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Abstract

We consider the situation where I items are ranked by paired comparisons. It is usually
assumed that the probability that item i is preferred over item j is pij = F (µi−µj) where F
is a symmetric distribution function, which we refer to as the comparison function, and µi

and µj are the merits or scores of the compared items. This modelling framework, which is
ubiquitous in the paired comparison literature, strongly depends on the assumption that the
comparison function F is known. In practice, however, this assumption is often unrealistic
and may result in poor fit and erroneous inferences. This limitation has motivated us
to relax the assumption that F is fully known and simultaneously estimate the merits
of the objects and the underlying comparison function. Our formulation yields a flexible
semi-definite programming problem that we use as a refinement step for estimating the
paired comparison probability matrix. We provide a detailed sensitivity analysis and,
as a result, we establish the consistency of the resulting estimators and provide bounds
on the estimation and approximation errors. Some statistical properties of the resulting
estimators as well as model selection criteria are investigated. Finally, using a large data-set
of computer chess matches, we estimate the comparison function and find that the model
used by the International Chess Federation does not seem to apply to computer chess.

Keywords: linear stochastic transitivity, statistical ranking, semi-definite programming,
model selection, sensitivity analysis, chess

1. Introduction

There are many situations in which a preference or a ranking among a set of items is
desired. Ranking methods are widely used in settings such as product testing (Cremonesi
et al., 2010), the evaluation of political candidates (Saari, 1995; Pacuit, 2012), psychometrics
(Regenwetter et al., 2011), machine learning (Ailon, 2012; Shah et al., 2015a) and sports
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(Herbrich et al., 2007; Govan, 2008). An ordering of a set of items can be inferred from
different types of data including scores (Balinski and Laraki, 2010) and ranked lists (Marden,
1996). A ranked list may be complete, i.e., all items are compared and ranked, or partial
or incomplete, when only a subset of items is compared and ranked. In particular, paired
comparison data is obtained if all comparisons involve only two items (David, 1988). Here
we focus on paired comparisons with a binary outcomes.

Given a set of I items, also called objects, or players, let Yijk, 1 ≤ i, j ≤ I, be inde-
pendent binary random variables where Yijk = 1 if item i is preferred over item j on their
kth comparison and Yijk = 0 otherwise. The probability of this event is denoted by pij ,
i.e., pij = P(Yijk = 1). We assume that mij comparisons were observed between each pair
of items and we let Yij =

∑mij

k=1 Yijk denote the number of times item i was preferred over
item j. Further let P = [pij ] denote the I × I underlying probability matrix.

Typically, it is assumed that

pij = F (µi − µj) (1)

where µi, µj ∈ R are the merits (also called skills, scores or ratings) of items i and j re-
spectively, and F : R → [0, 1] is a known, strictly increasing, comparison function, i.e.,
a symmetric absolutely continuous distribution function. We assume that the merits are
fixed and unknown. In some situations the merits may vary according to an “effort” (Jia
et al., 2013), or depend on covariates (Herbrich et al., 2007; Allison and Christakis, 1994).
Model (1) implies that pij + pji = 1 and imposes a form of stochastic transitivity (Morri-
son, 1963; Regenwetter et al., 2011) which is known as linear stochastic transitivity (LST).
Models satisfying (1) will be referred to as LST models. Various LST models have been
proposed, these differ in the choice of the comparison function F . In particular, two canon-
ical LST models have been widely studied; the Thurstonian model (Thurstone, 1927) and
the (Zarmelo) Bradley-Terry-Luce model (Zermelo, 1928; Bradley and Terry, 1952). The
Bradley-Terry-Luce model (BTL, henceforth) assumes that F is a standard logistic distri-
bution whereas Thurstone’s model assumes F is a standard normal distribution. There are
literally thousands of studies which employ these models and their variants. Other, albeit
less popular, LST models are also studied in literature, e.g., the Threshold model which
employs the Laplace distribution and is used for modelling animal behavior (Yellott, 1970),
and the locally linear model (Batchelder et al., 1992) which employs a uniform on [−1, 1]
distribution.

The assumption that F is known has been recognized as rather unrealistic (Morrison,
1963; David, 1988; Regenwetter and Davis-Stober, 2008; Hwang, 2009; Shah et al., 2015b;
Heckel et al., 2016). This has motivated several authors to resort to the use of less restrictive
transitivity relations. A variety of stochastic transitivity relations have been explored in
the literature (Morrison, 1963; Regenwetter et al., 2011; Oliveira et al., 2018), the weakest
of which is known as weak stochastic transitivity. Under weak stochastic transitivity if
pij ≥ 1/2 and pjk ≥ 1/2 then pik ≥ 1/2. A stronger form of stochastic transitivity, referred
to as strong stochastic transitivity (SST), postulates that if pij ≥ 1/2 and pjk ≥ 1/2 then
pik ≥ max{pij , pjk}. Of course model (1) satisfies both of the relations. Various authors
have developed methods for analyzing data under these less restrictive assumptions (deCani,
1969; Regenwetter and Davis-Stober, 2008; Chatterjee and Mukherjee, 2016; Shah et al.,
2015b). It turns out that the estimation procedures associated with these less restrictive
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transitivity relations are in general, NP-hard. Since these models provide less structure,
they may not be adequate when the comparison graph is sparse and most importantly may
provide less predictive power. The SST model, for example, cannot guarantee that stronger
players have higher chances than weaker players in knockout tournaments, whereas BTL
can (Chung and Hwang, 1978; Israel, 1981; Adler et al., 2017; Baek et al., 2013). Thus
we propose a different, potentially more powerful approach, within the LST framework, in
which the assumption that the comparison function F is known is relaxed. The proposed
methodology is flexible, tractable and retains the desirable computational and statistical
characteristics of LST models.

A natural and widely used approach for estimating the model parameters in (1) is
by least squares (LS). LS is often the method of choice due to its (relative) computational
simplicity. Thus if (1) holds then the LS estimators solve the following optimization problem:

µ̂ ∈ argmin
∑
i 6=j

wij(∆̂ij − (µi − µj))2, (2)

where, typically, ∆̂ij ≡ F−1(p̂ij) and p̂ij is an estimator of the probability pij . For now we
assume that p̂ij is bounded away from 0 and 1 and p̂ij + p̂ji = 1 so ∆̂ij is well defined. The
weights wij are given and are either proportional to the variance of the estimated ∆̂ij , or the
number of comparisons between items i and j. Notice that (2) admits multiple solutions, for
if µ∗ is a solution to problem (2) then so is µ∗+ v1 for any v ∈ R. A unique solution exists
if the comparison graph is connected and an additional linear constraint such as

∑
i µi = 0

is enforced (Tsukida and Gupta, 2011).
When all wij in (2) are equal, then the solution is of the form µ∗i = κ

∑
j ∆̂ij for some

κ > 0. For this reason the LS method is sometimes referred to as the row—sum proce-
dure (Huber, 1963). There are other well known ranking methods which can be viewed as
row—sum procedures with varying definitions of ∆̂ij . For example, the Copland Method,
popular within the voting literature (Levin and Nalebuff, 1995; Favardin et al., 2002), is a
row sum procedure in which p̂ij is defined as p̂ij ≡ (

∑
k Yijk)/I and F (x) = 1/2 + x for

x ∈ [−1/2, 1/2] where Yijk equals one if the kth voter prefers candidate i above candidate
j and zero otherwise. The Borda Count can be also shown to be a row—sum method.
Another LS variant, known as Massey Ratings, is widely used in the rating of sport teams
in college football, basketball, hockey, and baseball, see Chapter 4 of Massey (2017). For
more on the LS literature, refer to Hodge rank in Jiang et al. (2010).

