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Abstract

We propose a constructive approach to estimating sparse, high-dimensional linear regression
models. The approach is a computational algorithm motivated from the KKT conditions
for the `0-penalized least squares solutions. It generates a sequence of solutions iteratively,
based on support detection using primal and dual information and root finding. We refer
to the algorithm as SDAR for brevity. Under a sparse Riesz condition on the design matrix
and certain other conditions, we show that with high probability, the `2 estimation error
of the solution sequence decays exponentially to the minimax error bound in O(log(R

√
J))

iterations, where J is the number of important predictors and R is the relative magnitude
of the nonzero target coefficients; and under a mutual coherence condition and certain
other conditions, the `∞ estimation error decays to the optimal error bound in O(log(R))
iterations. Moreover the SDAR solution recovers the oracle least squares estimator within
a finite number of iterations with high probability if the sparsity level is known. Com-
putational complexity analysis shows that the cost of SDAR is O(np) per iteration. We
also consider an adaptive version of SDAR for use in practical applications where the true
sparsity level is unknown. Simulation studies demonstrate that SDAR outperforms Lasso,
MCP and two greedy methods in accuracy and efficiency.
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1. Introduction

Consider the linear regression model

y = Xβ∗ + η (1)

where y ∈ Rn is a response vector, X ∈ Rn×p is the design matrix with
√
n-normalized

columns, β∗ = (β∗1 , . . . , β
∗
p)′ ∈ Rp is the vector of the underlying regression coefficients and

η ∈ Rn is a vector of random noises. We focus on the case where p � n and the model is
sparse in the sense that only a relatively small number of predictors are important. Without
any constraints on β∗ there exist infinitely many least squares solutions for (1) since it is
a highly undetermined linear system when p � n. These solutions usually over-fit the
data. Under the assumption that β∗ is sparse in the sense that the number of important
nonzero elements of β∗ is small relative to n, we can estimate β∗ by the solution of the `0
minimization problem

min
β∈Rp

1

2n
‖Xβ − y‖22, subject to ‖β‖0 ≤ s, (2)

where s > 0 controls the sparsity level. However, (2) is generally NP hard (Natarajan, 1995;
Chen et al., 2014), hence it is not tractable to design a stable and fast algorithm to solve
it, especially in high-dimensional settings.

In this paper we propose a constructive approach to approximating the `0-penalized
solution to (1). The approach is a computational algorithm motivated from the necessary
KKT conditions for the Lagrangian form of (2). It finds an approximate sequence of solu-
tions to the KKT equations iteratively based on support detection and root finding until
convergence is achieved. For brevity, we refer to the proposed approach as SDAR.

1.1 Literature review

Several approaches have been proposed to approximate (2). Among them the Lasso (Tib-
shirani, 1996; Chen et al., 1998), which uses the `1 norm of β in the constraint instead of
the `0 norm in (2), is a popular method. Under the irrepresentable condition on the design
matrix X and a sparsity assumption on β∗, Lasso is model selection (and sign) consistent
(Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Wainwright, 2009). Lasso is a con-
vex minimization problem. Several fast algorithms have been proposed, including LARS
(Homotopy) (Osborne et al., 2000; Efron et al., 2004; Donoho and Tsaig, 2008), coordinate
descent (Fu, 1998; Friedman et al., 2007; Wu and Lange, 2008), and proximal gradient
descent (Agarwal et al., 2012; Xiao and Zhang, 2013; Nesterov, 2013).

However, Lasso tends to overshrink large coefficients, which leads to biased estimates
(Fan and Li, 2001; Fan and Peng, 2004). The adaptive Lasso proposed by Zou (2006) and
analyzed by Huang et al. (2008b) in high-dimensions can achieve the oracle property under
certain conditions, but its requirements on the minimum value of the nonzero coefficients
are not optimal. Nonconvex penalties such as the smoothly clipped absolute deviation
(SCAD) penalty (Fan and Li, 2001), the minimax concave penalty (MCP) (Zhang, 2010a)
and the capped `1 penalty (Zhang, 2010b) were proposed to remedy these problems (but
these methods still require a minimum signal strength in order to achieve support recovery).
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Although the global minimizers (also certain local minimizers) of these nonconvex regular-
ized models can eliminate the estimation bias and enjoy the oracle property (Zhang and
Zhang, 2012), computing the global or local minimizers with the desired statistical proper-
ties is challenging, since the optimization problem is nonconvex, nonsmooth and large scale
in general.

There are several numerical algorithms for nonconvex regularized problems. The first
kind of such methods can be considered a special case (or variant) of minimization maxi-
mization algorithm (Lange et al., 2000; Hunter and Li, 2005) or of multi-stage convex relax-
ation (Zhang, 2010b). Examples include local quadratic approximation (LQA) (Fan and Li,
2001), local linear approximation (LLA) (Zou and Li, 2008), decomposing the penalty into
a difference of two convex terms (CCCP) (Kim et al., 2008; Gasso et al., 2009). The second
type of methods is the coordinate descent algorithms, including coordinate descent of the
Gauss-Seidel version (Breheny and Huang, 2011; Mazumder et al., 2011) and coordinate
descent of the Jacobian version, i.e., the iterative thresholding method (Blumensath and
Davies, 2008; She, 2009). These algorithms generate a sequence of solutions at which the
objective functions are nonincreasing, but the convergence of the sequence itself is generally
unknown. Moreover, if the sequence generated from multi-stage convex relaxation (starts
from a Lasso solution) converges, it converges to some stationary point which may enjoy
certain oracle statistical properties with the cost of a Lasso solver per iteration (Zhang,
2010b; Fan et al., 2014). Huang et al. (2018) proposed a globally convergent primal dual
active set algorithm for a class of nonconvex regularized problems. Recently, there has been
much effort to show that CCCP, LLA and the path following proximal-gradient method can
track the local minimizers with the desired statistical properties (Wang et al., 2013; Fan
et al., 2014; Wang et al., 2014; Loh and Wainwright, 2015).

Another line of research concerns the greedy methods such as the orthogonal matching
pursuit (OMP) (Mallat and Zhang, 1993) for solving (2) approximately. The main idea is
to iteratively select one variable with the strongest correlation with the current residual at
a time. Roughly speaking, the performance of OMP can be guaranteed if the small subma-
trices of X are well conditioned like orthogonal matrices (Tropp, 2004; Donoho et al., 2006;
Cai and Wang, 2011; Zhang, 2011b). Fan and Lv (2008) proposed a marginal correlation
learning method called sure independence screening (SIS), see also Huang et al. (2008a) for
an equivalent formulation that uses penalized univariate regression for screening. Fan and
Lv (2008) recommended an iterative SIS to improve the finite-sample performance. As they
discussed the iterative SIS also uses the core idea of OMP but it can select more features at
each iteration. There are several more recently developed greedy methods aimed at selecting
several variables a time or removing variables adaptively, such as iterative hard thresholding
(IHT) (Blumensath and Davies, 2009; Jain et al., 2014) or hard thresholding gradient de-
scent (GraDes) (Garg and Khandekar, 2009), adaptive forward-backward selection (FoBa)
(Zhang, 2011a).

Liu and Wu (2007) proposed a Mixed Integer Optimization (MIO) approach for solving
penalized classification and regression problems with a penalty that is a combination of `0
and `1 penalties. However, they only considered low-dimensional problems with p in the
10s and n in the 100s. Bertsimas et al. (2016) also considered an MIO approach for solving
the best subset selection problem in linear regression with a possible side constraint. Their
approach can solve problems with moderate sample sizes and moderate dimensions in min-
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utes, for example, for (n, p) ≈ (100, 1000) or (n, p) ≈ (1000, 100). For the p > n examples,
the authors carried out all the computations on Columbia University’s high performance
computing facility using a commercial MIO solver Gurobi (Gurobi Optimization, 2015).
In comparison, our proposed approach can deal with high-dimensional models. For the
examples we consider in our simulation studies with (n, p) = (5000, 50000), it can find the
solution in seconds on a personal laptop computer.

1.2 Contributions

SDAR is a new approach for fitting sparse, high-dimensional regression models. Compared
with the penalized methods, SDAR generates a sequence of solutions {βk, k ≥ 1} to the
KKT system of the `0 penalized criterion, which can be viewed as a primal-dual active set
method for solving the `0 regularized least squares problem with a changing regularization
parameter λ in each iteration (this will be explained in detail in Section 2).

We show that SDAR achieves sharp estimation error bounds within a finite number of
iterations. Specifically, we show that: (a) under a sparse Riesz condition on X and a sparsity
assumption on β∗, ‖βk−β∗‖2 achieves the minimax error bound up to a constant factor with
high probability in O(

√
J log(R)) iterations, where J is the number of important predictors

and R is the relative magnitude of the nonzero target coefficients (the exact definitions of J
and R are given in Section 3); (b) under a mutual coherence condition on X and a sparsity
assumption on β∗, the ‖βk − β∗‖∞ achieves the optimal error bound O(σ

√
log(p)/n) in

O(log(R)) iterations; (c) under the conditions in (a) and (b), with high probability, βk

coincides with the oracle least squares estimator in O(
√
J log(R)) and O(log(R)) iterations,

respectively, if J is available and the minimum magnitude of the nonzero elements of β∗ is
of the order O(σ

√
2 log(p)/n), which is the optimal magnitude of detectable signal.

An interesting aspect of the result in (b) is that the number of iterations for SDAR to
achieve the optimal error bound is O(log(R)), which does not depend on the underlying
sparsity level. This is an appealing feature for the problems with a large triple (n, p, J).
We also analyze the computational cost of SDAR and show that it is O(np) per iteration,
comparable to the existing penalized methods and the greedy methods.

In summary, the main contributions of this paper are as follows.

• We propose a new approach to fitting sparse, high-dimensional regression models.
The approach seeks to directly approximate the solutions to the KKT equations for
the `0 penalized problem.

• We show that the sequence of solutions {βk, k ≥ 1} generated by the SDAR achieves
sharp error bounds within a finite number of iterations.

• We also consider an adaptive version of SDAR, or simply ASDAR, by tuning the
size of the fitted model based on a data driven procedure such as the BIC. Our
simulation studies demonstrate that SDAR/ASDAR outperforms the Lasso, MCP
and several greedy methods in terms of accuracy and efficiency in the generating
models we considered.

