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Abstract

We consider a distributed learning approach in supervised learning for a large class of spec-
tral regularization methods in an reproducing kernel Hilbert space (RKHS) framework.
The data set of size n is partitioned into m = O(n%), a < %, disjoint subsamples. On
each subsample, some spectral regularization method (belonging to a large class, includ-
ing in particular Kernel Ridge Regression, L2-boosting and spectral cut-off) is applied.
The regression function f is then estimated via simple averaging, leading to a substantial
reduction in computation time. We show that minimax optimal rates of convergence are
preserved if m grows sufficiently slowly (corresponding to an upper bound for «) as n — oo,
depending on the smoothness assumptions on f and the intrinsic dimensionality. In spirit,
the analysis relies on a classical bias/stochastic error analysis.

Keywords: Distributed Learning, Spectral Regularization, Minimax Optimality

1. Introduction

Distributed learning (DL) algorithms are a standard tool for reducing computational burden
in machine learning problems where massive datasets are involved. Assuming a complexity
cost (for time and/or memory) of O(n”) (3 > 1, B € [2,3] being common) of the base
learning algorithm without parallelization, dividing randomly data of cardinality n into
m disjoint, equally-sized subsamples and processing them in parallel using the same base
learning algorithm has therefore complexity cost of O(m.(n/m)?) = O(n®/mP~1), roughly
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gaining a factor m?~! (for time and memory) compared to the single machine approach.
The final output is obtained from averaging the individual outputs.

Recently, DL was studied in several machine learning contexts. In point estimation (Li et al.,
2013), matrix factorization (Mackey et al., 2011), smoothing spline models and testing
(Cheng and Shang, 2016), local average regression (Chang et al., 2017), in classification
(Hsieh et al., 2014; Guo et al., 2015), and also in kernel ridge regression (Zhang et al., 2013;
Lin et al., 2017; Xu et al., 2016).

In this paper, we study the DL approach for the statistical learning problem
Yi=fX;)+e,j=1,...,n, (1)

at random i.i.d. data points X1,..., X, drawn according to a probability distribution v on
X, where €; are independent centered noise variables. The unknown regression function f
is real-valued and belongs to some reproducing kernel Hilbert space with bounded kernel
K. We partition the given data set D = {(X1,Y7),...,(Xn,Yn)} C X x R into m disjoint
equal-size subsamples D1, ..., Dy,. On each subsample D;, we compute a local estimator
]%j, using a spectral regularization method. The final estimator for the target function f
is obtained by simple averaging: ]% = % Z;n:l j‘%j.

The non-distributed setting (m = 1) has been studied in the recent paper of Blanchard
and Miicke (2017), building the root position of our results in the distributed setting, where
weak and strong minimax optimal rates of convergence are established. Our aim is to extend
these results to distributed learning and to derive minimax optimal rates. We again apply
a fairly large class of spectral regularization methods, including the popular kernel ridge
regression (KRR), L2-boosting and spectral cut-off. Using the same notation as Blanchard
and Miicke (2017), we let

T:feHKk— /f(x)K(x,)du(x) € Hi

denote the kernel integral operator associated to K and the sampling measure v. We denote
T = k2T, with k2 the upper bound of K. Our rates of convergence are governed by a
source condition assumption on f of the form

Qr,R) ={f € Hr : [=T"h, ||hlly, <R}

for some constants r, R > 0 as well as by the ill-posedness of the problem, as measured by
an assumed power decay of the eigenvalues of T" with exponent b > 1. We show that for
s € [0, 3] in the sense of p-th moment (p > 1) expectation

(r+s)
’ <R o2 \ it/ (2)
Hi ~ R2n ’

for an appropriate choice of the regularization parameter )\, , depending on the global sample
size n as well as on R and the noise variance o (but not on the number m of subsample sets).
Note that s = 0 corresponds to the reconstruction error (i.e. Hg-norm), and s = % to the
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prediction error (i.e., L?(v)-norm). The symbol < means that the inequality holds up to a
multiplicative constant that can depend on various parameters entering in the assumptions
of the result, but not on n, m, o, nor R. An important assumption is that the inequality
q > r + s should hold, where ¢ is the qualification of the regularization method, a quantity
defined in the classical theory of inverse problems (see Section 2.3 for a precise definition) .
Basic problems are the choice of the regularization parameter on the subsamples and, most
importantly, the proper choice of m, since it is well known that choosing m too large gives
a suboptimal convergence rate in the limit n — oo (see, e.g., Xu et al., 2016).

Our approach to this problem is based on a relatively classical bias-variance decomposition
principle. Choosing the global regularization parameter as the optimal choice for a single
sample of size n results in a bias estimate which is identical for all subsamples, is unchanged
by averaging, and is straightforward from the single-sample analysis. On the other hand,
the reduced sample size of each of the m individual subsamples causes an inflation of
variance. However, since the m subsamples are independent, so are the outputs of the
learning algorithm applied to each one of them; as a consequence averaging reduces the
inflated variance sufficiently to get minimax optimality. We can write the variance as a sum
of independent random variables, allowing to successfully apply a Rosenthal’s inequality
in the Hilbert space setting due to Pinelis (1994). The technical “limiting factors” in this
argument give rise to the limitation on the number of subsamples m; for m larger than the
allowed range, some remainder terms are no longer negligible using our proof technique,
and rate optimality is not guaranteed any longer.

The outline of the paper is as follows. Section 2 contains notation and the setting. Section
3 states our main result on distributed learning. Section 4 presents numerical studies. A
concluding discussion in Section 5 contains a more detailed comparison of our results with
related results available in the literature. Section 6 contains the proofs of the theorems.

2. Notation, statistical model and distributed learning algorithm

In this section, we specify the mathematical background and the statistical model for (dis-
tributed) regularized learning. We have included this section for self sufficiency and reader
convenience. It essentially repeats the setting in Blanchard and Miicke (2017) in summa-
rized form.

