrix recovery (HM-IRLS)

Input: A linear map Φ : Md1ˆd2 Ñ Cm, image Y “ ΦpX0q of the ground truth matrix
X0 PMd1ˆd2 , rank estimate rr, non-convexity parameter 0 ă p ď 1.

Output: Sequence pXpnqqn0
n“1 ĂMd1ˆd2 .

Initialize n “ 0, εp0q “ 1 and ĂW p0q “ Id1d2 PMd1d2ˆd1d2 .
repeat

Xpn`1q “ arg min
ΦpXq“Y

}Xvec}
2
`2pĂW pnqq

“ ppĂWpnqq´1
`

Φ˚
`

pΦ ˝ ppĂWpnqq´1 ˝ Φ˚q´1pY q
˘˘

, (13)

εpn`1q “ min
´

εpnq, σ
rr`1pX

pn`1qq

¯

, (14)

ĂW pn`1q “ 2
”

U pn`1qpsΣ
pn`1q
d1

q2´pU pn`1q˚ ‘ V pn`1qpsΣ
pn`1q
d2

q2´pV pn`1q˚
ı´1

, (15)

where U pn`1q P Ud1 and V pn`1q P Ud2 are matrices containing the left and right singular

vectors of Xpn`1q in its columns, and the sΣ
pn`1q
dt

are defined for t P t1, 2u according to
(11).

n “ n` 1,

until stopping criterion is met.
Set n0 “ n.

10
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From a practical point of view, it is beneficial that the explicit calculation of the very
large weight matrices ĂW pnq P Hd1d2ˆd1d2 (cf. (15)) is not necessary in implementations
of Algorithm 1. As suggested by formulas (12) and (13), it can be seen that just the

operation of its inverse pĂW pnqq´1 is needed, which can be implemented by matrix-matrix

multiplications on the space Md1ˆd2 : For matrices X, rX PMd1ˆd2 , we have that ĂW pnqXvec “

rXvec if and only if Xvec “ pĂW
pnqq´1

rXvec, which can be written in matrix variables as

X “
1

2

”

U pnqpsΣ
pnq
d1
q2´pU pnq˚ rX ` rXV pnqpsΣ

pnq
d2
q2´pV pnq˚

ı

.

The last equivalence is due to the definitions of ĂW pnq and the Kronecker sum, cf. (15) and
Appendix A.

Note that the smoothing parameters εpnq are chosen in dependence on a rank estimate r̃
here, which will be an important ingredient for the theoretical analysis of the algorithm. In
practice, however, other choices of non-increasing sequences of non-negative real numbers
pεpnqq8n“1 are possible and can as well lead to (a maybe even faster) convergence when tuned
appropriately.

We refer to Section 5.4 for a further discussion of implementation details.

Example With a simple example, we illustrate the versatility of HM-IRLS: Let d1 “ d2 “

4, and assume that we want to reconstruct the rank-1 matrix

X0 “ uv˚ “

¨

˚

˚

˝

1
10
´2
0.1

˛

‹

‹

‚

`

1 2 3 4
˘

“

¨

˚

˚

˝

1 2 3 4
10 20 30 40
´2 ´4 ´6 ´8
0.1 0.2 0.3 0.4

˛

‹

‹

‚

from m “ df “ rpd1 ` d2 ´ rq “ 7 sampled entries ΦpX0q, where Φ is the linear map
Φ : M4ˆ4 Ñ C7, ΦpXq “

`

X2,1, X4,1, X3,2, X4,2, X4,3, X1,4, X2,4

˘

. Since the linear
map Φ samples some entries of matrices in M4ˆ4 and does not see the others, this is an
instance of the problem that is called matrix completion.

In general, reconstructing a pd1 ˆ d2q rank-r matrix from m “ rpd1 ` d2 ´ rq entries is
a hard problem, as it is known that if m ă rpd1 ` d2 ´ rq, there is always more than one
matrix X such that ΦpXq “ ΦpX0q, and even for equality, the property that Φ is invertible
on (most) rank-r matrices might be hard to verify (Király et al., 2015).

It can be argued that the specific matrix completion problem we consider is in some sense
a hard one, since, e.g., the deterministic sufficient condition for unique completability of
(Pimentel-Alarcón et al., 2016, Theorem 2) is not fulfilled (less then 2 observed entries in the

third column), and since the classical coherence parameters µpuq “ d1 max
1ďiď4

}uu˚ei}
2
2

}u}42
« 3.81

and µpvq “ d2 max
1ďiď4

}vv˚ei}
2
2

}v}42
« 2.13 that are used to analyze the behavior of many matrix

completion algorithms (Candès and Recht, 2009; Jain et al., 2013) are quite large, with µpuq
being quite close to the maximal value of 4.

11
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On the other hand, as the problem is small and X0 has rank r “ 1, it is possible to
impute the missing values of

¨

˚

˚

˝

˚ ˚ ˚ 4
10 ˚ ˚ 40
˚ ´4 ˚ ˚

0.1 0.2 0.3 ˚

˛

‹

‹

‚

by solving very simple linear equations, since, for example, X4,4 “ u4v4, X2,1 “ u2v1,

X2,4 “ u2v4, and X4,1 “ u4v1, and therefore X4,4 “
X4,1X2,4

X2,1
“ 0.4. This shows that the

only rank-1 matrix compatible with ΦpX0q is X0.
It turns out that—without using the combinatorial simplicity of the problem—the clas-

sical NNM does not solve the problem, as the nuclear norm minimizer (solution of (6) for
Y “ ΦpX0q) produced by the semidefinite program of the convex optimization package CVX

(Grant and Boyd, 2014) converges to

sXnuclear «

¨

˚

˚

˝

1 0.023 0.041 4
10 0.232 0.411 40

´0.056 ´4 ´0.200 ´0.226
0.1 0.2 0.3 0.400

˛

‹

‹

‚

,

a matrix with 45.74 « } sXnuclear}S1 ă }X0}S1 “ σ1pX0q « 56.13 and a relative Frobenius

error of }
sXnuclear´X0}F
}X0}F

“ 0.661.
On the other hand, HM-IRLS is able to solve the problem—if p is chosen small enough—

with very high precision already after few iterations, for example, up to a relative error of
4.18 ¨ 10´13 after 24 iterations if p “ 0.1. This is in contrast to the behavior of IRLS-col,
IRLS-row and also to the behavior of AM-IRLS, the IRLS variant that uses weight matrices
derived from the arithmetic mean of the weights of IRLS-col and IRLS-row, cf. Lemma 2.
The iterates Xpnq for iteration n “ 2000 of these algorithms exhibit relative errors of 0.240,
0.489 and 0.401, respectively, for the choice of p “ 0.1. Furthermore, there is no choice of
p that would lead to a convergence to X0.

To understand this very different behavior, we note that the n-th iterate of any of the
four IRLS variants can be written, using Appendix A, in a concise way as

Xpn`1q “ arg min
ΦpXq“Y

xXvec,W
pnqXvecy, (16)

where

xXvec,W
pnqXvecy “ xX,U

pnq
“

Hpnq ˝ pU pnq˚XV pnqq
‰

V pnq˚yF “
4
ÿ

i,j“1

H
pnq
ij |xu

pnq
i , Xv

pnq
j y|2

(17)

with Xpnq “ U pnqΣpnqV pnq˚ “
ř4
i“1 σ

pnq
i u

pnq
i v

pnq
i being the SVD of Xpnq, and

H
pnq
i,j “

$

’

’

’

’

’

&

’

’

’

’

’

%

2
“`

pσ
pnq
i q2 ` pεpnqq2q

2´p
2 `

`

pσ
pnq
j q2 ` pεpnqq2q

˘

2´p
2
‰´1

for HM-IRLS,
`

pσ
pnq
i q2 ` pεpnqq2

˘

p´2
2 for IRLS-col,

`

pσ
pnq
j q2 ` pεpnqq2

˘

p´2
2 for IRLS-row, and

0.5 ¨
“`

pσ
pnq
i q2 ` pεpnqq2

˘

p´2
2 `

`

pσ
pnq
i q2 ` pεpnqq2

˘

p´2
2
‰

for AM-IRLS,

12
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for i, j P t1, 2, 3, 4u and εpnq “ minpσ
pnq
2 , εpn´1qq.

The values of the matrix Hp1q of weight coefficients after the first iteration in the above
example are visualized in Figure 2, for each of the four IRLS versions above.

(a) HM-IRLS (b) IRLS-col (c) IRLS-row (d) AM-IRLS

Figure 2: Values of the matrix Hp1q of ”weight coefficients” corresponding to the orthonor-

mal basis pu
p1q
i v

p1q˚
j q4i,j“1 after the first iteration in the example

The intuition for the superior behavior of HM-IRLS is now the following: Since large

entries of Hpnq penalize the corresponding parts of the space Md1ˆd2 “ spantu
pnq
i v

pnq˚
j , i P

rd1s, j P rd2su in the minimization problem (16), large areas of blue and dark blue in Figure 2
indicate a benign optimization landscape where the minimizer Xpn`1q of (16) is able to
improve considerably on the previous iterate Xpnq.

In particular, it can be seen that in the case of HM-IRLS, the penalties on the whole
direct sum of column and row space of the best rank-r approximation of Xpnq

T pnq :“
 

´

u
pnq
1 , . . . , u

pnq
r

¯

Z˚1 ` Z2

´

v
pnq
1 , . . . , v

pnq
r

¯˚

: Z1 PMd1ˆr, Z2 PMd2ˆr

(

,

are small compared to the other penalites, since the coefficients of Hp1q corresponding to T p1q

are exactly the ones in the first row and first column of the p4ˆ 4q matrices in Figure 2—a
contrast that becomes more and more pronounced as Xpnq approaches the rank-r ground
truth X0 (with r “ 1 in the example).

On the other hand, IRLS-col, IRLS-row and AM-IRLS only have small coefficients on
smaller parts of T pnq, which, from a global perspective, explains why their usage might lead
to non-global minima of the Schatten-p objective.

We note that the space T pnq plays also an important role in Riemannian optimization
approaches for matrix recovery problems (see Vandereycken, 2013), since it is also the
tangent space of the smooth manifold of rank-r matrices at the best rank-r approximation
of Xpnq.

4. Convergence results

In the following part, we state our main theoretical results about convergence properties
of the algorithm HM-IRLS. Furthermore, their relation to existing results for IRLS-col and
IRLS-row is discussed.
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It cannot be expected that a low-rank matrix recovery algorithm like HM-IRLS succeeds
to converge to a low-rank matrix without any assumptions on the measurement operator
Φ that defines the recovery problem (5). For the purpose of the convergence analysis of
HM-IRLS, we introduce the following strong Schatten-p null space property (Fornasier et al.,
2011; Oymak et al., 2011; Foucart and Rauhut, 2013).

Definition 4 (Strong Schatten-p null space property) Let 0 ă p ď 1. We say that a
linear map Φ : Md1ˆd2 Ñ Cm fulfills the strong Schatten-p null space property (Schatten-p
NSP) of order r with constant 0 ă γr ď 1 if

ˆ r
ÿ

i“1

σ2
i pXq

˙p{2

ă
γr

r1´ p
2

ˆ d
ÿ

i“r`1

σpi pXq

˙

(18)

for all X P N pΦqzt0u.

Intuitively explained, if a map Φ fulfills the strong Schatten-p null space property of order
r, there are no rank-r matrices in the null space and all the elements of the null space must
not have a quickly decaying spectrum.

Null space properties have already been used to guarantee the success of nuclear norm
minimization (6), or Schatten-1 minimization in our terminology, for solving the low-rank
matrix recovery problem (Recht et al., 2011).

We note that the definitions of Schatten-p null space properties are quite analogous
to the `p-null space property in classical compressed sensing (Foucart and Rauhut, 2013,
Theorem 4.9), applied to the vector of singular values. In particular, (18) implies that

r
ÿ

i“1

σpi pXq ă
d
ÿ

i“r`1

σpi pXq for all X P N pΦqzt0u, (19)

since }X}Sp ď r1{p´1{2}X}S2 for X that is rank-r. This, in turn, ensures the existence of
unique solutions to (7) if Y “ ΦpX0q are the measurements of a low-rank matrix X0.

Proposition 5 (Foucart (2018)) Let Φ : Md1ˆd2 Ñ Cm be a linear map, let 0 ă p ď 1
and r P N. Then every matrix X0 P Md1ˆd2 such that rankpX0q ď r and ΦpX0q “ Y P Cm
is the unique solution of Schatten-p minimization (7) if and only if Φ fulfills (19).

Remark 6 The sufficiency of the Schatten-p NSP (19) in Proposition 5 has already been
pointed out by Oymak et al. (2011). The necessity as stated in the theorem, however, is
due to a recent generalization of Mirsky’s singular value inequalities to concave functions
(Audenaert, 2014; Foucart, 2018).

It can be seen that the (weak) Schatten-p NSP of (19) is a stronger property for larger p in
the sense that if 0 ă p1 ď p ď 1, the Schatten-p property implies the Schatten-p1 property.
Very related to this, it can be seen that for any 0 ă p ď 1, the strong Schatten-p null space
property is implied by a sufficiently small rank restricted isometry constant δr, which is a
classical tool in the analysis of low-rank matrix recovery algorithms (Recht et al., 2010;
Candès and Plan, 2011).
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Definition 7 (Restricted isometry property (RIP)) The restricted isometry constant
δr ą 0 of order r of the linear map Φ : Md1ˆd2 Ñ Cm is defined as the smallest number
such that

p1´ δrq}X}
2
F ď }ΦpXq}

2
`2 ď p1` δrq}X}

2
F

for all matrices X PMd1ˆd2 of rank at most r.

