
Journal of Machine Learning Research 19 (2018) 1-31 Submitted 3/17; Revised 7/18; Published 10/18

Maximum Selection and Sorting with Adversarial
Comparators

Jayadev Acharya acharya@cornell.edu
School of ECE
Cornell University
Ithaca, NY 14853, USA

Moein Falahatgar moein@ucsd.edu
ECE Department
UC San Diego
La Jolla, CA 92093, USA

Ashkan Jafarpour ashkan.jafarpour@gmail.com
Google
Sunnyvale, CA 94089, USA

Alon Orlitsky alon@ucsd.edu
ECE and CSE Departments
UC San Diego
La Jolla, CA 92093, USA

Ananda Theertha Suresh theertha@google.com

Google Research

New York, NY 10011, USA

Editor: Gabor Lugosi

Abstract

We study maximum selection and sorting of n numbers using imperfect pairwise com-
parators. The imperfect comparator returns the larger of the two inputs if the inputs
are more than a given threshold apart and an adversarially-chosen input otherwise. We
consider two adversarial models: a non-adaptive adversary that decides on the outcomes
in advance and an adaptive adversary that decides on the outcome of each comparison
depending on the previous comparisons and outcomes.

Against the non-adaptive adversary, we derive a maximum-selection algorithm that
uses at most 2n comparisons in expectation and a sorting algorithm that uses at most
2n lnn comparisons in expectation. In the presence of the adaptive adversary, the proposed
maximum-selection algorithm uses Θ(n log(1/ε)) comparisons to output a correct answer
with probability at least 1− ε, resolving an open problem in Ajtai et al. (2015).

Our study is motivated by a density-estimation problem. Given samples from an un-
known distribution, we would like to find a distribution among a known class of n candidate
distributions that is close to the underlying distribution in `1 distance. Scheffe’s algorithm,
for example, in Devroye and Lugosi (2001) outputs a distribution at an `1 distance at
most 9 times the minimum and runs in time Θ(n2 log n). Using our algorithm, the runtime
reduces to Θ(n log n).

Keywords: noisy sorting, adversarial comparators, density estimation, Scheffe estimator

c©2018 Jayadev Acharya, Moein Falahatgar, Ashkan Jafarpour, Alon Orlitsky and Ananda Theertha Suresh.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v19/17-165.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v19/17-165.html

Acharya, Falahatgar, Jafarpour, Orlitsky and Suresh

1. Introduction

Maximum selection and sorting are fundamental operations with widespread applications
in computing, investment, marketing (Aggarwal et al., 2009), decision making (Thurstone,
1927; David, 1963), and sports. These operations are often accomplished via pairwise
comparisons between elements, and the goal is to minimize the number of comparisons.

For example, one may find the largest of n elements by first comparing two elements and
then successively comparing the larger one to a new element. This simple algorithm takes
n − 1 comparisons, and it is easy to see that n − 1 comparisons are necessary. Similarly,
merge sort sorts n elements using less than n log n comparisons, close to the information
theoretic lower bound of log n! = n log n− o(n).

However, in many applications, the pairwise comparisons may be imprecise. For exam-
ple, in comparing two random numbers, such as stock performances, or team strengths, the
output of the comparison may vary due to chance. Consequently, a number of researchers
have considered maximum selection and sorting with imperfect, or noisy, comparators. The
comparators in these models mostly function correctly but occasionally may produce an
inaccurate comparison result, where the form of inaccuracy is dictated by the application.

Based on the form of inaccuracy, models can be divided into two categories: probabilistic
and adversarial. Probabilistic models can be parametric or non-parametric. One of the
simplest parametric probabilistic models was considered in Feige et al. (1994), where the
output of each comparator could be wrong with some known probability p. Algorithms
applying this model for maximum selection were proposed in Adler et al. (1994) and for
ranking in Karp and Kleinberg (2007); Ben-Or and Hassidim (2008); Braverman and Mossel
(2008); Braverman et al. (2016).

Another parametric family of probabilistic models, the Bradley-Terry-Luce model (Bradley
and Terry, 1952) assumes that if two values x and y are compared, then x is selected as
the larger with probability x/(x + y). Observe that the comparison is correct with proba-
bility max{x, y}/(x + y) ≥ 1/2. Algorithms for ranking and estimating values under this
and another related model, the Plackett-Luce (Plackett, 1975; Luce, 2005), are proposed,
for example, in Negahban et al. (2012); Szörényi et al. (2015). The Mallows model is yet
another example of a parametric probabilistic model and is studied in Busa-Fekete et al.
(2014).

Non-parametric probabilistic models assume some natural constraints on comparison
probabilities, such as Strong Stochastic Transitivity or Stochastic Triangle Inequality. Al-
gorithms for maximum selection and sorting under these models are studied in Falahatgar
et al. (2017b,a, 2018); Yue and Joachims (2011) and algorithms for comparison-probability
matrix estimation are considered in Shah et al. (2016). This model is also considered for
the top-k sorting problem in Chen et al. (2017b,a).

We consider a model where, unlike the probabilistic models, the comparison outcome
can be adversarial. If the numbers compared are more than a threshold ∆ apart, the
comparison is correct, while if they differ by at most ∆, the comparison outcome is arbitrary,
and possibly even adversarial.

This model can be partially motivated by physical observations. Measurements are
regularly quantized and often adulterated with some measurement noise. Quantities with
the same quantized value may, therefore, be incorrectly compared. In psychophysics, the

2

Maximum Selection and Sorting with Adversarial Comparators

Weber-Fechner law (Ekman, 1959) stipulates that humans can distinguish between two
physical stimuli only when their difference exceeds some threshold (known as just noticeable
difference). Additionally, in sports, a judge or a home-team advantage may, even adversar-
ially, sway the outcome of a game between two teams of similar strength but not between
teams of significantly different strengths. Our main motivation for the model derives from
the important problem of density estimation and distribution learning.

1.1. Density estimation via pairwise comparisons

In a typical PAC-learning setup (Valiant, 1984; Kearns et al., 1994), we are given samples
from an unknown distribution p0 in a known distribution class P and would like to find,
with high probability, a distribution p̂ ∈ P such that ‖p̂− p0‖1 < δ.

One standard approach proceeds in two steps (Devroye and Lugosi, 2001):

1. Offline, construct a δ-cover of P, a finite collection Pδ ⊆ P of distributions such that
for any distribution p ∈ P, there is a distribution q ∈ Pδ such that ‖p− q‖1 < δ.

2. Using the samples from p0, find a distribution in Pδ whose `1 distance to p0 is close
to the `1 distance of the distribution in Pδ that is closest to p0.

These two steps output a distribution whose `1 distance from p0 is close to δ. Surprisingly,
for several common distribution classes, such as Gaussian mixtures, the number of samples
required by this generic approach matches the information theoretically optimal sample
complexity, up to logarithmic factors (Daskalakis and Kamath, 2014; Suresh et al., 2014;
Diakonikolas et al., 2016).

The Scheffe Algorithm (Scheffe, 1947; Devroye and Lugosi, 2001) is a popular method for
implementing the second step, namely to find a distribution in Pδ with a small `1 distance
from p0. It takes every pair of distributions in Pδ and uses the samples from p0 to decide
which of the two distributions is closer to p0. It then declares the distribution that “wins”
the most pairwise closeness comparisons to be the nearly-closest to p0. As shown in Devroye
and Lugosi (2001), the Scheffe algorithm yields, with high probability, a distribution that is
at most nine times further from p0 than the distribution in Pδ with the lowest `1 distance
from p0, plus a diminishing additive term; hence, a distribution that is roughly 9δ away
from p0 is found. Since this algorithm compares every pair of distributions in Pδ, it uses
quadratic in |Pδ| comparisons. In Section 6, we use maximum-selection results to derive an
algorithm with the same approximation guarantee but linear in |Pδ| comparisons.

1.2. Organization

This paper is organized as follows: in Section 2, we define the problem and introduce the
notations; in Section 3, we summarize the results; in Section 4, we derive simple bounds
and describe the performance of simple algorithms; and, in Section 5, we present our main
maximum-selection algorithms. The relation between density estimation problem and our
comparison model is discussed in Section 6, and, in Section 7, we discuss sorting with
adversarial comparators.

3

Acharya, Falahatgar, Jafarpour, Orlitsky and Suresh

2. Notations and preliminaries

Practical applications call for sorting or selecting the maximum of not just numbers, but,
rather, of items with associated values—for example, finding the person with the highest
salary, the product with the lowest price, or a sports team with the most capability of

winning. Associate with each item i a real value xi and let X def
= {x1, . . . , xn} be the

multiset of values. In maximum selection, we use noisy pairwise comparisons to find an

index i such that xi is close to the largest element x∗
def
= max{x1, . . . , xn}.

