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Abstract

Minibatching is a very well studied and highly popular technique in supervised learning,
used by practitioners due to its ability to accelerate training through better utilization of
parallel processing power and reduction of stochastic variance. Another popular technique
is importance sampling—a strategy for preferential sampling of more important examples
also capable of accelerating the training process. However, despite considerable effort by
the community in these areas, and due to the inherent technical difficulty of the problem,
there is virtually no existing work combining the power of importance sampling with the
strength of minibatching. In this paper we propose the first practical importance sampling
for minibatches and give simple and rigorous complexity analysis of its performance. We
illustrate on synthetic problems that for training data of certain properties, our sampling
can lead to several orders of magnitude improvement in training time. We then test the
new sampling on several popular data sets, and show that the improvement can reach an
order of magnitude.
keywords: empirical risk minimization; importance sampling; minibatching; variance-
reduced methods; convex optimization

1. Introduction

Supervised learning is a widely adopted learning paradigm with important applications such
as regression, classification and prediction. The most popular approach to training super-
vised learning models is via empirical risk minimization (ERM). In ERM, the practitioner
collects data composed of example-label pairs, and seeks to identify the best predictor by
minimizing the empirical risk, i.e., the average risk associated with the predictor over the
training data.

With ever increasing demand for accuracy of the predictors, largely due to successful
industrial applications, and with ever more sophisticated models that need to be trained,
such as deep neural networks Hinton (2007); Krizhevsky et al. (2012), or multiclass classifi-
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cation Huang et al. (2012), increasing volumes of data are used in the training phase. This
leads to huge and hence extremely computationally intensive ERM problems.

Batch algorithms—methods that need to look at all the data before taking a single
step to update the predictor—have long been known to be prohibitively impractical to
use. Typical examples of batch methods are gradient descent and classical quasi-Newton
methods. One of the most popular algorithms for overcoming the deluge-of-data issue is
stochastic gradient descent (SGD), which can be traced back to a seminal work of Robbins
and Monro (1951). In SGD, a single random example is selected in each iteration, and the
predictor is updated using the information obtained by computing the gradient of the loss
function associated with this example. This leads to a much more fine-grained iterative
process, but at the same time introduces considerable stochastic noise, which eventually—
typically after one or a few passes over the data—effectively halts the progress of the method,
rendering it unable to push the training error (empirical risk) to the realm of small values.

1.1 Strategies for dealing with stochastic noise

Several approaches have been proposed to deal with the issue of stochastic noise in the finite-
data regime. The most important of these are i) decreasing stepsizes, ii) minibatching, iii)
importance sampling and iv) variance reduction via “shift”, listed here from historically
first to the most modern.

The first strategy, decreasing stepsizes, takes care of the noise issue by a gradual and
direct scale-down process, which ensures that SGD converges to the ERM optimum Zhang
(2004). However, an unwelcome side effect of this is a considerable slowdown of the iterative
process Bottou (2010). For instance, the convergence rate is sublinear even if the function
to be minimized is strongly convex.

The second strategy, minibatching, deals with the noise by utilizing a random set of
examples in the estimate of the gradient, which effectively decreases the variance of the
estimate Shalev-Shwartz et al. (2011). However, this has the unwelcome side-effect of re-
quiring more computation. On the other hand, if a parallel processing machine is available,
the computation can be done concurrently, which ultimately leads to speedup. This strategy
does not result in an improvement of the convergence rate (unless progressively larger mini-
batch sizes are used, at the cost of further computational burden Friedlander and Schmidt
(2012)), but can lead to massive improvement of the leading constant, which ultimately
means acceleration (almost linear speedup for sparse data) Takáč et al. (2013).

The third strategy, importance sampling, operates by a careful data-driven design of the
probabilities of selecting examples in the iterative process, leading to a reduction of the
variance of the stochastic gradient thus selected. Typically, the overhead associated with
computing the sampling probabilities and with sampling from the resulting distribution
is negligible, and hence the net effect is speedup. In terms of theory, for standard SGD
this improves a non-dominant term in the complexity. On the other hand, when SGD is
combined with variance reduction, then this strategy leads to the improvement of the leading
constant in the complexity estimate, typically via replacing the maximum of certain data-
dependent quantities by their average Richtárik and Takáč (2016b); Konečný et al. (2017);
Zhao and Zhang (2015); Qu et al. (2015); Needell et al. (2014); Csiba and Richtárik (2015);
Csiba et al. (2015).
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Finally, and most recently, there has been a considerable amount of research activity due
to the ground-breaking realization that one can gain the benefits of SGD (cheap iterations)
without having to pay through the side effects mentioned above (e.g., halt in convergence
due to decreasing stepsizes or increase of workload due to the use of minibatches) in the
finite data regime. The result, in theory, is that for strongly convex losses (for example), one
does not have to suffer sublinear convergence any more, but instead a fast linear rate “kicks
in”. In practice, these methods dramatically surpass all previous existing approaches.

