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Abstract

We propose a new class of semiparametric exponential family graphical models for the anal-
ysis of high dimensional mixed data. Different from the existing mixed graphical models, we
allow the nodewise conditional distributions to be semiparametric generalized linear models
with unspecified base measure functions. Thus, one advantage of our method is that it is
unnecessary to specify the type of each node and the method is more convenient to apply
in practice. Under the proposed model, we consider both problems of parameter estimation
and hypothesis testing in high dimensions. In particular, we propose a symmetric pairwise
score test for the presence of a single edge in the graph. Compared to the existing methods
for hypothesis tests, our approach takes into account of the symmetry of the parameters,
such that the inferential results are invariant with respect to the different parametrizations
of the same edge. Thorough numerical simulations and a real data example are provided
to back up our theoretical results.
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1. Introduction

Given a d-dimensional random vector X = (X1, . . . , Xd)
T , inferring the conditional inde-

pendence among X and quantifying its uncertainty are important tasks in statistics. We
propose a unified framework for modeling, estimation, and uncertainty assessment for a
new type of graphical model, named as semiparametric exponential family graphical model.
Let G = (V,E) be an undirected graph with node set V = {1, 2, . . . , d} and edge set
E ⊆ {(j, k) : 1 ≤ j < k ≤ d}. The semiparametric exponential family graphical model
specifies the joint distribution of X such that for each j ∈ V, the conditional distribution
of Xj given X\j := (X1, . . . , Xj−1, Xj+1, . . . , Xd)

T is of the form

p(xj | x\j) = exp
[
ηj(x\j) · xj + fj(xj)− bj(ηj , fj)

]
, (1)
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where x\j = (x1, . . . , xj−1, xj+1, . . . , xd), ηj(x\j) = αj+
∑

k 6=j βjkxk is the canonical param-
eter, fj(·) is an unknown base measure function, and bj(·, ·) is the log-partition function.
Besides, we assume βjk = βkj for all j 6= k. By definition, the unknown parameter con-
tains {(αj , βjk, fj) : 1 ≤ j < k ≤ d}. To make the model identifiable, we set αj = 0 and
absorb the term αjxj into fj(xj). By the Hammersley-Clifford theorem (Besag, 1974), we
have βjk 6= 0 if and only if Xj and Xk are conditionally independent given {X` : ` 6= j, k}.
Therefore, we set (j, k) ∈ E if and only if βjk 6= 0. The graph G thus characterizes the
conditional independence relationship among the high dimensional distribution of X. The
key feature of the proposed model is that (1) it is a general semiparametric model and (2)
it can be used to handle mixed data, which means that X may contain both continuous
and discrete random variables. Unlike the existing mixed graphical models, we allow the
nodewise conditional distributions to be semiparametric generalized linear models with un-
specified base measure functions. Thus, our method does not need to specify the type of
each node and is more convenient to apply in practice. In addition to the proposed new
model, our paper has the following two novel contributions.

First, for the purpose of estimating βjk, we extend the multistage relaxation algorithm
(Zhang, 2010) and conduct a localized analysis for a more sophisticated loss function ob-
tained by a statistical chromatography method (Liang and Qin, 2000; Diao et al., 2012;
Chan, 2012; Ning et al., 2017b). The gradient and Hessian matrix of the loss function are
nonlinear U-statistics with unbounded kernel functions. This makes our technical analy-
sis more challenging than that in Zhang (2010). Under the assumption that the sparse
eigenvalue condition holds locally, we prove the same optimal statistical rates for parameter
estimation as in high dimensional linear models.

Second, we propose a symmetric pairwise score test for the null hypothesis H0 : βjk =
0. This is equivalent to testing whether Xj and Xk are conditionally independent given
{X` : ` 6= j, k}. Compared with Ning et al. (2017b), the novelty of our method is that
we consider a more sophisticated cross type inference which incorporates the symmetry
of the parameter, i.e., βjk = βkj . By considering this unique structure of the graphical
model, our proposed method achieves the invariance property of the inferential results.
That means the same p-values are obtained for testing βjk = 0 and βkj = 0. In contrast,
the asymmetric method in Ning et al. (2017b) may lead to different conclusions for testing
these two equivalent null hypotheses.

1.1. Related Works

There is a huge literature on estimating undirected graphical models (Lauritzen, 1996;
Edwards, 2000; Whittaker, 2009). For modeling continuous data, the most commonly used
methods are Gaussian graphical models (Yuan and Lin, 2007; Banerjee et al., 2008; Friedman
et al., 2008; Ravikumar et al., 2011; Rothman et al., 2008; Lam and Fan, 2009; Shen et al.,
2012; Yuan, 2010; Cai et al., 2011; Sun and Zhang, 2013; Guo et al., 2011; Danaher et al.,
2014; Mohan et al., 2014; Meinshausen and Bühlmann, 2006; Peng et al., 2009; Friedman
et al., 2010). To relax the Gaussian assumption, Liu et al. (2009); Xue et al. (2012b); Liu
et al. (2012); Ning and Liu (2013) propose the Gaussian copula model and Voorman et al.
(2014) study the joint additive models for graph estimation. For modeling binary data,
the Ising graphical model is considered by Lee et al. (2006); Höfling and Tibshirani (2009);
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Ravikumar et al. (2010); Xue et al. (2012a); Cheng et al. (2014). In addition to binary
data, Allen and Liu (2012) and Yang et al. (2013b) consider the Poisson data and Guo
et al. (2015) consider the ordinal data. Moreover, Yang et al. (2013a) propose exponential
family graphical models, and Tan et al. (2014) propose a general framework for graphical
models with hubs.

Recently, modeling the mixed data attracts increasing interests (Lee and Hastie, 2015;
Fellinghauer et al., 2013; Cheng et al., 2017; Chen et al., 2015; Fan et al., 2017; Yang et al.,
2014). Compared with Lee and Hastie (2015); Cheng et al. (2017); Chen et al. (2015); Yang
et al. (2014), our model has the following two main advantages. First, it is a semiparametric
model, which does not need to specify the parametric conditional distribution for each node.
Therefore, it provides a more flexible modeling framework than the existing ones. Second,
under our proposed model, the estimation and inference methods are easier to implement.
Unlike these existing methods, we propose a unified estimation and inference procedure,
which does not need to distinguish whether the node satisfies the Gaussian distribution
or the Bernoulli distribution. In addition, our estimation and inference methods are more
efficient than the nonparametric approach in Fellinghauer et al. (2013). Finally, our method
is more convenient for modeling the count data than the latent Gaussian copula approach
in Fan et al. (2017).

Though significant progress has been made towards developing new graph estimation
procedures, the research on uncertainty assessment of the estimated graph lags behind.
In low dimensions, Drton et al. (2007); Drton and Perlman (2008) establish confidence
subgraph of Gaussian graphical models. In high dimensions, Ren et al. (2015); Janková
and van de Geer (2015); Gu et al. (2015) study the confidence interval for a single edge
under Gaussian (copula) graphical models and Liu et al. (2013) study the false discovery
rate control. However, all these methods rely on the Gaussian or sub-Gaussian assumption
and cannot be easily applied to the discrete data and more generally the mixed data in high
dimensions.

1.2. Notation

We adopt the following notation throughout this paper. For any vector v = (v1, . . . , vd)
T ∈

Rd, we define its support as supp(v) = {t : vt 6= 0}. We define its `0-norm, `p-norm, and `∞-
norm as ‖v‖0 = |supp(v)|, ‖v‖p = (

∑
j∈[d] |vj |p)1/p and ‖v‖∞ = maxj∈[d] |vj |, respectively,

where p > 1. Let v⊗2 = vvT be the Kronecker product of a vector v and itself. We write
v ◦ u = (v1u1, . . . , vdud)

T as the Hadamard product of two vectors u,v ∈ Rd. In addition,
we use |v| = (|v1|, . . . , |vd|)T to denote the elementwise absolute value of vector v and define
‖v‖min = minj∈[d] |vj |. For any matrix A = [ajk] ∈ Rd1×d2 , let AS1S2 =[ajk]j∈S1,k∈S2 be the
submatrix of A with indices in S1×S2; let Aj\j = [ajk]k 6=j . Besides, let ‖A‖2, ‖A‖1, ‖A‖∞,
‖A‖`p be the spectral norm, elementwise `1-norm, elementwise `∞-norm, and operator `p-
norm of A, respectively. Furthermore, for two matrices A1 and A2, we write A1 � A2 if
A2−A1 is positive semidefinite and write A1 ≤ A2 if every entry of A2−A1 is nonnegative.
For a function f(x) : Rd → R, we write ∇f(x), ∇Sf(x), ∇2f(x) and ∂f(x) as the gradient
of f(x), the gradient of f(x) with respect to xS , the Hessian of f(x), and the subgradient of
f(x), respectively. Moreover, we write {1, 2, . . . , d} as [d]. For a sequence of random vectors
{Yi}i≥1 and a random vector Y , we write Yi  Y if {Yi}i≥1 converges to Y in distribution.
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Finally, for functions f(n) and g(n), we write f(n) . g(n) to denote that f(n)≤cg(n) for a
universal constant c∈(0,+∞) and we write f(n) � g(n) when f(n) . g(n) and g(n) . f(n)
hold simultaneously.