4



L0 penalized regression

1.3 Notation

For a column vector β = (β1, . . . , βp)
′ ∈ Rp, denote its q-norm by ‖β‖q = (

∑p
i=1 |βi|q)1/q, q ∈

[1,∞], and its number of nonzero elements by ‖β‖0. Let 0 denote a column vector in Rp or a
matrix whose elements are all 0. Let S = {1, 2, ..., p}. For any A and B ⊆ S with length |A|
and |B|, let βA = (βi, i ∈ A) ∈ R|A|, XA = (Xi, i ∈ A) ∈ Rn×|A|, and let XAB ∈ R|A|×|B| be
a submatrix of X whose rows and columns are listed in A and B, respectively. Let β|A ∈ Rp
be a vector with its i-th element (β|A)i = βi1(i ∈ A), where 1(·) is the indicator function.
Denote the support of β by supp(β). Denote A∗ = supp(β∗) and K = ‖β∗‖0. Let ‖β‖k,∞
and |β|min be the kth largest elements (in absolute value) and the minimum absolute value
of β, respectively. Denote the operator norm of X induced by the vector 2-norm by ‖X‖.
Let I be an identity matrix.

1.4 Organization

In Section 2 we develop the SDAR algorithm based on the necessary conditions for the `0
penalized solutions. In Section 3 we establish the nonasymptotic error bounds of the SDAR
solutions. In Section 4 we describe the adaptive SDAR, or ASDAR. In Section 5 we analyze
the computational complexity of SDAR and ASDAR. In Section 6 we compare SDAR with
several greedy methods and a screening method. In Section 7 we conduct simulation studies
to evaluate the performance of SDAR/ASDAR and compare it with Lasso, MCP, FoBa and
DesGras. We conclude in Section 8 with some final remarks. The proofs are given in the
Appendix.

2. Derivation of SDAR

Consider the Lagrangian form of the `0 regularized minimization problem (2),

min
β∈Rp

1

2n
‖Xβ − y‖22 + λ‖β‖0. (3)

Lemma 1 Let β� be a coordinate-wise minimizer of (3). Then β� satisfies:{
d� = X ′(y −Xβ�)/n,
β� = Hλ(β� + d�),

(4)

where Hλ(·) is the hard thresholding operator defined by

(Hλ(β))i =

{
0, if |βi| <

√
2λ,

βi, if |βi| ≥
√

2λ.
(5)

Conversely, if β� and d� satisfy (4), then β� is a local minimizer of (3).

Remark 2 Lemma 1 gives the KKT condition of the `0 regularized minimization problem
(3), which is also derived in Jiao et al. (2015). Similar results for SCAD, MCP and capped-
`1 regularized least squares models can be derived by replacing the hard thresholding operator
in (4) with their corresponding thresholding operators, see Huang et al. (2018) for details.
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Let A� = supp(β�) and I� = (A�)c. Suppose that the rank of XA� is |A�|. From the
definition of Hλ(·) and (4) it follows that

A� =
{
i ∈ S

∣∣ |β�i + d�i | ≥
√

2λ
}
, I� =

{
i ∈ S

∣∣ |β�i + d�i | <
√

2λ
}
,

and 
β�I� = 0,

d�A� = 0,

β�A� = (X ′A�XA�)
−1X ′A�y,

d�I� = X ′I�(y −XA�β
�
A�)/n.

We solve this system of equations iteratively. Let {βk, dk} be the solution at the kth
iteration. We approximate {A�, I�} by

Ak =
{
i ∈ S

∣∣|βki + dki | ≥
√

2λ
}
, Ik = (Ak)c. (6)

Then we can obtain an updated approximation pair {βk+1, dk+1} by


βk+1
Ik

= 0,

dk+1
Ak

= 0,

βk+1
Ak

= (X ′AkXAk)−1X ′Aky,

dk+1
Ik

= X ′Ik(y −XAkβ
k+1
Ak

)/n.

(7)

Now suppose we want the support of the solutions to have the size T , where T ≥ 1 is a
given integer. We can choose

√
2λk , ‖βk + dk‖T,∞ (8)

in (6). With this choice of λ, we have |Ak| = T, k ≥ 1. Then with an initial β0 and using
(6) and (7) with the λk in (8), we obtain a sequence of solutions {βk, k ≥ 1}.

There are two key aspects of SDAR. In (6) we detect the support of the solution based
on the sum of the primal (βk) and dual (dk) approximations and, in (7) we calculate the
least squares solution on the detected support. Therefore, SDAR can be considered an
iterative method for solving the KKT equations (4) with an important modification: a
different λ value given in (8) in each step of the iteration is used. Thus we can also view
SDAR as a method that combines adaptive thresholding using primal and dual information
and least-squares fitting. We summarize SDAR in Algorithm 1.
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Figure 1: The solution paths of SDAR, MCP and Lasso. We see that large components
were selected in by SDAR gradually when T increases. This is similar to Lasso
and MCP as λ decreases.

As an example, Figure 1 shows the solution path of SDAR with T = 1, 2, . . . , 5K along
with the MCP and the Lasso paths on 5K different λ values for a data set generated from
a model with (n = 50, p = 100,K = 5, σ = 0.3, ρ = 0.5, R = 10), which will be described
in Section 7. The Lasso path is computed using LARS (Efron et al., 2004). Note that
the SDAR path is a function of the fitted model size T = 1, . . . , L, where L is the size
of the largest fitted model. In comparison, the paths of MCP and Lasso are functions of
the penalty parameter λ in a prespecified interval. In this example, when T ≤ K, SDAR
selects the first T largest components of β∗ correctly. When T > K, there will be spurious
elements included in the estimated support, the exact number of such elements is T −K.
In Figure 1, the estimated coefficients of the spurious elements are close to zero.

Algorithm 1 Support detection and root finding (SDAR)

Require: β0, d0 = X ′(y −Xβ0)/n, T ; set k = 0.
1: for k = 0, 1, 2, · · · do
2: Ak = {i ∈ S

∣∣|βki + dki | ≥ ‖βk + dk‖T,∞}, Ik = (Ak)c

3: βk+1
Ik

= 0

4: dk+1
Ak

= 0

5: βk+1
Ak

= (X ′
Ak
XAk)−1X ′

Ak
y

6: dk+1
Ik

= X ′
Ik

(y −XAkβ
k+1
Ak

)/n

7: if Ak+1 = Ak, then
8: Stop and denote the last iteration by βÂ, βÎ , dÂ, dÎ
9: else

10: k = k + 1
11: end if
12: end for
Ensure: β̂ = (β′

Â
, β′
Î
)′ as the estimate of β∗.

Remark 3 If Ak+1 = Ak for some k we stop SDAR since the sequences generated by SDAR
will not change. Under certain conditions, we will show that Ak+1 = Ak = supp(β∗) if k
is large enough, i.e., the stop condition in SDAR will be active and the output is the oracle
estimator when it stops.
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3. Nonasymptotic error bounds

In this section we present the nonasymptotic `2 and `∞ error bounds for the solution
sequence generated by SDAR as given in Algorithm 1.

We say that X satisfies the sparse Rieze condition (SRC) (Zhang and Huang, 2008;
Zhang, 2010a) with order s and spectrum bounds {c−(s), c+(s)} if

0 < c−(s) ≤
‖XAu‖22
n‖u‖22

≤ c+(s) <∞,∀ 0 6= u ∈ R|A| with A ⊂ S and |A| ≤ s.

We denote this condition by X ∼ SRC{s, c−(s), c+(s)}. The SRC gives the range of the
spectrum of the diagonal sub-matrices of the Gram matrix G = X ′X/n. The spectrum of
the off diagonal sub-matrices of G can be bounded by the sparse orthogonality constant θa,b
defined as the smallest number such that

θa,b ≥
‖X ′AXBu‖2
n‖u‖2

,∀ 0 6= u ∈ R|B| with A,B ⊂ S, |A| ≤ a, |B| ≤ b, and A ∩B = ∅.

Another useful quantity is the mutual coherence µ defined as µ = maxi 6=j |Gi,j |, which char-
acterizes the minimum angle between different columns of X/

√
n. Some useful properties

of these quantities are summarized in Lemma 20 in the Appendix.
In addition to the regularity conditions on the design matrix, another key condition is the

sparsity of the regression parameter β∗. The usual sparsity condition is to assume that the
regression parameter β∗i is either nonzero or zero and that the number of nonzero coefficients
is relatively small. This strict sparsity condition is not realistic in many problems. Here
we allow that β∗ may not be strictly sparse but most of its elements are small. Let A∗J =
{i ∈ S : |β∗i | ≥ ‖β∗‖J,∞} be the set of the indices of the first J largest components of β∗.
Typically, we have J � n. Let

R =
M̄

m̄
, (9)

where m̄ = min{|β∗i |, i ∈ A∗J} and M̄ = max{|β∗i |, i ∈ A∗J}. Since β∗ = β∗|A∗J + β∗|(A∗J )c , we
can transform the non-exactly sparse model (1) to the following exactly sparse model by
including the small components of β∗ in the noise,

y = Xβ̄∗ + η̄, (10)

where
β̄∗ = β∗|A∗J and η̄ = Xβ∗|(A∗J )c + η. (11)

Let RJ = ‖β∗|(A∗J )c‖2 + ‖β∗|(A∗J )c‖1/
√
J , which is a measure of the magnitude of the small

components of β∗ outside A∗J . Of course, RJ = 0 if β∗ is exactly K-sparse with K ≤ J .
Without loss of generality, we let J = K, m = m̄ and M = M̄ for simplicity if β∗ is exactly
K-sparse.

Let βJ,o be the oracle estimator defined as βJ,o = arg minβ{ 1
2n‖y−Xβ‖

2
2, βj = 0, j 6∈ A∗J},

that is, βJ,oA∗J
= X†A∗J

y and βJ,o(A∗J )
c = 0, where X†A∗J

is the generalized inverse of XA∗J
and

equals to (X ′A∗J
XA∗J

)−1X ′A∗J
if XA∗J

is of full column rank. So βJ,o is obtained by keeping the

predictors corresponding to the J largest components of β∗ in the model and dropping the
other predictors. Obviously, βJ,o = βo if β∗ is exactly K-sparse, where βoA∗ = X†A∗y, β

o
(A∗)c =

0.

8



L0 penalized regression

3.1 `2 error bounds

Let 1 ≤ T ≤ p be a given integer used in Algorithm 1. We require the following basic
assumptions on the design matrix X and the error vector η.

(A1) The input integer T used in Algorithm 1 satisfies T ≥ J .

(A2) For the input integer T used in Algorithm 1, X ∼ SRC{2T, c−(2T ), c+(2T )}.
(A3) The random errors η1, . . . , ηn are independent and identically distributed with

mean zero and sub-Gaussian tails, that is, there exists a σ ≥ 0 such that E[exp(tηi)] ≤
exp(σ2t2/2) for t ∈ R1, i = 1, . . . , n.

Let

γ =
2θT,T + (1 +

√
2)θ2T,T

c−(T )2
+

(1 +
√

2)θT,T
c−(T )

.

Define

h2(T ) = max
A⊆S:|A|≤T

‖X ′Aη̄‖2/n, (12)

where η̄ is defined in (11).

Theorem 4 Let T be the input integer used in Algorithm 1, where 1 ≤ T ≤ p. Suppose
γ < 1.