Formally, a faulty comparator C takes two distinct indices i and j and, if |xi − xj | > ∆,
outputs the index associated with the higher value, while if |xi − xj | ≤ ∆, outputs either i
or j, possibly adversarially. Without loss of generality, we assume that ∆ = 1. Then,

C(i, j) =

{
arg max {xi, xj} if |xi − xj | > 1,
i or j (adversarially) if |xi − xj | ≤ 1.

It is easier to think just of the numbers, rather than the indices. Therefore, informally we
will simply view the comparators as taking two real inputs xi and xj , and outputting

C(xi, xj) =

{
max{xi, xj} if |xi − xj | > 1,
xi or xj (adversarially) if |xi − xj | ≤ 1.

(1)

We consider two types of adversarial comparators: non-adaptive and adaptive.

• A non-adaptive adversarial comparator has complete knowledge of X and the algo-
rithm but must fix its outputs for every pair of inputs before the algorithm starts

• An adaptive adversarial comparator not only has access to the algorithm and the
inputs but is also allowed to adaptively decide the outcomes of the queries taking into
account all the previous comparisons made by the algorithm

A non-adaptive comparator can be naturally represented by a directed graph with n
nodes representing the n indices. There is an edge from node i to node j if the comparator
declares xi to be larger than xj , namely, C(xi, xj) = xi. Figure 1 is an example of such a
comparator, where, for simplicity, we show only the values 0, 1, 1, 2, and not the indices.
Note that, by definition, C(2, 0) = 2, but for all the other pairs, the outputs can be decided
by the comparator. In this example, the comparator declares the node with value 2 as the
“winner” against the right node with value 1 but as the “loser” against the left node, also
with value 1. Among the two nodes with value 1, it arbitrarily declares the left one as the
winner. An adaptive adversary reveals the edges one-by-one as the algorithm proceeds.

We refer to each comparison as a query. The number of queries an algorithm Amakes for
X = {x1, . . . , xn} is its query complexity, denoted by QAn .1 Our algorithms are randomized,
and QAn is a random variable. The expected query complexity of A for the input X is

qAn
def
= E[QAn],

where the expectation is over the randomness of the algorithm. Note that the expected
query complexity is defined for all runs of an algorithm, and it is independent of the success
probability.

1. This is a slight abuse of notation suppressing X .

4

Maximum Selection and Sorting with Adversarial Comparators

2

1

0

1

Figure 1: Comparator for four inputs with values {0, 1, 1, 2}

Let Cnon(X), or simply Cnon, be the set of all non-adaptive adversarial comparators, and
let Cadpt be the set of all adaptive adversarial comparators. The maximum expected query
complexity of A against non-adaptive adversarial comparators is

qA,nonn
def
= max
C∈Cnon

max
X

qAn . (2)

Similarly, the maximum expected query complexity of A against adaptive adversarial com-
parators is

qA,adptn
def
= max
C∈Cadpt

max
X

qAn .

We evaluate an algorithm by how close its output is to x∗ (the maximum of X).

Definition 1 A number x is a t-approximation of x∗ if x ≥ x∗ − t.

The t-approximation error of an algorithm A over n inputs is

EAn (t)
def
= Pr (YA(X) < x∗ − t) ,

the probability that A’s output YA(X) is not a t-approximation of x∗. For an algorithm A,
the maximum t-approximation error for the worst non-adaptive adversary is

EA,nonn (t)
def
= max
C∈Cnon

max
X
EAn (t),

and, similarly, for the adaptive adversary,

EA,adptn (t)
def
= max
C∈Cadpt

max
X
EAn (t).

For the non-adaptive adversary, the minimum t-approximation error of any algorithm is

Enonn (t)
def
= min

A
EA,nonn (t),

and, similarly, for the adaptive adversary,

Eadptn (t)
def
= min

A
EA,adptn (t).

Since adaptive adversarial comparators are stronger than non-adaptive, for all t,

Eadptn (t) ≥ Enonn (t).

Example 1 shows that Enon3 (t) ≥ 1
3 for all t < 2.

5

Acharya, Falahatgar, Jafarpour, Orlitsky and Suresh

Example 1 Enon3 (t) ≥ 1
3 for all t < 2. Consider X = {0, 1, 2} and the following compara-

tors. .

0

12

By symmetry, no algorithm can differentiate between the three inputs. Hence, any algorithm
will output 0 with probability 1/3.

3. Previous and new results

In Section 4.1 we lower bound Enonn (t) as a function of t. In Lemma 2, we show that for all
t < 1 and odd n, Enonn (t) = 1 − 1/n, namely for some X , approximating the maximum to
within less than one is equivalent to guessing a random xi as the maximum. In Lemma 3, we
modify Example 1 and show that for all t < 2 and odd n, any algorithm has t-approximation
error close to 1/2 for some input.

We propose a number of algorithms to approximate the maximum. These algorithms
have different guarantees in terms of the probability of error, approximation factor, and
query complexity.

We first consider two simple algorithms: the complete tournament, denoted compl, and
the sequential selection, denoted seq. Algorithm compl compares all the possible input
pairs and declares the input with the most wins as the maximum. We show the simple
result that compl outputs a 2-approximation of x∗. We then consider the algorithm seq
that compares a pair of inputs, discards the loser, and compares the winner with a new
input. We show that even under random selection of the inputs, there exist inputs such
that, with high probability, seq cannot provide a constant approximation to x∗.

We then consider more advanced algorithms. The knock-out algorithm, at each stage,
pairs the inputs at random and keeps the winners of the comparisons for the next stage.
We design a slight modification of this algorithm, denoted ko-mod that achieves a 3-
approximation with error probability at most ε, even against adaptive adversarial com-
parators. We note that Ajtai et al. (2015) proposed a different algorithm with similar
performance guarantees.

Motivated by quick-sort, we propose a quick-select algorithm q-select that outputs a
2-approximation with zero error probability. It has an expected query complexity of at most
2n against the non-adaptive adversary. However, in Example 2, we see that this algorithm
requires

(
n
2

)
queries against the adaptive adversary.

This leaves the question of whether there is a randomized algorithm for 2-approximation
of x∗ with O(n) queries against the adaptive adversary. In fact, Ajtai et al. (2015) pose
this as an open question. We resolve this problem by designing an algorithm comb that
combines quick-select and knock-out. We prove that comb outputs a 2-approximation with
probability of error, at most, ε, using O(n log 1

ε) queries. We summarize the results in
Table 1.

We note that while we focus on randomized algorithms, Ajtai et al. (2015) also studied
the best possible trade-offs for deterministic algorithms. They designed a deterministic

6

Maximum Selection and Sorting with Adversarial Comparators

Algorithm Notation Approximation qA,nonn qA,adptn

complete tournament compl Ecompl,adptn (2) = 0
(
n
2

)
deterministic upper
bound (Ajtai et al.,
2015)

- EA,adptn (2) = 0 Θ(n
3
2)

deterministic lower
bound (Ajtai et al.,
2015)

- EA,adptn (2) = 0 - Ω(n
4
3)

sequential seq Eseq,nonn

(
logn

log logn − 1
)
→ 1 n− 1

modified knock-out ko-mod Eko-mod,adptn (3) < ε < n+ 1
2 log4 n

⌈
1
ε ln 1

ε

⌉2
quick-select q-select Eq-select,adptn (2) = 0 < 2n

(
n
2

)
knock-out and
quick-select
combination

comb Ecomb,adptn (2) < ε O
(
n log 1

ε

)
Table 1: Maximum selection algorithms

algorithm for 2-approximation of the maximum using only O(n3/2) queries. Moreover,
they prove that no deterministic algorithm with fewer than Ω(n4/3) queries can output a
2-approximation of x∗ for the adaptive adversarial model.

4. Simple results

In Lemmas 2 and 3, we prove lower bounds on the error probability of any algorithm that
provides a t-approximation of x∗ for t < 1 and t < 2, respectively. We then consider two
straightforward algorithms for finding the maximum. One is the complete tournament,
where all pairs of inputs are compared, and the other is sequential, where inputs are com-
pared sequentially, and the loser is discarded at each comparison.

4.1. Lower bounds

We show the following two results:

• Enonn (t) = 1− 1
n for all 0 ≤ t < 1 and odd n

• Enonn (t) ≥ 1
2 −

1
2n for all 1 ≤ t < 2 and odd n

These lower bounds can be applied to n, which is even, by adding an extra input that is
smaller than all the other inputs and loses to them.

Lemma 2 For all 0 ≤ t < 1 and odd n,

Enonn (t) = 1− 1

n
.