Indeed, it follows from the proof of Chavez-Dominguez and Kutzarova (2015, Theorem 4.1)
that a restricted isometry constant of order 2r such that δ2r ă

2?
2`3

« 0.4531 implies the

strong Schatten-p NSP of order r with a constant γr ă 1 for any 0 ă p ď 1. More precisely,
it can be seen that δ2r ă

2?
2`3

implies that the strong Schatten-p NSP (18) of order r holds

with the constant γr “
p
?

2`1qp

2p
δp2r

p1´δ2rqp
.

Linear maps that are instances drawn from certain random models are known to ful-
fill the restricted isometry property with high probability if the number of measurements
is sufficiently large (Davenport and Romberg, 2016), and, a fortiori, the Schatten-p null
space property. In particular, this is true for (sub-)Gaussian linear measurement maps
Φ : Md1ˆd2 Ñ Cm whose matrix representation is such that

1
?
m

rΦ P Cmˆd1d2 , where rΦ has i.i.d. standard (sub-)Gaussian entries, (20)

as it is summarized in the following lemma.

Lemma 8 For any 0 ă p ď 1, 0 ă γ ă 1 and any (sub-)Gaussian random operator
Φ : Md1ˆd2 Ñ Cm (e.g. as defined in (20)), there exist constants C1 ą 1, C2 ą 0 such that
if m ě C1rpd1`d2q, the strong Schatten-p null space property (18) of order r with constant
γr ă γ is fulfilled with probability at least 1´ e´C2m.

4.1 Local convergence for p ă 1

In this section, we provide a convergence analysis for HM-IRLS covering several aspects.
We show that the algorithm converges to stationary points of a smoothed Schatten-p func-
tional gpε as in (21) without any additional assumptions on the measurement map Φ. Such
guarantees have already been obtained for IRLS algorithms with one-sided reweighting as
IRLS-col and IRLS-row, in particular for p “ 1 by Fornasier et al. (2011) and for 0 ă p ď 1
by Mohan and Fazel (2012).

Beyond that, assuming the measurement operator fulfills an appropriate Schatten-p null
space property as defined in Definition 4, we show the a-posteriori exact recovery statement
that HM-IRLS converges to the low-rank matrix X0 if lim

nÑ8
εn “ 0, which only was shown

for one-sided IRLS for the case p “ 1 by Fornasier et al. (2011).
Moreover, we provide a local convergence guarantee stating that HM-IRLS recovers the

low-rank matrix X0 if we obtain an iterate Xpsnq that is close enough to X0, which is novel
for IRLS algorithms.

Let 0 ă p ď 1 and ε ą 0. To state the theorem, we introduce the ε-perturbed Schatten-p
functional gpε : Md1ˆd2 Ñ Rě0 such that

gpε pXq “
d
ÿ

i“1

pσipXq
2 ` ε2q

p
2 , (21)
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where σpXq P Rd denotes the vector of singular values of X PMd1ˆd2 .

Theorem 9 Let Φ : Md1ˆd2 Ñ Cm be a linear operator and Y P RanpΦq a vector in its
range. Let pXpnqqně1 and pεpnqqně1 be the sequences produced by Algorithm 1 for input
parameters Φ, Y, r and 0 ă p ď 1, let ε “ limnÑ8 ε

pnq.

(i) If ε “ 0 and if Φ fulfills the strong Schatten-p NSP (18) of order r with constant
0 ă γr ă 1, then the sequence pXpnqqně1 converges to a matrix sX P Md1ˆd2 of rank
at most r that is the unique minimizer of the Schatten-p minimization problem (7).
Moreover, there exists an absolute constant Ĉ ą 0 such that for any X with ΦpXq “ Y
and any rr ď r, it holds that

}X ´ sX}pF ď
Ĉ

r1´p{2
β
rrpXqSp ,

where Ĉ “ 2p`1γ
1´p{2
r

1´γr
and β

rrpXqSp is the best rank-rr Schatten-p approximation error
of X, i.e.,

β
rrpXqSp :“ inf

 

}X ´ rX}pSp
, rX PMd1ˆd2 has rank rr

(

. (22)

(ii) If ε ą 0, then each accumulation point sX of pXpnqqně1 is a stationary point of the
ε-perturbed Schatten-p functional gpε of (21) under the linear constraint ΦpXq “ Y .
If additionally p “ 1, then sX is the unique global minimizer of gpε .

(iii) Assume that there exists a matrix X0 PMd1ˆd2 with ΦpX0q “ Y such that rankpX0q “

r ď minpd1,d2q
2 , a constant 0 ă ζ ă 1 and an iteration sn P N such that

}Xpsnq ´X0}S8 ď ζσ
rrpX0q

and εsn “ σr`1pX
snq. If Φ fulfills the strong Schatten-p NSP of order 2r with γ2r ă 1

and if the condition number κ “ σ1pX0q

σrpX0q
of X0 and ζ are sufficiently small (see condition

(25) and formula (26)), then

Xpnq Ñ X0 for nÑ8.

It is important to note that by using Lemma 8, it follows that the assertions of Theo-
rem 9(i) and (iii) hold for (sub-)Gaussian operators (20) with high probability in the regime
of measurements of optimal sample complexity order. In particular, there exist constant
oversampling factors ρ1, ρ2 ě 1 such that the assertions of (i) and (iii) hold with high
probability if m ą ρkrpd1 ` d2q, k P t1, 2u, respectively.

Remark 10 However, if m ă d1d2, null space property-type assumptions as (18) or (19)
do not hold for the important case of matrix completion-type measurements (Candès and
Recht, 2009), where ΦpXq is given as m sample entries

ΦpXq` “ Xi`,j` , ` “ 1, . . . ,m, (23)
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and pi`, j`q P rd1sˆrd2s for all ` P rms, of the matrix X PMd1ˆd2, which also were considered
in the example of Section 3.

This means that parts (i) and (iii) of Theorem 9 do, unfortunately, not apply for matrix
completion measurements, which define a very relevant class of low-rank matrix recovery
problems. This problem is shared by any existing theory for IRLS algorithms for low-rank
matrix recovery (Fornasier et al., 2011; Mohan and Fazel, 2012). However, in Section 5,
we provide strong numerical evidence that HM-IRLS exhibits properties as predicted by (i)
and (iii) of Theorem 9 even for the matrix completion setting. We leave the extension of
the theory of HM-IRLS to matrix completion measurements as an open problem to be tackled
by techniques different from uniform null space properties (Davenport and Romberg, 2016,
Section V).

4.2 Locally superlinear convergence rate for p ă 1

Next, we state the second main theoretical result of this paper, Theorem 11. It shows that
in a neighborhood of a low-rank matrix X0 that is compatible with the measurement vector
Y , the algorithm HM-IRLS converges to X0 with a convergence rate that is superlinear of
the order 2´ p, if the operator Φ fulfills an appropriate Schatten-p null space property.

Theorem 11 (Locally Superlinear Convergence Rate) Assume that the linear map
Φ : Md1ˆd2 Ñ Cm fulfills the strong Schatten-p NSP of order 2r with constant γ2r ă 1 and

that there exists a matrix X0 PMd1ˆd2 with rankpX0q “ r ď minpd1,d2q
2 such that ΦpX0q “ Y ,

let Φ, Y, r and 0 ă p ď 1 be the input parameters of Algorithm 1. Moreover, let κ “ σ1pX0q

σrpX0q

be the condition number of X0 and ηpnq :“ Xpnq ´ X0 be the error matrices of the n-th
output of Algorithm 1 for n P N.
Assume that there exists an iteration sn P N and a constant 0 ă ζ ă 1 such that

}ηpsnq}S8 ď ζσrpX0q (24)

and εpsnq “ σr`1pX
psnqq. If additionally the condition number κ and ζ are small enough, or

more precisely, if

µ}ηpsnq}
pp1´pq
S8

ă 1 (25)

with the constant

µ :“ 25pp1` γ2rq
p
´γ2rp3` γ2rqp1` γ2rq

p1´ γ2rq

¯2´p´d´ r

r

¯2´ p
2
rp
σrpX0q

ppp´1q

p1´ ζq2p
κp (26)

then

}ηpn`1q}S8 ď µ1{p
´

}ηpnq}S8

¯2´p
and }ηpn`1q}Sp ď µ1{p

´

}ηpnq}Sp

¯2´p

for all n ě sn.

We think that the result of Theorem 11 is remarkable, since there are only few low-
rank recovery algorithms which exhibit either theoretically or practically verifiable super-
linear convergence rates. In particular, although the algorithms of Mishra et al. (2013)
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and NewtonSLRA of Schost and Spaenlehauer (2016) do show superlinear convergence rates,
the first is not competitive to HM-IRLS in terms of sample complexity and the second has
neither applicable theoretical guarantees for most of the interesting problems nor the ability
of solving medium size problems.

Remark 12 It is interesting to compare Theorem 11 with a related result for an IRLS al-
gorithm for the sparse vector recovery problem in Daubechies et al. (2010, Theorem 7.9).
We observe that while the statement describes the observed rates of convergence very accu-
rately (cf. Section 5.2), the assumption (25) on the neighborhood that enables convergence
of a rate 2 ´ p is more pessimistic than our numerical experiments suggest. Our experi-
ments confirm that the local convergence rate of order 2´p also holds for matrix completion
measurements, where the assumption of a Schatten-p null space property fails to hold, cf.
Section 5.

4.3 Discussion and comparison with existing IRLS algorithms

Optimally, we would like to have a statement in Theorem 9 about the accumulation points
sX being global minimizers of gpε , instead of mere stationary points (Fornasier et al., 2011,
Theorem 6.11), (Daubechies et al., 2010, Theorem 5.3). A statement that strong is, unfortu-
nately, difficult to achieve due to the non-convexity of the Schatten-p quasi-norm and of the
ε-perturbed version gpε . Nevertheless, our theorems can be seen as analogues of Daubechies
et al. (2010, Theorem 7.7), which discusses the convergence properties of an IRLS algorithm
for sparse recovery based on `p-minimization with p ă 1.

As already mentioned in previous sections, Fornasier et al. (2011) and Mohan and Fazel
(2012) proposed IRLS algorithms for low-rank matrix recovery and analysed their conver-
gence properties. The algorithm of Fornasier et al. (2011) corresponds (almost) to IRLS-col

with p “ 1 as explained in Section 3. In this context, Theorem 9 recovers the results of
Fornasier et al. (2011, Theorem 6.11(i-ii)) for p “ 1 and generalize them, with weaker con-
clusions due to the non-convexity, to the cases 0 ă p ă 1. The algorithm IRLS-p of Mohan
and Fazel (2012) is similar to the former, but differs in the choice of the ε-smoothing and
also covers non-convex choices 0 ă p ă 1. However, we note that in the non-convex case,
its convergence result (Mohan and Fazel, 2012, Theorem 5.1) corresponds to Theorem 9(ii),
but does not provide statements similar to (i) and (iii) of Theorem 9.

Theorem 11 with its analysis of the convergence rate is new in the sense that to the best
of our knowledge, there are no convergence rate proofs for IRLS algorithms for the low-rank
matrix recovery problem in the literature. Indeed, we refer to Remark 22 in Section 6.3
for an explanation why the variants of Fornasier et al. (2011) and Mohan and Fazel (2012)
cannot exhibit superlinear convergence rates, unlike HM-IRLS.

We also note that there is a close connection between the statements of Theorems 9
and 11 and results that were obtained for an IRLS algorithm dedicated to the sparse vector
recovery problem in Daubechies et al. (2010, Theorems 7.7 and 7.9).

5. Numerical experiments

In this section, we demonstrate first that the superlinear convergence rate that was proven
theoretically for Algorithm 1 (HM-IRLS) in Theorem 11 can indeed be accurately verified in
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numerical experiments, even beyond measurement operators fulfilling the strong null space
property, and compare its performance to other variants of IRLS.

In Section 5.3, we then examine the recovery performance of HM-IRLS for the matrix
completion setting with the performance of other state-of-the-art algorithms comparing
the measurement complexities that are needed for successful recovery for many random
instances.

The numerical experiments are conducted on Linux and Mac systems with MATLAB
R2017b. An implementation of HM-IRLS for matrix completion including code reproducing
many conducted experiments is available at https://github.com/ckuemmerle/hm irls.

5.1 Experimental setup

In the experiments, we sample pd1 ˆ d2q dimensional ground truth matrices X0 of rank r
such that X0 “ UΣV ˚, where U P Rd1ˆr and V P Rd2ˆr are independent matrices with i.i.d.
standard Gaussian entries and Σ P Rrˆr is a diagonal matrix with i.i.d. standard Gaussian
diagonal entries, independent from U and V .

We recall that a rank-r matrix X PMd1ˆd2 has df “ rpd1 ` d2 ´ rq degrees of freedom,
which is the theoretical lower bound on the number of measurements that are necessary for
exact reconstruction (Candès and Plan, 2011). The random measurement setting we use in
the experiments can be described as follows: We take measurements of matrix completion
type, sampling m “ tρdf u entries of X0 uniformly over its d1d2 indices to obtain Y “ ΦpX0q.
Here, ρ is such that d1d2

df
ě ρ ě 1 and parametrizes the difficulty of the reconstruction

problem, from very hard problems for ρ « 1 to easier problems for larger ρ.

However, this uniform sampling of Φ could yield instances of measurement operators
whose information content is not large enough to ensure well-posedness of the corresponding
low-rank matrix recovery problem, even if ρ ą 1. More precisely, it is impossible to recover
a matrix exactly if the number of revealed entries in any row or column is smaller than its
rank r, which is explained and shown in the context of the proof of Pimentel-Alarcón et al.
(2016, Theorem 1).