(i) Assume (A1) and (A2) hold. We have

‖β̄∗|A∗J\Ak+1‖
2
≤ γk+1‖β̄∗‖2 +

γ

(1− γ)θT,T
h2(T ), (13)

‖βk+1 − β̄∗‖2 ≤ b1γ
k‖β̄∗‖2 + b2h2(T ), (14)

where

b1 = 1 +
θT,T
c−(T )

and b2 =
γ

(1− γ)θT,T
b1 +

1

c−(T )
. (15)

(ii) Assume (A1)-(A3) hold. Then for any α ∈ (0, 1/2), with probability at least 1− 2α,

‖β̄∗|A∗J\Ak+1‖
2
≤ γk+1‖β̄∗‖2 +

γ

(1− γ)θT,T
ε1, (16)

‖βk+1 − β̄∗‖2 ≤ b1γ
k‖β̄∗‖2 + b2ε1, (17)

where

ε1 = c+(J)RJ + σ
√
T
√

2 log(p/α)/n. (18)

Remark 5 Part (i) of Theorem 4 establishes the `2 bounds for the approximation errors
of the solution sequence generated by the SDAR algorithm at the (k + 1)th iteration for a
general noise vector η. In particular, (13) gives the `2 bound of the elements in A∗J not
included in the active set in the (k + 1)th iteration, and (14) provides an upper bound for
the `2 estimation error of βk+1. These error bounds decay geometrically to the model error
measured by h2(T ) up to a constant factor. Part (ii) specializes these results to the case
where the noise terms are sub-Gaussian.

9
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Remark 6 Assumption (A1) is necessary for SDAR to select at least J nonzero features.
The SRC in (A2) has been used in the analysis of the Lasso and MCP (Zhang and Huang,
2008; Zhang, 2010a). Sufficient conditions are provided for a design matrix to satisfy the
SRC in Propositions 4.1 and 4.2 in Zhang and Huang (2008). For example, the SRC would
follow from a mutual coherence condition. Let c(T ) = (1 − c−(2T )) ∨ (c+(2T ) − 1), which
is closely related to the the RIP (restricted isometry property) constant δ2T for X (Candes
and Tao, 2005). By (43) in the Appendix, it can be verified that a sufficient condition
for γ < 1 is c(T ) ≤ 0.1599, i.e., c+(2T ) ≤ 1.1599, c−(2T ) ≥ 0.8401. The sub-Gaussian
condition (A3) is often assumed in the literature on sparse estimation and slightly weaker
than the standard normality assumption. It is used to calculate the tail probabilities of
certain maximal functions of the noise vector η.

Remark 7 Several greedy algorithms have also been studied under the assumptions related
to the sparse Riesz condition. For example, Zhang (2011b) studied OMP under the condition
c+(T )/c−(31T ) ≤ 2. Zhang (2011a) analyzed the forward-backward greedy algorithm (FoBa)
under the condition 8(T +1) ≤ (s−2)Tc2−(sT ), where s > 0 is a properly chosen parameter.
GraDes has been analyzed under the RIP condition δ2T ≤ 1/3 (Garg and Khandekar, 2009).
These conditions and (A2) are related but do not imply each other. The order of `2-norm
estimation error of SDAR is at least as good as that of the above mentioned greedy methods
since it achieves the minimax error bound, see, Remark 10 below. A high level comparison
between SDAR and the greedy algorithms will be given in Section 6.

Corollary 8 (i) Suppose (A1) and (A2) hold. Then

‖βk − β̄∗‖2 ≤ ch2(T ) if k ≥ log 1
γ

√
JM̄

h2(T )
, (19)

where c = b1 + b2 with b1 and b2 defined in (15).

Furthermore, assume m̄ ≥ γh2(T )
(1−γ)θT,T ξ for some 0 < ξ < 1, then we have

Ak ⊇ A∗J if k ≥ log 1
γ

√
JR

1− ξ
. (20)

(ii) Suppose (A1)-(A3) hold. Then, for any α ∈ (0, 1/2), with probability at least 1− 2α,
we have

‖βk − β̄∗‖2 ≤ cε1 if k ≥ log 1
γ

√
JM̄

ε1
, (21)

where ε1 is defined in (18). Furthermore, assume m̄ ≥ ε1γ
(1−γ)θT,T ξ for some 0 < ξ < 1,

then with probability at least 1− 2α, we have

Ak ⊇ A∗J if k ≥ log 1
γ

√
JR

1− ξ
. (22)

(iii) Suppose β∗ is exactly K-sparse. Let T = K in SDAR. Suppose (A1)-(A3) hold and
m ≥ γ

(1−γ)θT,T ξσ
√
K
√

2 log(p/α)/n for some 0 < ξ < 1, we have with probability

10
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at least 1 − 2α, Ak = Ak+1 = A∗ if k ≥ log 1
γ
(
√
KR/(1− ξ)), i.e., with at most

O(log
√
KR) iterations, SDAR stops and the output is the oracle least squares esti-

mator βo.

Remark 9 Parts (i) and (ii) in Corollary 8 show that the SDAR solution sequence achieves
the minimax `2 error bound up to a constant factor and its support covers A∗J within a finite
number of iterations. In particular, the number of iterations required is O(log(

√
JR)),

depending on the sparsity level J and the relative magnitude R of the coefficients of the
important predictors. In the case of exact sparsity with K nonzero coefficients in the model,
part (iii) provides conditions under which the SDAR solution is the same as the oracle least
squares estimator in O(log(

√
KR)) iterations with high probability.

Remark 10 Suppose β∗ is exactly K-sparse. In the event ‖η‖2 ≤ ε, part (i) of Corollary
8 implies ‖βk − β∗‖2 = O(ε/

√
n) if k is sufficiently large. Under certain conditions on the

RIP constant of X, Candes et al. (2006) showed that ‖β̂−β∗‖2 = O(ε/
√
n), where β̂ solves

min
β∈Rp

‖β‖1 subject to ‖Xβ − y‖2 ≤ ε. (23)

So the result here is similar to that of Candes et al. (2006) (they assumed the columns of X
are unit-length normalized, here the result is stated for the case where the columns of X are√
n-length normalized). However, it is a nontrivial task to solve (23) in high-dimensional

settings. In comparison, SDAR only involves simple computational steps.

Remark 11 If β∗ is exactly K-sparse and T = K, part (ii) of Corollary 8 implies that
SDAR achieves the minimax error bound (Raskutti et al., 2011), that is,

‖βk − β∗‖2 ≤ cσ
√
K
√

2 log(p/α)/n

with high probability if k ≥ log 1
γ

√
KM

σ
√
T
√

2 log(p/α)/n
.

3.2 `∞ error bounds

We now consider the `∞ error bounds of SDAR. We replace condition (A2) by

(A2*) The mutual coherence µ of X satisfies Tµ ≤ 1/4.

Let

γµ =
(1 + 2Tµ)Tµ

1− (T − 1)µ
+ 2Tµ and cµ =

16

3(1− γµ)
+

5

3
.

Define

h∞(T ) = max
A⊆S:|A|≤T

‖X ′Aη̄‖∞/n, (24)

where η̄ is defined in (11).

Theorem 12 Let T be the input integer used in Algorithm 1, where 1 ≤ T ≤ p.

11
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(i) Assume (A1) and (A2*) hold. We have

‖β̄∗|A∗J\Ak+1‖
∞
< γk+1

µ ‖β̄∗‖∞ +
4

1− γµ
h∞(T ), (25)

‖βk+1 − β̄∗‖∞ <
4

3
γkµ‖β̄∗‖∞ +

4

3
(

4

1− γµ
+ 1)h∞(T ), (26)

(ii) Assume (A1), (A2*) and (A3) hold. For any α ∈ (0, 1/2), with probability at least
1− 2α,

‖β̄∗|A∗J\Ak+1‖
∞
< γk+1

µ ‖β̄∗‖∞ +
4

1− γµ
ε2, (27)

‖βk+1 − β̄∗‖∞ <
4

3
γkµ‖β̄∗‖∞ +

4

3
(

4

1− γµ
+ 1)ε2, (28)

where

ε2 = (1 + (T − 1)µ)RJ + σ
√

2 log(p/α)/n. (29)

Remark 13 Part (i) of Theorem 12 establishes the `∞ bounds for the approximation errors
of the solution sequence at the (k+1)th iteration for a general noise vector η. In particular,
(25) gives the `∞ bound of the elements in A∗J not selected at the (k + 1)th iteration, and
(26) provides an upper bound for the `∞ estimation error of βk+1. These errors bounds
decay geometrically to the model error measured by h∞(T ) up to a constant factor. Part
(ii) specializes these to the case where the noise terms are sub-Gaussian.

Corollary 14 (i) Suppose (A1) and (A2*) hold. Then

‖βk − β̄∗‖∞ ≤ cµh∞(T ) if k ≥ log 1
γµ

4M̄

h∞(T )
. (30)

Furthermore, assume m̄ ≥ 4h∞(T )
(1−γµ)ξ with ξ < 1, then we have

Ak ⊇ A∗J if k ≥ log 1
γµ

R

1− ξ
. (31)

(ii) Suppose (A1), (A2*) and (A3) hold. Then for any α ∈ (0, 1/2), with probability at
least 1− 2α,

‖βk − β̄∗‖∞ ≤ cµε2 if k ≥ log 1
γµ

4M̄

ε2
, (32)

where ε2 is given in (29).

Furthermore, assume m̄ ≥ 4ε2
ξ(1−γµ) for some 0 < ξ < 1, then

Ak ⊇ A∗J if k ≥ log 1
γµ

R

1− ξ
. (33)

12
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(iii) Suppose β∗ is exactly K-sparse. Let T = K in SDAR. Suppose (A1), (A2*) and (A3)
hold and m ≥ 4

ξ(1−γµ)σ
√

2 log(p/α)/n for some 0 < ξ < 1. We have with probability at

least 1− 2α, Ak = Ak+1 = A∗ if k ≥ log 1
γµ

R
1−ξ , i.e., with at most O(logR) iterations,

SDAR stops and the output is the oracle least squares estimator βo.

Remark 15 Theorem 4 and Corollary 8 can be derived from Theorem 12 and Corollary
14, respectively, by using the relationship between the `∞ norm and the `2 norm. Here
we present them separately because (A2) is weaker than (A2*). The stronger assumption
(A2*) brings us some new insights into the SDAR, i.e., the sharp `∞ error bound, based on
which we can show that the worst case iteration complexity of SDAR does not depend on
the underlying sparsity level, as stated in parts (ii) and (iii) of Corollary 14.

