
Journal of Machine Learning Research 19 (2018) 1-62 Submitted 12/16; Revised 11/17; Published 8/18

A Hidden Absorbing Semi-Markov Model for Informatively
Censored Temporal Data: Learning and Inference

Ahmed M. Alaa† ahmedmalaa@ucla.edu
†Electrical Engineering Department

University of California, Los Angeles (UCLA)

Los Angeles, CA 90095-1594, USA

Mihaela van der Schaar∗,† mihaela.vanderschaar@eng.ox.ac.uk
∗Department of Engineering Science

University of Oxford

Parks Road, Oxford OX1 3PJ, UK

Editor: Edoardo M. Airoldi

Abstract

Modeling continuous-time physiological processes that manifest a patient’s evolving clinical
states is a key step in approaching many problems in healthcare. In this paper, we develop
the Hidden Absorbing Semi-Markov Model (HASMM): a versatile probabilistic model that
is capable of capturing the modern electronic health record (EHR) data. Unlike exist-
ing models, the HASMM accommodates irregularly sampled, temporally correlated, and
informatively censored physiological data, and can describe non-stationary clinical state
transitions. Learning the HASMM parameters from the EHR data is achieved via a novel
forward-filtering backward-sampling Monte-Carlo EM algorithm that exploits the knowl-
edge of the end-point clinical outcomes (informative censoring) in the EHR data, and
implements the E-step by sequentially sampling the patients’ clinical states in the reverse-
time direction while conditioning on the future states. Real-time inferences are drawn via a
forward-filtering algorithm that operates on a virtually constructed discrete-time embedded
Markov chain that mirrors the patient’s continuous-time state trajectory. We demonstrate
the prognostic utility of the HASMM in a critical care prognosis setting using a real-world
dataset for patients admitted to the Ronald Reagan UCLA Medical Center. In particular,
we show that using HASMMs, a patient’s clinical deterioration can be predicted 8-9 hours
prior to intensive care unit admission, with a 22% AUC gain compared to the Rothman
index, which is the state-of-the-art critical care risk scoring technology.

Keywords: Hidden Semi-Markov Models, Medical Informatics, Monte Carlo methods.

1. Introduction

Modeling the clinical conditions of a patient using evidential physiological data is a ubiqui-
tous problem that arises in many healthcare settings, including disease progression modeling
(Schulam and Saria (2015); Mould (2012); Wang et al. (2014); Jackson et al. (2003); Sweet-
ing et al. (2010); Liu et al. (2015)) and critical care prognosis (Moreno et al. (2005); Matos
et al. (2006); Yoon et al. (2016); Hoiles and van der Schaar (2016); Alaa et al. (2016)). Ac-
curate physiological modeling in these settings confers an instrumental value that manifests
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Figure 1: An episode of the diastolic blood pressure measurements (as recorded in the EHR) for a
patient hospitalized in a regular ward for 50 days and then admitted to the ICU after the ward staff
realized she is clinically deteriorating.
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Figure 2: An episode of the systolic blood pressure measurements for a patient hospitalized in a
regular ward for 6 days and then discharged home by the ward staff. Measurements are missing in
a 24-hour period during the patient’s stay in the ward.

in the ability to provide early diagnosis, individualized treatments and timely interventions
(e.g. early warning systems in hospital wards (Yoon et al. (2016)), early diagnosis for Scle-
roderma patients (Varga et al. (2012); Alaa and van der Schaar (2016)), early detection of a
progressing breast cancer (Bartkova et al. (2005)), etc). Physiological modeling also confers
an epistemic value that manifests in the knowledge extracted from data about the progres-
sion and severity phases of a disease (Stelfox et al. (2012))), or the short-term dynamics of
the physiological behavior of critically ill patients (Li-wei et al. (2013)).

The recent availability of data in the electronic health records (EHR)1 creates a promis-
ing horizon for establishing rich and complex physiological models (Gunter and Terry
(2005)). Modern EHRs comprise episodic data records for individual (anonymized) pa-
tients; every patient’s episode is a temporal sequence of clinical findings (e.g. visual field
index for Glaucoma patients (Liu et al. (2015)), CD4 cell counts for HIV-infected patients
(Guihenneuc-Jouyaux et al. (2000)), etc), lab test results (e.g. white cell blood count for

1. A recent data brief from the Office for National Coordinator (ONC) for healthcare technology shows
that the adoption of EHR in US hospitals exhibited a spectacular increase from 9.4% in 2008, 27.6% in
2011, to 75.5% in 2014 (Charles et al. (2015)).
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post-operative patients under immunosuppressive drugs (Cholette et al. (2012)), etc), or
vital signs (e.g. blood pressure and O2 saturation (Yoon et al. (2016))). The time span
of these episodes may be as short as few days in short-term hospitalization episodes (e.g.
patients with solid tumors, hematological malignancies or neutropenia who are hospitalized
in regular wards before or after a surgery (Kause et al. (2004); Hogan et al. (2012); Kirkland
et al. (2013))), or as long as few years in longitudinal episodes (e.g. chronic obstructive pul-
monary disease may evolve from a mild Stage I to a very severe Stage IV over a time span
of 10 years (Pedersen et al. (2011); Wang et al. (2014))). In this paper, we develop a
versatile time-series model that provides means for accurate real-time risk prog-
nostication of adverse clinical outcomes. Other applications of the model include but
are not limited to modeling default data in quantitative finance (Giampieri et al. (2005)),
and fault detection in general dynamic systems (Smyth (1994)). In the next Subsection, we
expose our modeling rationale and challenges posed by the structure of modern EHR data.
We conclude this Section by summarizing our contributions in Subsection 1.2.

1.1 Modeling Rationale and Challenges

1.1.1 Rationale

Previous physiological models have branched into two different modeling paths with respect
to the way a patient’s clinical states are defined. One strand of literature adopts fully
observable models; these models assume that clinical states are quantifiable via observable
clinical markers or disease severity measures (e.g. PFVC in Scleroderma (Schulam and
Saria (2015)), GFR in kidney disease (Eddy and Neilson (2006)), etc). Another strand
of literature adopts latent variable models, which assume that clinical states are latent
and manifest only through proximal, noisy physiological measurements. Table 1 lists some
notable previous works that fall under each modeling category2.

Table 1: Modeling methodologies in previous works.

Methodology Previous Works

Fully observable models • HIV (Dessie (2014); Foucher et al. (2005)) • Chronic
kidney diseases (Eddy and Neilson (2006)) • Scleroderma

(Schulam and Saria (2015)) • ICU (Ghassemi et al. (2015)).

Latent variable models • Alzheimer (Chen and Zhou (2011)) • HIV
(Guihenneuc-Jouyaux et al. (2000)) • Glaucoma (Liu et al.

(2015)) • Comorbidities (Wang et al. (2014)).

2. While the models in (Schulam and Saria (2015)) and (Ghassemi et al. (2015)) involve latent variables that
designate patient subtypes, the clinical states in both works are considered to be captured via observable
bio-markers (PFVC in the former and the Cerebrovascular Autoregulation index in the latter).
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Our modeling choice is to go with a latent variable model for the following reasons:

• In a wide range of problems, a concrete clinical marker that can be directly used as a
surrogate for the patient’s true clinical condition is not available. This is especially
true in critical care settings where no solid definition or measure of a “clinical state”
exists (Li-wei et al. (2013)). Previous works that adopted a clinical risk score as a sur-
rogate for the clinical state in critical care settings have found that other physiological
features, when augmented with the clinical risk score, still hold a significant predic-
tive power with respect to end-point clinical outcomes (Ghassemi et al. (2015)). This
implies that a clinical risk score or a severity of illness measure (such as APACHE
II, SAPS and SOFA (Knaus et al. (1991); Subbe et al. (2001))) is not a sufficient
measure of a patient’s true clinical condition, and hence cannot be reliably modeled
as an observable clinical state.

• The same line of argument extends to disease progression models: (Jackson et al.
(2003)) has shown that significant modeling gain can be attained by treating clinical
markers and diagnostic assessments as noisy manifest variables for the patient’s true
clinical state rather than defining a clinical state in terms of those markers.

• For various chronic disease, such as HIV, Scleroderma, and kidney disease, progres-
sion stages are well defined in terms of observable clinical markers (CD4 cell count,
PFVC and GFR). However, a latent variable model can help validate and assess the
current domain knowledge-based clinical practice guidelines by learning alternative,
data-driven guidelines. Other diseases, such as COPD, have their progression stages
manifesting only through symptoms (e.g. chronic bronchitis, emphysema and chronic
airway obstruction (Wang et al. (2014))), which may or may not accurately reflect
the disease’s true state, and hence a latent variable model is necessary.

• Conclusive clinical markers that reveal a patient’s true state may be available only oc-
casionally in a patient’s longitudinal episode. For instance, in a breast cancer progres-
sion setting, most of the data points associated with a patient’s longitudinal episode
would be imaging test results (e.g. BI-RADS scores of a mammogram or an MRI
(Gail and Mai (2010); Taghipour et al. (2013))), which are noisy markers for the ex-
istence of a tumor, whereas a conclusive biopsy result that truly reveals whether the
patient is in a preclinical or clinical breast cancer state may not be available because
the patient did not undergo a biopsy test.

• A fully observable model does not provide diagnostic utility since it assumes that an
already observable clinical marker provides an immediate, domain-knowledge-based
diagnosis for the patient. Contrarily, a latent variable model leaves room for diagnoses
to be learned from evidential data by learning the association between physiological
evidence and clinical states, which may help inform and improve clinical practice.

1.1.2 Challenges

Hidden Markov Models (HMMs) and their variants have been widely deployed as temporal
latent variable models for dynamical systems (Smyth (1994); Zhang et al. (2001); Giampieri
et al. (2005); Genon-Catalot et al. (2000); Ghahramani and Jordan (1997)). Such models
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have achieved considerable success in various applications, such as topic modeling (Gruber
et al. (2007)), speaker diarization (Fox et al. (2011b)), and speech recognition (Rabiner
(1989)). However, the nature of the clinical setting, together with the format of the modern
EHR data pose the following set of serious challenges that confound classical HMM models:

(A) Non-stationarity: Recently developed disease progression models, such those in
(Wang et al. (2014)) and (Liu et al. (2015)), use conventional stationary Markov chain
models. In particular, they assume that state transition probabilities are independent of
time. However, this assumption is seriously at odds with even casual observational studies
which show that the probability of transiting from the current state to another state depends
on the time spent in the current state (Lagakos et al. (1978); Huzurbazar (2004); Gillaizeau
et al. (2015)). This effect, which violates the memorylessness assumptions adopted by
continuous-time Markovian models, was verified in patients who underwent renal transplan-
tation (Foucher et al. (2007, 2008)), patients who are HIV infected (Joly and Commenges
(1999); Dessie (2014); Foucher et al. (2005)), and patients with chronic obstructive pul-
monary disease (Bakal et al. (2014)).

(B) Irregularly spaced observations: The times at which the clinical findings of a
patient (vital signs or lab tests) are observed is controlled either by clinicians (in the case
of hospitalized inpatients), or by the patient’s visit times (in the case of a chronic disease
follow up). The time interval between every two measurements may vary from one patient
to another, and may also vary for the same patient within her episode. This is reflected
in the structure of the episodes in the EHR records, as shown in Figure 1 and 2. Figure 1
depicts an actual diastolic blood pressure episode for a patient hospitalized in a regular
ward for 1200 hours (50 days)3. The patient’s stay in the ward was concluded with an ad-
mission to the ICU after the ward staff realized she was clinically deteriorating. As we can
see, the blood pressure measurements in the first 20 hours were initially taken with a rate
of 1 sample per hour, and then later the rate changed to 1 sample every 5 hours4. While
some recent works have argued for the parametrization of time in longitudinal data via the
natural event sequence (Hripcsak et al. (2015)), it is often the case that the sampling times
are themselves informative of the patients’ clinical well-being (Alaa et al. (2017)). Thus,
a direct application of a regular, discrete-time HMM (e.g. the models in (Murphy (2002);
Fox et al. (2011b,a); Rabiner (1989); Yu (2010); Matos et al. (2006); Guihenneuc-Jouyaux
et al. (2000))) will not suffice for jointly describing the latent states and observations, and
hence ensuring accurate inferences.

(C) Discrete observations of a continuous-time phenomena: A patient’s physiolog-
ical signals and latent states evolve in continuous time; however, the observed physiological
measurements are gathered at discrete time steps that can differ from one physiological
signal to another. (One alternative view of such a structure is to think of a time series
with irregularly sampled multidimensional measurements and with missing data in every
measurement (Lipton et al. (2016)). We do not address data that is missing not at random

3. A detailed description for the data involved in this paper is provided in Section 5.
4. While Figure 1 illustrates a short-term episode for a critical care patient, similar effects are experienced

in longitudinal episodes for patients with chronic disease (see Figure 4 in (Wang et al. (2014))).
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in this paper.) The intervals between observed measurements can vary quite significantly;
as we can see in Figure 2, the systolic blood pressure for a patient who stayed in a ward for
140 hours exhibits an entire day without measurements 5. This means that the patient may
encounter multiple hidden state transitions without any associated observed data. These
effects make learning and inference problems more complicated since the inference algo-
rithms need to consider potential unobserved trajectories of state evolution between every
two timestamps. This challenge has been recently addressed in (Nodelman et al. (2012);
Wang et al. (2014); Liu et al. (2015)), but only on the basis of memoryless Markov chain
models for the hidden states, for which tractable inferences that rely on the solutions to
Chapman-Kolmogorov equations can be executed. However, incorporating non-stationarity
in state transitions (i.e. addressing challenge (A)) would make the problem of reasoning
about a continuous-time process through discrete observations much more complicated.

(D) Lack of supervision: The episodes in the EHR may be labeled with the aid of
domain knowledge (e.g. the stages and symptoms of some chronic diseases, such as chronic
kidney disease (Eddy and Neilson (2006)), are known to clinicians and may be provided in
the EHR). However, in many cases, including the case of (post or pre-operative) critical
care, we do not have access to any labels for the patients’ states. Hence, unsupervised learn-
ing approaches need to be used for learning model parameters from EHR episodes. While
unsupervised learning of discrete-time HMMs has been extensively studied and is well un-
derstood (e.g. the Baum-Welch EM algorithm is predominant in such settings (Zhang et al.
(2001); Yu (2010); Rabiner (1989))), the problem of unsupervised learning of continuous-
time models for which both the patient’s states and state transition times are hidden is far
less understood, and indeed far more complicated.

(E) Censored observations: Episodes in the EHR are usually terminated by an in-
formative intervention or event, such as death, ICU admission, discharge, etc. This is
known as informative censoring (Scharfstein and Robins (2002); Huang and Wolfe (2002);
Link (1989)). Unlike classical HMM settings where training sets comprise fixed length, or
arbitrarily-censored, HMM sequence instances, a typical EHR dataset would comprise a set
of episodes with different durations, and the duration of each episodes is itself informative
of the state trajectory. Learning in such settings requires algorithms that can efficiently
compute the likelihood of observing a set of episodes conditioned on their durations and
terminating states.

1.2 Summary of Contributions

In order to address the challenges above, we develop a new model –which we call the Hidden
Absorbing Semi-Markov Model (HASMM)– as a versatile generative model for a patient’s
(physiological) episode as recorded in the EHR. The HASMM captures non-stationary tran-
sitions for a patient’s clinical state via a continuous-time semi-Markov model with explicitly
specified state sojourn time distributions. Informative censoring is captured via absorbing
states that designate clinical endpoint outcomes (e.g. cardiac arrest, mortality, recovery,

5. This may have resulted due to the patient undergoing a surgery or an intervention, or because the EHR
recording system accidentally did not receive the data from the clinicians during that day.
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etc); entering an absorbing state of an HASMM stimulates censoring events (e.g. clinical
deterioration leads to an ICU admission which terminates the physiological observations
for a monitored patient in a ward, etc). Observable variables are modeled via a multi-task
Gaussian process (Bonilla et al. (2007)), for which the observation times (i.e. follow up
visits, vital sign gathering, lab tests, etc) are modeled as a point process. Using multi-task
Gaussian process with state-dependent hyper-parameters, an HASMM accounts for both
correlations among different physiological variables, in addition to the temporal correlations
among the observation variables that are generated by the same hidden state during its so-
journ period. In that sense, an HASMM is a segment model (Ostendorf et al. (1996)) and
also a state-switching model (Fox et al. (2011a))).

To allow for real-time inference of a patient’s state, we develop a forward-filtering
HASMM inference algorithm that can estimate a patient’s latent state using her history
of irregularly sampled physiological measurements. The inference algorithm operates by
constructing a virtual, discrete-time embedded Markov chain that fully describes the pa-
tient’s state transitions at observation times. The embedded Markov chain is constructed
in an offline stage by solving a system of Volterra integral equations of the second kind using
the successive approximation method; the solution to this system of equations, which paral-
lels the Chapman-Kolmogorov equations in ordinary Markov chains, describe the HASMM’s
semi-Markovian state transitions as observed at arbitrarily selected discrete timestamps.

