
Journal of Machine Learning Research 19 (2018) 1-42 Submitted 10/16; Revised 12/17; Published 8/18

The xyz algorithm for fast interaction search in
high-dimensional data

Gian-Andrea Thanei g.a.thanei@gmail.com
Seminar für Statistik
ETH Zürich
8092 Zürich, Switzerland

Nicolai Meinshausen meinshausen@stat.math.ethz.ch
Seminar für Statistik
ETH Zürich
8092 Zürich, Switzerland

Rajen D. Shah∗ rds37@cam.ac.uk

Statistical Laboratory

University of Cambridge

Cambridge, CB3 0WB, UK

Editor: Jennifer Dy

Abstract

When performing regression on a data set with p variables, it is often of interest to go
beyond using main linear effects and include interactions as products between individual
variables. For small-scale problems, these interactions can be computed explicitly but this
leads to a computational complexity of at least O(p2) if done naively. This cost can be
prohibitive if p is very large.

We introduce a new randomised algorithm that is able to discover interactions with
high probability and under mild conditions has a runtime that is subquadratic in p. We
show that strong interactions can be discovered in almost linear time, whilst finding weaker
interactions requires O(pα) operations for 1 < α < 2 depending on their strength. The
underlying idea is to transform interaction search into a closest pair problem which can be
solved efficiently in subquadratic time. The algorithm is called xyz and is implemented in
the language R. We demonstrate its efficiency for application to genome-wide association
studies, where more than 1011 interactions can be screened in under 280 seconds with a
single-core 1.2 GHz CPU.

Keywords: interactions, high-dimensional data, regression, computational tradeoffs,
close pairs

1. Introduction

Given a response vector Y ∈ Rn and matrix of associated predictors X = (X1, . . . ,Xp) ∈
Rn×p, finding interactions is often of great interest as they may reveal important relation-
ships and improve predictive power. When the number of variables p is large, fitting a model
involving interactions can involve serious computational challenges. The simplest form of

∗. Supported by the Isaac Newton Trust Early Career Support Scheme, the Alan Turing Institute under
the EPSRC grant EP/N510129/1 and EPSRC Programme Grant EP/N031938/1

c©2018 Gian-Andrea Thanei, Nicolai Meinshausen, Rajen D. Shah.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v19/16-515.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v19/16-515.html

Thanei, Meinshausen and Shah

interaction search consists of screening for pairs (j, k) with high inner product between the
outcome of interest Y and the point-wise product Xj ◦Xk:

Keep all pairs (j, k) for which YT (Xj ◦Xk)/n > κ. (1)

This search is of complexity O(np2) in a naive implementation and quickly becomes infea-
sible for large p. Of course one would typically be interested in maximising (absolute values
of) correlations rather than dot products in (1), an optimisation problem that would be at
least as computationally intensive.

Even more challenging is the task of fitting a linear regression model involving pairwise
interactions:

Yi = µ+

p∑
j=1

Xijβj +

p∑
k=1

k−1∑
j=1

XijXikθjk + εi. (2)

Here µ ∈ R is the intercept and βj and θjk contain coefficients for main effects and interac-
tions respectively, and εi is random noise.

In this paper, we make several contributions to the problem of searching for interactions
in high-dimensional settings.

(a) We first establish a form of equivalence between (1) and closest-pair problems (Shamos
and Hoey, 1975; Agarwal et al., 1991). Assume for now that all predictors and outcomes
are binary, so Xij , Yi ∈ {−1, 1} (we will later relax this assumption) and define Z ∈
{−1, 1}n×p as Zij = YiXij . Then it is straightforward to show that (1) is equivalent to

Keep all pairs (j, k) for which ‖Xj − Zk‖2 < κ′ (3)

for some κ′. This connects the search for interactions to literature in computational
geometry on problems of finding closest pairs of points.

(b) We introduce the xyz algorithm to solve (3) based on randomly projecting each of the
columns in X and Z to a one-dimensional space. By exploiting the ability to sort the
resulting 2p points with O(p log(p)) computational cost, we achieve a run time that is
always subquadratic in p and can even reach a linear complexity O(np) when κ is much
larger than the quantity |YT (Xj ◦Xk)|/n of the bulk of the pairs (j, k). We show that
our approach can be viewed as an example of locality sensitive hashing (Leskovec et al.,
2014) optimised for our specific problem.

(c) We show how any method for solving (1) can be used to fit regression models with
interactions (15) by building it into an algorithm for the Lasso (Tibshirani, 1996). The
use of xyz thus leads to a procedure for applying the Lasso to all main effects and
interactions with computational cost that scales subquadratically in p.

(d) We provide implementations of both the core xyz algorithm and its extension to the
Lasso in the R package xyz, which is available on github (Thanei, 2016) and CRAN.

Our work here is thus related to “closest pairs of points” algorithms in computational
geometry as well as an extensive literature on modelling interactions in statistics, both of
which we now review.

2

The xyz algorithm for fast interaction search in high-dimensional data

1.1 Related work

A common approach to avoid the quadratic cost in p of searching over all pairs of vari-
ables (1) is to restrict the search space: one can first seek a small number of important
main effects, and then only consider interactions involving these discovered main effects.
More specifically, one could fit a main effects Lasso (Tibshirani, 1996) to the data first,
add interactions between selected main effects to the matrix of predictors, and then run
the Lasso once more on the augmented design matrix in order to produce the final model
(see Wu et al. (2010) for example). Tree-based methods such as CART (Breiman et al.,
1984) work in a similar fashion by aiming to identify an important main effect and then
only considering interactions involving this discovered effect.

However it is quite possible for the signal to be such that main effects corresponding
to important interactions are hard to detect. As a concrete example of this phenomenon,
consider the setting where X is generated randomly with all entries independent and having
the uniform distribution on {−1, 1}. Suppose the response is given by Yi = Xi1Xi2, so there
is no noise. Since the distribution Yi|Xij is the same for all k, main effects regressions would
find it challenging to select variables 1 and 2. Note that by reparametrising the model by
adding one to each entry of X for example, we obtain Yi = (Xi1 − 1)(Xi2 − 1) = 1−Xi1 −
Xi2 + Xi1Xi2. The model now respects the so-called strong hierarchical principle (Bien
et al., 2013) that interactions are only present when their main effects are. The hierarchical
principle is useful to impose on any fitted model. However, imposing the principle on
the model does not imply that the interactions will easily be found by searching for main
effects first. The difficulty of the example problem is due to interaction effects masking
main effects: this is a property of the signal E(Yi) and of course no reparametrisation can
make the main effects any easier to find. Approaches that increase the set of interactions
to be considered iteratively can help to tackle this sort of issue in practice (Bickel et al.,
2010; Hao and Zhang, 2014; Friedman, 1991; Shah, 2016) as can those that randomise the
search procedure (Breiman, 2001). However they cannot eliminate the problem of missing
interactions, nor do these approaches offer guarantees of how likely it is that they discover
an interaction.

As alluded to earlier, the pure interaction search problem (3) is related to close pairs
of points problems, and more specifically the close bichromatic pairs problem in computa-
tional geometry (Agarwal et al., 1991). Most research in this area has focused on algorithms
that lead to computationally optimal results in the number of points p whilst considering
the dimension n to be constant. This has resulted in algorithms where the scaling of the
computational complexity with n is at least of order 2n (Shamos and Hoey, 1975). Since
for meaningful statistical results one would typically require n � log(p), these approaches
would not lead to subquadratic complexity. An exception is the so-called lightbulb algo-
rithm (Paturi et al., 1989) which employs a similar strategy for binary data; our work here
shows that this is optimal among random projection-based methods and also that it may
be modified to handle continuous data and also detect interactions in high-dimensional
regression settings.

In the special case where n = p and Zij , Xij ∈ {−1, 1}, (3) may be seen to be equivalent
to searching for large magnitude entries in the product of square matrices X and ZT . This
latter problem is amenable to fast matrix multiplication algorithms, which in theory can

3

Thanei, Meinshausen and Shah

deliver a subquadratic complexity of roughly O(p2.4) = O(np1.4) (Williams, 2012; Davie
and Stothers, 2013; Le Gall, 2012). However the constants hidden in the order notation are
typically very large, and practical implementations are unavailable. The Strassen algorithm
(Strassen, 1969) is the only fast matrix multiplication algorithm used regularly in practice
to the best of our knowledge. With a complexity of roughly O(p2.8) = O(np1.8), the
improvement over a brute force close pairs search is only slight.

The strategy we use is most closely related to locality sensitive hashing (LSH) (Indyk
and Motwani, 1998) which encompasses a family of hashing procedures such that similar
points are mapped to the same bucket with high probability. A close pair search can then
be conducted by searching among pairs mapped to the same bucket. In fact, our approach
for solving (3) can be thought of as an example of LSH optimised for our particular problem
setting. This connection is detailed in Appendix B.

A seemingly attractive alternative to the subsampling-based LSH-strategy we employ is
the method of random projections which is motivated by the theoretical guarantees offered
by the Johnson–Lindenstrauss Lemma (Achlioptas, 2003). Perhaps surprisingly, we can
show that using random projections instead of our subsampling-based scheme leads to a
quadratic run time for interaction search (see Theorem 1 and section 5.1).

An approach that bears some similarity with our procedure is that of epiq (Arkin et al.,
2014). This works by projecting the data and then searches through a lower dimensional
representation for close pairs. This appears to improve upon a naive brute force empirically
but there are no proven guarantees that the run time improves on the O(np2) complexity
of a naive search.

The Random Intersection Trees algorithm of Shah and Meinshausen (2014) searches for
potentially deeper interactions in data with both X and Y binary. In certain cases with
strong interactions a complexity close to linear in p is achieved; however it is not clear how
to generalise the approach to continuous data or embed it within a regression procedure.

The idea of Kong et al. (2016) is to first transform the data by forming Ỹ = Y ◦ Y
and X̃j = Xj ◦Xj for each predictor. Next X̃j and Ỹ are tested for independence using
the distance correlation test. In certain settings, this can reveal important interactions
with a computational cost linear in p. However, the powers of these tests depend on the
distributions of the transformed variables X̃j . For example in the binary case when X ∈
{−1, 1}n×p, each transformed variable will be a vector of 1’s and the independence tests
will be unhelpful. We will see that our proposed approach works particularly well in this
setting.

1.2 Organisation of the paper

In Section 2 we consider the case where both the response Y and the predictors X are
binary. We first demonstrate how (15) may be converted to a form of closest pair of
points problem. We then introduce a general version of the xyz algorithm which solves
this based on random projections. As we show in Section 2.1 there is a particular random
projection distribution that is optimal for our purposes. This leads to our final version
of the xyz algorithm which we present in Section 2.3 along with an analysis of its run
time and probabilistic guarantees that it recovers important interactions. In Section 3 we
extend the xyz algorithm to continuous data. These ideas are then used in Section 4 to

4

The xyz algorithm for fast interaction search in high-dimensional data

demonstrate how the xyz algorithm can be embedded within common algorithms for high-
dimensional regression (Friedman et al., 2010) allowing high-dimensional regression models
with interactions to be fitted with subquadratic complexity in p. Section 5 contains a variety
of numerical experiments on real and simulated data that complement our theoretical results
and demonstrate the effectiveness of our proposal in practice. We conclude with a brief
discussion in Section 6 and all proofs are collected in the Appendix.

2. The xyz algorithm for binary data

In this section, we present a version of the xyz algorithm applicable in the special case where
both X and Y are binary, so Xij ∈ {−1, 1} and Yi ∈ {−1, 1}. We build up to the algorithm
in stages, giving the final version in Section 2.2.

Define Z ∈ {−1, 1}n×p by Zij = YiXij and

γjk =
1

n

n∑
i=1

1{Yi=XijXik}. (4)

We call γjk the interaction strength of the pair (j, k). It is easy to see that the interaction
search problem (1) can be expressed in terms of either the γjk or the normalised squared
distances. Indeed

2γjk − 1 = YT (Xj ◦Xk)/n = ZTj Xk/n = 1− ‖Zj −Xk‖22/(2n). (5)

Thus those pairs (j, k) with YT (Xj ◦ Xk)/n large will have γjk large, and ‖Zj − Xk‖22
small. This equivalence suggests that to solve (1), we can search for pairs (j, k) of columns
Zj ,Xk that are close in `2 distance. At first sight, this new problem would also appear
to involve a search across all pairs, and would thus incur an O(np2) cost. As mentioned
in the introduction, close pair searches that avoid a quadratic cost in p incur typically an
exponential cost in n. Since n would typically be much larger than log(p), such searches
would be computationally infeasible.

We can however project each of the n-dimensional columns of X and Z to a lower dimen-
sional space and then perform a close pairs search. The Johnson–Lindenstrauss Lemma,
which states roughly that one can project p points into a space of dimension O(log(p))
and faithfully preserve distances, may appear particularly relevant here. The issue is that
the projected dimension suggested by the Johnson–Lindenstrauss Lemma is still too large
to allow for an efficient close pairs search. The following observation however gives some
encouragement: if we had Y = Xj ◦ Xk so Xj = Zk, even a one-dimensional projection
R ∈ Rn will have |RT (Xj−Zk)| = 0 = ‖Xj−Zk‖2, which implies that a perfect interaction
will have zero distance in the projected space. We will later see that our approach leads to
a linear run time in such a case. Importantly, we are only interested in using a projection
that preserves the distances between the close pairs rather than all pairs, which makes our
problem very different to the setting considered in the Johnson–Lindenstrauss Lemma.