2.1 Kernel-induced operators

We assume that the input space X is a standard Borel space endowed with a probability
measure v , the output space is equal to R. We let K be a real-valued positive semidefinite
kernel on X x X which is bounded by 2. The associated reproducing kernel Hilbert space
will be denoted by Hg. It is assumed that all functions f € Hx are measurable and
bounded in supremum norm, i.e. |f[l, < K| flly, for all f € Hgk. Therefore, Hg is
a subset of L?(X,v), with S : Hx — L?*(X,v) being the inclusion operator, satisfying
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|S|| < k. The adjoint operator S* : L2(X,v) — H is identified as

S*g = /Xg(x)Kx v(dz) ,

where K, denotes the element of Hx equal to the function ¢t — K(x,t). The covariance
operator T : Hx — Hy is given by

T — /X<'7KI>HKKQC v(dzx) ,

which can be shown to be positive self-adjoint trace class (and hence is compact). The
empirical versions of these operators, corresponding formally to taking the empirical distri-
bution 7, = % > ity 0z, in place of v in the above formulas, are given by

Sx : Hg — R" | (Sxf)j:<faKij>7‘lK )
* n * 1 -
St R" — Hy SXYZEZyszjy
7j=1
* 1 -
Tx := SeSx : Hk — Hi T = n Z;',KIJ'MKK% -
j:

We introduce the shortcut notation T' = =27 and Ty := k2T , ensuring |7 < 1 and
|T:|| <1, for any # € X. Similarly, S = x7'S and Sy, := £ 'S, , ensuring ||S]| < 1
and ||S;|| < 1, for any € X. The numbers p; are the positive eigenvalues of T satisfying
0 < pjp1 <y forall 5 >0 and py; N\, 0.

2.2 Noise assumption and prior classes

In our setting of kernel learning, the sampling is assumed to be random i.i.d., where each
observation point (Xj,Y;) follows the model Y = f,(X) +e¢. For (X,Y") having distribution
p, we assume that the conditional expectation wrt. p of Y given X exists and belongs to
H i, that is, it holds for v-almost all x € X :

E,[Y|X = x| = 8,f,, for some f, € Hr . (3)

Furthermore, we will make the following assumption on the observation noise distribution:
There exists 0 > 0 and M > 0 such that for any [ > 2

_ 1
E[|Y - Sxf,| | X]< JU”MT2 v, (4)
To derive nontrivial rates of convergence, we concentrate our attention on specific subsets

(also called models) of the class of probability measures. If P denotes the set of all proba-
bility distributions on X', we define classes of sampling distributions by introducing a decay
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condition on the effective dimension N'(\), being a measure for the complexity of Hx with
respect to the marginal distribution v: For A € (0, 1] we set

N(N) = Trace[ (T +\)7'T]. (5)
Note that A'(\) < 1. For any b > 1 we introduce
P<b) :={veP: N(\) < Cy(r2N\)75 }. (6)

In De Vito and Caponnetto, 2006, Proposition 3, it is shown that such a condition is implied
by polynomially decreasing eigenvalues of T. More precisely, if the eigenvalues p; satisfy
p; <B/5° Vj>1orb>1and B >0, then

N < (K2\) 75

For a subset 2 C Hp, we let K(€2) be the set of regular conditional probability distributions
p(+]) on B(R) x X such that (3) and (4) hold for some f, € 2. We will focus on a Hélder-type
source condition, i.e. given r > 0, R > 0 and v € P, we define

Q(r,R):={f€eHk: f= T"h, ||hHHK < R}. (7)
Then the class of models which we will consider will be defined as
M(Tv Rvpl) = { p(dl‘)dy) = p(dy‘ﬂl‘)l/(dfﬁ) : p(|) € ’C(Q(T, R))) S P/ } ’ (8)

with P’ = P<(b). As a consequence, the class of models depends not only on the smoothness
properties of the solution (reflected in the parameters R > 0, r > 0), but also essentially
on spectral properties of T, reflected in N'(X).

2.3 Spectral regularization

In this subsection, we introduce the class of linear regularization methods based on spec-
tral theory for self-adjoint linear operators. These are standard methods for finding stable
solutions for ill-posed inverse problems. Originally, these methods were developed in the
deterministic context (see Engl et al., 2000). Later on, they have been applied to proba-
bilistic problems in machine learning (see, e.g., Bauer et al., 2007; De Vito and Caponnetto,
2006; Dicker et al., 2017 or Blanchard and Miicke, 2017).

Definition 1 (Regularization function) Let g : (0,1] x [0,1] — R be a function and
write gx = g(A,-). The family {gx}x is called regularization function, if the following con-
ditions hold:

(i) There exists a constant D" < oo such that for any 0 < A\ <1

sup [tgr(t)] < D" (9)
0<t<1
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(ii) There exists a constant E < oo such that for any 0 < A <1

(10)

(iii) Defining the residual ry(t) := 1 — gx(t)t, there exists a constant vy < 0o such that for
any 0 < A <1

sup |ra(t)] <70 -
0<t<1

It has been shown in e.g. Gerfo et al. (2008), Dicker et al. (2017), Blanchard and Miicke
(2017) that attainable learning rates are essentially linked with the qualification of the
regularization {gy}x, being the maximal ¢ such that for any 0 < A <1

sup |ra(8)[t? < yg AL (11)
0<t<1

for some constant v, > 0. Note that by (ii7) , using interpolation, we have validity of (11)
-4

also for any ¢’ € [0, ¢] with constant vy =, *4 .

The most popular examples include:

Example 1 (Tikhonov Regularization, Kernel Ridge Regression) The choice gy(t) =
corresponds to Tikhonov reqularization. In this case we have D' = E = 9 = 1.
qualification of this method is ¢ = 1 with v4 = 1.

>
S
m o~

Example 2 (Landweber Iteration, gradient descent) The Landweber Iteration (gradient de-
scent algorithm with constant stepsize) is defined by

k—
gr(t) =Y (1 —t) withk=1/A€N.
0

—_

<

We have D' = E = ~y = 1. The qualification q of this algorithm can be arbitrary with
Y=1if0<q<1andy,=q?ifg>1.

Example 3 (v- method) The v— method belongs to the class of so called semi-iterative
reqularization methods. This method has finite qualification q = v with -y, a positive con-
stant. Moreover, D = 1 and E = 2. The filter is given by gx(t) = px(t), a polynomial of
degree k — 1, with regqularization parameter A ~ k=2, which makes this method much faster
as e.g. gradient descent.
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2.4 Distributed learning algorithm

We let D = {(xj,yj)};‘zl C X x )Y be the dataset, which we partition into m disjoint
subsamples! D1, ..., D,,, each having size . Denote the jth data subsample by (x;,y;) €
(X xR) . On each subsample we compute a local estimator for a suitable a-priori parameter
choice A = \,, according to

= ga (T )53, (12)

By f 2\) we will denote the estimator using the whole sample m = 1. The final estimator is
given by simple averaging of the local ones:

=30 (13)
j=1

3. Main results

This section presents our main results. Theorem 3 and Theorem 4 contain separate estimates
on the approximation error and the sample error and lead to Corollary 5 which gives an
upper bound for the error HTS( fo— J%)H Hic and presents an upper rate of convergence for
the sequence of distributed learning algorithms.