The main algorithmic idea is to change the search direction itself, via a properly de-
signed and cheaply maintainable “variance-reducing shift” (control variate). Methods in
this category are of two types: those operating in the primal space (i.e., directly on ERM)
and those operating in a dual space (i.e., with the dual of the ERM problem). Methods of
the primal variety include SAG Schmidt et al. (2013), SVRG Johnson and Zhang (2013),
S2GD Konečný and Richtárik (2017), proxSVRG Xiao and Zhang (2014), SAGA Defazio
et al. (2014), mS2GD Konečný et al. (2016) and MISO Mairal (2015). Methods of the dual
variety work by updating randomly selected dual variables, which correspond to examples.
These methods include SCD Shalev-Shwartz and Tewari (2011), RCDM Nesterov (2012);
Richtárik and Takáč (2014), SDCA Shalev-Shwartz and Zhang (2013b), Hydra Richtárik
and Takáč (2016a); Fercoq et al. (2014), mSDCA Takáč et al. (2013), APCG Lin et al.
(2015), AsySPDC Liu and Wright (2015), RCD Necoara and Patrascu (2014), APPROX
Fercoq and Richtárik (2015), SPDC Zhang and Xiao (2015), ProxSDCA Shalev-Shwartz
and Zhang (2012), ASDCA Shalev-Shwartz and Zhang (2013a), IProx-SDCA Zhao and
Zhang (2015), and QUARTZ Qu et al. (2015).

1.2 Combining strategies

We wish to stress that the key strategies, mini-batching, importance sampling and variance-
reducing shift, should be seen as orthogonal tricks, and as such they can be combined,
achieving an amplification effect. For instance, the first primal variance-reduced method
allowing for mini-batching was Konečný et al. (2016); while dual-based methods in this cat-
egory include Shalev-Shwartz and Zhang (2013a); Qu et al. (2015); Csiba and Richtárik
(2015). Variance-reduced methods with importance sampling include Nesterov (2012);
Richtárik and Takáč (2014); Richtárik and Takáč (2016b); Qu and Richtárik (2016) for gen-
eral convex minimization problems, and Zhao and Zhang (2015); Qu et al. (2015); Needell
et al. (2014); Csiba and Richtárik (2015) for ERM.

2. Contributions

Despite considerable effort of the machine learning and optimization research communities,
virtually no importance sampling for minibatches was previously proposed, nor analyzed.1.
The reason for this lies in the underlying theoretical and computational difficulties asso-
ciated with the design and successful implementation of such a sampling. One needs to
come up with a way to focus on a reasonable set of subsets (minibatches) of the examples
to be used in each iteration (issue: there are many subsets; which ones to choose?), as-

1. A brief note in Richtárik and Takáč (2016b) is an exception, but the sampling is different from ours, was
not implemented nor tested, leads to the necessity to solve a linear program and hence is impractical.
Another exception is Harikandeh et al. (2015).
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sign meaningful data-dependent non-uniform probabilities to them (issue: how?), and then
be able to sample these subsets according to the chosen distribution (issue: this could be
computationally expensive).

The tools that would enable one to consider these questions did not exist until recently.
However, due to a recent line of work on analyzing variance-reduced methods utilizing
what is known as arbitrary sampling Richtárik and Takáč (2016b); Qu et al. (2015); Qu
and Richtárik (2016); Qu and Richtárik (2016); Csiba and Richtárik (2015), we are able
to ask these questions and provide answers. In this work we design a novel family of
samplings—bucket samplings—and a particular member of this family—importance sam-
pling for minibatches. We illustrate the power of this sampling in combination with the
reduced-variance dfSDCA method for ERM. This method is a primal variant of SDCA,
first analyzed by Shalev-Shwartz (2015), and extended by Csiba and Richtárik (2015) to
the arbitrary sampling setting. However, our sampling can be combined with any stochas-
tic method for ERM, such as SGD or S2GD, and extends beyond the realm of ERM, to
convex optimization problems in general. However, for simplicity, we do not discuss these
extensions in this work.

We analyze the performance of the new sampling theoretically, and by inspecting the
results we are able to comment on when can one expect to be able to benefit from it. We il-
lustrate on synthetic data sets with varying distributions of example sizes that our approach
can lead to dramatic speedups when compared against standard (uniform) minibatching, of
one or more degrees of magnitude. We then test our method on real data sets and confirm
that the use of importance minibatching leads to up to an order of magnitude speedup.
Based on our experiments and theory, we predict that for real data with particular shapes
and distributions of example sizes, importance sampling for minibatches will operate in a
favourable regime, and can lead to speedup higher than one order of magnitude.

2.1 Related work

The idea of using non-uniform sampling in the parallel regime is by no means new. In the
following we highlight several recent approaches in a chronological order and we describe
their main differences to our method.

The first attempt for a potential speed-up using a non-uniform parallel sampling was
proposed in Richtárik and Takáč (2016b). However, to compute the optimal probability
vector one has to solve a linear programming problem, which can easily be more complex
than the original problem. The authors do not propose a practical version, which would
overcome this issue.