Offline learning of the HASMM model parameters from patients’ episodes in an EHR is
a daunting task. Since the HASMM is a continuous-time model, we cannot directly use the
classical Baum-Welch EM algorithms for learning its parameters (Rabiner (1989)). More-
over, the semi-Markovianity of an HASMM yields an intractable integral in the E-step of
the Expectation-Maximization (EM) formulation. Since the HASMM’s state transitions are
not captured by the conventional continuous-time Markov chain transition rate matrices,
we cannot make use of the Expm and Unif methods that were used in (Hobolth and Jensen
(2011)), and more recently in (Liu et al. (2015)) for evaluating the integrals involved in
the E-step of learning continuous-time HMMs. To address this challenge, we develop a
novel forward-filtering backward-sampling Monte Carlo EM (FFBS-MCEM) algorithm that
approximates the integral involved in the E-step by efficiently sampling the latent clinical
trajectories conditioned on observations in the EHR by exploiting the informative censoring
of the patients’ episodes. The FFBS-MCEM algorithm samples the latent clinical states
of every (offline) patient episode in the EHR as follows: it starts from the known clinical
endpoints, and sequentially samples the patient’s states by traversing in the reverse-time di-
rection while conditioning on the future states, and then uses the sampled state trajectories
to evaluate a Monte Carlo approximation for the E-step.

2. The Hidden Absorbing Semi-Markov Model (HASMM)

2.1 Abstract Model

We start by describing the HASMM’s hidden state evolution process, and then we describe
the structure of its observable variables.
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2.1.1 Hidden States

We consider a filtered probability space (Ω,F , {Ft}t∈R+ ,P), over which a continuous-time
stochastic process X(t) is defined on t ∈ R+. The process X(t) corresponds to a temporal
trajectory of the patient’s hidden clinical states, which take on values from a finite state-
space X = {1, 2, . . ., N}. Because the process X(t) takes on only finitely many values, it
can be decomposed in the form6

X(t) =
∑
n

Xn · 1{τn≤t<τn+1}, (1)

where (X(t))t∈R+
is a càdlàg path, Xn ∈ X , and the interval [τn, τn+1) is the time in-

terval accommodating the nth hidden state. Every path (X(t))t∈R+
on the stochastic ba-

sis (Ω,F , {Ft}t∈R+ ,P) is a semi-Markov path (Janssen and De Dominicis (1984); Durrett
(2010)), where the sojourn time of state n, which we denote as Sn = τn+1−τn, is drawn from
a state-specific distribution vj(Sn = s |λj ) = dP(Sn = s |Xn = j ), with λj being a state-
specific duration parameter associated with state j ∈ X . Unlike ordinary time-homogeneous
semi-Markov transitions, in which the transition probabilities among states are assumed to
be constant conditioned on there being a transition from the current state (Gillaizeau et al.
(2015); Murphy (2002); Johnson and Willsky (2013); Yu (2010); Dewar et al. (2012); Guédon
(2007)), our model accounts for duration-dependent semi-Markov transitions, i.e. we have
that

P(Xn+1 = j|Xn = i, Sn = s) = gij(s), (2)

where gij : R+ → [0, 1], ∀i, j ∈ X is a transition function for which
∂gij(s)
∂s is well defined,

and
∑N

j=1 gij(s) = 1, ∀s ∈ R+, i ∈ X .
Now consider the bi-variate (renewal) process (Xn, Sn)n∈N+ , which comprises the se-

quence of states and sojourn times. Semi-Markovianity of X(t) implies that (Xn, Sn)n∈N+

satisfies the following condition on its transition probabilities

P(Xn+1 = j, Sn ≤ s | Fτn) = P(Xn+1 = j, Sn ≤ s |Xn = i)

= P(Xn+1 = j |Xn = i, Sn ≤ s) · P(Sn ≤ s |Xn = i)

= ESn [gij(Sn) |Sn ≤ s] · Vi(s |λi) = ḡij(s) · Vi(s |λi), (3)

where {Xn = i} ∈ Fτn , Vi(.) is the cumulative distribution function of state i’s sojourn time,
and ḡij(s) is the probability mass function that reflects the probability that a patient’s next
state being j given that she was at state i and her sojourn time in i is less than (or equal to)
s. Based on (3), we define the semi-Markov transition kernel as a matrix-valued function
Q : R+ → [0, 1]N×N that describes the dynamics of X(t) in continuous time, with entries
Q(s) = (Qij(s))i,j∈X that are given by

Qij(s) = ḡij(s) · Vi(s |λi). (4)

The initial stateX1 is random7, and the initial state distribution is given by po = [ po1, . . ., p
o
N ]T ,

where poj = P(X(0) = j), and
∑N

j=1 p
o
j = 1.

6. By convention, we set τ1 = 0.
7. We do not consider left-censored observations in this model.

8



An HASMM Model for Informatively Censored Temporal Data

321 4 5

Figure 3: The Markov chain model for a 5-state HASMM.

We assume that whenever the patient enters either state 1 or state N , she remains
there forever8. Therefore, we model states {1, N} as absorbing states, whereas we model
the remaining states in X \ {1, N} as transient states that represent intermediate levels of
risk. We define and interpret states 1 and N as follows:

• State 1 is denoted as the safe state, and represents the state at which the patient is
at minimum (or no) risk (e.g. clinically stable post-operative patient, etc).

• State N is denoted as the catastrophic state, and represents the state at which the
patient is at severe risk or encounters an adverse event (e.g. a very severe stage of
a chronic disease (Bakal et al. (2014)), a cardiac or respiratory arrest (Subbe et al.
(2001)), mortality (Knaus et al. (1991)), etc).

We do not assume that the transient states are ordered linearly in terms of clinical risk.
Following the assumptions in (Murphy (2002); Johnson and Willsky (2013)), we eliminate
the self-transitions for all transient states by setting gii(s) = 0, Qii(s) = 0,∀s ∈ R+, i ∈
X \ {1, N}, whereas we restrict the transitions from states 1 and N to self-transitions only,
i.e. gii(s) = 1, i ∈ {1, N}. Figure 3 depict the Markov chain for the sequence {Xn}n∈N+ .

We define A1 as the event that the path (X(t))t∈R+
is absorbed in the safe state 1,

i.e. A1 = {limt→∞X(t) = 1}, and AN as the event that (X(t))t∈R+
is absorbed in the

catastrophic state N , i.e. AN = {limt→∞X(t) = N}. Since (X(t))t∈R+
is an absorbing

semi-Markov chain9, we know that P(A1 ∨ AN ) = 1, and since the events A1 and AN are
mutually exclusive, it follows that P(AN ) = 1 − P(A1). The quantity P(AN ) describes a
patient’s prior risk of ending in the catastrophic state, whereas P(AN |Ft ) describes the
patient’s posterior risk of ending in the catastrophic state having observed its evolution
history up to time t10. Define Ts as an F-stopping time representing the absorption time

8. The model can be easily extended to accommodate an arbitrary number of competing absorbing states.
9. We assume that the transition functions gi1(s) and giN (s) for any transient state i is non-zero for every
s. Hence, it follows that (X(t))t∈R+

is an absorbing semi-Markov chain since it has 2 absorbing states,

each of which can be visited starting from any other state (Durrett (2010)).
10. In the clinical applications under consideration, transient states can be ordered by their respective relative

risks of encountering event AN in the subsequent transitions, i.e. in a 5-state chain, it is more likely for
the patient to be absorbed in state 5 in the future when it is in state 4 than when it is in state 3. For
instance, it is more likely for a patient’s chronic obstructive pulmonary disease that is currently assessed
to have a severity degree of GOLD1 (mild severity as defined in the GOLD standard Pedersen et al.
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of the path (X(t))t∈R+
in either state 1 or state N , i.e.

Ts = inf{t ∈ R+ : X(t) ∈ {1, N}}.

Finally, we define K as the (random) number of state realizations in the sequence {Xn}Kn=1

up to the stopping time Ts, which has to be concluded by either state 1 orN , e.g. when |X | =
4, the sequences {1}, {4}, {2, 3, 2, 3, 4}, and {3, 2, 1} are valid, random-length realizations of
{Xn}Kn=1, and each represents a certain state evolution trajectory for the patient.

2.1.2 Observations and Censoring

The path (X(t))t∈R+
is unobservable; what is observable is a corresponding process (Y (t))t∈R+

on (Ω,F , {Ft}t∈R+ ,P), the values of which are drawn from an observation-space Y, and
whose distributional properties are dependent on the latent states’ path (X(t))t∈R+

. The
observable process (Y (t))t∈R+

can be put in the form

Y (t) =
∑
n

Yn(t) · 1{τn≤t<τn+1}, (5)

where (Y (t))t∈R+
is a càdlàg path, comprising a sequence of function-valued variables

{Yn(t)}Kn=1, with Yn : [τn, τn+1) → Y. Even though the path (Y (t))t∈R+
is accessible,

only a sequence of irregularly spaced samples of it is observed over time, and is denoted by
{Y (tm)}tm∈T , where T = {t1, t2, . . ., tM} is the set of observed measurements, and M is the
total number of such measurements. We say that the process is censored if M <∞; typical
episodes in an EHR are censored: observations stop at some point of time due to a release
from care, an ICU admission, mortality, etc.

The sampling times in T represent the times at which a patient with a chronic disease
took clinical tests (i.e. time intervals in T spans years), or the times at which clinicians have
gathered vital signs for a monitored critically ill patient in a hospital ward (i.e. time intervals
in T span days or hours). We assume that the sampling times in T are drawn from a point-
process Φ =

∑
m∈N+

δtm , with δt being the Dirac measure. The point-process Φ is assumed

to be independent of the latent states path11. Define Tn as the set of Mn samples that are
gathered during the interval12 [τn, τn+1), i.e. Tn = {tm : tm ∈ T , tm ∈ [τn, τn+1)},Mn = |Tn|,
and

∑
nMn = M . Since Tn could possibly be empty (Tn = ∅), some states can have no

corresponding observations (i.e. an inpatient may exhibit a transition to a deteriorating
state during the night, even though her blood pressure were not measured during the night.

(2011)) to progress (in the near future) to a severity degree of GOLD2 (moderate) rather than GOLD3
(severe).

11. This means that the sampling times are uninformative of the latent states; which simplifies the inference
problem. The HASMM model can be extended to incorporate a state-dependent sampling process using
a Cox process (Lando (1998)) or a Hawkes process (Hawkes and Oakes (1974)) to modulate the point-
process intensity;however, such an extension would result in a significantly harder inference problem. A
good discussion on conditional intensity models can be found in (Qin and Shelton (2015)).

12. Note that what is observed is a sequence of sampling times T , the elements of which are not labeled by
the corresponding state indexes, for that the states are latent, i.e. the sets Tn are unobserved partitions
of T .
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Recall the illustration in Figure 2).

The paths {Yn(t)}Kn=1 are assumed to be conditionally independent given the hidden
sequence of states {Xn}Kn=1, and hence we have that

{Y (tm)}tm∈Tn ⊥⊥ {Y (tm)}tm∈Tn+1 |Xn, Xn+1 , ∀n ∈ {1, 2, . . .,K − 1}.

The observed samples generated under every state Xn and sampled at the times in Tn
are drawn from Y according to a distribution P({Y (tm)}tm∈Tn |Xn = j,Θj ), where Θj is an
emission parameter that controls the distributional properties of the observations generated
under state j.

The number of observation samples is finite: the observed sequence is censored at some
point of time, which we call the censoring time Tc, after which no more observation samples
are available. Censoring reflects an external intervention/event that terminated the observa-
tion sequence, i.e. death, intensive care unit (ICU) admission, etc. Censoring is informative
(Scharfstein and Robins (2002);Huang and Wolfe (2002);Link (1989)), because the censor-
ing time is correlated with the absorption time Ts, and Ts strictly precedes Tc (in an almost
sure sense). That is, Tc is an F-stopping time that is given by Tc = Ts + SK , i.e. once the
patient enters state 1 or state N , the observations stop after the patient’s sojourn time in
that state (i.e. observations stop after a time SK from the entrance in the absorbing state).
Therefore, the duration distributions v1(s|λ1) and vN (s|λN ) of states 1 and N are used to
determine the censoring times conditioned on the chain {Xn}Kn=1 being absorbed at time Ts.

Every sample from the HASMM is an episode comprising a random-length sequence of
hidden states {Xn}Kn=1, and a random-length sequence of observations {Y (tm)}Mm=1 together
with the associated observation times. We only observe {Y (tm)}Mm=1; the path of latent
statesX(t), the number of realized statesK, the association between observations and states
(i.e. the sets Tn) are all unobserved, which makes the inference problem very challenging,
but captures the realistic EHR data format and the associated inferential hurdles. In the
next subsection, we specify the model’s generative process and present an algorithm to
generate episodic samples from an HASMM.

2.2 Model Specification and Generative Process

As have been discussed in Subsection 2.1, the hidden and observables variables of an
HASMM can be listed as follows:

• Hidden variables: The hidden states sequence {Xn}Kn=1 and the states’ sojourn
times {Sn}Kn=1 (or equivalently, the transition times {τn}Kn=1).

• Observable variables: The observed episode {Y (tm)}Mm=1 and the associated sam-

pling times T = {tm}Mm=1.

11
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The HASMM model parameters that generate both the hidden and observable variables are
encompassed in the parameter set Γ, i.e.

Γ =

 N︸︷︷︸
State cardinality

, λ = {λj}Nj=1︸ ︷︷ ︸
State duration

, po︸︷︷︸
Initial states

,Q = {Qij(s)}Ni,j=1︸ ︷︷ ︸
Transitions

,Θ = {Θj}Nj=1︸ ︷︷ ︸
Emission

 .

The total number of parameters in an HASMM is N2 + 3N(E + 1).

2.2.1 Distributional specifications for the hidden variables

We model the state sojourn time of each state i ∈ X via a Gamma distribution. The se-
lection of a Gamma distribution ensures that the generative process encompasses ordinary
continuous-time Markov models for the path (X(t))t∈R+ , since the exponential distribu-
tion13 is a special case of the Gamma distribution (Durrett (2010)). Thus, if the underlying
physiology of the patient is naturally characterized by memoryless state transitions, this
will be automatically learned from the data via the parameters of the Gamma distribution.
The sojourn time distribution for state i is given by

vi(s|λi = {λi,s, λi,r}) =
1

Γ(λi,s)
· λλi,si,r · s

λi,s−1 · e−s·λi,r , s ≥ 0,

where λi,s > 0 and λi,r > 0 are the shape and rate parameters of the Gamma distribution
respectively.

Now we specify the structure of the transition kernel Q(s) = (Qij(s))i,j , i, j ∈ X . Re-
call from (4) that the each element in the transition kernel matrix can be written as
ES [gij(S)|S ≤ s] · Vi(s|λi). Having specified the distribution vi(s|λi) as a Gamma distribu-
tion, it remains to specify the function gij(s) in order to construct the elements of Q(s).

13. Note that a semi-Markov chain reduces to a Markov chain if the sojourn times are exponentially dis-
tributed.

12
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Figure 6: A basic graphical model for the HASMM. The arrow between the (function-valued) variable
yn and the latent state Xn+1 designates the dependence of state transitions on the sojourn time of
the previous state (duration-dependence).

The transition functions (gij(s))i,j are given by multinomial logistic functions as follows

gij(s) =
e(ηij+βij ·s)∑N
k=1 e

(ηik+βik·s)
, ∀i 6= j, i /∈ {1, N}

gii(s) = 0, ∀i ∈ {2, . . . , N − 1},
gii(s) = 1, ∀i ∈ {1, N}, (6)

where ηij , βij ∈ R+. The parameters (ηij)
N
j=1 determine the baseline values for the transition

probability mass from state i to state j, i.e. gij(0), whereas the parameters βij controls the
dependence of the transition probability mass on the sojourn time14. If βij = 0, then we

have that gij(s) = gij(0) = eηij∑N
k=1 e

ηik
,∀s ∈ R+, i.e. the transition probability out of state i

remains constant irrespective of the sojourn time in that state. In the limit when s goes to
infinity, βij dominates the functional form in (6), and we have that gij(∞) = arg maxj βij .
Figure 4 depicts exemplary transition functions for a 4-state HASMM.

