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Abstract

Kernel mean embeddings have become a popular tool in machine learning. They map
probability measures to functions in a reproducing kernel Hilbert space. The distance
between two mapped measures defines a semi-distance over the probability measures known
as the maximum mean discrepancy (MMD). Its properties depend on the underlying kernel
and have been linked to three fundamental concepts of the kernel literature: universal,
characteristic and strictly positive definite kernels.

The contributions of this paper are three-fold. First, by slightly extending the usual
definitions of universal, characteristic and strictly positive definite kernels, we show that
these three concepts are essentially equivalent. Second, we give the first complete character-
ization of those kernels whose associated MMD-distance metrizes the weak convergence of
probability measures. Third, we show that kernel mean embeddings can be extended from
probability measures to generalized measures called Schwartz-distributions and analyze a
few properties of these distribution embeddings.

Keywords: kernel mean embedding, universal kernel, characteristic kernel, Schwartz-
distributions, kernel metrics on distributions, metrisation of the weak topology

1. Introduction

During the past decades, kernel methods have risen to a major tool across various areas
of machine learning. They were originally introduced via the “kernel trick” to generalize
linear regression and classification tasks by effectively transforming the optimization over
a set of linear functions into an optimization over a so-called reproducing kernel Hilbert
space (RKHS) Hk, which is entirely defined by the kernel k. This lead to kernel (ridge)
regression, kernel SVM and many other now standard algorithms. Besides these regression-
type algorithms, another major family of kernel methods rely on kernel mean embeddings
(KMEs). A KME is a mapping Φk that maps probability measures to functions in an RKHS
via Φk : P 7−→

∫
X
k(., x) dP (x) . The RKHS-distance between two mapped measures

defines a semi-distance over the set of probability measures, known as the Maximum Mean
Discrepancy (MMD). It has numerous applications, ranging from homogeneity (Gretton
et al., 2007), distribution comparison (Gretton et al., 2007, 2012) and (conditional) inde-
pendence tests (Gretton et al., 2005, 2008; Fukumizu et al., 2008; Gretton and Györfi, 2010;
Lopez-Paz et al., 2013) to generative adversarial networks (Dziugaite et al., 2015; Li et al.,
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2015). While KMEs have already been extended to embed not only probability measures,
but also signed finite measures, a first contribution of this paper is to show that they can
be extended even further to embed generalized measures called Schwartz-distributions. For
an introduction to Schwartz-distributions—which we will now simply call a distribution, as
opposed to a (signed) measure—see Appendix B. Furthermore, we show that for smooth and
translation-invariant kernels, if the KME is injective over the set of probability measures,
then it remains injective when extended to some Schwartz-distribution sets.

Our second contribution concerns the notions of universal, characteristic and strictly
positive definite (s.p.d.) kernels. They are of prime importance to guarantee the consis-
tency of many regression-type or MMD-based algorithms (Steinwart, 2001; Steinwart and
Christmann, 2008). While these notions were originally introduced in very different con-
texts, they were shown to be connected in many ways which were eventually summarized in
Figure 1 of Sriperumbudur et al. (2011). But by handling separately all the many variants
of universal, characteristic and s.p.d. kernels that had been introduced, this figure—and
the general machine learning literature—somehow missed the underlying very general du-
ality principle that connects these notions. By giving a unified definition of these three
concepts, we will make their link explicit, easy to remember, and immediate to generalize
to Schwartz-distributions and other spaces.

Our third contribution concerns the MMD semi-metric. Through a series of articles,
Sriperumbudur et al. (2010b; 2016) gave various sufficient conditions for a kernel to metrize
the weak-convergence of probability measures, which means that a sequence of probability
measures converges in MMD distance if and only if (iff) it converges weakly. Here, we
generalize these results and give the first complete characterization of the kernels that
metrize weak convergence when the underlying space X is locally compact.

Finally, we develop a few calculus rules to work with KMEs of Schwartz distributions.
In particular, we prove the following formulae:〈

f ,

∫
k(., x) dD(x)

〉
k

=

∫
〈f , k(., x)〉k dD(x) (Definition of KME)〈∫

k(., y) dD(y) ,

∫
k(., x) dT (x)

〉
k

=

∫
k(x, y) dD(y) dT̄ (x) (Fubini)∫

k(., x) d(∂pS)(x) = (−1)|p|
∫
∂(0,p)k(., x) dS(x). (Differentiation)

The first and second lines are standard calculus rules for KMEs when applied with two
probability measures D and T . We extend them to distributions. The third line however is
specific to distributions. It uses the distributional derivative (‘∂’) which extends the usual
derivative of functions to signed measures and distributions. For a quick introduction to
Schwartz distributions and their derivatives see Appendix B.

The structure of this paper roughly follows this exposition. After fixing our notations,
Section 2 introduces KMEs of measures and distributions. In Section 3 we define the con-
cepts of universal, characteristic and s.p.d. kernels and prove their equivalence. Section 4
compares convergence in MMD with other modes of convergence for measures and distri-
butions. Section 5 focuses specifically on KMEs of Schwartz-distributions, and Section 6
gives a brief overview of the related work and concludes.
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1.1. Definitions and Notations

Let N, R and C be the sets of non-negative integers, of reals and of complex numbers. The
input set X of all considered kernels and functions will be locally compact and Hausdorff.
This includes any Euclidian spaces or smooth manifolds, but no infinite-dimensional Banach-
space. Whenever referring to differentiable functions or to distributions of order ≥ 1, we
will implicitly assume that X is an open subset of Rd for some d > 0.

A kernel k : X ×X −→ C is a positive definite function, meaning that for all

n ∈ N\{0}, all λ1, . . . , λn ∈ C, and all x1, x2, . . . xn ∈ X,
∑n

i,j=1 λik(xi, xj)λj ≥ 0. For

p = (p1, p2, . . . , pd) ∈ Nd and f : X −→ C , we define |p| :=
∑d

i=1 pi and ∂pf :=
∂|p|f

∂p1x1∂p2x2···∂pdxd . For m ∈ N ∪ {∞}, we say that f (resp. k) is m-times (resp. (m,m)-

times) continuously differentiable and write f ∈ Cm (resp. k ∈ C(m,m)), if for any p with
|p| = m, ∂pf (resp. ∂(p,p)k) exists and is continuous. Cmb (resp. Cm0 , Cmc ) is the subsets of
Cm for which ∂pf is bounded (resp. converges to 0 at infinity, resp. has compact support)
whenever |p| ≤ m. Whenever m = 0, we may drop the superscript m. By default, we equip
Cm∗ (∗ ∈ {∅, b, 0, c}) with their natural topologies (see Introduction of Simon-Gabriel and

Schölkopf 2016 or Treves 1967). We write k ∈ C
(m,m)
0 whenever k is bounded, (m,m)-times

continuously differentiable and for all |p| ≤ m and x ∈X, ∂(p,p)k(., x) ∈ C0.
We call space of functions and denote by F any locally convex (loc. cv.) topological

vector space (TVS) of functions (see Appendix C and Treves 1967). Loc. cv. TVSs include
all Banach- or Fréchet-spaces and all function spaces defined in this paper.

The dual F′ of a space of functions F is the space of continuous linear forms over F.
We denote Mδ, Em, Dm

L1 and Dm the duals of CX, Cm, Cm0 and Cmc respectively. By

identifying each signed measure µ with a linear functional of the form f 7−→
∫
f dµ ,

the Riesz-Markov-Kakutani representation theorem (see Appendix C) identifies D0 (resp.
D0
L1 , E0 and Mδ) with the set Mr (resp. Mf , Mc, Mδ) of signed regular Borel measures

(resp. with finite total variation, with compact support, with finite support). By defini-
tion, D∞ is the set of all Schwartz-distributions, but all duals defined above can be seen as
subsets of D∞ and are therefore sets of Schwartz-distributions. Any element µ of Mr will
be called a measure, any element of D∞ a distribution. See Appendix B for a brief intro-
duction to distributions and their connection to measures. We extend the usual notation
µ(f) :=

∫
f(x) dµ(x) for measures µ to distributions D: D(f) =:

∫
f(x) dD(x). Given a

KME Φk and two embeddable distributions D,T (see Definition 1), we define

〈D , T 〉k := 〈Φk(D) , Φk(T )〉k and ‖D‖k := ‖Φk(D)‖k .

where 〈. , .〉k is the inner product of the RKHS Hk of k. To avoid introducing a new
name, we call ‖D‖k the maximum mean discrepancy (MMD) of D, even though the term
“discrepancy” usually specifically designates a distance between two distributions rather
than the norm of a single one. Given two topological sets S1,S2, we write

S1 ↪→ S2

and say that S1 is continuously contained in S2 if S1 ⊂ S2 and if the topology of S1 is
stronger than the topology induced by S2. For a general introduction to topology, TVSs
and distributions, we recommend Treves (1967).
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2. Kernel Mean Embeddings of Distributions

In this section, we show how to embed general distribution spaces into an RKHS. To do so,
we redefine the integral

∫
k(., x) dµ(x) so as to be well-defined even if µ is a distribution. It

is often defined as a Bochner-integral; here we instead use the weak - (or Pettis-) integral:

Definition 1 (Weak Integral and KME) Let D be a linear form over a space of func-
tions F. Let ~ϕ : X −→ Hk be an RKHS-valued function such that for any f ∈ Hk,
x 7−→ 〈f , ~ϕ(x)〉k ∈ F. Then ~ϕ : X −→ Hk is weakly integrable with respect to

(w.r.t.) D if there exists a function in Hk, written
∫
~ϕ(x) dD(x), such that

∀f ∈ Hk,

〈
f ,

∫
~ϕ(x) dD(x)

〉
k

=

∫
〈f , ~ϕ(x)〉k dD̄(x) , (1)

where the right-hand-side stands for D̄ (x 7→ 〈f , ~ϕ(x)〉k) and D̄ denotes the complex-
conjugate of D. If ~ϕ(x) = k(., x), we call

∫
k(., x) dD(x) the kernel mean em-

bedding (KME) of D and say that D embeds into Hk. We denote Φ~ϕ the map
Φ~ϕ : D 7−→

∫
~ϕ(x) dD(x) .