7

Acharya, Falahatgar, Jafarpour, Orlitsky and Suresh

1

0

0

00

Figure 2: Tournament for Lemma 2 when n = 5

2

0

0

11

Figure 3: Tournament for Lemma 3 when n = 5

Proof Let (x1, x2, . . . , xn) be an unknown permutation of (1, 0, . . . , 0︸ ︷︷ ︸
n−1

). Suppose we consider

an adversary that ensures each input wins exactly (n − 1)/2 times. An example is shown
in Figure 2 for n = 5.

To get a lower bound on the performance of any randomized algorithm, we use Yao’s
principle. We consider only deterministic algorithms over a uniformly chosen permutation
of the inputs, namely only one of the coordinates is 1, and the remaining are less than 1− t.
In this case, if we fix any comparison graph (as in Figure 2), and permute the inputs, the
algorithm cannot distinguish between 1 and 0’s, and outputs 0 with probability 1 − 1/n;
therefore, Enonn (t) ≥ 1 − 1

n . Also, an algorithm that randomly picks an element as the
maximum achieves the error 1− 1/n; hence, the lemma.

Lemma 3 For all 1 ≤ t < 2 and odd n,

Enonn (t) ≥ 1

2
− 1

2n
.

Proof Letm be (n−1)/2. Let (x1, x2, . . . , xn) be an unknown permutation of (2, 1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
m

).

Suppose the adversary ensures that 2 loses against all the 1’s and, indeed, all inputs have
exactly (n− 1)/2 wins. An example is shown in Figure 3.

Similar to Lemma 2, the inputs are all identical to the algorithm, and, therefore, the
algorithm outputs one of the 0’s with probability m

n = 1
2 −

1
2n .

8

Maximum Selection and Sorting with Adversarial Comparators

4.2. Two elementary algorithms

In this section, we analyze two well-known maximum selection algorithms, the complete
tournament and the sequential selection. We discuss their strengths and weaknesses and
show that there is a trade-off between the query complexity and the approximation guaran-
tees of these two algorithms. Another well-known algorithm for maximum selection is the
knock-out algorithm, and we discuss a variant of it in Section 5.1.

4.2.1. Complete tournament (round-robin)

As its name evinces, a complete tournament involves a match between every pair of teams.
Using this metaphor to competitions, we compare all the

(
n
2

)
input pairs, and the input

with maximum wins is declared as the output. If two or more inputs end up with the
highest wins, any of them can be declared as the output. This algorithm is formally stated
in compl.

input: X
compare all input pairs in X , count the number of times each input wins

output: an input with the maximum number of wins

Algorithm compl - Complete tournament

Lemma 4 shows that compl gives a 2-approximation against both adversaries. The
result, although weaker than the deterministic guarantees of Ajtai et al. (2015), is illustrative
and useful in the algorithms proposed later.

Lemma 4 qcompl,adptn =
(
n
2

)
and Ecompl,adptn (2) = 0.

Proof The number of queries is clearly
(
n
2

)
. To show Ecompl,adptn (2) = 0, note that if

y < x∗ − 2, then for all z that y wins over, z ≤ y + 1 < x∗ − 1, and therefore x∗ also beats
them. Since x∗ wins over y, it wins over more inputs than y, and y cannot be the output
of the algorithm. It follows that the input with maximum wins is a 2-approximation of x∗.

compl is deterministic, and, after
(
n
2

)
queries, it outputs a 2-approximation of x∗. If

the comparators are noiseless, we can simply compare the inputs sequentially, discarding
the loser at each step, and, thus, requiring only n− 1 comparisons. This evokes the hope of
finding a deterministic algorithm that requires a linear number of comparisons and outputs
a 2-approximation of x∗. As mentioned earlier, however, Ajtai et al. (2015) showed it is
not achievable, as they proved that any deterministic 2-approximation algorithm requires
Ω(n4/3) queries. They also showed a strictly superlinear lower bound on any determin-
istic constant-approximation algorithm. They designed a deterministic 2-approximation
algorithm using O(n3/2) queries.

4.2.2. Sequential selection

Sequential selection first compares a random pair of inputs and, at each successive step,
compares the winner of the last comparison with a randomly chosen new input. It outputs
the final remaining input. This algorithm uses n− 1 queries.

9

Acharya, Falahatgar, Jafarpour, Orlitsky and Suresh

input: X
choose a random y ∈ X and remove it from X
while X is not empty

choose a random x ∈ X and remove it from X
y ← C(x, y)

end while
output: y

Algorithm seq - Sequential selection

Lemma 5 shows that even against the non-adaptive adversary, the algorithm cannot
output a constant-approximation of x∗.

Lemma 5 Let s = logn
log logn . For all t < s,

Eseq,nonn (t) ≥ 1− 1

log log n
.

Proof Assume that s, log n, and log log n are integers and

xi =



s for i = 1,
s− 1 for i = 2, . . . , r,
s− 2 for i = r + 1, . . . , r2,
...
m for i = rs−m−1 + 1, . . . , rs−m,
...
0 for i = rs−1 + 1, . . . , rs,

where r = log n. Consider the following non-adaptive adversarial comparator:

C(xi, xj) =

{
max{xi, xj} if |xi − xj | > 1,
min{xi, xj} if |xi − xj | ≤ 1.

(3)

The sequential algorithm takes a random permutation of the inputs. It then starts by
comparing the first two elements and then sequentially compares the winner with the next
element, and so on. Let Lj be the location in the permutation where input j appears
for the last time. The next two observations follow from the construction of inputs and
comparators respectively.

Observation 1 Input j appears at least (log n− 1) times that of input j + 1.

Observation 2 For the adversarial comparator defined in (3), if L0 > L1 > . . . > Ls, then
no input j can survive beyond location Lj−1, and, therefore, seq outputs 0.

10

Maximum Selection and Sorting with Adversarial Comparators

As a consequence of Observation 1, in the random permutation of inputs, Lj > Lj+1

with probability at least 1− 1
logn . By the union bound, L0 > L1 > . . . > Ls with probability

at least,

1− s

log n
= 1− 1

log logn
.

By applying Observation 2, seq outputs 0 with probability at least 1− 1
log logn .

5. Algorithms

In the previous section, we saw that the complete tournament, compl, always outputs a
2-approximation but has quadratic query complexity, while the sequential selection, seq,
has linear query complexity but a poor approximation guarantee. A natural question to ask
is whether there exist algorithms with bounded error and linear query complexity. In this
section, we propose algorithms with linear query complexity and approximation guarantees
that compete with the best possible, namely, 2-approximation of x∗.

We propose three algorithms with different performance guarantees:

• Modified knock-out, described in Section 5.1, has linear query complexity, and,
with high probability, outputs a 3-approximation of x∗ against both adaptive and
non-adaptive adversaries

• Quick-select, described in Section 5.2, outputs a 2-approximation to x∗ (against
both adversaries). It also has a linear expected query complexity against non-adaptive
adversarial comparators

• Knock-out and quick-select combination, described in Section 5.3, has linear
query complexity, and, with high probability, outputs a 2-approximation of x∗ even
against adaptive adversarial comparators

We now go over these algorithms in detail.

5.1. Modified knock-out

For simplification, in this section, we assume that log n is an integer. The knock-out algo-
rithm derives its name from knock-out competitions where the tournament is divided into
log n successive rounds. In each round, the inputs are paired at random, and the winners
advance to the next round. Therefore, in round i, there are n

2i−1 inputs. The winner at the
end of log n rounds is declared as the maximum.

Under our adversarial model, at each round of the knock-out algorithm, the largest
remaining input decreases by at most one. Therefore, the knock-out algorithm finds at
least log n-approximation of x∗. Analyzing the precise approximation error of knock-out
algorithm appears to be difficult. However, simulations suggest that for any large n, for
the set consisting of 0.2 · n 0’s, α · n 1’s, (0.7 − α) · n 2’s, 0.1 · n 3’s, and a single 4, where
0 < α < 0.7 is an appropriately chosen parameter, the knock-out algorithm is not able to
find a 3-approximation of x∗ with positive constant probability. The problem with knock-
out algorithm is that if at any of the log n rounds, many inputs are within 1 from the largest

11

Acharya, Falahatgar, Jafarpour, Orlitsky and Suresh

input at that round, there is a fair chance that the largest input will be eliminated. If this
elimination happens in several rounds, we will end up with a number significantly smaller
than x∗.

To circumvent the problem of discarding large inputs, we select a specified number of
inputs at each round and save them for the very end, thereby ensuring that at every round,
if the largest input is eliminated, then an input within 1 from it has been saved. We
then perform a complete tournament on these saved inputs. The algorithm is explained in
ko-mod.

input: X
pair the inputs of X randomly, let X ′ be the winners

output: X ′
Algorithm ko-sub - Subroutine for ko-mod and comb

input: X , ε
Y = ∅, n1 =

⌈
1
ε ln 1

ε · log n
⌉

while |X | > n1
randomly choose n1 inputs from X and copy them to Y
X ← ko-sub(X)

end while
output: compl(X ∪ Y)

Algorithm ko-mod - Modified knock-out algorithm

In Theorem 6, we show that ko-mod has a 3-approximation error less than ε.