14. Similar effects for the sojourn time on the transition probabilities has been demonstrated in the pro-
gression of breast cancer from healthy to preclinical states in (Taghipour et al. (2013)), where age (the
main risk factor for breast cancer) was shown to affect the probability of progressing across the states
of healthy to preclinical, clinical and death. These effects may be also prevailing in other diseases,
or in critical care settings where the length of time during which a patient stays clinically stable may
imply that the patient is more likely to transit to a more healthy state in the future. Through the
HASMM model, we can recognize whether or not this effect is evident in the EHR data, i.e. whether
the transition function reflects an underlying homogeneous (if gij(s) is independent of s) or duration-
dependent transitions by learning the parameter βij . Moreover, the parameter βij is defined per state;
the HASMM model can capture scenarios where transitions are duration-independent from some states,
but are duration-dependent from others.
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2.2.2 Distributional specifications for the observable variables

As explained in Subsection 2.1, the observable process Y (t) can be decomposed as Y (t) =∑K
n=1 Yn(t) · 1{τn≤t<τn+1}, where the paths (Yn(t))Kn=1 are conditionally independent given

the state sequence {Xn}Kn=1. Since observations are drawn from Y (t) at arbitrarily, and
irregularly spaced time instances T , we have to model the distributional properties of Y (t)
in continuous time. We model every path Yn(t) defined over [τn, τn+1) as a segment drawn
from a multi-task Gaussian Process (GP), with a hyper-parameter set Θi that depends
on the corresponding latent state Xn = i (Rasmussen (2006); Bonilla et al. (2007)). The
input to the multi-task GP is the time variable and the output is the set of physiolog-
ical variables at a certain point of time. The GP associated with every state Xn = i
is parametrized by a constant mean function mi(t) = mi, a squared-exponential covari-

ance kernel ki(t, t
′
) = σ2

i e
− 1

2`2
i

||t−t′ ||2
, and a “free-form” covariance matrix Σi between the

different physiological measurements (Bonilla et al. (2007)). Thus, for a E-dimensional
physiological stream Y (t) = (Y 1(t), . . ., Y E(t)), the observations for state i are generated
as follows〈

Y l
i (t) · Y v

i (t
′
)
〉

= Σi(l, v) · ki(t, t
′
), {Y l

i (t)}t∈T ,1≤l≤E ∼ N (mi(t),Σi),

where Σi(l, v, t, t
′
) =

〈
Y l
i (t) · Y v

i (t
′
)
〉

. The GP hyper-parameters associated with state i

are given by Θi = (mi, σi,Σi, `i), i.e. Yn(t)|Xn = i ∼ GP(Θi).
We note that the HASMM model is a segment model (Ostendorf et al. (1996); Murphy
(2002); Yu (2010); Guédon (2007)), i.e. observation samples that are defined within the
sojourn time of the same state are correlated, but observation samples in different states
are independent. The segmental nature of the model allows for easily handling ir-
regular sampling of temporally correlated observation at the cost of introducing
discontinuities of the observed data at the state transition times; in all clinical
settings of interest, capturing temporal correlations of irregular observations is
crucial whereas the continuity of observations is of less relevance. The model can
also be viewed as a state-switching model, but for which the transition dynamics do not
need to be linear as in (Georgatzis et al. (2016); Fox et al. (2011a)), but rather depend on
the covariance kernel ki(t, t

′
). Figure 5 depicts the correlation structure of the observable

variables in terms of the covariance matrix of a discrete version of Y (t) generated under a
specific hidden state sequence. We can see that conditioned on the hidden state sequence,
the covariance matrix is a block diagonal matrix, where the sizes of the blocks are random
and are determined by the states’ sojourn times.

Figure. 6 depicts the graphical model for an HASMM. In Figure. 6, the variables
yn are function-valued and correspond to the finite-duration, continuous-time functions
{Yn(t)}t∈Tn . The arrow between the (function-valued) yn and the latent state xn+1

designates the dependence of the transition probabilities on the state sojourn
time (i.e. the domain over which yn is non-zero). In Appendix A, we present
an algorithm (GenerateHASMM(Γ)) for sampling episodes from an HASMM with a hyper-
parameter set Γ; Figure 7 depicts an exemplary episode sampled via Algorithm 7.
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Figure 7: An episode generated by GenerateHASMM(Γ) with N = 5. The realized hidden state
sequence (upper) is {2, 3, 5}, and is absorbed in state 5. The physiological stream (Y 1(t), Y 2(t)) is
2-dimensional and stream Y 2(t) is sampled more intensely than Y 1(t).

3. Inference in Hidden Absorbing Semi-Markov Models

In this Section, we develop an online algorithm that carries out diagnostic and prognostic
inferences for a monitored patient’s episode in real-time. Given an ongoing realization of an
episode {y(t1), y(t2), . . ., y(tm)} at time tm (before the censoring time Tc), and the HASMM
model parameter Γ that has generated this realization, we aim at carrying out the following
inference tasks:

• Diagnosis: Infer the patient’s current clinical state, i.e. compute

P(X(tm) = j |Y (t1) = y(t1), . . ., Y (tm) = y(tm),Γ), ∀j ∈ X .

• Prognostic Risk Scoring: Compute the patient’s risk of absorption in the catas-
trophic state, i.e.

P(AN |Y (t1) = y(t1), . . ., Y (tm) = y(tm),Γ).

In the rest of this Section, we drop the conditioning on Γ for notational brevity. The first
inference task corresponds to disease severity estimation for patients with chronic disease,
or clinical acuity assessment for critical care patients. The second task corresponds to risk
scoring for future adverse events for patients who have been monitored for some period of
time, i.e. the risk of developing a future preclinical or clinical breast cancer state (Gail and
Mai (2010)), the risk of clinical deterioration for post-operative patients in wards (Rothman
et al. (2013)), the risk of mortality for ICU patients (Knaus et al. (1985)), etc.

3.1 Challenges facing the HASMM Inference Tasks

The inference tasks discussed in the previous Subsection are confronted with 3 main chal-
lenges –listed hereunder– that hinder the direct deployment of classical forward-backward
message-passing routines.
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Figure 8: An exemplary HASMM episode with 6 hidden state realizations and 9 observed samples.

1. In addition to the clinical states {Xn}Kn=1 being unobserved, the transition times
among the states, {τn}Kn=1, are also unobserved (i.e. we do not know the time at which
the patient’s state changed). Thus, unlike the discrete-time models in (Murphy (2002);
Johnson and Willsky (2013); Yu (2010); Dewar et al. (2012); Guédon (2007)), in
which we know that the underlying states switch sequentially in a (known) one-to-one
correspondence with the observations, in an HASMM the association between states
and observations is unknown. Figure 8 depicts an exemplary HASMM episode with 6
realized states and 9 observations samples; in this realization, the association between
the observations {Y (t1), Y (t2), Y (t3)} and state X1 is hidden. The importance of
reasoning about the hidden transition times is magnified by the duration-dependence
of the transition probabilities that govern the sequence {Xn}Kn=1.

2. Since observations are made at random and arbitrary time instances, some transitions
may not be associated with any evidential data. That is, as it is the case for state X2 in
Figure 8, there is no guarantee that for every state Xn, an observation is drawn during
its occupancy, i.e. [τn, τn+1). In a practical setting, the inference algorithm should
be able to reason about the state trajectories even in silence periods that come with
no observations (recall the example in Figure 2 where observations of a critical care
patient’s systolic blood pressure stop for an entire day). Hence, one cannot directly
discretize the time variable and use the discrete-time HMM inference algorithms (e.g.
the algorithms in (Rabiner (1989))) since in that case we would exhibit time steps
that come with no associated observations, and with potential state transitions.

3. The HASMM model assumes that observations that belong to the same state are
correlated (e.g. in Figure 8, each of the subset of observations {Y (t1), Y (t2), Y (t3)},
{Y (t4), Y (t5)} and {Y (t7), Y (t8)} are not drawn independently conditioned on the la-
tent state since they are sampled from a GP), thus we cannot use the variable-duration
and explicit-duration HSMM inference algorithms in (Murphy (2002); Johnson and
Willsky (2013); Yu (2010); Guédon (2007)), as those assume that all observations are
conditionally independent given the latent states. Our model is closer to a segment-
HSMM model (Yu (2010); Guédon (2007)), but with irregularly spaced observations
and an underlying duration-dependent state evolution process, which requires a dif-
ferent construction of the forward messages.

16



An HASMM Model for Informatively Censored Temporal Data

In the following Subsection, we develop a forward filtering algorithm that deals with episodes
generated from an HASMM and addresses the above challenges.

3.2 The HASMM Forward Filtering Algorithm

Given a realization of an episode {y(t1), y(t2), . . ., y(tm)} at time tm, the posterior proba-
bility of the patient’s current clinical state X(tm) is given by15

P(X(tm) = j | y(t1), . . ., y(tm), T ) =
dP(X(tm) = j, y(t1), . . ., y(tm) | T )

dP(y(t1), . . ., y(tm)|T )

=
dP(X(tm) = j, y(t1), . . ., y(tm) | T )∑N

j′=1 dP(X(tm) = j′, y(t1), . . ., y(tm) | T )
. (7)

The above application of Bayes’ rule implies that, given the observation times T , com-
puting the joint probability density dP(X(tm) = j, y(t1), . . ., y(tm) | T ) suffices for com-
puting the posterior probability of the patient’s clinical states. As it is the case for the
conventional HMM setting, we denote these joint probabilities as the forward messages
αm(j | T ) = dP(X(tm) = j, y(t1), . . ., y(tm) | T ).

Since the HASMM is a segment model, the conventional notion of the forward messages
αm(j | T ) does not suffice for constructing the forward filtering algorithm since we need to
account for the latent correlation structures between the (conditionally-dependent) obser-
vations (Murphy (2002)). To that end, we define αm(j, w | T ) as the forward message for
the jth state at the mth observation time (i.e. tm) with a lag w as follows

αm(j, w | T ) = dP(X(tm) = j, {tu}mu=m−w+1 ∈ Tn, tm−w ∈ Tn′ , {y(tu)}mu=1 | T ), (8)

for some n, n
′ ∈ N+, and n 6= n

′
. That is, the forward message αm(j, w | T ) is sim-

ply the joint probability that the current state is j, that the associated observations are
(y(t1), . . ., y(tm)), and that the current state has lasted for the last w measurements. For
notational brevity, denote the event

{
{tu}mu=m−w+1 ∈ Tn, tm−w ∈ Tn′

}
as ψ(m,w). Thus,

αm(j, w | T ) can be written as

αm(j, w | T ) =
N∑
i=1

m−w∑
w′=1

dP(X(tm) = j, ψ(m,w), X(tm−w) = i, ψ(m− w,w′), {y(tu)}mu=1 | T ),

which can be decomposed using the conditional independence properties of the states, ob-
servable variables and sojourn times as follows

dP(X(tm) = j, ψ(m,w), X(tm−w) = i, ψ(m− w,w′), {y(tu)}mu=1) =

dP({y(tu)}mu=m−w+1 |X(tm) = j, ψ(m,w)) × P(X(tm) = j |X(tm−w) = i, ψ(m− w,w′))︸ ︷︷ ︸
pij(tm−tm−w,ψ(m−w,w′ ))

×

P(ψ(m,w) |X(tm) = j)︸ ︷︷ ︸
Vj(tm−tm−w|λj)−Vj(tm−tm−w+1|λj)

× dP(X(tm−w) = i, ψ(m− w,w′), {y(tu)}m−wu=1 )︸ ︷︷ ︸
αm−w(i,w′ )

, (9)

15. We use the notation dP to denote a probability density defined with respect to (Ω,F ,P).
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where we have dropped the conditioning on T for notational brevity. The first term,
dP({y(tu)}mu=m−w+1 |X(tm) = j, ψ(m,w)), is the probability density of the observable vari-
ables in {y(tu)}mu=m−w+1 conditioned on the hidden state being X(tm) = j and that the
time instances {tu}mu=m−w+1 reside in the sojourn time of X(tm) = j. The second term,

pij(tm − tm−w, ψ(m−w,w′)), is the interval transition probability, i.e. the probability that
the state sequence transits to state j after a period tm − tm−w, given that its sojourn time
in state X(tm−w) = i at tm is at least tm − tm−w+1, and at most tm − tm−w−w′ . The third
term is the probability that the sojourn time in state X(tm) = j is between tm − tm−w+1

and tm − tm−w, whereas the fourth term, αm−w(i, w
′
), is the (m − w)th forward message

with a lag of w
′
. Thus, we can write the mth forward message with a lag w as follows

αm(j, w) = dP({y(tu)}mu=m−w+1 |X(tm) = j)×

N∑
i=1

m−w∑
w′=1

pij(tm − tm−w, ψ(m− w,w′)) · (Vj(tm − tm−w|λj)− Vj(tm − tm−w+1|λj)) · αm−w(i, w
′
).

(10)

As we can see in (10), one can express αm(j, w) using a recursive formula that makes use
of the older forward messages {αm−w(i, w

′
)}mw=1, where αo(i, w

′
) = 0, which allows for an

efficient dynamic programming algorithm to infer the patient’s clinical state in real-time.

The construction of the forward messages in (10) parallels the structure of forward
message-passing in segment-HSMM (See Section 1.2 in (Murphy (2002)) and Section 4.2.2
in (Yu (2010))), but with the following differences. In (10), the time interval between every
two observation samples is irregular, which reflects in the correlation between the observa-
tions in {y(tu)}mu=m−w+1 (depends on the covariance kernel of the GP, and the probability
of the current latent state’s sojourn time being encompassing the most recent w samples,
i.e. (Vj(tm − tm−w|λj)− Vj(tm − tm−w+1|λj)). However, the most challenging ingredient of
the forward message is the interval transition probability pij(tm−tm−w, ψ(m−w,w′)). This
is because unlike the discrete-time HSMM models in (Murphy (2002); Yu (2010)), which
exhibit transitions only at discrete time steps that are always accompanied with evidential
observations, i.e. no hidden transitions can occur between observation samples, and the
transitions among hidden states are duration-independent, in an HASMM, transitions can
occur at arbitrary time instances, multiple transitions can occur between two observation
samples, and transitions are duration-dependent.

In order to evaluate the term pij(tm − tm−w, ψ(m − w,w
′
)), we construct a virtual

(discrete-time) trivariate embedded Markov chain {X(tm), tm−w, tm−w+1}, the transition
probabilities of which are equal to the interval transition probabilities. In the recent work
in (Liu et al. (2015)), a similar embedded Markov chain analysis was conducted for a CT-
HMM (Continuous-time HMM), but for which the underlying state evolution process was
assumed to be a duration-independent ordinary Markov chain for which the expressions
for the interval transition probabilities are readily available by virtue of the exponential
distributions of the memoryless state sojourn times.
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Recall from Subsection 2.1.1 that the semi-Markov kernel of the hidden state sequence
{Xn}Kn=1 is defined as Qij(τ) = P(Xn+1 = j, Sn ≤ τ |Xn = i), i.e. the probability that
the sequence transits from state i to state j given that the sojourn time in i is less than
or equal to τ . Theorem 1 establishes the methodology for computing the interval tran-
sition probabilities pij(tm − tm−w, ψ(m − w,w

′
)) using the parameters of an HASMM.

In Theorem 1, we define P̃(τ,
¯
s, s̄) as a matrix-valued function P̃ : S → [0, 1]N×N , S =

{(τ,
¯
s, s̄) : τ ∈ R+, s̄ ∈ R+,

¯
s ≤ s̄} , the entries of which are given by

P̃(τ,
¯
s, s̄) =


p̃11(τ,

¯
s, s̄) p̃21(τ,

¯
s, s̄) · · · p̃N1(τ,

¯
s, s̄)

p̃12(τ,
¯
s, s̄) p̃22(τ,

¯
s, s̄) · · · p̃N2(τ,

¯
s, s̄)

...
...

...
p̃1N (τ,

¯
s, s̄) p̃2N (τ,

¯
s, s̄) · · · p̃NN (τ,

¯
s, s̄)


︸ ︷︷ ︸

SizeN×N matrix

.

In addition, we define a truncated semi-Markov kernel as

Q̄ij(τ,
¯
s, s̄) =

∫ s̄

s=
¯
s
(ḡij(τ + s)− ḡij(s)) ·

Vi(τ + s|λi)− Vi(s|λi)
1− Vi(s|λi)

· dVi(s|λi),

a scalar-valued function Q̄i(τ,
¯
s, s̄) =

∑
j∈X\{i} Q̄ij(τ,¯

s, s̄), and a matrix-valued function

Q̄(τ,
¯
s, s̄) =


0 Q̄21(τ,

¯
s, s̄) · · · Q̄N1(τ,

¯
s, s̄)

Q̄12(τ,
¯
s, s̄) 0 · · · Q̄N2(τ,

¯
s, s̄)

...
...

...
Q̄1N (τ,

¯
s, s̄) Q̄2N (τ,

¯
s, s̄) · · · 0


︸ ︷︷ ︸

SizeN×N matrix

.

Theorem 1 (Interval transition probabilities) Let P̃(τ,
¯
s, s̄) be the solution to the fol-

lowing integral equation

P̃(τ,
¯
s, s̄) = IN×N −diag

(
Q̄1(τ,

¯
s, s̄), . . . , Q̄N (τ,

¯
s, s̄)

)
+

∫ τ

u=0

∂Q̄(u,
¯
s, s̄)

∂u
× P̃(τ −u, 0, 0) du,

(11)
for the three independent variables (τ,

¯
s, s̄) ∈ S. Then, the interval transition probability

pij is given by pij(tm − tm−w, ψ(m − w,w′)) = p̃ij(τ,
¯
s, s̄), ∀i, j ∈ X , at τ = tm − tm−w,

¯
s = tm − tm−w+1, and s̄ = tm − tm−w+w′ .

Proof See Appendix B.