This definition extends the usual Bochner-integral: if ~ϕ is Bochner-integrable w.r.t. a mea-
sure µ ∈ Mr, then ~ϕ is weakly integrable w.r.t. µ and the integrals coincide (Schwabik,
2005, Prop. 2.3.1). In particular, if x 7−→ ‖~ϕ(x)‖k is Lebesgue-integrable, then ~ϕ is
Bochner integrable, thus weakly integrable.

The general definition with ~ϕ instead of k(., x) will be useful in Section 5. But for now,
let us concentrate on KMEs where ~ϕ(x) = k(., x). Kernels satisfy the so-called reproducing
property : for any f ∈ Hk, f(x) = 〈f , k(., x)〉k. Therefore, the condition for all f ∈ Hk

x 7−→ 〈f , ~ϕ(x)〉k ∈ F reduces to Hk ⊂ F, and Equation (1) reads:

∀f ∈ Hk,

〈
f ,

∫
k(., x) dD(x)

〉
k

= D̄(f) . (2)

Thus, by the Riesz representation theorem (see Appendix C), D embeds into Hk iff it
defines a continuous linear form over Hk. And in that case, its KME

∫
k(., x) dD(x) is the

Riesz-representer of D̄ restricted to Hk. Thus, for an embeddable space of distributions D,
the embedding Φk can be decomposed as follows:

Φk :


D −→ H′k −→ Hk

Conjugate restriction Riesz representer

D 7−→ D̄
∣∣
Hk

7−→
∫
k(., x) dD(x)

. (3)

To know if D is continuous over Hk, we use the following lemma, and its applications.

Lemma 2 If Hk ↪→ F, then F′ embeds into Hk.

Proof Suppose that Hk ↪→ F. Let D ∈ F′ and let f, f1, f2, . . . ∈ Hk. If fn → f in Hk

then fn → f in F, thus D(fn)→ D(f). Thus D is a continuous linear form over Hk.

In practice we typically use one of the following two corollaries (proofs in Appendices A.1
and A.2). The space (Cb)c that they mention will be introduced in the discussions following
Theorem 6. It has the same elements as Cb, but carries a weaker topology.
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Corollary 3 (Embedding of Measures) Hk ⊂ C0 (resp. Hk ⊂ Cb, resp. Hk ⊂ C) iff
the two following conditions hold.

(i) For all x ∈X, k(., x) ∈ C0 (resp. k(., x) ∈ Cb, resp. k(., x) ∈ C).
(ii) x 7−→ k(x, x) is bounded (resp. bounded, resp. locally bounded, meaning that, for

each y ∈X, there exists a (compact) neighborhood of y on which x 7−→ k(x, x) is
bounded.).

If so, then Hk ↪→ C0 (resp. Hk ↪→ Cb , thus Hk ↪→ (Cb)c , resp. Hk ↪→ C) and Mf (resp.
Mf , resp. Mc) embeds into Hk.

Corollary 4 (Embedding of Distributions)
If k ∈ C(m,m), then Hk ↪→ Cm, thus Em embeds into Hk.

If k ∈ C
(m,m)
0 , then Hk ↪→ Cm0 , thus Dm

L1 embeds into Hk.

If k ∈ C
(m,m)
b , then Hk ↪→ Cmb , thus Hk ↪→ (Cmb )c, thus Dm

L1 embeds into Hk.

Corollary 3 applied to Cb shows that Hk is (continuously) contained in Cb iff k is bounded
and separately continuous. As discovered by Lehtö (1952), there also exist kernels which are
not continuous but whose RKHS Hk is contained in Cb. So the conditions in Corollary 4 are
sufficient, but in general not necessary. Concerning Lemma 2, note that it not only requires
Hk ⊂ F, but also that Hk carries a stronger topology than F. Otherwise there might exist
a continuous form over F that is defined but non-continuous over Hk. However, Corollary 3
shows that this cannot happen for C∗, because if Hk ⊂ C∗ then Hk ↪→ C∗. Although this
also holds for m = ∞ (Simon-Gabriel and Schölkopf, 2016, Prop.4 & Comments), we do
not know whether it extends to any m > 0.

3. Universal, Characteristic and S.P.D. Kernels

The literature distinguishes various variants of universal, characteristic and s.p.d. kernels,
such as c-, cc− or c0-universal kernels, s.p.d. and integrally strictly positive definite (

∫
s.p.d.)

kernels. They are all special cases of the following unifying definitions.

Definition 5 Let k be a kernel, F be a space of functions such that Hk ⊂ F, and D be an
embeddable subset of F′ (e.g. an embeddable set of distributions). We say that k is

. universal over F if Hk is dense in F.

. characteristic to D if the KME Φk is injective over D.

. strictly positive definite (s.p.d.) over D if: ∀D ∈ D, ‖Φk(D)‖2k = 0⇒ D = 0.

A universal kernel over Cm (resp. Cm0 ) will be said cm- (resp. cm0 -) universal (without the
superscript when m = 0). A characteristic kernel to the set P of probability measures will
simply be called characteristic.

In general, instead of writing ‖Φk(D)‖k and 〈Φk(D) , Φk(T )〉k, we will write ‖D‖k and
〈D , T 〉k. These definitions encompass the usual s.p.d. definitions. Denoting δx the Dirac
measure concentrated on x, what is usually called
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. s.p.d. corresponds to D = Mδ, i.e.:

∀µ =
n∑
i=1

λiδxi ∈Mδ : ‖µ‖2k =
n∑

i,j=1

λik(xi, xj)λ̄j = 0 ⇒ λ1 = . . . = λn = 0 .

. conditionally s.p.d. corresponds to D = M0
δ where M0

δ := {µ ∈Mδ :µ(X) = 0}, i.e.:

∀µ =
∑n

i=1
λiδxi ∈Mδ

s.t.
∑n

i=1
λi = 0

 : ‖µ‖2k =
n∑

i,j=1

λik(xi, xj)λ̄j = 0 ⇒ λ1 = . . . = λn = 0 .

.
∫

s.p.d. corresponds to D = Mf , i.e.:

∀µ ∈Mf : ‖µ‖2k =

∫∫
k(x, y) dµ(x) dµ̄(y) = 0 ⇒ µ = 0 .

Let us now state the general link between universal, characteristic and s.p.d. kernels, which
is the key that underlies Figure 1 of Sriperumbudur et al. (2011).

Theorem 6 If Hk ↪→ F, then the following statements are equivalent.

(i) k is universal over F.
(ii) k is characteristic to F′.

(iii) k is strictly positive definite over F′.

Proof Equivalence of (ii) & (iii): Saying that ‖Φk(D)‖k = 0 is equivalent to saying
Φk(D) = 0. Thus Φk is s.p.d. over F′ iff the Ker(Φk) (meaning the vector space that is
mapped to 0 via Φk) is reduced to {0}, which happens iff Φk is injective over F′.

Equivalence of (i) & (ii): Φk is the conjugate restriction operator |Hk : D 7−→ D̄|Hk
composed with the Riesz representer mapping (Diagram Eq.3). The Riesz representer
map is injective, so Φk is injective iff |Hk is injective. Now, if Hk is dense in F, then,
by continuity, any D ∈ F′ is uniquely defined by its values taken on Hk. Thus |Hk is
injective. Reciprocally, if Hk is not dense in F, then, by the Hahn-Banach theorem (Treves,
1967, Thm.18.1, Cor.3), there exists two different elements in F′ that coincide on Hk but
not on the entire space F. So |Hk is not injective. Thus |Hk is injective iff Hk is dense in F.

To apply this theorem it suffices to find so-called duality pairs (F,F′) such that Hk ↪→ F.
Table 1 lists several such pairs. It shows in particular the well-known equivalence between
c- (resp. c0-) universal kernels and characteristic kernels to Mc (resp. Mf ) (Sriperumbudur
et al., 2008). But we now discover that s.p.d. kernels over Mδ can also be characterized in
terms of universality over CX, because (CX)′ = Mδ (Duc-Jacquet, 1973, p.II.35). And we
directly get the generalization to distributions and cm∗ -universality.

However, Theorem 6 leaves open the important case where k is characteristic (to P). Of
course, as P is contained in Mf , it shows that a c0-universal kernel must be characteristic.
But to really characterize characteristic kernels in terms of universality, we would need to
find a predual of P, meaning a space F such that F′ = P. This is hardly possible, as P is
not even a vector space. However, we will see in Theorem 8 that k is characteristic iff k is
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Universal Characteristic S.P.D. Name Proof

F F′ F′ / Thm. 6

CX Mδ Mδ s.p.d. Thm. 6

CX/1 M0
δ M0

δ conditionally s.p.d. Prop. 7

C Mc Mc c-universal (or cc-universal) Thm. 6

C0 Mf Mf c0-universal Thm. 6

(Cb)c Mf Mf

∫
spd Thm. 6

((Cb)c)/1 P (or M0
f ) M0

f characteristic Prop. 7

Cm Em Em cm-universal Thm. 6

Cm0 Dm
L1 Dm

L1 cm0 -universal Thm. 6

(Cmb )c Dm
L1 Dm

L1 / Thm. 6

Table 1: Equivalence between the notions of universal, characteristic and s.p.d. kernels.

characteristic to the vector space M0
f := {µ ∈ Mf : µ(X) = 0}. So if we find a predual of

M0
f , then we get an analog of Theorem 6 applied to P. Let us do so now.