The approach described in Zhao and Zhang (2014) uses the idea of a stratified sampling,
which is a well-known strategy in statistics. The authors use clustering to group the exam-
ples into several partitions and sample an example from each of the partitions uniformly.
This approach is similar to ours, with two main differences: i) we do not need clustering for
our approach (it can be computationally very expensive) ii) we allow non-uniform sampling
inside each of the partitions, which leads to the main speed-up in our work.

Instead of directly improving the convergence rate of the methods, the authors in Csiba
and Richtárik (2015) propose a strategy to improve the synchronized parallel implemen-
tation of a method by a load-balancing scheme. The method divides the examples into
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groups, which have similar sum of the amount of nonzero entries. When each core processes
a single group, it should take the same time to finish as all the other groups, which leads to
shorter waiting time in synchronization. Although this is a non-uniform parallel sampling,
this approach takes a completely different direction than our method. The only speedup of
the method proposed in the above work is achieved due to a shorter waiting time during
the synchronization between parallel processing units, while the method proposed in this
work directly decreases the iteration complexity.

Lastly, in Harikandeh et al. (2015) the authors actually propose a scheme for importance
sampling with minibatches. In the paper they assume, that they can sample a minibatch
with a fixed size (without repetition), such that the probabilities of sampling individual
examples will be proportional to some given values. However, this is easier said than done—
until our work there was no sampling scheme, which would allow for such minibatches.
Therefore, the authors theoretically described an idea, which can be used in practice using
our scheme.

3. The Problem

Let X ∈ Rd×n be a data matrix in which features are represented in rows and examples in
columns, and let y ∈ Rn be a vector of labels corresponding to the examples. Our goal is to
find a linear predictor w ∈ Rd such that x>i w ∼ yi, where the pair xi, yi ∈ Rd×R is sampled
from the underlying distribution over data-label pairs. In the L2-regularized Empirical Risk
Minimization problem, we find w by solving the optimization problem

min
w∈Rd

[
P (w) :=

1

n

n∑
i=1

φi(X
>
:iw) +

λ

2
‖w‖22

]
, (1)

where φi : R→ R is a loss function associated with example-label pair (X:i, yi), and λ > 0.
For instance, the square loss function is given by φi(t) = 0.5(t − yi)

2. Our results are
not limited to L2-regularized problems though: an arbitrary strongly convex regularizer
can be used instead Qu et al. (2015). We shall assume throughout that the loss functions
are convex and 1/γ-smooth, where γ > 0. The latter means that for all x, y ∈ R and all
i ∈ [n] := {1, 2, . . . , n}, we have

|φ′i(x)− φ′i(y)| ≤ 1

γ
|x− y|.

This setup includes ridge and logistic regression, smoothed hinge loss, and many other
problems as special cases Shalev-Shwartz and Zhang (2013b). Again, our sampling can be
adapted to settings with non-smooth losses, such as the hinge loss.

4. The Algorithm

In this paper we illustrate the power of our new sampling in tandem with Algorithm 1
(dfSDCA) for solving (1).

The method has two parameters. A “sampling” Ŝ, which is a random set-valued mapping
Richtárik and Takáč (2016) with values being subsets of [n], the set of examples. No
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Algorithm 1 dfSDCA Csiba and Richtárik (2015)

Parameters: Sampling Ŝ, stepsize θ > 0
Initialization: Choose α(0) ∈ Rn,

set w(0) = 1
λn

∑n
i=1 X:iα

(0)
i , pi = Prob(i ∈ Ŝ)

for t ≥ 1 do
Sample a fresh random set St according to Ŝ
for i ∈ St do

∆i = φ′i(X
>
:iw

(t−1)) + α
(t−1)
i

α
(t)
i = α

(t−1)
i − θp−1

i ∆i

end for
w(t) = w(t−1) −

∑
i∈St

θ(nλpi)
−1∆iX:i

end for

assumptions are made on the distribution of Ŝ apart from requiring that pi is positive for
each i, which simply means that each example has to have a chance of being picked. The
second parameter is a stepsize θ, which should be as large as possible, but not larger than a
certain theoretically allowable maximum depending on P and Ŝ, beyond which the method
could diverge.

Algorithm 1 maintains n “dual” variables, α
(t)
1 , . . . , α

(t)
n ∈ R, which act as variance-

reduction shifts. This is most easily seen in the case when we assume that St = {i} (no
minibatching). Indeed, in that case we have

w(t) = w(t−1) − θ

nλpi
(g

(t−1)
i + X:iα

(t−1)
i ),

where g
(t−1)
i := X:i∆i is the stochastic gradient. If θ is set to a proper value, as we shall see

next, then it turns out that for all i ∈ [n], αi is converging α∗i := −φ′i(X>:iw∗), where w∗ is
the solution to (1), which means that the shifted stochastic gradient converges to zero. This
means that its variance is progressively vanishing, and hence no additional strategies, such
as decreasing stepsizes or minibatching are necessary to reduce the variance and stabilize the
process. In general, dfSDCA in each step picks a random subset of the examples, denoted

as St, updates variables α
(t)
i for i ∈ St, and then uses these to update the predictor w.

4.1 Complexity of dfSDCA

In order to state the theoretical properties of the method, we define

E(t) :=
λ

2
‖w(t) − w∗‖22 +

γ

2n
‖α(t) − α∗‖22.