Thus, in order to provide for a sensible measurement model for small ρ, we exclude
operators Φ that sample fewer than r entries in any row or column. Therefore, we adapt
the uniform sampling model such that operators Φ are discarded and sampled again until
the requirement of at least r entries per column and row is met and recovery can be achieved
from a theoretical point of view.

We note that the described phenomenon is very related to the fact that matrix comple-
tion recovery guarantees for the uniform sampling model require at least one additional log
factor, i.e., they require at least m ě logpmaxpd1, d2qqdf sampled entries (Davenport and
Romberg, 2016, Section V).

While we detail the experiments for the matrix completion measurement setting just
described in the remaining section, we add that Gaussian measurement models also lead to
very similar results in experiments.

5.2 Convergence rate comparison with other IRLS algorithms

In this subsection, we vary the Schatten-p parameter between 0 and 1 and compare the
corresponding convergence behavior of HM-IRLS with the IRLS variant IRLS-col, which
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Figure 3: Relative Frobenius errors as a function of the iteration n for oversampling factor
ρ “ 2 (easy problem).

performs the reweighting just in the column space, and with the arithmetic mean variant
AM-IRLS. The latter two coincide with Algorithm 1 except that the weight matrices are
chosen as described in Equation (17) in Section 3.

We note that IRLS-col is very similar to the IRLS algorithms of Fornasier et al. (2011)
and Mohan and Fazel (2012) and differs from them basically just in the choice of the ε-
smoothing. We present the experiments with IRLS-col to isolate the influence of the weight
matrix type, but very similar results can be observed for the algorithms of Fornasier et al.
(2011) and Mohan and Fazel (2012).2

In the matrix completion setup of Section 5.1, we choose d1 “ d2 “ 40, r “ 10 and
distinguish easy, hard and very hard problems corresponding to oversampling factors ρ of
2.0, 1.2 and 1.0, respectively. The algorithms are provided with the ground truth rank r and
are stopped whenever the relative change of Frobenius norm }Xpnq ´Xpn´1q}F {}X

pn´1q}F

drops below the threshold of 10´10 or a maximal iteration of iterations nmax is reached.

5.2.1 Convergence rates

First, we study the behavior of the three IRLS algorithms for the easy setting of an over-
sampling factor of ρ “ 2, which means that 2rpd1`d2´rq

d1d2
“ 0.875 of the entries are sampled,

and parameters p P t0.1, 0.5, 0.8, 1u.

In Figure 3, we observe that for p “ 1, HM-IRLS, AM-IRLS and IRLS-col have a quite
similar behavior, as the relative Frobenius errors }Xpnq´X0}F {}X0}F decrease only slowly,

2. Implementations of the mentioned authors’ algorithms were downloaded from https://faculty.

washington.edu/mfazel/ and https://github.com/rward314/IRLSM, respectively.

20

https://faculty.washington.edu/mfazel/
https://faculty.washington.edu/mfazel/
https://github.com/rward314/IRLSM


Harmonic Mean Iteratively Reweighted Least Squares

0 10 20 30 40 50 60 70 80 90 100
Iteration n

10-2

10-1

100

p=0.8, HM-IRLS

p=0.8, AM-IRLS

p=0.8, IRLS-col

p=0.5, HM-IRLS

p=0.5, AM-IRLS

p=0.5, IRLS-col

p=0.25, HM-IRLS

p=0.25, AM-IRLS

p=0.25, IRLS-col

p=0.01, HM-IRLS

p=0.01, AM-IRLS

p=0.01, IRLS-col

Figure 4: Relative Frobenius errors as a function of the iteration n for oversampling fac-
tor ρ “ 1.2 (hard problem). Left column: y-range r10´10; 100s. Right column:
Enlarged section of left column corresponding to y-range of r10´2; 100s.

i.e., even a linear rate is hardly identifiable. For choices p ă 1 that correspond to non-
convex objectives, we observe a very fast, superlinear convergence of HM-IRLS, as the iterates
Xpnq converge up to a relative error of less than 10´12 within fewer than 20 iterations for
p P t0.8, 0.5, 0.1u. Precise calculations verify that the rate of convergences are indeed of
order 2 ´ p, the order predicted by Theorem 11. We note that this fast convergence rate
not only kicks in locally, but starting from the very first iteration.

On the other hand, it is easy to see that AM-IRLS and IRLS-col converge linearly, but
not superlinearly to the ground truth X0 for p P t0.8, 0.5, 0.1u. The linear rate of AM-IRLS is
slightly better than the one of IRLS-col, but the numerical stability of AM-IRLS deteriorates
for p “ 0.1 close to the ground truth (after iteration 43). This is due to a bad conditioning of
the quadratic problems as the Xpnq are close to rank-r matrices. In contrast, no numerical
instability issues can be observed for HM-IRLS.

For the hard matrix completion problems with oversampling factor of ρ “ 1.2, we observe
that for p “ 0.8, the three algorithms typically do not converge to ground truth. This can
be seen in the example that is shown in Figure 4, where HM-IRLS, AM-IRLS and IRLS-col

all exhibit a relative error of 0.27 after 100 iterations. We do not visualize the result for
p “ 1, as the iterates of the three algorithms do not converge to the ground truth either,
which is to be expected: In some sense, they implement nuclear norm minimization, which
is typically not able to recover a low-rank matrix from measurements with an oversampling
factor as small as ρ “ 1.2 (Donoho et al., 2013). The dramatic difference in behavior
between HM-IRLS and the other approaches becomes very apparent for more non-convex
choices of p P t0.01, 0.25, 0.5u, where the former converges up to a relative Frobenius error
of less than 10´10 within 15 to 35 iterations, while the others do not reach a relative error of
10´2 even after 100 iterations. For HM-IRLS, the convergence of order 2´p can be very well
locally observed also here, it just takes some iterations until the superlinear convergence
begins, which is due to the increased difficulty of the recovery problem.
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Figure 5: Relative Frobenius errors as a function of the iteration n for oversampling factor
ρ “ 1.0 (very hard problem). Left column: y-range r10´10; 100s. Right column:
Enlarged section of left column corresponding to y-range of r10´2; 100s.

Finally, we see in the example shown in Figure 5 that even for the very hard problems
where ρ “ 1, which means that the number of sampled entries corresponds exactly to the
degrees of freedom rpd1 ` d2 ´ rq, HM-IRLS can be successful to recover the rank-r matrix
if the parameter p is chosen small enough (here: p ď 0.25). This is not the case for the
algorithms AM-IRLS and IRLS-col.

5.2.2 HM-IRLS as the best extension of IRLS for sparse recovery

We summarize that among the three variants HM-IRLS, AM-IRLS and IRLS-col, only HM-IRLS

is able to solve the low-rank matrix recovery problem for very low sample complexities corre-
sponding to ρ « 1. Furthermore, it is the only IRLS algorithm for low-rank matrix recovery
that exhibits a superlinear rate of convergence at all.

It is worthwhile to compare the properties of HM-IRLS with the behavior of the IRLS
algorithm of Daubechies et al. (2010) designed to solve the sparse vector recovery problem
by mimicking `p-minimization for 0 ă p ď 1. While neither IRLS-col nor AM-IRLS are
able to generalize the superlinear convergence behavior of Daubechies et al. (2010) (which
is illustrated in Figure 8.3 of the same paper) to the low-rank matrix recovery problem,
HM-IRLS is, as can be seen in Figures 3 to 5.

Taking the theoretical guarantees as well as the numerical evidence into account, we
claim that HM-IRLS is the presently best extension of IRLS for vector recovery in Daubechies
et al. (2010) to the low-rank matrix recovery setting, providing a substantial improvement
over the reweighting strategies of Fornasier et al. (2011) and Mohan and Fazel (2012).

Moreover, we mention two observations which suggest that HM-IRLS has in some sense
even more favorable properties than the algorithm of Daubechies et al. (2010): First, the
discussion of Daubechies et al. (2010, Section 8) states that a superlinear convergence can
only be observed locally after a considerable amount of iterations with just a linear error
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decay. In contrast to that, HM-IRLS exhibits a superlinear error decay quite early (i.e., for
example as early as after two iterations), at least if the sample complexity is large enough,
cf. Figure 3.

Secondly, it can be observed that the convergence of the algorithm of Daubechies et al.
(2010) to a sparse vector often breaks down if p is smaller than 0.5 (Daubechies et al., 2010,
Section 8). In contrast to that, we observe that HM-IRLS does not suffer from this loss of
global convergence for p ! 0.5. Thus, a choice of very small parameters p « 0.1 or smaller
is suggested as such a choice is accompanied by a very fast convergence.

5.3 Recovery performance compared to state-of-the-art algorithms

After comparing the performance of HM-IRLS with other IRLS variants, we now conduct
experiments to compare the empirical performance of HM-IRLS also to that of low-rank
matrix recovery algorithms different from IRLS.

To obtain a comprehensive picture, we consider not only the IRLS variants AM-IRLS and
IRLS-col, but a variety of state-of-the-art methods in the experiments, as the Riemannian
optimization technique Riemann Opt (Vandereycken, 2013), the alternating minimization
approaches AltMin (Haldar and Hernando, 2009), ASD (Tanner and Wei, 2016) and BFGD

(Park et al., 2016), and finally the algorithms Matrix ALPS II (Kyrillidis and Cevher, 2014)
and CGIHT Matrix (Blanchard et al., 2015), which are based on iterative hard thresholding.
As the IRLS variants we consider, all these algorthms use knowledge about the actual
ground truth rank r.

In the experiments, we examine the empirical recovery probabilities of the different
algorithms systematically for varying oversampling factors ρ, determining the difficulty of
the low-rank recovery problem as the sample complexity fulfills m “ tρdf u. We recall that
a large parameter ρ corresponds to an easy reconstruction problem, while a small ρ, e.g.,
ρ « 1, defines a very hard problem.

We choose d1 “ d2 “ 100 and the r “ 8 as parameter of the experimental setting, con-
ducting the experiments to recover rank-8 matrices X0 P R100ˆ100. We remain in the matrix
completion measurement setting described in Section 5.1, but sample now 150 random in-
stances of X0 and Φ for different numbers of measurements varying between mmin “ 1500
to mmax “ 4000. This means that the oversampling factor ρ increases from ρmin “ 0.975 to
ρmax “ 2.60. For each algorithm, a successful recovery of X0 is defined as a relative Frobe-
nius error }Xout ´ X0}F {}X0}F of the matrix Xout returned by the algorithm of smaller
than 10´3. The algorithms are run until stagnation of the iterates or until the maximal
number of iterations nmax “ 3000 is reached. The number nmax is chosen large enough to
ensure that a recovery failure is not due to a lack of iterations.

In the experiments, except for AltMin, for which we used our own implementation, we
used implementations provided by the authors of the corresponding papers for the respective
algorithms, using default input parameters provided by the authors. The respective code
sources can be found in the references.

5.3.1 Beyond the state-of-the-art performance of HM-IRLS

The results of the experiment can be seen in Figure 6. We observe that HM-IRLS exhibits
a very high empirical recovery probability for p “ 0.1 and p “ 0.5 as soon as the sample
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Figure 6: Comparison of empirical success rates of state-of-the-art algorithms, as a function
of the oversampling factor ρ

complexity parameter ρ is slightly larger than 1.0, which means that m “ tρrpd1 ` d2 ´ rqu
measurements suffice to recover pd1 ˆ d2q-dimensional rank-r matrices with ρ close to 1.
This is very close to the information theoretical lower bound of df “ rpd1 ` d2 ´ rq. Very
interestingly, it can be observed that the empirical recovery probability reaches almost 1
already for an oversampling factor of ρ « 1.1, and remains at exactly 1 starting from ρ « 1.2.

Relatively good success rates can also be observed for the algorithms AM-IRLS and
IRLS-col for non-convex parameter choices p P t0.1, 0.5u, reaching an empirical success
probability of almost 100% at around ρ “ 1.5. AM-IRLS performs only marginally better
than the classical IRLS strategy IRLS-col, which are both outperformed considerably by
HM-IRLS. It is important to note that in accordance to what was observed in Section 5.2,
in the successful instances, the error threshold that defines successful recovery is achieved
already after a few dozen iterations for HM-IRLS, while typically only after several or many
hundreds for AM-IRLS and IRLS-col. Furthermore, it is interesting to observe that the
algorithm IRLS-MF, which corresponds to the variant studied and implemented by Mohan
and Fazel (2012) and differs from IRLS-col mainly only in the choice of the ε-smoothing
(14), has a considerably worse performance than the other IRLS methods. This is plausible
since the smoothing influences severely the optimization landscape of the objective to be
minimized.

The strong performance of HM-IRLS is in stark contrast to the behavior of all the al-
gorithms that are based on different approaches than IRLS and that we considered in our
experiments. They basically never recover any rank-r matrix if ρ ă 1.2, and most of the
algorithms need a sample complexity parameter of ρ ą 1.7 to exceed a empirical recovery
probability of a mere 0.5. A success rate of close to 0.8 is reached not before raising ρ above
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2.0 in our experimental setting, and also only for a subset of the comparison algorithms,
in particular for Matrix ALPS II, ASD, AltMin. The empirical probability of 1 is only
reached for some of the IRLS methods, and not for any competing method in our experi-
mental setting, even for rather large oversampling factors such as ρ “ 2.5. While we do not
rule out that a possible parameter tuning could improve the performance of any of the al-
gorithms slightly, we conclude that for hard matrix completion problems, the experimental
evidence for the vast differences in the recovery performance of HM-IRLS compared to other
methods is very apparent.

Thus, our observation is that the proposed HM-IRLS algorithm recovers low-rank matri-
ces systematically with nearly the optimal number of measurements and needs fewer mea-
surements than all the state-of-the-art algorithms we included in our experiments, if the
non-convexity parameter p is chosen such that p ! 1.

