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Abstract

Divide-and-conquer based methods for Bayesian inference provide a general approach for
tractable posterior inference when the sample size is large. These methods divide the data
into smaller subsets, sample from the posterior distribution of parameters in parallel on
all the subsets, and combine posterior samples from all the subsets to approximate the full
data posterior distribution. The smaller size of any subset compared to the full data implies
that posterior sampling on any subset is computationally more efficient than sampling from
the true posterior distribution. Since the combination step takes negligible time relative to
sampling, posterior computations can be scaled to massive data by dividing the full data
into sufficiently large number of data subsets. One such approach relies on the geometry
of posterior distributions estimated across different subsets and combines them through
their barycenter in a Wasserstein space of probability measures. We provide theoretical
guarantees on the accuracy of approximation that are valid in many applications. We show
that the geometric method approximates the full data posterior distribution better than
its competitors across diverse simulations and reproduces known results when applied to a
movie ratings database.

Keywords: barycenter; big data; distributed Bayesian computations; empirical measures;
linear programming; optimal transportation; Wasserstein distance; Wasserstein space.

1. Introduction

Developing efficient sampling algorithms is an active area of research motivated by tractable
Bayesian inference in large sample settings. Sampling remains a primary tool for inference
in Bayesian models, with Markov chain Monte Carlo (MCMC) and sequential Monte Carlo
(SMC) providing two broad classes of algorithms that are routinely used. Most MCMC and
SMC algorithms face problems in scaling up to massive data settings due to memory and
computational bottlenecks that arise; this has motivated a rich literature in recent years
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proposing a variety of strategies to enable better performance in such settings. Our focus
is on proposing a very general divide-and-conquer technique, which is designed to combine
results from any posterior sampling algorithm applied in parallel using subsets of the data.

Massive data pose major problems for existing sampling algorithms. First, if full data
require multiple machines for storage, then a sampler has access to only a small fraction
of the full data stored on the machine where it runs. Posterior sampling given the full
data is expensive due to network latency and extensive communication among machines.
Second, with sample size n, sampling in hierarchical Bayesian models requires generation
of O(n) latent variables, which becomes inefficient as n increases. Finally, even if full data
are available to the sampler, sampling can be infeasible in practice because computation
of Hessians and acceptance ratios can scale as O(n3) in some nonparametric models based
on Gaussian process priors (Rasmussen and Williams, 2006). A variety of methods exist to
address these issues using optimization and sampling.

Optimization-based methods for Bayesian inference obtain an analytic approximation
of the full data posterior distribution. The two most common techniques are polynomial
approximation (Rue et al., 2009) and projection of the full data posterior distribution on
a class of distributions with analytically tractable posterior densities, which includes vari-
ational Bayes and expectation propagation (Wainwright and Jordan, 2008; Gelman et al.,
2014). Both techniques estimate parameters of the approximate distribution using a va-
riety of optimization algorithms (Tan and Nott, 2013; Kucukelbir et al., 2015; Rezende
and Mohamed, 2015; Ranganath et al., 2016). Stochastic approximation significantly im-
proves the efficiency of estimation by accessing the data in small batches and updating
the parameter estimates sequentially (Broderick et al., 2013; Hoffman et al., 2013); how-
ever, optimization can be nontrivial for complex likelihoods frequently used in hierarchical
models. Furthermore, variational Bayes and expectation propagation often have excellent
predictive performance but can be highly biased in estimation of posterior uncertainty and
dependence (Giordano et al., 2017).

There is extensive work in sampling-based methods for Bayesian inference. The three
main techniques used are as follows. First, subsampling-based methods obtain posterior
samples conditioned on a small fraction of the data (Maclaurin and Adams, 2015). Cou-
pling of subsampling with modified Hamiltonian or Langevin dynamics improves posterior
exploration and convergence to the stationary distribution (Welling and Teh, 2011; Ahn
et al., 2012; Chen et al., 2014; Korattikara et al., 2014; Lan et al., 2014; Shahbaba et al.,
2014); see Bardenet et al. (2017) for a review. Second, the exact transition kernel in poste-
rior sampling is replaced by an approximation that significantly reduces the time required
to finish an iteration of the sampler (Johndrow et al., 2015; Alquier et al., 2016). Finally,
divide-and-conquer approaches first divide the data into smaller subsets and sample in par-
allel across subsets, and then combine the posterior samples from all the subsets. Our focus
is on scalable Bayesian methods based on the divide-and-conquer technique. These methods
have two subgroups that differ mainly in their sampling scheme for every subset and their
method for combining posterior samples obtained from all the subsets.

The first subgroup modifies the prior to sample from the posterior distribution of the
parameter conditioned on a data subset. Let k be the number of subsets, π(θ) be the prior
density of parameter θ, and li(θ) be the likelihood for subset i (i = 1, . . . , k). Samples
from subset posterior distribution i are obtained using li(θ) and π(θ)1/k as the likelihood
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and prior. Consensus Monte Carlo combines subset posterior samples by averaging, which
has been generalized in many ways (Rabinovich et al., 2015; Scott et al., 2016). This
relies heavily on the normality assumption, which is relaxed using a combination based
on kernel density estimation (Neiswanger et al., 2014). Both methods perform poorly if
the supports of subset posteriors are different, which motivates the combination using the
Weierstrass transform and random partition trees (Wang and Dunson, 2013; Wang et al.,
2015). These methods offer simple approaches for combining samples from subset posterior
distributions but have a major limitation that the sampling algorithm depends on the model
parameterization.

The second subgroup modifies the subset likelihood to sample from a subset posterior
distribution and combines samples from subset posterior distributions through their geo-
metric center. These methods modify the likelihood to li(θ)

k and use prior π(θ) to sample
from subset posterior distribution i (i = 1, . . . , k). M-Posterior combines subset posterior
distributions through their median in the Wasserstein space of order 1 (Minsker et al., 2014,
2017). The robustness of the median implies that it could ignore valuable information in
some subset posterior distributions, which motivates combination through the mean in the
Wasserstein space of order 2 called Wasserstein Posterior (WASP) (Srivastava et al., 2015).
The WASP approach strikes a balance between the generality of sampling and the efficiency
of optimization. While WASP can be applied to any data or Bayesian model, its compu-
tations are developed for independent identically distributed (iid) data and its theoretical
properties are unknown.

Our main goal is to study the theoretical properties of WASP and apply WASP in a
variety of practical problems. The iid assumption of WASP rules out many important
practical problems, including regression and classification, where the data are independent
and non-identically distributed (inid). We relax this assumption and our theoretical results
are applicable to inid data. Second, we show that if the number of subsets are chosen
appropriately, then the WASP achieves almost the same rate of convergence as that of the
full data posterior distribution. For linear models with error distribution in the location-
scale family, we strengthen this result and show that the WASP and the full data posterior
distribution have the same asymptotic mean and asymptotic variance. This implies that
WASP can be used as an efficient alternative to the full data posterior distribution in massive
data settings. Third, we show that the method for estimating WASP is independent of the
form of the model, which implies that WASP is very general and can be easily used for
estimating posterior summaries for any function of the model parameters. We emphasize
that WASP is not a new sampling algorithm but a general approach to easily extend any
existing sampling algorithms for massive data applications.

2. Preliminaries

2.1 Wasserstein Space, Wasserstein Distance, and Wasserstein Barycenter

We recall elementary properties and definitions related to the Wasserstein space of proba-
bility measures. Let (Θ, ρ) be a complete separable metric space and P(Θ) be the space of
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all probability measures on Θ. The Wasserstein space of order 2 is defined as

P2(Θ) :=

{
µ ∈ P(Θ) :

∫
Θ
ρ2(θ0, θ)µ(dθ) <∞

}
, (1)

where θ0 ∈ Θ is arbitrary and P2(Θ) does not depend on the choice of θ0. The space P2(Θ)
is equipped with a natural distance between its elements. Let µ, ν ∈ P2(Θ) and Π(µ, ν) be
the set of all probability measures on Θ×Θ with marginals µ and ν, then the Wasserstein
distance of order 2 between µ and ν is defined as

W2(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
Θ×Θ

ρ2(x, y) dπ(x, y)

) 1
2

. (2)

In our applications ρ is the Euclidean metric and we refer to P2(Θ) and W2 as the Wasser-
stein space and the Wasserstein distance without explicitly mentioning their order. If
Π1, . . . ,Πk are a collection of probability measures in P2(Θ), then their barycenter in P2(Θ)
is defined as

Π = argmin
Π∈P2(Θ)

k∑
j=1

1

k
W 2

2 (Π,Πj). (3)

This generalizes the Euclidean barycenter, which is the sample mean, to P2(Θ) (Agueh and
Carlier, 2011). The barycenter Π is analytically intractable, except in few special cases. Let
δa(x) = 1 if a = x and 0 otherwise. If Xj1, . . . , Xjm are samples from Πj (j = 1, . . . , k),

then Π̂j(·) =
∑m

i=1 δXji(·)/m is an empirical measure that approximates Πj (j = 1, . . . , k).

If Π is assumed to be an empirical measure, then the optimization problem in (3) reduces
to a linear program; see Cuturi and Doucet (2014), Carlier et al. (2015), and Srivastava
et al. (2015) for different algorithms to solve this linear program.

2.2 Stochastic Approximation and Subset Posterior Density

Consider a general set-up for inid data. Let Y (n) = (Y1, . . . , Yn) be n observations and the
distribution of Yi is Pθ,i, i = 1, . . . , n, where θ lies in the parameter space Θ ⊂ Rp. Assume
that Pθ,i has density pi(·|θ) with respect to the Lebesgue measure, so dPθ,i(yi) = pi(yi|θ)dyi
and the likelihood given Y (n) is l(θ) =

∏n
i=1 pi(yi|θ). Given a prior distribution Π on Θ

that has density π with respect to the Lebesgue measure, the posterior density of θ given
Y (n) using Bayes theorem is

π(θ | Y (n)) =

∏n
i=1 pi(yi | θ)π(θ)∫

Θ

∏n
i=1 pi(yi | θ)π(θ)dθ

=
l(θ)π(θ)∫

Θ l(θ)π(θ)dθ
. (4)

In most cases π(θ | Y (n)) is analytically intractable, and accurate approximations of π(θ |
Y (n)) are obtained using Monte Carlo methods, such as importance sampling and MCMC,
and deterministic approximations, such as Laplace’s method and variational Bayes. For
example, in the context of logistic regression, Pθ,i is the Bernoulli distribution with mean
1/
{

1 + exp(−xTi θ)
}

, where xTi is the ith row of the design matrix X ∈ Rn×p and Θ = Rp.
The posterior density of θ is analytically intractable, and it is typical to rely on Gibbs
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samplers based on data augmentation (Bishop, 2006). These samplers introduce latent
variables {zi, i = 1, . . . , n} and alternately sample the latent variables and the parameters
from their full conditional distributions. Related algorithms are very common and are
computationally prohibitive for large n because they require repeated passes through the
whole data.