Our Contribution. We will weaken the assumption that the comparison function F is known
and assume only that it belongs to, a new, large family of parametric functions. Our para-
metric set, can be understood as an interior approximation, with arbitrary precision, to the
full set of comparison functions. We then simultaneously estimate the merits as well as the
comparison function F by generalizing the LS approach. Estimating the probabilities pij is
now an easy consequence. We show that this can be done efficiently both computationally
and statistically. In particular, we develop a procedure that takes as input an estimate of
the probability matrix and returns an estimate of the comparison function F , the merit
vector µ and a refinement of the original estimate of the probability matrix. Estimation
reduces to a semi-definite programming problem with a tractable solution. We provide a
thorough sensitivity analysis and derive statistical properties such as convergence and con-
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centration bounds on the refined estimator and the estimated function. By applying our
methodology to a large data-set of computer chess matches, we verify that the ubiquitous
(Zarmelo) Bradley-Terry-Luce model may be inappropriate for computer chess.

2. Formulation and Estimation

Formulation: Least Squares Estimation Over Polynomial Families. First, we may generalize
problem (2) by rewriting it in matrix notation in the following way

µ̂ ∈ argminµ||F−1(P̂ )−∆µ||W . (3)

Here ∆µ is an I×I matrix whose ijth element is µi−µj and F−1(P̂ ) is a matrix with the
same dimensions whose ijth element is F−1(p̂ij), if wij > 0 and 0 otherwise. Unless specified
otherwise, in this paper the norm || · ||W will be the weighted Frobenius (semi-)norm, with
pre-specified weights and || · || will be its unweighted counterpart. With a slight abuse of
notation we will refer to the frobenius norm as the L2 norm. The minimization in (3) can
also be formulated with respect to the sum of the absolute values of the elements, which we
refer to as the L1 norm, or maximum value of the elements of a matrix, which we refer to
as the L∞ norm. The mechanics involved in solving (3) are norm dependent. If one views
∆ as an operator from RI → RI×I then ∆µ̂ is the projection of F−1(P̂ ) on the image set
of the operator ∆. Finally note that the least squares procedure takes an estimator P̂ and
produces a refined estimator denoted by P ∗ = F (∆µ̂).

The assumption that the comparison function F is known is relaxed and instead it is
assumed that F ∈ F where F , where:

A1 (Parametric Assumption): The family F indexed by β ∈ RD+1 consists of all distribu-
tion functions whose inverse, i.e., its quantile function, may be written as a polynomial, of
the form

F−1β (p) = β0 + β1p+ ...+ βDp
D where p ∈ [0, 1/2]. (4)

Equation (4) defines a quantile regression model (Takeuchi et al., 2006; Su, 2015). By
the LST condition Fβ is symmetric, i.e., Fβ(x) + Fβ(−x) = 1 so F−1β (p) + F−1β (1− p) = 0.

It immediately follows that F−1β (p) is also a polynomial when p ∈ [1/2, 1]. Also, (4) implies
that the support of Fβ is the finite interval [β0,−β0], where β0 < 0. It is further assumed
that:

A2 (Lipschitz Assumption): For all Fβ ∈ F , Fβ is L-Lipschitz and ||β||∞ ≤ U for some
constants L and U .

We note that each fixed value of (D,U,L) generates a parametric family of distributions
F(D,U,L); which we denote for convenience by F . This is a new, non-standard, rich family
of distributions, in which the quantile function, not the density, is parametrized. Figure
1 shows that the Bradley-Terry-Luce model can be can be approximated by a low degree
polynomial over the interval p ∈ [0.01, 0.99]. Furthernote, that by increasing D,U and L
we can approximate any quantile function with arbitrary precision.
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Figure 1: An approximation of the Bradley-Terry-Luce quantile function over the interval
p ∈ [0.01, 0.99] by a function F ∈ F for D = 7.

It is known that F and G are equivalent comparison functions iff F (x) = G(κx) for some
positive κ, see Yellott (1977), and therefore F−1 is equivalent to G−1 iff κF−1(p) = G−1(p).
A valid linear constraint on the coefficient vector β is thus imposed to ensure identifiability.
For example, fixing the support of F , which amounts to fixing β0 < 0, is sufficient. Another
natural choice is to fix the derivative of F at 0, which amounts to fixing β1 > 0. A rescaling
argument shows that the resulting inferences do not depend on the chosen constraint. As
noted earlier, identifiablity requires that the merits satisfy a constraint. Henceforth it will
be assumed that:

A3 (Scaling Assumption): The merits and the comparison function are scaled to satisfy∑
i

µi = 0 and β0 = −1. (5)

Thus, if F belongs to F we may estimate (µ,β) by solving the following optimization
problem:

(µ̂, β̂) ∈ argminµ∈R,Fβ∈F ||F
−1
β (P̂ )−∆µ||W . (6)

Although (6) is a least squares problem it is non-standard as “both sides”, i.e., the “predic-
tor” and the “response” in the regression equation, are associated with unknown parameters
which are estimated simultaneously. In the following subsection we will study problem (6)
under assumptions A1 to A3.

Solution via Semidefinite Programming. Our first concern is to characterize the set of
feasible solutions for (µ,β). As noted earlier the quantile function (4) satisfies F−1(p) =
−F−1(1− p) so we need only consider constraints generated by values p ∈ [0, 1/2]. In this
interval F−1β (p) is increasing hence its derivative, which is a polynomial of degree D − 1,

is non-negative. Furthermore, the Lipschitz continuity constraint on F implies that F−1 is
strictly monotone with derivative greater or equal to 1/L. Thus,

β1 + ...+DβDp
(D−1) − 1

L
≥ 0 for all p ∈ [0, 1/2] (7)
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In addition F (0) = 1/2, so F−1β (1/2) = 0 and ||β||∞ ≤ U therefore

D∑
i=0

(
1

2

)i
βi = 0 and − U ≤ βi ≤ U for all i. (8)

Minimizing ||F−1(P̂ )−∆µ||W subject to (7) and (8) yields a semi-infinite programming
problem (SIP) (Mutapcic and Boyd, 2009; Stein, 2012), i.e., an optimization problem with
an infinite number of, in this case linear, constraints.

There are a number of methods for solving SIPs. One natural approach is discretization,

which in our case means replacing (7) byN constraints of the form β1+β2pj ...+DβDp
(D−1)
j −

1/L ≥ 0 where 0 < p1 < p2 < ... < pN < 1/2 for some finite N . This yields a simple
quadratic programming problem. From a practitioner’s point of view, discretization may
be a method of choice due to its simplicity. This is specifically true when || · ||W is either
the weighted or unweighted L1 or L∞ norms, since in these cases discretization results
in a simple linear program. However, the resulting estimate of F is not guaranteed to
be strictly monotone (although this can be overcome, see section 3.2 of Mutapcic and
Boyd 2009) and more importantly in the worst case the solution may not be polynomially
computable. These issues may be overcome by noting that the constraints in (7)-(8) are
equivalent to a combination of linear constraints and positive semi-definite cone constraints,
see Parrilo (2016) for further details. Thus our optimization problem is (also) a semi-definite
optimization problem (SDP). There is a large literature on SDPs (Nemirovski and Todd,
2009) and in particular it is known that SDPs can be solved by interior point methods
(Vandenberghe and Boyd, 1996) in polynomial time. Therefore we may formally rewrite
(6) as:

Theorem 1 Given U,L ≥ 0, D = 2d + 1 with d ∈ N, a symmetric weight matrix W and
an estimator P̂ , then problem (6) is equivalent to:

minimize
∑

(i,j)∈S wij(β0 + ...+ βDp̂
D
ij + µj − µi)2

subject to
βi = 1

i (
1
2 ti−2 − ti−3 + si−1) for i = 2, ..., D,

β1 = s0 + 1
L ,

∑D
k=0

(
1
2

)k
βk = 0, ||β||∞ ≤ U,

si =
∑

j+k=iQ
0
jk for i = 0, ..., D − 1, Q0 ∈ Sd+1

+ ,

ti =
∑

j+k=iQ
1
jk for i = 0, ..., D − 3, Q1 ∈ Sd+.