We first explain the algorithm and then state the result. Let n1
def
=
⌈
1
ε ln 1

ε · log n
⌉
. At

each round, we add n1 of the remaining inputs at random to the multiset Y and run the
knock-out subroutine ko-sub on the multiset X . When |X | ≤ n1, we perform a complete
tournament on X ∪Y and declare the output as the winner. We show that, with probability
at least 1− ε, the final set Y contains at least one input which is a 1-approximation of x∗.
Since the complete tournament outputs a 2-approximation of its maximum input, ko-mod
outputs a 3-approximation of x∗ with probability greater than 1− ε.

Theorem 6 For n1 ≥ 2, we have qko-mod,adptn < n+1
2(log4 n)·

⌈
1
ε ln 1

ε

⌉2
and Eko-mod,adptn (3) <

ε.

Proof The number of comparisons made by ko-sub is at most n
2 + n

4 + n
8 + . . . < n.

Observe that ko-sub is called m
def
=
⌈
log n

n1

⌉
times. Let Xi be the multiset X at the start of

the ith call to ko-sub. Let Xm+1 and Ym+1 be the multisets X and Y right before calling

12

Maximum Selection and Sorting with Adversarial Comparators

compl. Then,

|Xm+1 ∪ Ym+1| ≤ |Xm+1|+ |Ym+1|

≤ n1 +
m∑
i=1

(|Yi+1| − |Yi|)

≤ n1 +mn1

=

(⌈
log

n

n1

⌉
+ 1

)
·
⌈

1

ε
ln

1

ε
· log n

⌉
≤
(⌈

log
n

n1

⌉
+ 1

)
·
⌈

1

ε
ln

1

ε

⌉
dlog ne

≤ log2 n ·
⌈

1

ε
ln

1

ε

⌉
,

where the last inequality follows as n1 ≥ 2 and log n is an integer. Since the complete
tournament is quadratic in the input size, the total number of queries is at most n +
1
2 log4 n

⌈
1
ε ln 1

ε

⌉2
.

Next, we bound the error of ko-mod. Let

X ∗ def
= {x ∈ X : x ≥ x∗ − 1}

be the multiset of all inputs that are at least x∗ − 1. For i ≤ m+ 1, let X ∗i = Xi ∩ X ∗ and

Y∗m+1 = Ym+1 ∩ X ∗. Let αi
def
=
|X ∗i |
|Xi| and α = max{α1, α2, . . . , αm}. We show that, with

high probability, |X ∗m+1 ∪ Y∗m+1| ≥ 1, namely, some input in Xm+1 ∪ Ym+1 belongs to X ∗.
In particular, we show that, with probability 1 − ε, for large α, |Y∗m+1| > 0, and for small
α, x∗ ∈ Xm+1. Observe that

Pr(x∗ /∈ X ∗m+1) =

m∑
i=1

Pr(x∗ /∈ X ∗i+1|x∗ ∈ Xi) · Pr(x∗ ∈ Xi)

≤
m∑
i=1

Pr(x∗ /∈ X ∗i+1|x∗ ∈ Xi)

(a)

≤
m∑
i=1

|X ∗i | − 1

|Xi| − 1

≤
m∑
i=1

αi

≤ αm,

where (a) follows since at round i, ko-sub randomly pairs the inputs and only inputs
in X ∗i \{x∗} are able to eliminate x∗. Next we discuss Pr(|Y∗m+1| = 0). At round i, the
probability that an input in X ∗ is not picked up in Y is(|Xi|−|X ∗i |

n1

)(|Xi|
n1

) ≤
(

1− |X
∗
i |
|Xi|

)n1

= (1− αi)n1 .

13

Acharya, Falahatgar, Jafarpour, Orlitsky and Suresh

Therefore,

Pr(|Y∗m+1| = 0) ≤
m∏
i=1

(1− αi)n1

≤ min
i

(1− αi)n1

= (1− α)n1 .

As a result,

Pr(|X ∗m+1 ∪ Y∗m+1| = 0) = Pr(|X ∗m+1| = 0 ∧ |Y∗m+1| = 0)

≤ Pr(x∗ /∈ X ∗m+1 ∧ |Y∗m+1| = 0)

≤ max
α

min{Pr(x∗ /∈ X ∗m+1),Pr(|Y∗m+1| = 0)}

≤ max
α

min {αm, (1− α)n1}

(a)

≤ max {αm, (1− α)n1}|α= ε
logn

= max

{
εm

log n
,

(
1− ε

log n

)n1
}

(b)
< ε,

where (a) follows since the first argument of the min increases and the second argument
decreases with α. Also, (b) follows since m ≤ log n and n1 =

⌈
1
ε ln 1

ε log n
⌉
.

So far, we have shown that with probability 1− ε, there exists a 1-approximation of x∗

in Xm+1 ∪ Ym+1. From Lemma 4, compl gives a 2-approximation of the maximum input.
Consequently, with probability 1− ε, ko-mod outputs a 3-approximation of x∗.

In Appendix A, we show that ko-mod cannot output better than 3-approximation of
x∗ with constant probability.

5.2. Quick-select

Motivated by quick-sort, we propose a quick-select algorithm q-select that at each round
compares all the inputs with a random pivot to provide stronger performance guarantees
against the non-adaptive adversary.

input: X
pick a pivot xp ∈ X at random
compare xp with all other inputs in X
let Y ⊂ X\{xp} be the multiset of inputs that beat xp

output: if Y 6= ∅ output Y otherwise output {xp}
Algorithm qs-sub - Subroutine for q-select and comb

We show that q-select provides a 2-approximation with no error against both the
adaptive and non-adaptive adversaries. To show this result, observe that x∗ will only be

14

Maximum Selection and Sorting with Adversarial Comparators

input: X
while |X | > 1
X ← qs-sub(X)

end while
output: the unique input in X

Algorithm q-select - Quick-select

eliminated if a 1-approximation of x∗ is chosen as pivot, and, therefore, only inputs that
are 2-approximation of x∗ will survive.

Lemma 7 Eq-select,adptn (2) = 0.

Proof If the output is x∗, the lemma holds. Otherwise, x∗ is discarded when it was
chosen as a pivot or compared with a pivot. Let xp be the pivot when x∗ is discarded;
hence, xp ≥ x∗ − 1. By the algorithm’s definition, all the surviving inputs are at least
xp − 1 ≥ x∗ − 2.

We now show that the expected query complexity of q-select against a non-adaptive
adversary is at most 2n. This result follows from the observation that the non-adaptive
adversary fixes the comparison graph at the beginning, and hence a random pivot wins
against half of the inputs in expectation. This idea is made rigorous in the proof of Lemma 8.

In Example 2 we show an instance for which q-select requires
(
n
2

)
queries against the

adaptive adversary.

Lemma 8 qq-select,nonn < 2n.

Proof Recall that the non-adaptive adversary can be modeled as a complete directed graph
where each node is an input and there is an edge from x to y if C(x, y) = x. Let in(x) be
the in-degree of x in such a graph.

At round i, the algorithm chooses a pivot xp at random and compares it to all the
remaining inputs. By keeping the winners, max{in(xp), 1} inputs will remain for the next
round. As a result, we have the following recursion for non-adaptive adversaries:

qq-selectn = E [Qq-select
n]

= n− 1 +
1

n

n∑
i=1

E
[
Qq-select

in(xi)

]
= n− 1 +

1

n

n∑
i=1

qq-selectin(xi)
.

15

Acharya, Falahatgar, Jafarpour, Orlitsky and Suresh

By (2),

qq-select,nonn = max
C∈Cnon

max
X

qq-selectn (4)

= max
C∈Cnon

max
X

[
n− 1 +

1

n

n∑
i=1

qq-selectin(xi)

]

≤ n− 1 +
1

n

n∑
i=1

max
C∈Cnon

max
X

qq-selectin(xi)

= n− 1 +
1

n

n∑
i=1

qq-select,nonin(xi)
,

where the inequality follows as the maximum of sums is at most the sum of maxima. We
prove by strong induction that qq-select,nonn ≤ 2(n − 1), which holds for n = 1. Suppose it
holds for all n′ < n, then,

qq-select,nonn ≤ n− 1 +
1

n

n∑
i=1

qq-select,nonin(xi)

≤ n− 1 +
1

n

n∑
i=1

2 · in(xi)

= n− 1 +
n(n− 1)

n
≤ 2(n− 1),

where the equality follows since the in-degrees sum to n(n−1)
2 .