Divide-and-conquer-type methods resolve this problem by partitioning the data into
smaller subsets. Let k be the number of subsets. The default strategy is to randomly allocate

samples to subsets. Let Y[j] ≡ Y
(mj)
j = (Yj1, . . . , Yjmj ) denote data on the jth subset, where

mj is the size of the jth subset and
∑k

j=1mj = n. We assume that mj = m (j = 1, . . . , k)
for ease of presentation, so n = km, the likelihood given Y[j] is lj(θ) =

∏m
i=1 pji(yji|θ), and

l(θ) in (4) equals
∏k
j=1 lj(θ). Define subset posterior density j given Y[j] as

πm(θ | Y[j]) =
{
∏m
i=1 pji(yji|θ)}γπ(θ)∫

Θ{
∏m
i=1 pji(yji|θ)}γπ(θ)dθ

=
lj(θ)

γπ(θ)∫
Θ lj(θ)

γπ(θ)dθ
, (5)

where γ is a positive real number such that g1γm ≤ n ≤ g2γm for some g1, g2 > 0. In the
present context, we assume that γ = k with g1 = g2 = 1 following Minsker et al. (2014);
more general conditions on γ are defined later in Section 3.2. This modified form of subset
posterior compensates for the fact that jth subset has access to only (m/n)-fraction of the
full data and ensures that πm(θ | Y[j]) and πn(θ | Y (n)) in (4) have variances of the same
order. Minsker et al. (2014) refer to this as stochastic approximation because raising lj(θ)
(j = 1, . . . , k) to the power γ is equivalent to replicating every Xji (i = 1, . . . ,m) γ-times
so that πm(θ | Y[j]) (j = 1, . . . , k) are noisy approximations of π(θ | Y (n)).

One advantage of using stochastic approximation to define πm(θ | Y[j]) in (5) is that off-
the-shelf sampling algorithms can be used directly even when the prior density is the form
of a discrete mixture. Consider a simple example of univariate density estimation using
Dirichlet process (DP) mixtures of Gaussians. Let Xi (i = 1, . . . , n) be iid samples from a
distribution P0 with density p0. The data are randomly split into k subsets of equal size m.
The truncated stick-breaking representation of DP implies that the prior distribution Π on
P has a finite mixture representation, where P is the set of probability distributions that
have a density. We show in the Appendix that modification of the likelihood using stochastic
approximation leads to nearly identical subset and full data posterior computations.

Stochastic approximation does not add any extra burden to the computations required
for sampling from the subset posterior distribution of θ conditioned on m observations.
We raise the likelihood in every subset to the power γ. This is equivalent to replicating
observations γ-times, which seems to offset the benefits of partitioning. However, the repli-
cation of observation is not required in implementation of the sampler; we simply modify
the likelihood in the full data sampler by raising it to the power γ. For example, stochastic
approximation is easily implemented using the increment log prob function in Stan (Stan
Development Team, 2014). We provide more examples for a variety of models in Section 4.

A simple logistic regression example demonstrates that πm(θ | Y[j]) in (5) is a noisy

approximation of π(θ | Y (n)) in (4). We simulated data for logistic regression with n = 105,
p = 2, θ = (−1, 1)T , and entries of X randomly set to ±1 (Figure 1). We set γ = k = 40 and
obtained samples of θ from π(θ | Y (n)) and from πm(θ | Y[j]) (j = 1, . . . , k) using the Stan’s
HMC sampling algorithm. The contours for the subset and full data posterior densities
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Figure 1: Binned kernel density estimates of full data posterior distribution, subset posterior
distributions, and WASP for coefficients (θ1, θ2) in logistic regression. The x and y axes
represent posterior samples for θ1 and θ2. The true values of θ1 and θ2 are −1 and 1 (black
triangle).

are very similar, indicating all densities have similar spreads. We also notice that subset
posteriors are noisy approximations of the full data posterior in that most of them have a
bias and do not concentrate at the true θ.

3. Wasserstein Posterior (WASP): The General Framework

3.1 Definition and Estimation of the WASP

The WASP approach combines subset posterior distributions Πm(· | Y[j]) (j = 1, . . . , k)
through their barycenter in P2(Θ), where the density of Πm(· | Y[j]) is πm(· | Y[j]) in (5).
The barycenter represents a geometric center of a collection of probability distributions
that can be efficiently computed using a linear program. Motivated by this, Srivastava
et al. (2015) proposed to combine a collection of subset posterior distributions through
their barycenter in the Wasserstein space called WASP. Assuming that subset posterior
distributions Πm(· | Y[j]) (j = 1, . . . , k) have finite second moments, the WASP is defined
using (3) as

Πn(· | Y (n)) = argmin
Π∈P2(Θ)

k∑
j=1

1

k
W 2

2 {Π,Πm(· | Y[j])}. (6)

Consider the following Gaussian example where the WASP is analytically tractable. As-
sume that the subset posterior distributions, Π1, . . . ,Πk, are Gaussian with means µ1, . . . , µk
and covariance matrices Σ1, . . . ,Σk. If we fix ρ to be the Euclidean metric and Θ = Rd in
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Algorithm 1 Estimation of the WASP for f(θ) given samples of θ from k subset posteriors

Input: Samples from k subset posteriors, {θji : θji ∼ Πm(· | Y[j]), i = 1, . . . , sj , j = 1, . . . , k}; mesh size ε > 0.

Do:

1. Define φji = (φji1, . . . , φ
j
iq) = f(θji) (i = 1, . . . , sj ; j = 1, . . . , k), the matrix of atoms of subset posterior j, Φj ∈

Rsj×q , with φji as row i (i = 1, . . . , sj). For r = 1, . . . , q, let φmin = (φmin 1, . . . , φmin q) with φmin r = min
j i

φjir,

and φmax = (φmax 1, . . . , φmax q) with φmax r = max
j i

φjir.

2. Set the number of atoms in the empirical approximation for the WASP g = g1×. . .×gq , where gr =
⌈φmax r−φmin r

ε

⌉
(r = 1, . . . , q).

3. Define the matrix of WASP atoms Φ ∈ Rg×q with rows formed by stacking vectors{
φmin 1 + i1

g1
(φmax 1 − φmin 1) , . . . , φmin q +

iq
gq

(
φmax q − φmin q

)}
, (ir = 1, . . . , gr; r = 1, . . . , q).

4. Set the distance matrix between the atoms of WASP and the jth subset posterior, Dj ∈ Rg×sj+ , as

(Dj)uv =

q∑
r=1

(φur − φjvr)2, (u = 1, . . . , g; v = 1, . . . , sj ; j = 1, . . . , k),

where φur is the (u, r)-entry of Φ.

5. Estimate â1, . . . , âg by solving the linear program (42) in Appendix C.

Return: ˆf]Π(· | Y (n)) =
∑g
i=1 âiδφi

(·), the atomic approximation of f]Πn(· | Y (n)).

(2), then (3) implies that Πn is Gaussian with mean µ and covariance matrix Σ, where

µ =
1

k

k∑
j=1

µj and Σ is such that
1

k

k∑
j=1

(
Σ

1/2
ΣjΣ

1/2
)1/2

= Σ, (7)

where A1/2 is the symmetric square root of A (Agueh and Carlier, 2011). If θ is one
dimensional, then (7) says that the standard deviation of WASP is the average of standard
deviations of subset posteriors; therefore, the variance of WASP is typically about the same
order as that of any subset posterior distribution. A similar relation also holds in higher
dimensions and for a large class of posterior distributions, including elliptical distributions
(Álvarez-Esteban et al., 2016).

The WASP is analytically tractable only in special cases, but it can be estimated using a
linear program if the subset posterior distributions have an atomic form. Let {θj1, . . . , θjS}
be the θ samples obtained from subset posterior density j in (6) using a sampling algorithm,
including HMC, MCMC, SMC, or importance sampling. Approximate jth subset posterior
distribution Πm(· | Y[j]) using the empirical measure

Π̂m(· | Y[j]) =

S∑
i=1

1

S
δθji(·) (j = 1, . . . , k). (8)

Srivastava et al. (2015) approximate the WASP as

Π̂n(· | Y (n)) =
k∑
j=1

S∑
i=1

ajiδθji(·), 0 ≤ aji ≤ 1,

k∑
j=1

S∑
i=1

aji = 1, (9)
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where aji (j = 1, . . . , k; i = 1, . . . , S) are unknown weights of the atoms. There are many
specialized algorithms to estimate the WASP that exploit the structure of the linear pro-
gram in (6) when Πm(· | Y[j]) and Πn(· | Y (n)) are restricted to have atomic forms in (8)
and (9), respectively; for example, Cuturi and Doucet (2014) extend the Sinkhorn algorithm
using entropy-smoothed sub-gradient methods, Carlier et al. (2015) develop a non-smooth
optimization algorithm, and Srivastava et al. (2015) propose an efficient linear program that
exploits the sparsity of constraints to solve (6). A simple and efficient algorithm to find the
WASP of a given function of parameters is summarized in Algorithm 1.

3.2 Theoretical Properties of the WASP

The WASP, denoted as Πn, replaces the full data posterior distribution, denoted as Πn,
for inference and prediction in massive data applications where n is large. In motivating
applications, computation of Πn is inefficient, and dividing the data into smaller subsets
and performing posterior computations in parallel leads to massive speed-ups. A formal
asymptotic justification for using Πn to approximate Πn would ideally show that the distance
between Πn and Πn tends to 0 as the full data size n increases to infinity. We will illustrate
this using a linear model example in Section 3.2.1, where we show that n1/2W2(Πn,Πn)→ 0
as n→∞. Since both Πn and Πn have variances of order n−1, our result implies that the
mean and the variance of WASP match those of the full data posterior distribution.

A general theoretical justification for using Πn in the place of Πn for a multivariate
θ given inid data is technically much more challenging. If the data are iid and θ is one-
dimensional, then Li et al. (2017) proves that n1/2W2(Πn,Πn) → 0 as n → ∞ for regular
parametric models. The proof in Li et al. (2017) relies heavily on the Bernstein-von Mises
theorem (BvM) for iid data and the one-dimensional quantile representation of Wasserstein
distance. Unlike the iid case, a BvM-type theorem is generally unavailable if the data are
inid or the model is non-regular (Ibragimov and Has’ Minskii, 2013). In Section 3.2.2,
we show that the WASP Πn converges to the true parameter value at almost the same
rate as Πn when the number of subset k increases slowly with n. The previous theoretical
justification of WASP in Srivastava et al. (2015) only includes posterior consistency under
the stronger iid assumption without characterizing the convergence rate. Relaxing these
limitations, we provide the convergence rate for the WASP in the inid case, including the
convergence rate for WASP of general functionals of the original parameters.

3.2.1 Approximation Error of WASP for inid Data: Weighted Linear Model
Example

We use a weighted linear model example to illustrate the theoretical approximation accuracy
of WASP to the true posterior under the inid setup. For i = 1, . . . , n, let yi be a scalar
response, xi be a p × 1 vector of predictors, and εi be the idiosyncratic error in yi. Let
θ = (θ1, . . . , θp)

T be the p × 1 regression coefficients vector. Let y = (y1, . . . , yn)T , X =
[x1, . . . , xn]T , and ε = (ε1, . . . , εn)T be the n × 1 response vector, the n × p design matrix,
and the n × 1 error vector, respectively. If Σ is a known diagonal matrix with positive
elements and cov(ε) = Σ, then the weighted linear regression model of y on X with a flat
prior on θ assumes that

y = Xθ + ε, ε ∼ Nn(0,Σ), Σ = diag(σ2
1, . . . , σ

2
n), π(θ) ∝ 1, (10)
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where π(θ) is the flat prior on θ and Nn(0,Σ) is a n-variate Gaussian distribution with
n× 1 mean 0 and covariance Σ. In this case, the data are inid since the distribution of yi
depends on the value of xi. Since Σ is assumed to be known, the posterior distribution of θ
is normal with mean µ = (XTΣ−1X)−1XTΣ−1y and covariance matrix V = (XTΣ−1X)−1.
Although the posterior of θ has a closed form in this example, the computational complexity
of finding µ and V is O(n2), which becomes inefficient as the size of the data n increases.