We also note that the very sharp phase transition between failure and success that can
be observed in Figure 6 for HM-IRLS indicates that the sample complexity parameter ρ is
indeed the major variable determining the success of HM-IRLS. In contrast, the wider phase
transitions for the other algorithms suggest that they might depend more on other factors,
as the realizations of the random sampling model and the interplay of measurement operator
Φ and ground truth matrix X0.

Another conclusion that can be drawn from the empirical recovery probability of 1 is
that, despite the severe non-convexity of the underlying Schatten-p quasi-norm for, e.g.,
p “ 0.1, HM-IRLS with the initialization of Xp1q as the Frobenius norm minimizer does not
get stuck in stationary points if the oversampling factor is large enough. Further experiments
conducted with random initializations as well as severely adversary initializations, e.g., with
starting points chosen in the orthogonal complement of the spaces spanned by the singular
vectors of the ground truth matrix X0, lead to comparable results. Therefore, we claim
that HM-IRLS exhibits a global convergence behavior in interesting application cases and
for oversampling factor ranges for which competing non-convex low-rank matrix recovery
algorithms fail to succeed. We consider a theoretical investigation of such behavior as an
interesting open problem to explore.

5.4 Computational complexity

While the harmonic mean weight matrix ĂW pnq, cf. (15), is an inverse of a pd1d2 ˆ d1d2q-
matrix and therefore in general a dense pd1d2ˆd1d2q-matrix, it is important to note that it
never has to be computed explicitly in an implementation of HM-IRLS; neither is it necessary
to compute its inverse pĂW pnqq´1 “ 1

2

`

U pnqpsΣpnqq2´pU pnq˚ ‘ V pnqpsΣpnqq2´pV pnq˚
˘

explicitly.

Indeed, as it can be seen in (13) and by the definition of the Kronecker sum (55), the
harmonic mean weight matrix appears just as the linear operator pWpnqq´1 on the space
of matrices Md1ˆd2 , whose action consists of a left- and right-sided matrix multiplication,
cf. (12). Therefore, the application of pWpnqq´1 is Opd1d2pd1 ` d2qq by the naive matrix
multiplication algorithm, and can be easily parallelized.

While this useful observation is helpful for the implementation of HM-IRLS, it is not true

for AM-IRLS, as the action of pW
pnq
parithqq

´1, the inverse of the arithmetic mean weight matrix

at iteration n, is not representable as a sum of left- and right-sided matrix multiplication.
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This means that even the execution of a fixed number of iterations of HM-IRLS is faster
than computational advantage over AM-IRLS.

The cost to compute Φ ˝ ĂWpnq´1 ˝ Φ˚ P Mmˆm depends on the linear measurement
operator Φ. In the matrix completion setting (23), no additional arithmetic operations
have to be performed, as Φ is a just a selection operator in this case, and for HM-IRLS, this
means that Φ ˝ ĂWpnq´1 ˝ Φ˚ is a sparse matrix.

Thus, the algorithm HM-IRLS consists of basically of two computational steps per it-
eration: The computation of the SVD of the d1 ˆ d2-matrix Xpnq and the solution of
the linearly constrained least squares problem in (13). The first is of time complexity
Opd1d2 minpd1, d2qq. The time complexity of the second depends on Φ, but is dominated
by the inversion of a symmetric, m ˆ m sparse linear system in the matrix completion
setting, if m is the number of given entries. This has a worst case time complexity of
Opmaxpd1, d2q

3r3q if ρ is just a constant oversampling factor.
For the matrix completion case, this allows us to recover low-rank matrices up to, e.g.,

d1 “ d2 “ 3000 on a single machine given very few entries with HM-IRLS.

Acceleration possibilities and extensions

To tackle higher dimensionalities in reasonable runtimes, a key strategy could be to address
the computational bottleneck of HM-IRLS, the solution of the mˆm linear system in (13),
by using iterative methods. For IRLS algorithms designed for the related sparse recovery
problem, the usage of conjugate gradient (CG) methods is discussed in Fornasier et al.
(2016). By coupling the accuracy of the CG solutions to the outer IRLS iteration and
using appropriate preconditioning, the authors obtain a competitive solver for the sparse
recovery problem, also providing a convergence analysis. Similar ideas could be used for an
acceleration of HM-IRLS.

It is interesting to see if further computational improvements can be achieved by combin-
ing the ideas of HM-IRLS with the usage of truncated and randomized SVDs (Halko et al.,
2011), replacing the full SVDs of the Xpnq that are needed to define the linear operator
pWpnqq´1 in Algorithm 1.

6. Theoretical analysis

For the theoretical analysis of HM-IRLS, we introduce the following auxiliary functional Jp,
leading to a variational interpretation of the algorithm. In the whole section, we denote
d “ minpd1, d2q and D “ maxpd1, d2q.

Definition 13 Let 0 ă p ď 1. Given a full rank matrix Z PMd1ˆd2, let

ĂW pZq :“ 2
“

Id2 b pZZ
˚q

1
2

‰

”

pZZ˚q
1
2 ‘ pZ˚Zq

1
2

ı´1
“

pZ˚Zq
1
2 b Id1

‰

P Hd1d2ˆd1d2

be the harmonic mean matrix ĂW associated to Z.
We define the auxiliary functional Jp : Md1ˆd2 ˆ Rě0ˆMd1ˆd2 Ñ Rě0 as

JppX, ε, Zq :“

$

’

&

’

%

p
2}Xvec}

2
`2pĂW pZqq

`
ε2p
2

d
ř

i“1
σipZq `

2´p
2

d
ř

i“1
σipZq

p
pp´2q if rankpZq “ d,

`8 if rankpZq ă d.
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We note that the matrix ĂW of Definition 13 is just the harmonic mean of the matrices
ĂW1 :“ Id2 b pZZ

˚q
1
2 and ĂW2 “ pZ

˚Zq
1
2 b Id1 , as introduced in Section 2.3, if pZZ˚q

1
2 and

pZ˚Zq
1
2 are positive definite. Indeed, in this case, pZZ˚q

1
2 ‘pZ˚Zq

1
2 “ ĂW1`ĂW2 is invertible

and as pA´1 ` B´1q´1 “ ApA ` Bq´1B for any positive definite matrices A and B of the
same dimensions,

ĂW pZq “ 2ĂW1

`

ĂW1 `ĂW2

˘´1
ĂW2 “ 2pĂW´1

1 `ĂW´1
2 q´1. (27)

We use the more general definition ĂW pZq as it is well-defined for any full-rank Z PMd1ˆd2

and as it allows to handle the case of non-square matrices, i.e., the case d1‰d2, as in this
case pZZ˚q

1
2 or pZ˚Zq

1
2 has to be singular. Using the Moore-Penrose pseudo inverse ĂW`

1

and ĂW`
2 of the matrices ĂW1 and ĂW2, we can rewrite ĂW pZq from Definition 13 as

ĂW pZq “ 2ĂW1

`

ĂW1 `ĂW2

˘´1
ĂW2 “ 2pĂW`

1 `
ĂW`

2 q
´1.

With the auxiliary functional Jp at hand, we can interpret Algorithm 1 as an alternating
minimization of the functional JppX, ε, Zq with respect to its arguments X, ε and Z.

In the following, we derive the formula (15) for the weight matrix ĂW pn`1q as the evalu-

ation ĂW pn`1q “ ĂW
`

Zpn`1q
˘

of ĂW from Definition 13 at the minimizer

Zpn`1q “ arg min
ZPMd1ˆd2

JppXpn`1q, εpn`1q, Zq, (28)

with the minimizer being unique. Similarly, formula (13) can be interpreted as

Xpn`1q “ arg min
XPMd1ˆd2
ΦpXq“Y

}Xvec}
2
`2pĂW pZpnqqq

“ arg min
XPMd1ˆd2
ΦpXq“Y

JppX, εpnq, Zpnqq. (29)

These observations constitute the starting point of the convergence analysis of Algo-
rithm 1, which is detailed subsequently after the verification of the optimization steps.

6.1 Optimization of Jp with respect to Z and X

We fix X P Md1ˆd2 with singular value decomposition X “
řd
i“1 σiuiv

˚
i , where ui P Cd1

vi P Cd2 are the left and right singular vectors respectively and σi “ σipXq denote its
singular values for i P rds.

Our objective in the following is the justification of formula (15). To yield the building

blocks of the weight matrix ĂW pn`1q, we consider the minimization problem

arg min
ZPMd1ˆd2

JppX, ε, Zq (30)

for ε ą 0.

Lemma 14 The unique minimizer of (30) is given by

Zopt “

d
ÿ

i“1

pσipXq
2 ` ε2q

p´2
2 uiv

˚
i .
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Furthermore, the value of Jp at the minimizer Zopt is

JppX, ε, Zoptq “

d
ÿ

i“1

pσipXq
2 ` ε2q

p
2 “: gpε pXq (31)

for p ą 0.

The proof of Lemma 14 is detailed in Appendix B.

Remark 15 We note that the value of JppX, ε, Zoptq can be interpreted as a smooth ε-
perturbation of a p-th power of a Schatten-p quasi-norm of the matrix X. In fact, for ε “ 0
we have

JppX, 0, Zoptq “ }X}
p
Sp
“ gp0pXq.

Now, we show that our definition rule (13) of Xpn`1q in Algorithm 1 can be interpreted as
a minimization of the auxiliary functional Jp with respect to the variable X. Additionally,
this minimization step can be formulated as the solution of a weighted least squares problem
with weight matrix ĂW pnq. This is summarized in the following lemma.

Lemma 16 Let 0 ă p ď 1. Given a full-rank matrix Z PMd1ˆd2, let ĂW pZq :“ 2prpZZ˚q
1
2 s`‘

rpZ˚Zq
1
2 s`q´1 P Hd1d2ˆd1d2 be the matrix from Definition 13 and W´1 : Md1ˆd2 ÑMd1ˆd2

the linear operator of its inverse

W´1pXq :“
1

2

”

rpZZ˚q
1
2 s`X `XrpZ˚Zq

1
2 s`

ı

.

Then the matrix

Xopt “
`

W´1 ˝ Φ˚ ˝ pΦ ˝W´1 ˝ Φ˚q´1
˘`

Y
˘

PMd1ˆd2

is the unique minimizer of the optimization problems

arg min
ΦpXq“Y

JppX, ε, Zq “ arg min
ΦpXq“Y

}Xvec}
2
`2pĂW q

. (32)

Moreover, a matrix Xopt PMd1ˆd2 is a minimizer of the minimization problem (32) if and
only if it fulfills the property

xĂW pZqpXoptqvec, Hvecy`2 “ 0 for all H P N pΦq and ΦpXoptq “ Y. (33)

In Appendix B, the interested reader can find a sketch of the proof of this lemma.

6.2 Basic properties of the algorithm and convergence results

In the following subsection, we will have a closer look at Algorithm 1 and point out some of
its properties, in particular, the boundedness of the iterates pXpnqqnPN and the fact that two
consecutive iterates are getting arbitrarily close as n Ñ 8. These results will be used to
show convergence and to determine the rate of convergence of Algorithm 1 under conditions
determined along the way.
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Lemma 17 Let pXpnq, εpnqqnPN be the sequence of iterates and smoothing parameters of

Algorithm 1. Let Xpnq “
řd
i“1 σ

pnq
i u

pnq
i v

pnq˚
i be the SVD of the n-th iterate Xpnq. Let

pZpnqqnPN be a corresponding sequence such that

Zpnq “
d
ÿ

i“1

pσ
pnq2
i ` εpnq2q

p´2
2 u

pnq
i v

pnq˚
i

for n P N. Then the following properties hold:

(a) JppXpnq, εpnq, Zpnqq ě JppXpn`1q, εpn`1q, Zpn`1qq for all n ě 1,

(b) }Xpnq}pSp
ď JppXp1q, εp0q, Zp0qq “: Jp,0 for all n ě 1,

(c) The iterates Xpnq, Xpn`1q come arbitrarily close as nÑ8, i.e.,
lim
nÑ8

}pXpnq ´Xpn`1qqvec}
2
`2
“ 0.

At this point we notice that, assuming Xpnq Ñ sX and εpnq Ñ ε for n Ñ 8 with the
limit point p sX, εq PMd1ˆd2 ˆ Rě0, it would follow that

JppXpnq, εpnq, Zpnqq Ñ gpε p
sXq

for nÑ8 by equation (31).
Now, let ε ą 0, a measurement vector Y P Cm and the linear operator Φ be given and

consider the optimization problem

min
XPMd1ˆd2
ΦpXq“Y

gpε pXq (34)

with gpε pXq “
řd
i“1pσipXq

2 ` ε2q
p
2 and σipXq being the i-th singular value of X, cf. (31).

If gpε pXq is non-convex, which is the case for p ă 1, one might practically only be able to
find critical points of the problem.

Lemma 18 Let X PMd1ˆd2 be a matrix with the SVD such that X “
řd
i“1 σiuiv

˚
i , let ε ą 0. If we define

ĂW pX, εq “ 2

„

´

d
ÿ

i“1

pσ2
i ` ε

2q
2´p
2 uiu

˚
i

¯

‘

´

d
ÿ

i“1

pσ2
i ` ε

2q
2´p
2 viv

˚
i

¯

´1

P Hd1d2ˆd1d2 ,

then ĂW pXpnq, εpnqq “ ĂW pnq, with ĂW pnq defined as in Algorithm 1, cf. (10).
Furthermore, X is a critical point of the optimization problem (34) if and only if

xĂW pX, εqXvec, Hvecy`2 “ 0 for all H P N pΦq and ΦpXq “ Y. (35)

In the case that gpε is convex, i.e., if p “ 1, (35) implies that X is the unique minimizer of
(34).