Lemma 8 shows that qq-select,nonn < 2n. Next, we show a naive concentration bound for
the query complexity of q-select. By Markov’s inequality, for a non-adaptive adversary,

Pr(Qq-select
n > 4n) ≤ 1

2
.

Let k be an integer multiple of 4. Now suppose we run q-select, allowing kn queries. At
each 4n queries, the q-select ends with probability ≥ 1

2 . Therefore,

Pr(Qq-select
n > kn) ≤ 2−

k
4 .

This naive bound is exponential in k. The next lemma shows a tighter super-exponential
concentration bound on the query complexity of the algorithm beyond its expectation. We
defer the proof to appendix B.

Lemma 9 Let k′ = max{e, k/2}. For a non-adaptive adversary, Pr(Qq-select
n > kn) ≤

e−(k−k
′) ln k′.

While q-select has linear expected query complexity under the non-adaptive adver-
sarial model, the following example suggested to us by Nelson (2015) shows that it has a
quadratic query complexity against an adaptive adversary.

16

Maximum Selection and Sorting with Adversarial Comparators

Example 2 Let X = {0, 0, . . . , 0}. At each round, the adversary declares the pivot to be
smaller than all the other inputs. Consequently, only the pivot is eliminated, and the query
complexity is

(
n
2

)
.

5.3. Knock-out and quick-select combination

ko-mod has the benefit of reducing the number of inputs exponentially at each round
and therefore maintaining a linear query-complexity while having only a 3-approximation
guarantee. On the other side, q-select has a 2-approximation guarantee while it may
require O(n2) queries for some instances of inputs. In comb we combine the benefits of
these algorithms and avoid their shortcomings. By carefully repeating qs-sub, we try to
reduce the number of inputs by a fraction at each round and keep the largest element in the
remaining set. If the number of inputs is not reduced by a fraction, most of them must be
close to each other. Therefore, repeating the ko-sub for a sufficient number of times and
keeping the inputs with the higher number of wins will guarantee the reduction of the input
size without making the approximation error worse. Our final algorithm comb provides
a 2-approximation of x∗, even against the adaptive-adversarial comparator and has linear
query complexity. Therefore, an open question of Ajtai et al. (2015) is resolved.

input: X , ε
β1 = 9, β2 = 25, i = 0
while |X | > 1

i = i+ 1 (i is the round)
ni = |X |
run X ← qs-sub(X) for

⌊
β1 log 1

ε

⌋
times

Xi = X
if |Xi| > 2

3ni

run ko-sub on fixed X for
⌊
β2
(
4
3

)i
log 1

ε

⌋
times

if there exists an input with > 3
4

⌊
β2
(
4
3

)i
log 1

ε

⌋
wins

let X be a multiset of inputs with > 3
4

⌊
β2
(
4
3

)i
log 1

ε

⌋
wins

else
let X be an input with highest number of wins

end while
output: X

Algorithm comb - Knock-out and quick-select combination

We begin the algorithm’s analysis with a few lemmas.

Lemma 10 At each round |X | reduces by at least a third, namely, ni+1 ≤ 2
3ni.

Proof If at any round |Xi| ≤ 2
3ni, then the lemma holds, and the algorithm does not

call ko-sub. On the other hand, if ko-sub is called, then by Markov’s inequality at most
two-thirds of the inputs win more than three-fourth of the queries. As a result, at round i,
at least one-third of the inputs in X will be eliminated.

Recall that X ∗ = {x ∈ X : x ≥ x∗ − 1}. Lemma 11 shows that choosing inputs inside X ∗

17

Acharya, Falahatgar, Jafarpour, Orlitsky and Suresh

as a pivot guarantees a 2-approximation of x∗. The proof is similar to Lemma 7 and is
omitted.

Lemma 11 If x∗ ∈ X , at a call to qs-sub either x∗ survives or a pivot from X ∗ is chosen
where in the latter case, only inputs that are 2-approximation of x∗ will survive.

We showed that at each round, comb reduces |X | by at least a third. As a result, the
number of inputs decreases exponentially, and the total number of queries is linear in n.
We also show that if x∗ is eliminated at some round, then, with high probability, the pivot
at that round is an input from X ∗ . Using Lemma 11, this implies that comb outputs a
2-approximation of x∗ with high probability.

Theorem 12 qcomb,adptn = O
(
n log 1

ε

)
and Ecomb,adptn (2) < ε.

Proof We start by analyzing the query complexity of comb. By Lemma 10,

ni ≤ n ·
(
2
3

)i−1
.

Therefore, the total number of queries at round i is at most

n
(
2
3

)i−1
β1 log 1

ε + n
2

(
2
3

)i−1
β2
(
4
3

)i
log 1

ε ,

where the first term is for calls to qs-sub, and the second term is for calls to ko-sub.
Adding the query complexity of all the rounds,

qcomb,adptn ≤ n log 1
ε

∞∑
i=1

(
β1
(
2
3

)i−1
+ 2

3β2
(
8
9

)i−1)
≤ n(3β1 + 6β2) log 1

ε

= O
(
n log 1

ε

)
.

We now analyze the approximation guarantee of comb. We show that at least one of
the following events happens with probability greater than 1− ε.

• comb outputs x∗.

• An input inside X ∗ is chosen as a pivot at some round.

Let X ∗i
def
= Xi ∩ X ∗ and αi

def
=
|X ∗i |
|Xi| . We consider the following two cases separately.

• Case 1 There exists an i such that |Xi| > 2
3ni and αi >

1
8 .

• Case 2 For all i, either |Xi| ≤ 2
3ni or αi ≤ 1

8 .

First, we consider Case 1. We show that in this case a pivot from X ∗ is chosen with
probability > 1 − ε. Observe that at round i, |X | starts at ni <

3
2 |Xi| and gradually

decreases. On the other hand, in all the
⌊
β1 log 1

ε

⌋
calls to qs-sub, |X ∩ X ∗| is at least

|X ∗i | = αi|Xi|. Therefore, in all the calls to qs-sub at round i,

|X ∩ X ∗|
|X |

≥ αi|Xi|
3
2 |Xi|

=
2

3
αi.

18

Maximum Selection and Sorting with Adversarial Comparators

Let E be the event of not choosing a pivot from X ∗ at round i. As a result,

Pr(E) ≤
(
1− 2

3αi
)⌊β1 log 1

ε

⌋

≤
(
11
12

)8 log 1
ε

< ε.

Therefore, in Case 1, with probability at least 1− ε, a pivot from X ∗ is chosen.
We now consider Case 2. By Lemma 11, during the calls to qs-sub, either x∗ survives

or an input from X ∗ is chosen as a pivot. Therefore, we may only lose x∗ without choosing
a pivot from X ∗, if at some round i, |Xi| > 2

3ni and x∗ wins less than three-fourth of its
queries during the calls to ko-sub.

Recall that in Case 2, if |Xi| > 2
3ni then αi ≤ 1

8 . Observe that x∗ wins against a random
input in Xi with probability greater than > 1 − αi, which is at least seven-eighths. Let
E′i be the event that x∗ wins fewer than three-quarters of its queries at round i. By the
Chernoff bound,

Pr(E′i) ≤ exp
(
−
⌊
β2
(
4
3

)i
log 1

ε

⌋
·D
(
3
4 ||

7
8

))
≤ ε2

(
4
3

)i
,

where D(p||q) def
= p ln p

q + (1 − p) ln 1−p
1−q is the Kullback-Leibler distance between Bernoulli

distributed random variables with parameters p and q, respectively. Assuming ε < 1
2 , the

total probability of missing x∗ without choosing a pivot form X ∗ is at most

∞∑
i=1

Pr(E′i) ≤
∞∑
i=1

ε
2
(
4
3

)i

< ε.

This shows that with probability > 1 − ε, either x∗ survives or an input inside X ∗ is
chosen as a pivot. The theorem follows from Lemma 11.

6. Application to density estimation

Our study of maximum selection with adversarial comparators was motivated by the fol-
lowing density estimation problem:

Given a known set Pδ = {p1, . . . , pn} of n distributions and k samples from an unknown
distribution p0, output a distribution p̂ ∈ Pδ such that for a small constant C > 1 and with
high probability,

‖p̂− p0‖1 ≤ C · min
p∈Pδ
‖p− p0‖1 + ok(1).