1.3. Paper Organization

The rest of this paper is organized as follows. In §2 we introduce the semiparametric
exponential family graphical models. In §3 we present our methods for graph estimation
and uncertainty assessment. In §4 we lay out the assumptions and main theoretical results.
We study the finite-sample performance of our method on both simulated and real-world
datasets in §5 and conclude the paper in §6 with some discussion.

2. Semiparametric Exponential Family Graphical Models

The semiparametric exponential family graphical models are defined by specifying the con-
ditional distribution of each variable Xj given the rest of the variables {Xk : k 6= j}.

Definition 1 (Semiparametric exponential family graphical model) A d-dimensional
random vector X = (X1, . . . , Xd)

T ∈ Rd follows a semiparametric exponential graphical
model with graph G = (V,E) if for any node j ∈ V, the conditional density of Xj given X\j
satisfies

p(xj |x\j) = exp
[
xj(β

T
j x\j) + fj(xj)− bj(βj , fj)

]
, (2)

where fj(·) is an unknown base measure function and bj(·, ·) is a known log-partition func-
tion. In particular, (j, k) ∈ E if and only if βjk 6= 0.

This model is semiparametric since we treat both βj = (βj1, . . . , βjj−1, βjj+1, . . . , βjd)
T ∈

Rd−1 and the univariate function fj(·) as parameters, where βj and fj(·) are the parametric
and nonparametric components, respectively. Because the model in Definition 1 is only
specified by the conditional distributions of each variable, it is important to understand
the conditions under which a valid joint distribution of X exists. This problem has been
addressed by Chen et al. (2015). As shown in their Proposition 1, one sufficient condition
for the existence of joint distribution of X is that, (i) βjk = βkj for 1 ≤ j, k ≤ d and (ii)

g(x) := exp
[∑

j<k βjkxjxk +
∑d

j=1 fj(xj)
]

is integrable.
Hereafter, we assume that the above two conditions hold. Thus, there exists a joint

probability distribution for the model defined in (2), whose density has the form of

p(x) = exp

[∑
k<`

βk`xkx` +
d∑
j=1

fj(xj)−A
(
{βi, fi}i∈[d]

)]
, (3)

where βk` 6= 0 if and only if (k, `) ∈ E. Here A(·) is the log-partition function given by

A
(
{βi, fi}i∈[d]

)
:= log

{∫
Rd

exp

[∑
k<`

βk`xkx` +

d∑
j=1

fj(xj)

]
ν(dx)

}
, (4)

where ν(·) is a product measure satisfying ν(dx) =
∏
j∈[d] νj(dxj), and each νj is either a

Lebesgue or a counting measure on the domain of Xj , depending whether Xj is discrete or
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continuous. Since βk` = β`k for all pairs of nodes (k, `), in the sequel, we will use βk` and
β`k interchangeably for notational simplicity.

Furthermore, we remark that, without the knowledge of {fj}j∈[d], estimating parameters
{βj}j∈[d] is insufficient to learn the distribution of X. In this paper, we focus on the
statistical inference of the underlying conditional independence graph specified by {βj}j∈[d].
In the next section, by adopting a loss function for {βj}j∈[d] that is free of the base measures,
we obtain estimators of these parameters, which are used to construct an estimator of the
underlying graph. Moreover, by further considering the hypothesis testing problem for each
βjk, we are able to assess the uncertainty of the estimated graph.

2.1. Examples

We provide some widely used parametric examples in the class of semiparametric exponen-
tial family graphical models.

Gaussian Graphical Models: The Gaussian graphical models assume that X ∈ Rd
follows a multivariate Gaussian distribution N(0,Θ−1), where Θ ∈ Rd×d is the precision
matrix satisfying Θjj = 1 for j ∈ [d]. The conditional distribution of Xj given X\j satisfies

Xj |X\j = αTj X\j + εj with εj ∼ N(0, 1),

where αj = Θ\j,j . The conditional density is given by

p(xj |x\j) =
√

1/(2π) exp
[
−xj(ΘT

\j,jx\j)− 1/2 · x2
j − 1/2 · (ΘT

\j,jx\j)
2
]
.

Compared with (2), we obtain βj = −Θ\j,j , fj(x) = −x2/2 and bj(βj , fj) = (βTj x\j)
2/2 +

log(2π)/2.

Ising Models: In an Ising model with no external field, X takes value in {0, 1}d and the
joint probability mass function p(x) ∝ exp(

∑
j<k θjkxjxk). Let θj = (θj1, . . . , θj,j−1, θj,j+1, . . . , θjd)

T .
The conditional distribution of Xj given X\j is of the form

p(xj |x\j) =
exp
(∑

k<` θk`xkx`
)∑

xj∈{0,1} exp
(∑

k<` θk`xkx`
) = exp

{
xj
(
θTj x\j

)
− log

[
1 + exp(θTj x\j)

]}
.

Therefore, in this case we have βj = θj , fj(x) = 0 and bj(βj , fj) = log[1 + exp(βTj x\j)].

Exponential Graphical Models: For exponential graphical models, X takes values in
[0,+∞)d and the joint probability density satisfies p(x) ∝ exp(−

∑d
j=1 φjxj−

∑
k<` θk`xkx`).

In order to ensure that this probability distribution is normalizable, we require that φj >
0, θjk ≥ 0 for all j, k ∈ [d]. Then we obtain the following conditional probability density of
Xj given X\j :

p(xj |x\j) = exp

(
−

d∑
k=1

φkxk −
∑
k<`

θk`xkx`

)/∫
xj≥0

exp

(
−

d∑
k=1

φkxk −
∑
k<`

θk`xkx`

)
dxj

= exp
[
−xj

(
φj + θTj x\j

)
− log

(
φj + θTj x\j

)]
.

Thus, we have βj = −θj , fj(x) = −φjx and bj(βj , fj) = log(βTj x\j + φj).
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Poisson Graphical Models: In a Poisson graphical model, every node Xj is a discrete
random variable taking values in N = {0, 1, 2, . . .}. The joint probability mass function is
given by

p(x) ∝ exp

[ d∑
j=1

φjxj −
d∑
j=1

log(xj !) +
∑
k<`

θk`xkx`

]
.

Similar to the exponential graphical models, we also need to impose some restrictions on
the parameters so that the probability mass function is normalizable. Here we require that
θjk ≤ 0 for all j, k ∈ [d]. By direct computation, the conditional probability mass function
of Xj given X\j is given by

p(xj |x\j) = exp
[
xj
(
θTj x\j

)
+ φjxj − log(xj !)− bj(θj , fj)

]
,

where we have βj = θj , fj(x) = φjx − log(x!) and bj(βj , fj) = log
{∑∞

y=0 exp
[
y(βTj x\j) +

fj(y)
]}
.

3. Graph Estimation and Uncertainty Assessment

In this section, we lay out the procedures for graph estimation and uncertainty assessment.
Throughout our analysis, we use {β∗i , f∗i }i∈[d] to denote the true parameters, and E(·) to
denote the expectation with respect to the joint density in (3) with the true parameters. We
first introduce a pseudo-likelihood loss function for the parametric components {βj}dj=1 that
is invariant to the nuisance parameters {fj}j∈[d]. Based on such a loss function, we present
an Adaptive Multi-stage Convex Relaxation algorithm to estimate each β∗j by minimizing
the loss function regularized by a nonconvex penalty function. We then proceed to introduce
the inferential procedure for accessing the uncertainty of a given edge in the graph.