As M0
f is the hyperplane of Mf that is given by the equation

∫
1 dµ = 0, our idea is

to take a predual F of Mf and consider the quotient F/1 of F divided by the constant
function 1. Proposition 35.5 of Treves (1967) would then show that (F/1)′ = M0

f . But if
we take the usual predual of Mf , F = C0, then 1 6∈ F, so the quotient F/1 is undefined.
However, preduals are not unique, so let us try with another space F that contains 1, for
example F = Cb. This time 1 ∈ F, but now the problem is that F′ is in general strictly
bigger than Mf (Fremlin et al., 1972, Sec. 2, §2) whereas we want F′ = Mf . The trick now
is to keep Cb, but equip it with a weaker topology than the usual one, so that F′ becomes
smaller. Intuitively, the reason for this decrease of F′ is that, by weakening the topology of
F, we let more sequences converge in F. This makes it more difficult for a functional over
F to be continuous, because for any converging sequence in F, its images need to converge.
Thus some of the linear functionals that were continuous for the original topology of F get
“kicked out” of F′ when F carries a weaker topology. Now the only remaining step is to
find a topology such that F′ shrinks exactly to Mf . There are at least two such topologies:
one defined by Schwartz (1954, p.100-101) and another, called the strict topology, whose
definition can be found in Fremlin et al. (1972). Denoting τc either of these topologies, and
(Cb)c the space Cb equipped with τc, we finally get ((Cb)c)

′ = Mf , and thus:

Proposition 7 ((Cb)c/1)′ = M0
f . Thus, if Hk ↪→ (Cb)c, then k is characteristic to P iff k

is universal over the quotient space ((Cb)c/1).

Proof That ((Cb)c)
′ = Mf is proven in Fremlin et al. (1972, Thm. 1) or Schwartz (1954,

p.100-101). Proposition 35.5 of Treves (1967) then implies ((Cb)c/1)′ = M0
f (because M0

f
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is the so-called polar set of 1; see Treves 1967). Theorem 6 implies the rest.

For our purposes, the exact definition of τc does not matter. What matters more is that τc is
weaker than the usual topology of Cb, so that if Hk ↪→ Cb, then Hk ↪→ (Cb)c. Proposition 7
thus applies every time that Hk ⊂ Cb (see Corollaries 3 and 4). However, we do not know of
any practical application of Proposition 7, except that it completes our overall picture of the
equivalences between universal, characteristic and s.p.d. kernels. Let us also mention that,
similarly to Proposition 7, as (CX)′ = Mδ, we also have (CX/1)′ = M0

δ . So conditionnally
s.p.d. kernels (meaning s.p.d. over M0

δ) are universal to CX/1.

We now prove what we announced and used earlier: a kernel is characteristic to P iff
it is characteristic to M0

f . We add a few other characterisations which are probably more

useful in practice. They rely on the following observation: as M0
f is a hyperplane of Mf ,

saying that k is characteristic to P is almost the same than saying that it is characteristic
to Mf , i.e.

∫
s.p.d. (Thm. 6): after all, there is only one dimension needed to go from M0

f

to Mf . Thus there should be a way to construct an
∫

s.p.d. kernel out of any characteristic
kernel. This is what is described here and proven in Appendix A.3.

Theorem 8 (Characteristic Kernels) Let k0 be a kernel. The following is equivalent.

(i) k0 is characteristic to P.
(ii) k0 is characteristic to M0

f .

(iii) There exists ε ∈ R such that the kernel k(x, y) := k0(x, y) + ε2 is
∫

s.p.d..
(iv) For all ε ∈ R\{0}, the kernel k(x, y) := k0(x, y) + ε2 is

∫
s.p.d..

(v) There exists an RKHS Hk with kernel k and a measure ν0 ∈ Mf\M0
f such that k is

characteristic to Mf and k0(x, y) = 〈δx − ν0 , δy − ν0〉k.

Under these conditions, k0 and k induce the same MMD semi-metric in M0
f and in P.

We will use this theorem to prove Theorem 12. Intuitively, a characteristic kernel
guarantees that any two different signed measures µ1, µ2 with same total mass get mapped
to two different functions in the RKHS. This is captured by (ii) which arbitrarily focuses on
the special case where the total mass is 0. When they have different total masses however,
they may still get mapped to a same function f , except if, like in (iii) and (iv), we add
a positive constant to the kernel. In that case, µ1 and µ2 get mapped to the functions
f + µ1(X)1 and f + µ2(X)1 which are now different, because µ1(X) 6= µ2(X). Intuively,
by adding a positive constant to our kernel, we added one dimension to the RKHS (carried
by the function 1) that explicitly ‘checks’ if two measures have the same mass. Finally, (v)
tells us that, out of any

∫
s.p.d. kernel k, we can construct a characteristic kernel k0 that is

not
∫

s.p.d. anymore and vice-versa.

4. Topology Induced by k

Remember that for any distribution D of a set of embeddable distributions D we defined
‖D‖k := ‖Φk(D)‖k and called ‖D‖k the Maximum Mean Discrepancy (MMD) of D. Doing
this defines a new topology on D, in which a net Dα converges to D iff ‖Dα −D‖k converges
to 0. (A reader unfamiliar with nets may think of them as sequences where the index α
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can be continuous; see Berg et al. 1984.) In this section, we investigate how convergence in
MMD compares with other types of convergences defined on D that we now shortly present.

We defined D as a subset of a dual space F′, so D will carry the topology induced
by F′. Many topologies can be defined on dual spaces, but the two most prominent ones,
which we will consider here, are the weak-∗ and the strong topology, denoted w(F′,F) and
b(F′,F) respectively, or simply w∗ and b. The weak-∗ topology is the topology of pointwise
convergence (where by ‘point’, we mean a function in F), while the strong topology cor-
responds to the uniform convergence over the bounded subsets of F (see Eq. 4). Bounded
sets of a TVS are defined in Appendix C (Definition 24). By default, we equip F′ with the
strong topology and sometimes write F′b to emphasize it. When F is a Banach space, the
strong topology of F′ is the topology of the operator norm ‖D‖F′ := sup‖f‖F≤1 |D(f)|. In

particular, strong convergence in Mf = (C0)
′ means convergence in total variation (TV)

norm and weak-∗ convergence in Mf means convergence for any function f ∈ C0. On Mf ,
we will also consider the topology of pointwise convergence over Cb (instead of C0). It is
widely used in probability theory where it is known as the weak (or narrow) convergence
topology. We will denote it by σ. Importantly, the weak and weak-∗ topologies of Mf

coincide on P (but not on Mf ) (Berg et al., 1984, Chap. 2, Cor. 4.3). Finally, we define the
weak RKHS convergence of embeddable distributions, denoted by w−k, as the pointwise
convergence over Hk. Note that Dα converges in w−k to D iff their embeddings converge
weakly (or equivalently weakly-∗) in Hk, in the sense that, for any f ∈ Hk, 〈f , Φk(Dα)〉k
converges to 〈f , Φk(D)〉k. The following summarizes the different convergence types.

Dα
b−→ D := supf∈B |Dα(f)−D(f)| −→ 0 ∀ bounded B ⊂ F Dα ∈ F′

Dα
w∗−→ D := |Dα(f)−D(f)| −→ 0 ∀f ∈ F Dα ∈ F′

µα
σ−→ µ := |µα(f)− µ(f)| −→ 0 ∀f ∈ Cb µα ∈Mf

Dα
w−k−→ D := |Dα(f)−D(f)| −→ 0 ∀f ∈ Hk Dα embeddable

Dα
‖.‖k−→ D := ‖Dα −D‖k −→ 0 Dα embeddable

(4)

4.1. Embeddings of Dual Spaces are Continuous

In this section, we show that the MMD topology is often weaker than other topologies τ
defined on D, meaning that if Dα converges to D in τ , then it also converges to D in MMD.
Note that this is equivalent to saying that the KME of Dτ (read ’D equipped with τ ’) is
continuous. We start with the following pretty coarse, yet very general result.

Proposition 9 If Hk ↪→ F, then Dα
b−→ D ⇒ Dα

‖.‖k−→ D and Dα
w∗−→ D ⇒ Dα

w−k−→ D.

Proof Proposition 9 states that the KME is continuous when both F′ and Hk carry their
strong or their weak-∗ topology, which we now show. From Diagram Eq.(3), we know that
the KME is the composition of the conjugate restriction operator with the Riesz representer
map. The Riesz representer map is a topological (anti-)isomorphism between H′k and Hk,
thus continuous (see Appendix C). And the restriction map is the adjoint (or transpose) of
the canonical embedding map ı : Hk −→ F

f 7−→ f
, thus continuous when both F′ and H′k

carry their weak-∗ or strong topologies (Treves, 1967, Prop.19.5 & Corollary).

9
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Let us briefly comment on this result. The statement Dα
w∗−→ D ⇒ Dα

w−k−→ D is actually
obvious, because Hk ⊂ F. Concerning strong convergence, Proposition 9 implies that,
if F is a Banach space, then any net that converges for the dual norm ‖·‖F′ converges in
MMD. Applying this with F = C0 and F′ = Mf shows that convergence in TV norm implies
convergence in MMD, or equivalently, that the TV norm is stronger than the MMD. Similar
reasoning can be used to show that the MMD is weaker than the so-called Kantorovich(-
Wasserstein) and the Dudley norms (see Example 1 in Simon-Gabriel and Schölkopf 2016).
These results can also be found in Sriperumbudur et al. (2010b). However, the authors
there directly bounded the MMD semi-norm by the target norm. This has the advantage
of giving concrete bounds, but is more difficult to generalize if F is not a Banach space.

Though very general, Proposition 9 is pretty weak, as it only compares a strong with a
strong and a weak-∗ with a weak(-∗) topology. But how does the weak-∗ topology on F′

compare with the strong topology of Hk: does weak-∗ convergence imply convergence in
MMD? This question is discussed in details in Simon-Gabriel and Schölkopf (2016, Sec.7).
The short answer is: not always, but sometimes; it depends on the space F′. For example,
if k ∈ C(m,m), then weak-∗ convergence in Em implies convergence in MMD; but weak-∗
convergence in Dm

L1 usually does not imply MMD convergence when X is non-compact.
For us, the only thing we will need later is to know what happens on M+, the set of finite
positive measures. The following lemma shows that weak convergence in M+ usually implies
MMD convergence.

Lemma 10 A bounded kernel k is continuous iff: ∀µα, µ ∈M+, µα
σ−→ µ =⇒ µα

‖.‖k−→ µ.