With this in mind, consider the following general strategy. First project the columns
of X and Z to one-dimensional vectors x and z using a random projection R: x = XTR,
z = ZTR. Next for some threshold τ , collect all pairs (j, k) such that |xj − zk| ≤ τ in
the set E. By first sorting x and z, a step requiring only O(p log(p)) computations (see

5

Thanei, Meinshausen and Shah

for example Sedgewick (1998)), this close pairs search can be shown to be very efficient.
Given this set of candidate interactions, we can check for each (j, k) ∈ E whether we have
γjk ≥ γ. The process can be repeated L times with different random projections, and one
would hope that given enough repetitions, any given strong interaction would be present in
one of the candidate sets E1, . . . , EL with high probability. This approach is summarised
in Algorithm 1 which we term the general form of the xyz algorithm. A schematic overview
is given in Figure 1.

Algorithm 1 A general form of the xyz algorithm.

Input: X ∈ {−1, 1}n×p, Y ∈ {−1, 1}n
Parameters: ξ = (G,L, τ, γ). Here G is the joint distribution for the projection vector
R, L is the number of projections, and τ and γ are the thresholds for close pairs and
interactions strength respectively.
Output: I set of strong interactions.

1: Form Z via Zij = YiXij and set I := ∅.
2: for l ∈ {1, . . . , L} do
3: Draw random vector R ∈ Rn with distribution G and project the data using R, to

form
x = XTR and z = ZTR.

4: Collect in El all pairs (j, k) such that |xj − zk| ≤ τ .
5: Add to I those (j, k) ∈ El for which γjk ≥ γ.
6: end for

There are several parameters that must be selected, and a key choice to be made is the
form of the random projection R. For the joint distribution G of R we consider the following
general class of distributions, which includes both dense and sparse projections. We sample
a random or deterministic number M of indices from the set {1, . . . , n}, i1, . . . , iM , either
with or without replacement. Then, given a distribution F ∈ F where F is a class of
distributions to be specified later, we form a vector D ∈ RM with independent components
each distributed according to F . We then define the random projection vector R by

Ri =
M∑
m=1

Dm1{im=i}, i = 1, . . . , n. (6)

Each configuration of the xyz algorithm is characterised by fixing the following param-
eters:

(i) G, a distribution for the projection vectorR which is determined through (6) by F ∈ F ,
a distribution for the subsample size M and whether sampling is with replacement or
not;

(ii) L ∈ N, the number of projection steps;

(iii) τ ≥ 0, the close pairs threshold;

(iv) γ ∈ (0, 1), the interaction strength threshold.

6

The xyz algorithm for fast interaction search in high-dimensional data

We will denote the collection of all possible parameter levels by Ξ. This includes the
following subclasses of interest. Fix F ∈ F .

(a) Dense projections. Let R ∈ Rn have independent components distributed according
to F and denote the distribution of R by G. This falls within our general framework
above with M set to n and sampling without replacement. Let

Ξdense := {ξ ∈ Ξ with joint distribution equal to G}.

(b) Subsampling. Let Gsubsample be the set of distributions for R obtained through (6)
when subsampling with replacement. Let

Ξsubsample := {ξ ∈ Ξ : joint distribution G ∈ Gsubsample}.

(c) Minimal subsampling. Let Ξminimal be the set of all parameters in Ξsubsample such
that the close pairs threshold is τ = 0 and M takes randomly values in the set {m,m+1}
for some positive integer m.

Ξminimal := {ξ ∈ Ξsubsample with τ = 0 and M ∈ {m,m+ 1} for some m ∈ N}.

Note that we have suppressed the dependence of the classes above on the fixed distribution
F ∈ F for notational simplicity. We define F to be the set of all univariate absolutely
continuous and symmetric distributions with bounded density and finite third moment.
The restriction to continuous distributions in F ensures that Ξminimal is invariant to the
choice of F : when τ ≡ 0, every F ∈ F with L ∈ N and the distribution for M fixed yields
the same algorithm. Moreover the set of close pairs in Cl is simply the set of pairs (j, k)
that have Ximj = Zimk for all m = 1, . . . ,M , that is the set of pairs that are equal on the
subsampled rows. We note that the symmetry and boundedness of the densities in F and
finiteness of the third moment are mainly technical conditions necessary for the theoretical
developments in the following section. We will assume without loss of generality that the
second moment is equal to 1. This condition places no additional restriction on Ξ since a
different second moment may be absorbed into the choice of τ .

Minimal subsampling represents a very small subset of the much larger class of ran-
domised algorithms outlined above. However, Theorem 1 below shows that minimal sub-
sampling is essentially always at least as good as any algorithm from the wider class, which
is perhaps surprising. A beneficial consequence of this result is that we only need to search
for the optimal ways of selecting M and L; the threshold τ is fixed at τ = 0 and the choice
of the continuous distribution F is inconsequential for minimal subsampling. The choices
we give in Section 2.2 yield a subquadratic run time that approaches linear in p when the
interactions to be discovered are much stronger than the bulk of the remaining interactions.

2.1 Optimality of minimal subsampling

In this section, we compare the run time of the algorithms in ξ ∈ Ξdense,Ξsubsample and
Ξminimal that return strong interactions with high probability. Let (j∗, k∗) be the indices of

7

Thanei, Meinshausen and Shah

a) b) c)

Figure 1: Illustration of the general xyz algorithm. The strongest interaction is the pair
(1, 2) and p = 4. Panel a) illustrates the interaction search among Y and Xj ◦Xk, panel b)
shows the closest pair problem after the transformation Zij = XijYi and panel c) depicts
the closest pair problem after the data has been projected. These are the three main steps
in the xyz algorithm.

a strongest interaction pair, that is γj∗k∗ = maxj,k∈{1,...,p} γjk. We will consider algorithms
ξ with γ set to γj∗k∗ . Define the power of ξ ∈ Ξ as

Power(ξ) := Pξ((j∗, k∗) ∈ I).

For η ∈ (0, 1), let

Ξdense(η) = {ξ ∈ Ξdense : Power(ξ) ≥ η},

and define Ξsubsample(η) and Ξminimal(η) analogously. Note that these classes depend on the
underlying F ∈ F , which is considered to be fixed, and moreover that we are fixing γ = γj∗k∗ .
We consider an asymptotic regime where we have a sequence of response–predictor matrix

pairs (Y(n),X(n)) ∈ Rn×Rn×pn . Write γ
(n)
jk for the corresponding interaction strengths, and

let γ
(n)
1 = maxj,k γ

(n)
jk . Let fγ(n) be the probability mass function corresponding to drawing

an element of γ(n) uniformly at random. Note that fγ(n) has domain {0, 1/n, 2/n, . . . , 1}.
We make the following assumptions about the sequence of interaction strength matrices
γ(n).

(A1) There exists c0 such that |{(j, k) : γ
(n)
jk = γ

(n)
1 }| ≤ c0pn.

(A2) There exists γl > 0, γu < 1 such that γu ≥ γ(n)
1 ≥ γl for all n.

(A3) There exists ρ < 1 such that fγ(n) is non-increasing on [ργ
(n)
1 , γ

(n)
1) ∩ {0, 1/n, . . . , 1}.

Assumption (A1) is rather weak: typically one would expect the maximal strength interac-
tion to be essentially unique, while (A1) requires that at most of order pn interactions have
maximal strength. (A2) requires the maximal interaction strength to be bounded away
from 0 and 1, which is the region where complexity results for the search of interactions
are of interest. As mentioned earlier, if the maximal interaction strength is 1, it will always
be retained in the close-pair sets Cl, whilst if its strength is too close to 0, then it is near
impossible to distinguish it from the remaining interactions. (A3) ensures a certain form of
separation between maximal strength interactions and the bulk of the interactions.

8

The xyz algorithm for fast interaction search in high-dimensional data

To aid readability, in the following we suppress the dependence of quantities on n in the
notation. Given X and Y, we may define T (ξ) as the expected number of computational
operations performed by the algorithm corresponding to ξ. We have the following result.

Theorem 1 Given F ∈ F and η ∈ (0, 1), there exists n0 such that for all n ≥ n0 we have

inf
ξ∈Ξminimal(η)

T (ξ) = inf
ξ∈Ξsubsample(η)

T (ξ), (7)

inf
ξ∈Ξminimal(η)

T (ξ)

np2
→ 0, (8)

and there exists c > 0 such that

inf
ξ∈Ξdense(η)

T (ξ)

np2
> c. (9)

The theorem shows that the optimal run time is achieved when using minimal subsam-
pling. The last point is surprising: setting R ∼ N (0, I), for example, will not improve the
computational complexity over the brute-force approach and dense Gaussian projections
hence do not reduce the complexity of the search. This is not caused by the larger com-
putational effort involved in computing the dense projections: indeed even if these could
be computed for free this result would remain. Rather the cost stems from the fact that
dense projections have a much lower power for detecting true close pairs in the projected
one-dimensional space.

2.2 The final version of xyz

The optimality properties of minimal subsampling presented in the previous section suggest
the approach set out in Algorithm 2, which we will refer to as the xyz algorithm. Here we

Algorithm 2 Final version of the xyz algorithm.

Input: X ∈ {−1, 1}n×p, Y ∈ {−1, 1}n, subsample size M , number of projections L,
threshold for interaction strength γ.
Output: I set of strong interactions.

1: Form Z via Zij = YiXij .
2: for l ∈ {1, . . . , L} do
3: Form R ∈ Rn as in (6) with distribution F = U [0, 1] and set x = XTR, z = ZTR.
4: Find all pairs (j, k) such that xj = zk and store these in El.
5: Add to I those pairs in El for which γjk ≥ γ.
6: end for

are using a simplified version of the minimal subsampling proposal given in the previous
section where we keep M fixed rather than allowing it to be random. The reason is that the
potential additional gain from allowing M to be any one of two consecutive numbers with
certain probabilities is minimal but necessary for Theorem 1 and so the simpler approach
is preferable. We note that the uniform distribution in line 3 may be replaced with any
continuous distribution to yield identical results.

9

Thanei, Meinshausen and Shah

4
6

7 2 3
5
1 9 8

3 2
4

1 5 7 6
9

8

Figure 2: Illustration of an equal pairs search among components of x, z ∈ Rp when p = 9.
The horizontal locations of blue and green circles numbered j give xj and zj respectively.
Sorting of (x, z) allows traversal of the unique locations. At each of these it is checked
whether points of both colours are present, and if so, the indices are recorded. Here the set
of equal pairs ({3} × {4, 6}) ∪ ({5} × {2}) ∪ ({7, 9} × {1, 5}) would be returned.

To perform the equal pairs search in line 4, we sort the concatenation (x, z) ∈ R2p to
determine the unique elements of {x1, . . . , xp, z1, . . . , zp}. At each of these locations, we
can check if there are components from both x and z lying there, and if so record their
indices. This procedure, which is illustrated in Figure 2, gives us the set of equal pairs E
in the form of a union of Cartesian products. The computational cost is O(p log(p)). This
complexity is driven by the cost of sorting whilst the recording of indices is linear in p. We
note, however, that looping through the set of equal pairs in order to output a list of close
pairs of the form (j1, k1), . . . , (j|E|, k|E|) would incur an additional cost of the size of E,
though in typical usage we would have |E| = o(p). Readers familiar with locality sensitive
hashing (LSH) can find a short interpretation of equal pairs search as an LSH-family in the
appendix. In the next section, we discuss in detail the impact of minimal subsampling on
the complexity of the xyz algorithm and the discovery probability it attains.

2.3 Computational and statistical properties of xyz

We have the following upper bound on the expected number of computational operations
performed by xyz (Algorithm 2) when the subsample size and number of repetitions are M
and L:

C(M,L) := np
(i)

+ L{Mp
(ii)

+ p log(p)
(iii)

+ nEξ(|E1|)
(iv)

}. (10)

The terms may be explained as follows: (i) construction of Z; (ii) multiplying M subsampled
rows of X and Z by R ∈ Rn; (iii) finding the equal pairs; (iv) checking whether the
interactions exceed the interaction strength threshold γ. Note we have omitted a constant
factor from the upper bound C(M,L). There is a lower bound only differing from (10)
in the equal pairs search term (iii), which is p instead of p log(p). It will be shown that
(iv) is the dominating term and therefore the upper and lower bound are asymptotically
equivalent, implying the bounds are tight.

An interaction with strength γ is retained in E1 with probability γM . Hence it is present
in the final set of interactions I with probability

η(M,L) = 1− (1− γM)L. (11)

10

The xyz algorithm for fast interaction search in high-dimensional data

The following result demonstrates how the xyz algorithm can be used to find interactions
whilst incurring only a subquadratic computational cost.

Theorem 2 Let FΓ be the distribution function corresponding to a random draw from the
set of interaction strengths {γjk}j,k∈{1,...,p}. Given an interaction strength threshold γ, let

1−FΓ(γ) = c1/p. Define γ0 = p−1/M and let c2 be defined by 1−FΓ(γ0) = c2p
log(γ)/ log(γ0)−1.