Most crucially to this paper, we assume the knowledge of parameters v1, . . . , vn > 0 for
which the following ESO2 inequality holds

E

∥∥∥∥∥∑
i∈St

hiX:i

∥∥∥∥∥
2
 ≤ n∑

i=1

pivih
2
i (2)

2. ESO = Expected Separable Overapproximation Richtárik and Takáč (2016); Qu and Richtárik (2016).
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holds for all h ∈ Rn. Tight and easily computable formulas for such parameters can be
found in Qu and Richtárik (2016). For instance, whenever Prob(|St| ≤ τ) = 1, inequality
(2) holds with vi = τ‖X:i‖2. However, this is a conservative choice of the parameters.
Convergence of dfSDCA is described in the next theorem.

Theorem 1 (Csiba and Richtárik (2015)) Assume that all loss functions {φi} are con-
vex and 1/γ smooth. If we run Algorithm 1 with parameter θ satisfying the inequality

θ ≤ min
i

pinλγ

vi + nλγ
, (3)

where {vi} satisfy (2), then the potential E(t) decays exponentially to zero as

E
[
E(t)

]
≤ e−θtE(0).

Moreover, if we set θ equal to the upper bound in (3) so that

1

θ
= max

i

(
1

pi
+

vi
pinλγ

)
(4)

then

t ≥ 1

θ
log

(
(1 + λγ)E(0)

λγε

)
⇒ E[P (w(t))− P (w∗)] ≤ ε.

5. Bucket Sampling

We shall first explain the concept of “standard” importance sampling.

5.1 Standard importance sampling

Assume that Ŝ always picks a single example only. In this case, (2) holds for vi = ‖X:i‖2,
independently of p := (p1, . . . , pn) Qu and Richtárik (2016). This allows us to choose the
sampling probabilities as pi ∼ vi + nλγ, which ensures that (4) is minimized. This is
importance sampling. The number of iterations of dfSDCA is in this case proportional to

1

θ(imp)
:= n+

∑n
i=1 vi
nλγ

.

If uniform probabilities are used, the average in the above formula gets replaced by the
maximum:

1

θ(unif)
:= n+

maxi vi
λγ

.

Hence, one should expect the following speedup when comparing the importance and uniform
samplings:

σ :=
maxi ‖X:i‖2

1
n

∑n
i=1 ‖X:i‖2

. (5)

If σ = 10 for instance, then dfSDCA with importance sampling is 10× faster than dfSDCA
with uniform sampling.
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5.2 Uniform minibatch sampling

In machine learning, the term “minibatch” is virtually synonymous with a special sampling,
which we shall here refer to by the name τ -nice sampling Richtárik and Takáč (2016).
Sampling Ŝ is τ -nice if it picks uniformly at random from the collection of all subsets of [n]
of cardinality τ . Clearly, pi = τ/n and, moreover, it was show by Qu and Richtárik (2016)
that (2) holds with {vi} defined by

v
(τ -nice)
i =

d∑
j=1

(
1 +

(|Jj | − 1)(τ − 1)

n− 1

)
X2
ji, (6)

where Jj := {i ∈ [n] : Xji 6= 0}. In the case of τ -nice sampling we have the stepsize and
complexity given by

θ(τ -nice) = min
i

τλγ

v
(τ -nice)
i + nλγ

, (7)

1

θ(τ -nice)
=
n

τ
+

maxi v
(τ -nice)
i

τλγ
. (8)

Learning from the difference between the uniform and importance sampling of single
example (Section 5.1), one would ideally wish the importance minibatch sampling, which
we are yet to define, to lead to complexity of the type (8), where the maximum is replaced
by an average.

5.3 Bucket sampling: definition

We now propose a family of samplings, which we call bucket samplings. Let B1, . . . , Bτ be
a partition of [n] = {1, 2, . . . , n} into τ nonempty sets (“buckets”).

Definition 2 (Bucket sampling) We say that Ŝ is a bucket sampling if for all i ∈ [τ ],
|Ŝ ∩Bi| = 1 with probability 1.

Informally, a bucket sampling picks one example from each of the τ buckets, forming
a minibatch. Hence, |Ŝ| = τ and

∑
i∈Bl

pi = 1 for each l = 1, 2 . . . , τ , where, as before,

pi := Prob(i ∈ Ŝ). Notice that given the partition, the vector p = (p1, . . . , pn) uniquely
determines a bucket sampling. Hence, we have a family of samplings indexed by a single
n-dimensional vector. Let PB be the set of all vectors p ∈ Rn describing bucket samplings
associated with partition B = {B1, . . . , Bτ}. Clearly,

PB =

p ∈ Rn :
∑
i∈Bl

pi = 1 for all l & pi ≥ 0 for all i

 .

Note, that the sampling inside each bucket Bi can be performed in O(log |Bi|) time
using a binary tree, with an initial overhead and memory of O(|Bi| log |Bi|), as explained
in Nesterov (2012).
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5.4 Optimal bucket sampling

The optimal bucket sampling is that for which (4) is minimized, which leads to a complicated
optimization problem:

min
p∈PB

max
i

1

pi
+

vi
pinλγ

subject to {vi} satisfy (2).