For the sake of the reader we recall Theorem 6, which was already shown in Blanchard and
Miicke (2017), presenting the minimax optimal rate for the single machine problem. This
yields an estimate on the difference between the single machine and the distributed learning
algorithm in Corollary 7.

We want to track the precise behavior of these rates not only for what concerns the exponent
in the number of examples n, but also in terms of their scaling (multiplicative constant) as
a function of some important parameters (namely the noise variance o and the complexity
radius R in the source condition, see Remark 9 below). For this reason, we introduce a
notion of a family of rates over a family of models. More precisely, we consider an indexed
family (Mp)geco, where for all § € ©, My is a class of Borel probability distributions on
X xR satisfying the basic general assumptions (3) and (4). We consider rates of convergence
in the sense of the p-th moments of the estimation error, where 1 < p < oo is a fixed real
number.

1. For the sake of simplicity, throughout this paper we assume that n is divisible by m. This could always
be achieved by disregarding some data; alternatively, it is straightforward to show that admitting one
smaller block in the partition does not affect the asymptotic results of this paper. We shall not try to
discuss this point in greater detail. In particular, we shall not analyze in which general framework our
simple averages could be replaced by weighted averages.
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As already mentioned in the introduction, our proofs are based on a classical bias-variance
decomposition as follows: Introducing

J% - %ZgA(ij)ij'fﬂ ’ (14)
j=1
we write
T*(f, = Ip) = T(fo — /D) + T°(fp — f;,)
- %ZT Tie;) fo + ZT A (T, ) (T, o — Sx.¥5) - (15)
j=1 mi3

In all the forthcoming results in this section, we assume:

Assumption 2 Let s € [0, 2] p > 1 and consider the model Mg prp == M(r, R, P<(b))
where v > 0 and b > 1 are fized, and 0 = (R, M, o) varies in © = R3. Given a sample
D C (X x R) of size n, define fD , fD” as in Section 2.4 and fD as in (14), using a
reqularization function of qualification q > v + s, with parameter sequence

Ao = A w(( )T 1 1
n = Ap(o,R) ‘= Min <R2n> , , (16)

independent on M. Define the sequence

b(r+s)
o2 > brFb+1

an = Gy (oR) ‘= R (RQn

(17)

We recall that we shall always assume that n is a multiple of m. With these preparations,
our main results are:

Theorem 3 (Approximation error) Under Assumption 2, we have: If the number my,
of subsample sets satisfies

2bmin{r, 1}
<n® et SRS 18
Min =T %r +b+1° (18)
then
1
BTt - 5] _
sup limsup sup < 0.
(0,M,R)eR} n—00 peMo m.r an
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Theorem 4 (Sample Error) Under Assumption 2, we have: If the number m, of sub-

sample sets satisfies o
r

o 1
S rbrl’ (19)

my, <n®,

Then 1
Fs( fAn _ FAnN|[P | P
, [EP®"“T5( D —Jp )H%K}p

sup limsup sup <

(o,M,R)€R} n—00 peMo R an

And, as consequence (by (15) and applying the triangle inequality for the LP-norm):

Corollary 5 Under Assumption 2, we have: If the number m,, of subsample sets satisfies

2bmin{r, 1}

20
2br +b+1 "7 (20)

mngnav

then the sequence (17) is an upper rate of convergence in LP for all p > 0, for the interpola-
. . . A (o .
tion norm of parameter s, for the sequence of estimated solutions (f, o ’R>) over the family

of models (Mo.n1.R) (5,0, R)eRS 5 -

1
' [Ep@anHTs(fp_ %")H%K}p
sup limsup sup <

(o,M,R)€R} n—00 peMo m R an,

.

Theorem 6 (Blanchard and Miicke, 2017) The sequence (17) is an upper rate of con-
vergence in LP for all p > 0, for the interpolation norm of parameter s, for the sequence of

. . A (o . .
estimated solutions (f5,"'"™) over the family of models (./\/lg,]\/[,R)(0,7]\473)@[{3+ , e

1
2 An |2 | P
. [Ep‘@"HTs(fp— D )HHK}
sup limsup sup < 00
(0,M,R)€ER} n—=0 peMo m,r On

Combining Corollary 5 with Theorem 6 by applying the triangle inequality immediately
yields:

Corollary 7 If the number m,, of subsample sets satisfies

2bmin{r, 1}
20m+b+1

«

my, <n®, , (21)

then

1
| B |72 = M, )
sup limsup sup < 00.

(0,M,R)ER} n—00 peMo R an
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Remark 8 Our results in the distributed setting slightly differ from those obtained in The-
orem 6 from Blanchard and Micke (2017) in two several respects:

e While in the single machine approach, rates of convergence are obtained for any p > 0,
the proofs in Section 6 only hold for p > 1 due to loss of subadditivity of p-th moments
forO<p<1.

o While the upper upper rates of convergence in Blanchard and Miicke (2017) are derived
over classes of marginals v induced by assuming a decay condition for the eigenvalues
of T, we somewhat enlarge this class by assuming a decay condition for N'(\) in (6).
Theorem 6 also holds under this weaker condition. Note that it is an open problem
if lower rates of convergence can also be obtained by weakening the condition for
etgenvalue decay.

Remark 9 (Signal-to-noise-ratio) Our results show that the choice of the regularization
parameter A, in (16) and thus the rate of convergence a, in (17) highly depend on the
stgnal-to-noise-ratio %22, a quantity which naturally appears in the theory of reqularization
of ill-posed inverse problems. As a general rule, the degree of reqularization should increase
with the level of noise in the data, i.e., the importance of the priors should increase as the
model fit decreases. OQur theoretical results precisely show this behavior.

4. Numerical studies

In this section we numerically study the error in Hg-norm, corresponding to s = 0 in
Corollary 5 (in expectation with p = 2) both in the single machine and distributed learning
setting. Our main interest is to study the upper bound for our theoretical exponent «,
parametrizing the size of subsamples in terms of the total sample size, m = n®, in different
smoothness regimes. In addition we shall demonstrate in which way parallelization serves
as a form of regularization.