We assume that γ0 < γ. Finally given a discovery threshold η′ ∈ [1/2, 1) let L be the minimal
L′ such that η(M,L′) ≥ η′. Ignoring constant factors we have

C(M,L) ≤ log{1/(1− η′)}(1 + c1 + c2)[{1 + 1/ log(γ−1
0)} log(p) + n]p1+log(γ)/ log(γ0).

If n � log(p) and γ0 is bounded away from 1 we see that the dominant term in the above
is

cnp1+log(γ)/ log(γ0), (12)

where c = log{1/(1 − η′)}(1 + c1 + c2). Typically we would expect γ to be such that
|{γjk : γjk > γ}| ∼ p as only the largest interactions would be of interest: thus we may think
of c1 as relatively small. If M is such that γ0 is also larger than the bulk of the interactions,
we would also expect c2 to be small. Indeed, suppose that the proportion of interactions
whose strengths are larger than γ0 is 1 − FΓ(γ0) = c′1/p. Then c2 = c′1/p

log(γ)/ log(γ0) < c′1.
As a concrete example, if γ = 0.9 and M is such that γ0 = 0.55, the exponent in (12)
is around 1.17, which is significantly smaller than the exponent of 2 that a brute-force
approach would incur; see also the examples in Section 5. Note also that when γ = 1, the
exponent is 1 for all γ0 < 1: if we are only interested in interactions whose strength is as
large as possible, we have a run time that is linear in p.

It is interesting to compare our results here with the run times of approaches based on
fast matrix multiplication. By computing XTZ we may solve the interaction search problem
(1). Naive matrix multiplication would require O(np2) operations, but there are faster
alternatives when n = p. The fastest known algorithm (Williams, 2012) gives a theoretical
run time of O(np1.37) when n = p. For xyz to achieve such a run time when γ0 = 0.55 for
example, the target interaction strength would have to be γ ≥ 0.81: a somewhat moderate
interaction strength. For γ > 0.81, xyz is strictly better; we also note that fast matrix
multiplication algorithms tend to be unstable or lack a known implementation and are
therefore rarely used in practice. A further advantage is that the xyz algorithm has an
optimal memory usage of O(np).

We also note that whilst Theorem 2 concerns the the discovery of any single interaction
with strength at least γ, the run time required to discover a fixed number interactions with
strength at least γ would only differ by a multiplicative constant. If we however want a
guarantee of discovering the p strongest pairs the bound in Theorem 2 would no longer
hold.

To minimise the run time in (12), we would like γ0 to be larger than most of the
interactions in order that c2 and hence c be small, yet a smaller γ0 yields a more favourable
exponent. Thus a careful choice of M , on which γ0 depends, is required for xyz to enjoy
good performance. In the following we show that an optimal choice of M exists, and we
discuss how this M may be estimated based on the data.

Clearly if for some pair (M,L), we find another pair (M ′, L′) with η(M ′, L′) > η(M,L)
but C(M ′, L′) ≤ C(M,L), we should always use (M ′, L′) rather than (M,L). It turns out

11

Thanei, Meinshausen and Shah

that there is in fact an optimal choice of M such that the parameter choice is not dominated
by any others in this fashion. Define

M∗ = arg min
M∈N

{
− 1

log(1− γM)

(
Mp+ p log(p) + n

∑
j,k

γMjk

)}
, (13)

where it is implicitly assumed that the minimiser is unique. This will always be the case
except for peculiar values of γ.

Proposition 3 Let L ∈ N. If (M ′, L′) ∈ N2 has η(M ′, L′) ≥ η(M∗, L), then also C(M ′, L′) ≥
C(M∗, L) with the final inequality being strict if M ′ 6= M∗ and M∗ is a unique minimiser.

Thus there is a unique Pareto optimal M . Although the definition of M∗ involves the
moments of FΓ, this can be estimated by sampling from {γjk}. We can then numerically
optimise a plugin version of the objective to arrive at an approximately optimal M .

3. Interaction search on continuous data

In the previous section we demonstrated how the xyz algorithm can be used to efficiently
solve the simplest form of interaction search (1) when both X and Y are binary. In this
section we show how small modifications to the basic algorithm can allow it to do the same
when Y is continuous, and also when X is continuous. We discuss the regression setting in
Section 4.

3.1 Continuous Y and binary X

We begin by considering the setting where X ∈ {−1, 1}n×p, but where we now allow real-
valued Y ∈ Rn. Without loss of generality, we will assume ‖Y‖1 = 1. The approach we
take is motivated by the observation that the inner product YT (Xj ◦Xk) can be interpreted
as a weighted inner product of Xj ◦Xk with the sign pattern of Y, using weights wi = |Yi|.

With this in mind, we modify xyz in the following way. We set Z to be Zij = sgn(Yi)Xij .
Let i1, . . . , iM ∈ {1, . . . , n} be i.i.d. such that P(is = i) = wi. Forming the projection vector
R using (6), we then find the probability of (j, k) being in the equal pairs set may be
computed as follows.

{P(RTXj = RTZk)}1/M = P (Xisj = sgn(Yis)Xisk for all s = 1, . . . ,M)

= P(Xi1j = sgn(Yi1)Xi1k) as the is are i.i.d.

=

n∑
i=1

P(Xi1j = sgn(Yi1)Xi1k|i1 = i)P(i1 = i)

=

n∑
i=1

|Yi|1{Xij=sgn(Yi)Xik}

=
∑

i:sgn(Yi)=XijXik

YiXijXik =: γ̃jk,

where P here is with respect to the randomness of R (and, equivalently, the random indices
i1, . . . , iM) with Y and X considered fixed. The calculation above shows that the run time

12

The xyz algorithm for fast interaction search in high-dimensional data

bound of Theorem 2 continues to hold in the setting with continuous Y provided we replace
the interaction strengths γjk with their continuous analogues γ̃jk.

As a simple example, consider the model

Yi = Xi1Xi2 + εi,

with εi ∼ N (0, σ2) and X generated randomly having each entry drawn independently from
{−1, 1} each with probability 1/2. Then for a non-interacting pair j 6= 1, 2 or k 6= 1, 2, we
have γ̃jk ≈ 0.5. For the pair (1, 2) we calculate an interaction strength of

γ̃12 = P(sgn(Yi1) = Xi11Xi12) = P(sgn(Xi11Xi12 + εi) = Xi11Xi12)

= P(|εi| < 1) +
1

2
P(|εi| > 1) =

1

2
(1 + P(|εi| < 1)).

Note that here that probability is over the randomness in the noise εi. A quick simulation
gives the following table:

σ2 0.1 0.25 0.5 1 2 5

γ̃12 0.99 0.98 0.92 0.84 0.76 0.67

Using Theorem 2 and the above table we can estimate the computational complexity needed
to discover the pair (1, 2) given a value of σ2.

3.2 Continuous Y and continuous X

The previous section demonstrated how resampling with non-uniform weights transforms a
setup with continuous Y into one with binary response. If both X and Y are continuous, we
continue to use the previous strategy to deal with the continuous response. For the matrix
X with continuous predictor values we cannot use weighted resampling as the weights
would depend on the interaction pair of interest. In the following we examine the effects of
transformations of X to a binary data matrix X̃. To allow for randomized mappings, we
define the transformations via a function g : R 7→ [0, 1] as

P(X̃ij = 1) = g(Xij) and 1− P(X̃ij = −1) = 1− g(Xij),

where the transformation is always applied independently for each entry of the predictor
matrix and for each subsample.

The following gives the probability of Yi agreeing in sign with X̃ijX̃ik when i is sampled
with probability proportional to |Yi|.

Proposition 4 Given the transform P(X̃ij = 1) = g(Xij) and sampling an index is ac-
cording to P(is = i) = Yi/‖Y‖1, then the probability of a match is

P(sgn(Yis) = X̃isjX̃isk) =
1

2
+

1

2‖Y‖1

n∑
i=1

Yi(1− 2g(Xij))(1− 2g(Xik)). (14)

Thus we may define a continuous analogue of the interaction strength γjk based on the
transform given by g as

γgjk =
1

2
+

1

2‖Y‖1

n∑
i=1

Yi(1− 2g(Xij))(1− 2g(Xik)).

13

Thanei, Meinshausen and Shah

These quantities may be substituted into Theorem 2 to yield the following upper bound on
expected run time when using xyz on transformed data.

Corollary 5 Let FΓg be the distribution function corresponding to a random draw from the
set of interaction strengths {γgjk}j,k∈{1,...,p}. Given an interaction strength threshold γ, let

1−FΓg(γ) = c1/p. Define γ0 = p−1/M and let c2 be defined by 1−FΓ(γ0) = c2p
log(γ)/ log(γ0)−1.

We assume that γ0 < γ. Finally given a discovery threshold η′ ∈ [1/2, 1) let L be the minimal
L′ such that η(M,L′) ≥ η′. Ignoring constant factors we have

C(M,L) ≤ log{1/(1− η′)}(1 + c1 + c2)[{1 + 1/ log(γ−1
0)} log(p) + n]p1+log(γ)/ log(γ0).

The expected computational costs depends critically on the distribution of the interaction
strengths FΓg . To gain a better understanding of what impact different transformations
have on this distribution and subsequently on run time we will study the following simple
model for (Y,X) ∈ Rn × Rn×p:

Yi = Xij∗Xik∗ + εi, i = 1, . . . , n, (15)

where the εi are independent and have identical sub-exponential distributions symmetric
about 0 and the rows of X are i.i.d. We now introduce two practically useful choices of g
and study their properties in the context of model (15).

The unbiased transform

A natural choice for the transform g is one that satisfies the unbiasedness requirement:

E(X̃ij) = Xij . (16)

It turns out that this requirement uniquely defines the transform, which we refer to as the
unbiased transform.

Proposition 6 Let Xij ∈ [−1, 1]. If its transformed version X̃ij satisfies (16), then g takes
the form

P(X̃ij = 1) = g(Xij) =
Xij + 1

2
.

Furthermore the interaction strength in (14) is given by

P(sgn(Yis) = X̃isjX̃isk) = γgjk =
1

2
+

1

2‖Y‖1

n∑
i=1

YiXijXik.

Proposition 6 shows that γgjk is a monotone function of the inner product
∑n

i=1 YiXijXik.
We remark that if the entries of X do not lie in [−1, 1], we may divide each entry in

the ith row by νi := maxj |Xij |, and multiply Yi by ν2
i , for each i. Proposition 6 will

then hold for the scaled versions of Y and X. In order to describe the performance of
the unbiased transform when applied to data generated by the model (15), we define the
following quantities:

E(|Xij∗Xik∗ |) = m1, E(X2
ij∗X

2
ik∗) = m2 and E(|εi|) = mε.

We consider an asymptotic regime where p = pn may diverge as n tends to infinity, though
we suppress this in the notation. We introduce the following assumptions.

14

The xyz algorithm for fast interaction search in high-dimensional data

(B1) m2(ru−1) ≤ E(Xij∗Xik∗XijXik) ≤ m2(1−ru), for ru ∈ (0, 1) and ∀ j, k ∈ {1, . . . , p}2.

(B2) The noise level satisfies the bound

1

1− ru
> 1 +

mε

m1
.

(B3) Let p be such that be such that

log(n) log(p)

n

n→∞→ 0.

(B1) ensures non-interactions are not too strongly correlated to the actual interaction pair
(j∗, k∗). Note that (B3) allows for high-dimensional settings with p� n.

Theorem 7 Assume all entries of X have mean zero and lie in [−1, 1] almost surely.
Further assume (B1)–(B3) hold. When M and L are as in Corollary 5 and the unbiased
transform is used, we have

C(M,L) = oP

(
np

1+δ+
log(1/2+m2/2(m1+mε))
log(1/2+m2(1−ru)/2m1)

)
for any δ > 0. Here P is with respect to the randomness in X and ε.

Though the run time above can often improve significantly on the worst-case quadratic run
time, observe that unlike in the binary case, if there is no noise and Yi = Xij∗Xik∗ , we do not

necessarily have a run time close to linear in p. For example, when Xij
iid∼ Uniform(−1, 1),

the interaction strength of the true interaction can be shown to equal to

γgj∗k∗ =
1

2
+

∑n
i=1 YiXij∗Xik∗

2‖Y‖1
=

1

2
+
‖Y‖22
2‖Y‖1

n→∞
=

13

18
.

Substituting this into the run time given by Theorem 2, this would result in an expected
complexity of roughly O(np1.47); this is still substantially smaller than a quadratic run time,
but raises the question as to whether such a loss in speed is avoidable.

Additionally, if X has several outlying entries, normalising the design matrix by scaling
by the row-wise maximums can shrink γgj∗k∗ towards 1/2. To limit the impact of this
normalisation, we can first cap the entries of X so their absolute value is bounded by
some c > 0. Though the resulting interaction strength will not have the form given in
Proposition 6, it may better discriminate between interactions of interest and noise.

Capping with c = 1 is closely related to applying the sign transform, which we study
next.