3.1. A Nuisance-Free Loss Function

For graph estimation, we treat βj as the parameter of interest and the base measures fj(·)
as nuisance parameter. Let X1, . . . ,Xn be n i.i.d. copies of X. Due to the presence of
fj(·), finding the conditional maximum likelihood estimator of βj is intractable. To solve
this problem, we exploit a pseudo-likelihood loss function proposed in Ning et al. (2017b)
that is invariant to the nuisance parameters {fj}j∈[d]. This pseudo-likelihood loss is based
on pairwise local order statistics, which have been previously studied in Liang and Qin
(2000); Diao et al. (2012); Chan (2012) for semiparametric regression models. More details
are presented as follows.

Let x1,x2, . . . ,xn be n data points that are realizations of X1,X2, . . . ,Xn. For any
1 ≤ i < i′ ≤ n, let

Ajii′ :=
{

(Xij , Xi′j) = (xij , xi′j),Xi\j = xi\j ,Xi′\j = xi′\j
}

be the event that we observeXi\j = xi\j andXi′\j = xi′\j and the order statistics ofXij and
Xi′j (but not the relative ranks of Xij and Xi′j). More specifically, we denote max{Xij , Xi′j}
and min{Xij , Xi′j} by O1 and O2, and let o1 and o2 be the observed values of O1 and O2.

Then Ajii′ can be equivalently written as {O1 = o1, O2 = o2,Xi\j = xi\j ,Xi′\j = xi′\j}.
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Let R ∈ {(1, 2), (2, 1)} be the relative rank of Xij and Xi′j , and r be the observed value.
Then, by definition, we have

P
(
Xij = xij , Xi′j = xi′j

∣∣Xi\j = xi\j ,Xi′\j = xi′\j
)

= P
(
O1 = o1, O2 = o2

∣∣Xi\j = xi\j ,Xi′\j = xi′\j
)
· P
(
R = r

∣∣Ajii′).
Furthermore, we have

P
(
R = r

∣∣Ajii′) =

[
1 +

P(Xij = xi′j , Xi′j = xij
∣∣Ajii′)

P(Xij = xij , Xi′j = xi′j
∣∣Ajii′)

]−1

=

[
1 +

P(Xij = xi′j , Xi′j = xij
∣∣Xi\j = xi\j ,Xi′\j = xi′\j)

P(Xij = xij , Xi′j = xi′j
∣∣Xi\j = xi\j ,Xi′\j = xi′\j)

]−1

=
[
1 +Rjii′(βj)

]−1
,

(5)

where Rjii′(βj) := exp[−(xij − xi′j)βjT (xi\j − xi′\j)]. Based on the conditional likelihood
in (5), we construct the following pseudo-likelihood loss function for βj :

Lj(βj) :=
2

n(n− 1)

∑
1≤i<i′≤n

log
[
1 +Rjii′(βj)

]
. (6)

Obviously, Lj(·) only involves βj . Since its form resembles the logistic loss, to find a
minimizer of this loss function, we could readily apply any logistic regression solver.

3.2. Adaptive Multi-stage Convex Relaxation Algorithm

Now we are ready to present the algorithm for parameter estimation. For high dimensional
sparse estimation, to promote sparsity, we minimize the sum of the loss functions Lj(βj) and
some penalty function. Two of the most prevalent methods are the LASSO (`1-penalization)
(Tibshirani, 1996) and the folded concave penalization (Fan et al., 2014). Although the `1-
penalization enjoys good computational properties as a convex optimization problem, it is
known to incur significant estimation bias for parameters with large absolute values (Zhang
and Huang, 2008). In contrast, nonconvex penalties such as smoothly clipped absolute
deviation (SCAD) penalty, minimax concave penalty (MCP) and capped-`1 penalty can
eliminate such bias and attain improved rates of convergence. Therefore, we consider the
nonconvex optimization problem

β̂j = argmin
Rd−1

{
Lj(βj) +

∑
k 6=j

pλ(|βjk|)
}
, (7)

where λ > 0 is a regularization parameter and pλ(·) : [0,+∞) → [0,+∞) is a penalty
function satisfying the following three conditions:

(C.1) The penalty function pλ(u) is continuously nondecreasing and concave with pλ(0) = 0.

(C.2) The right-hand derivative at u = 0 satisfies p′λ(0) = p′λ(0+) = λ.
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(C.3) There exist constants c1 ∈ [0, 1] and c2 ∈ (0,+∞) such that p′λ(u+) ≥ c1λ for u ∈
[0, c2λ].

Note that we only require the penalty function to be right-differentiable. In what follows, we
denote by p′λ(u) the right-hand derivative. By (C.1), p′λ(u) is nonincreasing and nonnegative
in [0,∞). It is easy to verify that SCAD, MCP and capped-`1 penalty all satisfy (C.1)–(C.3).

Due to the penalty term, the optimization problem in (7) is nonconvex and may have
multiple local solutions. To overcome such difficulty, we exploit the local linear approxima-
tion algorithm (Zou and Li, 2008; Fan et al., 2014) or equivalently, the multi-stage convex
relaxation (Zhang, 2010; Zhang et al., 2013; Fan et al., 2018) to attain an estimator of
β∗j . Compared with previous works that mainly focus on sparse linear regression, our loss
function Lj(βj) is a U -statistics based logistic loss, which requires nontrivial extensions of
the existing theoretical analysis.

We present the proposed adaptive multi-stage convex relaxation method in Algorithm 1.
Our algorithm solves a sequence of convex optimization problems corresponding to finer and
finer convex relaxations of the original nonconvex optimization problem. More specifically,
for each j = 1, . . . , d, in the first iteration, step 4 of Algorithm 1 is equivalent to a `1-

regularized optimization problem and we obtain the first-step solution β̂
(1)
j . Then, in each

subsequent iteration, we solve an adaptive `1-regularized optimization problem where the
weights of the penalty depend on the solution of the previous step. For example, in the

`-th iteration, the regularization parameter λ
(`−1)
jk in (8) is updated using the (` − 1)-th

step estimator β̂
(`−1)
j . Note that p′λ

(
|β(`)
jk |
)

is the right-hand derivative of pλ(u) evaluated

at u = |β(`)
jk |.

Since the optimization problem in step 4 is convex, our method is computationally
efficient. Besides, note that (8) with ` = 1 corresponds to the `1-regularized problem.
Hence, our approach can be viewed as a refinement of LASSO. As we will show in §4.1,
the estimator β̂j of β∗j constructed by Algorithm 1 attains the optimal statistical rates of
convergence for parameter estimation.

Algorithm 1 Adaptive Multi-stage Convex Relaxation algorithm for parameter estimation

1: Initialize λ
(0)
jk = λ for 1 ≤ j, k ≤ d.

2: for j= 1,2,. . . ,d do
3: for ` = 1, 2, . . . ,until convergence do
4: Solve the convex optimization problem

β̂
(`)
j = argmin

Rd−1

{
Lj(βj) +

∑
k 6=j

λ
(`−1)
jk |βjk|

}
. (8)

5: Update λ
(`)
jk by λ

(`)
jk = p′λ(|β̂(`)

jk |) for 1 ≤ k ≤ d, k 6= j.
6: end for
7: Output β̂j = β̂

(`)
j , where ` is the number of iterations until convergence is attained.