More specifically, we let Hx = H& [0, 1] be the Sobolev space consisting of absolutely con-
tinuous functions f on [0,1] with weak derivative of order 1 in L?[0,1], with boundary
condition f(0) = f(1) = 0. The reproducing kernel is given by K(z,t) = x At — xt. For all
experiments in this section, we simulate data from the regression model

}/i:fp(XZ‘)—l—q', izl,...,n,

where the input variables X; ~ Unif[0, 1] are uniformly distributed and the noise variables
g; ~ N(0,0?) are normally distributed with standard deviation o = 0.005. We choose the
target function f, according to two different cases, namely r < 1 (low smoothness regime)
and r = oo (high smoothness regime). To accurately determine the degree of smoothness
r > 0, we apply Proposition 10 below by explicitly calculating the Fourier coefficients
((fo€j)9y,. )jen, where e;j(z) = \;—?cos(wjx), for j € N*, forms an ONB of Hx. Recall that
the rate of eigenvalue decay is explicitly given by b = 2, meaning that we have full control
over all parameters in (21). We need the following characterization:

10



PARALLELIZING SPECTRAL ALGORITHMS

Proposition 10 (Engl et al., 2000, Prop. 3.13) Let Hx, Ha be separable Hilbert spaces
and S : Hx — Ha be a compact linear operator with singular system ? {cj, ¢j,1;}. De-
noting by ST the generalized inverse® of S, one has for any r >0 and g € Ha:

g is in the domain of ST and Stg € Im((S*S)") if and only if

X ({9, i)gy, P
2 <%
=0 9

In our case, Hy is as above, Ha is L?([0,1]) with Lebesgue measure and S : H[0,1] —
L%([0,1]) is the inclusion. Since H}[0,1] is dense in L2([0,1]), we know that (Im(S))" is
trivial, giving SST = id on Im(S). Furthermore, ¢; = e; is a normalized eigenbasis of

O et 9 . s .
T = S*S with eigenvalues 0]2- = (7j)~2. With ¢, = m we obtain for f € H}|[0,1]

Se; S*Se;
(80,00 = (S0, 150 12 = (g T ) g = 0t esday

Thus, applying Proposition 10 gives

Corollary 11 For S and T = S*S defined in Section 2, we have for anyr > 0: f € Im(T")
if and only if

o
> i el < oo

j=1

Thus, as expected, abstract smoothness measured by the parameter 7 in the source condition
corresponds in this special case to decay of the classical Fourier coefficients which by the
classical theory of Fourier series measures smoothness of the periodic continuation of f €
L*(]0,1]) to the real line.

4.1 Low smoothness regime

We choose f,(z) = 1z(1 — z) which clearly belongs to H. A straightforward calculation
gives the Fourier coefficient (f,,e;) = —2(wj)~2 for j odd (vanishing for j even). Thus, by
the above criterion, f, satisfies the source condition f, € Ran(TT) precisely for 0 < r <
0.75 . (Observe that although f, is smooth on [0, 1], its periodic continuation on the real line
is not, hence the low smoothness regime.) According to Theorem 6, the worst case rate in
the single machine problem is given by n™7, with v = 0.25 . Regularization is done using the
v— method (see Example 3), with qualification ¢ = v = 1. Recall that the stopping index

2. i.e., the ¢; are the normalized eigenfunctions of S*S with eigenvalues o and v; = S¢;/||S¢;||; thus
=305 );

3. the unique unbounded linear operator with domain Im(S) @ (Im(S))~* in H2 vanishing on (Im(S))
satisfying SST = 1 on Im(S), with range orthogonal to the null space N(S).

+ and

11
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kstop serves as the regularization parameter A\, where kgop ~ A~2. We consider sample sizes
from 500, ...,9000. In the model selection step, we estimate the performance of different
models and choose the oracle stopping time koypqce by minimizing the reconstruction error:

1
2

1 < 2
koracle = argmkin M;pr - f]k "HK

over M = 30 runs.

In the model assessment step, we partition the dataset into m ~ n® subsamples, for any
a € {0,0.05,0.1,...,0.85}. On each subsample we regularize using the oracle stopping time
l%omcle (determined by using the whole sample). Corresponding to Corollary 5, the accuracy
should be comparable to the one using the whole sample as long as o < 0.5. In Figure 1
(left panel) we plot the reconstruction error || f¥— f,[|(, versus the ratio v = log(m)/ log(n)
for different sample sizes. We execute each simulation M = 30 times. The plot supports our
theoretical finding. The right panel shows the reconstruction error versus the total number
of samples using different partitions of the data. The black curve (e = 0) corresponds to
the baseline error (m = 0, no partition of data). Error curves below a threshold o < 0.6
are roughly comparable, whereas curves above this threshold show a gap in performances.

In another experiment we study the performances in case of (very) different regularization:
Only partitioning the data (no regularization), underregularization (higher stopping index)
and overregularization (lower stopping index). The outcome of this experiment amplifies
the regularization effect of parallelizing. Figure 2 shows the main point: Overregulariza-
tion is always hopeless, underregularization is better. In the extreme case of (almost) no
regularization, there is a sharp minimum in the reconstruction error which is only slightly
larger than the minimax optimal value for the oracle regularization parameter and which
is achieved at an attractively large degree of parallelization. Qualitatively, this agrees very
well with the intuitive notion that parallelizing serves as regularization.

We emphasize that numerical results seem to indicate that parallelization is possible to
a slightly larger degree than indicated by our theoretical estimate. A similar result was
reported in the paper Zhang et al. (2013), which also treats the low smoothness case.

4.2 High smoothness regime

We choose f,(z) = 5= sin(2rz), which corresponds to just one non-vanishing Fourier coef-
ficient and by our criterion Corollary 11 has r = oo . In view of our main Corollary 5 this
requires a regularization method with higher qualification; we take the Gradient Descent

method (see Example 2).

The appearance of the term 2bmin{1,r} in our theoretical result 5 gives a predicted value
a = 0 (and would imply that parallelization is strictly forbidden for infinite smoothness).
More specifically, the left panel in Figure 3 shows the absence of any plateau for the re-
construction error as a function of a. This corresponds to the right panel showing that

12
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—— n=500

reconstruction error
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Figure 1: The reconstruction error || fEerecte — f |3, in the low smoothness case. Left plot: Re-

construction error curves for various (but fixed) total sample sizes, as a function of the

number m of subsamples. Right plot: Reconstruction error curves for various subsample

number scalings m = n®, as a function of the sample size (on log-scale).
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Figure 2: The reconstruction error || f— f, |24, in the low smoothness case. Left plot: Error curves

for different stopping times for n = 500, as a function of the number m of subsamples.

Right plot: Error curves for different stopping times for n = 5000, as a function of the

number m of subsamples.
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Figure 3: The reconstruction error || f3o*<'* — f,|la, in the high smoothness case. Left plot: Re-
construction error curves for various (but fixed) sample sizes as a function of the number
m of subsamples. Right plot: Reconstruction error curves for various subsample number
scalings m = n®, as a function of the sample size (on log-scale).

no group of values of « performs roughly equivalently, meaning that we do not have any
optimality guarantees.