Remark 16 The mutual coherence condition sµ ≤ 1 with s ≥ 2K−1 is used in the study of
OMP and Lasso under the assumption that β∗ is exactly K-sparse. In the noiseless case with
η = 0, Tropp (2004); Donoho and Tsaig (2008) showed that under the condition (2K−1)µ <
1, OMP can recover β∗ exactly in K steps. In the noisy case with ‖η‖2 ≤ ε, Donoho et al.
(2006) proved that OMP can recover the true support if (2K − 1)µ ≤ 1− (2ε/m). Cai and
Wang (2011) gave a sharp analysis of OMP under the condition (2K−1)µ < 1. The mutual
coherence condition Tµ ≤ 1/4 in (A2*) is a little stronger than those used in the analysis of
the OMP. However, under (A2*) we obtain a sharp `∞ error bound, which is not available
for OMP in the literature. Furthermore, Corollary 14 implies that the number of iterations
of SDAR does not depend on the sparsity level, which is a surprising result and does not
appear in the literature on greedy methods, see Remark 18 below. Lounici (2008); Zhang
(2009) derived an `∞ estimation error bound for the Lasso under the conditions Kµ < 1/7
and Kµ ≤ 1/4, respectively. However, they needed a nontrivial Lasso solver for computing
an approximate solution while SDAR only involves simple computational steps.

Remark 17 Suppose β∗ is exactly K-sparse. Part (ii) of Corollary 14 implies that the
sharp error bound

‖βk − β∗‖∞ ≤ cµσ
√

2 log(p/α)/n (34)

is achieved with high probability if k ≥ log 1
γµ

M

σ
√

2 log(p/α)/n
.

Remark 18 Suppose β∗ is exactly K-sparse. Part (iii) of Corollary 14 implies that with
high probability, the oracle estimator can be recovered in no more than O(logR) steps if
we set T = K in SDAR and the minimum magnitude of the nonzero elements of β∗ is
O(σ

√
2 log(p)/n), which is the optimal magnitude of detectable signals.

Remark 19 The number of iterations in Corollary 14 depends on the relative magnitude
R, but not the sparsity level K, see Figure 2 for the numerical results supporting this. This
improves the result in part (iii) of Corollary 8. This is a surprising result since as far as
we know the number of iterations for the greedy methods to recover A∗ depends on K, see
for example, Garg and Khandekar (2009).
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Figure 2: The average number of iterations of SDAR as K increases.

Figure 2 shows the average number of iterations of SDAR with T = K based on 100
independent replications on data sets generated from a model with (n = 500, p = 1000,K =
3 : 2 : 50, σ = 0.01, ρ = 0.1, R = 1), which will be described in Section 7.4. We can see
that as the sparsity level increases from 3 to 50 the average number of iterations of SDAR
remains stable, ranging from 1 to 3, which supports the assertion in Corollary 14. More
numerical comparison on number of iterations with greedy methods are shown in Section
7.2.

3.3 A brief high-level description of the proofs

The detailed proofs of Theorems 4 and 12 and their corollaries are given in the Appendix.
Here we describe the main ideas behind the proofs and point out the places where the SRC
and the mutual coherence condition are used.

SDAR iteratively detects the support of the solution and then solves a least squares
problem on the support. Therefore, to study the convergence properties of the sequence
generated by SDAR, the key is to show that the sequence of active sets Ak can approximate
A∗J more and more accurately as k increases. Let

D(Ak) = ‖β̄∗|A∗J\Ak‖, (35)

where ‖ · ‖ can be either the `2 norm or the `∞ norm. This is a measure of the difference
between A∗J and Ak at the kth iteration in terms of the norm of the coefficients in A∗J but
not in Ak. A crucial step is to show that D(Ak) decays geometrically to a value bounded
by h(T ) up to a constant factor, where h(T ) is h2(T ) defined in (12) or h∞(T ) in (24).
Here h(T ) is a measure of the intrinsic error due to the noise η and the approximate error
in (10). Specifically, much effort is spent on establishing the inequality (Lemma 27 in the
Appendix)

D(Ak+1) ≤ γ∗D(Ak) + c∗h(T ), k = 0, 1, 2, . . . , (36)

where γ∗ = γ for the `2 results in Theorem 4 and γ∗ = γµ for the `∞ results in Theorem
12, and c∗ > 0 is a constant depending on the design matrix. The SRC (A2) and the

14
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mutual coherence condition (A2∗) play a critical role in establishing (36). Clearly, for this
inequality to be useful, we need 0 < γ∗ < 1.

Another useful inequality is

‖βk+1 − β̄∗‖ ≤ c1D(Ak) + c2h(T ), (37)

where c1 and c2 are positive constants depending on the design matrix, see Lemma 23 in
the Appendix. The SRC and the mutual coherence condition are needed to establish this
inequality for the `2 norm and the `∞ norm, respectively. Then combining (36) and (37),
we can show part (i) of Theorem 4 and part (i) of Theorem 12.

The inequalities (36) and (37) hold for any noise vector η. Under the sub-Gaussian
assumption for η, h(T ) can be controlled by the sum of unrecoverable approximation error
RJ and the universal noise level O(σ

√
2 log(p)/n) with high probability. This leads to the

results in the remaining parts of Theorems 4 and 12, as well as Corollaries 8 and 14.

4. Adaptive SDAR

In practice, because the sparsity level of the model is usually unknown, we can use a data
driven procedure to determine an upper bound, T , for the number of important variables,
J , used in SDAR (Algorithm 1). The idea is to take T as a tuning parameter, so T plays
a role similar to the penalty parameter λ in a penalized method. We can run SDAR
from T = 1 to a large T = L. For example, we can take L = O(n/ log(n)) as suggested
by Fan and Lv (2008), which is an upper bound of the largest possible model that can
be consistently estimated with sample size n. By doing so we obtain a solution path
{β̂(T ) : T = 0, 1, . . . , L}, where β̂(0) = 0, that is, T = 0 corresponds to the null model.
Then we use a data driven criterion, such as HBIC (Wang et al., 2013), to select a T = T̂
and use β̂(T̂ ) as the final estimate. The overall computational complexity of this process is
O(Lnp log(R)), see Section 5.

We can also compute the path by increasing T along a subsequence of the integers in
[1, L], for example, by taking a geometrically increasing subsequence. This will reduce the
computational cost, but here we consider the worst-case scenario.

We note that tuning T is no more difficult than tuning a continuous penalty parameter
λ in a penalized method. Indeed, we can simply increase T one by one from T = 0 to
T = L (or along a subsequence). In comparison, in tuning the value of λ based on a
pathwise solution over an interval [λmin, λmax], where λmax corresponds to the null model
and λmin > 0 is a small value, we need to determine the grid of λ values on [λmin, λmax]
as well as λmin. Here λmin corresponds to the largest model on the solution path. In the
numerical implementation of the coordinate descent algorithms for the Lasso (Friedman
et al., 2007), MCP and SCAD (Breheny and Huang, 2011), λmin = αλmax for a small α, for
example, α = 0.0001. Determining the value of L is somewhat similar to determining λmin.
However, L has the meaning of the model size, but the meaning of λmin is less explicit.

We also have the option to stop the iteration early according to other criterions. For
example, we can run SDAR by gradually increasing T until the change in the consecutive
solutions is smaller than a given value. Candes et al. (2006) proposed to recover β∗ based
on (23) by finding the most sparse solution whose residual sum of squares is smaller than a
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prespecified noise level ε. Inspired by this, we can also run SDAR by increasing T gradually
until the residual sum of squares is smaller than a prespecified value ε.

We summarize these ideas in Algorithm 2 below.

Algorithm 2 Adaptive SDAR (ASDAR)

Require: Initial guess β0, d0, an integer τ , an integer L, and an early stopping criterion
(optional). Set k = 1.

1: for k = 1, 2, · · · do
2: Run Algorithm 1 with T = τk and with initial value (βk−1, dk−1). Denote the output

by (βk, dk).
3: if the early stopping criterion is satisfied or T > L then
4: stop
5: else
6: k = k + 1.
7: end if
8: end for

Ensure: β̂(T̂ ) as estimations of β∗.

5. Computational complexity

We look at the number of floating point operations line by line in Algorithm 1. Clearly it
takes O(p) flops to finish step 2-4. In step 5, we use conjugate gradient (CG) method (Golub
and Van Loan, 2012) to solve the linear equation iteratively. During the CG iterations the
main operation include two matrix-vector multiplications, which cost 2n|Ak+1| flops (the
term X ′y on the right-hand side can be precomputed and stored). Therefore the number of
CG iterations is smaller than p/(2|Ak+1|), this ensures that the number of flops in step 5 is
O(np). In step 6, calculating the matrix-vector product costs np flops. In step 7, checking
the stopping condition needs O(p) flops. So the the overall cost per iteration of Algorithm 1
is O(np). By Corollary 14 it needs no more than O(log(R)) iterations to get a good solution
for Algorithm 1 under the certain conditions. Therefore the overall cost of Algorithm 1 is
O(np log(R)) for exactly sparse and approximately sparse case under proper conditions.

Now we consider the cost of ASDAR (Algorithm 2). Assume ASDAR is stopped when
k = L. Then the above discussion shows the the overall cost of Algorithm 2 is bounded by
O(Lnp log(R)) which is very efficient for large scale high dimension problem since the cost
increases linearly in the ambient dimension p.

6. Comparison with greedy and screening methods

We give a high level comparison between SDAR and several greedy and screening methods,
including OMP (Mallat and Zhang, 1993; Tropp, 2004; Donoho et al., 2006; Cai and Wang,
2011; Zhang, 2011b), FoBa (Zhang, 2011a), IHT (Blumensath and Davies, 2009; Jain et al.,
2014) or GraDes (Garg and Khandekar, 2009), and SIS (Fan and Lv, 2008). These greedy
methods iteratively select/remove one or more variables and project the response vector
onto the linear subspace spanned by the variables that have already been selected. From
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this point of view, they and SDAR share a similar characteristic. However, OMP and FoBa,
select one variable per iteration based on the current correlation, i.e., the dual variable dk

in our notation, while SDAR selects T variables at a time based on the sum of primal (βk)
and dual (dk) information. The following interpretation in a low-dimensional setting with
a small noise term may clarify the differences between these two approaches. If X ′X/n ≈ I
and η ≈ 0, we have

dk = X ′(y −Xβk)/n = X ′(Xβ∗ + η −Xβk)/n ≈ β∗ − βk +X ′η/n ≈ β∗ − βk,

and

βk + dk ≈ β∗.

Hence, SDAR can approximate the underlying support A∗ more accurately than OMP and
Foba. This is supported by the simulation results given in Section 7.