The WASP of θ in (10) is analytically tractable. The computation of WASP has three
steps. First, the training data are randomly split into k subsets. Let yj , Xj , and Σj be the re-
sponse vector, design matrix, and error covariance matrix specific to subset j (j = 1, . . . , k).
Second, we compute the subset posterior distributions after stochastic approximation on
the k subsets in parallel as in (5) with γ = k. The jth subset posterior distribution of θ
is Np(µj , Vj), where µj = (XT

j Σ−1
j Xj)

−1XT
j Σ−1

j yj and Vj = k−1(XT
j Σ−1

j Xj)
−1. Third, (7)

implies that the WASP of θ is also Gaussian with mean vector µ and covariance matrix V ,

where µ = k−1
∑k

j=1 µj and V satisfies V = k−1
∑k

j=1(V
1/2
VjV

1/2
)1/2.

The WASP and full data posterior distributions lead to the same posterior inference on
θ up to o(n−1) terms. Let Πn = Np(µ, V ) and Πn = Np(µ, V ) be the WASP and full data
posterior distributions for θ. Based on the divide-and-conquer technique, the computational
complexity of Πn is O(km2), which is smaller than that of Πn by a factor of k. The true

distribution of y, denoted as P
(n)
θ0

, in (10) is Nn(Xθ0,Σ). If uncertainty quantification using

Πn and Πn is the same, then it suffices to show that the difference in the second moments

of Πn and Πn is o(n−1) in P
(n)
θ0

-probability because the variances V and V are both of order

n−1. This is equivalent to showing that the W2 distance between Πn and Πn is o(n−1) in

P
(n)
θ0

-probability, which is proved in the next theorem. In the statement of the theorem, we
denote A ≺ B for positive definite matrices A and B if B −A is also positive definite.

Theorem 1 Assume that there exist an = o(1), bm = o(1) such that Ω0 − anIp ≺
1
nX

TΣ−1X ≺ Ω0 + anIp and Ω0 − bmIp ≺ 1
mX

T
j Σ−1

j Xj ≺ Ω0 + bmIp for all j = 1, . . . , k,
where Ip, Ω0 are p× p identity and constant positive definite matrices. Then,

E
P

(n)
θ0

‖µ− µ‖22 = o
(
n−1

)
, tr

(
V − V

)
= o

(
n−1

)
, E

P
(n)
θ0

W 2
2 (Πn,Πn) = o

(
n−1

)
.

The proof of this theorem is in the appendix along with other proofs.
Theorem 1 shows that the uncertainty quantification of Πn and Πn are the same in

P
(n)
θ0

-probability for the data following the model in (10). Essentially, the WASP and the
true posterior have the same posterior mean and posterior variance, and their differences
are only in high order of the full data size n. Furthermore, Theorem 1 is valid for any block
diagonal Σ as long as the data that belong to a particular diagonal block of Σ also belong
to the same partition. In other words, Theorem 1 even holds for dependent data in which
the dependence can be expressed as a block diagonal Σ in (10). Finally, Theorem 1 is in
fact true for any error distribution satisfying E(ε) = 0 and cov(ε) = Σ, which includes the
Gaussian distribution; see Definition 2.1 and Theorem 2.3 in Álvarez-Esteban et al. (2016).

3.2.2 General Convergence Rates of the WASP for inid Data

For general non-iid data, the standard Bayesian asymptotic theory for posterior convergence
rates has been established in Ghosal and van der Vaart (2007), which also includes our inid
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setup. We follow the theoretical framework of Ghosal and van der Vaart (2007) and develop
the corresponding theory for divide-and-conquer Bayesian inference using the WASP.

We start with two definitions required to state the assumptions of our theoretical setup.

Definition 2 (Pseudo Hellinger distance) The pseudo Hellinger distance between

probability measures P
(m)
θ1

, P
(m)
θ2

∈ {⊗mi=1Pθ,j,i : θ ∈ Θ, dPθ,j,i(y) = pji(y | θ)dy}
is h2

mj(θ1, θ2) = 1
m

∑m
i=1 h

2 {pji(· | θ1), pji(· | θ2)}, where h(p1, p2) = [
∫
{
√
p1(y) −√

p2(y)}2dy]1/2 is the Hellinger distance between two generic densities p1, p2.

This definition generalizes the usual Hellinger distance to account for the inid data gener-
ating mechanism. The space ({⊗mi=1Pθ,j,i : θ ∈ Θ}, hmj) is a metric space.

Definition 3 (Generalized bracketing entropy) Let Ξ be a fixed subset of Θ. For
an m-dimensional random vector Z = (Z1, . . . , Zm)T , denote its Lq norm as |Z|q =[

1
m

∑m
i=1E (|Zi|q)

]1/q
and use ‖Z‖ to represent |Z|2. For a fixed j ∈ {1, . . . , k}, let

Pj(Ξ) =
{
pj(y|θ) = (pj1(y1|θ), . . . , pjm(ym|θ))T : y = (y1, . . . , ym)T ∈ ⊗mi=1 Yji, θ ∈ Ξ

}
be the class of m-dimensional functions indexed by θ. For a given δ > 0, let

B (δ,Pj(Ξ)) =
{

[ls,us] : ls(y) = (ls1(y1), . . . , lsm(ym))T ,us(y) = (us1(y1), . . . , usm(ym))T ,

y = (y1, . . . , ym)T ∈ ⊗mi=1 Yji, s = 1, . . . , N
}

be the generalized bracketing set of Pj(Ξ) with cardinality N , such that for any pj(y|θ) ∈
Pj(Ξ), there exists a pair of functions [ls,us] ∈ B (δ,Pj(Ξ)), such that

lsi(yi) ≤ pji(yi) ≤ usi(yi), for all y ∈ ⊗mi=1 Yji, and all i = 1, . . . ,m

and ‖
√
us −

√
ls‖ ≤ δ.

The hmj-bracketing number of Pj(Ξ), N[] (δ,Pj(Ξ), hmj), is defined as the smallest cardi-
nality of the generalized bracketing set B (δ,Pj(Ξ)). The hmj-bracketing entropy of Pj(Ξ)
is defined as H[] (δ,Pj(Ξ), hmj) = log

(
1 +N[] (δ,Pj(Ξ), hmj)

)
.

Again, this definition generalizes the usual bracketing entropy to the inid cases. If the data
are indeed iid, then Definition 3 coincides with that of the usual bracketing entropy.

Our theory for the convergence rate of WASP is built on the following assumptions.

(A1) Θ is a compact space in ρ metric, θ0 is an interior point of Θ, and g1γm ≤ n ≤ g2γm
for some constants g1, g2 > 0.

(A2) For any θ, θ
′ ∈ Θ and j = 1, . . . ,m, there exist positive constants α and CL such that

h2
mj(θ, θ

′
) ≥ CLρ2α(θ, θ

′
), where h2

mj is the pseudo Hellinger distance in Definition 2.

10
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(A3) (Entropy Condition) There exist constants D1 > 0, 0 < D2 < D2
1/2

12, a function
Ψ(u, r) ≥ 0 that is nonincreasing in u ∈ R+ and nondecreasing in r ∈ R+, such that
for all j = 1, . . . , k, for any u, r > 0 and for all sufficiently large m,

H[] (u, {pj(y|θ) : θ ∈ Θ, hmj(θ, θ0) ≤ r} , hmj) ≤ Ψ(u, r) for all j = 1, . . . , k;

and

∫ D1r

D1r2/212

√
Ψ(u, r)du < D2

√
mr2,

where pj(y|θ) = {pj1(yj1 | θ), . . . , pjm(yjm | θ)}T and H[] is the hmj-bracketing en-
tropy of the set {pj(y|θ) : θ ∈ Θ, hmj(θ, θ0) ≤ r} in Definition 3.

(A4) (Prior Thickness) There exist positive constants κ and cπ, such that uniformly over
all j = 1, . . . , k,

Π

(
θ ∈ Θ :

1

m

m∑
i=1

EPθ0 exp

(
κ log+

pji(Yji|θ0)

pji(Yji|θ)

)
− 1 ≤ log2m

m

)
≥ exp(−cπk log2m)

where log+ x = max(log x, 0) for x > 0.

(A5) The metric ρ satisfies ρ(
∑N

i=1wiθi, θ
′) ≤

∑N
i=1wiρ(θi, θ

′) for any N ∈ {1, 2, . . .},
θ1, . . . , θN , θ

′ ∈ Θ and non-negative weights
∑N

i=1wi = 1.

Our assumptions above are based on the standard assumptions in Bayesian asymptotic
theory. Similar to Theorem 10 in Ghosal and van der Vaart (2007), we have assumed a
compact support in (A1) and lower bounded pseudo Hellinger distance in (A2). Typically,
α = 1 for most regular models, such as generalized linear models. If the model is non-regular,
then α can be less than 1; for example, the densities may have discontinuities depending
on the parameter (Ibragimov and Has’ Minskii, 2013, Chapters V, VI). Assumption (A3)
parallels the entropy condition used in Theorem 1 of Wong and Shen (1995), which has been
adapted here for the inid setup using the generalized bracketing entropy, and will simplify
to a similar entropy condition to that in Theorem 1 of Wong and Shen (1995) if the data
are iid. Assumption (A4) is crucial in providing a stronger control over the tail probability
as the posterior probability mass moves away from the true parameter θ0, typically with an
exponentially decaying rate. The convexity property of ρ in (A5) is mainly used to establish
an averaging inequality under W2 distance and is satisfied by, for example, the Euclidean
metric and Lq metric with q ≥ 1.

The posterior risks of Πn and Πn in the ρ metric is directly related to the W2 distance
based on the ρ metric. If θ0 denotes the true parameter value from which the data are
generated, then the posterior risk of Πn in the estimation of θ0 is∫
Y(n)

∫
Θ
ρ2(θ, θ0)dΠn(θ | Y (n))dP

(n)
θ0

(y1, . . . , yn) = E
P

(n)
θ0

[
W 2

2

{
Πn(· | Y (n)), δθ0(·)

}]
. (11)

The classical result says that the posterior risk (11) in regular parametric models converges
to zero at the n−1 rate under assumptions similar to (A2)–(A4), with m replaced by n
(van der Vaart, 2000). The next theorem shows that the same posterior risk of the WASP
converges at a similar rate to that of the true posterior Πn, which mainly depends on the
size of subsets m, and can be made close to the standard n−1 rate up to some logarithmic
factors for regular parametric models.
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Theorem 4 If Assumptions (A1)-(A4) hold for the jth subset posterior Πm(· | Y[j]) (j =
1, . . . , k), then there exists a constants universal C1 > 0 independent of j, such that as
m→∞,

E
P

(m)
θ0

[
W 2

2

{
Πm(· | Y[j]), δθ0(·)

}]
≤ C1

(
log2m

m

) 1
α

, j = 1, . . . , k. (12)

Additionally, if Assumption (A5) holds, then as m→∞,

E
P

(n)
θ0

[
W 2

2

{
Πn(· | Y (n)), δθ0(·)

}]
≤ C1

(
log2m

m

) 1
α

. (13)

Theorem 4 proves posterior convergence in expectation, which is stronger than the
commonly studied posterior convergence in probability. We present our results using the
W2 distance in order to account for the fact that the k subset posteriors sit on a common
parameter space. Alternatively, from (11), the convergence rates in (12) and (13) are
also the rates of posterior risks for the subset posterior distributions and the WASP. For
regular models with α = 1, if the number of subsets k increases slowly with n (e.g., k =
O(logc n) for some constant c > 0), then Theorem 4 implies that the WASP converges in
W2 distance at a near optimal convergence rate Op(n

−1/2 logc/2+1 n) to δθ0 . In this case, the
standard parametric convergence rate of Πn is Op(n

−1/2), so the WASP attains the optimal

convergence rate up to the logc/2+1 n factor. Equivalently, using (11), the posterior risk of
the WASP converges to zero at the near optimal rate Op(n

−1 logc+2 n), compared to the
Op(n

−1) posterior risk of the true posterior Πn.