Theorem 1 follows from a first-step analysis that is akin to the derivation of the conventional
Chapman-Kolmogorov equations in ordinary Markov chains (Kulkarni (1996)). The integral
equation in (11) is a (matrix-valued) non-homogeneous Volterra integral equation of the
second kind (Polyanin and Manzhirov (2008)). It can be easily demonstrated that a closed-
form solution that hinges on conventional kernel methods cannot be obtained. Hence, we
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resort to a numerical method in order to solve (11) for P̃(τ,
¯
s, s̄), ∀(τ,

¯
s, s̄) ∈ S. Before

presenting the numerical method, we reformulate (11) as follows

P̃(τ,
¯
s, s̄) = IN×N −diag

(
Q̄1(τ,

¯
s, s̄), . . . , Q̄N (τ,

¯
s, s̄)

)
+

(
∂Q̄(.,

¯
s, s̄)

∂u
? P̃(., 0, 0)

)
(τ), (12)

where ? is an element-wise convolution operator. (12) follows from (11) by the fact that
the integral in (11) is a convolution integral; (12) can be expressed as follows

P̃(τ,
¯
s, s̄) = B{Q̄(τ,

¯
s, s̄)}(P̃(τ,

¯
s, s̄)), (13)

where the (functional) operator B{Q}(P̃) is given by

B{Q̄(τ,
¯
s, s̄)}(P̃(τ,

¯
s, s̄)) =

IN×N − diag
(
Q̄1(τ,

¯
s, s̄), . . . , Q̄N (τ,

¯
s, s̄)

)
+ F−1

{
F

{
∂Q̄(τ,

¯
s, s̄)

∂τ

}
· F

{
P̃(τ, 0, 0)

}}
,

(14)

where F is the Fourier transform operator, and the transforms in (14) are all taken with
respect to τ .

The solution to (13) can be obtained via the successive approximation method (Opial
(1967)) as follows. We initialize the function P̃(τ,

¯
s, s̄) with the truncated semi-Markov

kernel16 Q̄(τ,
¯
s, s̄), and then iteratively apply the operator B(.) to obtain a new value for

P̃(τ,
¯
s, s̄) until convergence. That is, the successive approximation procedure goes as follows

P̃
o
(τ,

¯
s, s̄) = Q̄(τ,

¯
s, s̄)

While
∥∥∥ P̃

z
(τ,

¯
s, s̄)− P̃

z−1
(τ,

¯
s, s̄)

∥∥∥
∞
> ε

P̃
z
(τ,

¯
s, s̄) = B{Q̄(τ,

¯
s, s̄)}(P̃z−1

(τ,
¯
s, s̄)).

(15)

The following Theorem establishes the validity of the procedure in (15) as a solver for (13).
Before presenting the statement of Theorem 2, we define the function space P as follows

P =

P̃(τ,
¯
s, s̄) : p̃ij(τ,

¯
s, s̄) ∈ [0, 1],

∑
j

p̃ij(τ,
¯
s, s̄) = 1, p̃ij(0,

¯
s, s̄) = δij , (τ,

¯
s, s̄) ∈ S

 ,

where δij is the Kronecker delta function.

Theorem 2 (Convergence of successive approximations) The functional B{Q̄}(P̃)
has a unique fixed-point P̃

∗
in P, and the successive approximation procedure in (15) always

converges to the fixed point, i.e. P̃
∞

(τ,
¯
s, s̄) = P̃

∗
(τ,

¯
s, s̄), starting from any initial value

P̃
o
(τ,

¯
s, s̄) ∈ P.

Proof See Appendix C.

16. This is a reasonable initialization since the entries of the semi-Markov kernel correspond to interval
transition probabilities conditioned on there being no intermediate transitions on the way from state i
to state j.
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Algorithm 1 Constructing a look-up table of interval transition probabilities

1: procedure TransitionLookUp(Γ, ε)
2: Input: HASMM parameters Γ and precision ε
3: Output: A look-up table [ p̃ij(a∆τ, b∆

¯
s, c∆s̄) ]i,j,a,b,c

4: Set the values of A,B and C (number of steps), ∆τ (step sizes)
5: for a = 1 to A, b = 1 to B, c = 1 to C do

6: gτij(a∆τ)←
∑a

x=1
e(ηij+βijx∆τ)∑N
k=1 e

(ηik+βikx∆τ)

(
1

Γ(λi,s)λ
λi,s
i,r

(x∆τ)λi,s−1 e
−x∆τ
λi,r

)
∆τ

7: gsij(a∆s)←
∑a

x=1
e(ηij+βijx∆s)∑N
k=1 e

(ηik+βikx∆s)

(
1

Γ(λi,s)λ
λi,s
i,r

(x∆s)λi,s−1 e
−x∆s
λi,r

)
∆s

8: Q̄ij(a∆τ, b∆
¯
s, c∆s̄)←

∑c
x=b

(gτij(a∆τ)−gsij(x∆s)) (Vi(a∆τ |λi)−Vi(x∆s|λi))
1−Vi(x∆s|λi) vi(x∆s|λi)

9: end for
10: e = ε+ 1
11: z ← 1
12: p̃

(o)
ij (a∆τ, b∆

¯
s, c∆s̄)← Q̄ij(a∆τ, b∆

¯
s, c∆s̄), ∀a, b, c, i, j.

13: while e > ε do
14: CQi,j,k(a∆τ, b∆

¯
s, c∆s̄)←

15: IFFT
(

FFT
(
diff
(
Q̄ik(a∆τ, b∆

¯
s, c∆s̄)

))
,FFT

(
p̃

(z−1)
jk (a∆τ, b∆

¯
s, c∆s̄)

))
,

16: p̃
(z)
ij (a∆τ, b∆

¯
s, c∆s̄)← δij Q̄ij(a∆τ, b∆

¯
s, c∆s̄) +

∑N
k=1CQi,j,k(a∆τ, b∆

¯
s, c∆s̄)

17: P̃
(z)

(a∆τ, b∆
¯
s, c∆s̄) =

[
p̃

(z)
ij (a∆τ, b∆

¯
s, c∆s̄))

]
i,j,a,b,c

18: e←
∥∥∥ P̃

(z)
(a∆τ, b∆

¯
s, c∆s̄)− P̃

(z−1)
(a∆τ, b∆

¯
s, c∆s̄)

∥∥∥
∞

19: z ← z + 1
20: end while
21: return P̃

(z)
(a∆τ, b∆

¯
s, c∆s̄)

22: end procedure

It is important to note that we do not need to solve for P̃(τ,
¯
s, s̄) during real-time infer-

ence. Instead, we create a look-up table comprising a discretized version of P̃(τ,
¯
s, s̄) =

[p̃ij(a∆τ, b∆
¯
s, c∆s̄))]i,j,a,b,c, and then we query this table when performing real-time in-

ference for monitored patients. Hence, efficient and fast inferences can be provided for
critical care patients for whom prompt diagnoses are necessary for the efficacy of clinical
interventions. Algorithm 1 shows a pseudocode for constructing a look-up table of interval
transition probabilities, TransitionLookUp(Γ, ε), which takes as an input the parameter
set Γ and a precision level ε (to control the termination of the successive approximation
iterations), and outputs the interval transitions look-up table P̃(τ,

¯
s, s̄). In Algorithm 1,

FFT and IFFT refer to the fast Fourier transform operation and its inverse, respectively,
and “diff(.)” refers to a numerical differentiation operation.

Now that we have constructed the algorithm TransitionLookUp to compute the interval
transition probabilities in the look-up table P̃(a∆τ, b∆

¯
s, c∆s̄), we can implement a forward-

filtering inference algorithm using dynamic programming (by virtue of the recursive formula
in (10)). In particular, the posterior probability of the patient’s current clinical state in
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Algorithm 2 Forward filtering inference

1: procedure ForwardFilter(Γ, {y(tw)}mw=1, ε)
2: Input: Observed samples {y(tw)}mw=1, HASMM parameters Γ, and precision ε
3: Output: The posterior state distribution {P(X(tm) = j | {y(tw)}mw=1)}Nj=1

4: P̃(a∆τ, b∆
¯
s, c∆s̄)← TransitionLookUp(Γ, ε)

5: α1(j, 1) = dP(y(t1) |X(t1) = j)
∑N

i=1 p̃ij(t1, 0, 0) · poi , ∀j ∈ X
6: for j = 1 to N
7: for z = 2 to m do
8: for w = 1 to z do
9: a∗(z, w) = arg mina |tz − tz−w − a∆τ |

10: b∗(z, w) = arg minb |tz − tz−w+1 − b∆
¯
s|

11: c∗(z, w,w
′
) = arg minc

∣∣tz − tz−w−w′ − c∆s̄∣∣
12: αz(j, w) = dP({y(tu)}zu=z−w+1 |X(tz) = j)

∑N
i=1

∑z−w
w′=1

αz−w(i, w
′
)×

p̃ij(a
∗(z, w)∆τ, b∗(z, w)∆

¯
s, c∗(z, w,w

′
)∆s̄) × (Vj(tz − tz−w|λj)− Vj(tz − tz−w+1|λj))

13: end for
14: end for
15: P(X(tm) = j | {y(tu)}mu=1 ) =

∑m
w=1 αm(j,w)∑N

k=1

∑m
w=1 αm(k,w)

16: return {P(X(tm) = j | {y(tw)}mw=1)}Nj=1

17: end procedure

terms of the forward messages can be written as

P(X(tm) = j | y(t1), . . ., y(tm)) =

∑m
w=1 αm(j, w)∑N

k=1

∑m
w=1 αm(k,w)

. (16)

Algorithm 2, ForwardFilter, implements real-time inference of a patient’s clinical state
given a sequence of measurements {y(t1), . . ., y(tm)}. In Algorithm 2, we invoke TransitionLookUp
initially to construct the look-up table of transition probabilities, but in practice, the look-
up table can be constructed in an offline stage once the HASMM parameter set Γ is known.

The number of computations can be reduced by limiting the lags w for every
forward message αm(j, w) to a maximum of W lags. Ignoring the computations
involved in evaluating the GP likelihoods, the complexity of ForwardFilter is
O(mWN + mN2). Since evaluating the GP likelihoods is cubic in the num-
ber of observations, the worst caset complexity of ForwardFilter is O((mWN +
mN2)W 3). (In most practical clinical settings of interest, the number of obser-
vations W can be restricted to include the most recent few samples.)

3.3 Prognostic risk scoring using an HASMM

Diagnostic inference, e.g. estimating the patient’s current state after a screening test, can be
conducted by a direct application of the forward filtering algorithm presented in the previous
Subsection. Prognostic risk scoring plays an important role in designing screening guidelines
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(Gail and Mai (2010)), acute care interventions (Knaus et al. (1985)) and surgical decisions
(Foucher et al. (2007)). A risk score is a measure for the patient’s risk of encountering an
adverse event (abstracted as state N in our model) at any future time step starting from
time tm. That is, the patient’s risk score at time tm can be formulated as

R(tm) = P(AN | {y(tu)}mu=1,Γ)

= 1− P(X(∞) = N | {y(tu)}mu=1,Γ), (17)

which can be computed using the outputs of TransitionLookUp and ForwardFilter as
follows

R(tm) =
N∑
j=1

p̃jN (A, 0, 0) ·
∑m

w=1 αm(j, w)∑N
k=1

∑m
w=1 αm(k,w)

. (18)

Therefore, the procedures TransitionLookUp and ForwardFilter suffice for executing both
the diagnostic and prognostic inference tasks.

4. Learning Hidden Absorbing Semi-Markov Models

In Section 3.1, we developed an inference algorithm that can handle diagnostic and prog-
nostic tasks for patients in real-time assuming that the true HASMM parameter set Γ is
known. In practice, the parameter set Γ is not known, and has to be learned from an
offline EHR dataset D that comprises D episodes for previously hospitalized or monitored
patients, i.e.

D =
{
{ydm, tdm}M

d

m=1, T
d
c , l

d
}D
d=1

,

where {ydm, tdm}M
d

m=1 are the observable variables and sampling times for the dth episode, T dc
is the episode’s censoring time, and ld ∈ {1, N} is a label for the realized absorbing state.

We note that unlike the conventional HMM learning setting (Rabiner (1989); Zhang et al.
(2001); Nodelman et al. (2012)), the episodes are not of equal-length as the observations
for every episode stop at a random, but informative, censoring time. Thus, the patient’s
state trajectory does not manifest only in the observable time series, i.e. {ydm, tdm}M

d

m=1, but
also in the episode’s censoring variables {T dc , ld}. In this Section, we develop an efficient
algorithm, which we call the forward-filtering backward-sampling Monte Carlo EM (FFBS-
MCEM) algorithm, that computes the Maximum Likelihood (ML) estimate of Γ given an
informatively censored dataset D, i.e. Γ∗ = arg maxΓ Λ(D |Γ), where Λ(D |Γ) = dP(D |Γ)
is the likelihood of the dataset D given the parameter set Γ. We start by presenting the
learning setup in Section 4.1, and then we present the FFBS-MCEM algorithm Section 4.3.

4.1 The Learning Setup

We focus on the challenging scenario when no domain knowledge or diagnostic assessments
for the patients’ latent states are provided in the dataset 17 D (with the exception of

17. For some settings, such as chronic kidney disease progression estimation (Eddy and Neilson (2006)), the
EHR records may include some anchors or assessments to the latent states over time. A simpler version
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the absorbing state which is declared by the variable ld), i.e. the learning setup is an
unsupervised one. For such a scenario, the main challenge in constructing the ML estimator
Γ∗ resides in the hiddenness of the patients’ state trajectories in the training dataset D; the
dataset D contains only the sequence of observable variables, their respective observation
times, the episode’s censoring time and the state in which the trajectory was absorbed. If the
patients’ latent state trajectories (X(t))t∈R+ were observed in D, the ML estimation problem
Γ∗ = arg maxΓ P(D |Γ) would have been straightforward; the hiddenness of (X(t))t∈R+

entails the need for marginalizing over the space of all possible latent trajectories conditioned
on the observed variables, which is a hard task even for conventional CT-HMM models (Liu
et al. (2015); Nodelman et al. (2012); Leiva-Murillo et al. (2011); Metzner et al. (2007)).

We start by writing the complete likelihood, i.e. the likelihood of an HASMM with a
parameter set Γ to generate both the hidden states trajectory {xdn, sdn}k

d

n=1 and the observable

variables {ydm, tdm}M
d

m=1 for the dth episode in the dataset D as follows

dP
(
{xdn, sdn}k

d

n=1, {ydm, tdm}M
d

m=1

∣∣∣ Γ
)

= P(xd1|Γ) · dP(sd1|xd1,Γ) · dP({ydm, tdm}tdm∈T d1 |x
d
1,Γ)×

kd∏
n=2

P(xdn |xdn−1, s
d
n−1,Γ) · dP(sdn |xdn,Γ) · dP({ydm, tdm}tdm∈T dn |x

d
n,Γ), (19)

where kd is the number of states that realized in episode d from t = 0 until absorp-
tion. The factorization in (19) follows from the conditional independence properties of
the HASMM variables (see Figure 6). Since we cannot observe the latent states trajec-

tory {xdn, sdn}k
d

n=1, the ML estimator deals with the expected likelihood Λ(D |Γ), which is
evaluated by marginalizing the complete likelihood over the latent states trajectories, i.e.

Λ(D |Γ) = Ex(t)|D,Γ

[
D∏
d=1

dP({xdn, sdn}k
d

n=1, {ydm, tdm}M
d

m=1 |Γ)

]

=
D∏
d=1

Exd(t)|D,Γ

[
dP({xdn, sdn}k

d

n=1, {ydm, tdm}M
d

m=1 |Γ)
]

=

D∏
d=1

∫
dP({xdn, sdn}k

d

n=1, {ydm, tdm}M
d

m=1 |Γ) · dP({xdn, sdn}k
d

n=1 | D, Γ), (20)

where the expectation is taken with respect to the latent trajectory conditioned on the
observed dataset D, which contains the information on every episode’s censoring
time T dc and terminating state ld. The integral in (20) can be further decomposed as
follows

Λ(D |Γ) =

D∏
d=1

∫
P(xd1|Γ) · dP(sd1|xd1,Γ) · dP({ydm, tdm}tdm∈T d1 |x

d
1,Γ) · dP({xdn, sdn}k

d

n=1 | D, Γ)

×
kd∏
n=2

P(xdn |xdn−1, s
d
n−1,Γ) · dP(sdn |xdn,Γ) · dP({ydm, tdm}tdm∈T dn |x

d
n,Γ). (21)

of the learning algorithm proposed in this Section can be used to deal with such datasets. In critical care
settings, it is more common that the EHR records are not labeled with any clinical state assessments
over time (Yoon et al. (2016)).
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4.2 Challenges Facing the HASMM Learning Task

The problem of learning the HASMM parameters by maximizing the likelihood function in
(21) is obstructed by various obstacles that hinder the deployment of off-the-shelf learning
algorithms; we list these challenges hereunder.

1. Finding the ML estimate Γ∗ by direct maximization of Λ(D |Γ) is not viable due
to the intractability of the integral in (21), i.e. Λ(D |Γ) has no analytic maximizer.
The difficulty of evaluating the expected likelihood Λ(D |Γ) follows from the need to
average the complete likelihood over a complicated posterior density function for the
latent state trajectory.