A particular difficulty here is the fact that the parameters {vi} depend on the vector p in
a complicated way. In order to resolve this issue, we prove the following result.

Theorem 3 Let Ŝ be a bucket sampling described by partition B = {B1, . . . , Bτ} and vector
p. Then the ESO inequality (2) holds for parameters {vi} set to

vi =

d∑
j=1

(
1 +

(
1− 1

ω′
j

)
δj

)
X2
ji, (9)

where Jj := {i ∈ [n] : Xji 6= 0}, δj :=
∑

i∈Jj pi and ω′j := |{l : Jj ∩Bl 6= ∅}|.

Observe that Jj is the set of examples which express feature j, and ω′j is the number of
buckets intersecting with Jj . Clearly, that 1 ≤ ω′j ≤ τ (if ω′j = 0, we simply discard this
feature from our data as it is not needed). Note that the effect of the quantities {ω′j} on the
value of vi is small. Indeed, unless we are in the extreme situation when ω′j = 1, which has
the effect of neutralizing δj , the quantity 1− 1/ω′j is between 1− 1/2 and 1− 1/τ . Hence,
for simplicity, we could instead use the slightly more conservative parameters:

vi =
d∑
j=1

(
1 +

(
1− 1

τ

)
δj

)
X2
ji.

5.5 Uniform bucket sampling

Assume all buckets are of the same size: |Bl| = n/τ for all l. Further, assume that pi =
1/|Bl| = τ/n for all i. Then δj = τ |Jj |/n, and hence Theorem 3 says that

v
(unif)
i =

d∑
j=1

(
1 +

(
1− 1

ω′j

)
τ |Jj |
n

)
X2
ji, (10)

and in view of (4), the complexity of dfSDCA with this sampling becomes

1

θ(unif)
=
n

τ
+

maxi v
(unif)
i

τλγ
. (11)

Formula (6) is very similar to the one for τ -nice sampling (10), despite the fact that the
sets/minibatches generated by the uniform bucket sampling have a special structure with

respect to the buckets. Indeed, it is easily seen that the difference between between 1+
τ |Jj |
n

and 1 +
(τ−1)(|Jj |−1)

(n−1) is negligible. Moreover, if either τ = 1 or |Jj | = 1 for all j, then ω′j = 1

for all j and hence vi = ‖X:i‖2. This is also what we get for the τ -nice sampling.
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quantity \ iteration 1 2 3 4 5 6

maxi(|pnew
i − pold

i |) 7 · 10−5 7 · 10−6 7 · 10−7 8 · 10−8 8 · 10−9 9 · 10−10

‖pnew − pold‖2 1 · 10−3 2 · 10−4 2 · 10−5 2 · 10−6 2 · 10−7 2 · 10−8

Table 1: Example of the convergence speed of the alternating optimization scheme for w8a
data set (see Table 5) with τ = 8. The table demonstrates the difference in
probabilities for two successive iterations (pold and pnew). We observed a similar
behaviour for all data sets and all choices of τ .

6. Importance Minibatch Sampling

In the light of Theorem 3, we can formulate the problem of searching for the optimal bucket
sampling as

min
p∈PB

max
i

1

pi
+

vi
pinλγ

subject to {vi} satisfy (9). (12)

Still, this is not an easy problem. Importance minibatch sampling arises as an approx-
imate solution of (12). Note that the uniform minibatch sampling is a feasible solution of
the above problem, and hence we should be able to improve upon its performance.

6.1 Approach 1: alternating optimization

Given a probability distribution p ∈ PB, we can easily find v using Theorem 3. On the
other hand, for any fixed v, we can minimize (12) over p ∈ PB by choosing the probabilities
in each group Bl and for each i ∈ Bl via

pi =
nλγ + vi∑
j∈Bl

nλγ + vj
. (13)

This leads to a natural alternating optimization strategy. An example of the standard
convergence behaviour of this scheme is showed in Table 6.1. Empirically, this strategy
converges to a pair (p∗, v∗) for which (13) holds. Therefore, the resulting complexity will
be

1

θ(τ -imp)
=
n

τ
+ max

l∈[τ ]

τ
n

∑
i∈Bl

v∗i
τλγ

. (14)

We can compare this result against the complexity of τ -nice in (8). We can observe that
the terms are very similar, up to two differences. First, the importance minibatch sampling
has a maximum over group averages instead of a maximum over everything, which leads
to speedup, other things equal. On the other hand, v(τ -nice) and v∗ are different quantities.
The alternating optimization procedure for computation of (v∗, p∗) is costly, as one iteration
takes a pass over all data. Therefore, in the next subsection we propose a closed form formula
which, as we found empirically, offers nearly optimal convergence rate.
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6.2 Approach 2: practical formula

For each group Bl, let us choose for all i ∈ Bl the probabilities as follows:

p∗i =
nλγ + v

(unif)
i∑

k∈Bl
nλγ + v

(unif)
k

(15)

where v
(unif)
i is given by (10). Note that computing all v

(unif)
i can be done by visiting every

non-zero entry of X once and and computing all p∗i is a simple re-weighting. This is the
same computational cost as for standard serial importance sampling. Also, this process can
be straightforwardly parallelized, fully utilizing all the cores, which leads to τ times faster
computations. The overhead of using this sampling approach is therefore at most one pass
over the data, which is negligible in most scenarios considered.