In most applications, the interest also lies in functions of θ. Suppose f : Θ 7→ Rq is
a function that maps θ to {f1(θ), . . . , fq(θ)}, where q ≥ 1 is a positive integer. A direct
application of Lemma 8.5 in Bickel and Freedman (1981) gives the following corollary about
the WASP of a function of θ. As long as the function is bounded almost linearly by the ρ
metric in (1), its WASP possesses the same posterior convergence rate as in Theorem 4.

Corollary 5 Suppose f(·) = {f1(·), . . . , fq(·)} is a function that maps Θ 7→ Rq such that
|f(θ)|2 =

∑q
i=1{fi(θ)}2 ≤ Cf{1 + ρ2(θ, θ0)}, where Cf > 0 is a fixed constant. If the

conditions in Theorem 4 hold and f]Πn(· | Y (n)) represents the WASP of the subset posterior
distributions for f(θ), then as m→∞,

W2

{
f]Πn(· | Y (n)), δf(θ0)(·)

}
= O

P
(n)
θ0

√ log2/αm

m1/α

 .

Corollary 5 is very useful in applications because it says that the combination step in
the WASP is independent of the model parametrization. Let f]Πm(· | Y[j]) be the jth
subset posterior distribution for f(θ) (j = 1, . . . , k), then the WASP of k subset posterior
distributions converges to f(θ0) at the rate obtained in Theorem 4. In practice, we have
Sj posterior samples of θ obtained from subset posterior j denoted as θji (i = 1, . . . , sj ;
j = 1, . . . , k). Algorithm 1 estimates an atomic approximation of f]Πn(· | Y (n)), denoted

as ˆf]Πn(· | Y (n)), based on the subset posterior samples f(θji) (i = 1, . . . , sj ; j = 1, . . . , k).
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Figure 2: Kernel density estimates of the posterior densities of θ in the rare events example
where assumption (A1) fails to hold for θ0 = 10−5, 10−6.

The atomic form of the WASP is supported on a grid with mesh-size ε estimated from the
subset posterior samples of f(θ). Algorithm 1 estimates the weights of the atoms located
on the grid by solving a discrete version of (6). The theoretical properties of discrete

barycenters imply that ˆf]Πn(· | Y (n)) is supported only on O(k) elements of the grid; see
Theorem 2 in Anderes et al. (2016). We exploit this sparsity by adapting the algorithm in
Srivastava et al. (2015) and by using Gurobi (Gurobi Optimization Inc., 2014).

A key assumption in Theorem 4 and Corollary 5 is that the subset posterior distribu-
tions provide a noisy approximation of the full data posterior distribution. This is stated
precisely in (12), which shows that the convergence rate of a subset posterior distribution
in W2 distance is obtained by using m as the sample size instead of n. If any of the assump-
tions (A1)–(A4) fail, then the subset posterior distributions may approximate the full data
posterior distribution poorly, which could possibly lead to poor approximation quality for
the WASP.

A simple example based on rare events demonstrates this phenomenon. Let Y1, . . . , Yn be
iid Bernoulli random variables with unknown success probability θ ∈ (0, 1). The assumption
(A1) is violated if the true parameter θ0 is very close to 0; that is, observing 1 is a rare
event. In our simulation example, we set n = 107 and θ0 = 10−a for a = 3, 4, 5, 6 so that
as a increases, s =

∑n
i=1 Yi decreases and θ0 gets closer and closer to the boundary of the

parameter space. The standard Bayesian approach is to put Jefferys’ prior Beta(0.5, 0.5)
on θ and perform inference on θ using Beta(s + 0.5, n − s + 0.5), which leads to a full
data posterior that concentrates around the correct value of θ0 even if θ0 is small (Figure
2). However, if the data are randomly divided into k = 100 subsets, then a majority of
the subsets contain only 0s as θ0 decreases. As a result, a majority of the subset posterior
distributions differ significantly in shape from the full data posterior distribution, leading
to a failure of the WASP in approximating the full data posterior distribution because the
assumption (A1) is severely violated for θ0 = 10−5, 10−6 (Figure 2).

4. Experiments

4.1 Setup

We compared WASP with consensus Monte Carlo (CMC) (Scott et al., 2016), semipara-
metric density product (SDP) (Neiswanger et al., 2014), and variational Bayes (VB). The
sample sizes and the number of parameters in our experiments were chosen such that sam-
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pling from the full data posterior distribution was computationally feasible. Every sampling
algorithm ran for 10,000 iterations. We discarded the first 5,000 samples as burn-in and
thinned the chain by collecting every fifth sample. Convergence of the chains to their sta-
tionary distributions was confirmed using trace plots. All experiments ran on an Oracle
Grid Engine cluster with 2.6GHz 16 core compute nodes. Full data posterior computa-
tions were allotted memory resources of 64GB, and all other methods were allotted memory
resources of 16GB.

The sampling algorithm for the full data posterior was modified to obtain samples
from the subset posteriors in CMC, SDP, and WASP. The sampling algorithms for subset
posteriors in CMC and SDP were the same and were based on Equation (2) in Scott et al.
(2016). The sampling algorithm for subset posteriors in WASP was based on (5). Samples
from the approximate posterior distributions of θ in CMC, SDP, and WASP were obtained
in two steps. First, samples from subset posteriors of θ were obtained in parallel across k
subsets. Second, the samples of θ from all the subsets were combined using implementations
of CMC and SDP in parallelMCMC package (Miroshnikov and Conlon, 2014) and using
Algorithm 1 for the WASP.

The full data posterior distribution obtained using MCMC served as the benchmark in
all our comparisons. Let π(θ | Y (n)) be the density of the full data posterior distribution for
θ estimated using sampling and π̂(θ | Y (n)) be the density of an approximate posterior dis-
tribution for θ estimated using the WASP or its competitors. We used the following metric
based on the total variation distance to compare the accuracy π̂(θ | Y (n)) in approximating
π(θ | Y (n))

accuracy
{
π̂(θ | Y (n))

}
= 1− 1

2

∫
Θ

∣∣∣π̂(θ | Y (n))− π(θ | Y (n))
∣∣∣d θ. (14)

The accuracy metric lies in [0, 1] (Faes et al., 2012). The approximation of full data posterior
density by π̂ is poor or excellent if the accuracy metric is close to 0 or 1, respectively. In
our experiments, we computed the kernel density estimates of π̂ and π from the posterior
samples of θ using R package KernSmooth (Wand, 2015) and calculated the integral in (14)
using numerical approximation.

4.2 Simulated Data: Finite Mixture of Gaussians

Finite mixture of Gaussians are widely used for model-based classification, clustering, and
density estimation (Fraley and Raftery, 2002). Let n, p, and L be the sample size, the
dimension of observations, and the number of mixture components. If yi ∈ Rp is the
ith observation (i = 1, . . . , n), then the mixture of L Gaussians assumes that any y ∈
{y1, . . . ,yn} is generated from the density

fmix(y | θ) =
L∑
l=1

πlN p(y | µl,Σl), (15)

where π = (π1, . . . , πL) lies in a (L − 1)-simplex, µl and Σl (l = 1, . . . , L) are
the mean and covariance parameters of a p-variate Gaussian distribution, and θ =
{π,µ1, . . . ,µL,Σ1, . . . ,ΣL}. We set L = 2 and p = 2 and simulated data from (15) us-
ing π = (0.3, 0.7), µ1 = (1, 2)T , µ2 = (7, 8)T , and Σl = Σ (l = 1, 2), where Σ12 = 0.5,
Σ11 = 1, and Σ22 = 2. We performed 10 simulation replications.
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Table 1: Accuracies of the approximate posteriors for ρ1, ρ2, and g0.05(x) and g0.95(x) for
x ∈ R. The accuracies are averaged over 10 simulation replications. Monte Carlo errors are
in parenthesis. CMC, consensus Monte Carlo; SDP, semiparametric density product; VB,
variational Bayes; WASP, Wasserstein posterior

ρ1 ρ2 g0.05 g0.95
VB 0.77 (0.31) 0.76 (0.29) 0.99 (0.00) 0.99 (0.00)

k = 5 k = 10 k = 5 k = 10 k = 5 k = 10 k = 5 k = 10
CMC 0.97 (0.01) 0.96 (0.01) 0.96 (0.01) 0.96 (0.01) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00)
SDP 0.97 (0.01) 0.96 (0.01) 0.95 (0.01) 0.96 (0.01) - - - -

WASP 0.97 (0.01) 0.95 (0.01) 0.97 (0.01) 0.96 (0.01) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00)

This simple example demonstrated the generality of WASP in estimating the posterior
distribution of functions of θ as described in Corollary 5. We defined two nonlinear functions
of θ as

ρl = (Σl)12/ {(Σl)11(Σl)22}1/2 l = 1, 2, g(x) = fmix{(x, x)T } x ∈ R, (16)

where ρl is the correlation of lth mixture component and g(x) is the value of density fmix in
(15) when y = (x, x)T . Our simulation setup implied that ρ1 = ρ2 and g(x) was bimodal for
x ∈ R. We completed the hierarchical model in (15) by specifying independent conjugate
priors on π and (µl,Σl) (l = 1, 2) as

π ∼ Dirichlet(1/2, 1/2), µl | Σl ∼ N 2(0, 100Σl), Σl ∼ Inverse-Wishart(2, 4I2), (17)

where 2 is the prior degrees of freedom and 4Ip is the scale matrix of the Inverse-Wishart
distribution. The posterior samples of θ were obtained using Gibbs sampling (Bishop, 2006),
which were used to obtain posterior samples for ρ1, ρ2, and g.

We compared WASP with the posterior distributions estimated using CMC, Gibbs sam-
pling, SDP, and VB. We used the VB algorithm developed in Bishop (2006). Two values
of k ∈ {5, 10} were used for CMC, SDP, and WASP and full data were partitioned into k
subsets such that the mixture proportions were preserved in every subset. The approximate
posterior distributions of ρ1, ρ2, and g(x), x ∈ R, under each method were estimated using
the subset posterior samples obtained after modifying the original Gibbs sampler. The
sampling algorithm for WASP is described in the Supplementary Material.

We compared the accuracy (14) of CMC, SDP, VB, and WASP in approximating the
full data posterior distributions of ρ1, ρ2, and point-wise 90% credible bands of g(x) for
x ∈ R, denoted as g0.05(x) and g0.95(x). CMC, SDP, and WASP accurately approximated
the full data posterior distributions of ρ1 and ρ2 for both ks, but VB underestimated the
posterior uncertainty in ρ1 and ρ2. CMC, VB, and WASP were very accurate in estimating
g0.05(x) and g0.95(x) for x ∈ R, whereas the application of SDP failed due to a numerical
error in matrix inversion (Table 1). This provides an empirical verification of Corollary 5,
showing that the accuracy of the WASP was unaffected by the form of the parameters in
the combination step. Theoretical guarantees similar to Corollary 5 were unavailable for
CMC or SDP, but our numerical results illustrated that a similar result might also hold for
these methods in mixture models.
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4.3 Simulated Data: Linear Mixed Effects Model

Linear mixed effects models are extensively used in extending linear regression to account
for longitudinal and nested dependence structures. Let n, s, and si be the sample size,
total number of observations, and total number of observations for sample i (i = 1, . . . , n)
so that s =

∑n
i=1 si. Suppose Xi ∈ Rsi×p and Zi ∈ Rsi×r include predictors in the fixed

and random effects components, respectively. Letting yi ∈ Rsi be the response for sample
i, the linear mixed effects model assumes that

yi | β,ui, τ2 ∼ N si(Xi β+Zi ui, τ
2Ini), ui ∼ N r(0,Σ), (i = 1, . . . , n), (18)

where ui ∈ Rr is the random effect for sample i with mean 0 and r × r covariance Σ,
β ∈ Rp denotes the fixed effects, and τ2 is the error variance. The model parameters are
θ = {β,Σ, τ2}.

