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Abstract

We present upper and lower bounds for the prediction error of the Lasso. For the case
of random Gaussian design, we show that under mild conditions the prediction error of
the Lasso is up to smaller order terms dominated by the prediction error of its noiseless
counterpart. We then provide exact expressions for the prediction error of the latter, in
terms of compatibility constants. Here, we assume the active components of the underlying
regression function satisfy some “betamin” condition. For the case of fixed design, we
provide upper and lower bounds, again in terms of compatibility constants. As an example,
we give an up to a logarithmic term tight bound for the least squares estimator with total
variation penalty.
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1. Introduction

Let X ∈ Rn×p be an input matrix and β0 ∈ Rp a vector of unknown coefficients. Consider
an n-vector of noisy observations

Y = Xβ0 + ε

where the noise ε ∈ Rn is a vector of i.i.d. standard Gaussians independent of X. The Lasso
estimator β̂ is

β̂ ∈ arg min
b∈Rp

{
‖Y −Xb‖22 + 2λ‖b‖1

}
(1)

with λ > 0 a regularization parameter (Tibshirani (1996)). Its prediction error is ‖X(β̂ −
β0)‖22. Main aim of this paper is to provide lower bounds for this prediction error, bounds
which show that compatibility constants necessarily enter into the picture.

The results of this paper can be summarized as follows. Firstly, suppose the design is
random and that Σ0 := IEXTX/n exists. Let β∗ be the noiseless Lasso for random design

β∗ ∈ arg min
b∈Rp

{
n‖Σ1/2

0 (b− β0)‖22 + 2λ‖b‖1
}
. (2)

For the case where the rows of X are i.i.d N (0,Σ0), we compare ‖X(β̂ − β0)‖2 with
√
n‖Σ1/2

0 (β∗ − β0)‖2 in Theorem 11. We assume here some mild condition on the growth
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of the compatibility constants as n increases. The theorem has as an important corollary

that ‖X(β̂− β0)‖2 is up to lower order terms equal to
√
n‖Σ1/2

0 (β∗− β0)‖2 whenever (after
normalizing the co-variance matrix Σ0 to having bounded entries) the largest eigenvalue
Λ2

max of Σ0 is of small order log n, see Corollary 12. Secondly, we provide in Theorem 14
exact expressions for the prediction error of the noiseless Lasso in terms of compatibility
constants. We require here “betamin” conditions, which roughly say that the non-zero coef-
ficients of β0 should have the appropriate signs and remain above the noise level in absolute
value. Thirdly, for the case of fixed design, we present upper and lower bounds for the
prediction error ‖X(β̂ − β0)‖22 in terms of weighted compatibility constants. Theorem 17
states the lower bounds, assuming again certain betamin conditions. The upper bounds we
present are similar to those obtained the literature and presented for completeness. They
are stated as a consequence of Theorem 18 in Corollary 19. Another application of The-
orem 18 is given in Corollary 20. It presents an upper bound for ‖X(β̂ − β∗)‖2 where β∗

is now the counterpart of (2) for the fixed design case. As an illustration we consider least
squares estimation with a (one-dimensional) total variation penalty. For this case we arrive
in Corollary 22 at lower and upper bounds that are the same up to a logarithmic term.

There are general upper bounds in the literature, in particular sharp oracle bounds as
in Koltchinskii et al. (2011) (see also Giraud, 2014, Theorem 4.1 or van de Geer, 2016,
Theorem 2.2). The oracle bounds involve a compatibility constant, and an improved version
of this constant has been developed in Sun and Zhang (2012), Belloni and Wang (2014) and
Dalalyan et al. (2017).

Main theme of this paper is to gain further insight into the role of the compatibility constant
when applying the Lasso and to see how it occurs in lower bounds. In Zhang et al. (2014)
it is shown that for a given sparsity level, there is a design and a lower bound for the
mean prediction error in the noisy case, that holds for any polynomial time algorithm. This
lower bound is close to the known upper bounds and in particular shows that compatibility
conditions or restricted eigenvalue conditions cannot be avoided. This has also been shown
by Bellec (2017), where a choice of the particular vector of regression coefficients β0 leads to
a lower bound matching the upper bound. We further elaborate on this issue, and provide
lower bounds that hold for a large class of vectors β0.

To get an idea of the flavour of the type of bounds we are after, we present in Theorem 1
the case of random design. Details of its proof can be found in Subsection 11.9. We provide
more explicit statements in Theorem 11.

Throughout the paper, the active set of β0 is denoted by S0 := {j : β0
j 6= 0}. Its size is

denoted by s0 := |S0|. Our betamin condition is as follows (its meaning should become
more clear after looking at Section 3 where compatibility constants are defined).

Betamin condition Let

b∗ ∈ arg min

{
‖Σ1/2

0 b‖2 :
∑
j∈S0

|bj | −
∑
j /∈S0

|bj | = 1

}
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and for j ∈ S0 let z∗j be the sign of b∗j . We say that β0 satisfies the betamin condition for
the noiseless case with random design if

z∗jβ
0
j >

z∗j b
∗
j

‖Σ1/2
0 b∗‖22

λ

n
, ∀j ∈ S0. (3)

We will make asymptotic statements with the sample size n tending to infinity and apply
(stochastic) order symbols. All quantities in the paper are allowed to depend on n unless
otherwise stated.

Theorem 1 Let the rows of X be i.i.d. N (0,Σ0), let ‖Σ0‖∞ be the maximal entry in the
co-variance matrix Σ0 and Λ2

max be its largest eigenvalue. For S ⊂ {1, . . . , p}, let κ2(S) be
the compatibility constant defined in Definition 2. Suppose that

Λ2
max/‖Σ0‖∞ = o(log(2p)),

and

max

{(
‖Σ0‖∞
κ2(S)

)
log(2p)|S|

n
: S ⊂ {1, . . . , p}, |S| ≤

(
Λ2

max

κ2(S0)

)
4s0

}
= o(1).

For some t > 0, take the tuning parameter λ to satisfy

3‖Σ0‖1/2∞
(√

2n(log(2p) + t) + 2(log(2p) + t)

)
≤ λ = O

(√
‖Σ0‖1/2∞ log(2p)

)
.

Then, under condition (3) (the betamin condition for the noiseless case with random design),
we have

‖X(β̂ − β0)‖22 =
λ2/n

‖Σ1/2
0 b∗‖22

(1 + oIP(1)) +OIP(1)

(where in fact s0‖Σ1/2
0 b∗‖22 = κ2(S0)).

2. Organization of the Paper

In Section 3 the definition of compatibility constants is given and also some of their proper-
ties are discussed. Section 4 shows that for the case of random design the squared “bias” of
the Lasso dominates its “variance”. Section 5 then gives expressions for this “bias”, i.e. for
the noiseless Lasso. Here, we examine fixed design but the results carry over immediately
to random design. In Section 6 the result of Section 5 is illustrated with the total variation
penalty (in one dimension). Section 7 presents lower bounds for the noisy case with fixed
design, and Section 8 presents some upper bounds. Corollary 19 is essentially as in the
papers Sun and Zhang (2012), Belloni and Wang (2014) and Dalalyan et al. (2017), albeit
that do not consider the approximately sparse case to avoid digressions. Section 9 has upper
and lower bounds for the least squares estimator with total variation penalty in the noisy
case. Section 10 concludes. Section 11 contains the proofs.
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3. Compatibility Constants

We introduce some notation in order to be able to define the compatibility constants. This
notation will also be helpful at other places. For S ⊂ {1, . . . , p} and a vector b ∈ Rp let
bS ∈ Rp be the vector with entries bj,S := bj l{j ∈ S}, j = 1, . . . , p. We apply the same
notation for the |S|-dimensional vector {bj}j∈S . We moreover write b−S := bSc where Sc is
the the complement of the set S.

3.1. Theoretical Compatibility Constants

The population version of the compatibility constant will be used for the case of random
design X. We call the population version the theoretical compatibility constant.

Definition 2 Let Σ0 := IEXTX/n (assumed to exist). Let S ⊂ {1, . . . , p} be a set of indices
and u ≥ 0 be a constant. The theoretical compatibility constant is

κ2(u, S) := min

{
|S|‖Σ1/2

0 b‖22 : ‖bS‖1 − u‖b−S‖1 = 1

}
.

For u = 1 we write κ(1, S) =: κ(S).

3.2. Empirical Compatibility Constants

For a vector w we let W := diag(w) be the diagonal matrix with w on the diagonal.

Definition 3 (Belloni and Wang, 2014, Dalalyan et al., 2017) Let S ⊂ {1, . . . , p} be a set
of indices and w ∈ Rp−|S| be a vector of non-negative weights. The (empirical) compatibility
constant is is

κ̂2(w, S) := min

{
|S|‖Xb‖22/n : ‖bS‖1 − ‖Wb−S‖1 = 1

}
.

For the case where w = 1 where 1 denotes a vector with all entries equal to one, put
κ̂2(S) := κ̂2(1, S).

3.3. Some Properties of Compatibility Constants

One readily sees that the theoretical and empirical compatibility constants differ only in
terms of the matrix used in the quadratic form (which is Σ0 in the theoretical case and
the Gram matrix Σ̂ := XTX/n in the empirical case). Thus, when discussing their basic
properties it suffices to deal with only one of the two. In this section, we therefore restrict
attention to the empirical version κ̂(w, S). Note that we have generalized the empirical
version as compared to the theoretical one, by considering general weight vectors, not just
constant vectors. With some abuse of notation, we write κ̂(u, S) = κ̂(u1, S) when the
weights are the constant vector u1 (it should be clear from the context what is meant).
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The empirical compatibility constant as given in Definition 3 is from Belloni and Wang
(2014) or Dalalyan et al. (2017). Another version, from for instance van de Geer (2007) or
van de Geer (2016) and its references, is presented in the next definition.

Definition 4 Let S ⊂ {1, . . . , p} be a set of indices and u > 0 be a constant. The (older)
compatibility constant is

φ̂2(u, S) := min

{
|S|‖Xb‖22/n : ‖bS‖1 = 1, ‖b−S‖1 ≤ 1/u

}
.

Let φ̂2(S) := φ̂2(1, S) be the compatibility constant for the case u = 1.

The constant φ̂(u, S) compares, for b’s satisfying a “cone condition” ‖b−S‖1 ≤ ‖bS‖1/u, the
`2-norm ‖Xb‖2 with the `1-norm ‖bS‖1. The constant κ̂(u, S) is similar, but takes in the
comparison more advantage of a “cone condition” ‖bS‖1 − u‖b−S‖1 > 0. When κ̂2(S) > 0
the null space property holds (Donoho and Tanner, 2005). We will need throughout that
the compatibility constant is strictly positive at S0 (if it is zero our results cease to be of
any interest). This means that we implicitly require throughout

Invertibility condition

The matrix XT
S0
XS0 is invertible. (4)

Here, for any S ⊂ {1, . . . , p} the matrix XS = {Xj}j∈S is the n × |S| matrix consisting of
the columns of X corresponding to the set S.

The newer version κ̂(u, S) is an improvement over φ̂(u, S) in the sense that κ̂(u, S) is the
larger of the two.

Lemma 5 For all u > 0 it is true that

κ̂2(u, S) ≥ φ̂2(u, S).

Let now for some v > 0

b∗ ∈ arg min

{
‖Xb‖22/n : ‖bS‖1 − v‖b−S‖1 = 1

}
.

Then by definition
κ̂2(v, S) = |S|‖Xb∗‖22/n.

The restriction ‖bS‖1−v‖b−S‖1 = 1 does not put any bound on the `1-norm of b∗S . However,
if there is a little room to spare, its `1-norm is bounded. This will be useful to understand
the betamin conditions (conditions (3) and (8)). For simplicity we examine only the value
v = 1.

Lemma 6 Let

b∗ ∈ arg min

{
‖Xb‖22/n : ‖bS‖1 − ‖b−S‖1 = 1

}
.

Then for 0 ≤ u < 1

‖b∗S‖1 ≤
κ̂(S)− uκ̂(u, S)

(1− u)κ̂(u, S)
.
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3.4. Comparing Empirical and Theoretical and Compatibility

Having random quadratic forms in mind, the fact that ‖bS‖1 − ‖b−S‖1 = 1 gives no bound
on the `1-norm can be a problem. Again, if there is a little room to spare in the value of
u in the compatibility constant, one does get a bound on the `1-norm. We show this in
Lemma 7, and with this tool in hand we lower bound the empirical compatibility constant
in terms of the theoretical one in Lemma 8.

Lemma 7 Let v > u > 0. Then

κ̂2(v, S) ≥ min

{
|S|‖Xb‖22/n : ‖bS‖1 − u‖b−S‖1 = 1, ‖b‖1 ≤ 1 + (1 + u)/(v − u)

}
.

The following lemma will be applied when bounding the prediction error of β̂ in terms of
that of the noiseless Lasso β∗. The lemma may also be of interest in itself with applications
elsewhere.