Proof We assume k bounded to ensure that any probability measure is embeddable. Now,
suppose that weak convergence implies MMD convergence and take x, y, x0, y0 ∈ X such
that x → x0 and y → y0. Then δx

σ→ δx0 and δy
σ→ δy0 , so Φk(δx) → Φk(δx0) and

Φk(δy)→ Φk(δy0) in Hk. And by continuity of the inner product:

k(x, y) = 〈Φk(δy) , Φk(δx)〉k → 〈Φk(δy0) , Φk(δx0)〉k = k(x0, y0) ,

so k is continuous. Conversely, suppose that k is continuous, and let µα
σ→ µ in M+. The

tensor-product mapping M+(X) −→ M+(X ×X)
µ 7−→ µ⊗ µ

is weakly continuous (Berg et al.,

1984, Chap.2, Thm.3.3). So by applying µ̄α ⊗ µα to a bounded continuous kernel k, we get

‖Φk(µα)− Φk(µ)‖2k =

∫∫
k(x, y) d(µα − µ)(y) d(µ̄α − µ̄)(x)

= [µ̄α ⊗ µα](k)− [µ̄⊗ µα](k)− [µ̄α ⊗ µ](k) + [µ̄⊗ µ](k) −→ 0 .

4.2. When Does k Metrize the Topology of F′?

So far we focused on the question: when does convergence in D imply convergence in MMD.
We now seek the opposite: when does MMD-convergence imply convergence in D?

First, the kernel must be characteristic to D. Otherwise, the MMD does not define a
distance but only a semi-distance, so that the induced topology would not be Hausdorff.
Second, we will suppose that F is barreled. This is a technical, yet very general assumption

10
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that we use in the next theorem. The definition of a barreled space is given in Appendix C
for completeness, but all that the reader should remember is that all Banach, Fréchet,
Limit-Fréchet and all function spaces defined in this paper are barreled,1 except (Cmb )c.

Lemma 11 Suppose that F is barreled, k is universal over F, Hk ↪→ F and let (Dα)α be

a bounded net in F′b . Then Dα
w−k−→ D iff Dα

w∗−→ D. Hence Dα
‖.‖k−→ D ⇒ Dα

w∗−→ D.

Proof Proposition 32.5 of Treves (1967) shows that the weak topologies of F′ and of
H′k coincide on so-called equicontinuous sets of F′, and the Banach-Steinhaus theorem
(see Appendix C) states that if F is barreled, then the equicontinuous sets of F′ are
exactly its bounded sets. This precisely means that if the net Dα is bounded in F′, then
Dα(f)→ D(f) for all f ∈ F iff it converges for all f ∈ Hk. Now, if ‖Dα −D‖k → 0, then,
by continuity of the inner product, Dα(f)−D(f) = 〈f , Dα −D〉k → 0 for any f ∈ Hk.

Lemma 11 says that the weak-∗ topologies of F′ and of Hk coincide on subsets of F′

that are bounded in the strong topology. But from the Banach-Steinhaus theorem (see
App. C) we know that on barreled spaces it is equivalent to be bounded in strong or in
weak topology. Hence the net Dα of Lemma 11 is bounded iff supα |Dα(f)| < ∞ for all
f ∈ F. Nevertheless, it is not enough in general to show that supα ‖Dα‖k <∞. A bounded
set in Mf is also a set whose measures have uniformly bounded total variation. The total
variation of any probability measure being 1, P is bounded. So Lemma 11 shows that
for continuous c0-universal kernels, convergence of probability measures in MMD distance
implies weak-∗ convergence, which on P is the same as weak-convergence. But by Lemma 10
the reverse is true as well. Thus, for a continuous c0-universal kernel k, probability measures
converge weakly iff they converge in MMD distance. Such kernels are said to metrize the
weak convergence on P.

However, the condition that k be c0-universal seems slightly too restrictive. Indeed, it
is needed in Lemma 11 to ensure that the KME be characteristic to Mf (by Thm. 6 applied
to F = C0) so that the MMD be a metric over Mf (not only a semi-metric). But, to be
a metric over P, it would suffice that k be characteristic to P, which is a slightly coarser
assumption than c0-universality. Is this condition enough to guarantee the metrization of
weak-convergence in P? The following theorem shows that it is.

Theorem 12 A bounded kernel over a locally compact Hausdorff space X metrizes the
weak convergence of probability measures iff it is continuous and characteristic (to P).

Proof [Theorem 12] If k metrizes the weak convergence over P, then, by Lemma 10, k is
continuous, and, for ‖.‖k to be a norm, k needs to be characteristic. Conversely, if k is con-
tinuous, then by Lemma 10 weak convergence implies convergence in MMD. So it remains
to show that MMD convergence implies weak convergence. To do so, we use Lemma 20
of the appendix, which states that for an

∫
s.p.d. kernel, MMD convergence of probability

measures implies their weak convergence. Now k might not be
∫

s.p.d., but using Theo-
rem 8(iv), we can transform it to a kernel k1 := k+ 1 which induces the same MMD metric

1. CX is barreled, because it is a topological product
∏

X
C of barreled spaces. All other mentioned spaces

are either Banach, Fréchet or Limit-Fréchet spaces, thus barreled (Treves, 1967, Prop. 33.2 & Cor.1-3).
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over probability measures than k, but which is
∫

s.p.d. This concludes.

To the best of our knowledge, this is the first characterization of the class of kernels that
metrize the weak-convergence of probability measures. For example Gaussian, Laplace,
inverse-multiquadratic or Matérn kernels are continuous and characteristic, so they all
metrize the weak convergence over P. In general however, even if a kernel metrizes the
weak convergence over P, it usually does not metrize weak convergence over M+ or Mf

(see Simon-Gabriel and Schölkopf 2016).

5. Kernel Mean Embeddings of Schwartz-Distributions

We extended KMEs of measures to Schwartz-distributions and showed that they are con-
tinuous, but we hardly said anything about what to do and how to work with distributions.
We will now catch up by focusing on distributions only. In Section 5.1, we discuss and prove
the Fubini and the Differentiation formulae featured in the introduction. In Section 5.2 we
provide sufficient conditions for a translation-invariant kernel to be cm∗ -universal.

5.1. Distributional Calculus

Proposition 13 (Fubini) Let D,T be two embeddable distributions into Hk. Then:

〈D , T 〉k =

∫∫
k(x, y) dD(y) dT̄ (x) =

∫∫
k(x, y) dT̄ (x) dD(y) (5)

‖D‖2k =

∫∫
k(x, y) dD(y) dD̄(x) =

∫∫
k(x, y) dD̄(x) dD(y) ,

where
∫∫
k(x, y) dD(y) dT̄ (x) is to be understood as T̄ (I) with I(x) =

∫
k(x, y) dD(y).

Proof Definition 1 of a KME, together with the property that k(y, x) = k(x, y) leads to:

〈D , T 〉k =

∫
x

〈∫
y
k(., y) dD(y) , k(., x)

〉
k

dT̄ (x)

=

∫
x

〈
k(., x) ,

∫
y
k(., y) dD(y)

〉
k

dT̄ (x)

=

∫
x

∫
y
〈k(., x) , k(., y)〉k dD̄(y) dT̄ (x)

=

∫∫
k(x, y) dD(y) dT̄ (x).

To prove the right-most part of (5), use 〈D , T 〉k = 〈T , D〉k.

These formulae are well-known when D and T are probability measures. They show that
if you know how to integrate a function (the kernel) w.r.t. a measure or a distribution,
then you can compute its MMD norm. However, integrating w.r.t. a distribution that is
not a measure can be tedious. But the following proposition gives us a way to convert an
integration w.r.t. a distribution into an integration w.r.t. a measure.

12
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Proposition 14 (Differentiation) Let k ∈ C(m,m) and p ∈ Nd such that |p| ≤ m. A
distribution D embeds into Hk via ∂(0,p)k iff ∂pD embeds into Hk via k. In that case,

Φk(∂
pD) = (−1)|p|

∫
[∂(0,p)k](., x) dD(x) = (−1)|p|Φ∂(0,p)k(D) . (6)

If moreover k is translation-invariant, then

Φk(∂
pD) = ∂p[Φk(D)]. (7)

Proof The proof holds in the following equalities. For any f ∈ Hk,〈
f ,

∫
k(., x) d[∂pD](x)

〉
k

=

∫
〈f , k(., x)〉k d[∂pD̄](x) = [∂pD̄](f)

= (−1)|p|D̄(∂pf)

= (−1)|p|D̄(
〈
f , ∂(0,p)k(., x)

〉
k
)

= (−1)|p|
∫ 〈

f , ∂(0,p)k(., x)
〉
k

dD̄(x)

=

〈
f , (−1)|p|

∫
∂(0,p)k(., x) dD(x)

〉
k

.

The first line uses the definition of KMEs (1), the second the definition of distributional
derivatives (see App. B), the third Lemma 19, the fourth line rewrites the previous line with
our notation convention, and the fifth one uses again the definition of a weak integral (1).

Equation (7) describes a commutative diagram pictured in Figure 1: it states that with
translation-invariant kernels, it is equivalent to take the (distributional) derivative of a
distribution and embed it, or to embed it and take the (usual) derivative of the embedding.
See Appendix B for an introduction to distributional derivatives. Note that for a signed
measure µ with a |p|-times differentiable density q, the distributional derivative ∂pµ is the
signed measure with density ∂puq, where ∂pu is the usual partial derivative operator. However,
Proposition 14 becomes most useful when µ has no differentiable density, for example when
µ is an empirical measure. Then there is no analytical formula for the derivative of µ, but
we can still compute its KME analytically by using (6) or (7).