(9)

where S = {(i, j) | pij ≤ .5 or pij = .5 and i < j}, and tD−1 = tD−2 = t−1 = t−2 = 0, Sk+
is the set of k × k symmetric positive semi-definite matrices, and the rows and columns of
Q0 and Q1 are indexed by 0 to d and 0 to d− 1 respectively.

For brevity we present here only the case when D is odd, a similar characterization
holds for D even. We note that analogues of Theorem 1 could also be formulated for the
L1 and L∞ norms and their weighted versions in which case the constraints in (9) would
remain unaltered whereas the objective function would be as defined by the corresponding
norm.

6



A New and Flexible Approach to the Analysis of Paired Comparison Data

Note that (9) admits a unique solution when the objective function is positive definite.
Lemma 2 below provides an example in a simple but important case. In large samples the
solution to (9) is uniquely determined when the system of equations β1pij + ... + βDp

D
ij −

(µi − µj) = −β0 for (i, j) ∈ S is of full rank. This condition is met when (i) there are at
least I +D− 1 connected pairs (i, j) ∈ S; which (ii) the coefficients appearing in the linear
equations, which are derived from the comparison probabilities pij , are sufficiently diverse,
otherwise the resulting equations would not be linearly independent. Thus we assume that:

A4 (Connectivity & Diversity Assumption): The comparison graph has at least I + D − 1
edges. These edges correspond to a set of linearly independent equations of the form
β1pij + ...+ βDp

D
ij − (µi − µj) = −β0.

If we label these equations (ij)1, ..., (ij)D+I−1 then together with the constraint
∑
µi = 0

we may write the resulting system of equations (with a slight abuse of notation) as:

A

(
β
µ

)
=

(
−β0

0

)
(10)

where the k’th row of A is Ak = (p(ij)k ... pD(ij)k − e(ij)k) for k = 1, ..., I +D − 1 and

AI+D = (0T ... 1T ) where eij ∈ RI is defined by eij ≡ ei − ej , where ei is the standard
basis. The condition number of A plays a role in the quality of our estimators.

Define p = (1, p, ... , pD)T and note that if all the weights are equal then

µi =
1

I

∑
k

F−1β (pik) =
1

I

∑
(i,k)∈S

F−1β (pik)−
1

I

∑
(i,k)/∈S

F−1β (pki) (11)

and thus we may eliminate µ from (9) by means of equation (11). This considerably reduces
the size of the SDP at hand when the number of items I is larger than D. Algorithm
PolyRank (displayed below) takes advantage of this. Furthermore:

Lemma 2 When all weights wij are equal, then, the objective function of problem (9) is
equivalent to minimizing βTMβ, where

M ≡
∑

(ij)∈S

v(ij)v
T
(ij) (12)

and v(ij) ≡ −Ip̂ij +
∑

(ik)∈S p̂ik −
∑

(ik)/∈S p̂ki −
∑

(jk)∈S p̂jk +
∑

(jk)/∈S p̂kj .

Hence the estimators can be efficiently calculated in three steps:
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Algorithm: PolyRank

Input: P̂ ∈ [0, 1]I×I D ∈ N an odd number and U,L ≥ 0.

1. Preprocessing: Calculate M as in equation (12);

2. Functional Estimation: β̂ ≡ argmin {βTMβ subject to (9) and (5)};

3. Merit Estimation: µ̂i = 1
I

∑
(i,k)∈S F

−1
β̂

(p̂ik)− 1
I

∑
(i,k)/∈S F

−1
β̂

(p̂ki);

Output: β̂ ∈ RD+1, µ̂ ∈ Rn and P ∗ ≡ Fβ̂(∆µ̂)

Step 1 may be performed with no more than O(I3D+ I2D2) operations, Step 2 with no
more than O(D2

√
D) operations and Step 3 with no more than O(I2D) operations. Thus,

the overall computational complexity of solving problem (6) is no more than O(I3D+I2D2+
D2
√
D). Notice also that Steps 1 and 3 can be done in a distributed fashion. When the

weights are not all equal the merits cannot be written as in (11) and therefore Algorithm
PolyRank as stated above cannot be used, in that case we solve (9) directly. Nevertheless
we will refer to all versions of our estimation procedure as PolyRank. In our experience,
problem (6) with any norm (weighted or unweighted) can be tackled successfully with a
generic convex optimization solver on a desktop computer for problems of moderate size
(e.g. with D ≤ 10 and I ≤ 120) in at most 2 or 3 seconds. Using the three step procedure
(with the same generic solver) allows easy scaling up to problems where D ≤ 20 and
I ≤ 10000. If (6) is treated as a SIP and solved via discretization, then significant reduction
in computation time is observed at the cost of loosening the guarantee of optimality.

Remark 1 Notice that if the machine precision is ε and if D is such that ε > (1/2)D then
the last terms of the polynomial F−1 are rounded to zero. Therefore for standard 32 bit
floating point arithmetic one should choose D at most 22, similarly for a 64 bit arithmetic
D should not surpass 44. O(V 2

√
V )

Remark 2 In theory F can be recovered from F−1 exaclty via Lagrange Inversion The-
orem. Numerically though, calculating Fβ(µi − µj) reduces to a polynomial root-finding
problem. Although root-finding is an ill-conditioned problem for general polynomials (Tre-
fethen 2011), it may be solved via binary search (with linear convergence in the worst case)
or via Newton steps (with possible quadratic convergence).

Remark 3 When the weights wij are not all equal, or || · ||W represents the L1 or L∞
norms, then a full SDP with V = I + D variables must be solved. In these cases the
simplifying row-sum structure is absent and the worst case bounds are well known, and of
the order O(V 2

√
V ), see the general SDP literature (Vandenberghe and Boyd, 1996).
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3. Sensitivity Analysis

The goal of this section is to investigate the sensitivity of PolyRank with respect to
the input matrix P̂ . There are several reasons for developing thorough, non-stochastic,
sensitivity bounds. Firstly, the analysis serves to clarify the mechanics of PolyRank
providing bounds that apply to any choice of P̂ . Secondly, using the sensitivity bounds
statistical properties such as consistency of the refined estimator are easily derived. A
third motivation is that different estimators P̂ have been investigated in the literature,
e.g., Rajkumar and Agarwal (2014); Chatterjee and Mukherjee (2016); Shah et al. (2015b),
and since PolyRank may be applied to any of them, the respective bounds on the refined
estimator are universal and apply to any P̂ . Sensitivity analysis is carried out under three
increasingly general settings. First, we provide a benchmark by studying the LS method
with known F . Then, we consider PolyRank in the case where the model is correctly
specified, i.e., F ∈ F . This is also called the realizable case. Finally, we consider agnostic
cases, that is, situations where the model may be misspecified in some way. Three examples
of misspecifications are analyzed.

For simplicity we first focus on the unweighted L2 norm, extensions to the respective
weighted versions are similarly obtained.