We simulated data for a fixed n and s and varying p and r. We chose two values
of (p, r) ∈ {(4, 3), (80, 6)}, fixed n and s to be 6000 and 100,000, and randomly assigned
the s observations to n samples. The two choices of (p, r) ensured that the number of
unknown parameters in β and Σ was 10 and 100 in the former and latter cases. The
entries of Xi and Zi were set to 1 or −1 with equal probability for every i. We fixed
β entries as −2 and 2 alternately and τ2 = 1. The random effects covariance matrix
Σ = diag(

√
1, . . . ,

√
r)R diag(

√
1, . . . ,

√
r), where diag(a) is a diagonal matrix with a along

the diagonal and R is a correlation matrix with 1 along the diagonal. We set R = R1 if r = 3
and R = bdiag(R1, R1) if r = 6, where bdiag(A,B) is a block-diagonal matrix with A,B
along the diagonal, (R1)ii = 1 (i = 1, 2, 3), R12 = −0.40, R13 = 0.30, and R23 = 0.001. The
matrix R1 included negative, positive, and small to moderate strength correlations (Kim
et al., 2013). We used this setup to simulate data from (18) and performed 10 replications.

We used the HMC algorithm in Stan for sampling from the full data and subset posterior
distributions. The full data posterior computations were feasible for the chosen values of
n and s and posterior samples were obtained after completing the hierarchical model in
(18) by using the default weakly informative priors for β, Σ, and τ2 in Stan. Two values
of k ∈ {10, 20} were used for CMC, SDP, and WASP, and the n samples were randomly
partitioned into k subsets. The sampling algorithms for subset posterior distributions for
the three methods were implemented in Stan and posterior samples of θ were obtained
in parallel across k subsets. This was followed by a combination step to estimate the
approximate posterior distributions for the three methods. The sampling algorithm for
WASP is described in the Supplementary Material. Stochastic gradient Langevin dynamics
(SGLD; Welling and Teh 2011) has proven to be a successful stochastic version of MCMC in
mixture and regression models but has not been extensively tested on linear mixed effects
models in which multiple observations are available on a subject. We compared Stan’s HMC
and SGLD with batch sizes 2000, 4000, step sizes 10−4, 10−5 and 104 iterations.

We compared the accuracy (14) of CMC, SDP, SGLD, VB, and WASP in approximating
the marginal posterior distributions of fixed effects, variances and covariances of random
effects, and the joint posterior distributions of three pairs of covariances of random effects.
We used the streamlined algorithm (SA; Lee and Wand 2016) and automatic differentiation
variational inference in Stan (ADVI; Kucukelbir et al. 2015) for estimating the VB posteriors
for β and Σ . All methods except SGLD were significantly faster than the full data posterior
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Table 2: Accuracies of the approximate posteriors for variances in (18). The accuracies
are averaged over 10 simulation replications and across all diagonal elements of Σ. Monte
Carlo errors are in parenthesis. ADVI, automatic differentiation variational inference; SA,
streamlined algorithm; SGLD, stochastic gradient Langevin dynamics with batch size in
parenthesis; CMC, consensus Monte Carlo; SDP, semiparametric density product; WASP,
Wasserstein posterior

r = 3 r = 6
ADVI 0.48 (0.31) 0.09 (0.23)

SA 0.26 (0.19) 0.34 (0.22)
SGLD (2000) 0.68 (0.08) 0.73 (0.08)
SGLD (4000) 0.69 (0.09) 0.72 (0.08)

k = 10 k = 20 k = 10 k = 20
CMC 0.93 (0.03) 0.91 (0.05) 0.89 (0.05) 0.80 (0.08)
SDP 0.92 (0.06) 0.86 (0.07) 0.84 (0.10) 0.77 (0.14)

WASP 0.97 (0.01) 0.97 (0.01) 0.97 (0.01) 0.97 (0.01)

distribution, with SA being the fastest. CMC, SA, SDP, and WASP provided accurate
approximations of the marginal posterior distributions of fixed effects and covariances of
random effects. Unlike Stan’s HMC, SGLD’s performance was sensitive to the choices of
step size and batch size. SGLD failed to converge for all batch sizes when the step size
was 10−4, and its accuracy increased with batch size. The performance of ADVI and
SGLD deteriorated quickly as r increased from 3 to 6. The accuracy of CMC and SDP in
approximating the marginal posterior distributions of variances of random effects depended
on k and r. ADVI and SA provided a poor approximation for the posterior variances of
random effects. In all these cases, the accuracy of WASP was stable for every k and r
(Tables 2 and 3). All methods except SGLD showed similar accuracies in approximating
the true joint posterior distributions of three pairs of covariances of random effects. The
differences in accuracies of CMC, SA, SDP, and WASP for different values of k and r were
due to the differences in numerical approximation of (14) (Tables 4 and 5 and Figures 3
and 4); see Table 1 in the Supplementary Material.

The accuracy of CMC, SDP, and WASP decreased when k increased from 10 to 20
because subset posterior distributions conditioned on a smaller fraction of the data. This
provided an empirical verification of Theorem 4 for the WASP. Our numerical results illus-
trated that a similar result might also hold for CMC and SDP. The stable performance of
WASP compared to that of CMC and SDP in the approximation of the posterior distribu-
tions of variances of random effects showed that the validity of the normal approximation
for subset posterior distributions was crucial in obtaining accurate approximations of full
data posterior using CMC and SDP. On the other hand, WASP results were free of any
such assumptions and were valid for any nonlinear function of µ and Σ; see Corollary 5.

4.4 Simulated Data: Probablistic Parafac Model

We use probabilistic parafac model as a representative example for nonparametric den-
sity estimation using WASP. Probabilistic parafac is an approach for nonparametric Bayes
modeling of joint dependence in multivariate categorical data (Dunson and Xing, 2009).
Let xi = (xi1, . . . , xij , . . . , xip) be the data from sample i, where xij has dj possible cat-
egorical values in {1, . . . , dj} (j = 1, . . . , p). The hierarchical model for xij (i = 1, . . . , n;
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Table 3: Accuracies of the approximate posteriors for covariances in (18). The accuracies
are averaged over 10 simulation replications and across all off-diagonal elements of Σ. Monte
Carlo errors are in parenthesis. ADVI, automatic differentiation variational inference; SA,
streamlined algorithm; SGLD, stochastic gradient Langevin dynamics with batch size in
parenthesis; CMC, consensus Monte Carlo; SDP, semiparametric density product; WASP,
Wasserstein posterior

r = 3 r = 6
ADVI 0.69 (0.23) 0.49 (0.29)

SA 0.94 (0.02) 0.94 (0.02)
SGLD (2000) 0.07 (0.11) 0.13 (0.09)
SGLD (4000) 0.07 (0.11) 0.12 (0.09)

k = 10 k = 20 k = 10 k = 20
CMC 0.94 (0.03) 0.91 (0.05) 0.94 (0.03) 0.92 (0.05)
SDP 0.92 (0.04) 0.89 (0.06) 0.89 (0.07) 0.87 (0.10)

WASP 0.97 (0.01) 0.97 (0.01) 0.97 (0.01) 0.96 (0.01)

Table 4: Accuracies of the approximate two-dimensional joint posteriors for the covariances
of random effects when r = 3 in (18). The accuracies are averaged over 10 simulation
replications. Monte Carlo errors are in parenthesis. ADVI, automatic differentiation varia-
tional inference; SA, streamlined algorithm; SGLD, stochastic gradient Langevin dynamics
with batch size in parenthesis; CMC, consensus Monte Carlo; SDP, semiparametric density
product; WASP, Wasserstein posterior

(σ12, σ13) (σ12, σ23) (σ13, σ32)
ADVI 0.53 (0.28) 0.62 (0.14) 0.49 (0.25)

SA 0.91 (0.01) 0.91 (0.01) 0.92 (0.01)
SGLD (2000) 0.03 (0.01) 0.01 (0.00) 0.02 (0.01)
SGLD (4000) 0.03 (0.01) 0.01 (0.00) 0.02 (0.01)

k = 10 k = 20 k = 10 k = 20 k = 10 k = 20
CMC 0.88 (0.05) 0.79 (0.06) 0.88 (0.04) 0.82 (0.07) 0.91 (0.02) 0.85 (0.04)
SDP 0.90 (0.03) 0.89 (0.03) 0.90 (0.03) 0.87 (0.05) 0.92 (0.02) 0.89 (0.04)

WASP 0.93 (0.01) 0.94 (0.01) 0.93 (0.01) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01)

j = 1, . . . , p) is

xij |
(
ψ

(j)
h1

)∞
h=1

, . . . ,
(
ψ

(j)
hdj

)∞
h=1

, zi ∼ Multinomial({1, . . . , dj}, ψ(j)
zi1
, . . . , ψ

(j)
zidj

),

zi ∼
∞∑
h=1

Vh
∏
l<h

(1− Vl)δh ≡
∞∑
h=1

νhδh, Vh ∼ Beta(1, α),

ψ
(j)
h ∼ Dirichlet(aj1, . . . , ajdj ), α ∼ Gamma(aα, bα), (19)

where α has prior mean aα/bα. The hierarchical model for probabilistic parafac implies
that

pr(xi1 = c1, . . . , xij = cj , . . . , xip = cp) = πc1,...,cp =
∞∑
h=1

νh

p∏
j=1

ψ
(j)
hcj
. (20)

The xijs are sampled independently given the latent class zi and probability vectors ψ
(j)
h

(h = 1, . . . ,∞). The latent class for every sample is generated using the stick breaking
representation of Dirichlet processes. The Gibbs sampling algorithm developed in Dunson
and Xing (2009) is very slow even for moderate sample sizes. This example demonstrates
that WASP can easily scale existing sampling algorithms to massive data, even when efficient
VB alternatives are unavailable.
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Table 5: Accuracies of the approximate two-dimensional joint posteriors for the covariances
of random effects when r = 6 in (18). The accuracies are averaged over 10 simulation
replications. Monte Carlo errors are in parenthesis. ADVI, automatic differentiation varia-
tional inference; SA, streamlined algorithm; SGLD, stochastic gradient Langevin dynamics
with batch size in parenthesis; CMC, consensus Monte Carlo; SDP, semiparametric density
product; WASP, Wasserstein posterior

(σ12, σ13) (σ12, σ23) (σ13, σ32)
ADVI 0.06 (0.16) 0.08 (0.22) 0.08 (0.17)

SA 0.89 (0.02) 0.90 (0.02) 0.91 (0.02)
SGLD (2000) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01)
SGLD (4000) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01)

k = 10 k = 20 k = 10 k = 20 k = 10 k = 20
CMC 0.88 (0.05) 0.76 (0.10) 0.88 (0.04) 0.78 (0.07) 0.90 (0.04) 0.83 (0.07)
SDP 0.90 (0.03) 0.86 (0.05) 0.90 (0.04) 0.86 (0.04) 0.90 (0.03) 0.87 (0.04)

WASP 0.93 (0.02) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01) 0.94 (0.02)
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Figure 3: Kernel density estimates of the posterior densities of three covariance pairs when
r = 3 in (18), where σab, σcd on every panel represents the two-dimensional posterior den-
sity of (σab, σcd). ADVI, automatic differentiation variational inference; SGLD, stochastic
gradient Langevin dynamics with batch size in parenthesis; CMC, consensus Monte Carlo;
MCMC, Markov chain Monte Carlo; SA, streamlined algorithm; SDP, semiparametric den-
sity product; WASP, Wasserstein posterior.