2. Direct adoption of the conventional Baum-Welch implementation of the EM algorithm
as a solution to the intractable problem of maximizing the expected likelihood in (21)
–as has been applied in HMMs (Rabiner (1989)), HSMMs (Murphy (2002)), EDHMMs
and VDHMMs (Yu (2010)– is not possible for the HASMM setting. This is due to the
intractability of the integral involved in the E-step; a problem that is also faced by
other continuous-time models (Liu et al. (2015); Nodelman et al. (2012)). However,
these models assumed Markovian state trajectories, in which case the implementation
of the E-step boils down to computing the expected state durations and transition
counts as sufficient statistics for estimating the latent trajectories18 (e.g. see Equations
(12) and (13) in (Liu et al. (2015))). This simplification, which follows from the
plausible properties of the Markov chain’s transition rate matrix, does not materialize
for semi-Markovian transitions. Further complications are introduced by the duration-
dependence of the state-transitions and the segmental nature of the observables.

3. Learning an informatively censored dataset would naturally benefit from the informa-
tion conveyed in the censoring variables {T dc , ld}. However, the availability of censor-
ing information leads to more complicated posterior density expressions for the latent
state trajectories, which complicates the job of any analytic, variational or Monte
Carlo based inference method one would use to infer the latent state trajectories19.

In the following Section, we present a learning algorithm that addresses the above challenges,
and provides insights into general settings in which informatively censored time series data
are to be dealt with.

18. Different approaches have been developed in the literature for computing these quantities: (Wang et al.
(2014)) assumes that the transition rate matrix is diagonalizable, and hence utilize a closed-form esti-
mator for the transition rates, whereas (Liu et al. (2015)) uses the Expm and Unif methods (originally
developed in (Hobolth and Jensen (2011))) to evaluate the integrals of the transition matrix exponential.
Unfortunately, none of these methods could be utilized for computing the proximal log-likelihood of an
HASMM due to the semi-Markovianity of the state trajectory (i.e. state-durations are not exponentially
distributed as it is the case in (Liu et al. (2015); Nodelman et al. (2012); Hobolth and Jensen (2011);
Wang et al. (2014))).

19. Note that the censoring information are only available in the model training (learning) phase since we
deal with an offline batch of data through which we can see the full patients’ episodes, whereas real-
time inference, discussed in the previous Section, does not take advantage of any external censoring
information.
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Figure 9: An episode that comprised 8 observable samples, censored at time Tc, and absorbed in state
N (catastrophic state). The dashed state trajectory is a trajectory that could have generated the
observables with a positive probability. Computing the proximal log-likelihood requires averaging
over infinitely many paths that could have generated the observables with a positive probability.

4.3 The Forward-filtering Backward-sampling Monte Carlo EM Algorithm

4.3.1 Expectation-Maximization

As in the case of classical discrete and continuous-time HMMs, we address the first challenge
stated in Section 4.2 by using the EM algorithm (Liu et al. (2015); Nodelman et al. (2012)).
The iterative EM algorithm starts with an initial guess Γ̂o for the parameter set, and
maximizes a proxy for the log-likelihood in the zth iteration as follows:

• E-step: U(Γ; Γ̂z−1) =
∑D

d=1 E
[

log(P({xdn, sdn}k
d

n=1, {ydm, tdm}M
d

m=1 |Γ))
∣∣∣ D, Γ̂z−1

]
.

• M-step: Γ̂z = arg maxΓ U(Γ; Γ̂z−1).

The E-step computes the proximal expected log-likelihood U(Γ; Γ̂z−1), which entails evalu-
ating the following integral

U(Γ; Γ̂z−1) =

D∑
d=1

∫
log(dP({xdn, sdn}k

d

n=1, {ydm, tdm}M
d

m=1 |Γ)) · dP({xdn, sdn}k
d

n=1 | D, Γ̂z−1),

where dP({xdn, sdn}k
d

n=1 | D, Γ̂z−1) = dP({xdn, sdn}k
d

n=1 | {ydm, tdm}M
d

m=1, x
d(T dc ) = ld, Γ̂z−1). That

is, the proximal expected log-likelihood U(Γ; Γ̂z−1) is computed by marginalizing the like-

lihood of the observed samples of the dth episodes {ydm, tdm}M
d

m=1 over all potential latent
paths (xd(t))t∈R+ that are censored at time T dc and absorbed in state ld. Figure 9 depicts a

set of observables ({ydm, tdm}M
d

m=1, x
d(T dc ) = ld) for one episode, and a potential latent path

{xdn, sdn}k
d

n=1 that could have generated such observables. Computing U(Γ; Γ̂z−1) requires av-
eraging over the posterior density of the latent paths conditional on an observable episode.

4.3.2 “The Only Good Monte Carlo is a Dead Monte Carlo”

Since computing U(Γ; Γ̂z−1) does not admit a closed-form solution, as mentioned earlier in
the second challenge stated in Section 4.2, we resort to a Monte Carlo approach for approx-
imating the integral involved in the E-step (Caffo et al. (2005)). That is, in the zth iteration

of the EM algorithm, we draw G random trajectories ({xd,gn , sd,gn }k
d,g

n=1)Gg=1 for every episode
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d, and use those trajectories to construct a Monte Carlo approximation ÛG(Γ; Γ̂z−1) for the
proximal log-likelihood function U(Γ; Γ̂z−1). Sample trajectories are drawn from the poste-
rior density of the latent states’ trajectory conditional on the the observable variables (in-

cluding the censoring information). That is to say, the gth sample trajectory {xd,gn , sd,gn }k
d,g

n=1

is drawn as follows

{xd,gn , sd,gn }k
d,g

n=1 ∼ dP({xdn, sdn}k
d

n=1 | {ydm, tdm}M
d

m=1, x
d(T dc ) = ld, Γ̂z−1), (22)

for g ∈ {1, . . ., G}. Hence, the proximal log-likelihood U(Γ; Γ̂z−1) can be approximated via
a Monte Carlo estimate ÛG(Γ; Γ̂z−1) as follows

ÛG(Γ; Γ̂z−1) ,
D∑
d=1

1

G

G∑
g=1

log(dP({xd,gn , sd,gn }k
d,g

n=1, {ydm, tdm}M
d

m=1 |Γ)). (23)

It follows from the Glivenko-Cantelli Theorem (Durrett (2010)) that

||U(Γ; Γ̂z−1)− ÛG(Γ; Γ̂z−1) ||∞ = sup
Γ
|U(Γ; Γ̂z−1)− ÛG(Γ; Γ̂z−1) | → 0 a.s.,

and hence the Monte Carlo implementation of the E-step becomes more accurate as the
sample size G increases. Sampling trajectories from the posterior distribution specified in
(22) in order to obtain a Monte Carlo estimate for U(Γ; Γ̂z−1) is not a straight forward task;
the sampler needs to jointly sample the states and their sojourn times taking into account
the duration-dependent transitions among states, and that the number of variables sampled
(number of states) kd,g in each trajectory is itself random.

Since there is no straightforward method that can generate samples for the random
state trajectory {xdn, sdn}k

d

n=1 from the joint posterior density in (22), the normative solu-
tion for such a problem is to resort to a Markov Chain Monte Carlo (MCMC) method
such as Metropolis-Hastings or Gibbs sampling (Carter and Kohn (1994)). Since the num-
ber of state and sojourn time variables, kd, is itself random, one can even resort to a
reversible jump MCMC method (Green and Hastie (2009)) in order to generate the samples

for {xdn, sdn}k
d

n=1. At this point of our analysis, we invoke the classical aphorism with which
we titled this Subsection: “The Only Good Monte Carlo is a Dead Monte Carlo” (Trotter
and Tukey (1956)). By this quote, Trotter meant to advocate the view that sophisticated
Monte Carlo methods should be avoided whenever possible; whenever an integral is an-
alytically tractable, or whenever some analytic insights can be exploited to built simpler
samplers, doing so should be preferred to an expensive Monte Carlo method. MCMCs are
indeed expensive: they mix very slowly and they generate correlated samples. Adopting
an MCMC to generate random state trajectories in every iteration of the EM algorithm
and for every episode in D is beyond affordable. Fortunately, in the rest of this Section we
show that an efficient sampler that generates independent samples of {xdn, sdn}k

d

n=1 and for
which the run-time is geometrically distributed can be constructed by capitalizing on the
censoring information and utilizing some insights from the literature on sequential Monte
Carlo smoothing (Godsill et al. (2004)).
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4.3.3 The Forward-filtering Backward-sampling Recipe

The availability of the censoring information for every episode d in D, together with the
inherent non-linearity of the semi-Markovian transition dynamics encourage the develop-
ment of a forward-filtering backward-sampling (FFBS) Monte Carlo algorithm20 that goes
in the reverse-time direction of every episode by starting from the censoring instance,
and sequentially sampling the latent states conditioned on the (sampled) future trajec-
tory (Godsill et al. (2004)). That is, unlike the generative process (described by the routine
GenerateHASMM(Γ)) which uses the knowledge of Γ to generate sample trajectories by draw-
ing an initial state and then sequentially going forward in time and sampling future states
until absorption, the inferential process naturally goes the other way around: it exploits in-
formative censoring by starting from the (known) final absorbing state (and censoring time),
and sequentially samples a trajectory by traversing backwards in time and conditioning on
the future.

We start constructing our forward-filter backward-sampler by first formulating the pos-
terior density of the latent trajectory {xn, sn}kn=1 (from which we sample the G trajectories
in the zth iteration of the FFBS-MCEM algorithm as shown in (22)) as follows

dP({xn, sn}kn=1 | {ym, tm}Mm=1, x(Tc) = l, Γ̂z−1) =

dP(sk | {ym, tm}Mm=1, x(Tc) = l) ·
k−1∏
n=1

dP(xn, sn | {xn′ , sn′}
k
n′=n+1︸ ︷︷ ︸

Future trajectory

, {ym, tm}Mm=1, Tc), (24)

where the conditioning on the (z − 1)th guess of the parameter set, Γ̂z−1 and the episode
index d are suppressed for notational convenience. The formulation in (24) decomposes the
posterior density of the latent trajectory {xn, sn}kn=1 into factors in which the likelihood of
every state n is conditioned on the future trajectory starting from n (i.e. the states xn+1

up to the absorbing states, together with their corresponding sojourn times). The posterior
density in (24) can be further decomposed as follows

dP({xn, sn}kn=1 | {ym, tm}Mm=1, x(Tc) = l) = dP(sk |xk = l, sk < Tc)×
k−1∏
n=1

dP(xn, sn | {xn′ , sn′}
k
n′=n+1

, sn < Tc − (sn+1 + . . . + sk)︸ ︷︷ ︸
Elapsed time in the episode

, {ym, tm}Mm=1), (25)

which, using the conditional independence properties of the HASMM (see Figure 6), can be
simplified as follows

dP({xn, sn}kn=1 | {ym, tm}Mm=1, x(Tc) = l) =

dP(sk |xk = l, sk < Tc) · P(x1 |x2, s1 = Tc − (s2 + . . . + sk), {(ym, tm) : tm ∈ T1})×
k−1∏
n=2

dP(xn, sn |xn+1, sn < Tc − (sn+1 + . . . + sk)︸ ︷︷ ︸
Elapsed time in the episode

, {(ym, tm) : tm ∈ T / ∪kn′=n+1
Tn′}︸ ︷︷ ︸

Observable variables up to state n

).

(26)

20. The methods used in this Section are also known in the literature as sequential Monte Carlo or particle
filtering methods (Godsill et al. (2004)).
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From (26), we can see that for the last state in every episode, i.e. state k, we already know
that xk = l, and hence the randomness is only in the last state’s sojourn time sk = l.
Contrarily, for the first state, we know that conditioned on the sojourn times of the “future
states” (s2, . . . , sk), the sojourn time of state x1 is equal to Tc −

∑k
n
′
=2
sn′ almost surely,

and hence the randomness is only in the initial state realization x1. Generally, (26) says
that a sufficient statistic for the nth state and sojourn time is the future trajectory (starting
from state n + 1) summarized by: the next state, i.e. xn+1, the observable variables up
to state n, and the time elapsed in the episode up to state n, i.e. the duration of state
n cannot exceed the difference between the censoring time Tc and the sojourn time of the
future trajectory that stems from state n + 1. This is captured by the last factor in (26),
which explicitly specifies the likelihood of a joint realization for a state and its sojourn time
conditioned on the future trajectory. Using Bayes’ rule, we can further represent the last
factor in (26) in terms of familiar quantities that are directly derived from the HASMM
model parameters as follows

dP(xn, sn |xn+1, sn < Tc − (sn+1 + . . . + sK), {(ym, tm) : tm ∈ T / ∪kn′=n+1
Tn′})

∝ P(xn | {(ym, tm) : tm ∈ T / ∪kn′=n+1
Tn′})︸ ︷︷ ︸

Forward message

× dP(sn |xn, sn < Tc − (sn+1 + . . . + sk))︸ ︷︷ ︸
Truncated sojourn time distribution

× P(xn+1 |xn, sn)︸ ︷︷ ︸
Transition function

. (27)

Thus, a sampler for the latent states trajectories can be constructed using the forward
messages, the HASMM’s transition functions (gij(s))i,j , and the sojourn time distributions.
A compact representation for the factors in (27) is given by

(Forward messages) P(Xn = j | {ym′ , tm′}
m
m′=1

, Γ̂z−1) = αz−1
m (j), ∀1 ≤ m ≤M, j ∈ X .

(Transition functions) P(Xn+1 = j |Xn = i, Sn = s, Γ̂z−1) = gz−1
ij (s), i, j ∈ X ,

(Truncated sojourn times) dP(Sn = s |Xn = j, Sn < s̄) =
vj(s|λ̂z−1

j ) · 1{s<s̄}

Vj(s̄|λ̂z−1
j )

, j ∈ X .

Given the representations above, we can write the last factor in (26) in the zth iteration of
the EM algorithm as follows

dP(xn, sn |xn+1, sn < s̄, {ym, tm}, Γ̂z−1) ∝ αz−1
m (xn) · gz−1

xn,xn+1
(sn) ·

vxn(sn|λ̂z−1
xn ) · 1{sn≤s̄}

Vxn(s̄|λ̂z−1
xn )

.

(28)

From the factor decomposition in (27), we can see that informative censoring allows us to
construct a sampler for the latent state trajectories that operates sequentially in the reverse
time direction by sampling from the posterior probability of every state n given the future
trajectory of states that starts from state n + 1. From (28), we note that the posterior
density of the latent states conditioned on the future trajectory, from which sequential
sampling is conducted, can be explicitly decomposed in terms of the HASMM parameters.

29



Alaa and van der Schaar

A complete recipe for the forward-filtering backward-sampling procedure for sampling tra-
jectories from the posterior density dP({xn, sn}kn=1 | {ym, tm}Mm=1, x(Tc) = l, Γ̂z−1) using
the decomposition in (27) and the posterior density in (28) is provided as follows:

• Forward filtering pass:
For every episode in D, compute the forward messages {αz−1

m (j)} for all time instances
tm ∈ T using the current estimate for the parameter set Γ̂z−1, i.e. invoke the routine
ForwardFilter(Γ̂z−1, {ym, tm}Mm=1, ε).

• Backward sampling pass:
For every episode in D, carry out the following steps:

1. Set a dummy placeholder index as k# = 1 and set uk# = l.

2. Sample a Bernoulli random variableBk# ∼ Bernoulli(P(k = k# | {uk, wk}k
#−1
k=1 , l)).

3. If Bk# = 0 and k# > 1, sample a bi-variate random variable (uk# , wk#) using
the routines TRSampler and BARSampler as follows

(uk# , wk#) ∼ 1

U
· αz−1

m (uk#) · gz−1
u
k# ,uk#−1

(wk#) ·
vu

k#
(wk# |λ̂z−1

u
k#

) · 1{wk#≤s̄}
Vu

k#
(s̄|λ̂z−1

u
k# )

,

where U =
∑

u

∫
w α

z−1
m (u) · gz−1

u,u
k#−1

(w) · vu(w|λ̂z−1
u ) ·1{w≤s̄}

Vu(s̄|λ̂z−1
u )

, s̄ = Tc−
∑k#−1

n′=1
wn′ ,

and m = arg maxm′ {T : tm′ ≤ s̄}.

If Bk# = 0 and k# = 1, then sample wk# as follows

wk# ∼
vu

k#
(wk# |λ̂z−1

u
k#

) · 1{wk#≤Tc}
Vu

k#
(Tc|λ̂z−1

u
k# )

.

4. If Bk# = 1, then set wk# = s̄. If k# > 1, then sample uk# as follows

uk# ∼
dP({ym′ , tm′}

m
m′=1

|uk#) · gu
k# ,uk#−1

(s̄) · vu
k#

(s̄|λ̂z−1
u
k#

) · p̂o,z−1
u
k#∑

u dP({ym′ , tm′}mm′=1
|u) · gu,u

k#−1
(s̄) · vu(s̄|λ̂z−1

u ) · p̂o,z−1
u

.