The sign transform

We now consider the sign transform given by X̃ij = sgn(Xij); if there are zero cases we use
a coin toss to map them to {−1, 1}. For the sign transform we have g(Xij) = 2 sgn(Xij)−1
and so the interaction strength is given as:

P(sgn(Yis) = X̃isjX̃isk) = γgjk =
1

2
+

1

2‖Y‖1

n∑
i=1

Yisgn(Xij)sgn(Xik).

15

Thanei, Meinshausen and Shah

The sign transform recovers the close to linear run time achieved in the binary case when a
interaction is perfect as now if Yi = Xij∗Xik∗ , we have γgj∗k∗ = 1. Also the sign transform is
not adversely affected by the presence of outlying entries in X, and for our theory we can
relax the assumption that the entries of X are in [−1, 1] to here only requiring that they
have a subexponential distribution. To facilitate comparison with the unbiased transform,
we impose assumptions analogous to (B1)–(B3):

(C1) rs/2 ≤ P(Xij < 0|Xik, Xij∗ , Xik∗) ≤ 1− rs/2, for rs ∈ (0, 1) and ∀ j, k ∈ {1, ..., p}2.

(C2) The noise level satisfies
1

1− rs
> 1 +

mε

m1
.

(C3) Let p be such that
log(p)5

n

n→∞→ 0.

Theorem 8 Suppose that each entry of X has a mean-zero subexponential distribution.
Further assume (C1)–(C3). When M and L are as in Corollary 5 and the sign transform
is used, we have

C(M,L) = oP

(
np

1+δ+
log(1/2+m1/2(m1+mε))

log(1−rs)
)

for any δ > 0. Here P is with respect to the randomness in X and ε.

Both transforms yield a run time of the form oP(npα). Comparing the exponents α we have:

unbiased transform:

αu = 1 +
log(1/2 +m2/2(m1 +mε))

log(1/2 +m2(1− ru)/2m1)

sign transform:

αs = 1 +
log(1/2 +m1/2(m1 +mε))

log(1/2 + (1− rs)/2)
.

For bounded data X ∈ [−1, 1]n×p and when mε � m1, we have m1/2(m1 + mε) ≈ 1/2 so
that αs = 1 whereas αu > 1. Hence in case of a strong signal the sign transform can give a
smaller run time than the unbiased transform.

4. Application to Lasso regression

Thus far we have only considered the simple version of the interaction search problem (1)
involving finding pairs of variables whose interaction has a large dot product with Y. In
this section we show how any solution to this, and in particular the xyz algorithm, may be
used to fit the Lasso (Tibshirani, 1996) to all main effects and pairwise interactions in an
efficient fashion.

Given a response Y ∈ Rn and a matrix of predictors X ∈ Rn×p, let W ∈ Rn×p(p+1)/2

be the matrix of interactions defined by

W = (X1 ◦X1,X1 ◦X2, · · · ,X1 ◦Xp,X2 ◦X2,X2 ◦X3, · · · ,Xp ◦Xp).

16

The xyz algorithm for fast interaction search in high-dimensional data

We will assume that Y and the columns of X have been centred. Note that the centring
of X means the W implicitly contains main effects terms. Let W̃ be a version of W with
centred columns. Consider the Lasso objective function

(β̂, θ̂) = argmin
β∈Rp,θ∈Rp(p+1)/2

{
1

2n
‖Y −Xβ − W̃θ‖22 + λ(‖β‖1 + ‖θ‖1)

}
. (17)

Note that since the entire design matrix in the above is column-centred, any intercept term
would always be zero.

In order to avoid a cost of O(np2) it is necessary to avoid explicitly computing W. To
describe our approach, we first review in Algorithm 3 the active set strategy employed by
several of the fastest Lasso solvers such as glmnet (Friedman et al., 2010). We use the
notation that for a matrix M and a set of column indices H, MH is the submatrix of M
formed from those columns indexed by H. Similarly for a vector v and component indices
H, vH is the subvector of v formed from the components of v indexed by H.

Algorithm 3 Active set strategy for Lasso computation

Input: X, Y and grid of λ values λ1 > · · · > λL.
Output: Lasso solutions β̂λl and θ̂λl at each λ on the grid.

1: for l ∈ {1, . . . , L} do
2: If l = 1 set A,B = ∅; otherwise set A = {k : β̂λl−1,k 6= 0} and B = {k : θ̂λl−1,k 6= 0}.
3: Compute the Lasso solution (β̂, θ̂) when λ = λl under the additional constraint that
β̂Ac = 0 and θ̂Bc = 0.

4: Let U = {k : |XT
k (Y −XAβ̂A − W̃Bθ̂B)|/n > λl} and V = {k : |W̃T

k (Y −XAβ̂A −
W̃Bθ̂B)|/n > λl} be the set of coordinates that violate the KKT conditions when (β̂, θ̂)
is taken as a candidate solution.

5: If U and V are empty, we set β̂λl = β̂, θ̂λl = θ̂. Else we update A = A ∪ U and
B = B ∪ V and return to line 3.

6: end for

As the sets A and B would be small, computation of the Lasso solution in line 3 is
not too expensive. Instead line 4, which performs a check of the Karush–Kuhn–Tucker
(KKT) conditions involving dot products of all interaction terms and the residuals, is the
computational bottleneck: a naive approach would incur a cost of O(np2) at this stage.

There is however a clear similarity between the KKT conditions check for the inter-
actions and the simple interaction search problem (1). Indeed the computation of V , the
set containing all interactions that violate the KKT conditions, may be expressed in the
following way:

Keep all pairs (j, k) for which |(Y −XAβ̂A − W̃Bθ̂B)T (Xj ◦Xk)/n| > λl. (18)

Note that since Y − XAβ̂A − W̃Bθ̂B is necessarily centered, there is no need to center
the interactions in (18). In order to solve (18) we can use the xyz algorithm, setting γ in
Algorithm 2 to λl and Y to each of ±(Y −XAβ̂A − W̃Bθ̂B) in turn.

Precisely the same strategy of performing KKT condition checks using xyz can be used
to accelerate computation for interaction modeling for a variety of variants of the Lasso such

17

Thanei, Meinshausen and Shah

as the elastic net (Zou and Hastie, 2005) and `1-penalised generalised linear models. Note
also that it is straightforward to use a different scaling for the penalty on the interaction
coefficients in (17), which may be helpful in practice.

5. Experiments

To test the algorithm and theory developed in the previous sections, we run a sequence of
experiments on real and simulated data.

5.1 Comparison of minimal subsampling and dense projections

One of the surprising outcomes of our theoretical analysis is extent of the suboptimality of
Gaussian random projections, which whilst they suffice for the conclusion of the Johnson–
Lindenstrauss Lemma, are not well-suited for our purposes here (see Theorem 1). We
can explicitly compute the probability of retaining an interaction of strength γ in E1 for
both dense Gaussian projections ξGauss and minimal subsampling ξminimal given an equal
computational budget. We consider various values of p ranging from 10 up to 106 and we
fix n = 1000. We set L = 1 and select other parameters of the algorithms to ensure the
average size of E1 is equal to p in the setting when all interaction strengths are equal to
0.5. Specifically we make the following choices.

• ξGauss: the close pairs threshold τ ≥ 0 is the 1/p–quantile of the distribution of |W |
when W ∼ N(0, 0.5n).

• ξminimal: the subsample size M = dlog(1/p)/ log(0.5)e.

We then plot the probability η of discovering an interaction of strength γ, as a function of
γ for different values of p (Figure 3). For ξminimal, η is given in equation (11). For ξGauss,
η is the 1/p–quantile of the distribution of |W | when W ∼ N(0, n(1− γ)).

5.2 Scaling

In this experiment we test how the xyz algorithm scales on a simple test example as we
increase the dimension p. We generate data X ∈ Rn×p with each entry sampled indepen-
dently uniformly from {−1, 1}. We do this for different values of p, ranging from 1000
to 30 000: this way for the largest p considered there are more than 400 million possible
interactions. Then for each X we construct response vectors Y such that only the pair
(1, 2) is a strong interaction with an interaction strength taking values in {0.7, 0.8, 0.9}.
Through this construction, if n is large enough, all the pairs except (1, 2) will have an in-
teraction strength around 0.5, and very few will have one above 0.55. We thus set M so
that γ0 = p−1/M ≈ 0.55. Since the only strong interaction is (1, 2), we set γ = γ12 Each
data set configuration determined by p and γ12 is simulated 300 times and we measure the
time it takes xyz to find the pair (1, 2). In Figure 3 we plot the average run time against
the dimension p with the different choices for γ12 highlighted in different colours.

Theorem 2 indicates that the run time should be of the order np1+log(γ)/ log(γ0). We see
that the experimental results here are in close agreement with this prediction.

18

The xyz algorithm for fast interaction search in high-dimensional data

interaction strength γ

di
sc

ov
er

y
pr

ob
ab

ili
ty

 η

0.5 0.6 0.7 0.8 0.9 1

1e
−

6
1e

−
4

1e
−

2

dimension p

tim
e

in
 s

ec
on

ds

●

●

●

●

●

●

●

1e3 5e3 1e4 3e4

0.
1

1
10

50

Figure 3: Left panel: Discovery probability as a function of γ for different values of
p ∈ {101, . . . , 106} (colours decreasing in p from yellow p = 106 to green p = 10). The lower
lines correspond to the dense Gaussian projections, the upper lines to minimal subsampling.
It can be seen that the discovery probability for minimal subsampling is much higher (up
to factor 104) than for Gaussian projections. Right panel: Time to discover the interaction
pair as a function of the data set dimension p. Lines correspond to the theoretical prediction
(with the intercept chosen based on the data points) and symbols give the actual measured
run time. Colour coding: green γ = 0.7, orange γ = 0.8 and purple γ = 0.9.

5.3 Run on SNP data

In the next experiment we compare the performance of xyz to its closest competitors on a
real data set. For each method we measure the time it takes to discover strong interactions.
We consider the LURIC data set (Winkelmann et al., 2001), which contains data of patients
that were hospitalised for coronary angiography. We use a preprocessed version of the data
set that is made up of n = 859 observations and 687 253 predictors. The data set is binary.
The response Y indicates coronary disease (1 corresponding to affected and −1 healthy) and
X contains Single Nucleotide Polymorphisms (SNPs) which are variations of base-pairs on
DNA. The response vector Y is strongly unbalanced: there are 681 affected cases (Yi = 1)
and 178 unaffected (Yi = −1).

To get a contrast of the performance of xyz we compare it to epiq (Arkin et al., 2014),
another method for fast high-dimensional interaction search. In order for epiq to detect
interactions it needs to assume the model

Yi = αj∗k∗Xij∗Xik∗ + εi, (19)

where εi ∼ N (0, σ2). It then searches for interactions by considering the test statistics

Tjk = (RT (Y ◦Xj))(R
TXk)

where R ∼ N (0, I). These are used to try to find the pair (j∗, k∗), which is assumed to be the
pair for which the inner product YT (Xj ◦Xk) is maximal. It is an easy calculation to show

19

Thanei, Meinshausen and Shah

that E(Tjk) = YT (Xj ◦Xk). To maximise the inner product on the right, epiq considers
pairs where T 2

jk is large by looking at pairs where both (RT (Y ◦Xj))
2 and (RTXk)

2 are
large. While the approach of epiq is somewhat related to xyz, there are no bounds available
for the time it takes to find strong interactions.

We also compare both methods to a naive approach where we subsample a fixed number
of interactions uniformly at random, and retain the strongest one. We refer to this as naive
search.

At fixed time intervals we check for the strongest interaction found so far with all
three methods. We plot the interaction strength as a function of the computational time
(Figure 4). All three methods eventually discover interactions of very similar strength and
it would be a hasty judgement to say whether one significantly outperforms the others. xyz
nevertheless discovers the strongest interactions on average for a fixed run time compared
to the other two approaches. To get a clearer picture we run two additional experiments
on a slight modification of the LURIC data set. We implant artificial interactions where we
set the strength to γ12 = 0.8 and another example with γ12 = 0.9. In these two experiments
xyz clearly outperforms all other methods considered (Figure 4; panels 3 and 4). Besides
xyz being the fastest at interaction search, it also offers a probabilistic guarantee that there
are no strong interactions left in the data. This guarantee comes out of Theorem 2. To run
xyz we have to calculate the optimal subsample size (13) for use of minimal subsampling:

M∗ = arg min
M∈N

{
− 1

log(1− γM)

(
Mp+ p log(p) + n

∑
j,k

γMjk

)}
= 21.

The sum in this optimisation can be approximated by uniformly sampling over pairs. As-
sume we have an interaction pair (j∗, k∗) with interaction strength γj∗k∗ = 0.85 and say
the rest of the pairs (j, k) have an interaction strength of no more than γjk ≤ 0.55. The
probability that we discover this pair in one run (L = 1) of the xyz algorithm is γ21

j∗k∗ .
Therefore the probability of missing this pair after L = 100 runs is given by

(1− γ21
j∗k∗)

L ≈ 0.03.

Note that the number of possible interactions is p(p− 1)/2 ≈ 1011. The whole search took
280 seconds. Naive search offers a similar guarantee, however it is extremely weak. The
probability of not discovering the pair after drawing pL samples (with L = 100) is bounded
by [1 − 2/{p(p − 1)}]Lp ≈ 0.999. If we consider the run time guarantee from Theorem 2,
the dominating term in the complexity of xyz in terms of p is

p
1+

log(0.85)
log(0.55) ≈ p1.27.