3.1. Known Comparison Function

Here the function F is assumed to be a known L-Lipschitz continuous function with a U -
Lipschitz inverse, i.e., it is bilipschitz. A common assumption in the literature, cf. Shah et al.
(2015a,b), is that the probabilities in (1) are bounded away from 0 and 1, i.e., pij ∈ [ε, 1−ε],
for some ε > 0. Over this domain the Bradley-Terry-Luce, Thurstone, Threshold and
Locally Linear models are all bilipschitz.

Theorem 3 Let F be a known L-Lipschitz continuous function with a 4U -Lipschitz contin-
uous inverse (over their respective domains). Let µ̂ be as in (2) and P ∗ = F (∆µ̂). Then,

||P ∗ − P || ≤ 4LU ||P̂ − P ||, (13)

and

||µ̂− µ|| ≤ 4U√
2I
||P̂ − P ||. (14)

If, additionally, it is assumed that P̂ obeys strong stochastic transitivity, then the estimators
are order preserving, i.e.,

µ̂i < µ̂j ⇐⇒ p̂ij < p̂ji. (15)

By construction the constant 4LU ≥ 1 and so (13) guarantees that ||P ∗−P || will be at
most a constant times ||P̂ − P ||. Although it may be possible to improve the constant in
(13), its value can never be less than 1, for if not, one could generate a converging sequence
P1
∗, P2

∗, ... by recursively applying the LS refinement to any initial (blind) guess of P̂ . This
argument holds for any refinement procedure, including PolyRank. Also, by construction
the LS refinement defines P ∗ = F (∆µ̂) and thus minµ ||F−1(P ∗)−∆µ|| = 0 for µ = µ̂ and
so no improvement will be obtained via recursive LS type refinements. The bound in (13)
is a “worst case” bound and on average we often observe that ||P ∗ − P || is indeed smaller
that ||P̂ − P ||. For other norms refer to the appendix.
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The benchmarks provided by Theorem 3 will be used for comparison with the more
general cases tackled by PolyRank. As will be shown, inequality (13) also holds when F
is unknown (with different constant factors); similarly, the order preservation is maintained
in all the settings considered.

3.2. Realizable Case

Under the hypothesis of realizability, i.e., when the model is correctly specified, we have:

Theorem 4 Let P ∗ = Fβ̂ (∆µ̂) where β̂ and µ̂ are estimated using PolyRank. Then,

||P ∗ − P || ≤ (1 + 4LU)||P̂ − P ||, (16)

and ∣∣∣∣∣∣∣∣( β̂ − β
µ̂− µ

)∣∣∣∣∣∣∣∣ ≤ K1||P̂ − P ||, (17)

as well as,

max
x∈[−1,1]

|Fβ̂(x)− Fβ(x)| ≤ K2||P̂ − P ||∞, (18)

where K1 ≤ U(1 + 4LU)
√
D(I +D)||A−1|| and K2 ≤ 16LDU2 maxi

∑
j |A

−1
ij |. If, addi-

tionally, it is assumed that P̂ obeys strong stochastic transitivity, then the estimators are
order preserving.

Notice that the constants in (13) and (16) depend solely on the product of the Lipschitz
constants of F and F−1. Moreover the constant in (16) does not depend on D nor on the
condition number of A . In contrast, the constants in inequalities (14) and (17) do depend
on the dimensions of the problem. Equation (18) guarantees the convergence of Fβ̂ to the
true function F with respect to the Chebyshev distance, thus, one can eventually recover
F with arbitrary precision.

3.3. Agnostic Cases

We will now investigate the properties of PolyRank under several types of misspecification.
First, we investigate the effect of misspecifying the degree of the polynomial (4). Then, we
provide results analogous to those provided by Theorem 4 by replacing the assumption
that F ∈ F by the assumption that the true F is an analytic function. Finally, we drop
the assumption that P satisfies the LST hypothesis all together and verify that we can still
derive, albeit, weaker sensitivity bounds and rank consistency properties if strong stochastic
transitivity is assumed.

Theorem 5 Assume the true model satisfies (4), however the fitted model was of degree
D′ ≤ D−1. Then for any β′ of dimension D′ ≤ D−1, a lower bound on the approximation
error, in the Chebyshev norm, is:

1

2U

|βD|
8D
≤ max

α
|Fβ′(α)− Fβ(α)| (19)

10



A New and Flexible Approach to the Analysis of Paired Comparison Data

The lower bound (19) shows that the Chebyshev distance between the true function
and the estimated function cannot be arbitrarily minimized when the degree of the fitted
polynomial is under-specified. The lower-bound, though, decreases with the value of D at
an exponential rate.

Theorem 6 Let P ∗ = Fβ̂ (∆µ̂) where β̂ and µ̂ are estimated with PolyRank. Assume
that the true probability matrix P = F (∆µ) for some µ and some unknown L-Lipschitz
continuous function F with an analytic inverse function F−1 whose coefficients are upper-
bounded by U . Then for the estimated probability matrix we have:

||P ∗ − P || ≤ (1 + 4LU)||P̂ − P ||+ 1

2D
LUI (20)

If additionally it is assumed that P̂ obeys strong stochastic transitivity, then the estimators
are order preserving.

Equation (20) shows that the error of P ∗ can be controlled under a broad class of
analytic functions. The first term is controlled by increasing the precision of P̂ and the
second term is controlled by choosing larger values for D.

In the following Theorem we will assume no particular structure on P , i.e. the proba-
bility matrix P need not be consistent with any stochastic transitivity model.

Theorem 7 Let P ∗ = Fβ̂ (∆µ̂) where β̂ and µ̂ are estimated with PolyRank. Then for
the estimated probability matrix we have:

||P ∗ − P || ≤ ||P̂ − P ||+ L||F−1
β̂

(P̂ )−∆µ̂||, (21)

If additionally it is assumed that P̂ obeys strong stochastic transitivity, then the estimators
are order preserving.

An immediate consequence of order preservation is that if P is in the interior of the strong
stochastic transitivity set then PolyRank is order-consistent for any consistent estimator
P̂ , i.e., when P̂ → P then the vector µ̂ will correctly recover the underlying order among
the items. The error bound in equation (21), though, cannot be controlled as in equation
(20), this is so because the second term can be as big as κI2 for some positive κ even when
P̂ satisfies strong stochastic transitivity (Shah et al., 2015b).

4. Convergence and Concentration

In this subsection we assume that the model is correctly specified and investigate some
properties of the estimators obtained by PolyRank. We start with the case where the
comparisons graph is fixed and the number of comparisons per pair, i.e., the mij ’s is allowed
to increase. Similar conditions have been considered in literature (Rajkumar and Agarwal,
2014; Shah et al., 2015a).

It is well known that the topology of the comparison graph plays an important role in
the quality of the estimators (Shah et al., 2015a; Massey, 2017; Colley, 2002). In particular
Shah et al. (2015a) show that, the mean squared errors of the estimated merits from a

11
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standard Bradley-Terry-Luce model are proportional to the second eigenvalue of the graph
Laplacian. This eigenvalue, referred to as the algebraic connectivity of the graph, measures
how “well” the graph is connected (Chung, 1994). In our concentration bounds the number
of edges in the comparison graph and the condition number associated with (10) will play
a similar role. Let n =

∑
i,jmij be the number of paired comparisons.