Example 1 Let us illustrate Proposition 14 on KMEs of Gaussian probability measures µσ
with density qσ(x) = 1√

2πσ2
e−x

2/σ2
using a Gaussian kernel k(x, y) = e−(x−y)

2
. When σ

goes to zero, µσ gets more and more peaked around 0 and converges weakly to the Dirac
measure µ0 := δ0. The KME of µσ is easy to compute and using (7) we get

Φk(µσ)(x) =
1√

1 + 2σ2
e
− x2

1+2σ2

Φk(∂µσ)(x) = ∂[Φk(µσ)] = − 2x

(1 + 2σ2)3/2
e
− x2

1+2σ2 ,
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Figure 1: Densities of more and more peaked Gaussian probability measures µσ (top left)
with their derivatives (top right) and their embeddings (below) using a Gaussian
kernel (see Example 1). Equation (7) states that the diagram is commutative.
When σ goes to 0, the Gaussians converge (weakly) to a Dirac mass δ0, which
has no density, but who’s embedding is the solid black line (bottom left). The
derivatives converge (weakly) to the Schwartz-distribution ∂δ0, which is not even
a signed measure, but whose embedding (bottom right, black solid line) can easily
be computed using (6) or (7). Moreover, the embeddings of µσ and ∂µσ converge
(weakly) to the embeddings of µ0 and ∂µ0, which illustrates Proposition 9.

where the formulae still hold when σ = 0. Figure 1 plots these embeddings for different
σ’s. Note that contrary to ∂µσ with σ > 0, ∂µ0 is not a signed measure (but a Schwartz-
distribution) but it has a KME which, moreover, can easily be computed using (7). Notice
also that on Figure 1 both the embeddings of µσ and ∂µσ converge (weakly) to the embeddings
of µ0 and ∂µ0. This illustrates Proposition 9.

Theoretically, (6) can be used to convert the KME of any distribution into a sum of
KMEs of measures. In other words, the integral w.r.t. a distribution appearing in (1) can
be converted into a sum of integrals w.r.t. signed measures. Here is how. Given a measure
µ ∈Mf = D0

L1(R), we may differentiate µ and get a new distribution ∂µ which may or may
not be itself a measure.2 But in any case, what will follow shows that ∂µ is in D1

L1(R).
Thus the space of distributions that can be written as a sum µ0+∂µ1 of two finite measures
µ1, µ2 is a subspace of D1

L1(R) and we may wonder how big exactly it is. Schwartz (1954,
around p.100) showed that it is exactly the space D1

L1(R). More generally, he showed:

Lemma 15 (Schwartz) For any m ≤ ∞ and any distribution in D ∈ Dm
L1 (resp. D ∈ Em)

there exists a finite family of measures µp ∈Mf (resp. µp ∈Mc) such that D =
∑
|p|≤m ∂

pµp.

2. Think for example of the Dirac measure: it is a measure, but not its derivative. See App. B.

14



Kernel Distribution Embeddings

Using (6), this means that the KME can be computed as
∑
|p|≤m

∫
∂(0,p)k(., x) dµp(x),

which gives a way to numerically compute the KME of distributions. As most distributions
encountered in practice happen to be defined as measures or derivatives of some measures,
this method is highly relevant in practice.

By combining Propositions 13 and 14, we get the following corollary.

Corollary 16 Let k ∈ C(m,m), p ∈ Nd with |p| ≤ m, and let D,T be two distributions such
that ∂pD and ∂pT embed into Hk. Then

〈∂pD , ∂pT 〉k = 〈D , T 〉∂(p,p)k and ‖∂pD‖k = ‖D‖∂(p,p)k .

Proof The proof reduces to the following equations.

〈∂pD , ∂pT 〉k
(a)
=

〈∫
∂(0,p)k(., x) dD(x) ,

∫
∂(0,p)k(., y) dT (y)

〉
k

(b)
=

∫ 〈
∂(0,p)k(., y) , ∂(0,p)k(., x)

〉
k

dD(y) dT̄ (x)

(c)
=

∫
∂(p,p)k(x, y) dD(y) dT̄ (x)

(d)
= 〈D , T 〉∂(p,p)k ,

Equality (a) uses Proposition 14, (b) uses twice (on the left and on the right of the inner
product) the definition of the weak integral (1), (c) uses Equation (9) proven in Appendix A
which states that

〈
∂(0,p)k(., y) , ∂(0,p)k(., x)

〉
k

= ∂(p,p)k(x, y), and (d) uses (5) applied to the

kernel ∂(p,p)k.

Corollary 16 tells us that if we use ∂(p,p)k—which is a kernel—to compute the MMD between
two probability distributions D,T , then we are actually computing the MMD distance
between their derivatives ∂pD and ∂pT with the kernel k. One could extend this corollary
from (p, p) to (p, q) with |q| ≤ m, yielding 〈∂pD , ∂qT 〉k =

∫
∂(q,p)k(x, y) dD(y) dT̄ (x). But

in that case, ∂(q,p)k might not be a kernel anymore.

5.2. cm- and cm0 -Universal Kernels

Theorem 6 shows the equivalence between cm∗ -universality and characteristicness over Dm
L1

or Em. But neither the universality, nor the characteristic assumption seems easy to check
in general. However, for translation-invariant kernels, meaning kernels that can be written
as k(x, y) = ψ(x − y) for some function ψ, we will now show that being characteristic to

P or to Dm
L1 is one and the same thing, provided that k ∈ C

(m,m)
b . Thus, any technique to

prove that a kernel is characteristic may also be used to prove that it is characteristic to the
much wider space Dm

L1 . One of these techniques consists in verifying that the distributional
Fourier transform Fψ has full support. The reader unfamiliar with distributional Fourier
transforms may think of them as an extension of the usual Fourier transform—which is
usually only defined on L1, L2 or Mf—to wider function and distribution spaces. Let us
mention that Fψ is exactly the unique positive, symmetric, finite measure appearing in
Bochner’s theorem (Wendland, 2004, Thm.6.6), and whose (usual) Fourier transform is ψ.
We now successively present the result for Dm

L1 , then for Em.
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Theorem 17 Let k ∈ C(m,m) be a translation-invariant kernel k(x, y) = ψ(x − y) with
X = Rd, and Fψ its distributional Fourier transform. Then Dm

L1 embeds into Hk and the
following are equivalent.

(i) k is characteristic (to P).
(ii) k is characteristic to Dm

L1.
(iii) Fψ has full support.

If moreover ψ ∈ Cm0 , then k is cm0 -universal iff it is c0-universal.

Theorem 18 Let k ∈ C(m,m) be a translation-invariant kernel k(x, y) = ψ(x − y) with
X = Rd. If the support of Fψ has Lebesgue-measure > 0, then k is characteristic to Em.

Proof [of Theorem 17] First, note that ∂(p,p)k(x, y) ≤ ∂(p,p)k(x, x)∂(p,p)k(y, y) = (∂2pψ(0))2

for any |p| ≤ m (see Lemma 19 in Appendix A). Hence k ∈ C
(m,m)
b , which, by Corollary 4,

proves that Dm
L1 embeds into Hk. Now suppose that (i) and (ii) are equivalent, then they

are also equivalent to k being characteristic to Mf . Using Theorem 6, we thus proved the
last sentence. Now, (ii) clearly implies (i) and Theorem 9 of Sriperumbudur et al. (2010b)
states that (i) and (iii) are equivalent. So it remains to show that (iii) implies (ii). We
now sketch its proof and relegate the details to Appendix A.5. Let Λ be the finite positive
measure from Bochner’s theorem, such that ψ = FΛ and let D ∈ Dm

L1 . Then

‖D‖2k =

∫∫ (∫
ei(x−y)·ξ dΛ(ξ)

)
dD̄(x) dD(y)

(a)
=

∫ (∫∫
(ei(x−y)·ξ) dD̄(x) dD(y)

)
dΛ(ξ)

(b)
=

∫
|[FD](ξ)|2 dΛ(ξ) ,

where · denotes the Euclidian inner-product on Rd. Λ being positive, if it has full support,
then [FD](ξ) = 0 for almost all ξ ∈X. Thus D = 0. Assuming that (a) and (b) indeed hold,
we just showed that if (iii), then ‖D‖k = 0 implies D = 0, meaning that k is s.p.d. to Dm

L1 ,
which, with Theorem 6, proves (ii). We relegate the proof of (a) and (b) to Appendix A.5.

Proof [of Theorem 18] For any D ∈ Em, we can write, like before: ‖D‖2k =∫
|[FD](ξ)|2 dΛ(ξ). But now, the Paley-Wiener-Schwartz theorem (Treves, 1967, Thm. 29.2)

states that FD is an analytical function, so if its set of zeros has Lebesgue-measure > 0,
then FD is the 0 function, so D = 0, showing that Φk is injective over Em.

These theorems show for example that Gaussian kernels are c∞0 -universal and that the sinc
kernel, defined on X = R by k(x, y) = sin(x − y)/(x − y) (and 1 on the diagonal), is c∞-
but not c∞0 -universal. When X = R, one can refine the conditions on the Fourier transform
in Theorem 18 so that they become necessary and sufficient (Simon-Gabriel and Schölkopf,
2016, Theorem 41).
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6. Conclusion

We first discuss how this work relates and contributes to the existing machine learning
literature and then conclude.

6.1. Related Machine Learning Literature

Universal and characteristic kernels play an essential role in kernel methods and their theory.
Universal kernels ensure consistency of many RKHS-based estimators in the context of
regression and classification (Steinwart, 2001; Steinwart and Christmann, 2008), whereas
characteristic kernels are of prime interest in any MMD-based algorithm, such as kernel two-
sample tests (Gretton et al., 2007, 2012), HSIC independence tests (Gretton et al., 2008;
Gretton and Györfi, 2010; Fukumizu et al., 2008), kernel density estimators (Sriperumbudur,
2016) and MMD-type GANs (Li et al., 2015; Dziugaite et al., 2015). The machine learning
community gradually introduced more and more variants of universal kernels (Steinwart,
2001; Micchelli et al., 2006; Carmeli et al., 2006; Caponnetto et al., 2008), but instead of
also introducing variants of characteristic kernels, it stuck to the original definition given
by Fukumizu et al. (2004) which considered only characteristicness to P. As a result, the
literature started proving various links between the various variants of universal kernels
and the only notion of characteristic kernels that it had. Eventually these notions were
linked to

∫
s.p.d. and conditionally

∫
s.p.d. kernels (Fukumizu et al., 2004, 2008, 2009b,a;

Gretton et al., 2007; Sriperumbudur et al., 2008, 2010a,b) and all known relations got
summarized in a superb overview article by Sriperumbudur et al. (2011). However, by not
introducing the notion of a characteristic kernel to something else than P, the literature
oversaw the fundamental dual link between universal, characteristic and s.p.d. kernels shown
in Theorem 6 of this paper, which easily explains all the previously reported links.