IHT (Blumensath and Davies, 2009; Jain et al., 2014) or GraDes (Garg and Khandekar,
2009), can be formulated as

βk+1 = HK(βk + skd
k), (38)

where HK(·) is the hard thresholding operator by keeping the first K largest elements and
setting others to 0. The step size sk is chosen as sk = 1 and sk = 1/(1 + δ2K) (where
δ2K is the RIP constant) for IHT and GraDes, respectively. IHT and GraDes use both
primal and dual information to detect the support of the solution, which is similar to
SDAR. But when the approximate active set is given, SDAR uses least squares fitting,
which is more accurate than just keeping the largest elements by hard thresholding. This
is supported by the simulation results given in Section 7. Jain et al. (2014) proposed an
iterative hard thresholding algorithm for general high-dimensional sparse regressions. In
the linear regression setting, the algorithm proposed in Jain et al. (2014) is the same as
GraDes. Jain et al. (2014) also considered a two-stage IHT, which involves a refit step
on the detected support. Yuan et al. (2018) extended gradient hard thresholding for least
squares loss to a general class of convex losses and analyzed the estimation and sparsity
recovery performance of their proposed method. Under restricted strongly convexity (RSS)
and restricted strongly smoothness conditions (RSC), Jain et al. (2014) derived an error
estimate between the approximate solutions and the oracle solution in `2 norm, which has
the same order as our result in Section 3.1. There are some differences between SDAR and
the two-stage IHT proposed in Jain et al. (2014). First, SDAR solves an n×K least squares
problem at each iteration while the two-stage IHT involves two least-squares problems with
larger sizes. The regularity conditions on X for SDAR concerns 2K × 2K submatrices of
X, while the regularity conditions for the two-stage IHT involves larger submatries of X.
Second, our results are applicable to approximately sparse models. Jain et al. (2014) only
considered exact sparse case. Third, we showed in (iii) of Corollary 3.1 that the iteration
complexity of SDAR is O(logK). In comparison, the iteration complexity of the two-stage
IHT is O(K). We also established an `∞ norm estimation result and showed that the
number of iterations of SDAR is independent of the sparsity level, see (iii) of Corollary 3.2.
Last, we showed that the stopping criterion for SDAR can be archived in finitely many steps
(Corollary 3.1 (iii) and Corollary 3.2. (iii)). However, Jain et al. (2014) did not discuss this
issue.
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Fan and Lv (2008) proposed SIS for dimension reduction in ultrahigh dimensional liner
regression problems. This method selects variables with the T largest absolute values of
X ′y. To improve the performance of SIS, Fan and Lv (2008) also considered an iterative
SIS, which iteratively selects more than one feature at a time until a desired number of
variables are selected. They reported that the iterative SIS outperforms SIS numerically.
However, the iterative SIS lacks a theoretical analysis. Interestingly, the first step in SDAR
initialized with 0 is exactly the same as the SIS. But again the process of SDAR is different
from the iterative SIS in that the active set of SDAR is determined based on the sum of
primal and dual approximations while the iterative SIS uses dual only.

7. Simulation Studies

7.1 Implementation

We implemented SDAR/ASDAR, FoBa, GraDes and MCP in MatLab. For FoBa, our
MatLab implementation follows the R package developed by Zhang (2011a). We optimize
it by keeping track of rank-one updates after each greedy step. Our implementation of MCP
uses the iterative threshholding algorithm (She, 2009) with warm starts. Publicly available
Matlab packages for LARS (included in the SparseLab package) are used. Since LARS and
FoBa add one variable at a time, we stop them when K variables are selected in addition
to their default stopping conditions. Of course, doing so will reduce the computation time
for these algorithms as well as improve accuracy by preventing overfitting.

In GraDes, the optimal gradient step length sk depends on the RIP constant of X, which
is NP hard to compute (Tillmann and Pfetsch, 2014). Here, we set sk = 1/3 following Garg
and Khandekar (2009). We stop GraDes when the residual norm is smaller than ε =

√
nσ,

or the maximum number of iterations is greater than n/2. We compute the MCP solution
path and select an optimal solution using the HBIC (Wang et al., 2013). We stop the
iteration when the residual norm is smaller than ε = ‖η‖2, or the estimated support size
is greater than L = n/ log(n). In ASDAR (Algorithm 2), we set τ = 50 and we stop the
iteration if the residual ‖y −Xβk‖ is smaller than ε =

√
nσ or k ≥ L = n/ log(n).

7.2 Accuracy and efficiency

We compare the accuracy and efficiency of SDAR/ASDAR with Lasso (LARS), MCP,
GraDes and FoBa.

We consider a moderately large scale setting with n = 5000 and p = 50000. The number
of nonzero coefficients is set to be K = 400. So the sample size n is about O(K log(p−K)).
The dimension of the model is nearly at the limit where β∗ can be reasonably well estimated
by the Lasso (Wainwright, 2009).

To generate the design matrix X, we first generate an n×p random Gaussian matrix X̄
whose entries are i.i.d. N (0, 1) and then normalize its columns to the

√
n length. Then X

is generated with X1 = X̄1, Xj = X̄j + ρ(X̄j+1 + X̄j−1), j = 2, . . . , p− 1 and Xp = X̄p. The
underlying regression coefficient β∗ is generated with the nonzero coefficients uniformly
distributed in [m,M ], where m = σ

√
2 log(p)/n and M = 100m. Then the observation

vector y = Xβ∗ + η with η1, . . . , ηn generated independently from N (0, σ2). We set R =
100, σ = 1 and ρ = 0.2, 0.4 and 0.6.

18



L0 penalized regression

Table 1 shows the results based on 100 independent replications. The first column
gives the correlation value ρ and the second column shows the methods in the comparison.
The third and the fourth columns give the averaged relative error, defined as ReErr =∑
‖β̂−β∗‖/‖β∗‖, and the averaged CPU time (in seconds), The standard deviations of the

CPU times and the relative errors are shown in the parentheses. In each column of Table
1, the numbers in boldface indicate the best performers.

Table 1: Numerical results (relative errors, CPU times) on data sets with n = 5000, p =
50000,K = 400, R = 100, σ = 1, ρ = 0.2 : 0.2 : 0.6.

ρ Method ReErr time(s)

LARS 1.1e-1 (2.5e-2) 4.8e+1 (9.8e-1)
MCP 7.5e-4 (3.6e-5) 9.3e+2 (2.4e+3)

0.2 GraDes 1.1e-3 (7.0e-5) 2.3e+1 (9.0e-1)
FoBa 7.5e-4 (7.0e-5) 4.9e+1 (3.9e-1)
ASDAR 7.5e-4 (4.0e-5) 8.4e+0 (4.5e-1)
SDAR 7.5e-4 (4.0e-5) 1.4e+0 (5.1e-2)

LARS 1.8e-1 (1.2e-2) 4.8e+1 (1.8e-1)
MCP 6.2e-4 (3.6e-5) 2.2e+2 (1.6e+1)

0.4 GraDes 8.8e-4 (5.7e-5) 8.7e+2 (2.6e+3)
FoBa 1.0e-2 (1.4e-2) 5.0e+1 (4.2e-1)
ASDAR 6.0e-4 (2.6e-5) 8.8e+0 (3.2e-1)
SDAR 6.0e-4 (2.6e-5) 2.3e+0 (1.7e+0)

LARS 3.0e-1 (2.5e-2) 4.8e+1 (3.5e-1)
MCP 4.5e-4 (2.5e-5) 4.6e+2 (5.1e+2)

0.6 GraDes 7.8e-4 (1.1e-4) 1.5e+2 (2.3e+2)
FoBa 8.3e-3 (1.3e-2) 5.1e+1 (1.1e+0)
ASDAR 4.3e-4 (3.0e-5) 1.1e+1 (5.1e-1)
SDAR 4.3e-4 (3.0e-5) 2.1e+0 (8.6e-2)

We see that when the correlation ρ is low, i.e., ρ = 0.2, MCP, FoBa, SDAR and AS-
DAR are on the top of the list in average error (ReErr). In terms of speed, SDAR/ASDAR
is about 3 to 100 times faster than the other methods. As the correlation ρ increases
to ρ = 0.4 and ρ = 0.6, FoBa becomes less accurate than SDAR/ASDAR. MCP is
similar to SDAR/ASDAR in terms of accuracy, but it is 20 to 100 times slower than
SDAR/ASDAR. The standard deviations of the CPU times and the relative errors of MCP
and SDAR/ASDAR are similar and smaller than those of the other methods in all the three
settings.

7.3 Influence of the model parameters

We now consider the effects of each of the model parameters on the performance of ASDAR,
LARS, MCP, GraDes and FoBa more closely.
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In this set of simulations, the rows of the design matrix X are drawn independently
from N (0,Σ) with Σjk = ρ|j−k|, 1 ≤ j, k ≤ p. The elements of the error vector η are
generated independently with ηi ∼ N (0, σ2), i = 1, . . . , n. Let R = M/m, where, M =
max{|β∗A∗ |},m = min{|β∗A∗ |} = 1. The underlying regression coefficient vector β∗ ∈ Rp is
generated in such a way that A∗ is a randomly chosen subset of {1, 2, ..., p} with |A∗| =
K < n and R ∈ [1, 103]. Then the observation vector y = Xβ∗+η. We use {n, p,K, σ, ρ,R}
to indicate the parameters used in the data generating model described above. We run
ASDAR with τ = 5, L = n/ log(n) (if not specified). We use the HBIC (Wang et al., 2013)
to select the tuning parameter T . The simulation results given in Figure 3 are based on 100
independent replications.

7.3.1 Influence of the sparsity level K

The top left panel of Figure 3 shows the results of the influence of sparsity level K on the
probability of exact recovery of A∗ of ASDAR, LARS, MCP, GraDes and FoBa. Data are
generated from the model with (n = 500, p = 1000,K = 10 : 50 : 360, σ = 0.5, ρ = 0.1, R =
103). Here K = 10 : 50 : 360 means the sample size starts from 10 to 360 with an increment
of 50. We use L = 0.8n for both ASDAR and MCP to eliminate the effect of stopping rule
since the maximum K = 360. When the sparsity level K = 10, all the solvers performed
well in recovering the true support. As K increases, LARS was the first one that failed to
recover the support and vanished when K = 60 (this phenomenon had also been observed
in Garg and Khandekar (2009), MCP began to fail when K > 110, GraDes and FoBa began
to fail when K > 160. In comparison, ASDAR was still able to do well even when K = 260.

7.3.2 Influence of the sample size n

The top right panel of Figure 3 shows the influence of the sample size n on the probability
of correctly estimating A∗. Data are generated from the model with (n = 30 : 20 : 200, p =
500,K = 10, σ = 0.1, ρ = 0.1, R = 10). We see that the performance of all the five methods
becomes better as n increases. However, ASDAR performs better than the others when
n = 30 and 50. These simulation results indicate that ASDAR is more capable of handling
high-dimensional data when p/n is large in the generating models considered here

7.3.3 Influence of the ambient dimension p

The bottom left panel of Figure 3 shows the influence of ambient dimension p on the
performance of ASDAR, LARS, MCP, GraDes and FoBa. Data are generated from the
model with (n = 100, p = 200 : 200 : 1000,K = 20, σ = 1, ρ = 0.3, R = 10). We see that
the probabilities of exactly recovering the support of the underlying coefficients of ASDAR
and MCP are higher than those of the other solvers as p increasing, which indicate that
ASDAR and MCP are more robust to the ambient dimension.