We followed the simulation setup in Dunson and Xing (2009), except with a much larger
sample size. We fixed the sample size, number of dimensions, and number of categories in
each dimension at n = 105, p = 20, and dj = 2 (j = 1, . . . , p), respectively. These choices
of n, p, and djs ensured that computations for sampling from the full data posterior were
tractable. Data were simulated as a mixture of two populations such that any sample be-
longed to the two populations with equal probability. The two categories in every dimension
excluding 2, 4, 12, and 14 were simulated from a discrete uniform in both populations. The
dependence across dimensions 2, 4, 12, and 14 was induced as follows. The probabilities
π2, π4, π12, and π14 were set to (0.20, 0.80), (0.25, 0.75), (0.80, 0.20), and (0.75, 0.25) in the
first population and to (0.80, 0.20), (0.75, 0.25), (0.20, 0.80), and (0.25, 0.75) in the second
population. The simulation setup was replicated 10 times.
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Figure 4: Kernel density estimates of the posterior densities of three covariance pairs when
r = 6 in (18), where σab, σcd on every panel represents the two-dimensional posterior den-
sity of (σab, σcd). ADVI, automatic differentiation variational inference; SGLD, stochastic
gradient Langevin dynamics with batch size in parenthesis; CMC, consensus Monte Carlo;
MCMC, Markov chain Monte Carlo; SA, streamlined algorithm; SDP, semiparametric den-
sity product; WASP, Wasserstein posterior.
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Figure 5: Kernel density estimates of the marginal posterior densities for dimensions 2, 4,
12, and 14. MCMC, Gibbs sampling algorithm of Dunson and Xing (2009); CMC, con-
sensus Monte Carlo; SDP, semiparametric density product; VB, variational Bayes; WASP,
Wasserstein posterior

We used CMC, SDP, and WASP to approximate the full data posterior distributions
for pr(xi = 1), where i ∈ {2, 4, 12, 14}. Two values of k ∈ {5, 10} were used for CMC, SDP,
and WASP. The full data were randomly partitioned into k subsets and subset posterior
samples for WASP were obtained after modifying the Gibbs sampling algorithm in Dunson
and Xing (2009) using (5). Examples for the application of CMC and SDP were unavailable
for Dirchlet process mixtures, and it was unclear how to raise the prior density to the power
1/k when the prior distribution has an atomic form similar to that in (19); therefore, we did
not raise the prior to a power of 1/k for sampling from the subset posterior distributions
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Table 6: Accuracies of the approximate marginal posterior distributions for dimensions 2,
4, 12, and 14 in (19). The accuracies are averaged over 10 simulation replications. Monte
Carlo errors are in parenthesis. CMC, consensus Monte Carlo; SDP, semiparametric density
product; WASP, Wasserstein posterior

k = 5 k = 10
CMC SDP WASP CMC SDP WASP

pr(x2 = 1) 0.63 (0.02) 0.62 (0.02) 0.97 (0.01) 0.96 (0.02) 0.95 (0.01) 0.97 (0.01)
pr(x4 = 1) 0.63 (0.02) 0.62 (0.02) 0.97 (0.01) 0.96 (0.01) 0.95 (0.02) 0.97 (0.01)

pr(x12 = 1) 0.62 (0.02) 0.62 (0.02) 0.97 (0.01) 0.95 (0.01) 0.96 (0.02) 0.97 (0.01)
pr(x14 = 1) 0.64 (0.01) 0.63 (0.01) 0.97 (0.01) 0.96 (0.02) 0.95 (0.02) 0.97 (0.01)

in CMC and SDP. The sampling algorithm for WASP based on stochastic approximation
is summarized in the Supplementary Material. Subset posterior samples for pr(x2 = 1),
pr(x4 = 1), pr(x12 = 1), and pr(x14 = 1) were combined to obtain their approximate
posterior distributions using CMC, SDP, and WASP.

The accuracy (14) of CMC and SDP in approximating the full data marginal posterior
distribution depended on k, with WASP outperforming CMC and SDP when k = 5 (Table
6). The approximate and full data posterior distributions were centered at the same value
across all dimensions and replications, but the posterior densities for CMC and SDP were
highly concentrated compared to the full data posterior density when k = 5 (Figure 5). The
accuracy of WASP remained stable with varying k, providing an empirical verification of
Theorem 4 in cases where our theory is not applicable. The time spent in combining subset
posterior samples was negligible compared to the time spent in sampling; therefore, WASP
could be used for data with much larger sample size by choosing k large enough such that
sampling was efficient across all the data subsets.

4.5 Real Data: MovieLens Ratings Data

We used MovieLens data to illustrate the application of WASP to large-scale ratings data.
MovieLens data are one of the largest publicly available ratings data with about 10 mil-
lion ratings from about 72 thousand users of the MovieLens recommender system. Each
observation in the database consists of a user, movie, rating of the movie from 0.5 to 5 in
increments of 0.5, and the time of rating. Every movie is also classified into at least one
of the 19 genres. We fit a linear mixed effects model (18) using movie- and user-specific
information as predictors and the ratings as responses.

We generated three new predictors for accurate modeling of ratings following Perry
(2017). First, movie genres were grouped into movie categories to reduce the number of
genres from 19 to four: Action category included Action, Adventure, Fantasy, Horror,
Sci-Fi, and Thriller genres; Children category included Animation and Children genres;
Comedy category included Comedy genre; and Drama category included Crime, Documen-
tary, Drama, Film-Noir, Musical, Mystery, Romance, War, and Western genres. If a movie
belonged to multiple genres, then movie category scores were fractions proportional to the
number of genres in the respective categories. Second, popularity predictor was defined as
logit{(l+0.5)/(n+1.0)}, where l and n respectively were the number of users who liked and
rated the movie in 30 most recent observations for the movie and logit(x) = log x

1−x . Third,
previous predictor was defined to be 1 if the user liked the previous movie and 0 otherwise.
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Table 7: Accuracies of the approximate posteriors for variances in (18). The accuracies
are averaged over 10 replications. Monte Carlo errors are in parenthesis. ADVI, automatic
differentiation variational inference; SA, streamlined algorithm; SGLD, stochastic gradient
Langevin dynamics with batch size in parenthesis; CMC, consensus Monte Carlo; SDP,
semiparametric density product; WASP, Wasserstein posterior

σ2
Action σ2

Children − Action σ2
Comedy − Action σ2

Drama − Action σ2
Popularity σ2

Previous

ADVI 0.06 (0.14) 0.33 (0.30) 0.16 (0.23) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
SA 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

SGLD (2000) 0.10 (0.06) 0.06 (0.03) 0.05 (0.05) 0.08 (0.04) 0.10 (0.00) 0.10 (0.07)
SGLD (4000) 0.07 (0.06) 0.06 (0.03) 0.02 (0.06) 0.08 (0.04) 0.10 (0.00) 0.08 (0.07)

CMC 0.28 (0.13) 0.01 (0.01) 0.01 (0.01) 0.14 (0.09) 0.74 (0.10) 0.22 (0.10)
SDP 0.05 (0.03) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.35 (0.10) 0.03 (0.03)

WASP 0.92 (0.04) 0.93 (0.02) 0.87 (0.06) 0.85 (0.08) 0.92 (0.03) 0.93 (0.05)

We used Action, Children − Action, Comedy − Action, Drama − Action, popularity, and
previous as the fixed and random effects in (18).

Following the setup in Section 4.3, we compared the performance of WASP with ADVI,
CMC, SA, SGLD with batch sizes 2000, 4000, step size 10−5 and 104 iterations, and SDP
using the full data posterior distribution as the benchmark. Sampling using the HMC
algorithm in Stan was prohibitively slow for the full data posterior distribution, so we first
randomly selected 5000 users and then randomly selected 20 ratings for every user. This
resulted in a data set with 100,000 ratings. We randomly split the users into 10 training
data sets such that ratings for any user belonged to the same training data set. To compute
the approximate posteriors using CMC, SDP, and WASP, we set k = 10 and randomly
partitioned the users into k subsets such that each subset contained all the ratings for a
user. This setup was replicated for every training data.

WASP performed better than its competitors in approximating the full data posterior
distributions for variances and covariances of the random effects. Similar to the simulation
results in Section 4.3, ADVI, CMC, SA, SDP, and WASP were significantly faster than
the full data posterior distribution, with SA being the fastest, and SGLD was the slowest.
CMC, SDP, and WASP showed excellent performed in approximating the full data posterior
distributions for the fixed effects. WASP outperformed its competitors in approximating the
full data posterior distributions for variances, covariances, and pairs of covariances of the
random effects (Tables 7, 8, and 9). ADVI, SA, and SGLD significantly under-performed
in the estimation of the posterior distribution for the fixed effects and covariance matrix
of the random effects. The accuracy of marginals in CMC and SDP depended on the
magnitude of covariances, with both methods showing excellent accuracy for covariances
with low magnitude. The accuracies of the two-dimensional joint distributions in CMC
and SDP were poor because the full data posteriors concentrated at different locations
(Figure 6). Except for the poor performance of CMC, SA, and SDP in approximating
the posterior distribution of variances and covariances of the random effects, our real data
results agreed with our simulation results. We concluded that WASP performed better than
its competitors in MovieLens data analysis.
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Table 8: Accuracies of the approximate posteriors for covariances in (18). The accuracies
are averaged over 10 replications. Monte Carlo errors are in parenthesis. The subscripts
1, . . . , 6 are used for predictors Action, Children − Action, Comedy − Action, Drama −
Action, popularity, and previous. ADVI, automatic differentiation variational inference;
SA, streamlined algorithm; SGLD, stochastic gradient Langevin dynamics with batch size
in parenthesis; CMC, consensus Monte Carlo; SDP, semiparametric density product; WASP,
Wasserstein posterior

σ12 σ13 σ14 σ15 σ16 σ23 σ24 σ25
ADVI 0.15 (0.30) 0.25 (0.26) 0.14 (0.16) 0.32 (0.12) 0.06 (0.09) 0.00 (0.00) 0.18 (0.20) 0.66 (0.15)

SA 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
SGLD (2000) 0.08 (0.03) 0.19 (0.10) 0.18 (0.08) 0.18 (0.11) 0.23 (0.09) 0.14 (0.00) 0.14 (0.01) 0.14 (0.10)
SGLD (4000) 0.08 (0.02) 0.16 (0.10) 0.14 (0.08) 0.12 (0.08) 0.20 (0.08) 0.14 (0.00) 0.13 (0.01) 0.11 (0.10)

CMC 0.06 (0.03) 0.16 (0.04) 0.18 (0.04) 0.83 (0.07) 0.33 (0.13) 0.01 (0.01) 0.07 (0.02) 0.80 (0.04)
SDP 0.01 (0.01) 0.08 (0.03) 0.07 (0.02) 0.75 (0.06) 0.14 (0.09) 0.00 (0.00) 0.02 (0.01) 0.73 (0.08)

WASP 0.95 (0.02) 0.91 (0.04) 0.91 (0.05) 0.94 (0.03) 0.90 (0.07) 0.89 (0.07) 0.85 (0.08) 0.93 (0.03)
σ26 σ34 σ35 σ36 σ45 σ46 σ56

ADVI 0.47 (0.22) 0.50 (0.22) 0.64 (0.11) 0.62 (0.23) 0.64 (0.18) 0.49 (0.29) 0.42 (0.11)
SA 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