Now, we have some basic properties of the algorithm at hand that allow us, together
with the strong nullspace property in Definition 4 to carry out the proof of the convergence
result in Theorem 9. The proof is sketched in Appendix C using the results above.
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6.3 Locally superlinear convergence

In the proof of Theorem 11 we use the following bound on perturbations of the singular
value decomposition, which is originally due to Wedin (1972). It bounds the alignment of
the subspaces spanned by the singular vectors of two matrices by their norm distance, given
a gap between the first singular values of the one matrix and the last singular values of the
other matrix that is sufficiently pronounced.

Lemma 19 (Wedin’s bound (Stewart, 2006)) Let X and X̄ be two matrices of the
same size and their singular value decompositions

X “
`

U1 U2

˘

ˆ

Σ1 0
0 Σ2

˙ˆ

V ˚1
V ˚2

˙

and D̄ “
`

Ū1 Ū2

˘

ˆ

Σ̄1 0
0 Σ̄2

˙ˆ

V̄ ˚1
V̄ ˚2

˙

,

where the submatrices have the sizes of corresponding dimensions. Suppose that δ, α satis-
fying 0 ă δ ď α are such that α ď σminpΣ1q and σmaxpΣ̄2q ă α´ δ. Then

}Ū˚2 U1}S8 ď
?

2
}X ´ X̄}S8

δ
and }V̄ ˚2 V1}S8 ď

?
2
}X ´ X̄}S8

δ
. (36)

As a first step towards the proof of Theorem 11, we show the following lemma.

Lemma 20 Let pXpnqqn be the output sequence of Algorithm 1 for parameters Φ, Y, r and
0 ă p ď 1, and X0 PMd1ˆd2 be a matrix such that ΦpX0q “ Y .

(i) Let η
pn`1q
2r be the best rank-2r approximation of ηpn`1q “ Xpn`1q ´X0. Then

}ηpn`1q ´ η
pn`1q
2r }

2p
Sp
ď 22´p

ˆ d
ÿ

i“r`1

`

σ2
i pX

pnqq ` εpnq2
˘

p
2

˙2´p

}ηpn`1q
vec }

2p

`2pĂW pnqq
,

where ĂW pnq denotes the harmonic mean weight matrix from (10).

(ii) Assume that the linear map Φ : Md1ˆd2 Ñ Cm fulfills the strong Schatten-p NSP of
order 2r with constant γ2r ă 1. Then

}ηpn`1q}
2p
S2
ď 2p

γ2´p
2r

r2´p

ˆ d
ÿ

i“r`1

`

σ2
i pX

pnqq ` εpnq2
˘

p
2

˙2´p

}ηpn`1q
vec }

2p

`2pĂW pnqq
. (37)

(iii) Under the same assumption as for (ii), it holds that

}ηpn`1q}
2p
Sp
ď p1` γ2rq

222´p

ˆ d
ÿ

i“r`1

`

σ2
i pX

pnqq ` εpnq2
˘

p
2

˙2´p

}ηpn`1q
vec }

2p

`2pĂW pnqq
.

Proof (i) Let the Xpnq “ rU pnqΣpnq rV pnq˚ be the (full) singular value decomposition of Xpnq,
i.e., rU pnq P Ud1 and rV pnq P Ud2 are unitary matrices and Σpnq “ diagpσ1pX

pnqq, . . . , σrpX
pnqqq P

Md1ˆd2 . We define U
pnq
T P Md1ˆr as the matrix of the first r columns of rU pnq and U

pnq
Tc

P
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Md1ˆpd1´rq as the matrix of its last d1 ´ r columns, so that rU pnq “
´

U
pnq
T U

pnq
Tc

¯

, and

similarly V
pnq
T and V

pnq
Tc

.

As Id1 “ U
pnq
T U

pnq˚
T ` U

pnq
Tc
U
pnq˚
Tc

and Id2 “ V
pnq
T V

pnq˚
T ` V

pnq
Tc

V
pnq˚
Tc

, we note that

U
pnq
Tc
U
pnq˚
Tc

ηpn`1qV
pnq
Tc

V
pnq˚
Tc

“ ηpn`1q ´ U
pnq
T U

pnq˚
T ηpn`1q ` U

pnq
Tc
U
pnq˚
Tc

ηpn`1qV
pnq
T V

pnq˚
T ,

while U
pnq
T U

pnq˚
T ηpn`1q ` U

pnq
Tc
U
pnq˚
Tc

ηpn`1qV
pnq
T V

pnq˚
T has a rank of at most 2r. This implies

that

}ηpn`1q ´ η
pn`1q
2r }Sp ď }U

pnq
Tc
U
pnq˚
Tc

ηpn`1qV
pnq
Tc

V
pnq˚
Tc

}Sp “ }U
pnq˚
Tc

ηpn`1qV
pnq
Tc
}Sp . (38)

Using the definitions of rU pnq and rV pnq, we write the harmonic mean weight matrices of the
n-th iteration (10) as

ĂW pnq “ 2prV pnq b rU pnqq
`

sΣ
pnq2´p
d1

‘ sΣ
pnq2´p
d2

˘´1
prV pnq b rU pnqq˚, (39)

where sΣ
pnq
d1
P Md1ˆd1 and sΣ

pnq
d2
P Md2ˆd2 are the diagonal matrices with the smoothed sin-

gular values of Xpnq from (11), but filled up with zeros if necessary. Using the abbreviation

Ω :“ prV pnq b rU pnqq˚ĂW pnq 1
2 ηpn`1q

vec P Cd1d2 , (40)

we rewrite

ηpn`1q
vec “ ĂW pnq´ 1

2ĂW pnq 1
2 ηpn`1q

vec “ 2´1{2prV pnq b rU pnqq
`

sΣ
pnq2´p
d1

‘ sΣ
pnq2´p
d2

˘1{2
Ω

“ 2´1{2prV pnq b rU pnqq

„

pId2 b
sΣ
pnq 2´p

2
d1

qDL ` psΣ
pnq 2´p

2
d2

b Id1qDR



Ω
(41)

with the diagonal matrices DL, DR PMd1d2ˆd1d2 such that

pDLqi`pj´1qd1,i`pj´1qd1 “

´

1`
´σ2

j pX
pnqq ` εpnq2

σ2
i pX

pnqq ` εpnq2

¯

2´p
2
¯´1{2

and

pDRqi`pj´1qd1,i`pj´1qd1 “

´´σ2
i pX

pnqq ` εpnq2

σ2
j pX

pnqq ` εpnq2

¯

2´p
2
` 1

¯´1{2

for i P rd1s and j P rd2s. This can be seen from the definitions of the Kronecker product b
and the Kronecker sum ‘ (cf. Appendix A), as

´

`

sΣ
pnq2´p
d1

‘ sΣ
pnq2´p
d2

˘1{2
¯

i`pj´1qd1,i`pj´1qd1
“ psi ` sjq

1{2

“ sipsi ` sjq
´1{2 ` sjpsi ` sjq

´1{2 “ s
1{2
i p1`

sj
si
q´1{2 ` s

1{2
j p

si
sj
` 1q´1{2

if s` denotes the `-th diagonal entry of sΣ
pnq2´p
d2

and sΣ
pnq2´p
d1

for ` P rmaxpd1, d2qs.
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If we write sΣ
pnq 2´p

2
d1,Tc

P Mpd1´rqˆpd1´rq for the diagonal matrix containing the d1 ´ r

last diagonal elements of sΣ
pnq2´p
d1

and sΣ
pnq 2´p

2
d2,Tc

P Mpd1´rqˆpd1´rq for the diagonal matrix

containing the d2 ´ r last diagonal elements of sΣ
pnq2´p
d2

, it follows from (41) that

›

›U
pnq˚
Tc

ηpn`1qV
pnq
Tc

›

›

p

Sp
“2´

p
2

›

›

›
U
pnq˚
Tc

rU pnq
„

sΣ
pnq 2´p

2
d1

pDLΩqmat`pDRΩqmat
sΣ
pnq 2´p

2
d2



rV pnq˚V
pnq
Tc

›

›

›

p

Sp

ď 2´
p
2

›

›

›

sΣ
pnq 2´p

2
d1,Tc

“

pDLΩqmat

‰

Tc,Tc

›

›

›

p

Sp

`

›

›

›

“

pDRΩqmat

‰

Tc,Tc
sΣ
pnq 2´p

2
d2,Tc

›

›

›

p

Sp

with the notation that MTc,Tc denotes the submatrix of M which contains the intersection
of the last d1 ´ r rows of M with its last d2 ´ r columns.

Now, Hölder’s inequality for Schatten-p quasi-norms (e.g., Gohberg et al. (2000, Theo-
rem 11.2)) can be used to see that

›

›

›

sΣ
pnq 2´p

2
d1,Tc

“

pDLΩqmat

‰

Tc,Tc

›

›

›

p

Sp

ď

›

›

›

sΣ
pnq 2´p

2
Tc

›

›

›

p

S 2p
2´p

›

›

›

“

pDLΩqmat

‰

Tc,Tc

›

›

›

p

S2

. (42)

Inserting the definition

›

›

›

sΣ
pnq 2´p

2
Tc

›

›

›

p

S 2p
2´p

“

ˆ d
ÿ

i“r`1

`

σ2
i pX

pnqq ` εpnq2
˘

2pp2´pq
p2´pq4

˙

2´p
2

“

ˆ d
ÿ

i“r`1

`

σ2
i pX

pnqq` εpnq2
˘

p
2

˙

2´p
2

allows us to rewrite the first factor, while the second factor can be bounded by

›

›

“

pDLΩqmat

‰

Tc,Tc

›

›

p

S2
ď

›

›pDLΩqmat

›

›

p

S2
ď }Ωmat}

p
S2
“ }prV pnq b rU pnqq˚ĂW pnq 1

2 ηpn`1q
vec }

p
`2

“ }ĂW pnq 1
2 ηpn`1q

vec }
p
`2
“ }ηpn`1q

vec }
p

`2pĂW pnqq
,

as the matrix DL P Md1d2ˆd1d2 from (41) fulfills }DL}S8 ď 1 since its entries are bounded
by 1; we also recall the definition (40) of Ω and that rV pnq and rU pnq are unitary.

The term
›

›

›

“

pDRΩqmat

‰

Tc,Tc
sΣ
pnq 2´p

2
d2,Tc

›

›

›

p

Sp

in the bound of
›

›U
pnq˚
Tc

ηpn`1qV
pnq
Tc

›

›

p

Sp
can be esti-

mated analogously. Combining this with (38), we obtain

}ηpn`1q ´ η
pn`1q
2r }

2p
Sp
ď 2´p

´

2
´

d
ÿ

i“r`1

`

σ2
i pX

pnqq ` εpnq2
˘

p
2

¯

2´p
2
¯2
}ηpn`1q

vec }
2p

`2pĂW pnqq
,

concluding the proof of statement (i).
(ii) Using the strong Schatten-p null space property (18) of order 2r and that ηpn`1q P

N pΦq, we estimate

}ηpn`1q}
2p
S2
“
`

}η
pn`1q
2r }2S2

`}ηpn`1q´ η
pn`1q
2r }2S2

˘p
ď

´γ
2{p
2r ` γ

2{p´1
2r

p2rq2{p´1
}ηpn`1q´ η

pn`1q
2r }2Sp

¯p

ď
γ2´p

2r pγ2r ` 1qp

p2rq2´p
}ηpn`1q ´ η

pn`1q
2r }

2p
Sp
ď 2p

γ2´p
2r

22´pr2´p
}ηpn`1q ´ η

pn`1q
2r }

2p
Sp
,
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where we use in the second inequality a version of Stechkin’s lemma (Kabanava et al., 2016,
Lemma 3.1), which leads to the estimate

}ηpn`1q ´ η
pn`1q
2r }2S2

ď
}η
pn`1q
2r }

2´p
S2

p2rq2´p
}ηpn`1q ´ η

pn`1q
2r }

p
Sp
ď

γ
2{p´1
2r

p2rq2{p´1
}ηpn`1q ´ η

pn`1q
2r }2Sp

.

Combining the estimate for }ηpn`1q}
2p
S2

with statement (i), this results in

}ηpn`1q}
2p
S2
ď 2p

γ2´p
2r

r2´p

ˆ d
ÿ

i“r`1

`

σ2
i pX

pnqq ` εpnq2
˘

p
2

˙2´p

}ηpn`1q
vec }

2p

`2pĂW pnqq
,

which shows statement (ii).

(iii) For the third statement, we use the strong Schatten-p NSP (18) to see that

}ηpn`1q}
p
Sp
“ }η

pn`1q
2r }

p
Sp
` }ηpn`1q ´ η

pn`1q
2r }

p
Sp
ď p1` γ2rq}η

pn`1q ´ η
pn`1q
2r }

p
Sp
,

and combine this with statement (i).

Lemma 21 Let pXpnqqn be the output sequence of Algorithm 1 with parameters Φ, Y, r and

0 ă p ď 1, and ĂW pnq be the harmonic mean weight matrix matrix (10) for n P N. Let

X0 PMd1ˆd2 be a rank-r matrix such that ΦpX0q “ Y with condition number κ :“ σ1pX0q

σrpX0q
.

(i) If (24) is fulfilled for iteration n, then ηpn`1q “ Xpnq ´X0 fulfills

›

›

›
ηpn`1q

vec

›

›

›

2p

`2pĂW pnqq
ď

4prp{2σrpX0q
ppp´1q

p1´ ζq2p
κp
}ηpnq}2p´p

2

S8

pεpnqq2p´p2
}ηpn`1q}

p
S2
.

(ii) Under the same assumption as for (i), it holds that

›

›

›
ηpn`1q

vec

›

›

›

2p

`2pĂW pnqq
ď

7prp{2 maxpr, d´ rqp{2σrpX0q
ppp´1q

p1´ ζq2p
κp
}ηpnq}2p´p

2

S8

pεpnqq2p´p2
}ηpn`1q}

p
S8
.