Theorem 8 Let β̂n and µ̂n be estimated using PolyRank with mij ≡ wijn. Let p̂ij be
the usual MLEs. Then for large enough n there are constants K1 and K2 such that,

P
(∣∣∣∣∣∣∣∣( β̂n − β

µ̂n − µ

)∣∣∣∣∣∣∣∣ ≥ ε
)
≤ K1 exp

(
−nK2ε

2
)
, (22)

where K1 and K2 are discussed bellow.

Theorem 8 shows that the estimators β̂n and µ̂n converge at an exponential rate and
are therefore strongly consistent. Theorem 8 also implies an exponential convergence of P ∗

to P as well as of Fβ̂(x) to Fβ(x) in the Chebyschev distance. Theorem 8 is proved by first
establishing sensitivity bounds for the weighted norm. These are analogues of Theorem 4
and are of the form ∣∣∣∣∣∣∣∣( β̂ − β

µ̂− µ

)∣∣∣∣∣∣∣∣ ≤ K||P̂ − P ||W . (23)

The constants in (22) are K1 = 2|E| where |E| is the number of edges in the comparison
graph, and K2 = 2/(|E|(1+4LU)2U2D(I+D)||A−1W ||2), whereA−1W is defined as in equation
(10) with the appropriate modifications for weights. Clearly, I +D− 1 ≤ |E| ≤ (I2 − I)/2.
Of course, smaller values of |E| will provide tighter bounds in equation (22). The value
of ||A−1W || is a function of, among other things, the topology of the comparison graph.
Unfortunately, the condition number of AW is difficult to analyze as it contains a (I+D−1)×
D Vandermonde submatrix which can range from 1 (the best possible condition number) to
exponential on the dimensions of the matrix (Pan, 2015). As a rule of thumb Vandermonde
matrices are well conditioned when the points p(ij)1 , ..., p(ij)D+I−1

are (approximately) spaced
over Chebyshev points. Matrix AW also contains a standard (I +D − 1)× I submatrix of
pairings and thus we conjecture that smaller values of the second eigenvalue of the graph
Laplacian matrix should also provide tighter estimation bounds.

4.1. Round robin

We now turn our attention to round robin tournaments (Chatterjee and Mukherjee, 2016;
Shah et al., 2015b; Simons and Yao, 1999), in which each pair of items is compared m times.
If the number of items I is fixed and if m→∞ then we can use the results described above.
A more interesting situations arises whenm = 1 but the number of items I →∞. As pointed
out earlier, in this setting if p̂ij ∝ Yij then the LS estimator µ̂i will be proportional to its
Copeland Score (the number of times an item was preferred). Recent papers addressing
this setting are by Chatterjee and Mukherjee (2016) and Shah et al. (2015b). In particular
they assume strong stochastic transitivity and construct an estimator P̂ ISO which is shown
to satisfy:

sup
1

I2
E||P̂ ISO − P ||22 ≤ C

√
log I

I
, (24)

12
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where the supremum is taken over all matrices that satisfy strong stochastic transitivity.
They also show that if the true model was LST then, under some regularity conditions,
the upper bound in (24) can be tightened to O(1/I) up to log factors (Shah et al., 2015b).
Their estimator is calculated in two steps: (i) first, they sort the items according to their
Copeland Score; (ii) then, they perform a two dimensional isotonic regression on the matrix
Y assuming the order obtained in (i).

The resulting estimator has two drawbacks when the true model is LST. First, the
estimator may be infeasible, i.e., P̂ ISO may not be LST. Our experience indicates that this
is frequently the case. In addition the resulting estimator does not fully exploit the benefits
of an LST model since the estimated probability matrix is not a Functional of a merit vector
and the comparison function. These deficiencies, however, can be addressed by applying
PolyRank to their estimator. A trivial consequence of equation (16) is that the refined
estimator P ∗ retains the optimal risk bounds of P̂ ISO and by construction is feasible. We
state the full result for completeness:

Theorem 9 Let P ∗ be the refinement of P̂ ISO using PolyRank, where P̂ ISO is the esti-
mator of Chatterjee and Mukherjee (2016), then:

sup
1

I2
E||P ∗ − P ||22 ≤ K

log2 I

I
, (25)

for some constant K that does not depend on neither I nor D (nor the condition number of
A) and the supremum is taken over the set of probability matrices consistent with functions
F ∈ F . This is optimal up to log factors.

5. Numerical Experiments and An Illustrative Example

In the following we describe four experiments performed to further test and investigate
PolyRank. Each simulation is performed 1000 times and we report and discuss the average
performance under the specified conditions.

Experiment 1: In this experiment we compare the empirical performance of the estimator
of P when using PolyRank with a low degree polynomial with its performance given
the correct comparison function. Specifically, this is done by generating I = 20 items
with merits µi sampled uniformly from [0, 10]. A total of 50 pairs, selected randomly,
were compared assuming a Bradley-Terry-Luce (BTL) model. We refine the estimator
p̂ij = (Yij + 1)/(mij + 2) with PolyRank using D = 5. We also compute the LS estimated
with the known F . Figure 2 shows the average distance ||P ∗ − P ||2. As expected, the LS
method with the correct comparison function performs best, PolyRank performs almost
as well and both substantially outperform the initial estimates. This is consistent with our
expectations because the BTL model, despite not belonging to the class of functions F , can
be well approximated by this class within the range of choice probabilities generated.

Experiment 2 In this experiment we investigate the empirical performance of PolyRank
in the round-robin setting when the number of items is increasing. Specifically, we generate
a sequence of round-robin tournaments with an increasing number of items. The data is
generated assuming model (4) with D = 5. The matrix P is estimated using the isotonic
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Figure 2: Comparison of refined estimators with low sampling.
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Figure 3: Refined estimators for round-robin tournaments.

regression estimator of Chatterjee and Mukherjee (2016) and refined using PolyRank with
D ∈ {3, 5, 7}. Figures 3 and 4 display, respectively, the average of ||P ∗ − P ||2/I2 and the
average of ||(β̂ − β, µ̂− µ)||2/(I +D) for I = 10, 20, 30, 40 and 50.

Figure 3 shows four curves, all of which decrease with I. The top curve is the risk for the
unrefined isotonic-regression based estimator. The estimators refined by PolyRank, which
correspond to the lower 4 curves always do better. Notice that over-fitting, i.e., D = 7,
which corresponds to the second curve from the top, usually results in higher estimation
error with no change in the approximation error when compared to D = 3, 5. The second
curve from the bottom corresponds to the true model. The bottom curve is obtained when
D = 3, i.e., under under-fitting, and results in the lowest risk. Although this result is
somewhat surprising it has been documented also in the context of other models (Claeskens
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Figure 4: Estimated parameters for round-robin tournaments.

and Hjort, 2006, Chapter 5). This indicates that lower degree polynomial often perform
well in practice. In Figure 4 we see that the average error of the estimated parameters
decreases as a function of I.

Experiment 3: In this experiment we investigate the performance of PolyRank in the
round-robin setting with a fixed number of items and a increasing number of comparisons.
we generated a sequence of round-robin tournaments with I = 10 and an increasing number
of matches. The data is generated assuming model (4) with D = 3. The matrix P is
estimated using the standard frequency estimator for p̂ij and is refined using PolyRank
(with D = 3). Figure 5 displays the average of ||P ∗ − P ||2/I2, of ||µ̂ − µ||2/I and of
||β̂ − β||2 for mij = 1 to 5 for all pairs (i, j) and Figure 6 shows the sequence of estimated
functions.

The three decreasing curves of Figure 5 show that the variance of the estimators de-
creases with the amount of paired comparisons. Figure 6 shows that the estimated com-
parison function converges to its true value. These results and those of Experiment 2 are
consistent with Theorems 8 and 9.