7.3.4 Influence of correlation ρ

The bottom right panel of Figure 3 shows the influence of correlation ρ on the performance
of ASDAR, LARS, MCP, GraDes and FoBa. Data are generated from the model with
(n = 150, p = 500,K = 25, σ = 0.1, ρ = 0.05 : 0.1 : 0.95, R = 102). The performance of
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all the solvers becomes worse when the correlation ρ increases. However, ASDAR generally
performed better than the other methods as ρ increases.
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Figure 3: Numerical results of the influence of sparsity level K (top left panel), sample size
n (top right panel), ambient dimension p (bottom left panel) and correlation ρ
(bottom right panel) on the probability of exact recovery of the true support of
all the solvers considered here.

In summary, our simulation studies demonstrate that SDAR/ASDAR is generally more
accurate, more efficient and more stable than Lasso, MCP, FoBa and GraDes.

7.4 Number of iterations

In this subsection we compare SDAR with GraDes (IHT) in terms of the number of iter-
ations. We run 100 independent replications on data sets generated from the models with
(n = 500, p = 1000,K = 5 : 5 : 55, σ = 0.05, ρ = 0, R = 1) and (n = 2000, p = 5000,K =
10 : 20 : 250, σ = 0.05, ρ = 0, R = 1) described in Section 7.3. The average number of
iteration (left column) and average absolute error in `∞ norm (right column) are displayed
in Figure 4. We can see that the number of iterations of GraDes increases almost sub-
linearly as the sparsity level K increases while that of SDAR almost varies little. And in
terms of the average error, SDAR is serval times more accurate than GraDes. This provides
empirical support for our theoretical results in Corollary 30.
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Figure 4: Comparisons the dependence of number of iterations (left panels) and accuracy
(right panels) on sparsity level K with data set (n = 500, p = 1000,K = 5 : 5 :
55, σ = 0.05, ρ = 0.3, R = 1) and (n = 2000, p = 5000,K = 10 : 20 : 250, σ =
0.05, ρ = 0.3, R = 1).

8. Concluding remarks

SDAR is a constructive approach for fitting sparse, high-dimensional linear regression mod-
els. Under appropriate conditions, we established the nonasymptotic minimax `2 error
bound and optimal `∞ error bound of the solution sequence generated by SDAR. We also
calculated the number of iterations required to achieve these bounds. In particular, an
interesting and surprising aspect of our results is that, under a mutual coherence condition
on the design matrix, the number of iterations required for the SDAR to achieve the op-
timal `∞ bound does not depend on the underlying sparsity level. In addition, SDAR has
the same computational complexity per iteration as LARS, coordinate descent and greedy
methods. Our simulation studies demonstrate that SDAR/ASDAR is accurate, fast, stable
and easy to implement, and it is competitive with or outperforms the Lasso, MCP and two
greedy methods in efficiency and accuracy in the generating models we considered. These
theoretical and numerical results suggest that SDAR/ASDAR is a useful addition to the
literature on sparse modeling.

We have only considered the linear regression model. It would be interesting to generalize
SDAR to models with more general loss functions or with other types of sparsity structures.
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It would also be interesting to develop parallel or distributed versions of SDAR that can
run on multiple cores for data sets with big n and large p or for data that are distributively
stored.

We have implemented SDAR in a Matlab package sdar, which is available at http:

//homepage.stat.uiowa.edu/~jian/.
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Appendix A

Proof of Lemma 1.

Proof Let Lλ(β) = 1
2n‖Xβ − y‖

2
2 + λ‖β‖0. Suppose β� is a coordinate-wise minimizer of

Lλ. Then

β�i ∈ argmin
t∈R

Lλ(β�1 , ..., β
�
i−1, t, β

�
i+1, ..., β

�
p)

⇒ β�i ∈ argmin
t∈R

1
2n‖Xβ

� − y + (t− β�i )Xi‖22 + λ|t|0

⇒ β�i ∈ argmin
t∈R

1
2(t− β�i )2 + 1

n(t− β�i )X ′i(Xβ
� − y) + λ|t|0

⇒ β�i ∈ argmin
t∈R

1
2(t− (β�i +X ′i(y −Xβ�)/n))2 + λ|t|0.

Let d� = X ′(y −Xβ�)/n. By the definition of the hard thresholding operator Hλ(·) in (5),
we have

β�i = Hλ(β�i + d�i ) for i = 1, ..., p,

which shows (4) holds.

Conversely, suppose (4) holds. Let

A� =
{
i ∈ S

∣∣ |β�i + d�i | ≥
√

2λ
}
.

By (4) and the definition of Hλ(·) in (5), we deduce that for i ∈ A�, |β�i | ≥
√

2λ. Further-
more, 0 = d�A� = X ′A�(y −XA�β

�
A�)/n, which is equivalent to

β�A� ∈ argmin 1
2n‖XA�βA� − y‖22. (39)

Next we show Lλ(β� + h) ≥ Lλ(β�) if h is small enough with ‖h‖∞ <
√

2λ. We consider
two cases. If h(A�)c 6= 0, then

Lλ(β� + h)− Lλ(β�) ≥ 1
2n‖Xβ

� − y +Xh‖22 −
1
2n‖Xβ

� − y‖22 + λ ≥ λ− |〈h, d�〉|,
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which is positive for sufficiently small h. If h(A�)c = 0, by the minimizing property of β�A�
in (39) we deduce that Lλ(β� + h) ≥ Lλ(β�). This completes the proof of Lemma 1.

Lemma 20 Let A and B be disjoint subsets of S, with |A| = a and |B| = b. Assume
X ∼ SRC(a+ b, c−(a+ b), c+(a+ b)). Let θa,b be the sparse orthogonality constant and let
µ be the mutual coherence of X. Then we have

nc−(a) ≤
∥∥XT

AXA

∥∥ ≤ nc+(a), (40)

1

nc+(a)
≤
∥∥(XT

AXA)−1
∥∥ ≤ 1

nc−(a)
, (41)∥∥X ′A∥∥ ≤√nc+(a) (42)

θa,b ≤ (c+(a+ b)− 1) ∨ (1− c−(a+ b)) (43)

‖X ′BXAu‖∞ ≤ naµ‖u‖∞, ∀u ∈ R|A|, (44)

‖XA‖ =
∥∥X ′A∥∥ ≤√n(1 + (a− 1)µ). (45)

Furthermore, if µ < 1/(a− 1), then

‖(X ′AXA)−1u‖∞ ≤
‖u‖∞

n(1− (a− 1)µ)
, ∀u ∈ R|A|. (46)

Moreover, c+(s) is an increasing function of s, c−(s) a decreasing function of s and θa,b an
increasing function of a and b.

Proof The assumption X ∼ SRC(a, c−(a), c+(a)) implies the spectrum of X ′AXA/n is
contained in [c−(a), c+(a)]. So (40) - (42) hold. Let I be an (a + b) × (a + b) identity
matrix. (43) follows from the fact that X ′AXB/n is a submatrix of X ′A∪BXA∪B/n− I whose
spectrum norm is less than (1 − c−(a + b)) ∨ (c+(a + b) − 1). Let G = X ′X/n. Then,
|
∑a

j=1Gi,juj | ≤ µa‖u‖∞, for all i ∈ B, which implies (44). By Gerschgorin’s disk theorem,

| ‖GA,A‖ −Gi,i| ≤
a∑

i 6=j=1

|Gi,j | ≤ (a− 1)µ ∀i ∈ A,

thus (45) holds. For (46), it suffices to show ‖GA,Au‖∞ ≥ (1−(a−1)µ)‖u‖∞ if µ < 1/(a−1).
In fact, let i ∈ A such that ‖u‖∞ = |ui|, then

‖GA,Au‖∞ ≥ |
a∑
j=1

Gi,juj | ≥ |ui| −
a∑

i 6=j=1

|Gi,j | |uj | ≥ ‖u‖∞ − µ(a− 1)‖u‖∞.

The last assertion follows from their definitions. This completes the proof of Lemma 20.

Lemma 21 Suppose (A3) holds. We have for any α ∈ (0, 1/2),

P
(
‖X ′η‖∞ ≤ σ

√
2 log(p/α)n

)
≥ 1− 2α, (47)

P
(

max
|A|≤T

‖X ′Aη‖2 ≤ σ
√
T
√

2 log(p/α)n
)
≥ 1− 2α. (48)
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Proof This lemma follows from the sub-Gaussian assumption (A3) and standard proba-
bility calculation, see Zhang and Huang (2008); Wainwright (2009) for details.

We now define some notation that will be useful in proving Theorems 4 and 12. For
any given integers T and J with T ≥ J and F ⊆ S with |F | = T − J , let A◦ = A∗J ∪ F and
I◦ = (A◦)c. Let {Ak}k be the sequence of active sets generated by SDAR (Algorithm 1).

Define
D2(A

k) = ‖β̄∗|A∗J\Ak‖2 and D∞(Ak) = ‖β̄∗|A∗\Ak‖∞.

These quantities measure the differences between Ak and A∗J in terms of the `2 and `∞
norms of the coefficients in A∗J but not in Ak. A crucial step in our proofs is to control the
sizes of these measures.

Let
Ak1 = Ak ∩A◦, Ak2 = A◦\Ak1, Ik3 = Ak ∩ I◦, Ik4 = I◦\Ik3 .

Denote the cardinality of Ik3 by lk = |Ik3 |. Let

Ak11 = Ak1\(Ak+1 ∩Ak1), Ak22 = Ak2\(Ak+1 ∩Ak2), Ik33 = Ak+1 ∩ Ik3 , Ik44 = Ak+1 ∩ Ik4 ,

and
4k = βk+1 − β̄∗|Ak .

These notation can be easily understood in the case T = J . For example, D2(A
k) and

D∞(Ak) are measures of the difference between the active set Ak and the target support
A∗J . Ak1 and Ik3 contain the correct indices and incorrect indices in Ak, respectively. Ak11 and
Ak22 include the indices in A◦ that will be lost from the kth iteration to the (k+1)th iteration.
Ik33 and Ik44 contain the indices included in I◦ that will be gained from the kth iteration
to the (k + 1)th iteration. By Algorithm 1, we have |Ak| = |Ak+1| = T , Ak = Ak1 ∪ Ik3 ,
|Ak2| = |A◦| − |Ak1| = |A◦| − |Ik3 | = T − (T − lk) = lk ≤ T , and

|Ak11|+ |Ak22| = |Ik33|+ |Ik44|, (49)

D2(A
k) = ‖β̄∗|A◦\Ak‖2 = ‖β̄∗|Ak2‖2, (50)

D∞(Ak) = ‖β̄∗|A◦\Ak‖∞ = ‖β̄∗|Ak2‖∞. (51)

In Subsection 3.3, we described the overall approach for proving Theorems 4 and 12.
Before proceeding to the proofs, we break down the argument into the following steps.