Lemma 8 Suppose the rows of X are i.i.d. N (0,Σ0). Let ‖Σ0‖∞ be the largest entry in
the matrix Σ0. For v > u, (1 + u)/(v − u) = O(1) and(

‖Σ0‖∞
κ2(u, S)

)
s log(2p)

n
= o(1),

it is true with probability tending to one that

κ̂2(v, S) ≥ (1− η)2κ2(u, S).

where η = o(1).

4. Comparison With the Noiseless Lasso When the Design is Random

In this section we assume that the rows of X are i.i.d. copies of a Gaussian row vector with
mean zero and co-variance matrix Σ0. We denote the largest eigenvalue of Σ0 by Λ2

max and
let ‖Σ0‖∞ be its largest entry. We define a noiseless version β∗ of the Lasso where also the
random design is replaced by its population counterpart:

β∗ ∈ arg min
b∈Rp

{
n‖Σ1/2

0 (b− β0)‖22 + 2λ‖b‖1
}
.

The normalization with n is to put things on the scale of the empirical version, as IEXTX =
nΣ0. One may think of ‖X(β∗ − β0)‖2 as “bias” and ‖X(β̂ − β∗)‖22 as “variance”. We first
investigate in some detail the “variance” part in Theorems 9 and 10. Then we apply the
triangle inequality as a way to establish that the squared “bias” dominates the “variance”,
see Theorem 11.

Theorem 9 Suppose that

ρ2 := max

{(
‖Σ0‖∞
κ2(S)

)
log(2p)|S|

n
: S ⊂ {1, . . . , p}, |S| ≤

(
Λ2

max

κ2(S0)

)
4s0

}
= o(1).
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Take for some t > 0

λ ≥ 3‖Σ0‖1/2∞
(√

2n(log(2p) + t) + 2(log(2p) + t)

)
and define

γ := (2Λmax)
√
n/λ+ (2/‖Σ0‖1/2∞ )ρλ/

√
n log(2p).

Then we have for all x > 0 with probability at least 1− 4 exp[−t]− exp[−x]− o(1) that

‖X(β̂ − β∗)‖2 ≤ γ
√
n‖Σ1/2

0 (β∗ − β0)‖2 +
√

2x.

Using concentration of measure, one can remove the dependency of the confidence level on
the value of t. This value appears in the choice of the tuning parameter λ. We make some
rather arbitrary choices for the constants.

Theorem 10 With the conditions and notations of Theorem 9, and assuming in addition
that 4 exp[−t] < 1/8 (say), for n large enough and for all x > 0, with probability at least
1− 2 exp[−x],

‖X(β̂ − β∗)‖2 ≤ γ
√
n‖Σ1/2

0 (β∗ − β0)‖2 + 4
√

log 2 +
√

2x.

We can now make a type of bias-variance decomposition. The triangle inequality tells us
that ∣∣∣∣‖X(β̂ − β0)‖2 − ‖X(β∗ − β0)‖2

∣∣∣∣ ≤ ‖X(β̂ − β∗)‖2.

We then approximate the empirical “bias” ‖X(β∗ − β0)‖2 by the theoretical “bias”
√
n‖Σ1/2

0 (β∗−β0)‖2 (which is easy as β∗ and β0 are non-random vectors), and use Theorem

9 or 10 to bound the “variance” ‖X(β̂ − β∗)‖22.

Theorem 11 With the conditions and notations of Theorem 10, we have for n sufficiently
large, for all x > 0 with probability at least 1− 2 exp[−x]∣∣∣∣‖X(β̂ − β0)‖2 −

√
n‖Σ1/2

0 (β∗ − β0)‖2
∣∣∣∣

≤ (γ + o(1))
√
n‖Σ1/2

0 (β∗ − β0)‖2 + 4
√

log 2 +
√

2x.

Corollary 12 Recall that we defined γ as

γ := (2Λmax)
√
n/λ+ (2/‖Σ0‖1/2∞ )ρλ/

√
n log(2p).

Therefore, with the conditions and notations of Theorem 11, and assuming in addition
- Λ2

max/‖Σ0‖∞ = o(log(2p)),
and
- λ = o(

√
‖Σ0‖∞n log(2p))/ρ,

we get with probability at least 1− 2 exp[−x]∣∣∣∣‖X(β̂ − β0)‖2 −
√
n‖Σ1/2

0 (β∗ − β0)‖2
∣∣∣∣ = o(

√
n‖Σ1/2

0 (β∗ − β0)‖2) + 4
√

log 2 +
√

2x.

In words: the squared “bias” dominates the “variance”.
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Remark 13 With the help of Lemma 45, one may also prove bounds for
√
n‖Σ0(β̂−β0)‖2

to complete those for of ‖X(β̂−β0)‖2. We refrain from doing this here to avoid digressions.

5. The Noiseless Case with Fixed Design

In this section we study fixed design X and the noiseless Lasso

β∗ ∈ arg min
b∈Rp

{
‖X(b− β0)‖22 + 2λ∗‖b‖1

}
. (5)

In principle the noiseless Lasso considered here differs from (2), although one can say that
for fixed design Σ̂ = IEΣ̂ =: Σ0, with Σ̂ := XTX/n being the Gram matrix. In what follows
in this section, we do not use any specific properties of Σ̂ and the theory goes through
for any positive semi-definite matrix, Σ say. In the upcoming illustration on functions of
bounded variation, the fixed design setup is the natural one.

Note that we supplied the tuning parameter λ∗ with a supscript ∗. This is because in
Theorem 18 we consider a case with different tuning parameters for the noisy and the
noiseless case, say λ and λ∗.

The Karush-Kuhn-Tucker (KKT) conditions for the noiseless Lasso read

XTX(β∗ − β0) + λ∗ζ∗ = 0, ζ∗ ∈ ∂‖β∗‖1, (6)

where ∂‖b‖1 denotes the sub-differential of b 7→ ‖b‖1:

∂‖b‖1 =

{
z ∈ Rp : zT b = ‖b‖1, ‖z‖∞ ≤ 1

}
.

Recall that

κ̂2(S) = |S|‖Xb∗‖22/n

where

b∗ ∈ arg min
b∈Rp

{
‖Xb‖2 : ‖bS‖1 − ‖b−S‖1 = 1

}
. (7)

Note that b∗ given in (7) is not unique, for example we can flip the signs of b∗ (i.e., replace
b∗ by −b∗).

In Theorem 14 below we give a tight result for the noiseless case under the condition that the
active coefficients in β0 are sufficiently large in absolute value: Condition 8. Here sufficiently
large depends on the magnitude of the entries of a solution b∗ of (7) with S = S0. Therefore,
it is of interest to know how large b∗ is. Lemma 6 considers its `1-norm, and in view of this
lemma we conclude that if there is a little room to spare, the `1-norm of ‖b∗S‖1 is bounded,
or - in other words - {b∗j |S|}j∈S is bounded “on average”.

For the next condition it is useful to know that we show in Lemma 28 that for b∗ given in
(7), each coefficient b∗j with j ∈ S is nonzero (provided κ̂2(S) > 0).
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Betamin condition Suppose κ̂2(S0) > 0. Let b∗ satisfy (7) with S = S0. Denote, for
j ∈ S0, the sign of b∗j as z∗j . We say that β0 satisfies the betamin condition for the noiseless
case with fixed design if

z∗jβ
0
j >

z∗j b
∗
js0

κ̂2(S0)

λ∗

n
∀ j ∈ S0. (8)

Here is the main theorem for the noiseless case.

Theorem 14 Suppose κ̂2(S0) > 0. Let b∗ satisfy (7) with S = S0. If β0 satisfies condition
(8) (the betamin condition for the noiseless case with fixed design), then there exists a
solution β∗ of the KKT conditions (6) such that

‖X(β∗ − β0)‖22 =
s0

κ̂2(S0)

λ∗2

n
.

6. The Total Variation Penalty in the Noiseless Case

In this section Theorem 14 is illustrated with the total variation penalty. For a vector
f ∈ Rn, its total variation is defined as

TV(f) :=
n∑
i=2

|fi − fi−1|.

Fix a vector f0 ∈ Rn and let f∗ ∈ Rn is the least squares approximation of f0 with total
variation penalty:

f∗ ∈ arg min
f∈Rn

{
‖f − f0‖22 + 2λ∗TV(f)

}
. (9)

Theorem 15 presents an explicit expression for the compatibility constant κ̂2(S0) where S0

is the set consisting of the locations of the jumps of f0. Invoking Theorem 14 one then
arrives at an explicit expression for ‖f∗ − f0‖22 provided the jumps of f0 are sufficiently
large, see Corollary 16.

First, we need to rewrite problem (9) as a (noiseless) Lasso problem. Indeed, for j = 1 . . . , n,

fj =
n∑
i=1

(fi − fi−1)l{j ≥ i} =: (Xb)j ,

where Xj,i = l{j ≥ i} and bi = fi − fi−1, with f0 := 0. Hence we can say that f0 = Xβ0

and f∗ = Xβ∗ with

β∗ := arg min
b∈Rn

{
‖X(b− β0)‖22 + 2λ∗

n∑
i=2

|bi|
}
.

Note that the first coefficient b1 is not penalized. It is therefore typically active, and we
consider the active set as the location of the jumps augmented with the index {1}. We

9
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slightly adjust the definition of the compatibility constant to deal with the a coefficient
without penalty: we set for S ⊂ {2, . . . , n}

κ2(S) := min

{
|S ∪ {1}|‖Xb‖22 : ‖bS‖1 − ‖b−(S∪{1})‖1 = 1

}
. (10)

Let now S := {d1 + 1, d1 + d2 + 1, . . . , d1 + · · · + ds + 1} for some {dj}sj=1 ⊂ {2, . . . , n}
satisfying

∑s
j=1 dj + 2 < n. The set S represents locations of jumps, d1 is the location of

the first jump and {dj}sj=2 are the distances between jumps. Let ds+1 := n −
∑s

j=1 dj the
distance between the last jump and the end point. For simplicity we assume that dj is even
for all j ∈ {2, . . . , s}.

Theorem 15 The compatibility constant κ̂2(S) is, up the constant 4 and the scaling by
1/n, the harmonic mean of of the distances between jumps, including the distance between
starting point and first jump and last jump and endpoint:

κ̂2(S) =
s+ 1

n
d1

+
∑s

j=2
4n
dj

+ n
ds+1

.

In fact
κ̂2(S) = (s+ 1)‖Xb∗‖22/n

where b∗j = 0 for all j /∈ S and b∗ = b̃/‖b̃‖1 with

b̃d1+1 =
n

d1
+

2n

d2
,

b̃d2+1 = −
(

2n

d2
+

2n

d3

)
,

...

b̃ds = (−1)s+1

(
2n

ds
+

n

ds+1

)
.

Corollary 16 Suppose f0 jumps at S0 := S = {d1 + 1, d1 + d2 + 1, . . . , d1 + · · ·+ ds + 1},
with s = s0. Assume f0 alternates between jumps up and jumps down. Suppose moreover
that

|f0
d1+1 − f0

d1 | ≥
(
n

d1
+

2n

d2

)
λ∗

n
,

|f0
d2+1 − f0

d2 | ≥
(

2n

d2
+

2n

d3

)
λ∗

n
,

...

|f0
ds0+1 − f0

ds0
| ≥

(
2n

ds0
+

n

ds0+1

)
λ∗

n
.

Then by Theorem 14 combined with Theorem 15

‖f∗ − f0‖22 =

(
n

d1
+

s0∑
j=2

4n

dj
+

n

ds0+1

)
λ∗2

n
.
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At this point it may be helpful to look how this normalizes. Say we choose λ∗ =
√
n log n.

Suppose max1≤j≤s0+1 n/dj = O(s0 + 1). Then the jumps of f0 are required to be of order
at least (s0 + 1)

√
log n/n. We then obtain

‖f∗ − f0‖22 = O
(

(s0 + 1)2 log n

)
.

7. A Lower Bound in the Noisy Case with Fixed Design

We now turn to the Lasso β̂ in the noisy case, given by

β̂ ∈ arg min
b∈Rp

{
‖Y −Xb‖22 + 2λ‖b‖1

}
where

Y = Xβ0 + ε.

We investigate the case of fixed design X. Recall that we assume throughout i.i.d. standard
Gaussian noise.

7.1. Towards Betamin Conditions

Consider some vector v̄ ∈ Rp−s0 with 0 < v̄j < 1 for all j. This vector represents the “noise”
that is to be overruled by the penalty. Define the collection of weights

W(v̄) :=

{
w ∈ Rp−s0 : 1− v̄j ≤ wj ≤ 1 + v̄j ∀ j

}
.

Let for W̄ := diag(1 + v̄)

b∗(v̄) ∈ arg min

{
‖Xb‖22 : ‖bS0‖1 − ‖W̄ b−S0‖1 = 1

}
, z∗j (v̄) := sign(b∗j (v̄)), j ∈ S0.

Then by definition κ̂2(1 + v̄, S0) = s0‖Xb∗(v̄)‖22/n. We remark here that by a slight ad-
justment of Lemma 28, the assumption κ̂(1 + v̄, S0) > 0 ensures that b∗j (v̄) 6= 0 for all
j ∈ S0.