Proof (i) Recall that Xpn`1q “ arg min
ΦpXq“Y

}Xvec}
2
`2pĂW pnqq

is the minimizer of the weighted

least squares problem with weight matrix ĂW pnq. As ηpn`1q “ Xpn`1q ´ X0 is in the null
space of the measurement map Φ, it follows from Lemma 16 that

0 “ xĂW pnqXpn`1q
vec , ηpn`1q

vec y “ xĂW pnqpηpn`1q `X0qvec, η
pn`1q
vec y,

which is equivalent to

›

›

›
ηpn`1q

vec

›

›

›

2

`2pĂW pnqq
“ xĂW pnqηpn`1q

vec , ηpn`1q
vec y “ ´xĂW pnqpX0qvec, η

pn`1q
vec y.
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Using Hölder’s inequality, we can therefore estimate

›

›

›
ηpn`1q

vec

›

›

›

2

`2pĂW pnqq
“ ´xĂW pnqpX0qvec, η

pn`1q
vec y`2 “ ´xr

ĂW pnqpX0qvecsmat, η
pn`1qyF

ď
›

›

“

ĂW pnqpX0qvec

‰

mat

›

›

S2
}ηpn`1q}S2 .

(43)

To bound the first factor, we first rewrite the action of ĂW pnq on X0 in the matrix space as

”

ĂW pnqpX0qvec

ı

mat
“ 2rprV pnqb rU pnqq

`

sΣ
pnq2´p
d1

‘ sΣ
pnq2´p
d2

˘´1
prV pnqb rU pnqq˚pX0qvecsmat“

“ rU pnq
`

Hpnq ˝ prU pnq˚X0
rV pnqq

˘

rV pnq˚,

using (39) and Lemma 20 about the action of inverses of Kronecker sums, with the notation
that Hpnq PMd1ˆd2 such that

H
pnq
ij “ 2

”

1tiďdupσ
2
i pX

pnqq ` εpnq2q
2´p
2 ` 1tjďdupσ

2
j pX

pnqq ` εpnq2q
2´p
2

ı´1

for i P rd1s, j P rd2s, where 1tiďdu “ 1 if i ď d and 1tiďdu “ 0 otherwise. This enables us to
estimate

›

›

›

“

ĂW pnqpX0qvec

‰

mat

›

›

›

2

S2

“

›

›

›

rU pnq
`

Hpnq˝ prU pnq˚X0
rV pnqq

˘

rV pnq˚
›

›

›

2

S2

“

›

›

›
Hpnq˝ prU pnq

˚

X0
rV pnqq

›

›

›

2

S2

“

›

›

›

›

›

Hpnq ˝

˜

U
pnq˚
T X0V

pnq
T U

pnq˚
T X0V

pnq
Tc

U
pnq˚

Tc
X0V

pnq
T U

pnq˚
Tc

X0V
pnq
Tc

¸›

›

›

›

›

2

S2

“

›

›

›
H
pnq
T,T ˝ pU

pnq˚
T X0V

pnq
T q

›

›

›

2

S2

`

›

›

›
H
pnq
T,Tc

˝ pU
pnq˚
T X0V

pnq
Tc
q

›

›

›

2

S2

`

›

›

›
H
pnq
Tc,T

˝ pU
pnq˚
Tc

X0V
pnq
T q

›

›

›

2

S2

`

›

›

›
H
pnq
Tc,Tc

˝ pU
pnq˚
Tc

X0V
pnq
Tc
q

›

›

›

2

S2

,

(44)

using the notation from the proof of Lemma 20. To bound the first summand, we calculate

›

›

›
H
pnq
T,T ˝pU

pnq˚
T X0V

pnq
T q

›

›

›

S2

ď

›

›

›
H
pnq
T,T ˝pU

pnq˚
T XpnqV

pnq
T q

›

›

›

S2

`

›

›

›
H
pnq
T,T ˝p´U

pnq˚
T ηpnqV

pnq
T q

›

›

›

S2

ď

›

›

›
H
pnq
T,T ˝ Σ

pnq
T

›

›

›

S2

`

›

›

›
H
pnq
T,T ˝ pU

pnq˚
T ηpnqV

pnq
T q

›

›

›

S2

ď

ˆ r
ÿ

i“1

σ2
i pX

pnqq
`

σ2
i pX

pnqq ` εpnq2
˘2´p

˙1{2

`
r

max
i,j“1

|H
pnq
i,j |}U

pnq˚
T ηpnqV

pnq
T }S2

ď
?
rσp´1

r pXpnqq ` pσ2
r pX

pnqq ` εpnq2q
p´2
2 }U

pnq˚
T ηpnqV

pnq
T }S2

ď
?
rσp´1

r pXpnqq ` σp´2
r pXpnqq

?
r}ηpnq}S8 “

?
rσp´2

r pXpnqq
“

σrpX
pnqq ` }ηpnq}S8

‰

,

denoting Σ
pnq
T “ diagpσipX

pnqqqri“1 and that the matrices U
pnq
T and V

pnq
T contain the first r

left resp. right singular vectors of Xpnq in the second inequality, together with the estimates
}X}S1 ď

?
r}X}S2 ď r}X}S8 for pr ˆ rq-matrices X.
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With the notations s0
r :“ σrpX0q and s0

1 :“ σ1pX0q, we note that

σrpX
pnqq ě s0

rp1´ ζq,

as the assumption (24) implies that

s0
r “ σrpX0q “ σrpX

pnq ´ ηpnqq ď σrpX
pnqq ` σ1pη

pnqq ď σrpX
pnqq ` ζs0

r ,

using Bernstein (2009, Proposition 9.6.8) in the first inequality.

Therefore, we can bound the first summand of (44) such that

›

›

›
H
pnq
T,T ˝ pU

pnq˚
T X0V

pnq
T q

›

›

›

S2

ď
?
rps0

rp1´ζqq
p´2rs0

rp1´ζq`ζs
0
rs “

?
rps0

rq
p´1p1´ζqp´2. (45)

For the second summand in the estimate of
›

›

›

“

ĂW pnqpX0qvec

‰

mat

›

›

›

2

S2

, similar arguments and

again assumption (24) are used to compute

›

›

›
H
pnq
T,Tc

˝ pU
pnq˚
T X0V

pnq
Tc
q

›

›

›

S2

ď

›

›

›
H
pnq
T,Tc

˝

“0
hkkkkkkkkkikkkkkkkkkj

pU
pnq˚
T XpnqV

pnq
Tc
q

›

›

›

S2

`

›

›

›
H
pnq
T,Tc

˝ pU
pnq˚
T ηpnqV

pnq
Tc
q

›

›

›

S2

ď max
iPrrs

jPtr`1,...,d2u

|H
pnq
i,j |}U

pnq˚
T ηpnqV

pnq
Tc
}S2

ď
2}U

pnq˚
T ηpnqV

pnq
Tc
}F

“

pσrpXpnqq2 ` εpnq2q
2´p
2

‰

ď 2σrpX
pnqqp´2}U

pnq˚
T ηpnqV

pnq
Tc
}S2

ď 2
?
rps0

rp1´ ζqq
p´2}ηpnq}S8 ď 2ζ

?
rps0

rq
p´1p1´ ζqp´2.

(46)

From exactly the same arguments it follows that also

›

›

›
H
pnq
Tc,T

˝ pU
pnq˚
Tc

X0V
pnq
T q

›

›

›

S2

ď 2ζ
?
rps0

rq
p´1p1´ ζqp´2. (47)

It remains to bound the last summand
›

›

›
H
pnq
Tc,Tc

˝ pU
pnq˚
Tc

X0V
pnq
Tc
q

›

›

›

2

S2

. We see that

›

›

›
H
pnq
Tc,Tc

˝ pU
pnq˚
Tc

X0V
pnq
Tc
q

›

›

›

S2

ď max
iPtr`1,...,d1u
jPtr`1,...,d2u

ˇ

ˇH
pnq
i,j

ˇ

ˇ}U
pnq˚
Tc

X0V
pnq
Tc
}S2

ď pεpnqqp´2}U
pnq˚
Tc

X0V
pnq
Tc
}S2 ď pε

pnqqp´2}U
pnq˚
Tc

U0
T }S8}S

0}S2}V
0˚
T V

pnq
Tc
}S8

ď pεpnqqp´2

?
2}ηpnq}S8
p1´ ζqs0

r

?
rs0

1

?
2}ηpnq}S8
p1´ ζqs0

r

“ 2
?
r}ηpnq}2S8pε

pnqqp´2p1´ ζq´2ps0
rq
´1 s

0
1

s0
r

,

(48)

where Hölder’s inequality for Schatten norms was used in the third inequality. In the fourth
inequality, Wedin’s singular value perturbation bound of Lemma 19 is used with the choice
Z “ X0, sZ “ Xpnq, α “ s0

r and δ “ p1 ´ ζqs0
r , and finally εpnq ď ζs0

r in the last inequality,
which is implied by the rule (14) for εpnq together with assumption (24).
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Summarizing the estimates (45)–(48), we conclude that

›

›

›

“

ĂW pnqpX0qvec

‰

mat

›

›

›

2

S2

ď
rps0

rq
2p´2

p1´ ζq4´2p

„

1` 8ζ2 ` 4
}ηpnq}4S8
p1´ ζq2p

pεpnqq2p´4ps0
rq
´2p

ˆ

s0
1

s0
r

˙2 

“
rps0

rq
2p´2

p1´ ζq4

„

p1` 8ζ2qp1´ ζq2p ` 4
}ηpnq}4´2p

S8

pεpnqq4´2p

}ηpnq}2pS8
ps0
rq

2p

ˆ

s0
1

s0
r

˙2 

ď
rps0

rq
2p´2

p1´ ζq4

„

9` 4
}ηpnq}4´2p

S8

pεpnqq4´2p
ζ2pκ2



ď
13rps0

rq
2p´2

p1´ ζq4

„

}ηpnq}4´2p
S8

pεpnqq4´2p
κ2



,

as 0 ă ζ ă 1, εpnq ď σr`1pX
pnqq “ }X

pnq
Tc
}S8 ď }η

pnq}S8 and using the assumption (24) in
the second inequality. This concludes the proof of Lemma 21(i) together with inequality
(43) as 13p{2 ď 16p{2 “ 4p.

(ii) For the second statement of Lemma 21, we proceed similarly as before, but note
that by Hölder’s inequality, also

›

›

›
ηpn`1q

vec

›

›

›

2

`2pĂW pnqq
ď

›

›

“

ĂW pnqpX0qvec

‰

mat

›

›

S1
}ηpn`1q}S8 , (49)

cf. (43). Furthermore

›

›

“

ĂW pnqpX0qvec

‰

mat

›

›

S1
ď

›

›

›
H
pnq
T,T ˝ pU

pnq˚
T X0V

pnq
T q

›

›

›

S1

`

›

›

›
H
pnq
T,Tc

˝ pU
pnq˚
T X0V

pnq
Tc
q

›

›

›

S1

`

›

›

›
H
pnq
Tc,T

˝ pU
pnq˚
Tc

X0V
pnq
T q

›

›

›

S1

`

›

›

›
H
pnq
Tc,Tc

˝ pU
pnq˚
Tc

X0V
pnq
Tc
q

›

›

›

S1

.
(50)

The four Schatten-1 norms can then be estimated by maxpr, pd ´ rqq1{2 times the corre-
sponding Schatten-2 norms. Using then again inequalities (45)–(48), we conclude the proof
of (ii).

We proceed now to the proof of Theorem 11.

Proof First we note that

˜

d
ÿ

i“r`1

`

σ2
i pX

pnqq ` εpnq2
˘

p
2

¸2´p

ď 2p´
p2

2 pd´ rq2´pσr`1pX
pnqqpp2´pq (51)

as εpnq ď σr`1pX
pn`1qq due to the choice of εpnq in (14). We proceed by induction over

n ě sn. Theorem 20(ii) and Theorem 21(ii) imply together with (51) that for n “ sn,

}ηpn`1q}
p
S8
ď
}ηpn`1q}

2p
S2

}ηpn`1q}
p
S8

ď 2pγ2´p
2r 2p´

p2

2

´d´ r

r

¯2´p{2 7prpps0
rq
ppp´1q

p1´ ζq2p
κp}ηpnq}2p´p

2

S8

ď 25pγ2´p
2r

´d´ r

r

¯2´p{2 rpps0
rq
ppp´1q

p1´ ζq2p
κp}ηpnq}

pp2´pq
S8

(52)

as σr`1pX
pnqq “ εpnq by assumption for n “ sn.
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Similarly, by Lemma 20(iii), Lemma 21(ii) and (51), the error in the Schatten-p quasi-
norm fulfills

}ηpn`1q}
2p
Sp
ď p1` γ2rq

222`2p
`

d´ r
˘2´p rp{2ps0

rq
ppp´1q

p1´ ζq2p
κp}ηpnq}

pp2´pq
S8

}ηpn`1q}
p
S2

(53)

for n “ sn. Using the strong Schatten-p null space property of order 2r for the operator Φ,
we see with the arguments of the proof of Lemma 20(ii) that

}ηpnq}pS8 ď }η
pnq}

p
S2
ď

2p´1γ
1´p{2
2r

r1´p{2
}ηpnq}pSp

and also }ηpn`1q}
p
S2
ď

2p´1γ
1´p{2
2r

r1´p{2 }ηpn`1q}
p
Sp

. Inserting this in (53) and dividing by }ηpn`1q}
p
Sp

,
we obtain

}ηpn`1q}
p
Sp
ď 24pp1` γ2rq

2γ2´p
2r

´d´ r

r

¯2´p rp{2ps0
rq
ppp´1q

p1´ ζq2p
κp}ηpnq}

pp1´pq
S8

}ηpnq}pSp
.