After doing some simplifications, the associated complexity result is

1

θ(τ -imp)
= max

l

{(
n

τ
+

τ
n

∑
i∈Bl

v
(unif)
i

τλγ

)
βl

}
, (16)

where

βl := max
i∈Bl

nλγ + si

nλγ + v
(unif)
i

, si :=
d∑
j=1

1 +

(
1− 1

ω′j

)∑
k∈Jj

p∗k

X2
ji.

We would ideally want to have βl = 1 for all l (this is what we get for importance sampling
without minibatches). If βl ≈ 1 for all l, then the complexity 1/θ(τ -imp) is an improvement
on the complexity of the uniform minibatch sampling since the maximum of group averages

is always better than the maximum of all elements v
(uni)
i :

n

τ
+

maxl

(
τ
n

∑
i∈Bl

v
(unif)
i

)
τλγ

≤ n

τ
+

maxi v
(unif)
i

τλγ
.

Indeed, the difference can be very large.
Finally, we would like to comment on the choice of the partitions B1, . . . , Bτ , as they

clearly affect the convergence rate. The optimal choice of the partitions is given by minimiz-
ing in B1, . . . , Bτ the maximum over group sums in (16), which is a complicated optimization
problem. Instead, we used random partitions of the same size in our experiments, which we
believe is a good solution for the partitioning problem. The logic is simple: the minimum of
the maximum over the group sums will be achieved, when all the group sums have similar
values. If we set the partitions to the same size and we distribute the examples randomly,
there is a good chance that the group sums will have similar values (especially for large
amounts of data).

7. Experiments

We now comment on the results of our numerical experiments, with both synthetic and real
data sets. We plot the optimality gap P (w(t)) − P (w∗) and in the case of real data also

11
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the test error (vertical axis) against the computational effort (horizontal axis). We measure
computational effort by the number of effective passes through the data divided by τ . We
divide by τ as a normalization factor; since we shall compare methods with a range of values
of τ . This is reasonable as it simply indicates that the τ updates are performed in parallel.
Hence, what we plot is an implementation-independent model for time.

We compared two algorithms:

1) τ-nice: dfSDCA using the τ -nice sampling with stepsizes given by (7) and (6),

2) τ-imp: dfSDCA using τ -importance sampling (i.e., importance minibatch sampling)
defined in Subsection 6.2.

As the methods are randomized, we always plot the average over 5 runs. For each data set
we provide two plots. In the left figure we plot the convergence of τ -nice for different values
of τ , and in the right figure we do the same for τ -importance. The horizontal axis has the
same range in both plots, so they are easily comparable. The values of τ we used to plot
are τ ∈ {1, 2, 4, 8, 16, 32}. In all experiments we used the logistic loss: φi(z) = log(1+e−yiz)
and set the regularizer to λ = maxi ‖X:i‖/n. We will observe the theoretical and empirical
ratio θ(τ -imp)/θ(τ -nice). The theoretical ratio is computed from the corresponding theory.
The empirical ratio is the ratio between the horizontal axis values at the moments when
the algorithms reached the precision 10−10.

7.1 Artificial data

We start with experiments using artificial data, where we can control the sparsity pattern
of X and the distribution of {‖X:i‖2}. We fix n = 50, 000 and choose d = 10, 000 and
d = 1, 000. For each feature we sampled a random sparsity coefficient ω′i ∈ [0, 1] to have the

average sparsity ω′ := 1
d

∑d
i ω
′
i under control. We used two different regimes of sparsity:

ω′ = 0.1 (10% nonzeros) and ω′ = 0.8 (80% nonzeros). After deciding on the sparsity
pattern, we rescaled the examples to match a specific distribution of norms Li = ‖X:i‖2;
see Table 2. The code column shows the corresponding code in Julia to create the vector
of norms L. The distributions can be also observed as histograms in Figure 1.

label code σ

extreme L = ones(n);L[1] = 1000 980.4

chisq1 L = rand(chisq(1),n) 17.1

chisq10 L = rand(chisq(10),n) 3.9

chisq100 L = rand(chisq(100),n) 1.7

uniform L = 2*rand(n) 2.0

Table 2: Distributions of ‖X:i‖2 used in artificial experiments.