SGLD (2000) 0.11 (0.10) 0.14 (0.10) 0.16 (0.07) 0.10 (0.11) 0.14 (0.12) 0.12 (0.10) 0.15 (0.09)
SGLD (4000) 0.07 (0.10) 0.11 (0.09) 0.14 (0.07) 0.03 (0.11) 0.10 (0.11) 0.08 (0.10) 0.14 (0.08)

CMC 0.66 (0.09) 0.65 (0.07) 0.76 (0.08) 0.71 (0.05) 0.82 (0.04) 0.61 (0.11) 0.55 (0.09)
SDP 0.59 (0.11) 0.62 (0.06) 0.64 (0.09) 0.66 (0.08) 0.66 (0.09) 0.56 (0.14) 0.55 (0.13)

WASP 0.91 (0.05) 0.94 (0.05) 0.93 (0.03) 0.91 (0.04) 0.93 (0.04) 0.93 (0.04) 0.94 (0.04)

Table 9: Accuracies of the approximate two-dimensional joint posteriors for the covariances
of random effects. The accuracies are averaged over 10 replications. Monte Carlo errors
are in parenthesis. The subscripts 1, . . . , 6 are used for predictors Action, Children −
Action, Comedy − Action, Drama − Action, popularity, and previous. ADVI, automatic
differentiation variational inference; SA, streamlined algorithm; SGLD, stochastic gradient
Langevin dynamics with batch size in parenthesis; CMC, consensus Monte Carlo; SDP,
semiparametric density product; WASP, Wasserstein posterior

(σ12, σ13) (σ12, σ14) (σ12, σ15) (σ12, σ16)
ADVI 0.03 (0.06) 0.03 (0.07) 0.02 (0.06) 0.05 (0.11)

SA 0.18 (0.04) 0.22 (0.07) 0.31 (0.03) 0.31 (0.02)
SGLD (2000) 0.01 (0.02) 0.01 (0.02) 0.01 (0.01) 0.01 (0.01)
SGLD (4000) 0.01 (0.02) 0.01 (0.02) 0.01 (0.01) 0.01 (0.01)

CMC 0.05 (0.02) 0.04 (0.02) 0.06 (0.03) 0.05 (0.02)
SDP 0.05 (0.02) 0.04 (0.02) 0.06 (0.03) 0.05 (0.02)

WASP 0.88 (0.03) 0.88 (0.03) 0.88 (0.02) 0.86 (0.06)
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Figure 6: Kernel density estimates of the posterior densities of four covariance pairs, where
σab, σcd on every panel represents the two-dimensional posterior density of (σab, σcd). ADVI,
automatic differentiation variational inference; SGLD, stochastic gradient Langevin dynam-
ics with batch size in parenthesis; CMC, consensus Monte Carlo; MCMC, Markov chain
Monte Carlo; SA, streamlined algorithm; SDP, semiparametric density product; WASP,
Wasserstein posterior.
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5. Discussion

We have presented WASP as an approach for computationally efficient approximation of
the posterior distributions of parameters and their functions when the sample size is large.
WASP allows extensions of existing samplers to massive data with minimal modifications
and is easily implemented using probabilistic programming languages, such as Stan. The-
oretically, we have showed that the rate of convergence of WASP to the Dirac measure
centered at the true parameter value in W2 distance matches the optimal parametric rate
up to a logarithmic factor if the number of subsets increases slowly with the size of the full
data set. Empirically, we demonstrated that results from WASP and MCMC agree closely in
several widely different examples, while WASP enables massive speed-ups in computational
time.

We plan to explore several extensions of WASP in the future. First, the combination
of subset posterior distributions using WASP and the proof of the convergence rate for the
WASP in Theorem 4 are valid even if the data in different subsets are dependent; however,
independence assumption within each subset is required in the proof of (12) in Theorem
4 and in our justification of stochastic approximation. Currently, it is unclear how to
extend stochastic approximation to cases where the likelihood is unavailable in a product
form. This extension in crucial for proper uncertainty quantification outside of settings
in which the observations are conditionally independent given latent variables. Second, it
is unclear how to optimally choose k in practice; larger k improves computational time
when abundant processors are available but choosing k too large may lead to increasing
statistical errors (refer to Theorem 4). Our numerical experiments show that the accuracy
of WASP is robust to the choice of k if all the subset sizes are moderately large relative to
the number of parameters. In addition, it is of interest to study more deeply the impact
of the partitioning schemes and attempt to develop approaches that deal with not only
large sample sizes but also high-dimensional data. A possibility in this regard is to combine
WASP with approximate MCMC (Johndrow et al., 2015).
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Appendix A. Proofs of Theorems

A.1 Proof of Theorem 1

If E
P

(n)
θ0

represents the expectation with respect to P
(n)
θ0

, then

E
P

(n)
θ0

[
W 2

2 {Np(µ, V ), Np(µ, V )}
]

= E
P

(n)
θ0

‖µ− µ‖22 + tr
{
V + V − 2(V

1/2
V V

1/2
)1/2

}
.

(21)

First, we find the asymptotic order of E
P

(n)
θ0

‖µ1 − µ2‖22 in (21). Define

A = (XTΣ−1X)−1XTΣ−1, B = k−1
[
(XT

1 Σ−1
1 X1)−1XT

1 Σ−1
1 , · · · , (XT

k Σ−1
k Xk)

−1XT
k Σ−1

k

]
,

and C = A−B. After some algebra, we have that AX = Ip, BX = Ip, where Ip is a p× p
identity matrix, and

‖µ− µ‖22 = ‖Cy‖22, E
P

(n)
θ0

‖µ− µ‖22 = E
P

(n)
θ0

(yT )CTCE
P

(n)
θ0

(y) + tr(CΣCT ).

Since E
P

(n)
θ0

(y) = Xθ0 and CX = AX − BX = Ip − Ip = 0, E
P

(n)
θ0

‖µ − µ‖22 = tr(CΣCT ).

Expanding CΣCT , we get

C = (XTΣ−1X)−1XTΣ−1 − k−1
[
(XT

1 Σ−1
1 X1)−1XT

1 Σ−1
1 , · · · , (XT

k Σ−1
k Xk)

−1XT
k Σ−1

k

]
,

CT = Σ−1X(XTΣ−1X)−1 − k−1

Σ−1
1 X1(XT

1 Σ−1
1 X1)−1

...

Σ−1
k Xk(X

T
k Σ−1

k Xk)
−1

 ,
tr(CΣCT ) = tr{(XTΣX)−1}+ k−2

k∑
j=1

tr
{

(XT
j ΣjXj)

−1
}
− 2 tr(D),

where

D = k−1
[
(XT

1 Σ1X1)−1XT
1 , · · · , (XT

k ΣkXk)
−1XT

k

]
Σ−1X(XTΣ−1X)−1

=

k−1
k∑
j=1

(XT
j Σ−1

j Xj)
−1XT

j Σ−1
j Xj

 (XTΣ−1X)−1 = (XTΣ−1X)−1

because Σ is diagonal. We use the above display to obtain that

E
P

(n)
θ0

‖µ− µ‖22 = tr(CΣCT ) =
1

k2

k∑
j=1

tr
{

(XT
j Σ−1

j Xj)
−1
}
− tr

{
(XTΣ−1X)−1

}
,

=
1

km
tr
{

1
k

k∑
j=1

(
1
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T
j Σ−1

j Xj

)−1 }
− 1

n
tr
{(

1
nX

TΣ−1X
)−1
}
.
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Our assumptions and continuity of the matrix inverse for positive definite matrices imply
that there are exist positive a′n = o(1), b′m = o(1), such that

Ω−1
0 − a

′
nIp ≺

(
1
nX

TΣ−1X
)−1 ≺ Ω−1

0 + a′nIp,

Ω−1
0 − b

′
mIp ≺

(
1
mX

T
j Σ−1

j Xj

)−1
≺ Ω−1

0 + b′mIp.

This implies that the previous display reduces to

E
P

(n)
θ0

‖µ− µ‖22 ≤ p(b′m + a′n)/n = o(n−1), (22)

where the equality follow because p is fixed.

We now find the asymptotic order of the traces of the covariance matrices in (21).
Following the same arguments used to derive (22), the full data and jth subset posterior
covariance matrices satisfy

1

n

(
Ω−1

0 − a
′
nIp
)
≺ V =

1

n

(
1

n
XTΣ−1X

)−1

≺ 1

n

(
Ω−1

0 + a′nIp
)
,

1

n

(
Ω−1

0 − b
′
mIp

)
≺ Vj =

1

km

(
1

m
XT
j Σ−1

j Xj

)−1

≺ 1

n

(
Ω−1

0 + b′mIp
)
. (23)

Let Mj =

{
V

1/2 1
km

(
1
mX

T
j Σ−1

j Xj

)−1
V

1/2
}1/2

. Then (23) implies that

− b′mV ≺ nM2
j − V

1/2
Ω−1

0 V
1/2
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1/2 (
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0

)
V

1/2 ≺ b′mV . (24)

From the first inequality in (24), we have(
V

1/2
Ω−1

0 V
1/2
)1/2

≺
(
nM2

j + b′mV
)1/2 ≺ n1/2Mj + b

′1/2
m V

1/2
.

And similarly the second inequality in (24) implies that

n1/2Mj ≺
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Using this relation and the definition of V , we have that

(
V

1/2
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0 V
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In (25), we take the square of n1/2V , apply the inequality (A1 +A2)2 ≺ 2(A2
1 +A2

2) for two
generic positive definite matrices A1, A2, and obtain that

nV
2 ≺ 2V

1/2
Ω−1

0 V
1/2

+ 2b′mV ,

nV
2 � 1

2
V

1/2
Ω−1

0 V
1/2 − b′mV .

Multiplying by V
−1/2

on the left and right hand sides yields,

nV ≺ 2Ω−1
0 + 2b′mIp,

nV � 1

2
Ω−1

0 − b
′
mIp. (26)

Notice that b′m = o(1), Ω0 is a constant positive definite matrix, and V is a positive definite
matrix. Clearly, (26) forces nV to be an order-1 matrix. Now we take the square of n1/2V
in (25) again and obtain that

nV
2 ≺ V 1/2
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1/2
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0 V
1/2
)1/2
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1/2 − b′1/2m V

1/2
(
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.

Multiplying by V
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on the left and right hand sides yields,
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′1/2
m

(
V

1/2
Ω−1

0 V
1/2
)1/2

V
−1/2

,

nV � Ω−1
0 + b′mIp − b

′1/2
m V

−1/2
(
V

1/2
Ω−1

0 V
1/2
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Since nV is an order-1 matrix, we have that b′mV
−1/2

(
V

1/2
Ω−1

0 V
1/2
)1/2

= o(1),

b′m

(
V

1/2
Ω−1

0 V
1/2
)1/2

V
−1/2

= o(1). Hence (23) and (27) reduce to

1

n
{Ω−1

0 − o(1)Ip} ≺ Vj ≺
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n
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0 + o(1)Ip},
1

n
(Ω−1

0 − o(1)Ip) ≺ V ≺
1

n
{Ω−1

0 + o(1)Ip}.

This implies that

tr(V − V ) = o(n−1), (28)

where the last equality follows because p is fixed.
Finally, we find the asymptotic order of the variance term in (21). The display before

(28) implies that for some positive cn = o(1),
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� 1

n2
[Ω−2

0 − cnIp].