8: end for
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3.3. Graph Inference: Composite Pairwise Score Test

For any given 1 ≤ j < k ≤ d, we are interested in testing if (j, k) ∈ E, i.e., we consider
the hypothesis testing problem H0 : β∗jk = 0 versus H1 : β∗jk 6= 0. To simplify the notation,

we write βj\k = (βj1, . . . , βjj−1, βjj+1, . . . , βjk−1, βjk+1, . . . , βjd)
T ∈ Rd−2 and denote the

parameters associated with node j and node k by βj∨k :=
(
βjk;β

T
j\k,β

T
k\j
)T ∈ R2d−3. In

addition, let Hj := E
[
∇2Lj(β

∗
j )
]

be the expected Hessian of Lj(βj) evaluated at β∗j . We

define two submatrices Hj
jk,j\k and Hj

j\k,j\k of Hj as

Hj
jk,j\k :=

[
E
∂2Lj(β

∗
j )

∂βjk∂βjv

]
v 6=k

∈ Rd−2 and Hj
j\k,j\k :=

[
E
∂2Lj(β

∗
j )

∂βju∂βjv

]
u6=k,v 6=k

∈ R(d−2)×(d−2),

and we define Hk
jk,k\j and Hk

k\j,k\j similarly. Furthermore, we define

w∗j,k = Hj
jk,j\k

[
Hj
j\k,j\k

]−1
and w∗k,j = Hk

jk,k\j
[
Hk
k\j,k\j

]−1
. (9)

Following the general approach in Ning et al. (2017a); Neykov et al. (2018), the composite
pairwise score function for parameter βjk is defined as

Sjk(βj∨k) = ∇jkLj(βj) +∇jkLk(βk)−w∗j,k
T∇j\kLj(βj)−w∗k,j

T∇k\jLk(βk). (10)

where we write ∇jkLj(βj) = ∂Lj(βj)/∂βjk and ∇j\kLj(βj) = ∂Lj(βj)/∂βj\k. Here, the
last two terms in (10) are constructed to reduce the effect of nuisance parameters βj\k and
βk\j on assessing the uncertainty of β∗jk, which is the parameter of interest. A key feature
of Sjk(βj∨k) is that the symmetry of βjk and βkj (i.e., βjk = βkj) is taken into account,
which is distinct from the existing works such as Ren et al. (2015); Janková and van de
Geer (2015); Liu et al. (2013) for Gaussian graphical models and Ning et al. (2017b) in the
regression setup.

Note that both w∗j,k and w∗k,j are computed from H, which is unknown. We estimate
them using the Dantzig-type estimators (Candés et al., 2007). Specifically, we define the
empirical versions of Hj

jk,j\k and Hj
j\k,j\k as

∇2
jk,j\kLj(βj) =

[
∂2Lj(βj)

∂βjk∂βjv

]
v 6=k

and ∇2
j\k,j\kLj(βj) =

[
∂2Lj(βj)

∂βju∂βjv

]
u6=k,v 6=k

.

We also define ∇2
jk,k\jLk(βk) and ∇2

k\j,k\jLk(βk) similarly. Then we estimate w∗j,k by
solving

ŵj,k = argmin ‖w‖1 such that
∥∥∇2

jk,j\kLj(0, β̂j\k)−wT∇2
j\k,j\kLj(0, β̂j\k)

∥∥
∞ ≤ λD,

(11)

where β̂j is the estimator of β∗j obtained from Algorithm 1 and λD is a regularization
parameter. An estimator ŵk,j of w∗k,j can be similarly obtained. Based on ŵj,k and ŵk,j ,
we construct the composite pairwise score statistic for β∗jk by

Ŝjk = ∇jkLj(0, β̂j\k) +∇jkLk
(
0, β̂k\j

)
− ŵT

j,k∇j\kLj
(
0, β̂j\k

)
− ŵT

k,j∇k\jLk
(
0, β̂k\j

)
.

(12)

9
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Comparing (10) and (12), we see that Ŝjk is obtained by replacing βj and βk in (10) by

(0, β̂j\k) and (0, β̂k\j) respectively and replacing w∗j,k and w∗k,j in (10) by ŵj,k and ŵk,j .

To obtain a valid hypothesis test, we need to establish the limiting distribution of Ŝjk
under the null hypothesis. Note that Ŝjk is a linear combination of entries of ∇Lj(βj) and
∇Lk(βk), both of which are U -statistics. In the next section, we prove the asymptotic nor-
mality of Ŝjk. More specifically, under the null hypothesis, we have

√
nŜjk/2 N(0, σ2

jk),

where the limiting variance can be estimated consistently by σ̂2
jk (More details will be ex-

plained in the following section). With a significance level α ∈ (0, 1), the test function
ψjk(α) is defined as

ψjk(α) =

{
1 if

∣∣√nŜjk/(2σ̂jk)
∣∣ > Φ−1(1− α/2)

0 if
∣∣√nŜjk/(2σ̂jk)

∣∣ ≤ Φ−1(1− α/2)
, (13)

where Φ(t) is the cumulative distribution function of a standard normal random variable.

In sum, the composite pairwise score test for the null hypothesis H0 : β∗jk = 0 consists

of the following four steps: (i) Calculate β̂j and β̂k from Algorithm 1; (ii) Obtain ŵj,k

and ŵk,j by solving two Dantzig-type problems defined in (11); (iii) Compute the limiting
variance σ̂2

jk; (iv) Evaluate the test function (13).

4. Theoretical Properties

In this section, we present our theoretical results. We first prove that the proposed procedure
attains the optimal rate of convergence for parameter estimation. Then, we provide theory
for the composite pairwise score test.

4.1. Theoretical Results for Parameter Estimation

We first establish the rates of convergence of the adaptive multi-stage convex relaxation
estimator. We begin by listing several required assumptions. The first is about moment
conditions of {Xj} and the local smoothness of the log-partition function A(·) defined in
(4). This assumption also appears in Yang et al. (2013a) and Chen et al. (2015) as a pivotal
technical condition for theoretical analysis.

Assumption 2 For all j ∈ [d], we assume that the first two moments of Xj are bounded.
That is, there exist two constants κm and κv such that |E(Xj)| ≤ κm and E(X2

j ) ≤ κv.

Denote the true parameters by {β∗j , f∗j }j∈[d] and define d univariate functions Āj(·) : R→ R
as

Āj(u) := log

{∫
Rd

exp

[
uxj +

∑
k<`

β∗k`xkx` +

d∑
i=1

f∗i (xi)

]
dν(x)

}
, j ∈ [d].

We assume that there exists a constant κh such that maxu : |u|≤1 Ā
′′
j (u) ≤ κh for all j ∈ [d].

Unlike the Ising graphical models, {Xj}j∈[d] are not bounded in general for semipara-
metric exponential family graphical models. Instead, we impose mild conditions as in

10



On Semiparametric Exponential Family Graphical Models

Assumption 2 to obtain a loose control of the tail behaviors of the distribution of X. As
shown in Yang et al. (2013a), Assumption 2 implies that for all j ∈ [d],

max
{

logE[exp(Xj)], logE[exp(−Xj)]
}
≤ κm + κh/2.

Markov inequality implies for any x > 0,

P
(
|Xj | ≥ x

)
≤ 2 exp(κm + κh/2) · exp(−x). (14)

Thus, by setting x = C log d in (14) with constant C sufficiently large, we have ‖X‖∞ ≤
C log d with high probability. In addition to Assumption 2, we also impose conditions to
control the curvature of function Lj(·).

Definition 3 (Sparse eigenvalue condition) For any j, s ∈ [d], we define the s-sparse
eigenvalues of E[∇2Lj(β

∗
j )] as

ρ∗j+(s) := sup
v∈Rd−1

{
vTE

[
∇2Lj(β

∗
j )
]
v : ‖v‖0 ≤ s, ‖v‖2 = 1

}
;

ρ∗j−(s) := inf
v∈Rd−1

{
vTE

[
∇2Lj(β

∗
j )
]
v : ‖v‖0 ≤ s, ‖v‖2 = 1

}
.

Assumption 4 Let s∗ = maxj∈[d] ‖β∗j ‖0. We assume that for any j ∈ [d], there exist an

integer k∗ ≥ 2s∗ satisfying lim
n→∞

k∗(log9 d/n)1/2 = 0 and a positive number ρ∗ such that the

sparse eigenvalues of E[∇2Lj(β
∗
j )] satisfy

0 < ρ∗ ≤ ρ∗j−(2s∗+ 2k∗) < ρ∗j+(k∗) < +∞ and

ρ∗j+(k∗)
/
ρ∗j−(2s∗+ 2k∗) ≤ 1 + 0.2k∗/s∗ for any j ∈ [d].

The condition ρ∗j+(k∗)
/
ρ∗j−(2s∗+2k∗) ≤ 1+0.2k∗/s∗ requires the eigenvalue ratio ρ∗j+(k)/ρ∗j−(2k+

2s∗) to grow sub-linearly in k. Assumption 4 is commonly referred to as sparse eigenvalue
condition, which is standard for sparse estimation problems and has been studied by Bickel
et al. (2009); Raskutti et al. (2010); Zhang (2010); Negahban et al. (2012); Xiao and Zhang
(2013); Loh and Wainwright (2015) and Wang et al. (2014). Our assumption is similar to
that in Zhang (2010) and is weaker than the restricted isometry property (RIP) proposed
in Candés and Tao (2005). We claim that this assumption is true in general and will be
verified for Gaussian graphical models in the appendix.