Under the assumption that (25) holds, it follows from this and (52) that

}ηpn`1q}
p
S8
ď }ηpnq}pS8 and }ηpn`1q}

p
Sp
ď }ηpnq}pSp

(54)

for n “ sn, which also entails the statement of Theorem 11 for this iteration.
Let now n1 ą sn such that (54) is true for all n with n1 ą n ě sn.
If σr`1pX

pn1qq ď εpn
1´1q, then εpn

1q “ σr`1pX
pn1qq and the arguments from above show

(54) also in the case n “ n1.
Otherwise σr`1pX

pn1qq ą εpn
1´1q and there exists n1 ą n2 ě sn such that εpn

1q “ εpn
2q “

σr`1pX
pn2qq. Then

}ηpn
1`1q}

p
S8
ď14p

γ2´p
2r

r2´p

„ d
ÿ

i“r`1

´σ2
i pX

pn1qq

εpn2q2
` 1

¯

p
2

2´p rp{2 maxpr, d´ rqp{2

ps0
rq
pp1´pqp1´ ζq2p

κp}ηpn
1q}
pp2´pq
S8

and we compute

„ d
ÿ

i“r`1

´σ2
i pX

pn1qq

εpn2q2
` 1

¯

p
2

2´p

ď

„ d
ÿ

i“r`1

σpi pX
pn1qq

εpn2qp
` pd´ rq

2´p

ď

„

}ηpn
1q}
p
Sp

εpn2qp
` pd´ rq

2´p

ď

„

}ηpn
2q}

p
Sp

εpn2qp
` pd´ rq

2´p

ď

„

2p1` γ2rq}X
pn2q
Tc

}
p
Sp

p1´ γ2rqεpn
2qp

` pd´ rq

2´p

ď

ˆ

3` γ2r

1´ γ2r

˙2´p

pd´ rq2´p,

using that X0 is a matrix of rank at most r in the second inequality, the inductive hypothesis
in the third inequality and an analogue of (61) for a Schatten-p quasi-norm on the left hand
side (cf. Kabanava et al. (2016, Lemma 3.2) for the corresponding result for p “ 1) in the
last inequality. The latter argument uses the assumption on the null space property. This
shows that

}ηpn
1`1q}

p
S8
ď µ}ηpn

1q}
pp2´pq
S8
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for

rµ :“ 24pγ2´p
2r

´

p3` γ2rqpd´ rq

p1´ γ2rqr

¯2´p rp{2ps0
rq
ppp´1q

p1´ ζq2p
κp max

´

2ppd´ rq
p
2 , p1` γ2rq

2
¯

,

and }ηpn
1`1q}

p
S8
ď }ηpn

1q}
p
S8

under the assumption (25) of Theorem 11, as rµ ď µ with µ as
in (26). Indeed, it holds that rµ ď µ since

max
´

2ppd´ rq
p
2 , p1` γ2rq

2
¯´d´ r

r

¯2´p
rp{2 ď 2pp1` γ2rq

2
´d´ r

r

¯2´p{2
rp.

The same argument shows that }ηpn
1`1q}

p
Sp
ď }ηpn

1q}
p
Sp

, which finishes the proof.

Remark 22 We note that the weight matrices of the previous IRLS approaches IRLS-col

and IRLS-row Fornasier et al. (2011); Mohan and Fazel (2012) at iteration n could be
expressed in our notation as

Id2 bW
pnq
L :“ Id2 b U

pnqpsΣ
pnq
d1
qp´2U pnq˚

and
W
pnq
R b Id1 :“ V pnqpsΣ

pnq
d2
qp´2V pnq˚ b Id1 ,

respectively, cf. Section 2.2, if Xpnq “ U pnqΣpnqV pnq˚ “ U
pnq
T Σ

pnq
T V

pnq˚
T ` U

pnq
Tc

Σ
pnq
Tc
V
pnq˚
Tc

is

the SVD of the iterate Xpnq with U
pnq
T and V

pnq
T containing the r first left- and right singular

vectors.
Now let

T pnq :“
 

U
pnq
T Z˚1 ` Z2V

pnq˚
T : Z1 PMd1ˆr, Z2 PMd2ˆr

(

be the tangent space of the smooth manifold of rank-r matrices at the best rank-r approx-

imation U
pnq
T Σ

pnq
T V

pnq˚
T of Xpnq, or, put differently, the direct sum of the row and column

spaces of U
pnq
T Σ

pnq
T V

pnq˚
T .

The fact that left- or right-sided weight matrices do not lead to algorithms with super-
linear convergence rates for p ă 1 can be explained by noting that there are always parts of
the space T pnq that are equipped with too large weights if Xpnq “ U pnqΣpnqV pnq˚ is already

approximately low-rank. In particular, proceeding as in (44), we obtain for Id2 bW
pnq
L

›

›

›

“

Id2 bW
pnq
L pX0qvec

‰

mat

›

›

›

2

S2

“

›

›

›

`

sΣ
pnq
T

˘p´2
U
pnq˚
T X0V

pnq
T

›

›

›

2

S2

`

›

›

›

`

sΣ
pnq
T

˘p´2
U
pnq˚
T X0V

pnq
Tc

›

›

›

2

S2

`

›

›

›

›

`

sΣTc
pnq

˘p´2
U
pnq˚
Tc

X0V
pnq
T

›

›

›

›

2

S2

`

›

›

›

`

sΣ
pnq
Tc

˘p´2
U
pnq˚
Tc

X0V
pnq
Tc

›

›

›

2

S2

if sΣ
pnq
T denotes the diagonal matrix with the first r non-zero entries of sΣ

pnq
d1

and sΣ
pnq
Tc

the
one of the remaining entries.

Here, the third of the four summands would become too large for p ă 1 to allow for
a superlinear convergence when the last d ´ r singular values of Xpnq approach zero. An

analogous argument can be used for the right-sided weight matrix W
pnq
R b Id1 and, notably,

also for arithmetic mean weight matrices W
pnq
(arith) “ Id2bW

pnq
L `W

pnq
R bId1, cf. Section 2.3.
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Appendix A. Kronecker and Hadamard products

For two matrices A “ paijqiPrd1s,jPrd3s P Cd1ˆd3 and B P Cd2ˆd4 , we call the matrix repre-
sentation of their tensor product with respect to the standard bases the Kronecker product
AbB P Cd1¨d2ˆd3¨d4 . By its definition, AbB is a block matrix of d2ˆd4 blocks whose block
of index pi, jq P rd1s ˆ rd3s is the matrix aijB P Rd2ˆd4 . This implies, e.g., for A P Cd1ˆd3
with d1 “ 2 and d3 “ 3 that

AbB “

„

a11 a12 a13

a21 a22 a23



bB “

„

a11B a12B a13B

a21B a22B a23B



.

The Kronecker product is useful for the elegant formulation of matrix equations involving
left and right matrix multiplications with the variable X, as

AXB˚ “ Y if and only if pB bAqXvec “ Yvec.

We define the Hadamard product A ˝ B P Cd1ˆd2 of two matrices A P Cd1ˆd2 and
B P Cd1ˆd2 as their entry-wise product

pA ˝Bqi,j “ Ai,jBi,j

with i P rd1s and j P rd2s. The Hadamard product is also known as Schur product in the
literature.

Furthermore, if d1 “ d3 and d2 “ d4, we define the Kronecker sum A‘ B P Cd1d2ˆd1d2
of two matrices A P Cd1ˆd1 and B P Cd2ˆd2 as the matrix

A‘B “ pId2 bAq ` pB b Id1q. (55)

Note that equations of the form AX `XB˚ “ Y can be rewritten as

pA‘BqXvec “ Yvec,

using again the vectorizations of X and Y . An explicit formula that expresses the inverse
pA‘Bq´1 of the Kronecker sum A‘B is provided by the following lemma.
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Lemma 23 (Jameson (1968)) Let A P Hd1ˆd1 and B P Hd2ˆd2, where one of the matri-
ces is positive definite and the other positive semidefinite. If we denote the singular vectors
of A by ui P Cd1, i P rd1s, its singular values by σi, i P rd1s and the singular vectors resp.
values of B by vj P Cd2 resp. µj, j P rd2s, then

pA‘Bq´1 “

d1
ÿ

i“1

d2
ÿ

j“1

vjv
˚
j b uiu

˚
i

σi ` µj
. (56)

Furthermore, the action of pA‘Bq´1 on the matrix space Md1ˆd2 can be written as

“

pA‘Bq´1Zvec

‰

mat
“ U

`

H ˝ pU˚ZV q
˘

V ˚. (57)

for Z P Md1ˆd2, U “ ru1, . . . , ud1s, and V “ rv1, . . . , vd2s and the matrix H P Md1ˆd2 with
the entries Hi,j “ pσi ` µjq

´1, i P rd1s, j P rd2s.

Appendix B. Proofs of preliminary statements in Section 6

B.1 Proof of Lemma 14: Main part

First, we define the function

fpX,εpZq “ JppX, ε, Zq “

$

’

&

’

%

p
2}Xvec}

2
`2pĂW pZqq

`
ε2p
2

d
ř

i“1
σipZq `

2´p
2

d
ř

i“1
σipZq

p
pp´2q if rankpZq “ d,

`8 if rankpZq ă d,

for X P Md1ˆd2 , ε ą 0 fixed and with Z P Md1ˆd2 as its only argument. We note that the
set of minimizers of fpX,εpZq does not contain an instance Z with rank smaller than d as

the value of fpX,εpZq is infinite at such points and, therefore, it is sufficient to search for
minimizers on the set Ω “ tZ PMd1ˆd2 | rankpZq “ du of matrices with rank d. We observe
that the set Ω is an open set and that we have that

(a) fpX,εpZq is lower semi-continuous, which means that any sequence pZkqkPN with Zk
kÑ8
ÝÑ

Z fulfills lim inf
kÑ8

fpX,εpZ
kq ě fpX,εpZq,

(b) fpX,εpZq ě α for all Z PMd1ˆd2 for some constant α,

(c) fpX,εpZq is coercive, i.e., for any sequence pZkqkPN with }Zk}F
kÑ8
ÝÑ 8, we have

fpX,εpZ
kq

kÑ8
ÝÑ 8.

Property (a) is true as fpX,εpZqq|Ω is a concatenation of an indicator function of an open
set, which is lower semi-continuous and a sum of continuous functions on Ω. Property (b)
is obviously true for the choice α “ 0.

To justify point (c), we note that fpX,εpZq ą
ε2p
2

d
ř

i“1
σipZq “

ε2p
2 }Z}S1 ě

ε2p
2 }Z}F and

therefore, coercivity is clear from its definition. As a consequence from (a) and (c), it is
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also true that the level sets LC “
!

Z PMd1ˆd2 |f
p
X,εpZq ď C

)

are closed and bounded and,

therefore, compact.
Via the direct method of the calculus of variations, we conclude from the properties

(a)–(c) that fpX,εpZq has at least one global minimizer belonging to the set of critical points

of fpX,εpZq (Dacorogna, 1989, Theorem 1).

To characterize the set of critical points of fpX,εpZq, its derivative with respect to Z is
calculated explicitly and equated with zero in Subsection B.2. The solution of the resulting

equation reveals that Zopt “
řd
i“1pσ

2
i pXq ` ε2q

p´2
2 uiv

˚
i “:

řd
i“1 rσiuiv

˚
i is the only critical

point and consequently the unique global minimizer of fpX,εpZq. We define the matrices

WL
opt :“

řd
i“1 rσiuiu

˚
i and WR

opt :“
řd
i“1 rσiviv

˚
i , and note that ĂW pZoptq “ 2

`

pWR
optq

´1 ‘

pWL
optq

´1
˘´1

with Definition 13. To verify the second part of the theorem, we simply plug
the optimal solution Zopt into the functional Jp and compute using (56) that

JppX, ε, Zoptq “
p

2
}Xvec}

2
`2pĂW pZoptqq

`
ε2p

2

d
ÿ

i“1

rσi `
2´ p

2

d
ÿ

i“1

rσ
p

p´2

i

“
p

2

d
ÿ

i“1

«

σ2
i pXqpu

˚
i b v

˚
i q2

˜

d2
ÿ

k“1

d1
ÿ

j“1

uku
˚
k b vjv

˚
j

rσ´1
k ` rσ´1

j

¸

pui b viq

ff

ii

`
ε2p

2

d
ÿ

i“1

rσi `
2´ p

2

d
ÿ

i“1

rσ
p

p´2

i

“
p

2

d
ÿ

i“1

pσ2
i pXq ` ε

2qrσi `
2´ p

2

d
ÿ

i“1

rσ
p

p´2

i

“
p

2

d
ÿ

i“1

pσ2
i pXq ` ε

2qpσ2
i pXq ` ε

2q
p´2
2 `

2´ p

2

d
ÿ

i“1

pσ2
i pXq ` ε

2q
p
2

“

d
ÿ

i“1

pσ2
i pXq ` ε

2q
p
2 .

B.2 Proof of Lemma 14: Critical points of fpX,ε

Let us without loss of generality consider the case d “ d1 “ d2 and define

Ω “ tZ PMdˆd s.t. rankpZq “ du .