Plotting different values of regularization in Figure 4 we again identify overregularization as
hopeless, while severe underregularization exhibits a sharp minimum in the reconstruction
error. But its value at roughly 0.25 is much less attractive compared to the case of low
smoothness where the error is an order of magnitude less.

5. Discussion

Minimax Optimality: We have shown that for a large class of spectral regularization

methods the error of the distributed algorithm ||7°%( g" — fo) |2 satisfies the same upper

Ts( i\)" — fp)‘ y for the single machine problem, if the regularization
K

parameter ), is chosen according to (16), provided the number of subsamples grows suffi-

ciently slowly with the sample size n. Since, the rates for the latter are minimax optimal
(Blanchard and Miicke, 2017), our rates in Corollary 5 are minimax optimal also.

bound as the error

Comparison with other results: Zhang et al. (2013) derive minimax-optimal rates in
three settings: finite rank kernels, sub-Gaussian decay of eigenvalues of the kernel and
polynomial decay, provided m satisfies a certain upper bound, depending on the rate of
decay of the eigenvalues under two crucial assumptions on the eigenfunctions of the integral
operator associated to the kernel: For any j € N

Elg;(X)*] < o™ (22)
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Figure 4: The reconstruction error || f3— f, || in the high smoothness case. Left plot: Error curves for
different stopping times for n = 500 samples, as a function of the number of subsamples.
Right plot: Error curves for different stopping times for n = 5000 samples, as a function
of the number of subsamples.

for some k > 2 and p < oo or even stronger, it is assumed that the eigenfunctions are
uniformly bounded, i.e.

sup [¢;(z)| < p, (23)

zeX
or any j € N and some p < co. We shall describe in more detail the case of polynomially

decaying eigenvalues, which corresponds to our setting. Assuming eigenvalue decay j; < j —b
b
with b > 1, the authors choose a regularization parameter )\, = n ®+ and
1
b(k—4)—k k-2
b+1
< %
p**log"(n)

leading to an error in L?-norm

— __b
E[|f — foll2e] SnooT

being minimax optimal. Note that this choice of ), and the resulting rate correspond to
our case r = 0, i.e., no smoothness of f, is assumed (just that f, belongs to the RKHS).

For k < 4 the bound becomes less meaningful (compared to the case where k > 4) since
m — 0 as n — oo in this case (for any sort of eigenvalue decay). On the other hand, if
k and b might be taken arbitrarily large, corresponding to almost bounded eigenfunctions
and arbitrarily large polynomial decay of eigenvalues, m might be chosen proportional to
n'=¢, for any € > 0. As might be expected, replacing the L?* bound on the eigenfunctions
by a bound in L*°, gives an upper bound on m which simply is the limit for £ — oo in the
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bound given above, namely
b
e~ ptlogn’

which for large b behaves as above. Granted bounds on the eigenfunctions in L?* for (very)
large k, this is a strong result. While the decay rate of the eigenvalues can be determined
by the smoothness of K (see, e.g., Ferreira and Menegatto, 2009 and references therein), it
is a widely open question which general properties of the kernel imply estimates as in (22)
and (23) on the eigenfunctions.

Zhou (2002) even gives a counterexample and presents a C°° Mercer kernel on [0, 1] where
the eigenfunctions of the corresponding integral operator are not uniformly bounded. Thus,
smoothness of the kernel is not a sufficient condition for (23) to hold.

Moreover, we point out that the upper bound (22) on the eigenfunctions (and thus the upper
bound for m in Zhang et al., 2013) depends on the unknown marginal distribution v. Only
the strongest assumption, a bound in sup-norm (23), does not depend on v. Concerning
this point, our approach is ”agnostic”.

As already mentioned in the Introduction, these bounds on the eigenfunctions have been
eliminated by Lin et al. (2017), for KRR, imposing polynomial decay of eigenvalues as
above. This is very similar to our approach. As a general rule, our bounds on m and the
bounds obtained by Lin et al. (2017) are worse than the bounds of Zhang et al. (2013) for
eigenfunctions in (or close to ) L, but in the complementary case where nothing is known
on the eigenfunctions m still can be chosen as an increasing function of n, namely m = n®.
More precisely, choosing A, as in (16), Lin et al. (2017) derive as an upper bound

B 2br
T b+l

m < n®
with r being the smoothness parameter arising in the source condition. We recall here that

due to our assumption ¢ > 7 + s, the smoothness parameter r is restricted to the interval
(O, %] fOI' KRR (q = ]_) and LQ—TiSk (S — %)

Our results (which hold for a general class of spectral regularization methods) are in some
ways comparable to those of Lin et al. (2017). Specialized to KRR, our estimates for the
exponent « in m = O(n®) coincide with the result of Lin et al. (2017). Furthermore, we
emphasize that Zhang et al. (2013) and Lin et al. (2017) estimate the DL-error only for
s = 1/2 in our notation (corresponding to L?(v)—norm), while our result holds for all
values of s € [0,1/2] which smoothly interpolates between L?(v)-norm and RKHS-norm
and, in addition, for all values of p € [1,00). Thus, our results also apply to the case of
non-parametric inverse regression, where one is particularly interested in the reconstruction
error, i.e. Hyx-norm (see, e.g., Blanchard and Miicke, 2017). Additionally, we precisely
analyze the dependence of the noise variance o2 and the complexity radius R in the source
condition.

Concerning general strategy, while Lin et al. (2017) use a novel second order decomposition
in an essential way, our approach is more classical. We clearly distinguish between estimat-
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ing the approximation error and the sample error. The bias using a subsample should be
of the same order as when using the whole sample, whereas the estimation error is higher
on each subsample, but gets reduced by averaging by writing the variance as a sum of i.i.d.
random variables (which allows to use Rosenthal’s inequality).

Finally, we want to mention the recent works of Lin and Zhou (2018) and Guo et al. (2017),
which were worked out indepently from our work. Guo et al. (2017) also treat general
spectral regularization methods (going beyond kernel ridge) and obtain essentially the same
results, but with error bounds only in L?-norm, excluding inverse learning problems. Lin and
Zhou (2018) investigate distributed learning on the example of gradient descent algorithms,
which have infinite qualification and allow larger smoothness of the regression function.
They are able to improve the upper bound for the number of local machines to

< n® < br
mS ———— | o< —,
~ log’(n) + 1 2or +b+1

which is larger in the case r > 2. In the intermediate case 1 < r < 2, our bound in (20) is
still better. An interesting feature is the fact that it is possible to allow more local machines
by using additional unlabeled data. This indicates that finding the upper bound for the
number of machines in the high smoothness regime is still an open problem.