Now we are ready to present the main theorem of this section. Recall that the penalty
function pλ(u) satisfies conditions (C.1)–(C.3) in §3.2. We use p′λ(u) to denote its right-hand
derivative. For convenience, we will set p′λ(u) = 1 when u < 0.

Theorem 5 (`2- and `1-rates of convergence) For all j ∈ [d], we define the support of
β∗j as Sj :=

{
(j, k) : β∗jk 6= 0, k ∈ [d]

}
and let s∗ = maxj∈[d] ‖β∗j ‖0. Let ρ∗ > 0 be defined in

Assumption 4. Under Assumptions 2 and 4, there exists an absolute constant K > 0 such
that ‖∇Lj(β∗j )‖∞ ≤ K

√
log d/n,∀j ∈ [d] with probability at least 1 − (2d)−1. Moreover,

the penalty function pλ(·) in (7) satisfies (C.1)–(C.3) listed in §3.2 with c1 = 0.91 and
c2 ≥ 24/ρ∗ for condition (C.3). We set the regulization parameter λ = C

√
log d/n with

C ≥ 25K. We denote constants % = c2(c2ρ∗−11)−1, A1 = 22%, A2 = 2.2c2, B1 = 32%,

11
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B2 = 3.2c2, γ = 11c−1
2 ρ−1

∗ < 1, and define Υj := [
∑

(j,k)∈Sj
p′λ(|β∗jk|−c2λ)2]1/2. Then, with

probability at least 1−d−1, we have the following statistical rates of convergence:∥∥β̂(`)
j − β

∗
j

∥∥
2
≤ A1

[∥∥∇SjLj(β
∗
j )
∥∥

2
+ Υj

]
+A2

√
s∗λγ` and (15)∥∥β̂(`)

j − β
∗
j

∥∥
1
≤ B1

√
s∗
[∥∥∇SjLj(β

∗
j )
∥∥

2
+ Υj

]
+B2s

∗λγ`,∀j ∈ [d]. (16)

By Theorem 5, the statistical rates are dominated by the second term if p′λ(|β∗jk|−c2λ)
is not negligible. If the signal strength is large enough such that p′λ(β−c2λ) = 0 where
β=min(j,k)∈Sj

|β∗jk|, after sufficient number of iterations, the statistical rates will be of the
order∥∥β̂(`)

j − β
∗
j

∥∥
2

= OP
(∥∥∇SjLj(β

∗
j )
∥∥

2

)
and

∥∥β̂(`)
j − β

∗
j

∥∥
1

= OP
(√
s∗
∥∥∇SjLj(β

∗
j )
∥∥

2

)
.

However, if the signals are uniformly small such that p′λ
(
|β∗jk|−c2λ

)
> 0 for all (j, k)∈Sj ,

the rates of convergence will be of the order∥∥β̂(`)
j − β

∗
j

∥∥
2

= OP
(√
s∗λ
)

and
∥∥β̂(`)

j − β
∗
j

∥∥
1

= OP
(
s∗λ
)
,

which are identical to the `2- and `1-rates of the LASSO estimator, respectively (Ning
et al., 2017b). Thus c2λ can be viewed as the threshold of signal strength. Therefore, after
sufficient numbers of iterations, the final estimator β̂j obtained by Algorithm 1 attains the
following more refined rates of convergence:∥∥β̂j−β∗j∥∥2

= OP

(∥∥∇SjLj(β
∗
j )
∥∥

2
+Υj

)
and

∥∥β̂j−β∗j∥∥1
= OP

(√
s∗
[∥∥∇SjLj(β

∗
j )
∥∥

2
+Υj

])
.

These statistical rates of convergence are optimal in the sense that they cannot be improved
in terms of the order.

Finally, we comment that the sparsity level s∗ in (15) and (16) can be replaced by
the sparsity level of each β∗j . Let s∗j = ‖β∗j ‖0 be the sparsity level of β∗j and λj be the
regularization parameter for optimization problem (7) such that λj � ‖∇Lj(β∗j )‖∞. The

statistical rates of convergence for each β̂
(`)
j can be improved to∥∥β̂(`)

j − β
∗
j

∥∥
2

= OP
(√

s∗jλj
)

and
∥∥β̂(`)

j − β
∗
j

∥∥
1

= OP
(
s∗jλj

)
.

We use the uniform sparsity level s∗=maxj∈[d] s
∗
j and the same regularization parameter λ

for simplicity, but the proof can be easily adapted to individual s∗j and λj for each j∈ [d].

4.2. Theoretical Results for Composite Pairwise Score Test

In the composite pairwise score test for the null hypothesis H0 : β∗jk = 0, we construct the
test statistic by combining the loss functions Lj(·) and Lk(·) together because βjk appears
in both Lj(βj) and Lk(βk) (recall that we use βjk and βkj interchangeably). In the sequel,
we present the theoretical results that guarantee the validity of the proposed inferential
method.

Recall that we define the pairwise score function Sjk(βj∨k) and the pairwise score statis-

tic Ŝjk in (10) and (12) respectively. According to a fixed pair of nodes (j, k), entries in
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βj and βk can be categorized into three types: (i) βjk, (ii) βj\k = (βj`; ` 6= k)T , and (iii)

βk\j = (βk`; ` 6= j)T . Recall that we write βj∨k = (βjk,β
T
j\k,β

T
k\j)

T for notational simplicity.

Moreover, letting Ljk
(
βj∨k

)
:= Lj(βj) + Lk(βj), the entries of ∇Ljk

(
βj∨k

)
are given by

∇jkLjk(βj∨k) = ∇jkLj(βj) +∇kjLk(βk); ∇j\kLjk(βj∨k) = ∇j\kLj(βj), and

∇k\jLjk(βj∨k) = ∇k\jLk(βk).

Let β̂j and β̂k be the estimators of β∗j and β∗k obtained from Algorithm 1. Note that we

can write the pairwise score function Sjk(·) and the test statistic Ŝjk as

Sjk(βj∨k) = ∇jkLjk
(
βj∨k

)
−w∗j,k

T∇j\kLjk
(
βj∨k

)
−w∗k,j

T∇k\jLjk
(
βj∨k

)
and (17)

Ŝjk = ∇jkLjk
(
β̂′j∨k

)
− ŵT

j,k∇j\kLjk
(
β̂′j∨k

)
− ŵT

k,j∇k\jLjk
(
β̂′j∨k

)
, (18)

where we write β̂′j∨k :=
(
0, β̂Tj\k, β̂

T
k\j)

T , w∗j,k and w∗k,j are defined in (9), ŵj,k is obtained

from the Dantzig-type problem in (11), and ŵk,j can be obtained similarly. To derive

the asymptotic distribution of Ŝjk under the null hypothesis, we first show that
√
n
[
Ŝjk −

Sjk(β
∗
j∨k)

]
= oP(1). Then the problem is reduced to finding the limiting distribution of

Sjk(β
∗
j∨k) under H0. Thanks to its structure of being a U -statistics, we can characterize

the limiting distribution of Sjk(β
∗
j∨k) using the method of Hájek projection (Van der Vaart,

2000), which approximates a U -statistic with a sum of independent random variables.

To begin with, we denote the kernel functions of ∇Lj(βj), ∇Lk(βk) and ∇Ljk(βj∨k) as

hjii′(βj), h
k
ii′(βk) and hjkii′(βj∨k) respectively. It can be shown that E[hjii′(β

∗
j )] = E[hkii′(β

∗
k)] =

0; hence hjkii′(β
∗
j∨k) is also centered. We define

gjk(Xi) := n/2 · E
[
∇Ljk

(
β∗j∨k

)∣∣Xi

]
= E

[
hjkii′
(
β∗j∨k

)∣∣Xi

]
and (19)

Ujk :=
2

n

n∑
i=1

gjk(Xi) =
n∑
i=1

E
[
∇Ljk

(
β∗j∨k

)∣∣Xi

]
. (20)

Thus 2/n · gjk
(
Xi

)
is the projection of ∇Ljk

(
β∗j∨k

)
onto the σ-filed generated by Xi and

Ujk is the Hájek projection of ∇Ljk
(
β∗j∨k

)
. Under mild conditions, Ujk in (20) is a good

approximation of ∇Ljk
(
β∗j∨k

)
, which enables us to characterize the limiting distribution

of Sjk(β
∗
j∨k). We present the following assumption that guarantees the non-degeneracy of

gjk
(
Xi

)
.