1. In Lemma 22 we show that the effects of the noise and the approximation model
(10) measured by h2(T ) and h∞(T ) can be controlled by the sum of unrecoverable
approximation error RJ and the universal noise level O(σ

√
2 log(p)/n) with high

probability, provided that η is sub-Gaussian.

2. In Lemma 23 we show that the `2 norms (`∞ norms) of 4k and βk− β̄∗ are controlled
in terms of D2(A

k) and h2(T ) (D∞(Ak) and h∞(T )).

3. In Lemma 24 we show that D2(A
k+1) (D∞(Ak+1)) can be bounded by the norm of

β̄∗ on the lost indices, which in turn can be controlled in terms of D2(A
k) and h2(T )

(D∞(Ak) and h∞(T )) and the norms of 4k, βk+1 and dk+1 on the lost indices.
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4. In Lemma 25 we make use of the orthogonality between βk and dk to show that the
norms of βk+1 and dk+1 on the lost indices can be bounded by the norm on the gained
indices. Lemma 26 gives the upper bound of the norms of βk+1 and dk+1 on the gained
indices by the sum of D2(A

k), h2(T ) (D∞(Ak), h∞(T )), and the norm of 4k.

5. We combine Lemmas 22-26 and get the desired relations between D2(A
k+1) and

D2(A
k) (D∞(Ak+1) and D∞(Ak)) in Lemma 27.

Then we prove Theorems 4 and 12 based on Lemma 27, (56) and (58).

Lemma 22 Let A ⊂ S with |A| ≤ T . Suppose (A1) and (A3) holds. Then for α ∈ (0, 1/2)
with probability at least 1− 2α, we have

(i) If X ∼ SRC(T, c−(T ), c+(T )), then

h2(T ) ≤ ε1, (52)

where ε1 is defined in (18).

(ii) We have

h∞(T ) ≤ ε2, (53)

where ε2 is defined in (29).

Proof We first show

‖Xβ∗|(A∗J )c‖2 ≤
√
nc+(J)RJ , (54)

under the assumption of X ∼ SRC(c−(T ), c+(T ), T ) and (A1). In fact, let β be an arbitrary
vector in Rp and A1 be the first J largest positions of β, A2 be the next and so forth. Then

‖Xβ‖2 ≤ ‖XβA1‖2 +
∑
i≥2
‖XβAi‖2

≤
√
nc+(J)‖βA1‖2 +

√
nc+(J)

∑
i≥2
‖βAi‖2

≤
√
nc+(J)‖β‖2 +

√
nc+(J)

∑
i≥1

√
1

J
‖βAi−1‖1

≤
√
nc+(J)(‖β‖2 +

√
1

J
‖β‖1),

where the first inequality follows from the triangle inequality, the second inequality follows
from (42), and the third and fourth ones follows from simple algebra. This implies (54)
holds by observing the definition of RJ . By the triangle inequality, (42), (54) and (48), we
have with probability at least 1− 2α,

‖X ′Aη̄‖2/n ≤ ‖X
′
AXβ

∗|(A∗J )c‖2/n+ ‖X ′Aη‖2/n

≤ c+(J)RJ + σ
√
T
√

2 log(p/α)/n.
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Therefore, (52) follows by noticing the monotone increasing property of c+(·), the definition
of ε1 in (18) and the arbitrariness of A.

By a similar argument for (54) and replacing
√
nc+(J) with

√
n(1 + (J − 1)µ) based

on (45), we get

‖Xβ∗|(A∗J )c‖2 ≤
√
n(1 + (K − 1)µ)RJ . (55)

Therefore, by (45), (55) and (47), we have with probability at least 1− 2α,

‖X ′Aη̄‖∞/n ≤ ‖X
′
AXβ

∗|(A∗J )c‖∞/n+ ‖X ′Aη‖2/n

≤ ‖X ′AXβ∗|(A∗J )c‖2/n+ ‖X ′Aη‖2/n

≤ (1 + (J − 1)µ)RJ + σ
√

2 log(p/α)/n.

This implies part (ii) of Lemma 22 by noticing the definition of ε2 in (29) and the arbitrari-
ness of A. This completes the proof of Lemma 22.

Lemma 23 Let A ⊂ S with |A| ≤ T . Suppose (A1) holds.

(i) If X ∼ SRC(T, c−(T ), c+(T )),

‖βk+1 − β̄∗‖2 ≤
(

1 +
θT,T
c−(T )

)
D2(A

k) +
h2(T )

c−(T )
, (56)

and

‖4k‖2 ≤
θT,T
c−(T )

‖β̄∗|Ak2‖2 +
h2(T )

c−(T )
. (57)

(ii) If (T − 1)µ < 1, then

‖βk+1 − β̄∗‖∞ ≤
1 + µ

1− (T − 1)µ
D∞(Ak) +

h∞(T )

1− (T − 1)µ
, (58)

and

‖4k‖∞ ≤
Tµ

1− (T − 1)µ
‖β̄∗|Ak2‖∞ +

h∞(T )

(1− (T − 1)µ)
. (59)

Proof We have

βk+1
Ak

= (X ′AkXAk)−1X ′Aky

= (X ′AkXAk)−1X ′Ak(XAk1
β̄∗
Ak1

+XAk2
β̄∗
Ak2

+ η̄), (60)

(β̄∗|Ak)Ak = (X ′AkXAk)−1X ′AkXAk(β̄∗|Ak)Ak

= (X ′AkXAk)−1X ′Ak(XAk1
β̄∗
Ak1

), (61)
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where the first equality uses the definition of βk+1 in Algorithm 1, the second equality
follows from y = Xβ̄∗ + η̄ = XAk1

β̄∗
Ak1

+ XAk2
β̄∗
Ak2

+ η̄, the third equality is simple algebra,

and the last one uses the definition of Ak1. Therefore,

‖4k‖2 = ‖βk+1
Ak
− (β̄∗|Ak)Ak‖2

= ‖(X ′AkXAk)−1X ′Ak(XAk2
β̄∗
Ak2

+ η̄)‖
2

≤ 1

nc−(T )
(‖X ′AkXAk2

β̄∗
Ak2
‖
2

+ ‖X ′Ak η̄‖2)

≤
θT,T
c−(T )

‖β̄∗|Ak2‖2 +
h2(T )

c−(T )
,

where the first equality uses supp(βk+1) = Ak, the second equality follows from (61) and
(60), the first inequality follows from (41) and the triangle inequality, and the second in-
equality follows from (50), the definition of θa,b and the definition of h2(T ). This proves
(57). Then the triangle inequality ‖βk+1 − β̄∗‖2 ≤ ‖βk+1 − β̄∗|Ak‖2 + ‖β̄∗|A◦\Ak‖2 and (57)
imply (56).

Using an argument similar to the proof of (57) and by (46), (44) and (51), we can show
(59). Thus (58) follows from the triangle inequality and (59). This completes the proof of
Lemma 23.

Lemma 24

D2(A
k+1) ≤ ‖β̄∗

Ak11
‖
2

+ ‖β̄∗
Ak22
‖
2
, (62)

D∞(Ak+1) ≤ ‖β̄∗
Ak11
‖
∞

+ ‖β̄∗
Ak22
‖
∞
. (63)

‖β̄∗
Ak11
‖
2
≤ ‖4k

Ak11
‖
2

+ ‖βk+1
Ak11
‖
2
, (64)

‖β̄∗
Ak11
‖
∞
≤ ‖4k

Ak11
‖
∞

+ ‖βk+1
Ak11
‖
∞
. (65)

Furthermore, assume (A1) holds. We have

‖β̄∗
Ak22
‖
∞
≤ ‖dk+1

Ak22
‖
∞

+ Tµ‖4k
Ak‖∞ + TµD∞(Ak) + h∞(T ), (66)

‖β̄∗
Ak22
‖
2
≤
‖dk+1

Ak22
‖
2

+ θT,T ‖4k
Ak
‖
2

+ θT,TD2(A
k) + h2(T )

c−(T )
if X ∼ SRC(T, c−(T ), c+(T )).

(67)

Proof By the definitions of D2(A
k+1), Ak11, A

k
11 and Ak22, we have

D2(A
k+1) = ‖β̄∗|A◦\Ak+1‖

2
= ‖β̄∗|Ak11∪Ak22‖2 ≤ ‖β̄

∗
Ak11
‖
2

+ ‖β̄∗
Ak22
‖
2
.

This proves (62). (63) can be proved similarly. To show (64), we note that 4k = βk+1 −
β̄∗|Ak . Thus

‖βk+1
Ak11
‖
2

= ‖
(
β̄∗
∣∣
Ak

)
Ak11

+4k
Ak11
‖
2

≥ ‖β̄∗
Ak11
‖
2
− ‖4k

Ak11
‖
2
.
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This proves (64). (65) can be proved similarly.
Now consider (67). We have

‖dk+1
Ak22
‖
2

= ‖X ′
Ak22

(
XAkβ

k+1
Ak
− y
)
/n‖

2

= ‖X ′
Ak22

(
XAk4k

Ak +XAk β̄
∗
Ak −XA◦ β̄

∗
A◦ − η̄

)
/n‖

2

= ‖X ′
Ak22

(
XAk4k

Ak −XAk22
β̄∗
Ak22
−XAk2\Ak22

β̄∗
Ak2\Ak22

− η̄
)
/n‖

2

≥ c−(|Ak22|)‖β̄∗Ak22‖2 − θ|Ak22|,T ‖4
k
Ak‖2 − θlk,lk−|Ak22|‖β̄

∗
Ak2\Ak22

‖
2
− ‖XAk22

η̄/n‖
2

≥ c−(T )‖β̄∗
Ak22
‖
2
− θT,T ‖4k

Ak‖2 − θT,TD2(A
k)− h2(T ),

where the first equality uses the definition of dk+1, the second equality uses the the definition
of 4k and y, the third equality is simple algebra, the first inequality uses the triangle in-
equality, (40) and the definition of θa,b, and the last inequality follows from the monotonicity
property of c−(·), θa,b and the definition of h2(T ). This proves (67).

Finally, we show (66). Let ik ∈ Ak22 be an index satisfying
∣∣β̄∗ik ∣∣ = ‖β̄∗

Ak22
‖
∞

. Then∣∣∣dk+1
ik

∣∣∣ = ‖X ′ik(XAk4k
Ak −Xik β̄

∗
ik
−XAk2\ ik

β̄∗
Ak2\ ik

− η̄)/n‖
∞

≥
∣∣β̄∗ik ∣∣− Tµ‖4k

Ak‖∞ − lkµ‖β̄
∗
Ak2\ ik

‖
∞
− ‖X ′ik η̄‖∞

≥ ‖β̄∗
Ak22
‖
∞
− Tµ‖4k

Ak‖∞ − TµD∞(Ak)− h∞(T ),

where the first equality is derived from the first three equalities in the proof of (67) by
replacing Ak22 with ik, the first inequality follows from the triangle inequality and (44), and
the last inequality follows from the definition of h∞(T ). Then (66) follows by rearranging
the terms in the above inequality. This completes the proof of Lemma 24.