Adaptivity: It is clear from the theoretical results that both the regularization parameter
A and the allowed cardinality of subsamples m depend on the parameters r and b, which in
general are unknown. Thus, an adaptive approach to both parameters b and r for choosing
A and m is of interest. To the best of our knowledge, there are yet no rigorous results
on adaptivity in this more general sense. Progress in this field may well be crucial in fi-
nally assessing the relative merits of the distributed learning approach as compared with
alternative strategies to effectively deal with large data sets.

We sketch an alternative naive approach to adaptivity, based on hold-out in the direct case,
where we consider each f € Hy also as a function in L?(X,v). We split the data z €
(X x V)" into a training and validation part z = (z!,z") of cardinality my, m,. We further
subdivide z! into my subsamples, roughly of size my/my, where my, < my, k = 1,2,... is
some strictly decreasing sequence. For each k£ and each subsample z;, 1 < j < my, we
define the estimators f;‘] as in (12) and their average

1 &
2y 2\
Jiow = W; z; - (24)

Here, A varies in some sufficiently fine lattice A. Then evaluation on z¥ gives the associated
empirical L?— error

Errj(z") : fZ R, 2 =X,y = (eyh,) s (25)

leading us to define

A = argmin, ¢y Erry (z?) | Err(k) == Erri’“ (z"). (26)
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Then, an appropriate stopping criterion for k£ might be to stop at
E* :=min{k >3 : A(k) < 52inka(j)} , A(j) := |Err(j) — Err(j — 1)/, (27)
i<

for some 0 < 1 (which might require tuning). The corresponding regularization parameter
is A = Ag+, given by (26). At least intuitively, it is then reasonable to define a purely data
driven estimator as

Foi= o (28)

Note that the training data z* enter the definition of fn via the explicit formula (24) encoding
our kernel based approach, while z¥ serves to determine (k*, 5\*) via minimization of the
empirical L?-error and a criterion, which tells one to stop where Err(j) does not appreciably
improve anymore. It is open if such a procedure achieves optimal rates, and we leave this
for future research.

6. Proofs

For ease of reading we make use of the following conventions:

e for a (bounded) linear operator A, ||A|l denotes the operator norm;

e we are interested in a precise dependence of multiplicative constants on the parameters
o, M, R,m,n and n. (To be clear about the role of the latter quantity: the proofs rely
on high-probability statements on deviations, typically holding with high probability
1—n.)

e the dependence of multiplicative constants on various other parameters, including the

kernel parameter k, the interpolating parameter s € [0, %], the parameters arising

from the regularization method, b > 1, 8 > 0, r > 0, etc. will (generally) be omitted
and simply indicated by the symbol A.

e the dependence of the norm parameter p will also be indicated, but will not be given
explicitly.

e the values of 4 and Uy ) might change from line to line.

e the expression “for n sufficiently large” means that the statement holds for n > ng,
with ng potentially depending on all model parameters (including o, M and R), but
not on 7.

6.1 Preliminaries

Proposition 12 (Guo et al., 2017, Proposition 1) Define

2
Bn(A\) = |1+ <2+ N(/\)> : (29)

nA nA

18



PARALLELIZING SPECTRAL ALGORITHMS

For any A > 0, n € (0,1], with probability at least 1 —n one has

(T + X)HT + N)|| < 8log®(2n~ 1) Bu(N) . (30)

Corollary 13 Let n € (0,1). ForneN let An be implicitly defined as the unique solution
of N(\n) = n),. Then for any A € [max(\,,n~ '), 1], one has

B,(\) <10.
In particular,
H(Tx + NN T + )\)H < 80log?(2n7 1)

holds with probability at least 1 —n.

We remark that the trace of T is bounded by 1. This ensures that the interval [S\n, 1] is
non-empty.

Proof [of Corollary 13| Let An be defined via N'(\,) = n\,. Since N'(A)/\ is decreasing,
we have for any A > A,
N NQ‘”) =1.

Inserting this bound as well as nA > 1 into (29) and (30) leads to the conclusion. [ |

Corollary 14 Assume the marginal distribution v of X belongs to P<(b, ) with b > 1 and
B > 0. If A\, is defined by (16) and if

2br

< n¢ e
M ST, OS 1

one has
B (M) <2,

mn -

provided n is sufficiently large.

Proof [of Corollary 14] We can for starters assume that n is sufficiently large so that A\, < 1,
b _1
ie. Ap = (é’%) P from (16). Recall that v € P<(b, 8) implies A(An) < Cadn®.
Looking at the terms entering in B= (\,), see (29), we have first, using the definition of A,
in (16):
b+l b+

N () Mt _om <nR2>2br+bl+1

SCATTZ

Ry
2 \n n n \ o?
m
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which (for fixed R, o and other parameters entering in C,) is O(my,n~ pTEeE ), and hence
o(1) provided
2br

< n¢ - .
M ST, S o T

For the second term entering in B (\,,), we have

b
1 m <nR2 ) 2br+b+1
n - 95 Y
EAH n 0'2

2br+1
which is O(m,n"~ 2br+ﬁ+1) = o(1), provided

20r + 1
<n%, <o
Min =1 “S 2+ b+ 1
which is implied by the previous stronger condition. |

We shortly illustrate how Corollary 13 and Proposition 12 will be used. Let u € [0, 1],
An < A as above and f € Hi. We have for any bounded operator A

(T Al = [|[T“(T + \)7(T + A\)*“(Tx + A)"“(Tx + \)"“A|
< 7T+ N7 T+ AT+ )|+ 1) A
< 8log™ (27 1) B (N |(Ti + 1) 4| (31)
with probability at least 1 — 7, for any n € (0,1); for the last inequality we have used
that the first factor is less than 1, and for the second factor Proposition 12 in combination

with the Cordes inequality (see Proposition 22 in the Appendix). In particular, for any
max(\,,n 1) <\ (with A, as in Corollary 13)

| T Al < 80" log® (20 1) [|(Tx + N)“4]| , (32)

with probability at least 1 — 7.

In the following, we constantly use (31). Furthermore, to bound terms involving residuals
we will frequently use the following estimate: for v > 0,u € [0,2], and provided u + v < ¢
(¢ being the qualification):

sup |ra(6)t’(t+ N < 2( sup {m(t)t”“} + A" sup |7“,\(t)t”\>
te(0,1] te(0,1] te(0,1]
< O\, (33)

using twice (11) since ¢ > u + v.
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6.2 Approximation error bound

Recall that v denotes the X-marginal of the sampling distribution p and P the set of all
probability distributions on the input space X.