This may be compared to the expected run time of order p2 for naive search, which means
that xyz is about 30 000 times faster than naive search (when p = 687 253). In the empirical
comparison this factor is around 20 000.

20

The xyz algorithm for fast interaction search in high-dimensional data

interaction strength

0.35 0.45 0.55

0
20

00
40

00
60

00

● ● ● ● ● ●

time

in
te

ra
ct

io
n

st
re

ng
th

● ● ● ● ● ●
● ● ● ● ● ●

0.
5

0.
6

0.
7

0.
8

0.
9

1
10 50 200

●
●

●

●
●

●

time

● ● ● ● ● ●

● ● ● ● ● ●

10 50 200

●

● ● ● ● ●

time

●
●

●
●

●
●

● ● ● ● ● ●

10 50 200

Figure 4: Left: Histogram of interaction strength of 106 interaction pairs, sampled at
random from the more than 1011 existing pairs from the LURIC data set. The right three
panels show the interaction strength of the discovered pairs as a function of the computation
time for xyz (green), epiq (orange) and naive search (purple). The first panel gives results
on the the original LURIC data set, and the second and third (rightmost) panels show
results with an implanted interaction with strengths γ12 = 0.8 and γ12 = 0.95 respectively.
It can be clearly seen that xyz outperforms its competitors by a large margin.

5.4 Regression on artificial data

In this section we demonstrate the capabilities of xyz in interaction search for continuous
data as explained in Section 3. We simulate two different models of the form (15):

Yi = µ+

p∑
j=1

Xijβj +

p∑
k=1

k−1∑
j=1

XijXikθjk + εi.

We consider three settings. For all three settings we have n = 1000. We let p ∈ {250, 500, 750,
1000}. Each row of X is generated i.i.d. as N (0,Σ). The magnitudes of both the main
and interaction effects are chosen uniformly from the interval [2, 6] (20 main effects and 10
interaction effects) and we set εi ∼ N (0, 1). The three settings we consider are as follows.

1. Σ = I ∈ Rp×p, we generate a hierarchical model: θjk 6= 0 ⇒ βj 6= 0 and βk 6= 0. We
first sample the main effects and then pick interaction effects uniformly from the pairs
of main effects.

2. Σ = I ∈ Rp×p, we generate a strictly non-hierarchical model: θjk 6= 0 ⇒ βj = 0 and
βk = 0. We first sample the main effects and then pick interaction effects uniformly
from all pairs excluding main effects as coordinates.

3. We repeat the setting 2 with a data set that contains strong correlations. We create
a dependence structure in X, by first generating a DAG with on average 10 edges per
node. Each node is sampled so that it is a linear function of its parents plus some
independent centred Gaussian noise, with a variance of 10% the variance coming from
the direct parents. The resulting correlation matrix then unveils for each variable Xj

21

Thanei, Meinshausen and Shah

a substantial number of variables strongly correlated to Xj (There is usually around
10 variables with a correlation of above 0.9). Such a correlation structure will make
it easier to detect pairs of variables whose product can serve as strong predictor of Y,
even though it has not been included in the construction of Y.

We run three different procedures to estimate the main and interaction effects.

• Two-stage Lasso: We fit the Lasso to the data, and then run the Lasso once more
on an augmented design matrix containing interactions between all selected main
effects. Complexity analysis of the Least Angle Regression (LARS) algorithm (Efron
et al., 2004) suggests the computational cost would be O(npmin(n, p)), making the
procedure very efficient. However, as the results show, it struggles in situations such
as that given by model 2, where a main effects regression will fail to select variables
involved in strong interactions.

• Lasso with all interactions: Building the full interaction matrix and computing
the standard Lasso on this augmented data matrix. Analysis of the LARS algorithm
would suggest the computational complexity would be in the order O(np2 min(n, p2)).
Nevertheless, for small p, this approach is feasible.

• xyz: This is Algorithm 3; we set the parameter L to be
√
p in order to target the

strong interactions.

The experiment (seen in Figure 5) shows that xyz enjoys the favourable properties of both
its competitors: it is as fast as the two-stage Lasso that gives an almost linear run time in p,
and it is about as accurate as the estimator calculated from screening all pairs (brute-force).

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

no
rm

al
iz

ed
 p

re
di

ct
io

n
er

ro
r

0.01 0.1 1 10 100

●●
●●

●
●

●●
●

●

●
●

●

●●

●

●
●●●

time

0.01 0.1 1 10 100

●●
● ●

●

●

●

●
●
●

●

●
●● ●

●

●
●

●

●

time

0.01 0.1 1 10 100

●

●

●●

●

●●

●

●
●

●

●

●● ●

●

●●
●

●

time

Figure 5: Normalised `22 prediction error as a function of time in seconds. Triangle: Two-
stage Lasso. Circle: xyz -regression. Cross: Brute-force. The different colours correspond
to different values of p: green p = 250, orange p = 500, purple p = 750 and pink p = 1000.
The left panel shows the results on setting 1, center panel shows setting 2 and right panel
setting 3.

22

The xyz algorithm for fast interaction search in high-dimensional data

5.5 Regression on real data

Here we run xyz regression on continuous real data sets where the ground truth is unknown.
On each data set we pick at random p = 2000 variables and run xyz and the Lasso imple-
mented in glmnet with all interactions included. We subsample an increasing number of
variables to vary the difficulty of the regression problem. For each sample we measure the
run time and the normalized out of sample squared `22 error:

‖Ytest −Xtestβ̂ − W̃testθ̂‖22
‖Ytest‖22

.

Experiments are run on the following three different data sets:

• Riboflavin: The Riboflavin production data set (Bühlmann et al., 2014) contains
n = 71 samples and p = 4088 predictors (gene-expressions). The response Y and the
design X are both continuous.

• Kemmeren: The Kemmeren (Kemmeren and et al., 2014) data set records knock-
outs of p = 6170 genes. The data X is continuous. We sample Y randomly from the
genes not present in the subsample taken from X.

• Climate: The climate data set from the CNRM model from the CMIP5 model
ensemble (Knutti et al., 2013) simulates the temperature of points on the northern
hemisphere which is recorded in X. The response Y simulates the temperature on a
random position on the southern hemisphere. The data contains n = 231 observations.

−2 −1 0 1 2

0.
15

0.
25

0.
35

0.
45

time

no
rm

al
iz

ed
 m

ea
n

sq
ua

re
d

er
ro

r

−2 −1 0 1 2

0.
15

0.
25

0.
35

0.
45

time

−2 −1 0 1 2

0.
15

0.
25

0.
35

0.
45

time

Figure 6: From left to right column the experiments correspond to Riboflavin, Kemmeren
and Climate. The y-axis depicts the normalized squared error and the x-axis records the run
time in seconds on the log10 scale. It can be seen that xyz (purple) offers clear computational
advantages while giving similar level of prediction error to the Lasso fitted to all interactions
as implemented in glmnet (green).

For each experiment we fix the number of runs L to
√
p so the run time of xyz is O(np1.5).

The experiments show that the xyz algorithm has a similar prediction performance to the
Lasso applied to all interactions as implemented in glmnet. However xyz is around 100
times faster for p = 2000. The results of all 6 experiments can be seen in Figure 6.

23

Thanei, Meinshausen and Shah

6. Discussion

In this work we exploited a relationship between closest pairs of point problems and inter-
action search. By solving the former problem using random projections to project points
down to a one-dimensional space and then sorting the resulting projected points, we were
able to produce an algorithm for interaction search that enjoys a run time that is sub
quadratic under mild assumptions and when used to search for very strong interactions
can be almost linear. Though we have looked at interaction search in this paper, the basic
engine for computing the large inner products between collections of vectors may have other
interesting applications, for example in large-scale clustering problems. We hope to study
such applications in future work.

24

The xyz algorithm for fast interaction search in high-dimensional data

Table of frequently used notation

n, p number of observations and number of variables
X,Y predictor matrix and response vector

Xj jth variable / column of X
β,θ coefficients of main effects and interaction effects
γjk interaction strength of the pair (j, k)
G distribution of projection
M subsample size
R projection vector
L number of projections

τ, γ close pairs threshold and interaction strength threshold
Ξ set of all configurations of the xyz algorithm, the elements

of this set are denoted by ξ
η probability that a given interaction is present in the output

of the xyz algorithm

X̃ binarized version of X
W predictor matrix containing all possible interaction pairs

Appendix A

Here we include proofs that were omitted earlier.

Proof of Theorem 1

In the following, we fix the following notation for convenience:

Ψ = Ξminimal, Ψ(η) = Ξminimal(η),

Ξ = Ξsubsample, Ξ(η) = Ξsubsample(η).

Note that both Ψ(η) and Ξ(η) depend on F though this is suppressed in the notation. Also
define Ξall = Ξ ∪ Ξdense and Ξall(η) = Ξ(η) ∪ Ξdense(η). We will reference the parameters
levels contained in ξ ∈ Ξall as ξL and ξτ . If ξ ∈ Ξ then we will write ξM for the distribution
of the subsample size M .

If we let V denote the complexity of the search for τ -close pairs, similarly to (10) we
have that

T (ξ) = c1np+ L(c2EξMp+ EξV + c3nEξ|E1|), (20)

where c1, c2, c3 are constants. Suppose ψ ∈ Ψ and ξ ∈ Ξ have Eξ|E1| = Eψ|E1|. Then since
searching for τ -close pairs is at least as computationally difficult as finding equal pairs we
know that EξV ≥ EψV .

Similarly for ξ ∈ Ξdense we have

T (ξ) = c1np+ L(c2np+ EξV + c3nEξ|E1|). (21)

25

Thanei, Meinshausen and Shah

For ξ ∈ Ξall, define

α(ξ) = Eξ|E1|/p2, β(ξ) = Pξ((j∗, k∗) ∈ I1)

where I1 is the set of candidate interactions I when L = 1. Note that

Pξ((j∗, k∗) ∈ I) = 1− {1− β(ξ)}ξL .

Thus any ξ ∈ Ξall(η) with T (ξ) minimal must have ξL as the smallest L such that 1− {1−
β(ξ)}ξL ≥ η, whence

ξL = dlog(1− η)/ log{1− β(ξ)}e . (22)

Note that β(ξ) does not depend on ξL, so the above equation completely determines the
optimal choice of L once other parameters have been fixed. We will therefore henceforth as-
sume that L has been chosen this way so that the discovery probability of all the algorithms
is at least η.

The proofs of (8) and (9) are contained in Lemmas 12 and 13 respectively. The proof
of (7) is more involved and proceeds by establishing a Neyman–Pearson type lemma (Lem-
mas 10 and 11) showing that given a constraint on the ‘size’ α that is sufficiently small,
minimal subsampling enjoys maximal ‘power’ β. To complete the argument, we show that
any sequence of algorithms with size α remaining constant as p → ∞ cannot have a sub-
quadratic complexity, whilst Lemma 12 attests that in contrast minimal subsampling does
have subquadratic complexity under the assumptions of the theorem. Several auxiliary
technical lemmas are collected in Section 6

Our proofs Lemmas 10 and 11 make use of the following bound on a quantity related
to the ratio of the size to the power of minimal subsampling.

Lemma 9 Suppose ψ ∈ Ψ has distribution for M placing mass on M and M + 1. Under
the assumptions of Theorem 1,

α(ψ)

γM1
≤ 2

1− ρ
1

M + 1
.

Proof We have

α(ψ)

γM1
≤ 1

p2

∑
j,k

(γjk/γ1)M ≤ c0

p
+

nγ1−1∑
i=0

(i

nγ1

)M
fn(i/n).

Now the sum on the RHS is maximised over fn obeying constraints (A1) and (A2) in the
following way. If ργ1n > γ1n− 1 then fn places all available mass on γ1 − 1/n. Otherwise
fn should be as close to constant as possible on dργ1ne /n, . . . , (γ1n− 1)/n, and zero below
dργ1ne /n. In both cases it can be seen that

nγ1−1∑
i=0

(i

nγ1

)M
fn(i/n) ≤ 2

1− ρ

∫ 1

(1+ρ)/2
xMdx ≤ 2

1− ρ
1

M + 1
.

The following Neyman–Pearson-type lemma considers only non-randomised algorithms in
Ξ. In Lemma 11 we extend this result to randomised algorithms.

26

The xyz algorithm for fast interaction search in high-dimensional data

Lemma 10 Let Ξ0 be the set of ξ ∈ Ξ such that ξM places mass only on a single M , so
the subsample size is not randomised. There exists an α0 independent of n such that for all
α′ ≤ α0, we have

sup
ψ∈Ψ:α(ψ)≤α′

β(ψ) = sup
ξ∈Ξ0:α(ξ)≤α′

β(ξ).

Moreover the suprema are achieved.