Experiment 4: In practice the degree D of the polynomial (4) may not be known in
advance. If we choose D to be too small then we may not fully capture the geometry of F ,
while if D is too large there is a danger of over-fitting and possible numerical problems. In
this experiment we investigate the use of some well known model selection criteria (Claeskens
and Hjort, 2006) for choosing D. In particular, we test the empirical performance of the
Bayesian Information Criterion (BIC) and two variants of the Akaike Information Criterion
(AIC) and contrast these with the performance of (leave-one-out) cross-validation. The
classical AIC criteria is

AIC(D) ≡ 2(I +D) + n log(l(D)) (26)
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CV AICc AIC BIC CV AICc AIC BIC
D = 1 100% 100% 100% 100% 22% 30.3% 24.4% 37.4%
D = 3 0% 0% 0% 0% 63.7% 67.3% 69.8% 61.6%
D = 5 0% 0% 0% 0% 11.8% 1.5% 4.9% 0.1%
D = 7 0% 0% 0% 0% 2.4% 0.8% 0.8% 0.8%
D = 9 0% 0% 0% 0% 0.1% 0.1% 0.1% 0.1%

mij = 1 mij = 3

Table 1: Model Selection (I = 6, D = 5)

CV AICc AIC BIC CV AICc AIC BIC
D = 1 100% 100% 100% 100% 7.1% 2.8% 2.6% 6.8%
D = 3 0% 0% 0% 0% 87.4% 89% 85.2% 92.5%
D = 5 0% 0% 0% 0% 5.3% 8.2% 12.2% 0.7%
D = 7 0% 0% 0% 0% .2% 0% 0% 0%
D = 9 0% 0% 0% 0% 0% 0% 0% 0%

mij = 1 mij = 3

Table 2: Model Selection (I = 12, D = 5)

where l(D) is the least-squares loss function, given in (6) and evaluated at the estimated
parameters, I +D is the number of parameters in the model and n is the sample-size. The
corrected AIC (AICc) is

AICc(D) ≡ AIC(D) +
2(I +D + 1)(I +D + 2)

n− I −D − 2
(27)

and is designed to correct for small sample-sizes. The BIC method penalizes more the
number of parameters and is defined by

BIC(D) ≡ (I +D) log(n) + n log(l(D)). (28)

Tables 1 and 2 compares the AIC, the AICc and the BIC methods in a round-robin data
generated with I = 6 and I = 12 objects and with mij = 1 for all ij, as well as mij = 3.
The data was generated monotone polynomials of degree 5 randomly selected with uniform
coefficients and projected to the monotone cone. We display the frequency in which the
methods correctly identify the degree of the polynomial as opposed to overfit/underfit.

Tables 1 and 2 show the empirical performance of the model selection criteria as a
function of number of items I and the number of paired comparisons mij . For low values
of mij all criteria select the lowest degree polynomial, i.e., D = 1. When the number
of comparisons increases the procedures tend to select larger values of D. In general the
performance of the procedures are comparable. However, AIC and Cross validation do
seem to (slightly) outperform the other methods. Cross validation is significantly more
demanding computationally than AIC and thus as a rule of thumb we recommend the use
of the AIC method when no further information is available.
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Figure 7: The effect of increasing the dimension D in estimating function F .

5.1. Illustrative Example

In this subsection we illustrate the use of PolyRank on a computer-chess data set1. The
data set comprises of matches between 186 free single-CPU chess-engines. Each chess-engine
played (roughly) 32 matches against 40 opponents. We use PolyRank to estimate model
parameters from observed matches that resulted in a victory or defeat; ties are ignored.
Figure 7 shows the estimated comparison function for various values of D when for the
first 100 chess-engines. As is observed the estimated function Fβ̂ seems to stabilize for D
greater than or equal to 7. Figure 8 shows the estimated function when the dimension
D = 7 is fixed and the number of chess-engines I is gradually increased. For I greater
than or equal to 60 our estimated function seems to stabilize. Finally, Figure 9 compares
the best fit function recovered by PolyRank to the family of BTL models described by
FBTL(x) = 1/(1 + exp(−κx)) for various values of κ > 0. Somewhat surprisingly, it seems
that the family of BTL functions does not provide a good fit.

To illustrate this point consider three players i, j and k such that pij = pjk = α > 0.5
and pik = β, then, from (1) we have that β = F (2F−1(α)). For low values of α (say
α = 0.55) the BTL model and the polynomila model estimated by PolyRank virtually
agree on the value of β (BTL: β ≈ 0.6; Polynomial: β ≈ 0.59); for intermediate values of α
(say, α = 0.7) the models begin to diverge β ≈ 0.84; Polynomial: β ≈ 0.77) and for large
values of α (say α = 0.9) this divergence is even more extreme (BTL: β ≈ 0.99; Polynomial:
β ≈ 0.92). The estimated polynomial model seems to be more agreeable with the the data
at hand since very few chess engines had a (near) perfect win against any opponent. It will
be interesting to investigate whether our findings hold for human chess as well.

1. Publicly available at http://kirill-kryukov.com/chess/kcec/games.html.
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6. Summary and Discussion

In this paper we propose a new method for analyzing paired comparison data. Our main
contribution is to relax the assumption that the comparison function is known in advance.
Instead, we assume that the inverse of the comparison function is a D’th degree polynomial
and the comparison function has a bounded support. We show that estimation reduces to a
tractable SDP that simultaneously recovers the merit vector and the underlying comparison
function F from an initial estimator P̂ . We refer to this new methodology as PolyRank.
We provide non-stochastic as well as stochastic guarantees for our estimators. This includes
a thorough sensitivity analysis and additionally convergence and concentration bounds. Our
simulation study demonstrates that the method works well in practice. Finally, we investi-
gate a large data set of computer chess matches and provide evidence that the comparison
function used for calculating chess ratings for almost nine decades seems to be inadequate,
at least for computer chess engines.

Our work shows that PolyRank can be used whenever the existing methods, which
assume that the comparison function is known, are used. The only additional requirement
is that the comparison graph must have at least I+D−1 edges, a condition which is almost
always satisfied in practice. Thus, PolyRank provides a flexible and principled alternative
to the existing methods for ranking and rating which are based on paired comparisons. Our
analysis, however, is just a starting point and many open research problems remain. It
is clear that PolyRank can be extended in various directions; these can be grouped into
several domains including: (i) modelling issues; (ii) computational/numerical issues; (iii)
statistical and inferential problems of varied types.

Modelling. We have assumed that F−1 is given by a polynomial. Many other models,
in which the polynomial in (4) is replaced by some other set of basis functions, are possible.
Monotone splines provide a class of such functions (Ramsay, 1988). One other interesting
possibility, with more of a statistical flavor, is to write

F−1(p) =

D∑
i=1

βiKi(p)

where Ki(p) are themselves quantile functions of symmetric random variables. This equa-
tion can be viewed as a mixture model on the quantile scale. The family {Ki} is then
chosen by the investigator; the symmetrized beta family of distributions seems like a suit-
able family to explore. Another, important issue is the incorporation of covariates, such as
time or a “home advantage”, as well as many others in the model. This, again, can be done
in several ways. The merits can be modeled as regression functions or alternatively one
can incorporate the covariates directly into the comparison function. Other issues which
deserve attention are the modelling of ties and the comparison of more than two items a time.