This problem was studied in Devroye and Lugosi (2001) who showed that for n = 2, the
scheffe-test, described below in pseudocode, takes k samples and, with probability 1−ε,

19

Acharya, Falahatgar, Jafarpour, Orlitsky and Suresh

outputs a distribution p̂ ∈ Pδ such that

||p̂− p0||1 ≤ 3 · min
p∈Pδ
||p− p0||1 +

√
10 log 1

ε

k
. (5)

input: distributions p1 and p2, k i.i.d. samples of unknown distribution p0
let S = {x : p1(x) > p2(x)}
let p1(S) and p2(S) be the probability mass that p1 and p2 assign to S
let µS be the frequency of samples in S

output: if |p1(S)− µS | ≤ |p2(S)− µS | output p1, otherwise output p2
Algorithm scheffe-test- Scheffe test for two distributions

scheffe-test provides a factor-3 approximation with high probability. The algorithm,
as stated in its pseudocode, requires computing pi(S) which can be hard since the distri-
butions are not restricted. However, as noted in Suresh et al. (2014), the algorithm can be
made to run in time linear in k. Devroye and Lugosi (2001) also extended scheffe-test
for n > 2. Their proposed algorithm for n > 2 runs scheffe-test for each pair of distri-
butions in Pδ and outputs the distribution with the maximum wins, where a distribution is
a winner if it is the output of scheffe-test. This algorithm is referred to as the Scheffe
tournament. They showed that this algorithm finds a distribution p̂ ∈ Pδ such that

||p̂− p0||1 ≤ 9 min
p∈Pδ
||p− p0||1 + ok(1),

and the running time is clearly Θ(n2k)—quadratic in the number of distributions.
Mahalanabis and Stefankovic (2008) showed that the optimal coefficients for the Scheffe

algorithms are indeed 3 and 9 for n = 2 and n > 2, respectively. They proposed an algorithm
with an improved factor-3 approximation for n > 2—still running in time Θ(n2), however.
They also proposed a linear-time algorithm, but it requires a preprocessing step that runs
in time exponential in n.

Scheffe’s method has been used recently to obtain nearly sample optimal algorithms
for learning Poisson Binomial distributions (Daskalakis et al., 2012), and Gaussian mix-
tures (Daskalakis and Kamath, 2014; Suresh et al., 2014).

We now describe how our noisy comparison model can be applied to this problem to
yield a linear-time algorithm with the same estimation guarantee as the Scheffe tournament.
Our algorithm uses the Scheffe test as a subroutine. Given a sufficient number of samples,
k = Θ(log n), the small term in the RHS of (5) vanishes, and scheffe-test outputs

pi if ||pi − p0||1 <
1
3 ||pj − p0||1 ,

pj if ||pj − p0||1 <
1
3 ||pi − p0||1 ,

unknown otherwise.

Let xi = − log3 ||pi − p0||1, then analogously to the maximum selection with adversarial
noise in (1), scheffe-test outputs{

max{xi, xj} if |xi − xj | > 1,
unknown otherwise.

20

Maximum Selection and Sorting with Adversarial Comparators

Given a fixed multiset of samples the tournament results are fixed; hence, this setup is
identical to the non-adaptive adversarial comparators. In particular, with probability 1−ε,
our quick-select algorithm can find p̂ ∈ Pδ such that

||p̂− p0||1 ≤ 9 · min
p∈Pδ
||p− p0||1 ,

with running time Θ(nk). Next, we consider the combination of scheffe-test and q-select
in greater detail.

Theorem 13 Combination of scheffe-test and q-select algorithms, with probability
1− ε, results in p̂ such that

||p̂− p0||1 ≤ 9 · min
p∈Pδ
||p− p0||1 + 4

√
10 log

(n2)
ε

k
.

Proof Let
p∗

def
= argmin

p∈Pδ
||p− p0||1 .

Using (5), for each pi and pj in Pδ, with probability 1 − ε/
(
n
2

)
, scheffe-test outputs p̂

such that

||p̂− p0||1 ≤ 3 · min
p∈{pi,pj}

||p− p0||1 +

√
10 log

(n2)
ε

k
. (6)

By the union bound (6) holds for all pi and pj with probability at least 1 − ε. Similar to
Lemma 7, if p∗ is eliminated, then at some round, q-select has chosen p′ as a pivot such
that ∣∣∣∣p′ − p0∣∣∣∣1 ≤ 3 · ||p∗ − p0||1 +

√
10 log

(n2)
ε

k
.

Now after choosing p′ as a pivot, for any distribution p′′ that survives,

∣∣∣∣p′′ − p0∣∣∣∣1 ≤ 3 ·
∣∣∣∣p′ − p0∣∣∣∣1 +

√
10 log

(n2)
ε

k

≤ 9 · ||p∗ − p0||1 + 4

√
10 log

(n2)
ε

k
.

7. Noisy sorting

7.1. Problem statement

In this section, we consider sorting with noisy comparators. The comparator model is the
same as before, and the goal is to approximately sort the inputs in decreasing order.

21

Acharya, Falahatgar, Jafarpour, Orlitsky and Suresh

Consider an Algorithm A for sorting the inputs. The output of A is denoted by

YA(X)
def
= (Y1, Y2, . . . , Yn), a particular ordering of the inputs. Similar to the maximum-

selection problem, a t-approximation error is

EAn (t)
def
= Pr

(
max
i,j:i>j

(Yi − Yj) > t

)
,

namely, the probability of Yi appearing after Yj in YA while Yi − Yj > t. Note that our

definitions for EA,nonn (t), EA,adptn (t), qA,adptn , and qA,nonn hold the same as before.

In the following, we first revisit the complete tournament with a small modification for
the sake of the sorting problem, and we show that, under the adaptive adversarial model, it
has zero 2-approximation error and query complexity of

(
n
2

)
. We then discuss the quick-sort

algorithm q-sort and show that it has zero 2-approximation error but with improved query
complexity for the non-adaptive adversary. We apply the known bounds for the running
time of the general quick-sort algorithm with n distinct inputs to find the query complexity
of q-sort.

7.2. Complete tournament

The algorithm is similar to compl in Section 4.2.1, and we refer to it as compl-sort. The
only difference is in the output of the algorithm.

input: X
compare all input pairs in X , count the number of times each input wins

output: output the inputs in the order of their number of wins, breaking the ties
randomly

Algorithm compl-sort - Complete tournament

The following lemma—and its proof—is similar to Lemma 4, and, therefore, we skip the
proof.

Lemma 14 qcompl-sort,adptn =
(
n
2

)
and Ecompl-sort,adptn (2) = 0.

Next, we discuss an algorithm with improved query complexity.

7.3. Quick-sort

Quick-sort is a well-known algorithm and, here, is denoted by q-sort. The expected query
complexity of quick-sort with noiseless comparisons and distinct inputs is

f(n)
def
= 2n lnn− (4− 2γ)n+ 2 lnn+O(1), (7)

where γ is Euler’s constant (McDiarmid and Hayward, 1996). Note that f(n) is a convex
function of n.

In the rest of this section, we study the error guarantee of quick-sort and its query
complexity in the presence of noise. In Lemma 15, we show that the error guarantee of
quick-sort for our noise model is the same as the complete tournament, namely, it can sort

22

Maximum Selection and Sorting with Adversarial Comparators

the inputs with zero 2-approximation error. Next, in Lemma 16, we show that the expected
query complexity of quick-sort with non-adaptive adversarial noise is at most its expected
query complexity in the noiseless model.

Lemma 15 Eq-sort,adptn (2) = 0.

Proof The proof is by contradiction. Suppose xi > xj + 2, but xj appears before xi
in the output of quick-sort algorithm. Then there must have been a pivot xp such that
C(xi, xp) = xp while C(xj , xp) = xj . Since xi > xj + 2 no such a pivot exists.

The quick-sort algorithm chooses a pivot randomly to divide the set of inputs into
smaller-size sets. The optimal pivot for noiseless quick-sort is known to be the median of
the inputs to balance the size of the remained sets. In fact, it is easy to show that if we
choose the median of the inputs as the pivot, the query complexity of quick-sort reduces
to less than n log n. Observe that in a non-adaptive adversarial model, the probability of
having balanced sets after choosing pivot increases. As a result, in Lemma 16, we show
that the expected query complexity of quick-sort in the presence of noise is upper bounded
by f(n).

Lemma 16 qq-sort,nonn = f(n) and is achieved when the queries are noiseless and the inputs
are distinct.