Proof Each ξ ∈ Ξ0 is parametrised by its close pairs threshold τ and subsample size M .
Given a ξ ∈ Ξ0 with parameter values τ and M we compute α(ξ) as follows. Note that by
replacing the threshold τ by τ/2, we may assume that X and Z have entries in {−1/2, 1/2}.
Thus Xj−Zk has components in {−1, 0, 1}. Let Jjk be the number of non-zero components
of (Ximj − Zimk)Mm=1. Then Jjk ∼ Binom(M, 1− γjk). Thus

P
(∣∣∣∣∣

M∑
m=1

Dm(Ximj − Zimk)

∣∣∣∣∣ ≤ τ
)

= P(Jjk = 0) +

M∑
r=1

P
(∣∣∣∣∣

r∑
m=1

Dm

∣∣∣∣∣ ≤ τ
)
P(Jjk = r),

noting that Dm
d
= −Dm. By Lemma 14 we know there exists an a > 0 such that for all

τ ≤ a
√
M the RHS is bounded below by

γMjk +

M∑
r=r0

c1τ√
r

(
M

r

)
γM−rjk (1− γjk)r (23)

for M sufficiently large. Here the constants a, c1 > 0 and r0 ∈ N depend only on F .
Consider τ > a

√
M . In this case, for r ≤M sufficiently large we have by Lemma 14

P
(∣∣∣∣∣

r∑
m=1

Dm

∣∣∣∣∣ ≤ τ
)
≥ P

(∣∣∣∣∣
r∑

m=1

Dm

∣∣∣∣∣ ≤ a√r
)
≥ c1a.

However then for M sufficiently large,

P(Jjk = 0) +
M∑
r=1

P
(∣∣∣∣∣

r∑
m=1

Dm

∣∣∣∣∣ ≤ τ
)
P(Jjk = r) ≥ c1a/2,

so α(ξ) ≥ c1a/2. Note also that we must have α0 ≥ α(ξ) ≥ γMl , so M ≥ log(α0)/ log(γl).
Thus by choosing 0 < α0 < c1a/2 sufficiently small, we can rule out τ > a

√
M and so we

henceforth assume that τ ≤ a
√
M , and that M is sufficiently large such that (23) holds for

all (j, k).
We have

α(ξ) ≥ 1

p2

∑
j,k

{
γMjk + τ

M∑
r=r0

c1√
r

(
M

r

)
γM−rjk (1− γjk)r

}
. (24)

Similarly we have

β(ξ) ≤ γM1 + τ

M∑
r=1

c2√
r

(
M

r

)
γM−r1 (1− γ1)r. (25)

27

Thanei, Meinshausen and Shah

Now substituting the upper bound on τ implied by (24) into (25), we get

β(ξ) ≤ γM1 +QM

(
α(ξ)− 1

p2

∑
j,k

γMjk

)
where

QM =
c2
∑M

r=1 r
−1/2

(
M
r

)
γM−r1 (1− γ1)r

c1p−2
∑

j,k

∑
r=r0

r−1/2
(
M
r

)
γM−rjk (1− γjk)r

.

Now by Lemma 15, for M sufficiently large and some constant Q we have

QM ≤ Q
√

1− γ1∑
j,k

√
1− γjk/p2

≤ Q.

Thus

β(ξ) ≤ γM1 +Q

(
α(ξ)− 1

p2

∑
j,k

γMjk

)
(26)

for all M sufficiently large. Now given α0, let M0 be such that

1

p2

∑
j,k

γM0
jk ≥ α0 ≥

1

p2

∑
j,k

γM0+1
jk .

Consider the minimal subsampling algorithm ψ that chooses subsample size as either M0

or M0 + 1 with probabilities b and 1− b such that

α(ψ) =
1

p2

∑
j,k

{bγM0
jk + (1− b)γM0+1

jk } = α0.

Then we have β(ψ) = bγM0
1 + (1 − b)γM0+1

1 . Now suppose ξ ∈ Ξ0 has α(ξ) ≤ α0. Then in
particular M ≥M0 + 1. We first examine the case where M = M0 + 1. Then

1

γM0
1

{β(ψ)− β(ξ)} ≥ b+ (1− b)γ1 − γ1 −
Q

γM0
1

(
α0 −

1

p2

∑
j,k

γM0+1
j,k

)
= b+ (1− b)γ1 − γ1 −

aQ

γM0
1

1

p2

∑
j,k

(γM0
j,k − γ

M0+1
j,k)

≥ b
(

(1− γu)− 2Q

1− ρ
1

M0 + 1

)
,

using Lemma 9 in the final line. Note this is non-negative for M0 sufficiently large. When
M ≥M0 + 2 we instead have

β(ξ)

β(ψ)
≤ β(ξ)

γM0+1
1

≤ γ1 +
2Q

γ1(1− ρ)

1

M0 + 1
≤ γu +

2Q

γl(1− ρ)

1

M0 + 1
< 1

for M0 sufficiently large. Recall that by making α0 sufficiently small, we can force M0 to
be arbitrarily large. Thus the result is proved.

28

The xyz algorithm for fast interaction search in high-dimensional data

Lemma 11 There exists an α0 independent of n such that for all α′ ≤ α0, we have

sup
ψ∈Ψ:α(ψ)≤α′

β(ψ) = sup
ξ∈Ξ:α(ξ)≤α′

β(ξ).

Moreover the suprema are achieved.

Proof With a slight abuse of notation, write ξ(M ′, τ ′) for the element of ξ ∈ Ξ that fixes
M = M ′ and τ = τ ′. Using the notation of Lemma 10, define function f : [0, 1]→ [0, 1] by

f(α′) = sup
ξ∈Ξ0:α(ξ)≤α′

β(ξ).

Note that for ξ ∈ Ξ we have

β(ξ) ≤ EM∼ξM f [α{ξ(M, ξτ)}]. (27)

Now by Lemma 10 we know there exists α0 (depending on F) such that on [0, α0], f is the
linear interpolation of points (

1

p2

∑
j,k

γMj,k, γ
M
1

)∞
M=1

.

We claim that f is concave on [0, α0]. Indeed, it suffices to show that the slopes of the suc-
cessive linear interpolants are decreasing in this region, or equivalently that their reciprocals
are increasing. We have

1

p2

∑
j,k

γM+1
jk − γMjk
γM+1

1 − γM1
=

1

p2

∑
j,k

(
γj,k
γ1

)M γjk − 1

γ1 − 1
(28)

which increases as M decreases, thus proving the claim.
Note also that the RHS of (28) is at most α(ψ)/{(1 − γu)γM1 } when ψ has subsample

size fixed at M . Thus by Lemma 9 we see the derivatives of the linear interpolants approach
infinity as they get closer to the origin. This implies the existence of an 0 < α1 < α0 such
that − sup

(
∂(−f)(α1)

)
≥ {1 − f(α1)}/(α0 − α1), where ∂(−f)(α1) denotes the subdiffer-

ential of the function −f at α1. We may therefore invoke Lemma 16 to conclude that for ξ
with α(ξ) ≤ α1

EM∼ξM f [α{ξ(M, ξτ)}] ≤ f [EM∼ξMα{ξ(M, ξτ)}] = f(α(ξ)) ≤ f(α1) = max
ψ∈Ψ:α(ψ)≤α1

β(ψ).

Combining with (27) gives the result.

The next lemma establishes subquadratic complexity of minimal subsampling.

Lemma 12 Under the assumptions of Theorem 1, we have infψ∈Ψ(η) T (ψ)/(np2)→ 0.

Proof Let ψ ∈ Ψ be such that ψM places all mass on M . We have that β(ψ) = γM1 . Thus
using the inequality −x ≤ log(1− x) for x ∈ (0, 1), we have

ψL ≤ −γ−M1 log(1− η).

29

Thanei, Meinshausen and Shah

Lemma 9 gives an upper bound on ψLEψE1. Note that EψV = O(p log(p)). Thus ignoring
constant factors, we have

T (ψ)/(np2) ≤ M + log(p)

γM1 np
+

1

M + 1
.

Taking M =
⌊
log(1/

√
p)/ log(γ1)

⌋
then ensures T (ψ)/(np2)→ 0.

Lemma 13 Let ξ ∈ Ξdense. There exists c > 0 and n0 ∈ N such that for all n ≥ n0,

inf
ξ∈Ξdense

T (ξ)/(np2) > c.

Proof Each ξ ∈ Ξdense is parametrised by its close pairs threshold τ . Given a ξ ∈ Ξdense(F)
with close pairs threshold τ we compute α(ξ) as follows. Similarly to Lemma 10 we may
assume without loss of generality that X and Z have entries in {−1/2, 1/2} so Xj −Zk has

components in {−1, 0, 1}. Since Ri
d
= −Ri as F ∈ F , we have

P
(∣∣∣∣∣

n∑
i=1

Ri(Xij − Zik)

∣∣∣∣∣ ≤ τ
)

= P
(∣∣∣∣∣∣

n(1−γjk)∑
i=1

Ri

∣∣∣∣∣∣ ≤ τ
)
.

We now use Lemma 14. For n(1−γu) sufficiently large, when τ ≤ a
√
n the RHS is bounded

below by

c1τ√
n(1− γjk)

.

Here constant a, c1 > 0 also depend only on F . Thus

α(ξ) ≥ 1

p2

∑
j,k

c1τ√
n(1− γjk)

≥ c1τ/
√
n. (29)

Similarly we have

β(ξ) ≤ c2τ√
n(1− γ1)

. (30)

Note that from (29), when τ > a
√
n we have α(ξ) ≥ c1a. Thus from (21) we know there

exists n0 such that for all n ≥ n0, we have

inf
ξ∈Ξdense(η):ξτ>a

√
n
T (ξ)/(np2) ≥ inf

ξ∈Ξdense(η):ξτ>a
√
n
ξLα(ξ) ≥ ξLc1a > 0. (31)

We therefore need only consider the case where τ ≤ a
√
n and where α(ξ)→ 0.

Substituting the upper bound on τ implied by (29) into (30), we get

β(ξ) ≤ α(ξ)
c2

c1
√

1− γu
.

30

The xyz algorithm for fast interaction search in high-dimensional data

Note that then

ξL ≥
log(1− η)

log{1− α(ξ)c2/(c1
√

1− γu)}
≥ c3

log
(
1/1− η

)
α(ξ)

for some c3 > 0 provided α(ξ) < 1/2 say. However this gives us

inf
ξ∈Ξdense(η):ξτ≤a

√
n
T (ξ)/(np2) ≥ inf

ξ∈Ξdense(η):ξτ≤a
√
n
ξLα(ξ) ≥ min{1/2, c3 log

(
1/1− η

)
} > 0.

Combined with (31) this give the result.

With the previous lemmas in place, we are in a position to prove (7) of Theorem 1.

Proof of Theorem 1

The proofs of (8) and (9) are contained in Lemmas 12 and 13 respectively. To show (7)
we argue as follows. Given F and η, suppose for contradiction that there exists a sequence
ξ(1), ξ(2), . . . and n1 < n2 < · · · such that (making the dependence on n of the computational
time explicit)

inf
ψ∈Ψ(η)

T (nk)(ψ) > T (nk)(ξ(k))

for all k. By Lemma 12, we must have T (nk)(ξ(k))/(np2)→ 0. This implies that α(ξ(k))→ 0.
By Lemma 11, we know that for k sufficiently large

sup
ψ∈Ψ:α(ψ)=α(ξ(k))

β(ψ) ≥ β(ξ(k)).

Let ψ(k) be the maximiser of the LHS. In order for T (nk)(ψ(k)) > T (nk)(ξ(k)), it must be the
case that E

M∼ψ(k)
M

M > E
M∼ξ(k)M

M . However we claim that ξ = ψ(k) minimises EM∼ξMM

among all ξ ∈ Ξ with α(ξ) ≤ α(ξ(k)) =: α0, which gives a contradiction and completes the
proof. Let f be the function that linearly interpolates the points(

1

p2

∑
j,k

γMj,k, M

)∞
M=1

.

Note that f is decreasing. By considering the inverse of f it is clear that f is convex. With
a slight abuse of notation, write ξ(M, τ) for the element of ξ ∈ Ξ such that ξM places all
mass on M and ξτ = τ . Note that

EM∼ξMM = EM∼ξM f [α{ξ(M, 0)}] ≥ EM∼ξM f [α{ξ(M, ξτ)}].

Now suppose ξ has α(ξ) ≤ α0. Then from the above and Jensen’s inequality,

EM∼ξMM ≥ f
(
EM∼ξMα(ξ(M, ξτ))

)
≥ f(α0) = E

M∼ψ(k)
M

M.�

31

Thanei, Meinshausen and Shah

Proof of Theorem 2

First note that from (11) we have L ≤ log(1−η′)/ log(1−γM)+1. Then using the inequality
log(1− x) ≤ −x for x ∈ (0, 1), we have

L ≤ log{1/(1− η′)}+ 1

γM
.

Note that from the definition of γ0 we have γ−M = plog(γ)/ log(γ0). We then see that

γ−ME(E1) = γ−M
∑
j,k

γMjk

≤ γ−M
(∑
j,k:γjk>γ

γMjk +
∑

j,k:γ0<γjk≤γ
γMjk +

∑
j,k:γjk≤γ0

γMjk

)
≤ c1pγ

−M + c2p
1+log(γ)/ log(γ0) + p2γM0 γ−M

≤ (c1 + c2 + 1)p1+log(γ)/ log(γ0).

Collecting together the terms in (10) we have

C(M,L) ≤ np+ [log{1/(1− η′)}+ 1][log(p){1 + 1/ log(γ−1
0)}+ n(c1 + c2 + 1)]p1+log(γ)/ log(γ0)

from which the result easily follows.