Lemma 15 Let v € P, v € R and let x € X be an i.i.d. sample of size n/m, drawn
according to v. Assume the regularization (gx)x has qualification ¢ > v+ 1+ s. Then with
probability at least 1 —n

[T (T) T2(T — Too) || < Calog (4~ AT B () (Z; + m/;/ A(A)> .

Proof [of Lemma 15] From (30),(31) and from Proposition 20 recalled in the Appendix,
one has

|7 rA(TOTUT ~ T)| < Ca 10g2(3+1)(477’1)55n“(>\)
(T T )T (T + N)|| (T + N)"NT - Ty) ||

<C, 10g4(47]—1))\8+v+1852+1()\> <m 4 m/\/()\)> ’

m ni nA

for any A € (0,1], n € (0,1], with probability at least 1 — 7. We also used that s < %, and
the estimate (33). [ ]

Lemma 16 Let v € P, v € R and let x € Xm be an i.i.d. sample of size n/m drawn
according to v. Assume the regularization (gx)x has qualification ¢ > v+ s. Then for any
A € (0,1], n € (0,1], with probability at least 1 — 7

I T 7x 7x > h n + )
| T5rA(To) Ty || < Calog® (20~ 1) B (M)A

for some Cy < .

Proof [of Lemma 16] Using (31), (33), since ¢ > v + s, it holds
HTST)\ T H <C, log H A(TX)T:{)H
< C, log? ( n 1)82()\))\”” ,

with probability at least 1 — 7. |

Proposition 17 (Expectation of approximation error) Let f, € Q(r,R), A € (0,1]
and let Ba (X\) be defined in (29). Assume the regularization has qualification ¢ > r + s.
For any p > 1 one has:
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1. Ifr <1, then

1

[Eon|T(f) = I3, ] " < CanR N7 B (N).

m

2. Ifr > 1, then

I 2 % S13S T NA
Bl T(fy =I5, ]” < CanRABE (M) ()\ +A<$+ mm( )>> .

In 1. and 2. the constant Cap does not depend on (o, M, R) € R3..

Proof [of Proposition 17| Since f, € Q(r, R),

B =

(B 172U = D)7 = [Booll - o Tora T ol
j=1

m 1
< %Z |:Ep®" TSTA(TXj)prZlK] ’
j:l
R & P (T V7 |P] 7
< E,Z [Ep@nﬂT ()T } ' oy

1

J

1
The first inequality is just the triangle inequality for the p-norm || f|, = E[|[f|%, ]7. We
bound the expectation for each separate subsample of size .- by first deriving a probabilistic
estimate and then we integrate.

Consider first the case where r < 1. Using (31), the Cordes inequality (Proposition 22 in
the Appendix), and (33) one has for any j =1,...,m,

|75\ (T, )T || < Culog ) (4™ MBS (A) [[(Tx, + N)*ra(Tx, ) (Tx, + N ||
< Calog? (4 AT BT (V)
with probability at least 1 —n and where B= (\) is defined in (29). Recall that the regular-
ization has qualification ¢ > r + s. By integration one has
1
[ on [T (T T[] < Gy X7 BET(N)

for some Cy < 00, not depending on o, M, R. Finally, from (34)

1
Epen [T = POy, | < Cap RN BET()

In the case where r > 1, we write r = k + u, with k = |r| and u = r — k < 1. We shall use

the decomposition
k—1

T = S TUT — T TH 04 4 7k (35)
=0
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We proceed by bounding (34) according to decomposition (35) . For any j = 1,...,m, one
has

ko

-1 1

1 1
[Epon [T ra (T )T 7|7 < 7 [Byon | Tra (T T, (T = T JTH- 04 7]

-~
Il
=)

1
o+ [Bpon | T*ra(T ) T T|°]

k—1 1
<3 B | Tora (T ) T (T~ T )]
=0
1
+ [Een [T @) TE T ] (36)

Here we use that ||T%~(+D+¢|| is bounded by 1. By Lemma 16 and by (31), (33), with
probability at least 1 —n

| 7o (T T T

< Calog2+ (2 B () || (T, + A)*ra(Ti )T (T, + A"
< C log2 ) (27~ BE ()X,

and thus integration yields

1
[Ep®nHTST)\(TXJ.)T)’;J_T“HP} TS OB AT (37)
For estimating the first term in (36) we may use Lemma 15. For any [ = 0,...,k — 1, we

have [+ s+ 1 < k+s <r+s < gq, hence for any j = 1,...,m with probability at least
L=n

|7 (T T (T = T )| < Catog? (8712185 () <m ™Y W) .

nA nA

Again by integration, since \! < 1 for any I =0,...,k — 1, one has

N
[

S

[B o |7 (To ) T2, (T~ To)|”]

X

< Caplr|NTBEH (V) (g\ + m/X)SA)) : (38)

l

Il
o

Finally, combining (37) and (38) into (36), then (34), gives in the case where r > 1

[ f % S$12s r m mN (\
[ 72, — D) ] < CapBE ) <A “(m v >>> |

The rest of the proof follows from (36).
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Proof [of Theorem 3| Let A, be as defined by (16). According to Corollary 14, we have
B (\,) <2 provided a < ﬁbzﬂ, for n sufficiently large. We can also assume n suffi-

mn,

ciently large so that A\, < 1, i.e., RA"™® = a,, (from (16), (17)). Under these conditions, we
immediately obtain from the first part of Proposition 17 in the case where r <1

1
[Eﬂ@’"HTs(fp - l)sn)Hg'lK} "< CapR M= Cap an -

We turn to the case where r > 1. We apply the second part of Proposition 17. By
Corollary 14 we have

M maN (An)
nAn nAn

1
P < CapRABE ) | AL+ N,

[E—

[Eponl7 (1~ A3,

. R
< Cap RAS <A;; £, (;’; 4 ,ﬁmnax;;)) ,

=

where we used that N ()\,;) < Caxn Y and o/ 22

% = RA;, coming from the definition of
An, and A, < 1. Furthermore,

o (Vi)

nAn

provided
2(br +1)

< n® - 7 .
M =T 2r +b+ 1

Finally, for n sufficiently large, ga/mn)\n < 1, provided that

2br +b+1°

As a result, for any p > 1:
1
[Bponl| T~ B3]

limsup sup <Cap,
n—00 peEMg MR an

for some C, ), < 0o, not depending on o, M, R. |

6.3 Sample error bound

The main idea for deriving an upper bound for the sample error is to identify it as a sum
of unbiased Hilbert space-valued i.i.d. variables and then to apply a suitable version of
Rosenthal’s inequality.
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Given X € (0, 1], we define the random variable &y : (X x R)m —s Hg by

gA(XaY) T°g ( x)(Txfp*S’* ) .
Recall that according to Assumption (3), the conditional expectation w.r.t. p of Y given X
satisfies

Eo[Y|X =a] = 5.f,,
implying that &) has zero expectation (since Tx = S%Sx). Thus,

. _ 1 X
T(fp—fp) = — > &xy)) (39)
j=1
is a sum of centered i.i.d. random variables.