5. If Bk# = 0, then increment the placeholder index k# and go to step 2 and repeat
the consequent steps.

6. If Bk# = 1, then set k = k# and terminate the sampling process. Set the
sampled trajectory by swapping the bi-variate sequence (uk# , wk#) as follows:
(xn, sn) = (uk#−n+1, wk#−n+1),∀n ∈ {1, . . ., k#}.

The forward-filtering backward-sampling procedure constitutes of a forward pass in
which we compute the forward messages for all the data points in D using the dynamic pro-
gramming algorithms presented in Section 3, and a backward pass in which these forward
messages are used to sample latent state trajectories. The backward sampling procedure
for every episode goes as follows. We start from the censoring time at which we know what
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Algorithm 3 Truncated Rejection Sampler

1: procedure TRSampler(Γ, u, s̄)
2: Input: A parameter set Γ, a state u and a truncation threshold s̄
3: Output: A random variable s
4: k ← 0
5: while k = 0 do
6: s ∼ vu(s|λu)
7: Accept s and set k ← 1 if s < s̄. Reject s otherwise.
8: end while
9: return s

10: end procedure

Algorithm 4 Bivariate Adaptive Rejection Sampler

1: procedure BARSampler({α(j)}Nj=1, Γ, u
′
, w̄)

2: Input: A set of N forward messages {α(j)}Nj=1, parameter set Γ, and a state u
′

3: Output: A bivariate conditional random variable (u,w)|u′

4: k ← 0
5: while k = 0 do
6: u ∼ Multinomial(α(1), . . ., α(N))
7: w = TRSampler(Γ, u, w̄)
8: ũ ∼ Multinomial(gu1(w), . . ., guN (w))
9: Accept (u,w) and set k ← 1 if ũ = u

′
. Reject (u,w) otherwise.

10: end while
11: return (u,w)
12: end procedure

state has actually materialized, i.e. the absorbing state. Since we do not know the number
of states in the state trajectory, we initialize a placeholder index k# = 1 as an index for the
absorbing state, and increment it whenever a new state is sampled. We start the sampling
procedure as follows. Given the the censoring variables and the observable time series, we
sample the sojourn time of the last state (the absorbing state): this is sampled from a
truncated sojourn time distribution, with a truncation threshold at Tc, and a point mass at
Tc with an assigned measure that is equal to the posterior probability of the absorbing state
being the initial state as depicted in Figure 10. This is implemented by first sampling a
Bernoulli random variable Bk# with a success probability equal to the posterior probability
of the absorbing state being the initial state, and then sampling the truncated sojourn time
if Bk# = 0 using the simple rejection sample executed by the routine TRSampler which
is provided in Algorithm 3. Having sampled the last state’s sojourn time, we sample the
penultimate state and its sojourn time jointly using the routine BARSampler (Algorithm 4)
as depicted in Figure 11. The routine BARSampler uses a sampling algorithm, that we call
the bi-variate adaptive rejection sampler, which jointly samples the current state and its
sojourn time given the next state as follows. First, a state is sampled from a Multinomial
distribution with probability masses equal to the forward messages. Next, given the sam-
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Algorithm 5 A sampler for latent state trajectories

1: procedure BackwardSampling(Γ, {{αom(j)}m,j}, {ym, tm}Mm=1, x(Tc) = l)
2: Input: Parameter Γ, forward messages, observables, and censoring information
3: Output: A sampled latent state trajectory {xn, sn}kn=1

4: k# ← 1, uk# ← l, Bk# ∼ Bernoulli(P(k = k#|{ym, tm}Mm=1, x(Tc) = l))
5: if Bk# = 0 then
6: wk# = TRSampler(Γ, uk# , Tc)
7: k# ← k# + 1
8: else
9: wk# = Tc, k = 1, {x1, s1} ← {uk# , wk#}

10: Terminate BackwardSampling.
11: end if
12: while k# > 0 do
13: Bk# ∼ Bernoulli(P(k = k#|{uk, wk}k

#−1
k=1 , {ym, tm}Mm=1))

14: s̄ = Tc −
∑k#−1

n′=1
wk#

15: if Bk# = 0 then
16: (uk# , wk#)← BARSampler({αom(j)}j ,Γ, uk#−1, s̄)
17: k# ← k# + 1
18: else
19: Sample the initial state uk# , set wk# ← s̄
20: {xn, sn} = {uk#−n+1, wk#−n+1}, ∀n ∈ {1, . . ., k#}
21: k# ← −1
22: end if
23: end while
24: return {xn, sn}kn=1

25: end procedure

pled state, we sample a sojourn time from the truncated sojourn time distribution. Finally,
given the sampled state and the sampled sojourn time, we sample a dummy state from a
Multinomial whose masses are equal to the transition functions, and we accept the sample
only if the sampled dummy state is equal to the next state. It can be easily proven that
BARSampler generates samples that are equal in distribution to the true state trajectory.

The backward-sampling procedure operates sequentially by invoking the BARSampler

to generate new state and sojourn times samples conditional on the previously sampled
(future) states. The process terminates whenever Bk# = 1, i.e. a state is sampled as
an “initial state”. The routine BackwardSampling (Algorithm 5) implements the overall
backward-sampling procedure for every episode in D. The computational complexity
of the BackwardSampling routine is dominated by the computation of the GP
likelihood (Step 4 in the sampling procedure described above), which is cubic in
the number of observations (O(W 3)). The computations in the BackwardSampling

procedure scales only linearly with the number of states N .

Note that, unlike the slowly mixing MCMC methods, the backward-sampling algorithm
can generate the latent state trajectory in an efficient manner, i.e. the run-time of the
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Algorithm 6 Forward-filtering Backward-sampling Monte Carlo EM Algorithm

1: procedure FFBS-MCEM(D, G, ε)
2: Input: A dataset D, number of Monte Carlo samples G, and a precision level ε
3: Output: An estimate Γ̂ for the HASMM parameters
4: Set an initial value Γ̂o for the HASMM parameters
5: {αd,om }Md

m=1 = ForwardFilter(Γ̂o, {ydm, tdm}
Md
m=1, ε), ∀1 ≤ d ≤ D . Forward pass

6: for d = 1 to D do . Backward pass: sample G latent state trajectories
7: for g = 1 to G do
8: {xd,gn , sd,gn }k

d,g

n=1 = BackwardSampling(Γ̂o, {ydm, tdm}
Md
m=1, x

d(T dc ) = ld)
9: end for

10: end for
11: z ← 1
12: E ← ε+ 1
13: while E > ε do
14: Iz−1

d,g ← dP({xd,gn , sd,gn }k
d,g

n=1 | Γ̂z−1)/dP({xd,gn , sd,gn }k
d,g

n=1 | Γ̂o) . Importance weights

15: ÛG(Γ; Γ̂z−1) =
∑

d,g log(dP({xd,gn , sd,gn }k
d,g

n=1, {ydm, tdm}M
d

m=1 |Γ)) · I
z−1
d,g

G . E-step

16: Γ̂z = arg maxΓ ÛG(Γ; Γ̂z−1) . M-step
17: z ← z + 1
18: end while
19: return Γ̂ = Γ̂z

20: end procedure

backward-sampling algorithm is stochastically dominated by a geometrically-distributed
random variable with a success probability that, other than in a pathological HASMM pa-
rameter settings, would not be close to zero. Moreover, since BackwardSampling generates
independent samples, no wasteful burn-in sampling iterations are involved in the FFBS-
MCEM operation. We provide a pseudocode for the overall operation of the FFBS-MCEM

algorithm in Algorithm 6. We omit the standard EM operations for the sake of brevity.
The details of the M -step is provided in Appendix D.

In Algorithm 6, we avoid the need for running the routine BackwardSampling in every
iteration of the EM algorithm by re-using the sampled trajectories based on the initial
parameter guess Γ̂o through the usage of importance weights in the E-step. That is, in the
zth iteration of the EM algorithm, we implement the E-step as follows (Booth and Hobert
(1999))

ÛG(Γ; Γ̂z−1) =
∑
d,g

log(dP({xd,gn , sd,gn }k
d,g

n=1, {ydm, tdm}M
d

m=1 |Γ)) · dP({xd,gn , sd,gn }k
d,g

n=1 | Γ̂z−1)

dP({xd,gn , sd,gn }kd,gn=1 | Γ̂o)︸ ︷︷ ︸
Importance weights

.

This implementation for the E-step offers a tremendous advantage in the computational
cost of FFBS-MCEM. By using importance weights, we need to compute the forward messages
and sample the latent state trajectories only once, and then reuse the sampled trajectories
in all the subsequent EM iterations.
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Figure 10: Depiction of the backward sampling pass for the last state of an episode d.
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Figure 11: Depiction of the backward sampling pass for the penultimate state after having sampled
the last state as depicted in the Figure above.

5. Experiments: Intensive Care Unit Prognostication

We investigate the utility of the HASMM in the setting of ICU prognostication; we use the
HASMM as a model for the physiology of critically ill patients in regular hospital wards
who are monitored for various vital signs and lab tests. Through the HASMM, we construct
a risk score (based on the analysis in Section 3.3) that assesses the risk of clinical deterio-
ration for the monitored patients, which allows for timely ICU admission whenever clinical
decompensation is detected. Risk scoring in hospital wards and ICU admission management
is a pressing problem with a huge social and clinical impact: qualitative medical studies
have suggested that up to 50% of cardiac arrests on general wards could be prevented by
earlier transfer to the ICU (Hershey and Fisher (1982)). Since over 200,000 in-hospital
cardiac arrests occur in the U.S. each year with a mortality rate of 75% (Merchant et al.
(2011)), improved patient monitoring and vigilant care in wards enabled by the HASMM
would translate to a large number of lives saved yearly.
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5.1 Evidence of the Clinical Utility of Early ICU Admission

Throughout this Section, we will evaluate the clinical utility of our model by investigating
both the accuracy and timeliness of the real-time risk scores that the model computes. This
approach has been the standard approach for evaluating the clinical utility of risk scores
in retrospective clinical cohort studies that deal with critical care data (Pirracchio et al.
(2015); Rothman et al. (2013). More accuracy and timeliness translates to a necessarily
improved clinical outcomes; this fact has been confirmed by a large number of medical
studies (Cardoso et al. (2011); Johnson et al. (2013); Hershey and Fisher (1982)). For
instance, in (Cardoso et al. (2011)), it was shown that each hour of waiting in the ward was
independently associated with a 1.5% increased risk of mortality in the ICU.

We stress that knowing the exact magnitude of the improvement in clinical utility (in
terms of the reduction in the incidence rates of adverse outcomes) upon using our model is
not possible since all available datasets are observational in nature. That is, it is impossible
to answer the question of “what would have happened to the patient in the ICU had she
been admitted earlier?”. Estimation of such counterfactual outcomes is also not viable
due to the highly imbalanced nature of the data and the wide variety of possible adverse
outcomes in the ICU, some of which are not available in our dataset. Evaluating the clinical
utility in terms of the reduction in the incidence rates of adverse outcomes is only possible
through an actual clinical trial. Hence, after consulting with our medical collaborators
and following the clinical literature on observational studies, we rely on the accuracy and
timeliness metrics as proxies for the clinical utility.

5.2 Data

5.2.1 The Patients’ Cohort

Experiments were conducted on a heterogeneous cohort of 6,094 episodes for patients who
were hospitalized in Ronald Reagan UCLA medical center during the period between March
3rd, 2013 to March 29th, 2016. The patients’ population is heterogeneous: we considered
admissions to all the floors and units in the medical center, those include the acute care
pediatrics unit, cardiac observation unit, cardiothoracic unit, hematology and stem cell
transplant unit and the liver transplant service. Patients admitted to those floors (or wards)
are post-operative or pre-operative critically ill patients who are vulnerable to adverse
clinical outcomes that may require an impending ICU transfer. The cohort comprised
patients with a wide variety of ICD-9 codes and medical conditions, including leukemia,
hypertension, septicemia, sepsis, abdomen and pelvis, pneumonia, and renal failure. Table
2 shows the distribution of the most common ICD-9 codes in the patient cohort together with
the corresponding medical conditions . The notable heterogeneity of the cohort suggests
that the results presented in this Section are generalizable to different cohorts extracted from
different hospitals. Every patient in the cohort is associated with a set of 21 (temporal)

physiological streams comprising a set of vital signs and lab tests that are listed in Table
2. The physiological measurements are gathered over time during the patient’s stay in the
ward, and they manifest -in a subtle fashion- the patient’s clinical state. The physiological
measurements are collected over irregularly spaced time intervals (usually ranging from 1
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Figure 12: Visualization for the episodes’ censoring information.

to 4 hours); for each physiological time series, we have access to the times at which each
value was gathered.

5.2.2 Inclusion and Exclusion Criteria

In all the experiments hereafter, we split the patient cohort into a training set and a testing
set. In the training set, we included a total of 4,939 patients admitted to the medical center
in the period between March 3rd, 2013 to November 1st, 2015; the testing set comprises 1,155
patients admitted in the period between November 1st, 2015 to March 29th, 2016. This split
of the data allows us to assess the performance under the realistic scenario when a certain
algorithm learns from the data available up to a certain date, and then is used to assess the
risk for patients admitted in future dates. In Table 2, we show statistics for the patients’
baseline static features (e.g. gender, age, etc) in both the training and testing sets; as we can
see, the characteristics of the patients admitted in the period (March 2013 - November 2015)
has not significantly changed from those admitted in the period (November 2015 - March
2016). We have verified this fact using a two-sample t-test through which we compared
the expected values of the baseline co-variates in both the training and testing sets. This
means that the hospital’s management policy with respect to the patients’ acceptance and
triaging has not significantly changed across the two time periods, and hence whatever
is learned from the training data can be sensibly applied to the testing data. We have
excluded all patients who underwent a preplanned ICU admission from the
dataset since those patients did not actually experience clinical deterioration,
but were transferred routinely to the ICU after a surgery.

5.2.3 Informative Censoring

All the patient episodes in the cohort were informatively censored. That is, for every patient
in the cohort, we know the following information:

• The censoring time (Tc): the length of stay of each patient in the ward is recorded in
the dataset, and hence we have access to the HASMM’s censoring time variable Tc. The
average hospitalization time (or censoring time) in the cohort is 157 hours and 34 minutes
(6.5 days). The patient episodes’ censoring times ranged from 4 hours to 2,672 hours.

37



Alaa and van der Schaar

• The absorbing clinical state (l): with the help of experts from the division of pul-
monary and critical care medicine at Ronald Reagan UCLA medical center, we set the
value of the variable l (absorbing state) for every patient’s episode based on the clinicians’
interventions as reported in the dataset. That is, as advised by our medical collaborators,
we assigned the label l = 1 to every patient who was admitted to the ICU and underwent
an intervention in the ICU (e.g. ventilator, drug, etc), or was reported to exhibit a cardiac
or respiratory arrest (before or after the ICU transfer). According to the medical experts,
those patients have experienced “clinical deterioration” as their absorbing state, and would
have benefited from an earlier admission to the ICU. We assigned the label l = 0 to all pa-
tients who were discharged home after the clinician’s in charge realized they were clinically
stable. Since the readmission rate at the UCLA medical center is quite low, our medical
collaborators believe that the labels l = 1 and l = 0 represent an accurate representation
for the patients’ true absorbing clinical states upon censoring.

Patient episodes with the absorbing state l = 0 had an average censoring time of 155 hours,
whereas those with l = 1 had an average censoring time of 204 hours. The percentage of
episodes with an absorbing state l = 1 was 4.98% 0.64% in the training period (March
2013 - November 2015), and was 5.19% 1.44% in the testing period (November 2015 -
March 2016). A two-sample t-test reveals that the censoring information (distributions of
Tc and l) has not significantly changed from the training to testing periods, which suggests
that the HASMM learned from the training data can be sensibly applied to the testing
data. Figure 12 visualizes the informative censoring information over the time period be-
tween March 2013 and March 2016. Every patient episode, starting at a certain admission
date, is represented by its censoring time (hospitalization time); light colored episodes are
ones that were absorbed in the clinical stability state (l = 0), whereas dark colored ones
were absorbed in the clinical deterioration state (l = 1).

5.3 Baseline Algorithms

We compare our model with other baseline early warning methods. The comparisons involve
both state-of-the-art clinical risk scores that are currently used in various healthcare facilities
around the world, in addition to benchmark machine learning algorithms. The details of
the baselines are provided in the following subsections.

5.3.1 State-of-the-art Clinical Risk Scores

We have conducted comparisons with the most prominent clinical risk scores currently
deployed in major healthcare facilities. We list the clinical risk scores involved in our
comparisons hereunder.

(i) Modified Early Warning System (MEWS): a risk scoring scheme used currently
by many healthcare facilities and rapid response teams to quickly assess the severity
of illness of a hospitalized patient (Morgan et al. (1997)). The score ranges from 0 to 3
and is based on the following cardinal vital signs: systolic blood pressure, respiratory
rate, SaO2, temperature, and heart rate.

38



An HASMM Model for Informatively Censored Temporal Data

(ii) Sequential Organ Failure Assessment (SOFA): a risk score (ranging from 1
to 4) that is used to determine the extent of a hospitalized patient’s respiratory,
cardiovascular, hepatic, coagulation, renal and neurological organ function in the ICU
(Vincent et al. (1996)).