Proof Let in(x) and out(x) be the in-degree and out-degree of node x in the complete
tournament respectively. For the noiseless comparator with distinct inputs, the in-degrees
and out-degrees of inputs are permutation of (0, 1, . . . , n− 1). We show that

argmax
C∈Cnon

max
X

qq-sortn ,

is a comparator whose complete tournament in-degrees and out-degrees are permutations
of (0, 1, . . . , n − 1). For notational simplicity let qn = qq-sort,nonn . We have the following
recursion for quick-sort similar to (4):

qn ≤ n− 1 +
1

n

n∑
i=1

qout(xi) + qin(xi). (8)

By induction, we show that the solution to (8) is bounded above by f(n), a convex function
of n. The induction holds for n = 0, 1, and 2. Now suppose the induction holds for all
i < n. Since f(n) is a convex function of n and

∑
i in(xi) =

∑
i out(xi) = n(n−1)

2 , the
right hand side of (8) is maximized when the in-degrees and out-degrees take their extreme
values, namely, when they are permutation of (0, 1, . . . , n−1). Plugging in these values, (8)
is equivalent to,

qn ≤ n− 1 +
1

n

n∑
i=1

f(in(xi)) + f(out(xi))

≤ n− 1 +
1

n

n∑
i=1

f(i− 1) + f(n− i),

23

Acharya, Falahatgar, Jafarpour, Orlitsky and Suresh

where the solution to this recursion is f(n), given in (7). Hence qn is bounded above by
f(n), and the equality happens when the in-degrees and out-degrees are permutations of
(0, 1, . . . , n− 1).

Knuth (1998); Hennequin (1989); McDiarmid and Hayward (1992) show different con-
centration bounds for quick-sort. In particular, McDiarmid and Hayward (1992) show that
the probability of the quick-sort algorithm requiring more comparisons than (1 + ε) times
its expected query complexity is n−2ε ln lnn+O(ln ln lnn). Observe that for the non-adaptive
adversarial model, the chance of a random pivot cutting the set of inputs into balanced
sets increases. As a result, one can show that the analysis in McDiarmid and Hayward
(1992) follows automatically. In particular, Lemmas 2.1 and 2.2 in McDiarmid and Hay-
ward (1992), which are the basis of their analysis, are valid for our non-adaptive adversarial
model. Therefore, their tight concentration bound for quick-sort algorithm can be applied
to our non-adaptive adversarial model.

Acknowledgments

The authors would like to thank the editor and anonymous reviewers for their constructive
comments, and Jelani Nelson for introducing the authors to the adaptive adversarial model.
This work was supported in part by NSF grants CIF-1564355 and CIF-1619448. Part of
this work was done while J.Acharya was at MIT, supported by MIT-Shell initiative.

Appendix A. For all t < 3, ko-mod cannot output a t-approximation

Example 3 shows that the modified knock-out algorithm cannot achieve better than 3-
approximation of x∗.

Example 3 Suppose n − 2 is multiple of 3 and n is a large number. Let X be a random
permutation of

{3, 2, 2, . . . , 2︸ ︷︷ ︸
n−2
3

, 1, 1, . . . , 1︸ ︷︷ ︸
n−2
3

, 0, 0, . . . , 0︸ ︷︷ ︸
n−2
3

, 0∗}.

This multiset consists of an input with value zero but specified with 0∗ since this input is
going to behave differently from other 0s. Let the adversarial comparator be such that all
0s, except 0∗, and all 2s lose to all 1s, and 3 loses to all 2s. If two inputs of the same
value get paired, one of them wins randomly (except in the case of 0∗). By the properties
of comparator, it is obvious that any 2 will defeat all zeros, including 0∗. In order to prove
our main claim, we make the following arguments and show that each of them happens with
high probability:

• Pr(input with value 3 is not present in the final multiset)> 3
10

• Pr(input 0∗ is present in the final multiset)> 1
3

• With high probability, the fraction of 1s in the final multiset is close to 1

24

Maximum Selection and Sorting with Adversarial Comparators

Before proving each argument, we show why satisfying all the above statements are sufficient
to prove our claim. Consider the final multiset; with high probability, it mainly consists of
1s, and there are a small number of 0s and 2s. Moreover, with probability greater than
1
3 ×

3
10 , input with value 3 has been removed before reaching the final multiset, and 0∗ has

survived to reach the final multiset. Therefore, if we run algorithm compl on the final
multiset, the input 0∗ will have the most wins and be declared as the output. Hence for all
t < 3, we have Eko-mod,nonn (t) > constant. Note that we did not try to optimize this constant.

Now we show why each of the arguments above is true. Note that the reasoning made
here is in expectation and assuming n is sufficiently large. However, the concentration
bounds for all these claims are straightforward and thus omitted.

Lemma 17 With high probability, the fraction of 1s in the final multiset is close to 1, and
the fraction of 0s and 2s are very small.

Proof We calculate the expected number of 0s, 1s, and 2s at each step. Let fi(j) be the
fraction of j’s at the end of step i. After each step, we lose an input with value 1 if and
only if they are paired with each other. As a result, we have the following recursion:

fi+1(1) = 2 · fi(1)
(
fi(1)
2 + 1− fi(1)

)
,

where the factor 2 on the RHS of the recursion above is due to the fact that at each step we
are reducing the number of inputs to half. Starting with f0(1) = 1/3, we get the set of values
{1/3, 5/9, 65/81, 6305/6561 ∼ 0.96, ...} for fi(1)s. We can see that the ratio is approaching
1 very fast. More precisely, the fraction of 0s is decreasing quadratically since their only
chance of survival is to get paired among themselves. As a result, after a couple of steps,
the fraction of zeros is extremely small, and, henceforth, the only chance of survival for 2s
becomes getting paired among themselves. Additionally their fraction is going to decrease
quadratically afterward. As a result, more samples of 1s will be in the final Y with high
probability.

Lemma 18 Pr(input with value 3 is not present in the final multiset)> 3
10 .

Proof The input with value 3 is going to be removed when it is compared against one of the
2s. There is a slight chance of it surviving if it is chosen randomly for being in the output.
Thus, the probability of input 3 being removed from the multiset in the first round is

Pr(input 3 is being removed in the first round) =
n− 2

3n

(
1− n1

n

)
>

3

10
,

where n1 =
⌈
1
ε ln 1

ε log n
⌉
.

Lemma 19 Pr(input 0∗ is present in the final multiset)> 1
3 .

Proof Similar to the argument made in the proof of Lemma 17, we have the following
recursion for fi(2).

fi+1(2) = 2 · fi(2)
(
fi(2)
2 + 1− fi(2)− fi(1)

)
25

Acharya, Falahatgar, Jafarpour, Orlitsky and Suresh

Thus, we have f0(2) = 1/3, f1(2) = 1/3, f2(2) = 5/27, f3(2) = 85/2187. As we stated in
the proof of Lemma 17, the expected fraction of 2s is decreasing quadratically and

Pr(0∗surviving) = (1− 1
3)(1− 1

3)(1− 5
27)(1− 85

2187) · · · > 1

3
,

proving the lemma.

Appendix B. Proof of Lemma 9

Abbreviate Qq-select
n by Qn. As in the Chernoff bound proof, for all λ > 0,

Pr(Qn > kn) ≤ E[eλQn]

ekλn
. (9)

Let λ = 1
n ln k′ and Φ(i)

def
= E[eλQi]. We prove by induction that Φ(i) ≤ ek′λi. The induction

holds for i = 0. Similar to (4), we have the following recursion for Φ(n):

Φ(n) ≤ eλ(n−1)

n

n∑
j=1

Φ(in(xj))

≤ eλn

n

n∑
j=1

Φ(in(xj)).

Since in(xj) < n, using induction,

eλn

n

n∑
j=1

Φ(in(xj)) ≤
eλn

n

n∑
j=1

ek
′λin(xj). (10)

Observe that ek
′λin(xj) is a convex function of in(xj), and

∑n
j=1 in(xj) = n(n−1)

2 . As a result,
the RHS of (10) is maximized when the in-degrees take their extreme values, namely, any
permutation of (0, 1, . . . , n− 1). Therefore,

eλn

n

n∑
j=1

ek
′λin(xj) ≤ eλn

n

n−1∑
j=0

ek
′λj

=
eλn

n

ek
′λn − 1

ek′λ − 1
.

Combining the above equations,

Φ(n) ≤ eλn

n

ek
′λn − 1

ek′λ − 1
.

Similarly, by induction on 1 ≤ i < n,

Φ(i) ≤ eλi

i

ek
′λi − 1

ek′λ − 1
.

26

Maximum Selection and Sorting with Adversarial Comparators

In Lemma 20 we show that for 1 ≤ i ≤ n,

eλi

i

ek
′λi − 1

ek′λ − 1
≤ ek′λi. (11)

Therefore, Φ(i) ≤ ek
′λi for 1 ≤ i ≤ n, and, in particular, Φ(n) ≤ ek

′λn. Substituting
E[eλQn] = Φ(n) in (9),

Pr(Qn > kn) ≤ ek
′λn

ekλn

=
ek
′ ln k′

ek ln k′

= e−(k−k
′) ln k′ .

This proves the lemma.

We now prove (11). Let k′ = max{e, k2} and λ = 1
n ln k′.

Lemma 20 For all 1 ≤ i ≤ n, eλi

i
ek
′λi−1

ek′λ−1 ≤ e
k′λi.