Computations and Numerics. Compared with traditional methods, where the comparison
function is given, PolyRank has higher computational complexity and may suffer from
numerical instability. In part, the numerical issues are related to our decision to model
the inverse of the comparison function as a polynomial. This in turn entails that the nor-
mal equations are associated with Vandermonde matrices. A known way to circumvent
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this problem is to use a different basis for solving equation (10), this amounts to choosing
a different basis for the polynomial regression, such as Chebyshev Polynomials. Another
possibility is the use of a different loss function which is less sensitive to numerical issues.
Developing a method to uncouple the estimation of F and of µ as we provided for the
unweighted L2 norm might provide further insight in this direction. One other, future ob-
jective, is to extend the practical reach of PolyRank to larger values of D and I while
at the same time increasing computational and numerical efficiency. There may be several
ways of doing so. One approach is hand crafting a solver for the SDP at hand. Another
possibility is developing an online distributed version of PolyRank in which the function
and the merits are updated after each pairwise comparison is observed.

Statistics. The current paper leaves many statistical issues unresolved. For example, we did
not provide any results on the asymptotic distributions of our estimated parameters. We
believe, however, that normal limits are obtained provided (µ,β) are in the interior of the
parameter space. It is also clear that employing the one step method we can obtain a fully
efficient estimator (Fan and Chen, 1999). Other issues of interest are limit theorems for
the case where I →∞ and when paired comparisons are made adaptively. In the adaptive
set up one may exploit the fact that function F can be recovered up to arbitrary precision
by using a small subset of the items in order to reduce the overall query complexity of the
paired comparison experiment.
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Appendix A. Proof of Theorems

The following contains the proofs of our main results.

A.1. Proof of Theorem 1

Proof The constraint F (0) = 1/2 is equivalent to F−1(1/2) =
∑D

i=0 βi (1/2)i = 0, which is
the last equality constraint in (9). Also, F is increasing iff F−1(p) is increasing and for our
set of polynomials this is equivalent to (F−1(p))′ = β1+2·β2p+...+D ·βDpD−1 ≥ 0 for every
p ∈ [0, 1/2]. In addition, F is L-Lipschitz continuous and so |F ′(x)| ≤ L; which combined
with the monotonicity constraint is equivalent to the constraint (F−1(p))′ ≥ 1/L. By Theo-
rem 6 of (Parrilo, 2016) we have that (F−1(p))′−1/L = s(x)+x(1/2−x)t(x) where s(x) and
t(x) are sum of squares polynomial functions of degree at most 2d and 2d− 2 respectively.
Now by Lemma 4 of Parrilo (2016) there exists Q0 ∈ Sd+1

+ and Q1 ∈ Sd+ such that the
coefficients of the polynomials s(x) and t(x) are si =

∑
j+k=iQ

0
jk and ti =

∑
j+k=iQ

1
jk. By

combining these conditions on the polynomial (F−1(p))′−1/L and the constraint ||β||∞ ≤ U
we obtain the desired result.

A.2. Proof of Theorem 3

Proof A little algebra show that

||∆µ̂−∆µ||22 = 2n||µ̂− µ||22; (29)

this is so because

||∆µ̂−∆µ||22 =
∑
ij

(µ̂i − µ̂j − µi + µj)
2 = 2n||µ̂− µ||22 − 2(

∑
i

µ̂i −
∑
i

µi)
2

where the last term is zero by construction. It follows that

||µ̂− µ||2 =
1√
2n
||∆µ̂−∆µ||2 ≤

1√
2n
||F−1(P̂ )−∆µ||2

=
1√
2n
||F−1(P̂ )− F−1(P )||2 ≤

4U√
2n
||P̂ − P ||2.

The first inequality is a conscequence of the convex projection theorem and the first equality
follows from (29). Equation (13) is derived from

||P ∗−P ||22 = ||F (∆µ̂)−F (∆µ)||22 ≤ L2||∆µ̂−∆µ||22 = L22n||µ̂−µ||22 ≤ L2(4U)2||P̂ −P ||22.

Where the last equality is an application of equation (29) and the last inequality an ap-
plication of (14). If P̂ is assumed to obey strong stochastic transitivity, then p̂ij < 1/2
implies that p̂ik ≤ p̂jk for all k and p̂ik < p̂jk for at least some k. Thus, the identity
µ̂i − µ̂j = (1/n)

∑
k(F

−1(p̂ik) − F−1(p̂jk)) < 0 together with the fact that F−1 is strictly
monotone assures that the strong stochastic transitivity order is the same as the order of
the estimated merits.

22



A New and Flexible Approach to the Analysis of Paired Comparison Data

Remark Theorem 3, applies to other norms with the proper modifications. Assume that
the estimator P ∗ is obtained via (3) under the norm or semi-norm || · ||#. Let L# and 4U#

be the Lipschitz constants of F and F−1 associated with || · ||#, then

||P ∗ − P ||# ≤ ||P̂ − P ∗||# + ||P̂ − P ||# ≤ L#||F−1(P̂ )−∆µ̂||# + ||P̂ − P ||# ≤

L#||F−1(P̂ )−∆µ||#+||P̂−P ||# ≤ 4L#U#||P̂−P ||#+||P̂−P ||# = (1+4L#U#)||P̂−P ||#,

as in (13).

A.3. Proof of Theorem 4

Proof Equation (16) is a conscequence of

||P ∗ − P || ≤ ||P̂ − P ∗||+ ||P̂ − P || ≤ L||F−1
β̂

(P̂ )−∆µ̂||+ ||P̂ − P ||

≤ L||F−1β (P̂ )−∆µ||+ ||P̂ − P || ≤ 4LU ||P̂ − P ||+ ||P̂ − P ||;

where the last inequality stems from the fact that F−1β (p) is 4U -Lipschitz continuous for ev-
ery Fβ(p) ∈ F and the previous inequality is a consequence of the optimality of PolyRank.
In order to prove (17), consider a set of linear equations Ax = b and a perturbed version
(A+∆A)(x+∆x) = b where both A and A+∆A are non-singular square matrices. Under
these conditions one can show that ∆x = A−1∆A(x+ ∆x); thus:(

β̂ − β
µ̂− µ

)
= A(P )−1[A(P ∗)−A(P )]

(
β̂
µ̂

)
. (30)

Notice that ||β̂||∞ ≤ U and also ||µ̂||∞ ≤ U . The second claim is true for if µ̂j ≥ U for
some j then |µ̂i − µ̂j | = |F−1

β̂
(p̂∗ij)| ≤ |F

−1
β̂

(0)| = |β0| ≤ U which then implies that µ̂i ≥ 0

for every i and so
∑

i µ̂i ≥ U > 0 which violates the constraint
∑

i µ̂i = 0; therefore we
must have µ̂j < U for every j (the analogous argument is valid for µ̂j > −U). Using the
equivalence between norms find:∣∣∣∣∣∣∣∣( β̂ − β

µ̂− µ

)∣∣∣∣∣∣∣∣ ≤ U√I +D||A(P )−1||||A(P ∗)−A(P )||.

Now notice that

||A(P ∗)−A(P )||2 =
D+I−1∑
k=1

D∑
n=1

(p∗n(ij)k − p
n
(ij)k

)2 ≤
D+I−1∑
k=1

D(p∗(ij)k − p(ij)k)2 ≤ D||P ∗ −P ||2

and therefore:∣∣∣∣∣∣∣∣( β̂ − β
µ̂− µ

)∣∣∣∣∣∣∣∣ ≤ U(4LU + 1)
√
D(I +D)||A(P )−1||||P̂ − P ||,

which completes the proof of (17). Now we will prove equation (18). A bit of algebra shows
that for every Fβ ∈ F we have that maxα∈[0,1] |F−1β (α)−F−1

β̂
(α)| ≤ 2||β̂−β||∞; combining
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this with (30), (17) and the lipschitz continuity of Fβ we find the desired result. Finally,
to prove order preservation, recognize that problem (9) can be solved by minimizing in µ
and in β separately. By minimizing on µ we find the same closed form solution as the least
squares refinement procedure, namely µi = (1/I)

∑
j F
−1
β (p̂ij). The proof follows by the

same arguments as in Theorem 3.