Lemma 25

‖βk‖∞ ∨ ‖d
k‖∞ = max{|βki |+ |dki |

∣∣i ∈ S},∀k ≥ 1. (68)

‖βk+1
Ak11
‖
∞

+ ‖dk+1
Ak22
‖
∞
≤
∣∣∣βk+1
Ik33

∣∣∣
min
∧
∣∣∣dk+1
Ik44

∣∣∣
min

. (69)

‖βk+1
Ak11
‖
2

+ ‖dk+1
Ak22
‖
2
≤
√

2
(
‖βk+1

Ik33
‖
2

+ ‖dk+1
Ik44
‖
2

)
. (70)

Proof By the definition of Algorithm 1 we have βki d
k
i = 0, ∀i ∈ S, ∀k ≥ 1, thus (68) holds.

(69) follows from the definition of Ak11, A
k
22, I

k
33, I

k
44 and (68). Now

1

2
(‖βk+1

Ak11
‖
2

+ ‖dk+1
Ak22
‖
2
)2 ≤ ‖βk+1

Ak11
‖2
2

+ ‖dk+1
Ak22
‖2
2

≤ (‖βk+1
Ik33
‖
2

+ ‖dk+1
Ik44
‖
2
)2,

where the first inequality follows from simple algebra, and the second inequality follows
from (49) and (69). Thus (70) follows. This completes the proof of Lemma 25.
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Lemma 26

‖βk+1
Ik33
‖
2
≤ ‖4k

Ik33
‖
2
. (71)

Furthermore, suppose (A1) holds. We have

‖dk+1
Ik44
‖
∞
≤ Tµ‖4k

Ak‖∞ + TµD∞(Ak) + h∞(T ) under the mutual coherence condition (A∗),

(72)

‖dk+1
Ik44
‖
2
≤ θT,T

∥∥∥4k
Ak

∥∥∥+ θT,TD2(A
k) + h2(T ) if X ∼ SRC(T, c−(T ), c+(T )). (73)

Proof By the definition of 4k, the triangle inequality and the fact that β̄∗ vanishes on
Ak ∩ Ik33, we have

‖βk+1
Ik33
‖
2

= ‖4k
Ik33

+ β̄∗
Ik33
‖
2
≤ ‖4k

Ik33
‖
2

+ ‖β̄∗
Ak∩Ik33

‖
2

= ‖4k
Ik33
‖
2
.

So (71) follows. Now

‖dk+1
Ik44
‖
2

= ‖X ′
Ik44

(
XAk4k

Ak −XAk2
β̄∗
Ak2
− η̄
)
/n‖

2

≤ θ|Ik44|,T ‖4
k
Ak‖2 + θ|Ik44|,lk

‖β̄∗
Ak2
‖
2

+ ‖X ′
Ik44
η̄‖

2

≤ θT,T ‖4k
Ak‖2 + θT,TD2(A

k) + h2(T ),

where the first equality is derived from the first three equalities in the proof of (67) by
replacing Ak22 with Ik44, the first inequality follows from the triangle inequality and the def-
inition of θa,b, and the last inequality follows from the monotonicity property of θa,b and
h2(T ). This implies (73). Finally, (72) can be proved similarly by using (44) and (53). This
completes the proof of Lemma 26.

Lemma 27 Suppose (A1) holds.

(i) If X ∼ SRC(T, c−(T ), c+(T )), then

D2(A
k+1) ≤ γD2(A

k) +
γ

θT,T
h2(T ), (74)

(ii) If (T − 1)µ < 1, then

D∞(Ak+1) ≤ γµD2(A
k) +

3 + 2µ

1− (T − 1)µ
h∞(T ). (75)
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Proof We have

D2(A
k+1) ≤ ‖β̄∗

Ak11
‖
2

+ ‖β̄∗
Ak22
‖
2

≤ (‖βk+1
Ak11
‖
2

+ ‖dk+1
Ak22
‖
2

+ ‖4k
Ak11
‖
2

+ θT,T ‖4k
Ak‖2 + θT,TD2(A

k) + h2(T ))/c−(T )

≤ (
√

2(‖βk+1
Ik33
‖
2

+ ‖dk+1
Ik44
‖
2
) + ‖4k

Ak11
‖
2

+ θT,T

∥∥∥4k
Ak

∥∥∥+ θT,TD2(A
k) + h2(T ))/c−(T )

≤ ((2 + (1 +
√

2)θT,T )‖4k‖2 + (1 +
√

2)θT,TD2(A
k) + (1 +

√
2)h2(T ))/c−(T )

≤ (
2θT,T + (1 +

√
2)θ2T,T

c−(T )2
+

(1 +
√

2)θT,T
c−(T )

)D2(A
k)

+ (
2 + (1 +

√
2)θT,T

c−(T )2
+

1 +
√

2

c−(T )
)h2(T ),

where the first inequality is (62), the second inequality follows from (64) and (67), the third
inequality follows from (70), the fourth inequality uses the sum of (71) and (73), and the
last inequality follows from (57). This implies (74) by noticing the definitions of γ.

Now

D∞(Ak+1) ≤ ‖β̄∗
Ak11
‖
∞

+ ‖β̄∗
Ak22
‖
2

≤ ‖βk+1
Ak11
‖
∞

+ ‖dk+1
Ak22
‖
∞

+ ‖4k
Ak11
‖
∞

+ Tµ‖4k
Ak‖∞ + TµD∞(Ak) + h∞(T ).

≤ ‖dk+1
Ik44
‖
∞

+ ‖4k
Ak11
‖
∞

+ Tµ‖4k
Ak‖∞ + TµD∞(Ak) + h∞(T )

≤ ‖4k
Ak11
‖
∞

+ 2Tµ‖4k
Ak‖∞ + 2TµD∞(Ak) + 2h∞(T )

≤ (
(1 + 2Tµ)Tµ

1− (T − 1)µ
+ 2Tµ)D∞(Ak) +

3 + 2µ

1− (T − 1)µ
h∞(T ),

where the first inequality is (63), the second inequality follows from (65) and (66), the third
inequality follows from (69), the fourth inequality follows from (72), and the last inequality
follows from (59). Thus part (ii) of Lemma 27 follows by noticing the definition of γµ. This
completes the proof of Lemma 27.

Proof of Theorem 4.

Proof Suppose γ < 1. By using (74) repeatedly,

D2(A
k+1) ≤ γD2(A

k) +
γ

θT,T
h2(T )

≤ γ(γD2(A
k−1) +

γ

θT,T
h2(T )) + γh2(T )

≤ · · ·

≤ γk+1D2(A
0) +

γ

θT,T
(1 + γ + · · ·+ γk)h2(T )

< γk+1‖β̄∗‖2 +
γ

(1− γ)θT,T
h2(T ),
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i.e., (13) holds. Now

‖βk+1 − β̄∗‖2 ≤ (1 +
θT,T
c−(T )

)D2(A
k) +

h2(T )

c−(T )

≤ (1 +
θT,T
c−(T )

)
[
γk‖β̄∗‖2 +

γθT,T
1− γ

h2(T )
]

= (1 +
θT,T
c−(T )

)γk‖β̄∗‖2 +
[ γθT,T

(1− γ)
(1 +

θT,T
c−(T )

) +
1

c−(T )

]
h2(T ),

where the first inequality follows from (56), the second inequality follows from (13), and
the third line follows after some algebra. Thus (14) follows by noticing the definitions of b1
and b2. This completes the proof of part (i) of Theorem 4.

For part (ii), (16) follows from (13) and (52), (17) follows from (14) and (52). This
completes the proof of Theorem 4.

Proof of Corollary 8.
Proof By (14),

‖βk+1 − β̄∗‖2 ≤ b1γ
k
1‖β̄∗‖2 + b2h2(T )

≤ b1h2(T ) + b2h2(T ) if k ≥ log 1
γ

√
JM̄

h2(T )

where the second inequality follows after some algebra. By (13),

‖β̄∗|A∗J\Ak‖2 ≤ γ
k‖β̄∗‖2 +

γθT,T
1− γ

h2(T )

≤ γk
√
JM̄ + ξm̄

< m̄ if k ≥ log 1
γ

√
JR

1− ξ
,

where the second inequality follows from the assumption m̄ ≥ γh2(T )
(1−γ)θT,T ξ with 0 < ξ < 1, and

the last inequality follows after some simple algebra. This implies A∗J ⊂ Ak if k ≥ log 1
γ

√
JR

1−ξ .

This proves part (i). The proof of part (ii) is similar to that of part (i) by using (52), we omit
it here. For part (iii), suppose β∗ is exactly K-sparse and T = K in the SDAR algorithm
( Algorithm 1). It follows from part (ii) that with probability at least 1 − 2α, A∗ = Ak if

k ≥ log 1
γ

√
KR
1−ξ . Then part (iii) holds by showing that Ak+1 = A∗. Indeed, by (74) and (52)

we have

‖β̄∗|A∗\Ak+1‖
2
≤ γ‖β̄∗|A∗\Ak‖2 +

γ

θT,T
σ
√
K
√

2 log(p/α)/n

=
γ

θT,T
σ
√
K
√

2 log(p/α)/n.

Then Ak+1 = A∗ follows from the assumption that m ≥ γ
(1−γ)θT,T ξσ

√
K
√

2 log(p/α)/n >
γ

θT,T
σ
√
K
√

2 log(p/α)/n. This completes the proof of Corollary 8.
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Proof of Theorem 12.

Proof For µ satisfying Tµ ≤ 1/4, some algebra shows γµ < 1 and 1+µ
1−(T−1)µ <

3+2µ
1−(T−1)µ < 4.

Now Theorem 12 can be proved similarly to Theorem 4 by using (75), (53) and (58). We
omit it here. This completes the proof of Theorem 12.

Proof of Corollary 14.

Proof The proofs of part (i) and part (ii) are similar to those of Corollary 8, we omit them
here. Suppose β∗ is exactly K-sparse and T = K in SDAR. It follows from part (ii) that
with probability at least 1−2α, A∗ = Ak if k ≥ log 1

γµ

R
1−ξ . Then part (iii) holds by showing

that Ak+1 = A∗. By (75), (53) and 3+2µ
1−(T−1)µ < 4 we have

‖β̄∗|A∗\Ak+1‖∞ ≤ γµ‖β̄
∗|A∗\Ak‖∞ + 4σ

√
2 log(p/α)/n

= 4σ
√

2 log(p/α)/n.

Then Ak+1 = A∗ by the assumption that

m ≥ 4

ξ(1− γµ)
σ
√

2 log(p/α)/n > 4σ
√

2 log(p/α)/n.

This completes the proof of Corollary 14.
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