For w ∈ W(v̄) we define the convex problem with linear and convex constraints

b(w) ∈ arg min

{
‖Xb‖22 : z∗TS0

(v̄)bS0 − ‖Wb−S0‖1 ≥ 1

}
.

Finally, define

bj(v̄) := max
w∈W(v̄)

|bj(w)|/‖Xb(w)‖22, j ∈ S0.

11
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7.2. Projections

We denote the projection ofX−S0 on the space spanned by the columns ofXS0 byX−S0PXS0 .
The projection is always defined but as it is implicitly assumed that XT

S0
XS0 is invertible

(condition (4)), we can clarify what we mean by projection by writing

X−S0PXS0 := XS0(XT
S0
XS0)−1XT

S0
X−S0 .

The anti-projection is denoted by

X−S0AXS0 = X−S0 −X−S0PXS0 .

We define the matrix

V−S0,−S0 :=

(
X−S0AXS0

)T(
X−S0AXS0

)
= XT

−S0

(
I −XS0(XT

S0
XS0)−1XT

S0

)
X−S0 ,

and let {v2
j }j /∈S0

be the diagonal elements of this matrix.

7.3. A Lower Bound

The main result for the noisy case is presented in the next theorem. Here, we use the
notations and definitions of the previous two subsections.

Theorem 17 Take for some t > 0,

λ > ‖v−S0‖∞
√

2(log(2p) + t). (11)

Define
v̄j := vj

√
2(log(2p) + t)/λ, j /∈ S0

and
ūj := uj

√
2(log(2p) + t)/λ, j ∈ S0.

where {uj}j∈S0 are the diagonal elements of the matrix (XT
S0
XS0)−1. Assume that κ̂(1 +

v̄, S0) > 0 and that the following betamin condition holds:

|β0
j | > λ(bj(v̄) + ūj), sign(β0

j ) = z∗j (v̄) ∀j ∈ S0.

Then for all x > 0 with probability at least 1 − exp[−t] − exp[−x] there is a solution β̂ of
the KKT conditions such that

‖X(β̂ − β0)‖2 ≥
√

s0

κ̂2(1 + v̄, S0)

√
λ2

n
−
√
s0 −

√
2x. (12)

Note that for j ∈ S0, the quantity uj is the variance of the ordinary least squares estimator
of β0

j for the case S0 is known. Thus the betamin condition of Theorem 17 needs that
the magnitude of the active coefficients should exceed the noise level of the ordinary least
squares estimator for known S0.

12
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8. Comparison with the Noiseless Lasso when the Design is Fixed

This section studies the case of fixed design and compares the noisy Lasso

β̂ := arg min
b∈Rp

{
‖Y −Xb‖22 + 2λ‖b‖1

}
with the noiseless Lasso

β∗ := arg min
b∈Rp

{
‖X(b− β0)‖22 + 2λ∗‖b‖1

}
where λ∗ ≤ λ. We let S∗ be active set of β∗ and its cardinality s∗ := |S∗|. We investigate
the error ‖X(β̂ − β∗)‖2 in Theorem 18. For λ∗ = 0 we see that β∗ = β0 and then Theorem
18 gives a bound for ‖X(β̂ − β0)‖2. This is elaborated upon in Corollary 19. The case
λ∗ = λ is detailed in Corollary 20. The error ‖X(β̂−β∗)‖22 can then seen as “variance” and
‖X(β∗ − β0)‖2 as “bias”.

8.1. Projections

We now introduce some notations and definitions similar to the ones in Subsections 7.2,
now for general S instead of just S = S0. The projection of X−S on the space spanned by
the columns of XS is denoted by X−SPXS . Recall that such projections are defined, also
if XS does not have full column rank. The anti-projection is

X−SAXS := X−S −X−SPXS .

Define the matrix

V S
−S,−S :=

(
X−SAXS

)T(
X−SAXS

)
and let {(vSj )2}j /∈S be the diagonal elements of this matrix.

8.2. Upper Bound

Recall the KKT conditions for β∗ as given in (6), involving the vector ζ∗ in the sub-
differential ∂‖β∗‖1.

Theorem 18 Fix a set S with cardinality |S| = s. Assume that that for some t > 0

λ > ‖vS−S‖∞
√

2(log(2p) + t) (13)

and write

v̄Sj := vSj
√

2(log(2p) + t)/λ, j /∈ S. (14)

Suppose that

λ∗|ζ∗j |/λ < 1− v̄Sj ∀ j /∈ S.

13
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Define

w̄Sj :=
1− v̄Sj − λ∗|ζ∗j |/λ

1− λ∗/λ
, j /∈ S.

We have for all x with probability at least 1− exp[−t]− exp[−x]

‖X(β̂ − β∗)‖2 ≤
√

s

κ̂2(w̄S , S)

√
(λ− λ∗)2

n
+
√
s+
√

2x. (15)

Corollary 19 If we take the tuning parameter λ∗ of the noiseless Lasso equal to zero,
Theorem 18 gives the following: with probability at least 1− exp[−t]− exp[−x]

‖X(β̂ − β0)‖2 ≤
√
s0/κ̂2(1− v̄, S0)

√
λ2/n+

√
s0 +

√
2x.

This result is comparable to results in Sun and Zhang (2012), Belloni and Wang (2014) and
Dalalyan et al. (2017), albeit that we do not deal with the extension to the approximately
sparse case. One may check that the the combined conclusions of this corollary with that of
Theorem 17 also hold with probability at least 1− exp[−t]− exp[−x].

Corollary 20 We can also take λ∗ = λ in Theorem 18. We then formally put w̄Sj =∞ for
all j /∈ S and we put κ̂(w̄) =∞ as well. Let S with |S| = s. Assume that

|ζ∗j | < 1− v̄Sj ∀ j /∈ S (16)

(this implies S ⊃ S∗). We have with probability at least 1− exp[−t]− exp[−x]

‖X(β̂ − β∗)‖2 ≤
√
s+
√

2x.

This result is as in van de Geer (2016), Problem 2.4.

Corollary 20 is of interest only when
√
s is small enough This is the case if Σ̂ := XTX/n

has a well behaved maximal eigenvalue Λ̂2
max. Indeed, one can show in the same way as in

Lemma 24 (where Σ̂ is replaced by Σ0) that

s ≤
(

Λ̂2
max

(1− ‖v̄S‖∞)2

)
n

λ2
‖X(β∗ − β0)‖22.

Thus if Λ̂2
max/(‖Σ̂‖∞(1 − ‖v̄S‖∞)2) = o(log(2p)), then s = o(‖X(β∗ − β0)‖22). However,

for the case of fixed design, one might not want to impose such eigenvalue conditions.
Alternatively, one may want to resort to irrepresentable conditions. To this end, fix a set
S ⊃ S0. Let for j /∈ S, the projection of the jth column Xj on XS be denoted by

XjPXS := XSγS,j .

Then it is not difficult to see that for j /∈ S |ζ∗j | ≤ ‖γS,j‖1. In other words, a sufficient
condition for (16) to hold is the irrepresentable condition

‖γS,j‖1 ≤ 1− v̄Sj , ∀j /∈ S.

We conclude that under irrepresentable conditions the squared “bias” ‖X(β∗− β0)‖22 dom-
inates the “variance” ‖X(β̂ − β∗)‖22.

14
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9. The Total Variation Penalty in the Noisy Case

We continue with the total variation penalty of Section 6, but now in a noisy setting:

Y = f0 + ε,

where f0 ∈ Rn is an unknown vector. The least squares estimator with total variation
penalty is

f̂ ∈ arg min
f∈Rn

{
‖Y − f‖22 + 2λTV(f)

}
. (17)

As has become clear from the previous sections, to assess the prediction error in the noisy
case one needs to evaluate the compatibility constant κ̂(w, S) with weights wj 6= 1 for j /∈ S.
For the upper bound on the prediction error, we need lower bounds on κ̂(w, S). These are
derived in Dalalyan et al. (2017), Proposition 2. We re-derive (and slightly improve) their
result using a different proof (the proof in Dalalyan et al., 2017 applies a probabilistic
argument).

Suppose as in Section 6 that the locations of the jumps are S := {d1 +1, d1 +d2 +1, . . . , d1 +
· · · + ds + 1} for some {dj}sj=1 ⊂ {2, . . . , n} satisfying

∑s
j=1 dj + 2 < n. Let ds+1 :=

n−
∑s

j=1 dj . Assume again for simplicity that dj is even for all j ∈ {2, . . . , s}.

Lemma 21 Let w1, . . . , wn be non-negative weights. We have

√
s+ 1

κ̂(w, S)
≤ ‖w‖∞

√
s+ 1

κ̂(S)
+

√√√√n

n∑
i=2

(wi − wi−1)2,

where as in Theorem 15
s+ 1

κ̂2(S)
=

n

d1
+

s∑
j=2

4n

dj
+

n

ds+1
.

Corollary 22 Using the notation of Section 8 suppose that λ satisfies (13) with and let
v̄ = v̄S0 be given in (14), both with S := S0. Define v̄i = 0 for all i ∈ S0. We then have
with wi := 1− v̄i, j /∈ S0 ∪ {1}, w1 = w2 and wi = 1, i ∈ S0 that

|wi − wi−1| ≤ |vi − vi−1|/‖v‖∞, i = {2, . . . , n}.

In Dalalyan et al. (2017) it is shown in their Proposition 3 that

n∑
i=2

(vi − vi−1)2/‖v‖2∞ ≤ (s0 + 1)log n/n.

Hence one obtains from Lemma 21 with S = S0, combined with Corollary 19,

√
s0 + 1

κ̂(1− v̄, S0)
≤

√
s0 + 1

κ̂(S0)
+
√

(s0 + 1) log n

15
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where as before

s0 + 1

κ̂2(S0)
=

n

d1
+

s0∑
j=2

4n

dj
+

n

ds0+1
.

Thus, with probability at least 1− exp[−t]− exp[−x]

‖f̂ − f0‖2 ≤ λ
(√

(s0 + 1)

nκ̂2(S0)
+

√
(s0 + 1) log n

n

)
+
√
s0 +

√
2x.

Theorem 15 implies that

κ̂(1 + v̄, S0) ≤ κ̂(S0).

Recall that for the combined conclusion of Theorem 17 and Corollary 19 we do not have to
change the confidence level (which is 1 − exp[−t] − exp[−x]). We therefore obtain that if
the jumps of f0 are sufficiently large in absolute value, as given in Theorem 17, then with
probability at least 1− exp[−t]− exp[−x]

λ

√
s0 + 1

nκ̂2(S0)
−
√
s0 −

√
2x ≤ ‖f̂ − f0‖2 ≤ λ

√
s0 + 1

nκ̂2(S0)
+
√
s0 +

√
2x

+ λ

√
(s0 + 1) log n

n
.

10. Conclusion

This paper establishes that in a sense the squared “bias” of the Lasso dominates the “vari-
ance”. Moreover, lower bounds for the prediction error are given. These lower bounds often
match up to constants or logarithmic factors the upper bounds, or are in fact tight up to
smaller order terms. The bounds show that compatibility constants necessarily enter into
the picture. The lower bounds require “betamin” conditions, and - for the case of random
design - also certain sparsity conditions. It is as yet unclear what can be said when betamin
conditions fail to hold. In combination with this, it would also be of great interest to know
what happens when the regression coefficients are not (approximately) sparse. The question
to what extent the Lasso will have large prediction error when sparseness assumptions are
violated (i.e. when the Lasso is used in a scenario not meant for it) still has some open
ends.

11. Proofs

11.1. Proofs of the Lemmas in Section 3

Proof of Lemma 5. We have to show that κ̂2(u, S) ≥ φ̂2(u, S). Write

A :=

{
b : ‖b−S‖1 ≤ ‖bS‖1/u, ‖bS‖1 > 0

}
16
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and

B :=

{
b : ‖bS‖1 − u‖b−S‖1 > 0

}
.

Then

B ⊂ A.

Thus

φ̂2(u, S) = min

{
|S|‖Xb‖22/n
‖bS‖21

: b ∈ A
}

≤ min

{
|S|‖Xb‖22/n
‖bS‖21

: b ∈ B
}

= κ̂2(u, S).

tu

Proof of Lemma 6. This lemma bounds the `1-norm of the minimizer b∗ if there is a little
room to spare. We have

‖b∗S‖1 − u‖b∗−S‖1 ≤
√
|S|/n‖Xb∗‖2/κ̂(u, S)

= κ̂(S)/κ̂(u, S).

On the other hand

‖b∗S‖1 − u‖b∗−S‖1 = ‖b∗S‖1 − ‖b∗−S‖1 + (1− u)‖b∗−S‖1
= 1 + (1− u)‖b∗−S‖1.

Thus

‖b∗−S‖1 ≤
κ̂(S)− κ̂(u, S)

(1− u)κ̂(u, S)
,

yielding

‖b∗S‖1 = 1 + ‖b∗−S‖1 ≤
κ̂(S)− uκ̂(u, S)

(1− u)κ̂(u, S)
.

tu

Proof of Lemma 7. This lemma shows that one has a bound for the `1-norm in the “cone
condition” if there is a little room to spare. Consider a vector b ∈ Rp satisfying

‖bS‖1 − v‖b−S‖1 = 1.