(iii) Acute Physiology and Chronic Health Evaluation (APACHE II): a risk scor-
ing system (an integer score from 0 to 71) for predicting mortality of patients in the
ICU (Knaus et al. (1991)). The score is based on 12 physiological measurements,
including creatinine, white blood cell count, and glasgow coma scale.

(iv) Rothman Index: a regression-based data-driven risk score that utilizes physiological
data to predict mortality, 30-days readmission, and ICU admissions for patients in
regular wards (Rothman et al. (2013)). The Rothman index is the state-of-the-art
risk score for regular ward patients and is currently used in more than 70 hospitals in
the US, including the Houston Methodist hospital in Texas and the Yale-New Haven
hospital in Connecticut (Landro (2015)). At the time of conducting these experiments,
the Rothman index was also deployed in the Ronald Reagan UCLA medical center.

We implemented the MEWS, SOFA, APACHE II and Rothman scores according to the
specifications in (Vincent et al. (1996); Knaus et al. (1991); Rothman et al. (2013)). Note
that while the SOFA and APACHE II scores are usually deployed for patients in the ICU,
both scores have been recently shown to provide a prognostic utility for predicting clinical
deterioration for patients in regular wards (Yu et al. (2014)), and hence we consider both
scores in our comparisons. All the features used by these scores were also fed to the machine
learning baselines.

5.3.2 Machine Learning Algorithms

In order to demonstrate the modeling gain of HASMMs, we make comparisons with 12
competing machine learning algorithms. We list all the baseline models hereunder.

• Random forest.

• Logistic regression.

• XGBoost.

• AdaBoost.

• Bagging.

• Least absolute shrinkage and selection operator (LASSO).

• Deep Neural Networks (DNN) trained with BFGS.

• DNN trained with ADAM.

• Recurrent Neural Networks (RNN) trained with BFGS.

• RNN trained with ADAM.
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• Hidden Markov Models (HMM) with Gaussian emissions.

• Multi-task Gaussian process (MTGP).

Recently, notable works have built on ideas from deep learning and deep hierarchical
models to construct survival predictors that learn from time-to-event data: examples of
such models are those in (Katzman et al. (2016)) and (Ranganath et al. (2016)). Unfortu-
nately, these models do not apply directly to our setting for two reasons. First, the models
therein are not well-suited for handling irregularly sampled follow-ups and computing sur-
vival curves in a dynamic fashion. Second, and more importantly, our main focus is to
predict whether or not a patient will exhibit clinical deterioration in the future, and not
estimating survival curves with respect to a single endpoint event. Hence, our problem
is technically equivalent to survival analysis with two “competing risks” (Prentice et al.
(1978)), with the competing risks being ICU admission and hospital discharge, and thus
the problem cannot be directly cast to the standard survival analysis setting tackled in
(Katzman et al. (2016)) and (Ranganath et al. (2016)).

In order to ensure that the censoring information is properly utilized by all the discrimina-
tive predictors (Random forest, Logistic regression, XGBoost, AdaBoost, Bagging, LASSO,
MTGP, and DNN), we train every predictor by constructing a training dataset that com-
prises the physiological data gathered within a temporal window before the censoring event
(ICU admission or patient discharge), and using the censoring information (i.e. the variable
l) as the labels. The size of this window is a hyper-parameter that is tuned separately for
every predictor. For the testing data, the predictors are applied sequentially to a sliding
window of every patient’s episode, and the predictor’s output is considered as the patient’s
real-time risk score. We used Python’s Sklearn library (Pedregosa et al. (2011)) for training
the Random forest, Logistic regression, XGBoost, AdaBoost, Bagging, LASSO and DNN
predictors, and the GPy library (group (2012)) for training the MTGP predictor. The
RNN models were implemented in TensorFlow (Abadi et al. (2016)).

Although RNNs are not clinically interpretable, they have been frequently applied to the
problem of clinical time series prediction, and the recent work in (Che et al. (2016)) have
considered RNNs to predict mortality in the ICU using the MIMIC dataset (Saeed et al.
(2002)). We have trained an RNN with 5 hidden layers, and 10 neurons with each layer,
using both the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm21, where gradients are
computed using the Backpropagation Through Time algorithm (Werbos (1990)). We have
also trained an RNN model using the ADAM optimizer (Kingma and Ba (2014)). All the
training time series were temporally aligned via the endpoint censoring information, and
training was accomplished via 1000 iterations of the gradient descent algorithm. A top layer
with a squashing sigmoid function was used to map the RNN hidden states to a risk score
between 0 and 1 at each point in time. The DNNs are implemented as multi-layer percep-
trons, the hyper-parameters of which (number of layers and hidden units) are optimized
using grid search.

21. We have also tried the Levenberg-Marquardt algorithm, but the network learned by BFGS offered a
significantly better performance.
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We used the Baum-Welch algorithm for learning the HMM (Murphy et al. (2001)); the
informative censoring information was incorporated by including two absorbing states for
clinical stability (l = 0) and deterioration (l = 1), and informing the forward-backward
algorithm with the labeled states at the end of every episode. We tried many initializations
for the HMM parameters and picked the initialization that led to the maximum likelihood
for the training dataset. The complete data log likelihood after 100 EM iterations was
-1.25× 107. In real-time, a patient’s risk score at every point of time is computed by first
applying forward filtering to obtain the posterior probability of the patient’s states, and
then averaging over the distribution of the absorbing states. Using the Bayesian Informa-
tion Criterion, we selected an HMM model with 4 latent states.

For the multi-task Gaussian process, we used the free-form parametrization (intrinsic core-
gionalization model) in (Bonilla et al. (2007)), and used the gradient method to learn the
parameters of two Gaussian process models: one for patients with l = 0, and one for patients
with l = 1. The risk score for a patient’s risk score is computed as the test statistic of a
sequential hypothesis test that is based on the two learned Gaussian process models. This
differs from the static simulation setting in (Ghassemi et al. (2015)) were predictions are
issued in a one-shot fashion using only the data obtained within 24 hours after a patient’s
admission.

We used the correlated feature selection algorithm to select the physiological stream for ev-
ery predictor (Yu and Liu (2003)). To ensure a fair comparison, we did not include
the static (background) co-variates in any predictor, including the HASMM,
since they are not used by the clinical risk scores.

5.4 Results

5.4.1 Performance metrics

In order to assess the performance of every algorithm, we compute each algorithm’s risk
score R(t) at every point of time in every patient’s episode. We only use the patient
episodes in the testing set for performance evaluation. The risk score that is based on an
HASMM is evaluated as discussed in Section 3.3. We emulate the ICU admission decisions
by setting a threshold on the risk score R(t) above which a patient is identified as “clinically
deteriorating”. The accuracy of such decisions are assessed via the following performance
metrics: true positive rate (TPR), positive predictive value (PPV) and timeliness. These
performance metrics are formally defined as follows:

TPR =
# patients with l = 1 and R(t) exceeding threshold for some t < Tc

# patients with l = 1
,

PPV =
# patients with l = 1 and R(t) exceeding threshold for some t < Tc

# patients with R(t) exceeding threshold for some t < Tc
,

and

Timeliness = E [Time at which R(t) exceeds threshold− Tc | R(t) exceeds threshold, l = 1] .
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The three performance metrics described above evaluate the different risk scoring algorithms
in terms of their detection power, false alarm rate, and timeliness in detecting clinical dete-
rioration. We sweep the threshold value of every risk scoring algorithm and report the AUC
of the TPR vs. PPV ROC curve. All results reported hereafter are statistically significant
(p-value < 0.001).

The usage of precision and recall (TPR and PPV) instead of the conventional (TPR and
FPR) metrics is driven by the following motives. Since we are using our model as an alarm
system, our algorithm only picks patients who are believed to be deterioration (patients
with label 1), and we are not identifying stable patients (i.e. there is no well-defined “true
negative” count). The performance of an algorithm in this particular “information retrieval”
setting is more sensibly assessed via precision and recall. That is, we are trying to identify
as many deteriorating patients as possible (TPR) and avoid overwhelming the ward staff
with many false alarms (PPV). The “true negative” count does not play an important role
in our setting. We also note that the ward’s patient cohort has a significant class imbalance
(the ICU admission rate is around 5%). Hence, we are typically trying to identify a small
number of deteriorating patients in a large pool of stable patients. In such an unbalanced
cohort, it is significantly more difficult to achieve a good PPV (PPV = TP/(TP + FP))
than a low false positive rate (FPR = FP/(FP + TN)) for a fixed TPR, since most pa-
tients are already clinically stable and therefore the false positive and true negative counts
(which are counted in the stable population) will naturally be significantly larger than the
true positive counts. Hence, the FPR rates (and consequently the AUC values) may look
deceptively high, but they are not truly reflective of the “usefulness” of the algorithm. This
is because one can still have numerous false alarms, the quantification of which is distorted
by the large true negative rates that results mainly because of the fact most patients are
stable. Due to reasons above, the area under the TPR vs. PPV curve has been recently
identified by the critical care community as being a more sensible measure of accuracy
(Romero-Brufau et al. (2015)).

While the traditional AUCROC metric can be interpreted as the probability of miss-ranking
two instances with positive and negative classes, the area under the TPR vs. PPV curve
can be interpreted as a measure of how well an algorithm can identify the positive classes in
a pool of instances with a negative class (Davis and Goadrich (2006)). Note that random
guessing yields an area under TPR vs. FPR curve of 0.5; in the case of the
TPR vs. PPV curve, and given the definitions above, random guessing yields
and AUC that is equal to the fraction of instances with a positive class. That
is, in our dataset, the area under the TPR vs. PPV curve for random guessing
is as small as 0.05.

5.4.2 Learning the HASMM

We applied the FFBS-MCEM algorithm to the training episodes in order to estimate the
parameter set Γ. Based on the Bayesian information criterion, we have selected a model
with 4 clinical states, i.e. X = {1, 2, 3, 4}. State 1 is the clinical stability state, whereas
state 4 is the clinical deterioration state. We ran 100 MCEM iterations and used Γ̂100 as the
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estimate for Γ. The parameter set Γ was initialized randomly using uniform distributions
that cover each parameter’s admissible bounds.

We discretized the time domain into steps of 1 hour while computing the elements of the
look-up table holding the values of the tensor P̃. With a granular 1-hour discretization
of the time horizon, the Gaussian covariance matrix was found to be ill-conditioned for
many patient episodes. To ensure the numerical stability of the computations involving the
Gaussian process likelihood functions, we used the Moore-Penrose pseudo-inverse for the
covariance matrix instead of direct matrix inversion. The function TransitionLookUp was
invoked once before running the MCEM iterations, and its run time was 2 minutes and 15
seconds on a dual-core 3 GHz machine. The function ForwardFilter was invoked 150,852
times (all data points in all patients’ episodes in both the training and testing sets), and its
overall run time was 3 hours and 50 minutes (on a dual-core 3 GHz machine). The run time
for every risk score update for a single patient is less than 1 second, which implies that the
algorithm can efficiently prompt quick risk assessments if implemented on a machine with
a reasonable computational power.

From the learned HASMM, we were able to extract the following “medical concept” out of
the training data. The patients’ clinical state space X = {1, 2, 3, 4} comprises the following
4 states:

• State 1: clinical stability.

• State 2: type-1 critical state.

• State 3: type-2 critical state.

• State 4: clinical deterioration.

As implied by the model, states 1 and 4 are absorbing states: once the patient is believed
to be in state 1, the clinicians should release her from care, whereas exhibiting clinical state
4 should be treated with an admission to the ICU. States 2 and 3 are critical states that
require the patient to stay under vigilant care in the ward. The two states are different
ways to manifest “criticality”. We characterize the properties of the four clinical states in
the rest of this subsection.

Figures 13-16 depict the different characteristics of the four clinical states. In Figure 13, we
plot a bipartite correlation graph that shows the correlations among the relevant physiolog-
ical streams in the different clinical states. These graphs were constructed by computing

the Pearson correlation coefficient σY lY v = cov(Y l,Y v)
σ
Y l
·σY v using the entries of the multi-task

Gaussian process covariance matrix Σ. An edge is connected between every two features for
whom the Pearson correlation coefficient exceeds 0.1, i.e. σY lY v > 0.1. As we can see, differ-
ent physiological variables become less or more correlated in the different clinical states. For
instance, only the clinically stable patients experience significant correlations between their
urea Nitrogen and the diastolic blood pressure; the Pearson coefficient between those vari-
ables becomes insignificant in the other states. Clinicians can use this piece of information,
extracted solely from the data, to construct simple tests for clinical stability by computing
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the correlations between blood pressure and urea Nitrogen for a hospitalized patient before
deciding to discharge her. Generally speaking, we observe that the critical, transient states
display more correlations among the physiological streams than the clinical stability and
deterioration states. In particular, the type-2 critical state has most of the physiological
streams being strongly correlated. We speculate that the reason behind these strong cor-
relations is that some kinds of interventions (e.g. drugs, mechanical pumps, ventilators,
etc) applied to hospitalized patients affect all the physiological streams simultaneously; and
hence we believe that type-1 and type-2 critical state patients are hospitalized patients with
and without clinical interventions. We will examine this claim when we retrieve information
about interventions and the time they were applied from the Ronald Reagan medical center;
such information was not available at the time of conducting these experiments.

Figure 14 shows the sojourn time distributions for the four states. Recall that the “so-
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Figure 17: Depiction for the episode of a clinically deteriorating patient. (The physiological streams
are color coded as follows: Diastolic blood pressure is in green, systolic blood pressure is in red,
blood urea nitrogen is in cyan, and heart rate is in black, respiratory rate is in purple.)
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journ time” of an absorbing state (state 1 or 4) is defined as the time between entering the
state and the censoring time; such a time interval corresponds to the clinicians’ policy with
respect to patient discharge and ICU admission. That is, the sojourn time of an absorbing
state is not a natural physiological quantity, but it rather reflects the speed with which pa-
tients are released from care or receive leveraged level of care. The sojourn time distribution
for state i is an exponential distribution if the shape parameter λi,s = 1. The sojourn time
distributions for states 2 and 3 significantly deviate from an exponential distribution of an
ordinary, memoryless Markov model, which supports our assumption of semi-Markovianity.
As we can see in Figure 14, the sojourn time distribution is not concentrated around 0 and
hence is radically different from an exponential distribution (the estimated shape parame-
ter is λ2,s = 2.25). State 2 is the state with the largest first moment for the sojourn time
distribution: this means that most patients in the ward exhibit this state and hence it is
the most relevant for predictions. Figure 14 clearly shows that this state is not memoryless.
State 3 exhibits a sojourn time distribution that is concentrated around 0; however, its shape
parameter is λ2,s = 0.55, and hence cannot be adequately modeled by a memoryless process.

Figure 15 displays the covariance function ki(t, t
′
) for the 4 clinical states; the state-specific

covariance function quantifies the physiological streams’ temporal correlations in a par-
ticular clinical conditions. Knowing such correlation patterns are useful for deciding the
frequency with which nurses and clinicians should collect physiological measurements over
time for different patients in different clinical conditions (Alaa and van der Schaar (2016)).
We observed that, as one would expect, the temporal correlations increase when the patient
becomes more stable; the temporal correlation is greatest in state 1 and smallest in state 4.
This means that one would expect deteriorating patients to experience more physiological
fluctuations over time. We also note that physiological stream for which the constant mean
function differed significant among the clinical state was the urea Nitrogen. The level of
urea Nitrogen increases significantly when the patient is in a more risky state; the aver-
age blood urea nitrogen is 11.7 milligrams per deciliter (mg/dL) in state 1, 23.8 mg/dL in
state 2, 41.1 mg/dL in state 3 and 64.9 mg/dL in state 4. This is consistent with medical
domain knowledge and recent discoveries in the area of critical care medicine; in (Beier
et al. (2011)), it was shown that there is a substantial evidence that that elevated urea Ni-
trogen can be associated with all cause mortality in a heterogeneous critically ill population.

Figure 16 depicts the transition functions gij out of the transient states 2 and 3 as a
function of the sojourn time in those states. We note that the transition probabilities are
almost a constant function of sojourn time for patients in state 2 (β2j ≈ 0), whereas the
duration-dependence is more significant (β3j > 0); as the sojourn time in state 3 increases,
the transition probabilities become more biased towards state 1. This reinforces our hy-
pothesis that state 3 corresponds to patients for whom interventions were applied. That
is, as time passes for a patient in state 3 after receiving an intervention, her chances for
recovery (transiting to state 1) increases.