The corresponding experiments can be found in Figure 4 and Figure 5. The theoretical
and empirical speedup are also summarized in Tables 3 and 4.
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Figure 1: The distribution of ‖X:i‖2 for synthetic data

Data τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 τ = 32

uniform 1.2 : 1.0 1.2 : 1.1 1.2 : 1.1 1.2 : 1.1 1.3 : 1.1 1.4 : 1.1

chisq100 1.5 : 1.3 1.5 : 1.3 1.5 : 1.4 1.6 : 1.4 1.6 : 1.4 1.6 : 1.4

chisq10 1.9 : 1.4 1.9 : 1.5 2.0 : 1.4 2.2 : 1.5 2.5 : 1.6 2.8 : 1.7

chisq1 1.9 : 1.4 2.0 : 1.4 2.2 : 1.5 2.5 : 1.6 3.1 : 1.6 4.2 : 1.7

extreme 8.8 : 4.8 9.6 : 6.6 11 : 6.4 14 : 6.4 20 : 6.9 32 : 6.1

Table 3: The theoretical : empirical ratios θ(τ -imp)/θ(τ -nice) for sparse artificial data
(ω′ = 0.1)

Data τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 τ = 32

uniform 1.2 : 1.1 1.2 : 1.1 1.4 : 1.2 1.5 : 1.2 1.7 : 1.3 1.8 : 1.3

chisq100 1.5 : 1.3 1.6 : 1.4 1.6 : 1.5 1.7 : 1.5 1.7 : 1.6 1.7 : 1.6

chisq10 1.9 : 1.3 2.2 : 1.6 2.7 : 2.1 3.1 : 2.3 3.5 : 2.5 3.6 : 2.7

chisq1 1.9 : 1.3 2.6 : 1.8 3.7 : 2.3 5.6 : 2.9 7.9 : 3.2 10 : 3.9

extreme 8.8 : 5.0 15 : 7.8 27 : 12 50 : 16 91 : 21 154 : 28

Table 4: The theoretical : empirical ratios θ(τ -imp)/θ(τ -nice). Artificial data with ω′ = 0.8
(dense)
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7.2 Real data

We used several publicly available data sets3, summarized in Table 5, which we randomly
split into a train (80%) and a test (20%) part. The test error is measured by the empirical
risk (1) on the test data without a regularizer. The resulting test error was compared
against the best achievable test error, which we computed by minimizing the corresponding
risk. Experimental results are in Figure 7.3 and Figure 7.3. The theoretical and empirical
speedup table for these data sets can be found in Table 6.

Data set #samples #features sparsity σ

ijcnn1 35,000 23 60.1% 2.04

protein 17,766 358 29.1% 1.82

w8a 49,749 301 4.2% 9.09

url 2,396,130 3,231,962 0.04 % 4.83

aloi 108,000 129 24.6% 26.01

Table 5: Summary of real data sets (σ = predicted speedup).

Data τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 τ = 32

ijcnn1 1.2 : 1.1 1.4 : 1.1 1.6 : 1.3 1.9 : 1.6 2.2 : 1.6 2.3 : 1.8

protein 1.3 : 1.2 1.4 : 1.2 1.5 : 1.4 1.7 : 1.4 1.8 : 1.5 1.9 : 1.5

w8a 2.8 : 2.0 2.9 : 1.9 2.9 : 1.9 3.0 : 1.9 3.0 : 1.8 3.0 : 1.8

url 3.0 : 2.3 2.6 : 2.1 2.0 : 1.8 1.7 : 1.6 1.8 : 1.6 1.8 : 1.7

aloi 13 : 7.8 12 : 8.0 11 : 7.7 9.9 : 7.4 9.3 : 7.0 8.8 : 6.7

Table 6: The theoretical : empirical ratios θ(τ -imp)/θ(τ -nice).

7.3 Conclusion

In all experiments, τ -importance sampling performs significantly better than τ -nice sam-
pling. The theoretical speedup factor computed by θ(τ -imp)/θ(τ -nice) provides an excellent
estimate of the actual speedup. We can observe that on denser data the speedup is higher
than on sparse data. This matches the theoretical intuition for vi for both samplings. Sim-
ilar behaviour can be also observed for the test error, which is pleasing. As we observed for
artificial data, for extreme data sets the speedup can be arbitrary large, even several orders
of magnitude. A rule of thumb: if one has data with large σ, practical speedup from using
importance minibatch sampling will likely be dramatic.

3. https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Figure 2: Train error over iterations for
data sets from Table 5
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Figure 3: Test error over iterations for data
sets from Table 5
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0 5 10 15 20
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

P
(w

t )
−
P
(w

∗
)

1-nice

2-nice

4-nice

8-nice

16-nice

32-nice

0 5 10 15 20
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

P
(w

t )
−
P
(w

∗
)

1-imp

2-imp

4-imp

8-imp

16-imp

32-imp

(a) uniform, τ -nice (left), τ -importance (right)

0 10 20 30 40 50
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

P
(w

t )
−
P
(w

∗
)

1-nice

2-nice

4-nice

8-nice

16-nice

32-nice

0 10 20 30 40 50
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

P
(w

t )
−
P
(w

∗
)

1-imp

2-imp

4-imp

8-imp

16-imp

32-imp

(b) chisq100, τ -nice (left), τ -importance (right)

0 5 10 15 20 25 30
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

P
(w

t )
−
P
(w

∗
)

1-nice

2-nice

4-nice

8-nice

16-nice

32-nice

0 5 10 15 20 25 30
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

P
(w

t )
−
P
(w

∗
)