Since

‖bS‖1 − v‖b−S‖1 = ‖bS‖1 − u‖b−S‖1 − (v − u)‖b−S‖1
we obtain

(v − u)‖b−S‖1 = ‖bS‖1 − u‖b−S‖1 − 1 ≤ ‖bS‖1 − u‖b−S‖1.

Moreover, clearly

‖bS‖1 − u‖b−S‖1 = (v − u)‖b−S‖1 + 1 ≥ 1.

17
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It follows that

min

{
‖Xb‖2 : ‖bS‖1 − v‖b−S‖1 = 1

}
≥ min

{
‖Xb‖2 : (v − u)‖b−S‖1 ≤ ‖bS‖1 − u‖b−S‖1, ‖bS‖1 − u‖b−S‖1 ≥ 1

}
.

Suppose now that for some c > 1

(v − u)‖b−S‖1 ≤ ‖bS‖1 − u‖b−S‖1, ‖bS‖1 − u‖b−S‖1 = c.

Define
b̃ := b/c.

Then
(v − u)‖b̃−S‖1 ≤ 1, ‖b̃S‖1 − u‖b̃−S‖1 = 1.

Moreover
‖Xb‖2 = c‖Xb̃‖2 > ‖Xb̃‖2.

Therefore

min

{
‖Xb‖2 : (v − u)‖b−S‖1 ≤ ‖bS‖1 − u‖b−S‖1, ‖bS‖1 − u‖b−S‖1 ≥ 1

}
= min

{
‖Xb‖2 : (v − u)‖b−S‖1 ≤ 1, ‖bS‖1 − u‖b−S‖1 = 1

}
.

But if (v − u)‖b−S‖1 ≤ 1 and ‖bS‖1 − u‖b−S‖1 = 1 we see that

‖b‖1 ≤ ‖bS‖1 + ‖b−S‖1 = 1 + (1 + u)‖b−S‖1
≤ 1 + (1 + u)/(v − u).

tu

Proof of Lemma 8. This lemma lower bounds the empirical compatibility constant by
the theoretical one. Here is a proof. If ‖bS‖1 − u‖b−S‖1 = 1 we know that

1 ≤ ‖Σ1/2
0 b‖2

√
s/κ(u, S).

It therefore follows from Lemma 7 that

κ̂2(v, S) ≥
{
|S|‖Xb‖22/n : ‖bS‖1 − u‖b−S‖1 = 1, ‖b‖1 ≤M(u, v)‖Σ1/2

0 b‖2
}

where

M(u, v) := (1 + (1 + u)/(v − u))
√
s/κ(u, S) = o(

√
n/(‖Σ0‖∞ log(2p))).

In view of Lemma 45 we know that when M = o(
√
n/(‖Σ0‖∞ log(2p))), then with proba-

bility tending to one

inf
‖b‖1≤M‖Σ1/2

0 b‖2

‖Xb‖22/n
‖Σ1/2

0 b‖22
≥ (1− ηM )2

18
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for suitable ηM = o(1). Hence with probability tending to one

min

{
‖Xb‖22/n : ‖bS‖1 − u‖b−S‖1 = 1, ‖b‖1 ≤M(u, v)‖Σ1/2

0 b‖2
}

≥ (1− ηM(u,v))
2 min

{
‖Σ1/2

0 b‖22 : ‖bS‖1 − u‖b−S‖1 = 1

}
= (1− ηM(u,v))

2κ2(u, S).

tu

11.2. Proof of Theorem 9

The proof is organized as follows. We first present a bound for ‖Σ0(β∗ − β0)‖2 in Lemma
23. This will be used to bound later the number of active variables s∗ of β∗, or rather some
extended version of it involving sub-differential calculus, see Lemma 24. We then establish
in Lemma 25 a deterministic bound assuming we are on some subset of the underlying
probability space. Then in Lemma 26 we show that this subset has large probability.

The noiseless Lasso β∗ given in (2) satisfies the KKT conditions

nΣ0(β∗ − β0) + λζ∗ = 0, ζ∗ ∈ ∂‖β∗‖1, (18)

where ∂‖b‖1 is the sub-differential of b 7→ ‖b‖1:

∂‖b‖1 :=

{
z : ‖z‖∞ ≤ 1, zT b = ‖b‖1

}
.

This will be used in Lemma 24 and again in Lemma 25. In the latter we also invoke the
KKT conditions for β̂

XTX(β̂ − β0) + λζ̂ = XT ε, ζ̂ ∈ ∂‖β̂‖1. (19)

11.2.1. A Bound for the Number of Active Variables of β∗

First we bound the prediction error of β∗.

Lemma 23 Suppose κ2(S0) > 0. Then

n‖Σ1/2
0 (β∗ − β0)‖22 ≤

s0

κ2(S0)

λ2

n
.

Proof of Lemma 23. This follows from results in the literature and also from a slight
adjustment of Theorem 18 in this paper. Let us present a self-contained proof as well. By
the KKT conditions (18)

−(β∗ − β0)T ζ∗ ≤ ‖β0‖1 − ‖β∗‖1 ≤ ‖β∗S0
− β0‖1 − ‖β∗−S0

‖1.

So if ‖Σ1/2
0 (β∗− β0)‖22 > 0 we obtain by the definition of the compatibility constant κ2(S0)

that
n‖Σ1/2

0 (β∗ − β0)‖22 ≤ λ
√
s0‖Σ1/2

0 (β∗ − β0)‖2/κ(S0).

19



van de Geer

This yields the result of the lemma. tu

Consider the set S∗ := {β∗j 6= 0} of active coefficients of β∗. We bound the size of this set.
In fact we look at bound for the size of a potentially larger set, namely the set S∗(ν) := {j :
|ζ∗j | ≥ 1 − ν} where 0 ≤ ν < 1 is arbitrary. Note that indeed S∗ ⊂ S∗(ν). We pin down
the value of ν to ν = 1/2 but the argument goes through for other values if one adjusts
the constants accordingly. We still keep the symbol ν at places to facilitate tracking the
constants.

Lemma 24 We have that

|S∗(ν)| ≤ Λ2
max

(1− ν)2

n2

λ2
‖Σ1/2

0 (β∗ − β0)‖22 ≤
Λ2

max

(1− ν)2

s0

κ2(S0)
.

Proof of Lemma 24. Since

‖ζ∗‖22 ≥ ‖ζ∗S∗(ν)‖
2
2 ≥ (1− ν)2|S∗(ν)|

it follows from the KKT conditions (18) that

(1− ν)2|S∗(ν)| ≤ ‖Σ0(β∗ − β0)‖22
n2

λ2
≤ Λ2

max‖Σ
1/2
0 (β∗ − β0)‖22

n2

λ2
.

The proof is completed by applying the upper bound of Lemma 23

‖Σ1/2
0 (β∗ − β0)‖22 ≤

s0

κ2(S0)

λ2

n2
.

tu

11.2.2. Projections

Let S := S∗(ν), s := |S| (where ν = 1/2). Set

U(S) := ‖εPXS‖2

where εPXS is the projection of ε on the space spanned by the columns of XS . Denote the
anti-projection of X−S on this space by

X−SAXS := X−S −X−SPXS .

11.2.3. Choice of λ

Recall we take for some t > 0

λ ≥ 3‖Σ0‖1/2∞
(√

2(log(2p) + t) + 2(log(2p) + t)

)
.
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11.2.4. The Sets T1, T2 and T3

Write

v0 := ‖Σ0‖1/2∞
(√

2n(log(2p) + t) + 2(log(2p) + t)

)
/λ.

We now define a suitable subset of the underlying probability space, on which we can derive
the searched for inequality. This subset will be the intersection of the following sets:

T1 :=

{
‖(X−SAXS)T ε‖∞ ≤ λv0, U(S) ≤

√
s+
√

2x

}
,

T2 :=

{
‖(XTX − nΣ0)(β∗ − β0)‖∞ ≤ λδ

}
,

T3 :=

{
κ̂2((v − v0 − δ)/δ, S) ≥ (1− η)2κ2(S)

}
,

where x > 0 is arbitrary, δ := ‖Σ1/2
0 (β∗ − β0)‖2, and where η ∈ (0, 1) is arbitrary. We pin

down η to η = 1/2 like we did with ν. We require that ν − v0 − 2δ > 0. Since ν = 1/2 and
v0 ≤ 1/3 this is the case for δ ≤ 1/(12). In view of Lemma 23, Theorem 9 is about the case
δ = o(1), so δ ≤ 1/(12) will be true for n sufficiently large.

11.2.5. Deterministic Part

Lemma 25 On T1 ∩ T2 ∩ T3 it holds that

‖X(β̂ − β∗)‖2 ≤
(

Λmax

(1− ν)

√
n

λ
+

√
s

κ2(S)

λ

(1− η)n

)√
nδ +

√
2x.

Proof of Lemma 25. The KKT conditions (18) and (19), for β∗ and β̂ respectively, are

XTX(β∗ − β0) + λζ∗ = Z,

with Z := (XTX − nΣ0)(β∗ − β0), and

XTX(β̂ − β0) + λζ̂ = XT ε.

So subtracting the first from the second

XTX(β̂ − β∗) + λζ̂ − λζ∗ = XT ε− Z.

Multiplying with β̂ − β∗ yields

‖X(β̂ − β∗)‖22 + λ(β̂ − β∗)T (ζ̂ − ζ∗) = (β̂ − β∗)T (XT ε− Z). (20)

We write (as in the proof of Theorem 18 ahead) with S := S∗(ν), s := |S|,

XS b̂S := XS(β̂S − β∗S) + (X−SPXS)β̂−S .
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Since |ζ∗j | ≤ 1− ν < 1 for all j /∈ S, it must be true that β∗−S = 0. Therefore

X(β̂ − β∗) = XS b̂S + (X−SAXS)β̂−S .

So

(β̂ − β∗)TXT ε = b̂TSX
T
S ε+ β̂T−S(X−SAXS)T ε.

We use that (on T1)

b̂TSX
T
S ε ≤ U(S)‖XS b̂S‖2

≤ U(S)‖X(β̂ − β∗)‖2
≤ (

√
s+
√

2x)‖X(β̂ − β∗)‖2

and

β̂T−S(X−SAXS)T ε ≤ ‖β̂−S‖1‖(X−SAXS)T ε‖∞ ≤ λv0‖β̂−S‖1.

Moreover (on T2)

−(β̂ − β∗)TZ ≤ ‖β̂ − β∗‖1‖Z‖∞ ≤ λδ‖β̂ − β∗‖1.

Then

(β̂ − β∗)T (ζ∗ − ζ̂) = β̂T ζ∗ − β∗T ζ∗ + β∗T ζ̂ − β̂T ζ̂
= β̂T ζ∗ − ‖β∗‖1 + β∗T ζ̂ − ‖β̂‖1
≤ ‖β̂S‖1 − ‖β∗S‖1 + ‖β∗S‖1 − ‖β̂S‖1
+ β̂T−Sζ

∗
−S − ‖β̂S‖1

= β̂T−Sζ
∗
−S − ‖β̂S‖1

≤ (1− ν)‖β̂−S‖1 − ‖β̂−S‖1
= −ν‖β̂−S‖1.

Inserting these bounds in (20) gives

‖X(β̂ − β∗)‖22 + λ(ν − v0 − δ)‖β̂−S‖1 ≤ (
√
s+
√

2x)‖X(β̂ − β∗)‖2 + λδ‖β̂S − β∗S‖1.

If

‖X(β̂ − β∗)‖2 ≤ (
√
s+
√

2x)

we are done as by Lemma 24,
√
s ≤ Λmaxδn/((1− ν)λ). If

‖X(β̂ − β∗)‖2 > (
√
s+
√

2x)

we get

(ν − v0 − δ)‖β̂−S‖1 < δ‖β̂S − β∗S‖1

or

‖β̂S − β∗‖1 − ((ν − v0 − δ)/δ)‖β̂−S‖1 > 0.
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But (on T3)

‖β̂S − β∗S‖1 − ((ν − v0 − δ)/δ)‖β̂−S‖1

≤
√
s‖X(β̂ − β∗)‖2√

nκ̂((ν − v0 − δ)/δ), S)

≤
√
s‖X(β̂ − β∗)‖2√
nκ(S)(1− η)

.

This gives
‖X(β̂ − β∗)‖2 ≤

√
s+
√

2x+ λδ
√
s/(
√
nκ(S)(1− η)).

Again, by Lemma 24,
√
s ≤ Λmaxδn/((1− ν)λ). We see that

‖X(β̂ − β∗)‖2 ≤
(

Λmax

(1− ν)

√
n

λ
+

√
s

κ(S)(1− η)

λ

(1− η)n

)√
nδ +

√
2x.

tu

11.2.6. Random Part

We apply the tools of Section 12.

Lemma 26 It holds that

IP

(
T1 ∩ T2 ∩ T3

)
≥ 1− 4 exp[−t]− exp[−x]− o(1).