Assumption 6 Under Assumption 2, for gjk(Xi) defined in (19), we denote the covariance
matrix of gjk(Xi) as Σjk := E[gjk(Xi)gjk(Xi)

T ]. We assume that there exists a constant
cΣ > 0 such that λmin(Σjk) ≥ cΣ for all 1≤j<k≤d.

Assumption 6 requires the minimum eigenvalue of Σjk to be bounded away from 0, which
implies Var(vTUjk) ≥ 4cΣ for all v ∈ R2d−3 with ‖v‖2 = 1. Thus, this assumption guaran-
tees the asymptotic variance of

√
nSjk(β

∗
j∨k) is bounded away from 0. We also present the

following assumption that specifies the scaling of the Dantzig selector problem in (11).
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Assumption 7 We assume that Hj is invertible for all j ∈ [d]. In addition, we assume that
there exist an integer s?0 and a positive number w0 such that ‖w∗j,k‖0 ≤ s?0−1 and ‖w∗j,k‖1 ≤
w0. Besides, the regularization parameter λD in (11) satisfies λD � max{1, w0}s∗λ log2 d.
Moreover, we assume that

lim
n→∞

(1+w0+w2
0)s∗λ log2 d = 0, lim

n→∞
(1+w0)s?0λD = 0, and lim

n→∞

√
n(s∗+s?0)λλD = 0.

(21)

In addition, recall that we denote the s-sparse eigenvalues of E[∇2Lj(β
∗
j )] by ρ∗j−(s) and

ρ∗j+(s). We further assume that there exist an integer k?0 ≥ s?0 and a positive number ν∗
such that

lim
n→∞

k?0
(
log9 d/n

)1/2
= 0, 0 < ν∗ ≤ ρ∗j−(s?0 + k?0) < ρ∗j+(k?0) ≤

(
1 + 0.5k?0/s

?
0

)
ν∗, 1 ≤ j ≤ d.

If we can treat w0 as a constant, and k∗ and k?0 is of the same order of s∗ and s?0,
respectively, Assumption 7 is reduced to λD � s∗λ log2 d, s?0λD = o(1), s∗λ log2 d = o(1),
and (s∗+s?)λλD = o(n1/2). Since λ �

√
log d/n, we can choose λD = Cs∗(log5 d/n)1/2 with

a sufficiently large C, provided (s∗ + s?0)(log9 d/n)1/2 = o(1), s?0s
∗(log5 d/n)1/2 = o(1), and

(s∗ + s?0)s∗ log3 d/n = o(n−1/2). Hence this condition is fulfilled if

log d = o
(

min
{

(
√
n/s∗

)2/9
, (
√
n/s?0)2/9, (

√
n/s∗2)1/3, (

√
n/s∗s?)1/3

})
.

Now we are ready to present the main theorem of composite pairwise score test.

Theorem 8 Under the Assumptions 2, 4, 6 and 7, it holds uniformly for all j 6= k and
j, k ∈ [d] that

√
nŜjk =

√
nSjk

(
β∗j∨k

)
+ oP(1). Furthermore, we let β̂′j∨k = (0, β̂Tj\k, β̂

T
k\j)

T

and define Σ̂jk := n−1
∑n

i=1

{
(n−1)−1

∑
i′ 6=i h

jk
ii′(β̂

′
j∨k)

}⊗2
, where hjkii′

(
βj∨k

)
is the kernel

function of the second-order U -statistic ∇Ljk(βj∨k). In addition, we define σ̂jk by

σ̂2
jk := Σ̂jk

jk,jk − 2Σ̂jk
jk,j\kŵj,k − 2Σ̂jk

jk,k\jŵk,j + ŵT
j,kΣ̂

jk
j\k,j\kŵj,k + ŵT

k,jΣ̂
jk
k\j,k\jŵk,j .

Then, under the null hypothesis H0 : β∗jk = 0, we have
√
nŜjk

/
(2σ̂jk) N(0, 1).

By Theorem 8, to test the null hypothesis H0 : β∗jk = 0 against the alternative hy-

pothesis H1 : β∗jk 6= 0, we reject H0 if the studentized test statistic
√
nŜjk

/
(2σ̂jk) is too

extreme. Recall that the test function of the composite pairwise score test with signifi-
cance level α is deboted by ψjk(α) in (13). The associated p-value is defined as pjkψ :=

2
[
1− Φ

(∣∣√nŜjk/(2σ̂jk)
∣∣)]. By Theorem 8, under H0, we have

lim
n→∞

P
(
ψjk(α) = 1 | H0

)
= α and pjkψ  Unif[0, 1] under H0,

where Unif[0, 1] is the uniform distribution over [0, 1].
We note that our inferential approach is still valid if we replace β̂′j∨k in (18) by other

estimators of β∗j∨k, provided such an estimator converges to β∗j∨k at an appropriate statis-
tical rate. Our theory still holds after simple modification on the proof when controlling
the order of the remainder terms.
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Remark 9 There are a number of recent works on the uncertainty assessment for high di-
mensional linear models or generalized linear models with `1-penalty; see Lee et al. (2016);
Lockhart et al. (2014); Belloni et al. (2012, 2013); Zhang and Zhang (2014); Javanmard
and Montanari (2014); van de Geer et al. (2014). These works utilize the convexity and
the Karush-Kuhn-Tuker conditions of the LASSO problem. Compared with these works,
our pairwise score test is constructed using a nonconvex penalty function and is applicable
to a larger model class. Ning et al. (2017b) consider the score test for `1-penalized semi-
parametric generalized linear models in the regression setting. Compared with this work, we
adopt a composite score test with a nonconvex penalty and relax many technical assump-
tions including the bounded covariate assumption. For nonconvex penalizations, Fan and Lv
(2011); Bradic et al. (2011) establish the asymptotic normality for the low dimensional and
nonzero parameters in high dimensional models based on the oracle properties. However,
their approach depends on the minimal signal strength assumption, which is not needed in
our approach.

5. Numerical Results

In this section we study the finite-sample performance of the proposed graph inference
methods on both simulated and real-world datasets.

5.1. Simulation Studies

We first examine the numerical performance of the proposed pairwise score tests for the
null hypothesis H0 : β∗jk = 0. We simulate data from the following three settings:

(i) Gaussian graphical model. We set n = 100 and d = 200. The graph structure is
a 4-nearest-neighbor graph, that is, for j, k ∈ [d], j 6= k, node j is connected with
node k if |j − k| = 1, 2, d − 2, d − 1. More specifically, we sample X1, . . . ,Xn from a
Gaussian distribution Nd(0,Σ). For the precision matrix Θ = Σ−1, we set Θjj = 1,∣∣Θjk

∣∣ = µ ∈ [0, 0.25) for |j − k| = 1, 2, d−2, d−1 and Θjk = 0 for 2≤ |j − k|≤ d − 2.
Note that µ denotes the signal strength of the graph inference problem and µ ≤ 0.25
ensures that Θ is diagonal dominant and invertible.

(ii) Ising graphical model. We set n = 100 and d = 200. The graph structure is a
10× 20 grid with the sparsity level s∗ = 4. We use Markov Chain Monte Carlo
method (MCMC) to simulate n data from an Ising model with joint distribution
p(x) ∝ exp

(∑
j 6=k β

∗
jkxjxk

)
(using the package IsingSampler (Epskamp, 2015)). We

set |β∗jk| = µ ∈ [0, 1] if there exists an edge connecting node j and node k, and β∗jk = 0
otherwise.

(iii) Mixed graphical model. We set n = 100 and d = 200. The graph structure is a
10×10×2 grid with the sparsity level s∗ = 5. We set the nodes in the first layer to
be binomial and nodes in the second layer to be Gaussian. We set |β∗jk| = µ ∈ [0, 1] if
there exists an edge connecting node j and node k, and β∗jk = 0 otherwise. We refer
to Lee and Hastie (2015) for details.

We denote the true parameters of the graphical models as {β∗jk, j 6= k}. We also denote

β∗j = (β∗j1, . . . , β
∗
jd)

T . For the Gaussian graphical model, we have β∗jk = Θjk. We first
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obtain a point estimate of β∗j by solving (7) using Algorithm 1 with the capped-`1 penalty
pλ(u) = λmin{u, λ}. The parameter λ is chosen by 10-fold cross validation as suggested by
Ning et al. (2017b).