Furthermore, we need the following result (Pinelis, 1994, Theorem 5.2), which generalizes
Rosenthal’s (1970) inequalities (originally only formulated for real valued random variables)
to random variables with values in a Banach space. For Hilbert spaces this looks particularly
nice.

Proposition 18 Let H be a Hilbert space and &1, . .., &y be a finite sequence of independent,
mean zero H- valued random variables. If 2 < p < oo, then there exists a constant Cp, > 0,
only depending on p, such that

(E\\;igui);_i {(ZEH@W’) (il@m%)%}- (10)

We remark in passing that Dirksen (2011), Corollary 1.22, establishes the interesting result
that in addition to the upper bound in (40) there is also a corresponding lower bound where
the constant C), is replaced by another constant C;) > 0, only depending on p.

Proposition 19 (Expectation of sample error) Let p be a source distribution belong-
ing to Mo g, s €[0,3] and let A € (0,1]. Define B (X) as in (29). Assume the reqular-
ization has qualification ¢ > r 4+ s. For any p > 1 one has:

1
TS ([ FA AN ||P P -1 Lisys mM mN(A)
|:]Ep®n”T (fD - fD)H'HKi| g < CA,p m 28% ()\)2+ A <7’I,)\ +o T ’
where C), does not depend on (o, M, R) € R3..

Proof [of Proposition 19| Let A € (0, 1] and p > 2. From Proposition 18

=5 7 aa|P C 1 ¢ ak
|:}Ep® fD_fDH’H :| = ]Ep®” EZ&)\(X%y‘?) 2 ]
< g maX{(Zl |: p®””£>‘ X]7YJ)||HK]>p7 <Zl |:]Ep®n||£)\(xjayj)”’2{-[Ki|>2} . (41)
j= =
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Again, the estimates in expectation will follow from integrating a bound holding with high
probability. By (31), one has for any j =1,...,m,

1ExC8s Y i) l#se = 1T g0 (T ) (s £ — S, ) 13xc
< 8log® (4n™")Bn (A)*|(T; + A)°9a (T ) (T, fo = S,y i) lrre - (42)
holding with probability at least 1 — 2, where B%(/\) is defined in (29). We proceed by
splitting:
(Tx. + N oon (T ) (T, fo — S5 y;) = HY - HE )
X; I\ x; )Lx;)p x;Yj X, X; 7
with
_ — = 1
Hy 1= [T, + 2)*9a(T) (T, + )2,
H) o= [|(T, + N 72T+ N3]
— _l — —
B = 1T+ N (T Sy — S,y e -

The first term is estimated using (9),(10) and gives for s € [0, 1]

HY) < sup (ga()(t+ 1))
te(0,1]

< 2( sup ga(£)E5F2 + A2 sup gA(t)>
te[0,1] te[0,1]

1 sl i
< 2(( sup QA(t))2 ( sup gx(t)t> T+ A2 sup gx(t)>
te€(0,1] t€[0,1] t€[0,1]
< CNTT (43)
The second term is now bounded using (31) once more. One has with probability at least
1-1
1
2 _ 1
H) < 8log(81)Bx (A)? . (44)

Finally, hé‘j is estimated using Proposition 21:

mM mN(A)) 7 (15)

hy < 2log(8n~* +o
holding with probability at least 1 — 7. Thus, combining (43), (44) and (45) with (42) gives
forany j=1,...,m,

3 1igvs [ MM mN (A
1630, ¥5) e < Calog®*FD (8071 (1) FHA (m oy )> |

with probability at least 1 — n. Integration gives for any p > 2:
m
Z |:]Ep®”H§/\(XjaYJ)H{;_LK] < CA,pm-Ap 5

Jj=1

26



PARALLELIZING SPECTRAL ALGORITHMS

with

A= A%(A) — B%()\)%+5)\S (mM+ m/\/()\)> ‘

0 nA
Combining this with (41) implies, since p > 2:

1
- _ = CL 1 1
[Epm HTS(fB - fﬁ)H%K} "< Wp max ((mAp)P , (mA?) 2)
C 1
= &P Amax (m;,m%>
m
_ Cap
vm
where C, ; does not depend on (o, M, R) € sz’r. The result for the case 1 < p < 2 immedi-
ately follows from Holder’s inequality. |

A,

Proof [of Theorem 4| Let A, be as defined by (16); as earlier we assume n is big enough

so that A, < 1. According to Corollary 14, we have Bx (\,,) < 2 provided a < ﬁbzﬂ and

n is sufficiently large. Under this condition we immediately obtain from Proposition 19:

Cap 3 mM n mN (An)
A

1
{EPWHTS( o= 3”>H§1Jp < Jm n O\ A,

o=

< Caphl ‘/gnM +o j\;;\n ,
where we used again that N'(\,) < Ca\, 1/ b; now
vimy, M =o|o T_Ll/b
nAn, nh, |’
provided
my, <n®, < m .

~1/b
Recalling that o1/ ’\;;)\n = R\, = A\, ®ay, we arrive at

1
(BT (Fy = P, |7 < Capan
As a result, for any p > 1:
1
BTy = P

limsup sup <Cap,
n—00 peEMg M, R an

for some C, ,, not depending on the model parameters (o, M, R) € Ri, thus leading to the
conclusion. |

27



MUCKE AND BLANCHARD

Appendix A

Proposition 20 (see e.g. Blanchard and Miicke, 2017, Proposition 5.3) For anyn €
N, A € (0,1] and n € (0,1), one has with probability at least 1 — 1 :

(T4 2T — T g < 2log(2n™) <2+ N W) ,

nA nA

where ||.|| ;g denotes the Hilbert-Schmidt norm. (Since the operator norm is bounded by the
Hilbert-Schmidt norm, the above statement also holds for the operator norm.)

Proposition 21 (see e.g. Blanchard and Miicke, 2017, Proposition 5.2) For n €
N, A € (0,1] and n € (0,1], it holds with probability at least 1 —n :

(T + 277 (T = Sy g, < 2log(2n7) (n]\fﬁJr 02/22@) |

Proposition 22 (Cordes Inequality, see e.g. Bhatia, 1997, Theorem IX.2.1-2) Let
A, B be to self-adjoint, positive operators on a Hilbert space. Then for any s € [0,1]:

|A°B°|| < [[AB]|” . (46)
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