Concerning the study of kernels that metrize the weak convergence of probability mea-
sures, in mathematics it dates back at least to Guilbart (1978), but it got introduced into the
machine learning community only many years later by Sriperumbudur et al. (2010b). They
gave new sufficient conditions to metrize the weak convergence, which then got improved by
Sriperumbudur (2016)[Thm. 2]. However, by generalizing these sufficient conditions even
further, Theorem 12 of this work is the first to provide conditions that are both sufficient
and necessary, and that holds on any locally compact Hausdorff space X (which is more
general than in the existing literature).

6.2. Future Work and Closing Remarks

This paper grouped various notions of universal, characteristic and s.p.d. kernels into three
fundamental definitions—one for each—and showed that they are essentially equivalent:
they describe the same family of kernels, but from dual perspectives. Using this duality
link, we could systematically recover most of the previously known links, but also discovered
new ones, such as the equivalence between characteristicness to P and universality over
(Cb)c/1; or between strict positive definiteness (over Mδ) and universality over CX. We
then compared the convergence in MMD with other convergence types of distributions and
measures. Importantly, we showed that a bounded kernel metrizes the weak convergence of
probability measures iff it is continuous and characteristic. Incidentally, we also showed that
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KMEs over probability measures can be extended to generalized measures called Schwartz-
distributions. For translation-invariant kernels, this extension preserves characteristicness,
in the sense that a characteristic kernel to P will also be characteristic to Dm

L1 . In all
this work, we assumed X to be locally compact. Although this assumption fits many very
general spaces, unfortunately, it does not contain any infinite-dimensional Banach space. So
a main open question of this paper is whether our characterization of kernels that metrize
the weak convergence of probability measures also applies to more general spaces, such as
so-called Polish spaces, which are very standard spaces in probability theory. Finally, we
also proved a few results that are specific to KMEs of distributions. Proposition 14 and
its Corollary 16 on the embedding of derivatives for example show that these KMEs of
distributions naturally appear when considering KMEs w.r.t. derivatives of kernels. We
hope that they will in future lead to new insights and applications in machine learning.
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Appendix A. Proofs

In this section, we gather all the complements to non fully proved theorems, propositions,
corollaries or lemmas appearing in the main text. We start with a lemma that essentially
follows from Corollary 4.36 of Steinwart and Christmann (2008), and which we will need a
few times for the proofs.

Lemma 19 Let k ∈ C
(m,m)
b and let Φ : X −→ Hk

x 7−→ k(., x)
. Then for any p ∈ Nd with

|p| ≤ m, the partial derivative ∂pΦ exists, belongs to Hk, is continuous and verifies ∂pΦ(x) =
∂(0,p)k(., x). Moreover, for any f ∈ Hk, ∂pf exists, belongs to Hk and verifies:

∂pf(x) =
〈
f , ∂(0,p)k(., x)

〉
k
. (8)

Applied with f = ∂(0,q)k(., y) where |q| ≤ m also proves that

∂(p,q)k(x, y) =
〈
∂(0,q)k(., y) , ∂(0,p)k(., x)

〉
k
. (9)

Proof This Lemma is essentially proven in Corollary 4.36 and in its proof of Steinwart and
Christmann (2008). We only added Equation (9), which is a straightforward consequence
of (8), and the part stating that ∂pΦ(x) = ∂(0,p)k(., x). This can be shown as follows.
Steinwart and Christmann (2008) prove that ∂pΦ exists and belongs to Hk. Thus

[∂pΦ(x)](y) = 〈∂pΦ(x) , k(., y)〉k
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=

〈
lim
h→0

(Φ(x+ hei)− Φ(x))/h , k(., y)

〉
k

= lim
h→0

(k(y, x+ hei)− k(y, x))/h

= ∂(0,p)k(y, x) ,

where we used the continuity of the inner product to swap limit and bracket signs.

A.1. Proof of Corollary 3

Proof Suppose that Hk ⊂ C0. (i) clearly holds. Suppose (ii) was not met. Then let xn ∈X

such that k(xn, xn) = ‖k(., xn)‖2k → ∞. Thus k(., xn) is unbounded. But 〈f , k(., xn)〉k =
f(xn) is bounded for any f ∈ Hk, thus k(., xn) is bounded (Banach-Steinhaus Theorem).
Contradiction. Thus (ii) is met.

Conversely, suppose that (i) and (ii) hold. Let Hpre

k := span{k(., x) |x ∈ X}. Then,
Hpre

k ⊂ C0, and for any f, g ∈ Hk, ‖f − g‖∞ ≤ ‖f − g‖k ‖k‖∞. Thus Hpre

k continuously
embeds into the closed C0, thus so does its ‖.‖k-closure, Hk. The proof of the cases
Hk ⊂ C and Hk ⊂ Cb are similar (see also Berlinet and Thomas-Agnan, 2004, Thm. 17).

A.2. Proof of Corollary 4

Proof Suppose that k ∈ C
(m,m)
b . Then Hpre

k ⊂ Cmb (Steinwart and Christmann,
2008, Corollary 4.36) and for any x ∈ X, f ∈ Hpre

k , and |p| ≤ m, we have

‖∂pf‖∞ ≤ ‖f‖k
∥∥∥√∂(p,p)k∥∥∥

∞
. Thus Hpre

k continuously embeds into the closed space

Cmb , thus so does its ‖.‖k-closure, Hk. But, by definition of (Cmb )c is the space Cb equipped
with a weaker topology (see Section 3), thus Cmb ↪→ (Cmb )c. Thus Hk ↪→ (Cmb )c , which
concludes. The proofs when k ∈ C or k ∈ C0 are similar.

A.3. Proof of Theorem 8

Proof Equivalence between (i) & (ii). As KMEs are linear over Mf , a kernel k is charac-
teristic to P iff it is characteristic to P − P := {µ− P : µ ∈ P}, where P can be any fixed
probability measure. This is equivalent to being characteristic to the linear span of P− P .
But the linear span of P− P is precisely M0

f , which concludes.
Equivalence of (ii) & (v): First of all, notice that, if (v), then k and k0 define the same

MMD on M0
f , because, for any µ ∈M0

f , µ(1) = 0, thus:

‖µ‖2k0 =

∫∫
〈δx − ν0 , δy − ν0〉k dµ̄(x) dµ(y)

=

∫∫
k(x, y) dµ̄(x) dµ(y)−

∫
〈δx , ν0〉k dµ̄(x)

∫
dµ(y)

−
∫

dµ̄(x)

∫
〈ν0 , δy〉k dµ(y)− ‖ν0‖2k

∫∫
dµ̄(x) dµ(y)
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= ‖µ‖2k ,

Thus k0 is characteristic to M0
f iff k is also. Thus (v) implies (ii). Conversely, if k0 is

characteristic to M0
f , then k0 is either characteristic to Mf , in which case choosing k0 = k

and ν0 = 0 fulfills the requirements of (v); or there exists a non zero measure ν0 ∈Mf such
that Φk0(ν0) = 0. As Φk0 is linear, we can choose ν0(1) = 1 without loss of generality.
Supposing now that we are in the latter case, the proof proceeds as follows.

(a) Show that the constant function 1 6∈ Hk0 .
(b) Construct a new Hilbert space of functions of the form Hk = span1⊕Hk0 .
(c) Show that it has a reproducing kernel k.
(d) Show that k0 and k fulfill the requirements of (v).

(a) Suppose that 1 ∈ Hk0 . Then 1 = ν̄0(1) =
∫
〈1 , k0(., x)〉k0 dν̄0(x)

(∗)
=〈

1 ,
∫
k0(., x) dν0(x)

〉
k0

= 〈1 , Φk0(ν0)〉k0 = 0, where in (∗) we use the definition of

KMEs (1) . Contradiction. Thus 1 6∈ Hk0 .
(b) Define H := span1⊕Hk0 and equip it with the inner product 〈. , .〉 that extends the

inner product of Hk0 so, that

1 ⊥ Hk0 and ‖1‖ = 1 . (10)

In other words, for any f = cf1 + f⊥ ∈ H and any g = cg1 + g⊥ ∈ H:

〈f , g〉 :=
〈
f⊥ , g⊥

〉
k0

+ cf c̄g. (11)

Obviously H is a Hilbert space of functions.
(c) We now construct k by first defining an injective embedding Φ and then showing that

k(x, y) := 〈Φ(δx) , Φ(δy)〉 is a reproducing kernel with KME Φ.
As M0

f is a hyperplane in Mf and ν0 ∈ Mf\M0
f , each measure µ ∈ Mf can be

decomposed uniquely in a sum: µ = µ⊥ + µ(1)ν0 where µ⊥ = µ− µ(1)ν0 ∈M0
f . We

may thus define the following linear embedding Φ : Mf −→ H by

Φ(µ) :=

{
Φk0(µ) if µ ∈M0

f

1 if µ = ν0
i.e.

Φ(µ) := Φk0(µ⊥) + µ(1)1
= Φk0(µ) + µ(1)1

. (12)

Noting that Φ(µ)⊥ = Φ(µ⊥) = Φk0(µ⊥) = Φk0(µ) and using (11), we get

∀f ∈ H, ∀x ∈X, 〈f , Φ(δx)〉 =
〈
f⊥ , Φ(δx)⊥

〉
k0

+cf = f⊥(x)+cf1(x) = f(x) . (13)

So by defining k(x, y) := 〈Φ(δy) , Φ(δx)〉 and applying (13) to f = Φ(δy), we see that
Φ(δy) = k(., y). Thus (13) may be rewritten as

∀f ∈ H,∀x ∈X, 〈f , k(., x)〉 = f(x).