Recall that the form of the loss function Lj(βj) is exactly the loss function for logis-
tic regression, where we use Rademacher random variables yii′ as response and yii′(xij −
xi′j)β

T
j (xi\j − xi′\j) as covariates, Algorithm 1 can be easily implemented by using the

`1-regularized logistic regression such as the PICASSO package (Ge et al., 2017). In particu-
lar, the algorithm converges quickly after a few iterations, indicating that it attains a good
balance between computational efficiency and statistical accuracy. Once β̂j is obtained, we

solve the Dantzig-type problem (11) using β̂j as input. We set the regularization parameter
λD to be 1. In practice, the performance of the proposed method is not very sensitive to
the choice of λD.

To examine the performance of our semiparametric modeling approach, we compare
the pairwise score test with the desparsity method in van de Geer et al. (2014). Although
this method is proposed for hypothesis tests in generalized linear models (GLMs), it can
be adapted for graphical models by performing nodewise regression, assuming the base
measures {fj}j∈[d] are correctly specified. When testing H0 : β∗jk = 0 with j < k, we apply
the desparsity method with Xj and X\j being the response and covariates, respectively.
Furthermore, to show that combining both Lj(βj) and Lk(βk) is beneficial for inferring
β∗jk, we also compare our method with the asymmetric score test, which constructs a score
test statistic similar to that in (12) based solely on Lj(βj).

To examine the validity of our method, we test H0 : β∗jk = 0 versus H1 : β∗jk 6= 0 for
all (j, k). Recall that β∗jk = µ when there is an edge. Here, we let µ increase from 0 to a
sufficiently large number. We calculate the type I errors and powers as

Type I error =
the number of rejected hypotheses when there is no edge

d(d− 1)/2− the total number of edges
,

Power =
the number of rejected hypotheses when there is an edge

the total number of edges
.

We report the type I errors and powers of the hypothesis tests at the 0.05 significance level
in Figure 1 and Figure 2, respectively. The simulation is repeated 100 times. As revealed
in Figure 1, both the asymmetric and the pairwise score test achieve accurate type I errors,
which is comparable to the desparsity method. Moreover, in terms of the power of the test,
in Figure 2, the two score tests based on the loss function defined in (6) are less powerful
than the desparsity method, which shows the loss of efficiency by only considering the
relative rank. However, as shown in Figure 2-(b) and (c), the two score tests are nearly as
powerful as the desparsity method in the Ising and mixed graphical models. In addition, we
emphasize that for mixed graphical models the desparsity method needs to know the type
(or distribution) of each nodes as a priori. Such phenomenon suggests that we may sacrifice
little efficiency for model generality/robustness. Furthermore, comparing the performances
of these two score tests, we see that the pairwise score test achieves uniformly higher power
than the asymmetric one, which perfectly illustrates that taking into consideration of the
symmetry of β∗jk and β∗kj may improve the inference accuracy.
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(a). Gaussian graphical model. (b). Ising model. (c). Mixed graphical model.

Figure 1: Type-I errors of the composite pairwise score test, asymmetric score test, and the
desparsity method for the three graphical models at the 0.05 significance level.
These figures are based on 100 independent simulations.
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(a). Gaussian graphical model. (b). Ising model. (c). Mixed graphical model.

Figure 2: Powers of the composite pairwise score test, asymmetric score test, and the
desparsity method for the three graphical models at the 0.05 significance level.
These figures are based on 100 independent simulations.

5.2. Real Data Analysis

We then apply the proposed methods to analyze a publicly available dataset named Computer

Audition Lab 500-Song (CAL500) dataset (Turnbull et al., 2008). The data can be ob-
tained from the Mulan database (Tsoumakas et al., 2011). The CAL500 dataset consists
of 502 popular music tracks each of which is annotated by at least three listeners. The
attributes of this dataset include two subsets: (i) continuous numerical features extracted
from the time series of the audio signal and (ii) discrete binary labels assigned by human
listeners to give semantic descriptions of the song. For each music track, short time Fourier
transform is implemented for a sequence of half-overlapping 23ms time windows over the
song’s digital audio file. This procedure generates four types of continuous features: spectral
centroids, spectral flux, zero crossings and a time series of Mel-frequency cepstral coefficient
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(MFCC). For the MFCC vectors, every consecutive 502 short time windows are grouped
together as a block window to produce the following four types of features: (i) overall mean
of MFCC vectors in each block window, (ii) mean of standard deviations of MFCC vec-
tors in each block window, (iii) standard deviation of the means of MFCC vectors in each
block window, and (iv) standard deviation of the standard deviations of MFCC vectors
in each block window. More details on the feature extraction can be found in Tzanetakis
and Cook (2002). In addition to these continuous variables, binary variables in the CAL500

dataset include a 174-dimensional array indicating the existence of each annotation. These
174 annotations can be grouped into six categories: emotions (36 variables), instruments
(33), usages (15), genres (47), song characteristics (27) and vocal types (16). Our goal is
to infer the association between these different types of variables using graphical models.
This dataset has been analyzed in Cheng et al. (2017) where they exploit a nodewise group-
LASSO regression to estimate the graph structure. In what follows, we use the proposed
pairwise score test to examine the graph structure.

Similar to Turnbull et al. (2008) and Cheng et al. (2017), we only keep the MFCC
features because they can be interpreted as the amplitude of the audio signal and the other
continuous features are not readily interpretable. Unlike Cheng et al. (2017), we keep all
the binary labels. Thus the processed dataset has n = 502 data points of dimension d = 226
with 52 continuous variables and 174 binary variables. We apply the pairwise score test to
each pair of variables to determine the presence of an edge between them. The p-values
for the null hypothesis that two variables are conditionally independence given the rest of
variables are calculated. We then apply the Bonferroni correction to control the familywise
error rate at 0.05. We set the nonconvex penalty function in optimization problem (7) to
be capped-`1 penalty pλ(u) = λmin{u, λ} with the regularization parameter λ selected by
10-fold cross-validation as in the previous section.

We compare the pairwise score test with the desparsity method and the asymmetric score
test, which are constructed in the same way as in the simulation. We present the fitted
graphs obtained by these three methods in Figure 3-(a)–(c), where we plot the connected
components and omit the singletons. Moreover, in Figure 3-(d), we plot the intersection of
these three graphs. To better display the graphical structure, we use a square to represent
each type of 13 MFCC features respectively. If a node is connected to any node within the
group of variables in a MFCC node, then we draw an edge. We use circles to represent the
binary variables and use different colors to indicate their categories. The obtained graphs
have some interesting properties. While all three tests create different graphs, the graphs
obtained by the pairwise score test and the asymmetric score test have more common edges,
which agrees with our simulation results. Indeed, our test can correct the inconsistency of
the asymmetric score test, in the sense that the asymmetric score tests for β∗jk = 0 and
β∗kj = 0 may yield different test results. To show this inconsistency problem, we also plot
the graph obtained by the asymmetric score test based on the loss function Lk(βk) in Figure
4 in the appendix. Comparing with Figure 3-(b), we can see that the asymmetric score test
indeed leads to many contradictory edges.

In Figure 3, both the pairwise score test and this asymmetric score test discover that
songs that are danceable (circle 92) are suited for parties (circle 93), but such a connection
is not found by the desparsity method. This is also true for the connection between the
rapping vocals (circle 119) and the rap genre (circle 48) and the edge between strong vocals
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(circle 122) and songs with strong emotions (circle 19). Moreover, in all three graphs, the
continuous features are densely connected within themselves, which is similar to the results
in Cheng et al. (2017). All three tests find that the noisiness of the music (square 4) is
connected with the quality of songs (circle 85). Furthermore, the common edges connecting
two binary variables also display interesting patterns. For instance, we find that awakening
emotions (circle 6) are connected with soothing emotions (circle 8); laid-back emotions
(circle 14) are connected with songs with high energy (circle 32); sad emotions (circle 20)
are connected with songs with positive feelings (circle 84); songs with female lead vocals
(circle 62) are connected with those with male lead vocals (circle 66). In addition, songs
using drum sets (circle 59) are connected with the electronica genre (circle 46), which is
also connected with the acoustic texture (circle 88). All these edges have fairly intuitive
explanations.

In summary, the proposed method reveals some interesting associations between these
variables and can be used as a useful complement to analyze high dimensional datasets with
more complex distributions.