Now we illustrate the real-time operation of the inference algorithm as it computes risk
score over time by focusing on an episode of a particular patient who was hospitalized for
1 day and then admitted to the ICU. As shown in Figure 17 (top), the inference algorithm
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computes the forward messages whenever new physiological measurements become avail-
able. Using the forward messages, the algorithm can display the maximum a posteriori
(MAP) state estimates to the clinicians over time. As we can see in Figure 17 (middle),
the patient under consideration was in clinical state 2 (type-1 critical state) at the time
of admission to the ward. After 6 hours, the patient switched to state 3 (type-2 critical
state), probably due to a clinical intervention. After around 9 hours, the patient switched
back to the type-1 critical state for a brief 2-hour period, before switching to the type-2
critical state (probably due to a second intervention). Our algorithm was able to detect
clinical deterioration (state 4) conclusively (through both the MAP state estimate and the
risk score) more than 6 hours before the clinicians actually sent the patient to the ICU. Had
the clinicians used the algorithm for monitoring that patient, they would have been able
to send the patient to the ICU 6 hours early, allowing for a potentially much more efficient
therapeutic intervention in intensive care. In Figure 17 (bottom), we plot the patient’s
physiological stream and tag the different time intervals with the corresponding clinical
state estimates. The clinicians can rely on these clinically interpretable tags to describe the
patient’s states at each point of time rather than using a high-dimensional, and potentially
inexpressive set of physiological measurements.

5.4.3 Performance comparisons

Since we focus on the AUC for the TPR vs. PPV performance, the AUC values are nom-
inally less than that for the TPR vs. FPR curves. The AUC values in the TPR vs. PPV
analyses are usually less than 0.5, whereas in the TPR vs. FPR analysis they can reach 0.8
(Rothman et al. (2013)). As mentioned earlier, random guessing yields an area under the
TPR vs. PPV curve that is as small as 0.05. Table 3 reports the AUC and timeliness (in
hours) for: ♥ HASMM, ♣ sequential (sliding-window) classification benchmarks, ♠ deep
learning algorithms, F HMMs and ♦ clinical risk scores. As we can see, all the machine
learning algorithms significantly outperform the state-of-the-art clinical risk scores (Roth-
man, MEWS, APACHE and SOFA). The reason behind the significant performance gain
of the HASMM as compared to the clinical risk scores is that it incorporates the patients’
history when updating the forward messages (as shown in Figure 17), and reasons about
the future trajectory when computing the risk score (as discussed in Section 3.3). Clinical
risk scores are instantaneous in that they map the current physiological measurements to
a risk score without considering the previously measured physiological variables, and hence
they are vulnerable to high false alarm rates (low PPV). Moreover, the clinical risk scores
do not reason about the future trajectory given the current physiological measurements,
and hence they display a sluggish risk signal that fail to quickly cope with subtle clinical
deterioration.

With the exception of MTGPs, all the competing machine learning baselines are in-
capable of handling irregularly sampled data. Hence, for the baselines, we discretized the
time domain into steps of 1 hour and interpolated the missing samples using zero-order-hold
filtering. (We have tried cubic spline interpolation as well but this yield worse accuracies
for the baselines.) The timeliness values reported in Table 3 are evaluated for the operating
point for which the TPR is 50% and the PPV is 35%; this operating point was decided by
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Table 3: Performance comparisons for various algorithms.

AUC Timeliness (hours)

♥ HASMM 0.489 8 hrs 34 mins

♣ Random Forest 0.362 4 hrs 21 mins
Logistic Regression 0.271 4 hrs 36 mins

XGBoost 0.374 7 hrs 6 mins
AdaBoost 0.323 6 hrs 52 mins
Bagging 0.293 6 hrs 31 mins
MTGP 0.365 6 hrs 44 mins
LASSO 0.261 5 hrs 21 mins

♠ RNN-BFGS 0.293 7 hrs 48 mins
RNN-ADAM 0.311 8 hrs 6 mins
DNN-BFGS 0.426 7 hrs 21 mins
DNN-ADAM 0.366 6 hrs 21 mins

F HMM 0.321 8 hrs 39 mins

♦ Rothman 0.251 —

MEWS 0.180 —

SOFA 0.131 —

APACHE 0.143 —

our medical collaborators as an acceptable balance between predictive accuracy and alarm
fatigue. Non of the clinical risk scores were able to achieve the desired operating point at
any timeliness level.

We can see from Table 3 that HASMMs outperforms conventional HMMs; this is a conse-
quence of incorporating temporal correlations and semi-Markovian state transitions, which
more accurately describe the patient’s physiology. This manifests in the sojourn time distri-
butions in Figure 14, which largely deviate from the exponential distribution adopted by an
HMM, and also manifests in the temporal correlation patterns in Figure 15, which largely
deviate from the Dirac-delta function and are clearly discriminative of the different states.
RNNs trained via BFGS and ADAM did not display high predictive power, probably due
to the relatively limited sample size of the patient cohort under study. DNNs operating on
a sliding window provided a competitive predictive accuracy: the most competitive was a
DNN trained with BFGS and had its hyper-parameters (number of layers and hidden units)
optimized using grid search, outperforming the different ensemble methods involved in the
comparisons (XGBoost, Random Forest, AdaBoost, and Bagging).

As expected, algorithms that involved a principled time series models provided the most
timely predictions as they not only evaluate the current measurements but also forecast the
future. Conventional HMMs, due to their memoryless nature, provided the most timely pre-
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dictions, slightly exceeding the timeliness of our model with a tight margin of 4.8 minutes.
This comes at a huge false alarms’ cost, manifesting in a relatively poor AUC of 0.32. This
means that using a conventional HMM for risk scoring can provide decent timeliness for
the patients who are identified as deteriorating, but would miss a large number of patients
who will go unidentified. Contrarily, our model provides excellent timeliness together with
high accuracy.

We stress that not only the proposed model outperforms the competing models in terms
of accuracy, but also unlike these models, it provides a clinically interpretable model that
can be used for understanding the nuances of the complex critical care setting and guiding
clinical practice and ward management policies (see Figure 17). This epistemic value cannot
be obtained from any of the black-box predictors, including RNNs and DNNs.

5.4.4 Controlled Analysis of the HASMM Performance

Table 3 demonstrates the performance gains achieved by our model, but it does not show
the individual contributions of the different elements of the model in achieving these gains.
In Table 4, we report the results of a controlled analysis of our model by investigating the
impact of removing individual modeling aspects and assessing the resulting performance.
To this end, we create three versions of our model, listed below, where each version lacks
one of the modeling aspects:

• HASMM*: this version of the model does not capture the temporal correlations in
the observations. We implement this model by forcing the length-scale parameter `
for all the observations to be infinite in all the iterations of the FFBS-EM algorithm.
The resulting observation model corresponds to a model with independent Gaussian
emissions at each time step.

• HASMM**: this version of the model adopts an exponential distribution for the
sojourn times of all states. We implement this model by forcing the shape parameter
λi,s for every state i to be equal to 1.

• HASMM***: this version of the model adopts duration-independent transitions for
all states. We implement this model by forcing the parameters βij to be equal to 0
for all i and j.

Table 4: A controlled analysis of the HASMM modeling aspects.

AUC

HASMM 0.489

HASMM* 0.425

HASMM** 0.445

HASMM*** 0.462

As we can see in Table 4, every aspect of the HASMM model contributes to its predictive
capacity. Removing temporal correlations from our model (HASMM*) caused the biggest
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drop in the AUC. This shows the importance of capturing temporal correlations (i.e. physio-
logical trends) in predicting the endpoint outcomes. The model HASMM* still significantly
outperforms a standard HMM, mainly because it captures semi-Markovianity, whereas an
HMM exhibits memoryless transitions, which significantly increases the false alarms. As
we can see from the performance of the HASMM**, semi-Markovian transitions are instru-
mental in improving the AUC performance, mainly because of their role in reducing the
false alarms by mitigating rapid transitions in the state process. The HASMM***, which
removes duration dependence, is also inferior to the full HASMM in terms of accuracy. It is
important to note that the model HASMM*** captures temporal trends in irregularly sam-
pled data, which cannot be achieved via simpler auto-regressive HMM models that operate
in discrete time.

It is important to note that our model is not developed with the exclusive goal of
predicting clinical outcomes; the epistemic value of interpreting the model parameters are
of great importance for managing the complex (and rather poorly understood) critical
care environment. Hence, while Table 4 shows that all modeling aspects contribute to
the predictive accuracy, it is worth mentioning that all of these aspects contribute to the
extracted clinical knowledge as well. (This clinical knowledge is summarized in Figures
13-17.) For instance, modeling the duration dependence is not just aimed at improving
the model’s accuracy, but is also crucial for understating how should a clinician schedule
the therapeutic interventions for a certain patient over time even during the same clinical
state. A concrete example for clinical knowledge extracted from our model is the knowledge
that the HASMM learned about state 3. Having learned from the model that blood urea
nitrogen is predictive of clinical deterioration (see Subsection 5.4.2) and is relatively high
in clinical state 3, the clinician can use the information on duration dependence in 16 to
manage the administration and timing of drugs, such as Allopurinol and Aminoglycoside
antibiotics, that may increase the urea nitrogen.

6. Conclusions

We developed a versatile model, which we call the Hidden Absorbing Semi-Markov Model
(HASMM), for clinical time series data which accurately represents physiological data in
modern EHRs. The HASMM can deal with irregularly sampled, temporally correlated, and
informatively censored physiological data with non-stationary clinical state transitions. We
also proposed an efficient Monte Carlo EM learning algorithms that is based on particle
filtering, and developed an inference algorithm that can effectively carry out real-time in-
ferences. We have shown, using a real-world dataset for patients admitted to the Ronald
Reagan UCLA Medical Center, that HASMMs provide a significant gain in critical care
prognosis when utilized for constructing an early warning and risk scoring system.
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Appendix A. An Algorithm for Sampling episodes from an HASMM

Algorithm 7 Sampling episodes from an HASMM

1: procedure GenerateHASMM(Γ)
2: Input: HASMM model parameters Γ = (N,λ,po,Q(s),Θ, ζ)
3: Output: An episode ({Xn}Kn=1, {τn}Kn=1, {Y (tm)}Mm=1, {tm}Mm=1)
4: τ1 ← 0, k ← 1, T ∼ Poisson(ζ) . Initializations
5: x1 ∼ Multinomial(po1, p

o
2, . . ., p

o
N ) . Sample an initial latent state

6: s1 ∼ Gamma(λx1,s, λx1,r), τ2 ← τ1 + s1

7: T1 = {t ∈ T : τ1 ≤ t ≤ τ2}
8: while xk /∈ {1, N} do . Sample latent states until absorption
9: xk+1 ∼ Multinomial(gxk1(sk), gxk2(sk), . . ., gxkN (sk))

10: sk+1 ∼ Gamma
(
λxk+1,s, λxk+1,r

)
, τk+2 ← τk+1 + sk+1

11: Tk+1 = {t ∈ T : τk+1 ≤ t ≤ τk+2}
12: {y(tm)}tm∈Tk+1

∼ GP(Θxk+1
) . Sample observations from a Gaussian Process

13: k ← k + 1
14: end while
15: return ({xn}Kn=1, {τn}Kn=1, {y(tm)}Mm=1, {tm}Mm=1)
16: end procedure

Appendix B. Proof of Theorem 1

We start by rewriting (11) as follows:

 p̃11(τ,
¯
s, s̄) . . . p̃1N (τ,

¯
s, s̄)

...
. . .

...
p̃N1(τ,

¯
s, s̄) . . . p̃NN (τ,

¯
s, s̄)

 =

1− Q̄1(τ,
¯
s, s̄) . . . 0

...
. . .

...
0 . . . 1− Q̄N (τ,

¯
s, s̄)

+

∫ τ

u=0

 ∂

∂u

 Q̄11(u,
¯
s, s̄) . . . Q̄1N (u,

¯
s, s̄)

...
. . .

...
Q̄N1(u,

¯
s, s̄) . . . Q̄NN (u,

¯
s, s̄)


 ×

 p̃11(τ − u, 0, 0) . . . p̃1N (τ − u, 0, 0)
...

. . .
...

p̃N1(τ − u, 0, 0) . . . p̃NN (τ − u, 0, 0)

 du.
(29)
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Starting with the left hand side, we can use a first-step analysis to write every term p̃ij(τ,
¯
s, s̄)

as follows

p̃ij(τ,
¯
s, s̄) = P(X(t+ τ) = j|X(t) = i,

¯
s ≤ S(t) ≤ s̄)

= δij (P(Si < τ |X(t) = i,
¯
s ≤ S(t) ≤ s̄))+∫ τ

u=0
P(X(t+ u) = k|X(t) = i,

¯
s ≤ S(t) ≤ s̄) · P(X(t+ τ) = j|X(t+ u) = k) du

= δij (1− Q̄i(τ,
¯
s, s̄))+∫ τ

u=0
P(X(t+ u) = k|X(t) = i,

¯
s ≤ S(t) ≤ s̄) · P(X(t+ τ − u) = j|X(t) = k) du

= δij (1− Q̄i(τ,
¯
s, s̄)) +

∫ τ

u=0

∂

∂u

∑
k 6=i

Q̄ik(u,
¯
s, s̄) · p̃kj(τ − u, 0, 0) du, (30)

∀i, j ∈ X , where S(t) is the time elapsed in state X(t), and Si is the sojourn time of state
i. The integral equation in (30) can be written in a matrix form as in the right hand side
of (29), and hence the Theorem follows.

Appendix C. Proof of Theorem 2

Recall that the operation

P̃(τ,
¯
s, s̄) = B{Q̄(τ,

¯
s, s̄)}(P̃(τ,

¯
s, s̄))

can be written as

P̃(τ,
¯
s, s̄) = IN×N − diag

(
Q̄1(τ,

¯
s, s̄), . . . , Q̄N (τ,

¯
s, s̄)

)
+

(
∂Q̄(.,

¯
s, s̄)

∂u
? P̃(., 0, 0)

)
(τ).

Now consider n applications of the operator B(.), we have that(
∂Q̄(.,

¯
s, s̄)

∂u1
? . . . ?

∂Q̄(.,
¯
s, s̄)

∂un
? P̃(., 0, 0)

)
(τ) ≤ Nn ·

∫ τ

0

∫ τ−un−1

0
. . .

∫ τ−u1

0
du1 du2. . , dun

= Nn · τ
n

n!
. (31)

Thus, for every P̃(τ,
¯
s, s̄) ∈ P and every Q̄(τ,

¯
s, s̄) < 1, there exists n such that Bn{.}(.) is

a contraction mapping. Therefore, the operation P̃(τ,
¯
s, s̄) = B{Q̄(τ,

¯
s, s̄)}(P̃(τ,

¯
s, s̄)) has a

unique fixed point that can be reached via n ∈ N successive approximations.

Appendix D. The M-step of the FFBS-MCEM Algorithm

The proximal likelihood function at the zth iteration is given by

ÛG(Γ; Γ̂z−1) =
∑
d,g

log(dP({xd,gn , sd,gn }k
d,g

n=1, {ydm, tdm}M
d

m=1 |Γ)) ·
Iz−1
d,g

G
,
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where the likelihood inside the logarithm can be factorized as follows

dP({xd,gn , sd,gn }k
d,g

n=1, {ydm, tdm}M
d

m=1 |Γ) = P(xd,g1 |Γ) · dP(sd,g1 |x
d,g
1 ,Γ) · dP({ydm, tdm}tdm∈T d1 |x

d,g
1 ,Γ)×

kd,g∏
n=2

P(xd,gn |x
d,g
n−1, s

d,g
n−1,Γ) · dP(sd,gn |xd,gn ,Γ) · dP({ydm, tdm}tdm∈T dn |x

d,g
n ,Γ),

and hence the log-likelihood is given by

log(dP({xd,gn , sd,gn }k
d,g

n=1, {ydm, tdm}M
d

m=1 |Γ)) = log(P(xd,g1 |Γ)) +
kd,g∑
n=2

log(P(xd,gn |x
d,g
n−1, s

d,g
n−1,Γ))

+
kd,g∑
n=1

log(dP(sd,gn |xd,gn ,Γ)) +
kd,g∑
n=1

log(dP({ydm, tdm}tdm∈T dn |x
d,g
n ,Γ)).

The updated parameter set Γ̂z is obtained by maximizing:

Γ̂z = arg max
Γ

ÛG(Γ; Γ̂z−1).

Updating the initial state distribution is straightforwardly conducted as follows

p̂o,zk =
1

G ·D
∑
d,g

1{xd,g1 =k} ·
Iz−1
d,g

G
.

For the kth state sojourn time distribution parameters (shape and rate parameters for
the Gamma distribution), we solve the optimization problem by computing the Maximum
Likelihood Estimate (MLE) based on the observed sojourn times in the sampled trajectories
as follows

Nk = {(d, g, n) : xd,gn = k},

Ξk = log

 1

|Nk|
∑

(d,g,n)∈Nk

sd,gn

− 1

|Nk|
∑

(d,g,n)∈Nk

log
(
sd,gn

)
,

λ̂zk,s =
3− Ξk +

√
(Ξk − 3)2 − 24Ξk
12Ξk

,

λ̂zk,r =
λ̂zk,s |Nk|∑

(d,g,n)∈Nk s
d,g
n

.

The optimization problem is intractable for the rest of the parameters, and hence we
resort to approximate solutions. For the transition parameters, we maximize the term∑kd,g

n=2 log(P(xd,gn |xd,gn−1, s
d,g
n−1,Γ)) using the successive approximations, whereas for the GP

parameters, we maximize the term
∑kd,g

n=1 log(dP({ydm, tdm}tdm∈T dn |x
d,g
n ,Γ)) via conjugate gra-

dient descent.
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