Proof of Lemma 26 . We first show that IP(T1) ≥ 1−2 exp[−t]−exp[−x]. One component
of this is to show that with probability at least 1− 2 exp[−t]

‖(X−SAXS)T ε‖∞ ≤ λv0.

For a square matrix B, let diag(B) be its diagonal. By Lemma 41 we know that with
probability at least 1− exp[−t]

‖(X−SAXS)T ε‖∞ ≤ ‖diag((X−SAXS)T (X−SAXS))‖1/2∞
√

2(log(2p) + t).

But
‖diag((X−SAXS)T (X−SAXS))‖∞ ≤ ‖diag(XTX)‖∞.

Moreover in view of Lemma 42, and using the union bound, with probability at least
1− exp[−t] ∣∣∣∣‖diag(XTX)‖1/2∞ −

√
n‖diag(Σ0)‖1/2∞

∣∣∣∣ ≤ ‖Σ0‖1/2∞
√

2(log(2p) + t).

So with probability at least 1− 2 exp[−t]

‖(X−SAXS)T ε‖∞ ≤ ‖Σ0‖1/2∞
(√

2n(log(2p) + t) + 2(log(2p) + t)

)
≤ λv0.
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The second component is to show that

IP(U(S) ≤
√
s+
√

2x) ≤ exp[−x],

but this follows immediately from Lemma 42.

Next we show that IP(T2) ≤ 2 exp[−t]. Set Z := (XTX−nΣ0)(β∗−β0). Clearly X(β∗−β0)

is a Gaussian vector with i.i.d. entries with mean zero and variance ‖Σ1/2
0 (β∗−β0)‖22. Hence,

applying Lemma 43 with σ2
u ≤ ‖Σ0‖∞, σ2

v = ‖Σ1/2
0 (β∗ − β0)‖22 and using the union bound,

we obtain that with probability at least 1− 2 exp[−t]

‖Z‖∞ ≤ 3‖Σ0‖1/2∞ ‖Σ
1/2
0 (β∗ − β0)‖2

(√
2n(log(2p) + t+ log(2p) + t

)
.

Finally, the result IP(T3) = 1− o(1) follows from Lemma 8. tu

11.2.7. Collecting the pieces

Combining Lemma 25 with Lemma 26 completes the proof of Theorem 9.

11.3. Proof of Theorems 10 and 11

We use concentration of measure, Lemma 44.

Proof of Theorem 10. Let m∗ := IE(‖X(β̂ − β∗)‖2|X). Then we have (by Lemma 44)
that with probability at least 1− 1/8− 3/4− o(1)

‖X(β̂ − β∗)‖2 ≥ m∗ − 2
√

log 2

as well as (by Theorem 9),

‖X(β̂ − β∗)‖2 ≤ γ
√
n‖Σ1/2

0 (β∗ − β0)‖2 + 2
√

log 2.

Thus
m∗ ≤ γ

√
n‖Σ1/2

0 (β∗ − β0)‖2 + 4
√

log 2.

Applying again Lemma 44 we see that

IP

(
‖X(β̂ − β∗)‖ ≥ γ

√
n‖Σ1/2

0 (β∗ − β0)‖2 + 4
√

log 2 +
√

2x

)

≤ IP

(
‖X(β̂ − β∗)‖ ≥ m∗ +

√
2x

)
≤ 2 exp[−x].

tu

Proof of Theorem 11. By the triangle inequality∣∣∣∣‖X(β̂ − β0)‖2 − ‖X(β∗ − β0)‖2
∣∣∣∣ ≤ ‖X(β̂ − β∗)‖2.
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By Lemma 42, with with probability at least 1− 2/n∣∣∣∣‖X(β∗ − β0)‖2 −
√
n‖Σ1/2

0 (β∗ − β0)‖2
∣∣∣∣ ≤ (

√
2 log n)‖Σ1/2

0 (β∗ − β0)‖2.

So, invoking Theoerem 9, with probability at least 1 − 4 exp[−t] − exp[−x] − o(1) − 2/n
(subtracting the term 2/n to follow the argument, as of course it can be included in the
o(1) term)∣∣∣∣‖X(β̂ − β0)‖2 −

√
n‖Σ1/2

0 (β∗ − β0)‖2
∣∣∣∣ ≤ (γ +

√
2 log n/n)

√
n‖Σ1/2

0 (β∗ − β0)‖2 +
√

2x.

Let m0 := IE(‖X(β̂ − β0)‖2|X). Using the same arguments as in Theorem 10, we arrive at

m0 − 2
√

log 2 ≤ (1 + γ +
√

2 log n/n)
√
n‖Σ1/2

0 (β∗ − β0)‖2 + 2
√

log 2

and
(1− γ −

√
2 log n/n)

√
n‖Σ1/2

0 (β∗ − β0)‖2 − 2
√

log 2 ≤ m0 + 2
√

log 2,

or ∣∣∣∣m0 −
√
n‖Σ1/2

0 (β∗ − β0)‖2
∣∣∣∣ ≤ (γ +

√
2 log n/n

)√
n‖Σ1/2

0 (β∗ − β0)‖2 + 4
√

log 2.

Thus, inserting the triangle inequality,∣∣∣∣‖X(β̂ − β0)‖2 −
√
n‖Σ1/2

0 (β∗ − β0)‖2
∣∣∣∣

≤
∣∣∣∣‖X(β̂ − β0)‖2 −m0

∣∣∣∣+

∣∣∣∣m0 −
√
n‖Σ1/2

0 (β∗ − β0)‖2
∣∣∣∣

≤
∣∣∣∣‖X(β̂ − β0)‖2 −m0

∣∣∣∣+ (γ +
√

2 log n/n)
√
n‖Σ1/2

0 (β∗ − β0)‖2 + 4
√

log 2.

Apply Lemma 44 again to finalize the result. tu

11.4. Proof of Theorem 14

To establish Theorem 14, we first need to study the minimizer b∗ in (7). The minimization

min

{
‖Xb‖22 : ‖bS‖1 − ‖b−S‖1 = 1

}
has non-convex constraints. If we fix the signs within S of a possible solution b, one can
reformulate it as a convex problem with convex constraints. This is done in Lemma 27. We
then show that b∗j 6= 0 for all j ∈ S in Lemma 28. This is important because given the signs
within S of a potential solution b, we want the restrictions on these signs to be non-active
so that the Lagrangian formulation is of a similar form as the KKT conditions (6) for the
noiseless Lasso. This Lagrangian form is then given in Lemma 31 with Lemma 30 serving
as a preparation. The Lagrangian form of Lemma 31 with S = S0 in a sense resembles the
KKT conditions (6) when the active coefficients in the vector β0

S have appropriate signs and
|β0
j | is for j ∈ S0 large enough. This allows one to find a solution β∗ of the KKT conditions

(6) with the prescribed prediction error.
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11.4.1. Non-Sparseness within S

Our first step is to ascertain that a solution

b∗ ∈ arg min
b∈Rp

{
‖Xb‖2 : ‖bS‖1 − ‖b−S‖1 = 1

}
can be found by searching over (at most) 2|S| convex problems with convex constraints. This
is done in the next lemma, where we also show that the equality constraint ‖bS‖1−‖b−S‖1 =
1 can be replaced by an inequality constraint ‖bS‖1 − ‖b−S‖1 ≥ 1.

Lemma 27 We have

min

{
‖Xb‖22 : ‖bS‖1 − ‖b−S‖1 = 1

}
= min

{
‖Xb‖22 : ‖bS‖1 − ‖b−S‖1 ≥ 1

}
= min

zS∈{±1}|S|
min
b

{
‖Xb‖22 : zTS bS − ‖b−S‖1 ≥ 1, zjbj ≥ 0 ∀ j ∈ S

}
.

Proof of Lemma 27. To show that the equality constraint can be turned into an inequality
constraint let us consider some b ∈ Rp for which it holds that ‖bS‖1 − ‖b−S‖1 = c, where c
is a constant bigger than 1. Let b̃ := b/c. Then

‖b̃S‖1 − ‖b̃−S‖1 =

(
‖bS‖1 − ‖b−S‖1

)
/c = 1.

Moreover
‖Xb̃‖2 = ‖Xb‖2/c < ‖Xb‖2.

Thus the first equality of the lemma must be true.

We now show the second equality of the lemma. If for some zS ∈ {±1} it holds that
zjbj ≥ 0 for all j ∈ S, we have zTS bS = ‖bS‖1. Conversely, if we define for j ∈ S with bj 6= 0,
zj := bj/|bj | as the sign of bj , and define zj ∈ {±1} arbitrarily for j ∈ S with bj = 0, then
we have zjbj ≥ 0 for all j ∈ S. Thus{

b : ‖bS‖1 − ‖b−S‖1 ≥ 1

}
= ∪zS∈{±1}|S|

{
b : zTS bS − ‖b−S‖1 ≥ 1, zjbj ≥ 0

}
.

tu

We establish in the next lemma that sign constraints on b∗S are not active: b∗S is so to speak
maximally non-sparse. We assume that κ̂2(S) > 0, so for S = S0 we implicitly assume
Condition 4.

Lemma 28 Suppose that κ̂(S) 6= 0. Then for any minimizer b∗ of the problem

min

{
‖Xb‖2 : ‖bS‖1 − ‖b−S‖1 = 1

}
it holds that b∗j 6= 0 for all j ∈ S.
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Remark 29 A (very) special case of Lemma 28 is the minimization problem

b∗S ∈ arg min

{
‖bS‖22 : ‖bS‖1 = 1

}
.

Clearly the solution has |b∗j | = 1/|S| 6= 0 for all j ∈ S. More generally, for the case

without “b−S-part” one can apply a geometric argument to show that whenever XT
SXS is

non-singular

b∗S ∈ arg min{‖XbS‖2 : ‖bS‖1 = 1}

must have all its components in S nonzero.

Proof of Lemma 28. We use the representation of Lemma 27. Let z∗S ∈ {±1}|S| satisfy
z∗TS b∗S = ‖b∗S‖1 and z∗j b

∗
j ≥ 0 for all j ∈ S. Then b∗ is a solution of the convex minimization

problem with (linear and) convex constraints

min

{
‖Xb‖22 : z∗TS bS − ‖b−S‖1 ≥ 1, z∗j bj ≥ 0, ∀ j ∈ S

}
.

Note that in the minimization, one may replace the inequality constraint z∗TS bS−‖b−S‖1 ≥ 1
by an inequality constraint z∗TS bS − ‖b−S‖1 = 1. This follows from the same arguments as
used in the proof of Lemma 27. A reason to replace the equality constraint by an inequality
constraint is that the restrictions become convex.

The solution of the convex problem with convex constraints can be found using Lagrange
multipliers λ̃ and µS , where λ̃ ≥ 0 and where µS is an |S|-vector with non-negative entries.
The Lagrangian formulation is

min

{
‖Xb‖22 + 2λ̃

(
‖b−S‖1 − z∗TS bS − 1

)
− 2

∑
j∈S

µj,Sz
∗
j bj

}
.

Because the inequality constraint can be replaced by an equality constraint, we know that
in fact λ̃ > 0. The Lagrangian formulation has has KKT conditions

XTXb∗ = λ̃z∗ + diag(µS)z∗S ,

where z∗−S is an element of the sub-differential

−∂‖b∗−S‖1 =

{
z−S : ‖z−S‖1 ≤ 1, zT−Sb

∗
−s = −‖b∗−S‖1

}
.

It follows that for j ∈ S
b∗j 6= 0 ⇒ µj,S = 0.

Let N := {j ∈ S : b∗j = 0}. Then we have by the above argument

(XTXb∗)−N = λ̃z∗−N

(XTXb∗)N = λ̃z∗N + diag(µN )z∗N .
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The tangent plane of {b : ‖Xb‖2 = ‖Xb∗‖2} at b∗ is

U := {u = b∗ + v : vTXTXb∗ = 0}.

The idea of the proof is now to take an element u = b∗+ tv in this tangent plane with t > 0
and with vj 6= 0 for at least one j ∈ N and such that vj 6= 0 has the same sign as b∗j for all

j ∈ S\N . For j /∈ S we take vj = 0. Then b̃ := b∗ + tv has ‖b̃S‖1 − ‖b̃−S‖1 > 1 and this
leads for a suitable scale t to

‖Xb̃‖2
‖b̃S‖1 − ‖b̃−S‖1

< ‖Xb∗‖2.

Let us now work out this idea. It cannot be true that b∗j = 0 for all j ∈ S as ‖b∗S‖1 ≥ 1.
Hence S\N 6= ∅. Take (for example) vj = z∗j for all j ∈ S\N . Then

vTS\N z
∗
S\N = z∗TS\N z

∗
S\N = |S\N |.

Now λ̃ > 0 and the entries of µN are all positive as well (since µj = 0 for some j ∈ N would
imply b∗j = 0 for this j, which is not possible by the definition of N ). Therefore we can
choose

vTN (λ̃z∗N + diag(µN )z∗N ) = −λ̃|S\N |.