Proof of Proposition 3

Let η∗ = η(M∗, L). Note that in order for η(M ′, L′) ≥ η∗ it must be the case that L′ ≥
log(1− η∗)/ log(1− γM ′). Therefore

C(M ′, L′)− np ≥ log(1− η∗)
log(1− γM ′)

(
M ′p+ p log(p) + n

∑
j,k

γM
′

jk

)

≥ min
M∈N

log(1− η∗)
log(1− γM)

(
Mp+ p log(p) + n

∑
j,k

γMjk

)
(32)

=
log(1− η∗)

log(1− γM∗)

(
M∗p+ p log(p) + n

∑
j,k

γM
∗

jk

)
= C(M∗, L).

Moreover, the inequality leading to (32) is strict ifM∗ is the unique minimiser andM ′ 6= M∗.

Technical lemmas

Lemma 14 Let F ∈ F and suppose (Ri)
∞
i=1 is an i.i.d. sequence with Ri ∼ F .

Then for all a > 0, there exists c1, c2 > 0 and l0 ∈ N such that for all l ≥ l0 and
0 ≤ τ ≤ a

√
l we have

c1τ√
l
≤ P

(∣∣ l∑
i=1

Ri
∣∣ ≤ τ) ≤ c2τ√

l
.

32

The xyz algorithm for fast interaction search in high-dimensional data

Proof Let fl be the density of
∑l

i=1Ri/
√
l. Note that as E(|R1|3) < ∞, we must have

E(R2
1) <∞, so we may assume without loss of generality that E(R2

1) = 1. Then by Theorem
3 of Petrov (1964) we have that for sufficiently large l,

|fl(t)− φ(t)| ≤ c√
l(1 + |t|3)

. (33)

Here c is a constant and φ(t) = e−t
2/2/
√

2π is the standard normal density. Now by the
mean value theorem, we have

2 inf
0≤t≤τ/

√
l
{fl(t)}

τ√
l
≤ P

(∣∣ l∑
i=1

Ri
∣∣/√l ≤ τ/√l) ≤ 2 sup

0≤t≤τ/
√
l

{fl(t)}
τ√
l
.

Thus from (33), for l sufficiently large we have

P
(∣∣ l∑

i=1

Ri
∣∣ ≤ τ) ≥ τ√

l

(√
2√
π

exp{−τ2/(2l)} − 2c√
l

)
.

Note that for a > 0 and l sufficiently large we have
√

2/πe−a
2/2 > 2c/

√
l, whence

P
(∣∣ l∑

i=1

Ri
∣∣ ≤ τ) ≥ c1τ√

l

for 0 ≤ τ ≤ a
√
l, some c1 > 0. A similar argument yields the upper bound in the final

result.

Lemma 15 Suppose γ ∈ [0, 1). For all M ∈ N we have

M∑
r=1

1√
r

(
M

r

)
(1− γ)rγM−r ≤

√
2√

(1− γ)M
. (34)

Given r0 ∈ N and γ ∈ [0, 1), there exists c > 0 and M0 ∈ N such that for all M ≥ M0 we
have

M∑
r=r0

1√
r

(
M

r

)
(1− γ)rγM−r ≥ c√

(1− γ)M
. (35)

Proof First we show the upper bound (34). Let J ∼ Binomial(M, 1− γ).

M∑
r=1

1√
r

(
M

r

)
(1− γ)rγM−r ≤

√
2
M∑
r=1

1√
r + 1

(
M

r

)
(1− γ)rγM−r

≤
√

2E(1/
√
J + 1).

33

Thanei, Meinshausen and Shah

Next, by Jensen’s inequality we have E(1/
√
J + 1) ≤

√
E{1/(J + 1)}. We now compute

E{1/(J + 1)} as follows.

E
(

1

J + 1

)
=

M∑
r=0

1

r + 1

(
M

r

)
(1− γ)rγM−r

=
1

M + 1

M∑
r=0

(
M + 1

r + 1

)
(1− γ)rγM−r

=
1

(1− γ)(M + 1)

M∑
r=0

(
M + 1

r + 1

)
(1− γ)r+1γM−r

=
1− γM+1

(1− γ)(M + 1)
≤ 1

(1− γ)(M + 1)
.

Putting things together gives (34).
Turning now to (35), we see that the LHS equals

E(1/
√
J1{J≥r0}) = E(1/

√
J |J ≥ r0)P(J ≥ r0).

By Jensen’s inequality we have

E(1/
√
J |J ≥ r0) ≥ 1√

E(J |J ≥ r0)
=

√
P(J ≥ r0)√

E(J1{J≥r0})
≥
√

P(J ≥ r0)√
(1− γ)M

.

But as M →∞, P(J ≥ r0)→ 1, which easily gives the result.

Lemma 16 Let f : [0,∞) → [0, 1] be non-decreasing. Suppose there exists 0 < α1 < α0

such that:

(i) f is concave on [0, α0];

(ii) − sup
(
∂(−f)(α1)

)
≥ {1 − f(α1)}/(α0 − α1), where ∂(−f)(α1) denotes the subdiffer-

ential of the function −f at α1.

Then if random variable X has E(X) ≤ α0, then f(EX) ≥ Ef(X).

Proof Write m = − sup
(
∂(−f)(α1)

)
Let function g : [0,∞)→ [0,∞) be defined as follows.

g(x) =

{
f(x) if 0 ≤ x ≤ α1

f(α1) +m(x− α1) if x > α1.

Note that g thus defined has g(α0) ≥ 1. We see that g is convex and g ≥ f . Thus if
E(X) ≤ α1, by Jensen’s inequality we have

f(EX) = g(EX) ≥ Eg(X) ≥ Ef(X).

34

The xyz algorithm for fast interaction search in high-dimensional data

Appendix B

Connection to LSH

Minimal subsampling as considered in Algorithm 2 is closely related to the locality-sensitive
hashing (LSH) framework: Define h(j) = RTXj (R corresponds to the minimal subsam-
pling projection) to be the hashing function and H to be the family of such functions, from
which we sample uniformly. Then H is (γ, cγ, p1, p2)-sensitive, that is:

• if γjk ≥ γ then P(h(j) = h(k)) ≥ p1

• if γjk ≤ cγ then P(h(j) = h(k)) ≤ p2,

where 0 < c < 1. In the case of the minimal subsampling we have p1 = γM and p2 = γMcM .
However, the typical LSH machinery cannot be applied directly to the equal pairs problem
above. In our setting, we are not interested in preserving close pairs but rather the closest
pairs. Theorem 1 establishes that the family H leads to the maximal ratio p1/p2 among all
linear hashing families.

Appendix C

Proof of Proposition 4

Proof

P(sgn(Yi) = X̃ijX̃ik) =
sgn(Yi) + 1

2
(g(Xij)g(Xik) + (1− g(Xij))(1− g(Xik)))

+
1− sgn(Yi)

2
(g(Xij)(1− g(Xik)) + (1− g(Xij))g(Xik))

=
1

2
+

sgn(Yi)

2
(1− 2g(Xij))(1− 2g(Xik)).

Appendix D

The unbiased transform and the sign transform

Proposition 6

Proof The equation

E[X̃ij] = P(X̃ij = 1)− P(X̃ij = −1) = Xij ,

implies

P(X̃ij = 1) =
Xij + 1

2

This uniquely determines the unbiased transform.

Next we show two Lemmas that will be useful when proving Theorems 7 and 8.

35

Thanei, Meinshausen and Shah

Lemma 17 Consider the setup of Theorem 7. Then there exists constants Cε1 , C
ε
2 > 0 such

that defining

αun,p = αun,p(t) =

(
1 +

t+ log(nCε1)

Cε2

)√
2{t+ log(4p)}/n,

with probability at least 1− 2 exp(−t) we have:∑
i YiXij∗Xik∗

‖Y‖1
/∈
[
−

m2 − αun,p
m1 +mε + αun,p

,
m2 − αun,p

m1 +mε + αun,p

]
∑n

i=1 YiXijXik

‖Y‖1
∈
[
−
m2(1− ru) + αun,p

m1 − αun,p
,
m2(1− ru) + αun,p

m1 − αun,p

]
∀(j, k) 6= (j∗, k∗).

Proof First we consider a capped version of ε:

ε′i =

{
εi if |εi| ≤ σ
σsgn(εi) otherwise,

where σ is to be chosen later. We may apply Hoeffding’s inequality to these bounded
variables. We have to bound two terms:∑n

i=1 YiXij∗Xik∗

‖Y‖1
from below and

∑n
i=1 YiXijXik

‖Y‖1
from above, for (j, k) 6= (j∗, k∗).

Schematically the first term can be dealt with in the following way:

P
(A+B

C +D
≥ a+ b

c+ d

)
≥ 1− P(A ≤ a)− P(B ≤ b)− P(C ≥ c)− P(D ≥ d) (36)

where

A+B =

n∑
i=1

(Xij∗Xik∗)
2 + ε′iXij∗Xik∗ and C +D =

n∑
i=1

|Xij∗Xik∗ + ε′i|.

We deal with each term individually. Using Hoeffding’s inequality we get:

A : P
(∑p

i=1(Xij∗Xik∗)
2 ≤ nm2 − δ

)
≤ exp(−δ2/2n))

B : P
(∑n

i=1 ε
′
iXij∗Xik∗ ≤ −κ

)
≤ exp(−κ2/2nσ2)

C : P
(∑n

i=1 |Xij∗Xik∗ | ≥ nm1 + δ
)
≤ exp(−δ2/2n)

D : P
(∑n

i=1 |ε′i| ≥ nmε + κ
)
≤ exp(−2κ2/nσ2).

This gives us a bound of the interaction strength of the true interaction pair:

P
(∑

i YiXij∗Xik∗

‖Y‖1
≥ nm2 − δ − κ
nm1 + nmε + δ + κ

)
≥ 1− exp(−δ2/2n)− exp(−δ2/2n)

− exp(−κ2/2nσ2)− exp(−κ2/2nσ2)

Similarly we can treat the interaction strength of the non interacting pairs:

36

The xyz algorithm for fast interaction search in high-dimensional data

A : Here we use assumption (B1):

m2(ru − 1) ≤ E[Xij∗Xik∗XimXio] ≤ m2(1− ru).

Hence, P
(∑n

i=1Xij∗Xik∗XijXik ≥ nm2(1− ru) + δ
)
≥ exp(−δ/2n).

For the rest we run the same bounds as before (using |Xij∗Xik∗ + ε′i| ≥ |Xij∗Xik∗ | + ε′i).
This yields the bound

P
(∑n

i=1 YiXijXik

‖Y‖1
≤ nm2(1− ru) + δ + κ

nm1 − δ − κ

)
≥ 1− exp(−δ2/2n)− exp(−δ2/2n)

− exp(−κ2/2nσ2)− exp(−κ2/2nσ2)

The above inequality needs to hold for all at most p2 pairs that are not interactions, so that
we effectively multiply the exponential terms with p2. Another factor of 2 is multiplied in
for the negative sign, as the fraction also has to be bounded away from −1. In total we
thus have:∑n

i=1 YiXij∗Xik∗

‖Y‖1
/∈
[
− nm2 − δ − κ
nm1 + nmε + δ + κ

,
nm2 − δ − κ

nm1 + nmε + δ + κ

]
∑n

i=1 YiXijXik

‖Y‖1
∈
[
− nm2(1− ru) + δ + κ

nm1 − δ − κ
,
nm2(1− ru) + δ + κ

nm1 − δ − κ

]
∀(m, o) 6= (j, l)

with probability at least 1− exp(−δ2/2n)− exp(−δ2/2n)− exp(−κ2/2nσ2)− exp(−κ2/2nσ2).

Finally, let σ ≥ 1, then we have to set δ and κ so that the probability is bigger than
1− exp(−t). This gives:

exp(−t) = 4p exp(−δ2/2n) and exp(−t) = 4p exp(−κ2/2nσ2).

This gives

δ =
√

2n(t+ log(4p)) and κ =
√

2nσ2(t+ log(4p)).

Thus for αun,p =

√
2(t+log(4p))(1+σ2)√

n
,∑

i YiXij∗Xik∗

‖Y‖1
/∈
[
−

m2 − αun,p
m1 +mε + αun,p

,
m2 − αun,p

m1 +mε + αun,p

]
∑n

i=1 YiXijXik

‖Y‖1
∈
[
−
m2(1− ru) + αun,p

m1 − αun,p
,
m2(1− ru) + αun,p

m1 − αun,p

]
∀(j, k) 6= (j∗, k∗)

with probability at least 1− exp(−t).

Now we extend this result to the case of unbounded errors, that is we now assume that with
high probability εi are bounded:

P(εi = ε′i, ∀ i) = 1− exp(−t).