Proof It suffices to show that for all 0 < t ≤ n,

f(t)
def
=

eλt

t

1− e−k′λt

ek′λ − 1
< 1.

Observe that

lim
t→0

f(t) =
k′λ

ek′λ − 1
≤ 1.

On the other hand,

f(n) =
eλn

n

1− e−k′λn

ek′λ − 1

≤ k′

n

1

ek′ ln k′/n − 1

≤ k′

n

n

k′ ln k′

≤ 1.

Next, we show that f(t) is convex. One can show that,

ln
1− e−u

u
,

is a convex function of u. As a result,

ln
1− e−k′λt

t
,

27

Acharya, Falahatgar, Jafarpour, Orlitsky and Suresh

is a convex function of t. Observe that ln eλt is also convex. Therefore,

ln
1− e−k′λt

t
+ ln eλt,

is convex. As a result, logarithm of f(t) is convex, and, therefore, f(t) is convex.

We showed that f(t) is convex, f(t→ 0) ≤ 1, and f(n) ≤ 1. Therefore, for all 0 < t ≤ n,
f(t) ≤ 1.

References

Jayadev Acharya, Ashkan Jafarpour, Alon Orlitksy, and Ananda Theertha Suresh. Sorting
with adversarial comparators and application to density estimation. In Proceedings of the
2014 IEEE International Symposium on Information Theory (ISIT), 2014.

Micah Adler, Peter Gemmell, Mor Harchol-Balter, Richard M. Karp, and Claire Kenyon.
Selection in the presence of noise: The design of playoff systems. In Proceedings of
the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. 23-25 January 1994,
Arlington, Virginia, pages 564–572, 1994.

Gagan Aggarwal, S Muthukrishnan, Dávid Pál, and Martin Pál. General auction mechanism
for search advertising. In Proceedings of the 18th international conference on World wide
web, pages 241–250. ACM, 2009.

Miklós Ajtai, Vitaly Feldman, Avinatan Hassidim, and Jelani Nelson. Sorting and selection
with imprecise comparisons. ACM Trans. Algorithms, 12(2):19:1–19:19, November 2015.
ISSN 1549-6325.

Michael Ben-Or and Avinatan Hassidim. The bayesian learner is optimal for noisy binary
search (and pretty good for quantum as well). In Foundations of Computer Science, 2008.
FOCS’08. IEEE 49th Annual IEEE Symposium on, pages 221–230. IEEE, 2008.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs the
method of paired comparisons. Biometrika, 39(3-4):324–345, 1952.

Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. In Proceedings of
the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms. January 20-22,
2008, San Francisco, California, USA, pages 268–276, 2008.

Mark Braverman, Jieming Mao, and S Matthew Weinberg. Parallel algorithms for select
and partition with noisy comparisons. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pages 851–862. ACM, 2016.

Róbert Busa-Fekete, Eyke Hüllermeier, and Balázs Szörényi. Preference-based rank elicita-
tion using statistical models: The case of mallows. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14), pages 1071–1079, 2014.

28

Maximum Selection and Sorting with Adversarial Comparators

Xi Chen, Sivakanth Gopi, Jieming Mao, and Jon Schneider. Competitive analysis of the top-
k ranking problem. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1245–1264. SIAM, 2017a.

Xi Chen, Yuanzhi Li, and Jieming Mao. An instance optimal algorithm for top-k ranking
under the multinomial logit model. arXiv preprint arXiv:1707.08238, 2017b.

Constantinos Daskalakis and Gautam Kamath. Faster and sample near-optimal algorithms
for proper learning mixtures of gaussians. In Proceedings of the 27th Annual Conference
on Learning Theory (COLT), 2014.

Constantinos Daskalakis, Ilias Diakonikolas, and Rocco A Servedio. Learning poisson bi-
nomial distributions. In Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 709–728, 2012.

Herbert Aron David. The method of paired comparisons, volume 12. Defence Technical
Information Center Document, 1963.

Luc Devroye and Gabor Lugosi. Combinatorial Methods in Density Estimation. Springer -
verlag, New York, 2001.

Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, and Alistair
Stewart. Robust estimators in high dimensions without the computational intractability.
arXiv preprint arXiv:1604.06443, 2016.

GÖSta Ekman. Weber’s law and related functions. The Journal of Psychology, 47(2):
343–352, 1959.

Moein Falahatgar, Yi Hao, Alon Orlitsky, Venkatadheeraj Pichapati, and Vaishakh Ravin-
drakumar. Maxing and ranking with few assumptions. In Advances in Neural Information
Processing Systems, pages 7060–7070, 2017a.

Moein Falahatgar, Alon Orlitsky, Venkatadheeraj Pichapati, and Ananda Theertha Suresh.
Maximum selection and ranking under noisy comparisons. In International Conference
on Machine Learning, pages 1088–1096, 2017b.

Moein Falahatgar, Ayush Jain, Alon Orlitsky, Venkatadheeraj Pichapati, and Vaishakh
Ravindrakumar. The limits of maxing, ranking, and preference learning. In International
Conference on Machine Learning, pages 1426–1435, 2018.

Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy
information. SIAM Journal on Computing, 23(5):1001–1018, 1994.

Pascal Hennequin. Combinatorial analysis of quicksort algorithm. Informatique théorique
et applications, 23(3):317–333, 1989.

Richard M. Karp and Robert Kleinberg. Noisy binary search and its applications. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages 881–890, 2007.

29

Acharya, Falahatgar, Jafarpour, Orlitsky and Suresh

Michael Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E Schapire, and
Linda Sellie. On the learnability of discrete distributions. In Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal,
Québec, Canada, pages 273–282, 1994.

Donald Ervin Knuth. The art of computer programming: sorting and searching, volume 3.
Pearson Education, 1998.

R Duncan Luce. Individual choice behavior: A theoretical analysis. Courier Corporation,
2005.

Satyaki Mahalanabis and Daniel Stefankovic. Density estimation in linear time. In Pro-
ceedings of the 21st Annual Conference on Learning Theory (COLT), pages 503–512,
2008.

Colin McDiarmid and Ryan Hayward. Strong concentration for quicksort. In Proceedings
of the Third Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 27-29
January 1992, Orlando, Florida, pages 414–421, 1992.

Colin McDiarmid and Ryan B Hayward. Large deviations for quicksort. journal of algo-
rithms, 21(3):476–507, 1996.

Sahand Negahban, Sewoong Oh, and Devavrat Shah. Iterative ranking from pair-wise
comparisons. In Advances in Neural Information Processing Systems 25: 26th Annual
Conference on Neural Information Processing Systems 2012. Proceedings of a meeting
held December 3-6, 2012, Lake Tahoe, Nevada, United States, pages 2483–2491, 2012.

Jelani Nelson. Personal communication. 2015.

Robin L Plackett. The analysis of permutations. Applied Statistics, pages 193–202, 1975.

Henry Scheffe. A useful convergence theorem for probability distributions. In The Annals
of Mathematical Statistics, volume 18, pages 434–438, 1947.

Nihar Shah, Sivaraman Balakrishnan, Aditya Guntuboyina, and Martin Wainwright.
Stochastically transitive models for pairwise comparisons: Statistical and computational
issues. In International Conference on Machine Learning, pages 11–20, 2016.

Ananda Theertha Suresh, Alon Orlitsky, Jayadev Acharya, and Ashkan Jafarpour. Near-
optimal-sample estimators for spherical gaussian mixtures. In Advances in Neural Infor-
mation Processing Systems, pages 1395–1403, 2014.

Balázs Szörényi, Róbert Busa-Fekete, Adil Paul, and Eyke Hüllermeier. Online rank elici-
tation for plackett-luce: A dueling bandits approach. In Advances in Neural Information
Processing Systems, pages 604–612, 2015.

Louis L Thurstone. A law of comparative judgment. Psychological review, 34(4):273, 1927.

Leslie G. Valiant. A theory of the learnable. In Proceedings of the 16th Annual ACM
Symposium on Theory of Computing, April 30 - May 2, 1984, Washington, DC, USA,
pages 436–445, 1984.

30

Maximum Selection and Sorting with Adversarial Comparators

Yisong Yue and Thorsten Joachims. Beat the mean bandit. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11), pages 241–248, 2011.

31

	Introduction
	Density estimation via pairwise comparisons
	Organization

	Notations and preliminaries
	Previous and new results
	Simple results
	Lower bounds
	Two elementary algorithms
	Complete tournament (round-robin)
	Sequential selection

	Algorithms
	Modified knock-out
	Quick-select
	Knock-out and quick-select combination

	Application to density estimation
	Noisy sorting
	Problem statement
	Complete tournament
	Quick-sort

	For all t<3, ko-mod cannot output a t-approximation
	Proof of Lemma 9