Thus H is an RKHS with reproducing kernel and Φ is its associated KME.
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(d) As k0 is characteristic to M0
f , Φ is injective over M0

f . And Φ(ν0) ∈ H\Φ(M0
f ). Thus

Φ is injective over Mf , so k is characteristic to Mf . To conclude, (12) shows that

〈δy − ν0 , δx − ν0〉 = 〈Φk0(δy) + (δy − ν0)(1)1 , Φk0(δx) + (δx − ν0)(1)1〉
= 〈Φk0(δy) + 0 , Φk0(δx) + 0〉
= k0(x, y) .

Equivalence of (v) with (iii) & (iv): First, notice that the kernel k constructed in the
proof of (v) ⇒ (ii) verifies:

k(x, y) = 〈Φ(δx) , Φ(δy)〉
= 〈Φk0(δx) + δx(1)1 , Φk0(δy) + δy(1)1〉
= 〈Φk0(δx) , Φk0(δy)〉+ ‖1‖2

= k0(x, y) + 1 ,

where we used (10), (12) and the fact that by construction 〈. , .〉 coincides with 〈. , .〉k0 on
M0
f . Thus the proof of (v) ⇒ (ii) shows that, if k0 characteristic to M0

f , then the kernel

k0(x, y) + 1 is characteristic to Mf , thus
∫

s.p.d. (Thm. 6). k(x, y) := k0(x, y) + 1 is
∫

s.p.d..
More generally, if instead of fixing ‖1‖k = 1 in (10) we fixed ‖1‖k = ε for some real ε > 0,
then we would have ended up with an

∫
s.p.d. kernel k verifying k(x, y) := k0(x, y) + ε2.

Thus (ii) implies (iii) and (iv). Conversely, given any kernel k of the previous form, the
inner products defined by k and k0 coincide on M0

f . So if k is characteristic to M0
f , then

so is k0. Thus (iii) or (iv) implies (ii).

A.4. Proof of Theorem 12 Continued

The proof of Theorem 12 used the following lemma.

Lemma 20 Let k be a continuous,
∫

s.p.d. kernel and let (µα)α be bounded in M+ (meaning

supα ‖µα‖TV <∞). Then µα
w−k−→ µ ⇒ µα

σ−→ µ. Consequently: µα
‖.‖k−→ µ ⇒ µα

σ−→ µ.

Proof We will show that µα(f) → µ(f) for any f ∈ Cc. As Cc is a dense subset of
C0 and µα is bounded, combining Prop. 32.5 and Thm. 33.2 of Treves (1967) then shows
that µα(f)→ µ(f) for any f ∈ C0 (weak-∗ convergence), which implies weak-convergence,

µα
σ→ µ (Berg et al., 1984, Chap. 2, Cor. 4.3), and thus concludes.
Let K be a compact subset of X. First, we show that there exists a function h ∈ Hk

such that h(x) > 0 for any x ∈ K. To do so, let f ∈ Cb such that f ≥ 1 on K. k being∫
s.p.d. and Mf being the dual of (Cb)c, Hk is dense in (Cb)c (Thm. 6). So we can find a

sequence of functions fn ∈ Hk that converges to f for the topology of (Cb)c. By definition of
the topology of (Cb)c, this implies in particular that the restrictions of fn to K converge in
infinity norm, meaning: supx∈K |fn(x)− f(x)| → 0. Thus, for a sufficiently large n, fn > 0
on K, so we can take h = fn.

Now, let us define the measures h.µα as [h.µα](f) = µα(hf) for any f ∈ Cb. Then
‖h.µα‖TV ≤ ‖h‖∞ ‖µα‖TV , so the new net (h.µα)α is bounded. But bounded sets are
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relatively compact for the weak-∗ topology w(Mf , C0). (Treves 1967, Thm. 33.2, or Banach-
Alaoglu theorem). So we can extract a subnet h.µβ of h.µα that converges in weak-∗
topology. Then h.µβ is also a Cauchy-net for the weak-∗ topology, meaning that for any
ε > 0 and any sufficiently large β, β′:

|µβ(hf)− µβ′(hf)| ≤ ε, ∀f ∈ C0 .

This inequality holds in particular for functions f whose support is contained in K, which
we denote f ∈ Cc(K). But the mapping f 7−→ g := hf is a bijective map from Cc(K)
to itself (because h > 0 on K), so we actually have |µβ(g)− µβ′(g)| ≤ ε for any g ∈ Cc(K).
But this holds for any compact subset K of X. So the inequality also holds for any function
g ∈ Cc(X), which shows that µβ is a Cauchy-net for the topology of pointwise convergence
in Cc(X), also known as the vague topology. But M+ is vaguely complete (Bourbaki, 2007,
Chap.III, §1, n.9, Prop.14), so µβ converges to a measure µ′ ∈M+. But for any f ∈ Cc(X),
µ′(f) = limβ µβ(f) = limα µα(f) = µ(f), thus µ′ and µ coincide on Cc(X), which is a dense
subset of C0. Thus µ′ = µ, and µα(f)→ µ(f) for any f ∈ Cc.

Note that if we additionally supposed that Hk ↪→ C0 (meaning that k is c0-universal),
then Lemma 20 is a simple consequence of Lemma 11 and the fact that weak-∗ and weak
convergence coincide on P.

A.5. Proof of Theorem 17 Continued

Proof We are left with proving (a) and (b). To do so, we will use the decomposition

D =
∑
|p|≤m ∂

pµp of Lemma 15. Indeed, k being in C
(m,m)
b , by Corollary 4, ∂pµp embeds

into Hk for any |p| ≤ m and µp ∈Mf . Thus

〈∂pµp , ∂qµq〉k = 〈Φ∂(0,p)k(µp) , Φ∂(0,q)k(µq)〉k

=

∫∫ 〈
∂(0,p)k(., y) , ∂(0,q)k(., x)

〉
k

dµ̄q(x) dµp(y)

=

∫∫
∂(q,p)k(x, y) dµ̄q(x) dµp(y)

=

∫∫∫
i|p+q|ξp+qei(x−y)·ξ dΛ(ξ) dµ̄q(x) dµp(x) ,

where for ξ = (ξ1, . . . ξd) ∈ Rd, we defined ξp := ξp11 ξ
p2
2 · · · ξ

pd
d . The first line uses Proposi-

tion 14, the second line uses twice the definition of a weak integral (1), the third uses (9)
from Lemma 19 and the fourth line uses the fact that ∂(q,p)k(x, y) = (−1)|p|∂p+qψ(x − y)
and F∂p+q ψ = i|p+q|ξp+q Fψ = i|p+q|ξp+qΛ.

Let us denote ξpΛ the measure defined by ξpΛ(A) :=
∫
A ξ

p dΛ(ξ). We will now show that
ξp+qΛ is finite, so that we can apply the usual Bochner theorem and permute the order of
integrations. To do so, notice that ∂(p,p)k(x, y) = (−1)|p|∂2pψ(x− y) is a continuous kernel,
thus, by Bochner’s theorem, its associated measure Λ∂ is finite and verifies FΛ∂ = ∂2pψ.
But the usual calculus rules with Fourier transforms show that ∂2pψ = (−i)|2p|ξ2pΛ. Thus
Λ∂ = i|p|ξ2pΛ, showing that Λ̃ is a finite measure. Noting now that 2|ξp+q| ≤ ξ2p + ξ2q, this
also implies that ξp+qΛ is a finite measure. Consequently:

〈∂pµp , ∂qµq〉k =

∫∫∫
i|p+q|ei(x−y) d[ξp+qΛ](ξ) dµ̄q(x) dµp(x)
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=

∫∫∫
i|p+q|ei(x−y) dµ̄q(x) dµp(x) dΛ̃(ξ)

=

∫
i|p+q|ξp+q Fµq(ξ)Fµp(ξ) dΛ(ξ)

=

∫
[F( ∂pµp)](ξ)[F( ∂qµq)](ξ) dΛ(ξ).

Thus, with the decomposition D =
∑
|p|≤m ∂

pµp, we get

‖D‖2k =

∥∥∥∥∥∥
∑
|p|≤m

∂pµp

∥∥∥∥∥∥
2

k

=

∫ ∑
|p|,|q|≤m

[F( ∂pµp)](ξ)[F( ∂qµq)](ξ) dΛ(ξ)

=

∫
|
∑
|p|≤m

[F( ∂pµp)](ξ)|2 dΛ(ξ)

=

∫
|FD(ξ)|2 dΛ(ξ) ,

where we used the linearity of the Fourier operator on the last line.

Appendix B. Short Introduction to Schwartz-Distributions

To introduce Schwartz-distributions, the first step is to notice that any continuous function
f is uniquely characterized by the values taken by f(ϕ) :=

∫
ϕ(x)f(x) dx when ϕ goes

through Cc. Rather than seeing f as a function that acts on points x in X, we could thus
equivalently see f as a linear functional that acts on other functions ϕ in Cc and takes its
values in C. Such functionals are called linear forms. We could do the same for measures:
a signed measure µ is also characterized by the values of µ(ϕ) :=

∫
ϕ(x) dµ(x). So we could

also see it as a linear functional that acts on functions ϕ in Cc. Doing so effectively identifies
f with the signed measure µf that has density f , because both define the same linear form
ϕ 7−→

∫
ϕ(x)f(x) dx . So from this perspective, a function f becomes a particular kind

of measure, and a measure µ a sort of ‘generalized function’. Moreover, seen as linear forms
over Cc, f and µ are continuous in the sense that if ϕα converges to ϕ, then µ(ϕα) converges
to µ(ϕ). Thus, by definition, we just identified f and µ with elements of the dual of Cc.