Then at least one entry of vN has to be non-zero and moreover

vTXTXb∗ = λ̃vTS\N z
∗
S\N + vTN (λ̃z∗N + diag(µN )z∗N )

= λ̃|S\N | − λ̃|S\N |
= 0.

We thus have for all t > 0

‖X(b∗ + tv)‖22 = ‖Xb∗‖22 + t2‖Xv‖22.

Moreover

‖b∗S + tvS‖1 = ‖b∗S\N ‖1 + t‖vS\N ‖1 + t‖vN ‖1
= ‖b∗S‖1 + t‖v‖1.

Therefore

‖b∗S + tvS‖1 − ‖b∗−S‖1 = ‖b∗S‖1 − ‖b∗−S‖1 + t‖v‖1
= 1 + t‖v‖1.

It follows that

‖X(b∗ + tv)‖22
(‖b∗S + tvS‖1 − ‖b∗−S‖1)2

=
‖Xb∗‖22 + t2‖Xv‖22

(1 + t‖v‖1)2
.

28



Bounds for the Lasso

Define

A := ‖Xb∗‖22 + t2‖Xv‖22 − ‖Xb∗‖22(1 + t‖v‖1)2

= t2‖Xv‖22 − 2t‖Xb∗‖22‖v‖1 − t2‖Xb∗‖22‖v‖21
= t2(‖Xv‖22 − ‖Xb∗‖22‖v‖21)− 2t‖Xb∗‖22‖v‖21.

We will show that for suitable t > 0 the constant A is strictly negative. This means

‖X(b∗ + tv)‖22 < ‖Xb∗‖22(‖b∗S + tvS‖1 − ‖b∗−S‖1)2

and so we arrive at a contradiction. To show A < 0 we distinguish two cases. If

‖Xv‖22 ≤ ‖Xb∗‖22‖v‖21

then A < 0 for all t > 0. If

‖Xv‖22 > ‖Xb∗‖22‖v‖21
then A < 0 for all t satisfying

0 < t <
2‖Xb∗‖22‖v‖21

‖Xv‖22 − ‖Xb∗‖22‖v‖21
.

Here we used the assumption that ‖Xb∗‖22 > 0 so that the above right hand side is indeed
strictly positive. tu

11.4.2. Lagrangian Form

We now present the Lagrangian form given the signs within the set S and given that within
the set S the solution has non-zero entries. Let for each zS ∈ {±1}|S|

b∗(zS) ∈ arg min

{
‖Xb‖22 : zTS bS − ‖b−S‖1 ≥ 1, zjbj ≥ 0, ∀ j ∈ S

}
.

Define

ZS :=

{
zS ∈ {−1, 1}|S| : zjb

∗
j (zS) > 0 ∀ j ∈ S

}
.

Lemma 30 We have for all zS ∈ ZS

XTXb∗(zS) = z∗(zS)‖Xb∗(zS)‖22

where z∗S(zS) = zS and z∗−S(zS) ∈ −∂‖b∗−S(zS)‖1.

Proof of Lemma 30. To prove this result it is useful to repeat some arguments of the
proof of Lemma 28. The convex minimization problem with (linear and) convex constraints

min

{
‖Xb‖22 : zTS bS − ‖b−S‖1 ≥ 1, zjbj ≥ 0, ∀ j ∈ S

}
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can be solved using Lagrange multipliers λ̃ and µS , where λ̃ > 0 and µS is an |S|-vector
with non-negative entries. The Lagrangian formulation is

min

{
‖Xb‖22 + 2λ̃

(
‖b−S‖1 − zTS bS − 1

)
− 2

∑
j∈S

µj,Szjbj

}
.

This has KKT conditions

XTXb∗(zS) = λ̃z∗ + diag(µS)zS ,

where z∗S = zS and z∗−S = z∗−S(zS) depends on zS and is an element of the sub-differential

−∂‖b∗−S(zS)‖1 =

{
z−S : ‖z−S‖∞ ≤ 1, zT−Sb

∗
−S(zS) = −‖b∗−S‖1

}
.

It follows that for j ∈ S
b∗j (zS) 6= 0⇒ µj,S = 0.

The assumption that zS ∈ ZS thus gives µS = 0. The KKT conditions then read

XTXb∗(zS) = λ̃z∗.

One sees that

1 = z∗T b∗(zS) = b∗T (zS)XTXb∗(zS)/λ̃ = ‖Xb∗(zS)‖22/λ̃.

This gives

λ̃ = ‖Xb∗(zS)‖22 .

tu

We apply the above lemma with zS := ∂‖b∗S‖1. This gives the following result.

Lemma 31 Suppose κ̂(S) 6= 0. Let

b∗ ∈ arg min

{
‖Xb‖22 : ‖bS‖1 − ‖b−S‖1 = 1

}
Then

XTXb∗ = z∗‖Xb∗‖22.

where z∗S = ∂‖b∗S‖1 and z∗−S ∈ −∂‖b∗−S‖1.

Proof of Lemma 31. By Lemma 28, for each

b∗ ∈ arg min

{
‖Xb‖22 : ‖bS‖1 − ‖b−S‖1 = 1

}
it holds that b∗j 6= 0 for all j ∈ S. We can therefore define z∗j := b∗j/|b∗j | for all j ∈ S and
then z∗S = ∂‖b∗S‖1 ∈ ZS . The result now follows from Lemma 30. tu
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11.4.3. Finalizing the Proof of Theorem 14

With the help of Lemma 31 we are now in the position to prove Theorem 14.

Proof of Theorem 14. Let b∗ and z∗ be as in Lemma 31, with S = S0. Define

β′ = β0 − b∗s0

κ̂2(S0)

λ∗

n
.

Then

XTX(β′ − β0) = −λ
∗XTXb∗s0

nκ̂2(S0)

= −λ
∗XTXb∗

‖Xb∗‖22
= −λ∗z∗.

Let S∗ := {j : b∗j 6= 0}. Then by Lemma 28, S0 ⊂ S∗. Furthermore

z∗jβ
′
j =


z∗jβ

0
j − λz∗j b∗j/‖Xb∗‖22 > 0 j ∈ S0

−λ∗z∗j b∗j/‖Xb∗‖22 > 0 j ∈ S∗\S0

0 j /∈ S∗
.

It follows that z∗ ∈ ∂‖β′‖1. Thus, β′ =: β∗ is a solution of the KKT conditions (6) with
ζ∗ = z∗. It holds moreover that

‖X(β∗ − β0)‖22 =
λ∗2‖Xb∗‖22
‖Xb∗‖42

=
λ∗2s0

nκ̂2(S0)
.

tu

11.5. Proof of Theorem 15

The proof of Theorem 15 consists of several steps. First we note that, given the sizes of its
jumps, the total variation of a function is the smallest when this function is decreasing or
increasing. This is stated in Lemma 32 as a trivial fact. As a consequence, if one subtracts
from an arbitrary function value - or minus this value - the total variation, the result will
be at most the average of the absolute values. This is shown in Lemma 33. Lemma 33 is
then applied at each jump separately, as ‖bS‖1 − ‖b−S∪{1}‖1 in this example amounts to
subtracting at each jump some total variation to the left or to the right of this jump. Lemma
34 shows how this works for one jump. Then Theorem 15 is in part proved by applying this
lemma to each jump. This leads to a lower bound for κ̂2(S). The proof is completed by
showing that this lower bound is achieved by the vector b∗ as given in Theorem 15.

For f ∈ Rn we define the ordered vector

f(1) ≤ · · · ≤ f(n),

with arbitrary ordering within ties.
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Lemma 32 It holds that
TV (f) ≥ f(n) − f(1)

with equality if f is increasing or decreasing.

Proof of Lemma 32. Trivial. tu

Lemma 33 It holds for any j ∈ {1, . . . , n} that

fj − TV(f) ≤ f(1) ≤
1

n

n∑
i=1

|fi|,

and

−fj − TV(f) ≤ −f(n) ≤
1

n

n∑
i=1

|fi|.

Proof of Lemma 33. We have from Lemma 32 that TV(f) ≥ f(n) − f(1). Moreover,
fj ≤ f(n). Thus

fj − TV(f) ≤ fj − (f(n) − f(1))

≤ f(n) − (f(n) − f(1))

= f(1).

Case 1: if f(1) < 0 obviously f(1) <
1
n

∑n
i=1 |fi|.

Case 2: if f(1) ≥ 0 then fi ≥ 0 for all i and then

f(1) ≤
n∑
i=1

fi/n =

n∑
i=1

|fi|/n.

In the same way

−fj − TV(f) ≤ −fj − (f(n) − f(1))

≤ −f(1) − (f(n) − f(1))

= −f(n).

Case 1: if f(n) > 0 then −f(n) <
1
n

∑n
i=1 |fi|.

Case 2: if f(n) ≤ 0 then fi ≤ 0 for all i and then

−f(n) ≤ −
n∑
i=1

fi/n =

n∑
i=1

|fi|/n.

tu

Lemma 34 Let f ∈ Rn with total variation TV(f) =
∑n

i=2 |fi − fi−1| and g ∈ Rm with
total variation TV(g) =

∑m
i=2 |gi − gi−1|. Then for any j ∈ {1, . . . , n} and k ∈ {1, . . . ,m}

|fj − gk| − TV(f)− TV(g) ≤ 1

n

n∑
i=1

|fi|+
1

m

m∑
i=1

|gi|.
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Proof of Lemma 34. Suppose without loss of generality that fj ≥ gk. Then by Lemma
33

|fj − gk| − TV(f)− TV(g) = (fj − TV(f))︸ ︷︷ ︸
≤
∑n

i=1 |fi|/n

+ (−gk − TV(g))︸ ︷︷ ︸
≤
∑m

i=1 |gi|/m

≤ 1

n

n∑
i=1

|fi|+
1

m

m∑
i=1

|gi|.

tu

Proof of Theorem 15. Let for j = 2, . . . , s, uj ∈ N satisfy 1 ≤ uj ≤ dj−1. We may write
for f = Xb,

‖bS‖1 − ‖b−(S∪{1})‖1

= |fd1+1 − fd1 | −
d1∑
i=2

|fi − fi−1| −
d1+u2∑
i=d1+2

|fi − fi−1|

+ |fd1+d2+1 − fd1+d2 | −
d1+d2∑

i=d1+u2+1

|fi − fi−1| −
d1+d2+u3∑
i=d1+d2+2

|fi − fi−1|

· · ·
+ |fd1+···+ds−1+1 − fd1+···+ds−1 |

−
d1+···+ds−1∑

i=d1+···+ds−2+us−1+1

|fi − fi−1| −
d1+···+ds−1+us∑
i=d1+···+ds−1+2

|fi − fi−1|

+ |fd1+···+ds+1 − fd1+···+ds |

−
d1+···+ds∑

i=d1+···+ds−1+us+1

|fi − fi−1| −
n∑

i=d1+···+ds+2

|fi − fi−1|

≤ 1

d1

d1∑
i=1

|fi|+
1

u2

d1+u2∑
i=d1+1

|fi|

+
1

d2 − u2

d1+d2∑
i=d1+u2+1

|fi|+
1

u3

d1+d2+u3∑
i=d1+d2+1

|fi|

· · ·

+
1

ds−1 − us−1

d1+···+ds−1∑
i=d1+···+ds−2+us−1+1

|fi|+
1

us

d1+···+ds−1+us∑
i=d1+···+ds−1+1

|fi|

+
1

ds − us

d1+···+ds∑
i=d1+···+ds−1+us+1

|fi|+
1

ds+1

n∑
i=d1+···+ds+1

|fi|
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≤

√
1

d1
+

1

u2
+

1

d2 − u2
+ · · ·+ 1

ds−1 − us−1
+

1

us
+

1

ds − us
+

1

ds+1

×

√√√√ n∑
i=1

|fi|2,

where in the first inequality we applied Lemma 34 and the second one follows from the
Cauchy-Schwarz inequality. The assumption that for all j ∈ {2, . . . , s} dj is even allows us
to take uj = dj/2 to arrive at

κ2(S) ≥ s+ 1
n
d1

+
∑s

j=2
4n
dj

+ n
ds+1

.

Now for the reverse inequality, let b̃ be given as in the theorem and and f̃ := Xb̃. Then f̃
is equal to

f̃i =



− n
d1

i = 1, . . . , d1

2n
d2

i = d1 + 1, . . . , d1 + d2

...

(−1)s 2n
ds

i =
∑s−1

j=1 dj + 1, . . . ,
∑s

j=1 dj

(−1)s+1 n
ds+1

i =
∑s

j=1 dj + 1, . . . , n

.

By the definition of f̃ = Xb̃,

‖b̃S‖1 =

s∑
j=1

|f̃dj+1 − f̃dj | =
n

d1
+

2n

d2

+
2n

d2
+

2n

d3

...

+
2n

ds−1
+

2n

ds

+
2n

ds
+

n

ds+1

=
n

d1
+

s∑
j=2

4n

dj
+

n

ds+1
,

and also

n∑
i=1

f̃2
i = d1f̃

2
t1 + · · ·+ ds+1f̃

2
ds+1

=
n2

d1
+ 4

s∑
j=2

n2

dj
+

n2

ds+1
.