Therefore, tr{(V 1/2
V V

1/2
)1/2} = n−1 tr(Ω−1

0 ) + o(n−1) since p is fixed. Using this and (23)
for the variance term in (21) gives

tr

{
V + V − 2

(
V

1/2
V V

1/2
)1/2

}
= {n−1 tr(Ω−1

0 ) + o(n−1)}+ {n−1 tr(Ω−1
0 ) + o(n−1)} − {2n−1 tr(Ω−1

0 ) + 2o(n−1)}
= o

(
n−1

)
. (29)

Combining the asymptotic expressions for the mean and variance terms in (22) and (29),
(21) reduces to

E
P

(n)
θ0

[
W 2

2

{
N(µ, V ), N(µ, V )

}]
= o

(
n−1

)
,

which completes the proof. 2

A.2 Proof of Theorem 4

Let εm =
(

m
log2m

)−1/(2α)
. For ease of notation, in all the following proofs, we will sometimes

write p(yji | θ) ≡ pji(yji | θ).
Due to the compactness of Θ in (A1), we assume that ρ(θ, θ0) ≤ M0 for a large finite

constant M0. We start with a decomposition of the W2 distance from the jth subset
posterior Πm(· | Y[j]) to the Dirac measure at the true parameter θ0:

EPθ0W
2
2

(
Πm(· | Y[j]), δθ0(·)

)
= EPθ0

∫
Θ
ρ2(θ, θ0)Πm(dθ | Y[j])

≤EPθ0

∫
{θ:ρ(θ,θ0)≤c1εm}

ρ2(θ, θ0)Πm(dθ | Y[j]) + EPθ0

∫
{θ:ρ(θ,θ0)>c1εm}

ρ2(θ, θ0)Πm(dθ | Y[j])

≤(c1εm)2 +M2
0EPθ0Πm

(
ρ(θ, θ0) > c1εm | Y[j]

)
. (30)

We will choose the constant c1 as c1 =
(

2r1g2
q1CL

)1/(2α)
, where g1, CL, q1, r1 are the constants

in (A1), (A2), and Lemma 5 and Lemma 6 in the Supplementary Material.
The following proofs are similar to the proofs of Theorem 1, 4, and 10 in Ghosal and

van der Vaart (2007). The main difference is that our likelihood has been raised to the
power γ. Using condition (A2), we can further replace the ρ metric by the pseudo Hellinger
distance:

Πm

(
θ ∈ Θ : ρ(θ, θ0) > c1εm | Y[j]

)
≤ Πm

(
θ ∈ Θ : hmj(Pθ,j , Pθ0,j) >

√
CL(c1εm)α | Y[j]

)
=

∫{
θ∈Θ:hmj(θ,θ0)>

√
2r1g2
q1

εαm

}
∏m
i=1

[
p(Yji|θ)
p(Yji|θ0)

]γ
Π(dθ)∫

Θ

∏m
i=1

[
p(Yji|θ)
p(Yji|θ0)

]γ
Π(dθ)

. (31)
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For the denominator in (31), by Condition (A4) and Lemma 6, for m sufficiently large, with
probability at least 1− exp(−r2mε

2α
m )∫

Θ

m∏
i=1

p(Yji|θ)γ

p(Yji|θ0)γ
Π(dθ) > exp(−r1nε

2α
m ). (32)

For the numerator in (31), by Condition (A3) and Lemma 5, we set δ =
√

2r1g2/q1ε
α
m

and obtain that with probability at least 1−4 exp
(
−2r1g2q2

q1
mε2αm

)
≥ 1−4 exp

(
−2r1q2

q1
nε2αm

)
,

sup{
θ∈Θ:hmj(θ,θ0)≥

√
2r1g2/q1εαm

} m∏
i=1

[
p(Yji|θ)
p(Yji|θ0)

]γ
≤ exp

(
−2r1g2mε

2α
m

)
≤ exp

(
−2r1nε

2α
m

)
(33)

Therefore, based on (31), (32), and (33), we obtain that with probability at least 1 −
4 exp

(
−2r1q2

q1
nε2αm

)
− exp(−r2mε

2α
m ),

Πm

(
θ ∈ Θ : ρ(θ, θ0) > c1εm

∣∣∣ Y[j]

)
≤ exp

(
−2r1nε

2α
m + r1nε

2α
m

)
≤ exp

(
−r1nε

2α
m

)
.

Let Aεm be the event
{
θ ∈ Θ : Π

(
θ ∈ Θ : ρ(θ, θ0) > c1εm

∣∣∣ Y[j]

)
≤ exp

(
−r1nε

2α
m

) }
. Then

we can bound the second term in (30) as

EPθ0Πm

(
ρ(θ, θ0) > c1εm

∣∣∣ Y[j]

)
≤ EPθ0

[
I(Aεm)Πm

(
ρ(θ, θ0) > c1εm

∣∣∣ Y[j]

)]
+ EPθ0

[
I(Acεm)Πm

(
ρ(θ, θ0) > c1εm

∣∣∣ Y[j]

)]
≤ exp

(
−r1nε

2α
m

)
+ P

(n)
θ0

(Acεm) · 1

≤ exp
(
−r1nε

2α
m

)
+ 4 exp

(
−2r1q2

q1
nε2αm

)
+ exp(−r2mε

2α
m )

≤ 6 exp
(
−c2mε

2α
m

)
,

for c2 = min(r1, r2, 2r1q2/q1), as clearly the second term is dominating the other two given
m . n.

Therefore, for (30), since εm = (m/ log2m)−1/(2α), as m→∞, an explicit bound will be

EPθ0W
2
2

(
Πm(· | Y[j]), δθ0(·)

)
≤ c2

1

log2/αm

m1/α
+ 6M2

0 exp
(
−c2 log2m

)
≤ c2

1

log2/αm

m1/α
+

1

m1+ 1
α

≤ C1
log2/αm

m1/α

as m becomes sufficiently large, where the constant C1 depends on α, c1, c2, which further
depends on g1, g2, q1, q2, r1, r2, CL. Since q1, q2 in Lemma 5 and r1, r2 in Lemma 6 depend
on g1, g2, D1, D2, κ, cπ, it follows that C1 depends on g1, g2, CL, D1, D2, κ, cπ. 2

Based on Lemma 7 in the Supplementary Material, if the assumption (A5) holds, then
we have

E
P

(n)
θ0

[
W 2

2

{
Πn(· | Y (n)), δθ0(·)

}]
≤ E

P
(n)
θ0

1

k

k∑
j=1

W2

{
Πm(· | Y[j]), δθ0(·)

}2
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≤ 1

k

k∑
j=1

E
P

(n)
θ0

W 2
2

{
Πm(· | Y[j]), δθ0(·)

}
≤ C1

log2/αm

m1/α
,

where the first inequality follows from Lemma 7 in the Supplementary Material, the second
inequality follows from the Cauchy-Schwarz inequality, and the third inequality follows from
the subset bound (12). 2

Appendix B. Univariate Density Estimation

Let X1, . . . , Xn be n copies of a scalar random variable X that follows probability distribu-
tion P0 with density p0. The full data are randomly split into k subsets and Xj1, . . . , Xjm

represent the data on subset j (j = 1, . . . , k). The hierarchical model for density estimation
using the stick-breaking representation of Dirichlet process mixtures is

Xji | zji, {µh}∞h=1, {σ2
h}∞h=1 ∼ N (µzji , σ

2
zji), zji ∼

∞∑
h=1

νhδh, νh = Vh
∏
l<h

(1− Vl), Vh | α ∼ Beta(1, α),

α ∼ Gamma(aα, bα), µh | σ2
h ∼ N (0, σ2

h), σ2
h ∼ Inverse-Gamma(aσ, bσ), (34)

where aσ > 2 and Beta, Gamma, and Inverse-Gamma random variables have means 1
1+α , aαbα ,

and bσ
aσ−1 and variances α

(1+α)2(2+α)
, aα
b2α

, and b2σ
(aσ−1)2(aσ−2)

. If l∗ is the maximum number

of atoms in the stick-breaking representation, then the prior density π is in the form a
discrete mixture. We cannot use existing sampling algorithms directly if π is raised to a
power of 1/k, so it is unclear how to sample from the subset posterior density of competing
approaches in Section 2.2.

We show that it is still possible to sample from the subset posterior density in (5)
using data augmentation. Let Lj be the likelihood given Xj1, . . . , Xjm and latent variables
zj1, . . . , zjm in (34), then

Lj({µh}l
∗
h=1, {σ2

h}l
∗
h=1, {νh}l

∗
h=1) =

l∗∏
h=1

(2πσ2
h)−

]hj
2 e
− 1

2σ2
h

∑m
i=1 1(zji=h)(xji−µh)2

ν
]hj
h , (35)

where 1(zji = h) is 1 if zji = h and 0 otherwise and ]hj =
∑m

i=1 1(zji = h). For stochastic
approximation, we raise Lj in (35) to the power γ and obtain

Lγj ({µh}l
∗
h=1, {σ2

h}l
∗
h=1, {νh}l

∗
h=1) =

l∗∏
h=1

(2πσ2
h)−

γ]hj
2 e
− γ

2σ2
h

∑m
i=1 1(zji=h)(xji−µh)2

ν
γ]hj
h . (36)

Standard arguments imply that the analytic form of full conditional densities of parameters
are

µh | rest ∝ e
−
γ]hj+1

2σ2
h

(
µ2h−2µhγ

∑m
i=1 1(zji=h)xji

γ]hj+1

)
,

σ2
h | rest ∝ σ2−

γ]hj
2

h e
− γ

2σ2
h

∑m
i=1 1(zji=h)(xji−µh)2

σ2−
1
2

h e
− µ2h

2σ2
h σ2−aσ−1

h e
− bσ
σ2
h ,

Vh | rest ∝ V γ
∑m
i=1 1(zi=h)

h (1− Vh)γ
∑m
i=1 1(zji>h)(1− Vh)α−1,
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α | rest ∝ αaα−1e−bαααl
∗
l∗∏
h=1

(1− Vd)α−1 (37)

for h = 1, . . . , l∗. Let

mjh =
γ
∑m

i=1 1(zji = h)xji
γ]hj + 1

, vjh =
σ2
h

γ]hj + 1
, (38)

ajh =
γ]hj + 1

2
+ aσ, bjh =

γ

2

m∑
i=1

1(zji = h) (xji − µh)2 +
µ2
h

2
+ bσ (39)

for h = 1, . . . , l∗, then all full conditional densities are tractable in terms of standard
distributions:

µjh | rest ∼ N(mjh, vjh), σ2
jh | rest ∼ Inverse-Gamma(ajh, bjh),

Vjh | rest ∼ Beta(1 + γ

m∑
i=1

1(zji = h), α+ γ

m∑
i=1

1(zji > h)),

αjh | rest ∼ Gamma(aα + l∗, bα −
l∗∑
h=1

log(1− Vjh)). (40)

Finally, posterior distribution of the latent variables is

zji | rest ∼
l∗∑
h=1

pjhδh, pjh =
νjhN (µjh, σ

2
jh)∑l∗

h̃=1
νjh̃N (µjh̃, σ

2
jh̃

)
, (i = 1, . . . ,m), (41)

where νjh = Vjh
∏
l<h(1 − Vjl) and N (m, v) is the Gaussian density with mean m and

variance v.

Appendix C. Linear Program

minimize
a,T1,...,Tk

k∑
j=1

trace(T Tj Dj)

subject to

0 ≤ ai ≤ 1, i = 1, . . . , g,

0 ≤ (Tj)uv ≤ 1, u = 1, . . . , g, v = 1, . . . , sj , j = 1, . . . , k,

1T a = 1,

Tj 1sj = a, j = 1, . . . , k,

T Tj 1s =
1sj
sj
, j = 1, . . . , k. (42)

This linear program can be solved using a variety of linear programming solvers in Matlab

or R, including the algorithms of Cuturi and Doucet (2014) and Srivastava et al. (2015).
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