1-imp

2-imp

4-imp

8-imp

16-imp

32-imp

(c) chisq10, τ -nice (left), τ -importance (right)

0 5 10 15 20 25
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

P
(w

t )
−
P
(w

∗
)

1-nice

2-nice

4-nice

8-nice

16-nice

32-nice

0 5 10 15 20 25
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

P
(w

t )
−
P
(w

∗
)

1-imp

2-imp

4-imp

8-imp

16-imp

32-imp

(d) chisq1, τ -nice (left), τ -importance (right)

0 10 20 30 40 50 60 70
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

P
(w

t )
−
P
(w

∗
)

1-nice

2-nice

4-nice

8-nice

16-nice

32-nice

0 10 20 30 40 50 60 70
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

P
(w

t )
−
P
(w

∗
)

1-imp

2-imp

4-imp

8-imp

16-imp

32-imp

(e) extreme, τ -nice (left), τ -importance (right)

Figure 4: Artificial data sets from Table 2
with ω = 0.8
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Figure 5: Artificial data sets from Table 2
with ω = 0.1
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8. Proof of Theorem 3

8.1 Three lemmas

We first establish three lemmas, and then proceed with the proof of the main theorem. With
each sampling Ŝ we associate an n × n “probability matrix” defined as follows: Pij(Ŝ) =
Prob(i ∈ Ŝ, j ∈ Ŝ). Our first lemma characterizes the probability matrix of the bucket
sampling.

Lemma 4 If Ŝ is a bucket sampling, then

P(Ŝ) = pp> ◦ (E−B) + Diag(p), (17)

where E ∈ Rn×n is the matrix of all ones,

B :=

τ∑
l=1

P(Bl), (18)

and ◦ denotes the Hadamard (elementwise) product of matrices. Note that B is the 0-1
matrix given by Bij = 1 if and only if i, j belong to the same bucket Bl for some l.

Proof Let P = P(Ŝ). By definition

Pij =


pi i = j

pipj i ∈ Bl, j ∈ Bk, l 6= k

0 otherwise.

It only remains to compare this to (17).

Lemma 5 Let J be a nonempty subset of [n], let B be as in Lemma 4 and put ω′J := |{l :
J ∩Bl 6= ∅}|. Then

P(J) ◦B � 1

ω′J
P(J). (19)

Proof For any h ∈ Rn, we have

h>P(J)h =

(∑
i∈J

hi

)2

=

 τ∑
l=1

∑
i∈J∩Bl

hi

2

≤ ω′J
τ∑
l=1

 ∑
i∈J∩Bl

hi

2

= ω′J

τ∑
l=1

h>P(J ∩Bl)h,

where we used the Cauchy-Schwarz inequality. Using this, we obtain

P(J) ◦B
(18)
= P(J) ◦

τ∑
l=1

P(Bl) =
τ∑
l=1

P(J) ◦P(Bl) =
τ∑
l=1

P(J ∩Bl)
(8.1)

� 1

ω′
P(J).

17
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Lemma 6 Let J be any nonempty subset of [n] and Ŝ be a bucket sampling. Then

P(J) ◦ pp> �

(∑
i∈J

pi

)
Diag(P(J ∩ Ŝ)). (20)

Proof Choose any h ∈ Rn and note that

h>(P(J) ◦ pp>)h =

(∑
i∈J

pihi

)2

=

(∑
i∈J

xiyi

)2

,

where xi =
√
pihi and yi =

√
pi. It remains to apply the Cauchy-Schwarz inequality:∑

i∈J
xiyi ≤

∑
i∈J

x2
i

∑
i∈J

y2
i

and notice that the i-th element on the diagonal of P(J ∩ Ŝ) is pi for i ∈ J and 0 for i /∈ J

8.2 Proof of Theorem 3

By Theorem 5.2 in Qu and Richtárik (2016), we know that inequality (2) holds for param-
eters {vi} set to

vi =
d∑
j=1

λ′(P(Jj ∩ Ŝ))X2
ji,

where λ′(M) is the largest normalized eigenvalue of symmetric matrix M defined as

λ′(M) := max
h

{
h>Mh : h>Diag(M)h ≤ 1

}
.

Furthermore,

P(Jj ∩ Ŝ) = P(Jj) ◦P(Ŝ)

(17)
= P(Jj) ◦ pp> −P(Jj) ◦ pp> ◦B + P(Jj) ◦Diag(p)

(19)

�
(

1− 1

ω′J

)
P(Jj) ◦ pp> + P(Jj) ◦Diag(p)

(20)

�
(

1− 1

ω′J

)
δj Diag(P(Jj ∩ Ŝ)) + Diag(P(Jj ∩ Ŝ)),

whence λ′(P(Jj ∩ Ŝ)) ≤ 1 + (1− 1/ω′J) δj , which concludes the proof.

18



Importance Sampling for Minibatches

References
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Zheng Qu, Peter Richtárik, and Tong Zhang. Quartz: Randomized dual coordinate ascent
with arbitrary sampling. In NIPS 28, pages 865–873, 2015.
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Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function. Mathematical Programming, 144
(2):1–38, 2014.
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