A.4. Proof of Theorem 5

Proof We will first prove that maxα∈[0,1] |F−1β̂ (α)− F−1β (α)| ≥ 2|βD|/8D. In the following

proof PD−1 is the set of polynomials of degree less than or equal to D − 1.

max
α∈[0,1]

|F−1
β̂

(α)− F−1β (α)| = max
α∈[0,1/2]

|F−1
β̂

(α)− F−1β (α)|

≥ min
G∈FD′

max
α∈[0,1/2]

|G(α)− F−1β (α)| ≥ min
G−1∈PD−1

max
α∈[0,1/2]

|G−1(α)− F−1β (α)|

= min
F−1
β̃
∈ PD−1

max
α∈[0,1/2]

|F−1
β̃

(α) + βDα
D|

= |βD| min
F−1
β̃
∈ PD−1

max
α∈[0,1/2]

|F−1
β̃

(α) + αD|

= |βD| min
F−1
β̃
∈ PD−1

max
α∈[−1,1]

|F−1
β̃

((α+ 1)/4) + ((α+ 1)/4)D|

≥ |βD|
4D

min
F−1
β̃
∈ PD−1

max
α∈[−1,1]

|F−1
β̃

(α) + αD|

=
|βD|
4D

1

2D−1

The last equality is a defining property of Chebyshev polynomials (Mason and Hand-
scomb, 2002). Now, notice that the 4U -Lipschitz continuity of F−1β is equivalent to |Fβ(y)−
Fβ(x)| ≥ (1/4U)|y − x|; combining this with maxα∈[0,1] |F−1β̂ (α)− F−1β (α)| ≥ 2|βD|/8D we

obtain equation (19).

A.5. Proof of Theorem 6

Proof Let l̂(D) be the empirical loss of a D dimensional fit provided by PolyRank, then:

l̂(D) = min
β∈RD,µ∈RI

√ ∑
(ij)∈S

(β0 + ...+ βDp̂Dij − µi + µj)2
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where the minimum is taken over the sets specified by PolyRank for some triplet (D,U,L).
It is also true that:

l̂(D) = min
β∈RD+1,µ∈RI

√ ∑
(ij)∈S

(β0 + ...+ βDp̂Dij − µi + µj)2

for the set specified by the triplet (D + 1, U, L), and so

l̂(D) ≤ min
β∈RD+1,µ∈RI

√ ∑
(ij)∈S

(β0 + ...+ βDp̂Dij + βD+1p̂
D+1
ij − µi + µj)2+

√ ∑
(ij)∈S

(βD+1p̂
D+1
ij )2

≤ min
β∈RD+1,µ∈RI

√ ∑
(ij)∈S

(β0 + ...+ βDp̂Dij + βD+1p̂
D+1
ij − µi + µj)2 + U

√ ∑
(ij)∈S

((1/2)D+1)2

≤ l̂(D + 1) + U (1/2)D+1
√
|S|.

We have shown that l̂(D) ≤ l̂(D + 1) + U
√
|S|/2D+1 which implies that:

l̂(D) ≤ l̂(D +K) + U
√
|S|

D+K∑
i=D+1

1

2i
= l̂(D +K) +

U
√
|S|

2D

K∑
i=1

1

2i
.

Therefore taking the limit of K → ∞ we find that l̂(D) ≤ l̂(∞) + U
√
|S|/2D; combining

this with the optimality of the estimated parameters we obtain

||F−1
β̂

(P̂ )−∆µ̂|| ≤ ||F−1(P̂ )−∆µ||+
U
√
|S|

2D
. (31)

To complete the proof of (20) notice that

||P ∗ − P || ≤ ||P̂ − P ||+ ||P̂ − P ∗|| ≤ ||P̂ − P ||+ L||F−1
β̂

(P̂ )−∆µ̂||

≤ ||P̂ − P ||+ L||F−1(P̂ )−∆µ||+
LU
√
|S|

2D
≤ (1 + 4LU)||P̂ − P ||+ 1

2D
LUI.

Remark One could equivalently prove that PolyRank defined with the L1 norm satisfies
||P ∗ − P ||1 ≤ (1 + 4LU)||P̂ − P ||1 + (1/2D)LUI2 for analytic functions with bounded
coefficients and with the L∞ norm one finds that ||P ∗ − P ||∞ ≤ (1 + 4LU)||P̂ − P ||∞ +
(1/2D)LU . We provide a sketch of the proof for a generic norm || · ||#. Again, we take L#
to be the Lipschitz constant of F associated to || · ||# and 4U# the Lipschitz constant of
F−1 associated to || · ||#, then, we find that

||P ∗ − P ||# ≤ ||P̂ − P ||# + ||P̂ − P ∗||# ≤ ||P̂ − P ||# + L#||F−1β̂ (P̂ )−∆µ̂||#;
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then an inequality similar to (31) is obtained for the norm || · ||#. Norm equivalence guar-
antees that this can be done up to constant factors. Then, combining the two inequalities
one finds that for some k1 ≥ 1 and some k2 ≥ 0 the following inequality holds:

||P ∗ − P ||# ≤ k1||P̂ − P ||# +
k2
sD
.

This completes the proof.

A.6. Proof of Theorem 7

Proof Equation (21) is a conscequence of the L-Lipschitz continuity of functions in F :

||P ∗ − P || ≤ ||P̂ − P ||+ ||P̂ − P ∗|| ≤ ||P̂ − P ||+ L||F−1
β̂

(P̂ )−∆µ̂||.

A.7. Proof of Theorem 8

We will use of the following lemma whose proof is virtually identical to that of Theorem 4:

Lemma 10 Let β̂ and µ̂ be estimated using PolyRank. Then,∣∣∣∣∣∣∣∣( β̂ − β
µ̂− µ

)∣∣∣∣∣∣∣∣ ≤ K||P̂ − P ||W , (32)

where K ≤ U(1 + 4LU)
√
D(I +D)||A−1W || and AW is defined as in 10 with each line

multiplied by its respective weight.

Proof Note that:

P
{∣∣∣∣∣∣∣∣( β̂ − β

µ̂− µ

)∣∣∣∣∣∣∣∣ ≥ ε
}

= P
{∣∣∣∣∣∣∣∣( β̂ − β

µ̂− µ

)∣∣∣∣∣∣∣∣2 ≥ ε2
}
≤ P

{
K2
∑

wij |p̂ij − pij |2 ≥ ε2
}

≤ P
{
|E|max

ij
{wij |p̂ij − pij |2} ≥

ε2

K2

}
≤
∑
ij

P
{
wij |p̂ij − pij |2 ≥

ε2

|E|K2

}

=
∑
ij

P
{
|p̂ij − pij | ≥

ε

K
√
wij |E|

}
≤ 2

∑
ij

exp

{
− 2mij

(
ε

K
√
wij |E|

)2}
.

Where the last inequality follows from Hoeffding’s bound; thus, taking mij = nwij we have:

= 2
∑
ij

exp

{
− 2nwij

(
ε

K
√
wij |E|

)2}
≤ 2|E| exp

{
− 2n

ε2

K2|E|

}
,

which completes our proof.
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