34



Bounds for the Lasso

Note also that

‖b̃−(S∪{1})‖1

=

d1∑
i=2

|f̃i − f̃i−1|+
d2∑

i=d1+2

|f̃i − f̃i−1|+ · · ·+
n∑

i=d1+···+ds+2

|f̃i − f̃i−1|

= 0

It follows that

(s+ 1)‖Xb̃‖22/n
(‖b̃S‖1 − ‖b̃−(S∪{1})‖1)2

=

∑n
i=1 f̃

2
i /n(∑s

j=1 |f̃dj+1 − f̃dj |
)2

=
s+ 1

n
d1

+
∑s

j=2
4n
dj

+ n
ds+1

.

tu

11.6. Proof of Theorem 17

To prove Theorem 17, we first establish the Lagrangian form of the minimization problem
where we have the convex constraint z∗TS0

(v̄)bS0 − ‖Wb−S0‖1 ≥ 1. Then we recall the
projections and we introduce a subset T of the underlying probability space where the
lower bound of Theorem 17 holds. The latter is shown in Lemma 36. Finally, we show that
the subset T has large probability.

11.6.1. Lagrangian Form

Recall for w ∈ W(v̄) the convex problem with linear and convex constraints

b(w) ∈ arg min

{
‖Xb‖22 : z∗TS0

(v̄)bS0 − ‖Wb−S0‖1 ≥ 1

}
.

Note that here we do not require the positivity constraint z∗Tj (v̄)bj ≥ 0 for all j ∈ S0. The
next lemma gives its Lagrangian form. This form plays in the proof of Theorem 17 the
same role as in the proof of Theorem 14 for the noiseless version. We also show that for
w ∈ W(v̄) the minimum ‖Xb(w)‖22 is not larger than ‖Xb∗(v̄)‖22 (recall that by definition
κ̂2(1 + v̄, S0) = s0‖Xb∗(v̄)‖22/n).

Lemma 35 We have
XTXb(w) = ‖Xb(w)‖22Wz(w),

with
zS0(w) = z∗S0

(v̄), z−S0(w) ∈ −∂‖b−S0(w)‖1.

Moreover, for w ∈ W(v̄)
s0‖Xb(w)‖22/n ≤ κ̂2(1 + v̄, S0).
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Proof of Lemma 35. The problem

min

{
‖Xb‖22 : z∗TS0

(v̄)bS0 − ‖Wb−S0‖1 ≥ 1

}
has Lagrangian

XTXb(w) = λ̃Wz(w)

with zS0(w) = z∗S0
(v̄) and z−S0(w) ∈ −∂‖b−S0(w)‖1. Moreover

‖Xb(w)‖22 = λ̃b(w)TWz(w) = z∗TS0
(v̄)bS0 − ‖Wb−S0‖1 = 1

because the minimum is reached at the boundary. So

λ̃ = ‖Xb(w)‖22.

To obtain the second statement of the lemma, we use similar arguments as in the proof of
Lemma 5. We have

‖Xb(w)‖2 = min
b∈Rp

{
‖Xb‖2

z∗TS0
(v̄)bS0 − ‖W−S0b−S0‖1

: z∗TS0
(v̄)bS0 − ‖W−S0b−S0‖1 > 0

}
But for w ∈ W and w̄ := 1 + v̄, we know

‖Wb−S0‖1 ≤ ‖W̄ b−S0‖1

and so
z∗TS0

(v̄)bS0 − ‖Wb−S0‖1 > z∗TS0
(v̄)bS0 − ‖W̄ b−S0‖1.

Let

A :=

{
b : z∗TS0

(v̄)bS0 − ‖Wb−S0‖1 > 0

}
and

B :=

{
b : z∗TS0

(v̄)bS0 − ‖W̄ b−S0‖1 > 0

}
.

Then B ⊂ A. Hence

‖Xb(w)‖2 = min
b∈A

‖Xb‖2
z∗TS0

(v̄)bS0 − ‖Wb−S0‖1

≤ min
b∈B

‖Xb‖2
z∗TS0

(v̄)bS0 − ‖Wb−S0‖1

≤ min
b∈B

‖Xb‖2
z∗TS0

(v̄)bS0 − ‖W̄ b−S0‖1
= ‖Xb∗(v̄)‖2

=

√
nκ̂(1 + v̄, S0)
√
s0

.

tu
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11.6.2. Projections

Recall the notation of Subsection 7.2 and that moreover the diagonal elements of the matrix
(XT

S0
XS0)−1 are denoted by {u2

j}j∈S0 . We write

ûS0 := (XT
S0
XS0)−1XT

S0
ε.

We denote the projection of ε on the space spanned by the columns of XS0 by

εPXS0 := XS0(XT
S0
XS0)−1XT

S0
ε = XS0 ûS0

and write
U(S0) := ‖εPXS0‖2.

11.6.3. Choice of λ

Recall that we require that for some t > 0

λ > ‖v−S0‖∞
√

2(log(2p) + t).

11.6.4. The Set T

Recall

ūj := uj
√

2(log(2p) + t)/λ, j ∈ S0, v̄j := vj
√

2(log(2p) + t)/λ, j /∈ S0. (21)

Let T be the set

T :=

{
|ûj | ≤ λūj ∀j ∈ S0

}
∩

{
|v̂j | ≤ λv̄j ∀j /∈ S0

}
∩
{

U(S0) ≤
√
s0 +

√
2x

}
.

We show in Subsection 11.6.6 that IP(T ) ≥ 1− exp[−t]− exp[−x].

11.6.5. Deterministic Part

The idea is now to incorporate the noisy part of the KKT conditions for the noisy Lasso
into a weighted sub-differential, creating in that way KKT conditions of the same for as the
noiseless KKT conditions (see (22) in the proof). To do so, we first put part of the noise
in the vector β0 without adding additional non-zeros. This makes it possible not to change
the sub-differential at S0. The rewriting of the KKT conditions make them resemble the
Lagrangian form of Lemma 35.

We will use the KKT conditions (19) for β̂:

−XT (Y −Xβ̂) = −λζ̂, ζ̂ ∈ ∂‖β̂‖1.
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Lemma 36 Suppose we are on the set T defined in Subsection 11.6.4. Then under the
conditions of Theorem 17

‖X(β̂ − β0)‖n ≥
λ
√
s0√

nκ̂(1 + v̄, S)
+
√

2x

Proof of Lemma 36. Set

β̂0
S0

:= β0 + ûS0 , β̂
0
−S0

:= 0.

Then

Y = Xβ0 + ε

= XS0β
0
S0

+XS0 ûS0 + εAXS0

= Xβ̂0 + εAXS0 .

The KKT conditions (19) are

−XT (Y −Xβ̂) = −λζ̂.

We have

Y −Xβ̂ = −X(β̂ − β̂0)− εAXS0 .

Therefore

−XT (Y −Xβ̂) = XTX(β̂ − β̂0)−XT (εAXS0).

But

XT
S0

(εAXS0) = 0,

and

XT
−S0

(εAXS0) = XT
−S0
−XT

−S0
XS0(XT

S0
XS0)−1XT

S0
ε

= (X−S0AXS0)T ε.

Hence the KKT conditions read

XTX(β̂ − β̂0) = −λζ̂ + v̂,

where

v̂S0 = 0, v̂−S0 = (X−S0AXS0)T ε.

Set Ŝ := {j : β̂j 6= 0} and define for all j ∈ Ŝ\S0

ŵj := 1 + v̂j/(λζ̂j).

By assumption (since we are on T ) |v̂j | < λv̄j . so ŵj ≥ 1 − v̄j for all j ∈ Ŝ\S0. For
j /∈ Ŝ ∪ S0 we define

ŵj := max{|1 + v̂j/λ|, 1− v̄j}.
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Then for j /∈ Ŝ ∪ S0

λζ̂j + v̂j = λ|ζ̂j + v̂j/λ|sign(ζ̂j + v̂j/λ)

=

{
ŵjsign(ζ̂j + v̂j/λ), |ζ̂j + v̂j/λ| ≥ 1− v̄j
ŵj
|ζ̂j+v̂j/λ|

1−v̄j sign(ζ̂j + v̂j/λ) |ζ̂j + v̂j/λ| ≤ 1− v̄j

= ŵj ζ̃j ,

where

ζ̃j :=

{
sign(ζ̂j + v̂j/λ), |ζ̂j + v̂j/λ| ≥ 1− v̄j
|ζ̂j+v̂j/λ|

1−v̄j sign(ζ̂j + v̂j/λ) |ζ̂j + v̂j/λ| ≤ 1− v̄j
.

One readily verifies that (on T ) ŵj ≤ 1 + v̄j for all j /∈ S0. Taking ζ̃j = ζ̂j for j ∈ S ∪ S0

we arrive at the KKT conditions

XTX(β̂ − β̂0) = −λŴ ζ̃, ζ̃ ∈ ∂‖β̂‖1 (22)

and where Ŵ = diag(ŵ) with ŵ ∈ W(v̄). Let now S+
0 := {j ∈ S0 : z∗j (v̄)bj(ŵ) > 0} and

S−0 := {j ∈ S0 : z∗j (v̄)bj(ŵ) ≤ 0}. Take

β′ = β̂0 − λbj(ŵ)/‖Xb(ŵ)‖22.

Case 1 Let j ∈ S0. By the condition on β0 we know that |β0
j | > λ|bj(ŵ)|/‖Xb(ŵ)‖22 + |ûS0 |,

so |β̂0
j | ≥ |β0

j | − |ûS0 | > λ|bj(ŵ)|/‖Xb(ŵ)‖22. If z∗j (v̄) = 1 and bj(ŵ) > 0, then β̂0
j > 0 and

β′j = |β̂0
j | − λ|bj(ŵ)|/‖Xb(ŵ)‖22 > 0.

If z∗j (v̄) = 1 and bj(ŵ) ≤ 0, then β̂0
j > 0 and we have

β′j = |β̂0
j |+ λ|bj(ŵ)|/‖Xb(ŵ)‖22 > 0.

If z∗j (v̄) = −1 and bj(ŵ) < 0, then β̂0
j < 0 and

β′j = −|β̂0
j |+ λ|bj(ŵ)|/‖Xb(ŵ)‖22 < 0.

If z∗j (v̄) = −1 and bj(ŵ) ≥ 0, then β̂0
j < 0 and

β′j = −|β̂0
j | − λ|bj(ŵ)|/‖Xb(ŵ)‖22 < 0.

Case 2 Let now j /∈ S0. Then

β′j = −λbj(ŵ)/‖Xb(ŵ)‖22,

so

zj(ŵ)β′j = −λzj(ŵ)bj(ŵ)/‖Xb(ŵ)‖22 > 0.
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Thus
z(ŵ) ∈ ∂‖β′‖1.

Furthermore, by the first part of Lemma 35,

XTX(β′ − β̂0) = −λXTXb(ŵ)/‖Xb(ŵ)‖2 = −λŴz(ŵ).

So β′ =: β̂ satisfies the KKT conditions with ζ̃ = z(ŵ). We further have

‖X(β̂ − β̂0)‖22 = λ2bT (ŵ)Ŵz(ŵ)/‖Xb(ŵ)‖22
= λ2/‖Xb(ŵ)‖2

≥ λ2s0/(nκ̂
2(1 + v̄, S0))

where in the last step we used the second part of Lemma 35. Finally, by the triangle
inequality

‖X(β̂ − β0)‖2 ≥ ‖X(β̂ − β̂0)‖2 −U(S0)

≥
λ
√
s0√

nκ̂(1 + v̄, S0)
−U(S0)

≥
λ
√
s0√

nκ̂(1 + v̄, S0)
−
√
s0 −

√
2x.

tu

11.6.6. Random Part

In Lemma 36, we showed that the conclusion (12) of Theorem 17 holds on the set T . This
subsection obtains that IP(T ) ≥ 1− exp[−t] + exp[−x].

Lemma 37 It holds that

IP(T ) ≥ 1− exp[−t]− exp[−x].

Proof of Lemma 37. Apply Lemma 41 with Zj = ûj/uj for j ∈ S0 and Zj = v̂j/vj for
j /∈ S0 to find that with probability at least 1− exp[−t]

|ûj | ≤ λūj ∀j ∈ S0, |v̂j | ≤ λv̄j ∀j /∈ S0.

Furthermore, the random variable U2(S0) has a chi-squared distribution with s0 degrees of
freedom. Lemma 42 gives that with probability at least 1− exp[−x],

U(S0) ≤
√
s0 +

√
2x.

tu

11.6.7. Collecting the Pieces

Combining Lemma 36 with Lemma 37 completes the proof of Theorem 17.
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11.7. Proof of Theorem 18

The proof is along the lines of Theorem 9.

11.7.1. Comparing the KKT Conditions

We compare the KKT conditions for the noisy Lasso with those for the noiseless Lasso.