We may now ask whether there are other continuous linear forms over Cc. The answer is
negative and is given by the Riesz-Markov-Kakutani representer theorem (see Appendix C).
It states that the dual of Cc is exactly the set of signed regular Borel measures Mr, meaning
that any continuous linear form over Cc can be written as ϕ 7−→

∫
ϕdµ(x) for some

µ ∈Mr, and can thus be identified with a measure µ. So it seems that our generalization
of functions to measures using continuous linear forms is as general as it can get. But this
is forgetting the following detail. To distinguish a measure µ from all the others in Mr, we
do not need to know the values µ(ϕ) for all functions ϕ of Cc. Actually, it suffices to know
them for all ϕ in C∞c . This is because C∞c is a dense subset of Cc. Thus for any ϕ ∈ Cc,
even if ϕ 6∈ C∞c , we can reconstruct the value µ(ϕ) by taking a sequence ϕα in C∞c that
converges to ϕ and noticing that, by continuity, µ(ϕ) is the limit of µ(ϕα). So instead of
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Figure 2: Left: the difference fσ of two Gaussians that get closer and closer and more and
more peaked with decreasing σ. Right: the KMEs of fσ. Note the difference in
the y-axis scale. fσ converges to a dipole, which is not a measure, but a Schwartz-
distribution. It cannot be represented as a function, but its KME can (black solid
line). Note that the KMEs of fσ seem to converge to the KME of the dipole.

seeing a function or a measure as an element of (Cc)
′, we could also see it as an element of

(C∞c )′.

But do we gain anything from it? Yes indeed, because now, we can define linear func-
tionals over C∞c that we could not define over Cc. For example, suppose that X = R and
consider the linear form dx that, to each function ϕ associates its derivative ∂ϕ(x) evaluated
at x. This is a valid (continuous) linear form over C∞c —called a dipole in x—but it cannot
be defined over Cc, because not all continuous functions are differentiable. This example
shows that, although each measure in (Cc)

′ can be seen as an element of (C∞c )′, the latter
space contains many more linear forms which do not correspond to a signed measure. This
bigger set of linear forms, which we denote D∞, is called the set of Schwartz-distributions.

Now, why are distributions useful? First of all, because they can all be seen as limits of
functions (Schwartz, 1978)[Theo. XV, Chap. III]. As an example, consider the sequence of
functions

fσ : x 7−→ 1
σg(x+σσ )− 1

σg(x−σσ ) ,

where g is a Gaussian (see Figure 2). fσ is the difference of two Gaussians that get closer
and closer and more and more peaked with decreasing σ. Now, applying fσ to a function
ϕ ∈ C∞c , it is not difficult to see that fσ(ϕ) converges to ∂ϕ(0) = d0(ϕ) when σ → 0. The
dipole d0 can thus be seen as a weak limit of the functions fσ, although it is itself neither
a function nor even a signed measure.

Another reason to use distributions is that many common linear operations can be
extended to them (or to big subsets of them), such as differentiation, Fourier transformation
and convolution. Let us show for example how to extend differentiation. If we want the
distributional derivative ∂ to be an extension of the usual derivative, then of course we
should require that ∂µf = µf ′ whenever f is a continuously differentiable function over
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X = R whose usual derivative is f ′. Now, by integration by part, we get, for any ϕ ∈ C∞c :

µf ′(ϕ) =

∫
f ′ϕ = −

∫
fϕ′ = −µf (ϕ′) .

This suggests to define the derivative of any D ∈ D∞ as ∂pD(ϕ) := (−1)|p|D(∂pϕ) for any
ϕ ∈ C∞c . Doing so, we just defined a notion of differentiation that is compatible with the
usual differentiation and makes any distribution infinitely many times differentiable. In
particular, any function and any measure is infinitely differentiable in this distributional
sense. Moreover, if a sequence of differentiable functions fn converges to a distribution
D (in the sense that fn(ϕ) converges to D(ϕ) for any ϕ), then their usual derivatives f ′n
converges to ∂D (in the same distributional sense). All this makes distributions extremely
useful for solving linear differential equations and more generally for physicists. Last but
not least, note that, by construction, if Q is a probability measure with smooth density q,
then ∂pQ is the signed measure with density ∂pq.

Appendix C. Other Background Material

Formally, a topological vector space (TVS) E is a vector space equipped with a topology
that is compatible with its linear structure, in the sense that the addition E × E −→ E

and scalar multiplication C× E −→ E become continuous for this topology (when their
domains are equipped with the product topology). This makes the topology translation-
invariant and hence completely defined by the neighborhoods of the origin. A TVS is locally
convex (loc. cv.) if there exists a basis of (origin-) neighborhoods consisting of convex sets
only. Obviously, the origin-centered balls of any semi-norm are convex. But interestingly,
one can show that a TVS is loc. cv. iff its topology can be defined by a family of (contin-
uous) semi-norms. So we can think of loc. cv. TVSs as “multi-normed” spaces, i.e. where
convergence is given by a family of possibly multiple semi-norms (‖.‖α)α∈I (where the index
set I can be uncountable). If this family contains only a single norm, E is a normed space.
The origin-centered balls of these semi-norms are actually not only convex, they are barrels.

Definition 21 (Barrel) A subset T of a TVS E is called a barrel if it is

(i) absorbing: for any f ∈ E, there exists cf > 0 such that f ∈ cfT ;
(ii) balanced: for any f ∈ E, if f ∈ T then λf ∈ T for any λ ∈ C with |λ| ≤ 1 ;

(iii) convex ;
(iv) closed.

Given that the topology of loc. cv. TVS can be defined by a family of semi-norms, it is
not surprising that in loc. cv. spaces there always exists a basis of origin-neighborhoods
consisting only of barrels. However, there might be barrels that are not a neighborhood
of 0. This leads to

Definition 22 (Barreled spaces) A TVS is barreled if any barrel is a neighborhood of
the origin.
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Although many authors include local convexity in the definition, in general, a barreled
space need not be loc. cv. Barreled spaces were introduced by Bourbaki, because they were
well-suited for the following generalization of the celebrated Banach-Steinhaus theorem.

Theorem 23 (Banach-Steinhaus) Let E be a barreled TVS, F be a loc. cv. TVS, and
let L(E,F) be the set of continuous linear maps form E to F. For any H ⊂ L(E,F) the
following properties are equivalent:

(i) H is equicontinuous.
(ii) H is bounded for the topology of pointwise convergence.

(iii) H is bounded for the topology of bounded convergence.

When E is a normed space and F = C, then L(E,F) is by definition E′. With ‖.‖E′ being
the dual norm in E′, the equivalence of (ii) and (iii) states that(

∀f ∈ E, sup
h∈H
|h(f)| <∞

)
⇐⇒ sup

h∈H
‖h‖E′ <∞ .

Obviously, to understand the content of the Banach-Steinhaus theorem, one needs the
definition of a bounded set. Let us define them now.

When E is a normed space, then a subset B of E is called bounded if supf∈B ‖f‖E <∞.
In a more general loc. cv. TVS E, where the topology is given by a family of semi-norms
(‖.‖α)α∈I, a subset B of E is called bounded if, for any α ∈ I, supf∈B ‖f‖α <∞. This can
be shown equivalent to the following, more usual definition.

Definition 24 (Bounded Sets in a TVS) A subset B of a TVS E is bounded, if, for
any neighborhood U ⊂ E of the origin, there exists a real cB > 0 such that B ⊂ cBU .

Note that the notion of boundedness depends on the underlying topology. By default,
a bounded set of some dual space E = F′ designates a set that is bounded for the strong
dual topology. We now move on to an unrelated topic: the Riesz Representation theorem
for Hilbert spaces. Most of this paper relies on this one theorem.

Theorem 25 (Riesz Representation Theorem for Hilbert Spaces) A Hilbert space
H and its topological dual H′ are isometrically (anti-) isomorphic via the Riesz representer
map

ı : H −→ H′

f 7−→ Df :=

{
H −→ C
g 7−→ 〈g , f〉

.

In particular, for any continuous linear form D ∈ H′, there exists a unique element f ∈ H,
called the Riesz representer of D, such that

∀g ∈ H, D(g) = 〈g , f〉 .

Note that “anti” in “anti-isomorphic” simply means that, instead of being linear, ı is anti-
linear: for any λ ∈ C and f ∈ H, ı(λf) = λ̄ ı(f). Often, we prefer to say that H is

isometrically isomorphic to H
′
, where H

′
denotes the conjugate of H, where the scalar
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multiplication is replaced by (λ, f) 7−→ λ̄f . H′k and Hk
′

are obviously isomorphic via
the complex conjugation map D 7−→ D̄ .

The Riesz representation theorem for Hilbert spaces is not to be confounded with the
following theorem, also known as the Riesz—or Riesz-Markov-Kakutani—representation
theorem. In this paper, we always refer to the latter as the Riesz-Markov-Kakutani rep-
resentation theorem. This theorem has numerous variants, depending on which dual pair
(E,E′) one uses. Here we state it for E = C0.

Theorem 26 (Riesz-Markov-Kakutani) Let X be a locally compact Hausdorff space.
The spaces Mf (X) and (C0(X))′ are isomorphic, both algebraically and topologically via
the map

ı : Mf (X) −→ (C0(X))′

µ 7−→ Dµ :=

{
C0 −→ C
ϕ 7−→

∫
ϕdµ

.

In other words, for any continuous linear form D over C0(X), there exists a unique finite
Borel measure µ ∈ Mf such that, for any test function ϕ ∈ C0(X), D(ϕ) =

∫
ϕdµ.

Moreover, sup‖ϕ‖∞≤1D(ϕ) = |µ|(X), or in short: ‖D‖(C0)
′ = ‖µ‖TV , where ‖µ‖TV denotes

the total variation norm of µ. This is why, in this paper, we identify Mf—a space of
σ-additive set functions—with Mf—a space of linear functionals.

In this paper, to embed a space of measures into an RKHS Hk we successively apply both
Riesz representation theorems: If Hk embeds continuously into C0, then (C0)

′ embeds con-

tinuously into Hk
′
, via the embedding map Φk. But (C0)

′ = Mf (Riesz-Markov-Kakutani

Representation) and Hk
′

= Hk (Riesz Representation). Thus Φk may also be seen as an
embedding of Mf into Hk.

For a further introduction to TVSs and the theorems mentioned here, we suggest Treves
(1967).
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