As already mentioned in (27), the harmonic mean matrix ĂW pZq can then be rewritten as

ĂW pZq “ 2ĂW1

`

ĂW1 `ĂW2

˘´1
ĂW2 “ 2pĂW´1

1 `ĂW´1
2 q´1

for Z P Ω with the definitions ĂW1 :“ Id b pZZ
˚q

1
2 and ĂW2 “ pZ

˚Zq
1
2 b Id. For Z P Ω, we

reformulate the auxiliary functional such that

fpX,εpZq “ J ppX, ε, Zq “
p

2
}Xvec}

2
`2pĂW pZqq

`
ε2p

2

d
ÿ

i“1

σipZq `
2´ p

2

d
ÿ

i“1

σipZq
p

pp´2q

“
p

2
}Xvec}

2
`2pĂW pZqq

`
ε2p

2
}pZ˚Zq1{2}2F `

2´ p

2
}pZ˚Zq

p
2pp´2q }2F .

To identify the set of critical points of fpX,εpZq located in Ω, we compute its derivative with
respect to Z using the derivative rules (7), (12), (13), (15), (16), (18), (20) in Chapter 8.2
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and Theorem 3 in Chapter 8.4 of (Magnus and Neudecker, 1999) in the following. Using
the notation of Magnus and Neudecker (1999), we calculate

BfpX,εpZq “ ´
p

2
tr
´

X˚vec
ĂWBĂW´1

ĂWXvec

¯

`
pε2

4

´

tr
´

ZpZ˚Zq´
1
2 BZ˚

¯

` trppZ˚Zq´
1
2Z˚BZq

¯

´
p

4

´

tr
´

ZpZ˚Zq
4´p

2pp´2q BZ˚
¯

` trppZ˚Zq
4´p

2pp´2qZ˚BZq
¯

where

BĂW´1 “
1

2
B

”

pZZ˚q´
1
2 ‘ pZ˚Zq´

1
2

ı

“´
1

4

”´

pZ˚Zq´
3
2Z˚BZ ` BZ˚ZpZ˚Zq´

3
2

¯

b Id1

ı

´
1

4

”

Id2 b
´

BZpZZ˚q´
3
2Z˚ ` pZZ˚q´

3
2ZBZ˚

¯ı

.

(58)
We can reformulate the first term as follows using the cyclicity of the trace,

´
p

2
tr
´

X˚vec
ĂWBĂW´1

ĂWXvec

¯

“
p

8

”

tr
´

pĂWXvecq
˚
matp

ĂWXvecqmatpZ
˚Zq´

3
2Z˚BZ

¯

` tr
´

ZpZ˚Zq´
3
2 pĂWXvecq

˚
matp

ĂWXvecqmatBZ
˚
¯

` tr
´

Z˚pZZ˚q´
3
2 pĂWXvecqmatpĂWXvecq

˚
matBZ

¯

` tr
´

pĂWXvecqmatpĂWXvecq
˚
matpZZ

˚q´
3
2ZBZ˚

¯ı

.

To determine the critical points of fpX,εpZq, we summarize the calculations above, rear-
range the terms and equate the derivative with zero, such that

BfpX,εpZq “
p

8
tr
´”

pĂWXvecq
˚
matp

ĂWXvecqmatpZ
˚Zq´

3
2Z˚ ` Z˚pZZ˚q´

3
2 pĂWXvecqmatpĂWXvecq

˚
mat

`2ε2pZ˚Zq´
1
2Z˚ ´ 2pZ˚Zq

4´p
2pp´2qZ˚

ı

BZ
¯

`
p

8
tr
´”

ZpZ˚Zq´
3
2 pĂWXvecq

˚
matp

ĂWXvecqmat ` pĂWXvecqmatpĂWXvecq
˚
matpZZ

˚q´
3
2Z

`2ε2ZpZ˚Zq´
1
2 ´ 2ZpZ˚Zq

4´p
2pp´2q

ı

BZ˚
¯

“:
p

8
tr pABZq `

p

8
tr pA˚BZ˚q “

p

8
tr ppA‘AqBZq “ 0,

where

A “
”

pĂWXvecq
˚
matp

ĂWXvecqmatpZ
˚Zq´

3
2Z˚ ` Z˚pZZ˚q´

3
2 pĂWXvecqmatpĂWXvecq

˚
mat

`2ε2pZ˚Zq´
1
2Z˚ ´ 2pZ˚Zq

4´p
2pp´2qZ˚

ı

.
(59)

and hence an easy calculation as in (Duchi) gives

BfpX,εpZq

BZ
“

p
8 tr ppA‘AqBZq

BZ
“
p

8
pA‘Aq “ 0.

Now we have to find Z such that A ‘ A “ 0. This implies that all eigenvalues of
A ‘ A “ A b Id ` Id b A are equal to zero. The eigenvalues of the Kronecker sum of two
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matrices A1 and A2 with eigenvalues λs and µt with s, t P rds are the sum of the eigenvalues
λs ` µt. As in our case A “ A1 “ A2 this means that all eigenvalues of A itself have to be
zero. This is only possible if A is the zero matrix.

Let Z “ UΣV ˚ P Mdˆd with U, V P Ud and Σ P Mdˆd, where Σ “ diagpσq is a
diagonal matrix with ascending entries. We define the matrix H “ Hi,j “

2
σ´1
i `σ´1

j

for

i “ 1, . . . , d, j “ 1, . . . , d corresponding to the result of reshaping the diagonal of 2pΣ‘ Σq

into a d ˆ d-matrix. Using (57), we can express pĂWXvecqmat “ U
`

H ˝ pU˚XV q
˘

V ˚ and
denote B :“ H ˝ pU˚XV q.

Plugging the decomposition Z “ UΣV ˚ into (59), we can therefore calculate

A “ 0 ô pUBV ˚q˚pUBV ˚qpV Σ2V ˚q´3{2pUΣV ˚q˚ ` pUΣV ˚q˚pUΣ2U˚q˚q´3{2pUBV ˚qpUBV ˚q˚

` 2ε2pV Σ2V ˚q´1{2pUΣV ˚q˚ ´ 2pV Σ2V ˚q
4´p

2pp´2q pUΣV ˚q˚ “ 0

ô V B˚BΣ´2U˚ ` V Σ´2BB˚U˚ ` 2ε2V IdU
˚ ´ 2V Σ

2
p´2U˚ “ 0

ô B˚BΣ´2 ` Σ´2BB˚ ` 2ε2Id ´ 2Σ
2

p´2 “ 0.

(60)

We now note that 2ε2Id´2Σ
2

p´2 is diagonal and therefore, B˚BΣ´2`Σ´2BB˚ is diagonal
as well. Moreover, observe that B˚B ` Σ´2BB˚Σ2 is again a diagonal matrix and has a
symmetric first summand B˚B. As the sum or difference of symmetric matrices is again
symmetric also the second summand Σ´2BB˚Σ2 has to be symmetric, i.e., Σ´2BB˚Σ2 “

pΣ´2BB˚Σ2q˚ “ Σ2BB˚Σ´2. We conclude that it has to hold that BB˚Σ4 “ Σ4BB˚ and
hence Σ4 and BB˚ commute.

This is only possible if either Σ is a multiple of the identity or if BB˚ is diagonal.
Assuming the first case, (60) would imply that also BB˚ and B˚B have to be a multiple of
the identity. Therefore, this first case, where Σ is a multiple of the identity is a special case
of the second possible scenario, where BB˚ is diagonal. Hence, it suffices to further consider
the more general second case. (Considerations for B˚B can be carried out analogously.)

Diagonality of BB˚ only occurs if B is either orthonormal or diagonal. Assuming
orthonormality would lead to contradictions with the equations in (60). Hence B “ H ˝

pU˚XV q can only be diagonal.

Let now be X “ Ū S̄V̄ ˚ the singular value decomposition of X. As H has no zero entries
due to the full rank of W , this implies the diagonality of U˚Ū S̄V̄ ˚V . Consequently, U and
V can only be chosen such that P “ rU˚Ū sdˆd and P ˚ “ rV̄ ˚V sdˆd for a permutation
matrix P P Ud. The reshuffled indexing corresponding to P is denoted by ppiq P rds for
i P rds. Bearing in mind that Hii “ σi for i P rds, we obtain

pH ˝ pPS̄P ˚qq˚pH ˝ pPS̄P ˚qqΣ´2 ` Σ´2pH ˝ pPS̄P ˚qqpH ˝ pPS̄P ˚qq˚ ` 2ε2Id ´ 2Σ
2

p´2 “ 0

ô 2s̄2
ppiq ` 2ε2 “ 2σ

2
p´2

i for all i P rds

ô σi “ ps̄
2
ppiq ` ε

2q
p´2
2 for all i P rds.

As the diagonal of Σ was assumed to have ascending entries and the diagonal of S̄ has
descending entries, the permutation matrix P has to be equal to the identity matrix. From

P “ Id, it follows that U “ Ū and V “ V̄ and hence Σ “ pS̄2 ` ε2Idq
p´2
2 .
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Kümmerle and Sigl

We summarize our calculations by stating that

Zopt “ ŪΣV̄ ˚ “ ŪpS̄2 ` ε2Idq
p´2
2 V̄ ˚

is the only critical point of fpX,ε on the domain Ω.

The results extend for the case d1 ‰ d2, where the definition of ĂW pZq is adapted by
introducing the Moore-Penrose pseudo inverse of pZZ˚q1{2

ĂW pZq “ 2ĂW1

`

ĂW1 `ĂW2

˘´1
ĂW2 “ 2pĂW`

1 `
ĂW´1

2 q´1.

The corresponding derivative rule as pointed out in Theorem 5 in Chapter 8.4 of Magnus
and Neudecker (1999) can be used for the calculation in (58).

B.3 Proof of Lemma 16

The equality of the optimization problems (32) can easily be seen by the fact that only
the first summand of JppX, ε, Zq depends on X. Now, it is important to show first that
ĂW pZq “ 2prpZ˚Zq

1
2 s` ‘ rpZZ˚q

1
2 s`q´1 is positive definite as minimizing JppX, ε, Zq then

reduces to minimizing a quadratic form. Let Z “
řd
i“1 σiuiv

˚
i , where ui, vi for i P rds are

the left and right singular vector respectively and σi for i P rds are the singular values of Z.

Since Z˚Z “
řd
i“1 σ

2
i viv

˚
i ľ 0, also the generalized inverse root fulfills rpZZ˚q

1
2 s` ľ 0 and

for ZZ˚ “
řd
i“1 σ

2
i uiu

˚
i ľ 0, it follows that rpZZ˚q

1
2 s` ľ 0. We stress that at least one of

the matrices pZZ˚q
1
2 and pZ˚Zq

1
2 is positive definite and hence also ĂW pZq ą 0. With the

fact that ĂW pZq ą 0, the statement can be proven analogously to the results in (Fornasier
et al., 2011, Lemma 5.1).

B.4 Proof of Lemma 17

(a) With the minimization property that defines Xpn`1q in (29), the inequality εpn`1q ď εpnq,
and the minimization property that defines Zpn`1q in (28) and Lemma 14, the monotonicity
follows from

JppXpnq, εpnq, Zpnqq ě JppXpn`1q, εpnq, Zpnqq ě JppXpn`1q, εpn`1q, Zpnqq

ě JppXpn`1q, εpn`1q, Zpn`1qq.

(b) Using Theorem 14 and the monotonicity property of (a) for all n P N, we see that

}Xpnq}pSp
ď gp

εpnq
pXpnqq “ JppXpnq, εpnq, Zpnqq ď JppXp1q, εp0q, Zp0qq.

(c) The proof follows analogously to (Fornasier et al., 2011, Proposition 6.1) where only the

technical calculation to bound σp1
`

pĂW pnqq´1q requires to take into account that the spectrum
of a Kronecker sum A‘B consists of the pairwise sum of the spectra of A and B (Bernstein,
2009, Proposition 7.2.3).

B.5 Proof of Lemma 18

The first statement ĂW pXpnq, εpnqq “ ĂW pnq is clear from the definition of ĂW pX, εq and (10).
To show the necessity of (35), let X P Md1ˆd2 be a critical point of (34). Without loss
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of generality, let us assume that d1 ď d2. In this case, a short calculation shows that
gpε pXq “ tr

“

pXX˚ ` ε2Id1q
p{2

‰

. It follows from the matrix derivative rules of Magnus and
Neudecker (1999, (7),(15),(18),(20) of Chapter 8.2) that

∇gpε pXq “ ppXX˚ ` ε2Id1q
p´2
2 X “ p

d
ÿ

i“1

pσ2
i ` ε

2q
p´2
2 σiuiv

˚
i ,

using the singular value decomposition X “
řd
i“1 σiuiv

˚
i in the last equality. Using the

Kronecker sum inversion formula (56), we see that ∇gpε pXq “ p
“

ĂW pX, εqXvec

‰

mat
. The

proof can be continued analogously to (Daubechies et al., 2010, Lemma 5.2).

Appendix C. Proof of Theorem 9

For statement (i) of the convergence result of Algorithm 1, we use the following reverse
triangle inequalities implied by the strong Schatten-p NSP: Let X,X 1 P Md1ˆd2 such that
ΦpX ´X 1q “ 0. Then

}X 1 ´X}pF ď
2pγ

1´p{2
r

r1´p{2

1

1´ γr

´

}X 1}pSp
´ }X}pSp

` 2βrpXqSp

¯

, (61)

where βrpXqSp is defined in (22). This inequality can be proven using an adaptation of the
proof of the corresponding result for `p-minimization in (Gao et al., 2015, Theorem 13) and
the generalization of Mirksy’s singular value inequality to concave functions (Audenaert,
2014; Foucart, 2018). Furthermore, the proof of the similar statement in (Kabanava et al.,
2016, Theorem 12) can be adapted to show (61).

The further part of the proof of (i) as well as (ii) follow analogously to (Fornasier et al.,
2011, Theorem 6.11) and (Daubechies et al., 2010, Theorem 5.3) using the preliminary
results deduced in Section 6.

Statement (iii) is a direct consequence of Theorem 11, which is proven in Section 6.3.
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