37

Thanei, Meinshausen and Shah

Here we used the sub-exponential tail behavior of ε. We have P(|εi| ≥ t) ≤ Cε1 exp(−Cε2t).
Hence we set

t = Cε2σ − log(nCε1) ⇒ σ =
t+ log(nCε1)

Cε2

Thus,

αun,p =

√
2{t+ log(4p)}{1 + (

t+log(nCε1)
Cε2

)}2}
√
n

with probability at least 1− 2 exp(−t) we have:∑
i YiXij∗Xik∗

‖Y‖1
/∈
[
−

m2 − αun,p
m1 +mε + αun,p

,
m2 − αun,p

m1 +mε + αun,p

]
∑n

i=1 YiXijXik

‖Y‖1
∈
[
−
m2(1− ru) + αun,p

m1 − αun,p
,
m2(1− ru) + αun,p

m1 − αun,p

]
∀(j, k) 6= (j∗, k∗).

Next we prove the equivalent result for the sign transform. The proof is very similar to the
unbiased case:

Lemma 18 Consider the setup of Theorem 8. Then there exists constants CX1 , C
X
2 , C

ε
1 , C

ε
2 >

0 such that defining

αsn,p = αsn,p(t) =

√
2(t+ log(4p))

((
t+log(pnCX1)

CX2

)4
+
(
t+log(nCε1)

Cε2

)2)
√
n

,

with probability at least 1− 3 exp(−t) we have:∑n
i=1 Yisgn(Xij∗Xik∗)

‖Y‖1
/∈
[
−

m1 − αsn,p
m1 +mε + αsn,p

,
m1 − αsn,p

m1 +mε + αsn,p

]
∑n

i=1 Yisgn(XijXik)

‖Y‖1
∈
[
−
m1(1− rs) + αsn,p

m1 − αsn,p
,
m1(1− rs) + αsn,p

m1 − αsn,p

]
∀ (m, o) 6= (j∗, k∗).

Proof First consider capped versions of the random variables of interest:

X ′ij =

{
Xij if |Xij | ≤M
Msgn(Xij) otherwise

and ε′i =

{
εi if |εi| ≤ σ
σsgn(εi) otherwise

where M and σ are to be chosen later. Given these capped variables we can use Hoeffding’s
inequality as we now deal with bounded variables. We have to bound two terms:∑n

i=1 Yisgn(X ′ij∗X
′
ik∗)

‖Y‖1
from below and

∑n
i=1 Yisgn(X ′ijX

′
ik)

‖Y‖1
from above, for (j, k) 6= (j∗, k∗)

As in Lemma 17 equation (36):

A+B =
n∑
i=1

|X ′ij∗X ′ik∗ |+ ε′isgn(X ′ij∗X
′
ik∗) and C +D =

n∑
i=1

|X ′ij∗X ′ik∗ + ε′i|.

We deal with each term individually. Using Hoeffding’s inequality we get:

38

The xyz algorithm for fast interaction search in high-dimensional data

A : P
(∑p

i=1 |X ′ij∗X ′ik∗ | ≤ nm1 − δ
)
≤ exp(−δ2/2nM4))

B : P
(∑n

i=1 ε
′
i ≤ −κ

)
≤ exp(−κ2/2nσ2)

C : P
(∑n

i=1 |X ′ij∗X ′ik∗ | ≥ nm1 + δ
)
≤ exp(−δ2/2nM4)

D : P
(∑n

i=1 |ε′| ≥ nm′ε + κ
)
≤ exp(−2κ2/nσ2)

This gives us a bound of the interaction strength of the true interaction pair:

P
(∑

i Yisgn(X ′ij∗X
′
ik∗)

‖Y‖1
≥ nm1 − δ − κ
nm1 + nmε + δ + κ

)
≥ 1− 2 exp(−δ2/2nM4)− 2 exp(−κ2/2nσ2)

Similarly we can treat the interaction strength of the non interacting pairs:

A : Here we use assumption (C1). It implies

rs/2 ≤ P(sgn(X ′ij∗X
′
ik∗) = sgn(X ′ijX

′
ik)|X) ≤ 1− rs/2.

This we use for computing the expectation:

E[X ′ij∗X
′
ik∗sgn(X ′ijX

′
ik)] = E[E[|X ′ij∗X ′ik∗ |sgn(X ′ijX

′
ikX

′
ij∗X

′
ik∗)]

= E[E[2|X ′ij∗X ′ik∗ |1{sgn(X′ijX
′
ikX

′
ij∗X

′
ik∗)=1}|X]]− E[|X ′ij∗X ′ik∗ |]

= E[E[2|X ′ij∗X ′ik∗ ||X]]P(sgn(X ′ijX
′
ikX

′
ij∗X

′
ik∗) = 1|X)− E[|X ′ij∗X ′ik∗ |]

= E[|X ′ij∗X ′ik∗ |](2P(sgn(X ′ijX
′
ikX

′
ij∗X

′
ik∗) = 1|X)− 1).

Thus the expectation is given as:

m1(rs − 1) ≤ E[X ′ij∗X
′
ik∗sgn(X ′ijX

′
ik)] ≤ m1(1− rs).

Hence, P
(∑n

i=1X
′
ij∗X

′
ik∗sgn(X ′ijX

′
ik) ≥ nm1(1− rs) + δ

)
≥ exp(−2δ/nM4).

For the rest we use the same bounds as before (using |X ′ij∗X ′ik∗ + ε′i| ≥ |X ′ij∗X ′ik∗ | + ε′i).
This yields the bound

P
(∑n

i=1 Yisgn(X ′ijX
′
ik)

‖Y‖1
≤ nm1(1− rs) + δ + κ

nm1 − δ − κ

)
≥ 1− exp(−2δ2/nM4)− exp(−2κ2/nσ2).

The above inequality needs to hold for the at most p2 pairs that are not interactions, so
that we effectively multiply the exponential terms with p2. Another factor of 2 is multiplied
in for the negative sign, as the fraction also has to be bounded away from −1. In total we
thus have:∑

i Yisgn(X ′ij∗X
′
ik∗)

‖Y‖1
/∈
[
− nm1 − δ − κ
nm1 + nmε + δ + κ

,
nm1 − δ − κ

nm1 + nmε + δ + κ

]
∑n

i=1 Yisgn(X ′ijX
′
ik)

‖Y‖1
∈
[
− nm1(1− rs) + δ + κ

nm1 − δ − κ
,
nm1(1− rs) + δ + κ

nm1 − δ − κ

]
∀(j, k) 6= (j∗, k∗)

with probability at least 1− 2p exp(−δ2/2nM4)− 2p exp(−κ2/2nσ2).

39

Thanei, Meinshausen and Shah

Finally we have to set δ and κ so that the probability is bigger than 1 − exp(−t). This
gives:

exp(−t) = 4p exp(−δ2/2nM4) and exp(−t) = 4p exp(−κ2/2nσ2)

This gives
δ =

√
2nM4(t+ log(4p)) and κ =

√
2nσ2(t+ log(4p))

Thus for αsn,p =

√
2(t+log(4p))(M4+σ2)√

n∑
i Yisgn(X ′ij∗X

′
ik∗)

‖Y‖1
/∈
[
−

m1 − αsn,p
m1 +mε + αsn,p

,
m1 − αsn,p

m1 +mε + αsn,p

]
∑n

i=1 Yisgn(X ′ijX
′
ik)

‖Y‖1
∈
[
−
m1(1− rs) + αsn,p

m1 − αsn,p
,
m1(1− rs) + αsn,p

m1 − αsn,p

]
∀(j, k) 6= (j∗, k∗)

with probability at least 1− exp(−t).

We now extend this result to the case of unbounded variables, that is we now assume that
with high probability the variables Xij and εi are bounded:

P(Xij = X ′ij , ∀ i, j) = 1− exp(−t) and P(εi = ε′ij , ∀ i) = 1− exp(−t).

Here we used the sub-exponential tail behaviour of the Xij and εi. There exists constants
CX1 , CX2 such that P(|Xij | ≥ t) ≤ CX1 exp(−CX2 t) and similarly for ε. Hence we set

t = CX2 M − log(pnCX1) ⇒M =
t+ log(pnCX1)

CX2

t = Cε2σ − log(nCε1) ⇒ σ =
t+ log(nCε1)

Cε2

Thus we have

αsn,p =

√
2(t+ log(4p))

((
t+log(pnCX1)

CX2

)4
+
(
t+log(nCε1)

Cε2

)2)
√
n

Next we prove Theorem 7:
Proof Given δ, ε > 0, choose t such that 3 exp(−t) < ε. From (B3) we have that αun,p(t)
defined in Lemma 17 satisfies αun,p(t)→ 0 as n→∞. Thus from Lemma 17 we know that
there exists N such that for all n ≥ N , with probability 1− ε we have

log(γgj∗k∗)

log(γgjk)
<

log{(1 + m2
m1+mε

)/2}
log{(1 + m1

m2(1−rs))/2}
+ δ/2.

Thus for n ≥ N , applying Corollary 5 we have that with probability 1− ε,

C(M,L) ≤ cnp1+δ/2+
log(1/2+m2/2((m1+mε)))
log(1/2+m2(1−ru)/(2m1)) ,

for some constant c.

The proof of Theorem 8 is very similar and is thus omitted.

40

The xyz algorithm for fast interaction search in high-dimensional data

References

D. Achlioptas. Database-friendly random projections: Johnson–lindenstrauss with binary
coins. Journal of computer and System Sciences, 2003.

P. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minimum spanning
trees and bichromatic closest pairs. Discrete & Computational Geometry, 1991.

Y. Arkin, E. Rahmani, M. Kleber, R. Laaksonen, W. März, and E. Halperin. Epiq: efficient
detection of snp–snp epistatic interactions for quantitative traits. Bioinformatics, 2014.

P. Bickel, Y. Ritov, and A. Tsybakov. Hierarchical selection of variables in sparse high-
dimensional regression. IMS Collections, 2010.

J. Bien, J. Taylor, and R. Tibshirani. A lasso for hierarchical interactions. The Annals of
Statistics, 2013.

L. Breiman. Random Forests. Machine Learning, 2001.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth, Belmont, 1984.

P. Bühlmann, M. Kalisch, and L. Meier. High-dimensional statistics with a view towards
applications in biology. Annual Review of Statistics and Its Application, 2014.

A. Davie and A. Stothers. Improved bound for complexity of matrix multiplication. Pro-
ceedings of the Royal Society of Edinburgh: Section A Mathematics, 2013.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least Angle Regression. Annals of
Statistics, 2004.

J. Friedman. Multivariate adaptive regression splines. Annals of Statistics, 1991.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 2010.

N. Hao and H. Zhang. Interaction screening for ultrahigh-dimensional data. Journal of the
American Statistical Association, 2014.

P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse
of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 604–613. ACM, 1998.

P. Kemmeren and et al. Large-scale genetic perturbations reveal regulatory networks and
an abundance of gene-specific repressors. Cell, 2014.

R. Knutti, D. Masson, and A. Gettelman. Climate model genealogy: Generation cmip5 and
how we got there. Geophysical Research Letters, 2013.

Y. Kong, D. Li, Y. Fan, and J. Lv. Interaction Pursuit with Feature Screening and Selection.
arXiv preprint arXiv:1605.08933, 2016.

41

Thanei, Meinshausen and Shah

F. Le Gall. Faster algorithms for rectangular matrix multiplication. In Foundations of
Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on. IEEE, 2012.

J. Leskovec, A. Rajaraman, and J. Ullman. Mining of massive datasets. Cambridge Uni-
versity Press, 2014.

R. Paturi, S. Rajasekaran, and J. Reif. The light bulb problem. Proceedings of the second
annual workshop on Computational learning theory, 1989.

V. Petrov. On local limit theorems for sums of independent random variables. Theory of
Probability & Its Applications, 1964.

R. Sedgewick. Algorithms in C. Addison-Wesley, 1998.

R.D. Shah. Modelling interactions in high-dimensional data with backtracking. Journal of
Machine Learning Research, 2016.

R.D. Shah and N. Meinshausen. Random intersection trees. The Journal of Machine
Learning Research, 2014.

M. Shamos and D. Hoey. Closest-point problems. In Foundations of Computer Science,
1975., 16th Annual Symposium on. IEEE, 1975.

V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 1969.

G. Thanei. xyz r package, 2016. URL https://github.com/gathanei/xyz.

R. Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the Royal
Statistical Society, Series B, 1996.

V. Williams. Multiplying matrices faster than coppersmith-winograd. In Proceedings of the
forty-fourth annual ACM symposium on Theory of computing. ACM, 2012.

B. Winkelmann, W. März, B. Boehm, R. Zotz, J. Hager, P. Hellstern, and J. Senges. Ratio-
nale and design of the luric study-a resource for functional genomics, pharmacogenomics
and long-term prognosis of cardiovascular disease. Pharmacogenomics, 2001.

J. Wu, B. Devlin, S. Ringquist, M. Trucco, and K. Roeder. Screen and clean: a tool for
identifying interactions in genome-wide association studies. Genetic Epidemiology, 2010.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society, Series B, 2005.

42

https://github.com/gathanei/xyz

	Introduction
	Related work
	Organisation of the paper

	The xyz algorithm for binary data
	Optimality of minimal subsampling
	The final version of xyz
	Computational and statistical properties of xyz

	Interaction search on continuous data
	Continuous Y and binary X
	Continuous Y and continuous X

	Application to Lasso regression
	Experiments
	Comparison of minimal subsampling and dense projections
	Scaling
	Run on SNP data
	Regression on artificial data
	Regression on real data

	Discussion