Lemma 38 It holds that

‖X(β̂ − β∗)‖22 + λ‖β̂‖1 − λ∗β̂T z∗ ≤ (β̂ − β∗)TXT ε+ (λ− λ∗)‖β∗‖1.

Proof of Lemma 38. The KKT conditions (19) for β̂ can be written as

XTX(β̂ − β0) + λζ̂ = XT ε.

where ζ̂ ∈ ∂‖β̂‖1. By the KKT conditions (6) for β∗

XTX(β∗ − β0) + λ∗ζ∗ = 0.

Hence, taking the difference

XTX(β̂ − β∗) + λζ̂ − λ∗ζ∗ = XT ε.

Multiply by (β̂ − β∗)T to find

‖X(β̂ − β∗)‖22 + λ(β̂ − β∗)T ζ̂ − λ∗(β̂ − β∗)T ζ∗ = (β̂ − β∗)TXT ε.

But

λ(β̂ − β∗)T ζ̂ − λ∗(β̂ − β∗)T ζ∗

= λ‖β̂‖1 − λ∗β̂T ζ∗ + λ∗‖β∗‖1 − λβ∗T ζ̂
= λ‖β̂‖1 − λ∗β̂T ζ∗ + λ‖β∗‖1 − λβ∗T ζ̂ − (λ− λ∗)‖β∗‖1
≥ λ‖β̂‖1 − λ∗β̂T ζ∗ − (λ− λ∗)‖β∗‖1

where we used that
‖β∗‖1 − β∗T ζ̂ ≥ 0.

Therefore

‖X(β̂ − β∗)‖22 + λ‖β̂‖1 − λ∗β̂T z∗ ≤ (β̂ − β∗)TXT ε+ (λ− λ∗)‖β∗‖1.

tu

11.7.2. Projections

Recall the notation of Subsection 8.1. We let moreover v̂−S0 be the vector

v̂S−S := (X−SAXS)T ε.

As before, we denote the projection of ε on the space spanned by the columns of XS by
εPXS and write

U(S) := ‖εPXS‖2.
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11.7.3. Choice of λ

Recall that we require that for some t > 0

λ > ‖vS−S‖∞
√

2(log(2p) + t).

11.7.4. The Set T S

Recall

v̄S := vSj
√

2(log(2p) + t)/λ, j /∈ S.

Let

T S := {|v̂j | ≤ λv̄j ∀ j /∈ S} ∩ {U(S) ≤
√
s+
√

2x}.

11.7.5. Deterministic Part

Lemma 39 On the set T S it holds that

‖X(β̂ − β∗)‖2 ≤
√
s+
√

2x+ (λ− λ∗)
√
s/n/κ̂(w̄S , S).

Proof of Lemma 39. Since S∗ ⊂ S

X(β̂ − β∗) = XS b̂S +X−SAXS β̂−S

where

XS b̂S = XS(β̂S − β∗S) + (X−SPXS)β̂−S .

In view of Lemma 38,

‖X(β̂ − β∗)‖22 + λ‖β̂‖1 − λ∗βT z∗

≤ b̂TSXT
S ε+

[
X−SAXS β̂S

]T
ε+ (λ− λ∗)‖β∗‖1

By the Cauchy-Schwarz inequality and since we are on T S

b̂TSX
T
S ε ≤ U(S)‖Xb̂S‖2 ≤ (

√
s+
√

2x)‖Xb̂S‖2 ≤ (
√
s+
√

2x)‖X(β̂ − β∗)‖2

where in the last inequality we used Pythagoras rule. Moreover, by the definition of v̂S−S
and since we are on the set T S[

X−SAXS β̂−S

]T
ε = β̂T−S v̂

S
−S ≤ λ

∑
j /∈S

v̄S−S |β̂j |.

On the other hand,

λ‖β̂−S‖1 − λ∗ζ∗T−S β̂−S ≥ λ
∑
j /∈S

(1− λ∗|ζ∗j |/λ)|β̂j |
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and

(λ− λ∗)‖β∗‖1 − λ‖β̂S‖1 + λ∗z∗T β̂S ≤ (λ− λ∗)‖β̂S − β∗S‖1.

If ‖X(β̂−β∗)‖2 ≤
√
s+
√

2x we are done. Suppose therefore that ‖X(β̂−β∗‖2 >
√
s+
√

2x.
Then we see that

‖X(β̂ − β∗)‖22 − (
√
s+
√

2x)‖X(β̂ − β∗)‖2

= ‖X(β̂ − β∗)‖2
(
‖X(β̂ − β∗)‖2 −

√
s−
√

2x

)
> 0.

But then

λ
∑
j /∈S

(1− v̄Sj − λ∗|ζ∗j |/λ)|β̂j | < (λ− λ∗)‖β̂S − β∗‖1.

or

‖β̂S − β∗S‖1 − ‖W̄S β̂−S‖1 > 0.

Then

‖β̂S − β∗S‖1 − ‖W̄S β̂−S‖1 ≤ (
√
s/n)‖X(β̂ − β∗)‖2/κ̂(w̄S , S).

We thus arrive at

‖X(β̂ − β∗)‖22

≤
(√

s+
√

2x+ (λ− λ∗)
√
s/n/κ̂(w̄S , S)

)
‖X(β̂ − β∗)‖2

or

‖X(β̂ − β∗)‖2 ≤
√
s+
√

2x+ (λ− λ∗)
√
s/n/κ̂(w̄S , S).

tu

11.7.6. Random Part

Lemma 40 We have

IP(T S) ≥ 1− exp[−t]− exp[−x].

Proof of Lemma 40. This follows from Lemma 41 and Lemma 42. tu

11.7.7. Finalizing the Proof of Theorem 18

Combine Lemma 39 with Lemma 40.
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11.8. Proof of the Lemma in Section 9

Proof of Lemma 21. Write gi := wifi, i = 1, . . . , n and uj := dj/2, j = 2, . . . , s. Then
we have

s∑
j=1

|gdj+1 − gdj | −
d1∑
i=2

|gi − gi−1| −
s−1∑
j=2

dj+1∑
i=dj+1

|gi − gi−1| −
n∑

i=ds+1

|gi − gi−1|

≤ 1

d1

d1∑
i=1

|gi|+
1

u2

d1+u2∑
i=d1+1

|gi|

+
1

d2 − u2

d1+d2∑
i=d1+u2+1

|gi|+
1

u3

d1+d2+u3∑
i=d1+d2+1

|gi|

· · ·

+
1

ds−1 − us−1

d1+···+ds−1∑
i=d1+···+ds−2+us−1+1

|gi|+
1

us

d1+···+ds−1+us∑
i=d1+···+ds−1+1

|gi|

+
1

ds − us

d1+···+ds∑
i=d1+···+ds−1+us+1

|gi|+
1

ds+1

n∑
i=d1+···+ds+1

|gi|

≤
(

1

d2
1

d1∑
i=1

w2
i +

1

u2
2

d1+u2∑
i=d1+1

w2
i

+
1

(d2 − u2)2

d1+d2∑
i=d1+u2+1

w2
i +

1

u2
3

d1+d2+u3∑
i=d1+d2+1

w2
i

· · ·

+
1

(ds−1 − us−1)2

d1+···+ds−1∑
i=d1+···+ds−2+us−1+1

w2
i +

1

u2
s

d1+···+ds−1+us∑
i=d1+···+ds−1+1

w2
i

+
1

(ds − us)2

d1+···+ds∑
i=d1+···+ds−1+us+1

w2
i +

1

d2
s+1

n∑
i=d1+···+ds+1

w2
i

)1/2

×
( n∑
i=1

f2
i

)1/2

≤
√
n

d1
+

n

u2
+

n

d2 − u2
+ · · ·+ n

ds−1 − us−1
+
n

us
+

n

ds − us
+

n

ds+1

×

√√√√ n∑
i=1

|fi|2/n

×‖w‖∞.
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Moreover

s∑
j=1

wdj+1|fdj+1 − fdj | −
d1∑
i=2

wi|fi − fi−1|

−
s−1∑
j=2

dj+1∑
i=dj+1

wi|fi − fi−1| −
n∑

i=ds+1

wi|fi − fi−1|

≤
s∑
j=1

|gdj+1 − gdj | −
d1∑
i=2

|gi − gi−1| −
s−1∑
j=2

dj+1∑
i=dj+1

|gi − gi−1| −
n∑

i=ds+1

|gi − gi−1|

+
n∑
i=2

|wi − wi−1||fi−1|,

and

n∑
i=2

|wi − wi−1||fi−1| ≤

√√√√ n∑
i=2

(wi − wi−1)2

√√√√ n∑
i=2

f2
i−1

≤

√√√√ n∑
i=2

(wi − wi−1)2

√√√√ n∑
i=1

f2
i

Thus we conclude

s∑
j=1

wdj+1|fdj+1 − fdj |

−
d1∑
i=2

wi|fi − fi−1| −
s−1∑
j=2

dj+1∑
i=dj+1

wi|fi − fi−1| −
n∑

i=ds+1

wi|fi − fi−1|

≤

‖w‖∞
√√√√ n

d1
+

s∑
j=2

4n

dj
+

n

ds+1
+

√√√√n

n∑
i=2

(wi − wi−1)2

√√√√ n∑
i=1

f2
i /n.

tu

11.9. Proof of Theorem 1

This follows from Corollary 12 combined with Theorem 14, where in the latter we replace
Σ̂ := XTX/n by the population version Σ0. This works because we replaced condition (8)
by its population counterpart condition (3).
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12. Tools from Probability Theory

We first present three standard lemmas for Gaussian random variables, Lemmas 41, 42 and
43. These three lemmas are followed by a concentration of measure result and a result for
Gaussian quadratic forms.

Lemma 41 Let Z1, . . . , Zp be standard normal random variables. Then it holds for all
t > 0 that

IP

(
max

1≤j≤p
|Zj | ≥

√
2(log(2p) + t)

)
≤ exp[−t].

Proof of Lemma 41. For each t > 0

IP(|Z1| ≥
√

2t) ≤ 2 exp[−t].

So by the union bound, for any t > 0,

IP

(
max

1≤j≤p
|Zj | >

√
2(log(2p) + t)

)
≤ pIP(|Z1| ≥

√
2(log(2p) + t))

≤ 2p exp[−(log(2p+ t)] = exp[−t].

tu

Lemma 42 Let Z := (Z1, . . . , ZT )T be a vector with i.i.d. standard Gaussian entries. Then
it holds for all x > 0 that

IP

(
‖Z‖2 ≥

√
T +
√

2x

)
≤ exp[−x]

and

IP

(
|‖Z‖2 −

√
T | ≥

√
2x

)
≤ 2 exp[−x].

Proof of Lemma 42. This follows from concentration of measure (Borell, 1975, Giné and
Nickl, 2015, Theorem 2.5.7) because the map Z 7→ ‖Z‖2 is Lipschitz. Alternatively, one
may apply Lemma 1 in Laurent and Massart (2000). tu

Lemma 43 Let (U, V ) ∈ Rn×2 have i.i.d Gaussian rows with mean zero and covariance
matrix (

σ2
u σuv

σuv σ2
v

)
.

Then for all t > 0, with probability at least 1− 4 exp[−t]

|UTV − nσuv| ≤ 3σuσv

(√
2nt+ t

)
.

Proof of Lemma 43. By standard arguments (see van de Geer (2017) for tracking down
some constants) one can derive that with probability at least 1− 4 exp[−t]

|UTV − nσuv| ≤ (σuσv + 2|σu,v|)
√

2nt+ (σuσv + 2|σu,v|)t.
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We simplify this to: with probability at least 1− 4 exp[−t]

|UTV − nσuv| ≤ 3σuσv

(√
2nt+ t

)
.

tu

This is the concentration of measure lemma that we use in Section 4.

Lemma 44 For any b ∈ Rp and all x > 0, we have

IP

(
‖X(β̂ − b)‖2 ≥ mb +

√
2x

)
≤ exp[−x]

and

IP

(∣∣∣∣‖X(β̂ − b)‖2 −mb

∣∣∣∣ ≥ √2x

)
≤ 2 exp[−x]

where mb := IE(‖X(β̂ − b)‖2|X).

Proof of Lemma 44. This follows from concentration of measure see e.g. Borell (1975),
or Giné and Nickl (2015), Theorem 2.5.7, as the map ε 7→ ‖X(β̂− b)‖2 is Lipschitz, see also
van de Geer and Wainwright (2017). tu

Finally, we give a result for Gaussian quadratic forms.

Lemma 45 Let X have i.i.d. N (0,Σ0)-distributed rows and let M be a (sequence of)
constant(s) such that

M2 = o

(
n/(‖Σ0‖∞ log(2p))

)
.

Then, for a suitable sequence ηM = o(1), with probability tending to one

inf
‖b‖1≤M‖Σ1/2

0 b‖2

‖Xb‖22/n
‖Σ1/2

0 b‖22
≥ (1− ηM )2.

Proof of Lemma 45. See for example Chapter 16 in van de Geer (2016) and its references,
or van de Geer and Muro (2014). tu

Acknowledgments

We thank Rico Zenklusen from the Institute of Operations Research, ETH Zürich, and
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