6. Conclusion

We propose an integrated framework for uncertainty assessment of a new semiparametric
exponential family graphical model. The novelty of our model is that the base measures of
each nodewise conditional distribution are treated as unknown nuisance functions. Towards
the goal of uncertainty assessment, we first adopt the adaptive multi-stage relaxation algo-
rithm to perform the parameter estimation. Then we propose a composite pairwise score
test of the graph structure. Our method provides a rigorous justification for the uncertainty
assessment, and is further supported by extensive numerical results. In a followup paper
(Tan et al., 2016), the proposed model is further extended to account for the unobserved
latent variables in the graphical model.
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(a). Pairwise score test. (b). Asymmetric score test.
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(c). Desparsity method. (d). The common edges.

Figure 3: Estimated graphs in the CAL500 dataset inferred by the pairwise score test, asym-
metric score test, and the desparsity method. We plot the connected components
of the estimated graph. In (a)-(c) we plot the graphs obtained by these three ap-
proaches, respectively, and plot the common edges in (d). For better illustration,
we only plot the connected components, combine the same type of continuous
variables, display them as a square and draw each binary variable as a circle.
The edges of the estimated graph show the association between these variables.
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Appendix A. Proof of the Main Results

In this appendix we lay out the proof of the main results. In §A.1 we prove the result of
parameter estimation. The proof is based an induction argument that Algorithm 1 keeps
penalizing most of the irrelevant features and gradually reduces the bias in relevant features.

A.1. Proof of Theorem 5

Proof We only need to prove the theorem for one node j ∈ [d], the proof is identical for
the rest. To begin with, we first define a few index sets that play a significant role in our
analysis. For all j ∈ [d], we let Sj := {(j, k) : β∗jk 6= 0, k ∈ [d]} be the support of β∗j . For

the number of iterations ` = 1, 2, . . ., let G`j :=
{

(j, k) /∈ Sj : λ
(`−1)
jk ≥ p′λ(c2λ), k ∈ [d]

}
.

By condition (C.3) of the penalty function pλ(u) (see §3.2), we have p′λ(c2λ) ≥ 0.91λ. In

addition, we let J `j be the largest k∗ components of
[
β̂

(`)
j

]
G`

j
in absolute value where k∗

is defined in Assumption 4. In addition, we let I`j = (G`j)
c ∪ J `j . Moreover, for notational

simplicity, we denote
[
βj
]
G`

j
,
[
βj
]
G`

j
and

[
βj
]
I`j

as βG`
j
,βJ`

j
and βI`j

respectively when no

ambiguity arises.
The key point of the proof is to show that the complement of G`j is not too large. To be

more specific, we show that
∣∣(G`j)c∣∣ ≤ 2s∗ for ` ≥ 1. Since Sj ⊂ (G`j)

c, (G`j)
c ≤ 2s∗ implies∣∣(G`j)c − Sj∣∣ ≤ s∗. Note that G`j is the set of irrelevant features that are heavily penalized

in the `-th iteration of the algorithm, (G`j)
c−S being a small set indicates that the most of

the irrelevant features are heavily penalized in each step. We show that
∣∣(G`)c∣∣ ≤ 2s∗ for

each ` ≥ 1 by induction.

For ` = 1, we have G1
j = Scj because λ

(0)
jk = λ for all j, k ∈ [d]. Hence

∣∣(G1
j )
c
∣∣ ≤ s∗. Now

we assume that |
(
G`j
)c| ≤ 2s∗ for some integer ` and our goal is to prove that |

(
G`+1
j

)c| ≤ 2s∗.
Our proof is based on three technical lemmas. The first lemma shows that the regularization
parameter λ in (7) is of the same order as ‖∇Lj(β∗j )‖∞.

Lemma 10 Under Assumptions 2 and 4, there exists a positive constants K such that, it
holds with probability at least 1− (2d)−1 that∥∥∇Lj(β∗j )∥∥∞ ≤ K√log d/n, ∀j ∈ [d]. (22)

Proof See §C.1 for a proof.

By this lemma, we conclude that the regularization parameter λ ≥ 25
∥∥∇Lj(β∗j )∥∥∞ with

high probability. The following lemma bounds the `1- and `2-norms of β̂
(`)
j −β∗j by the

norms of its subvector under the induction assumption that
∣∣(G`j)c∣∣ ≤ 2s∗.

Lemma 11 Letting the index sets Sj , G
`
j , J

`
j and I`j be defined as above, we denote G̃`j :=(

G`j
)c
. Under the assumption that |G`j | ≤ 2s∗, we have∥∥β̂(`)

j − β
∗
j

∥∥
2
≤ 2.2

∥∥β̂(`)

I`j
− β∗

I`j

∥∥
2

and
∥∥β̂(`)

j − β
∗
j

∥∥
1
≤ 2.2

∥∥β̂(`)

G̃`
j

− β∗
G̃`

j

∥∥
1
. (23)

Proof See §C.2 for a detailed proof.
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The next lemma guarantees that β̂
(`)
j stays in the `1-ball centered at β∗j with radius r for

` ≥ 1 where r appears in Assumption 4. Moreover, by showing this property of Algorithm
1 , we obtain a crude rate for parameter estimation. We summarized this result in the next
lemma.

Lemma 12 For ` ≥ 1 and j ∈ [d], we denote λ
(`)
Sj

:= (λ
(`)
jk , (j, k) ∈ Sj)T . Assuming that∣∣(G`j)c∣∣ ≤ 2s∗, it holds with probability at least 1 − d−1 that, for all j ∈ [d], the estimators

β̂
(`)
j obtained in each iteration of Algorithm 1 satisfy∥∥β̂(`)

I`j
− β∗

I`j

∥∥
2
≤ 10ρ−1

∗

[∥∥∇
G̃`

j
Lj(β

∗
j )
∥∥

2
+
∥∥λ(`−1)

Sj

∥∥
2

]
, G̃`j := (G`j)

c. (24)

This implies the following crude rates of convergence for β̂
(`)
j :∥∥β̂(`)

j − β
∗
j

∥∥
2
≤ 24ρ−1

∗
√
s∗λ and

∥∥β̂(`)
j − β

∗
j

∥∥
1
≤ 33ρ−1

∗ s∗λ. (25)

Proof See §C.3 for a detailed proof.

Now we show that G̃`+1
j =(G`+1

j )c satisfies |G̃`+1
j | ≤ 2s∗, which concludes our induction.

Letting A := (G`+1
j )c−Sj , by the definition of G`+1

j , (j, k) ∈ A implies that (j, k) /∈ Sj

and p′λ
(∣∣β̂(`)

jk

∣∣) ≤ p′λ(c2λ). Hence by the concavity of pλ(·), for any (j, k) ∈ A,
∣∣β̂(`)
jk

∣∣ ≥ c2λ.
Therefore we have√

|A| ≤
∥∥β̂(`)

A

∥∥
2

/
(c2λ) =

∥∥β̂(`)
A − β

∗
A

∥∥
2

/
(c2λ) ≤ 24ρ−1

∗
√
s∗
/
c2 ≤

√
s∗, (26)

where the first inequality follows from |A| ≤
∑

(j,k)∈A
∣∣β̂(`)
jk

∣∣2/(c2λ)2. Note that (26) implies

that
∣∣(G`+1

j )c
∣∣ ≤ 2s∗. Therefore by induction,

∣∣(G`j)c∣∣ ≤ 2s∗ for any ` ≥ 1.

Now we have shown that for ` ≥ 1 and j ∈ [d],
∣∣(G`j)c∣∣ ≤ 2s∗ and the crude statistical

rates (25) hold. In what follows, we derive the more refined rates (15) and (16).

A refined bound for
∥∥β̂(`)

j − β∗j
∥∥

2
and

∥∥β̂(`)
j − β∗j

∥∥
1
: For notional simplicity, we let

δ(`) = β̂
(`)
j − β∗j and omit subscript j in Sj , G

`
j , J

`
j and I`j . We also denote G̃` := (G`)c. We

first derive a recursive bound that links ‖δ(`)

I`
‖2 to ‖δ(`−1)

I`−1 ‖2. Note that by (23), ‖δ(`)‖1 ≤
2.2‖δ(`)

G̃`
‖1 ≤ 2.2

√
2s∗‖δ(`)

G̃`
‖2. Hence we only need to control ‖δ(`)

I`
‖2 to obtain the statistical

rates of convergence for β̂
(`)
j . By triangle inequality,∥∥∇

G̃`Lj(β
∗
j )
∥∥

2
≤
∥∥∇SLj(β∗j )∥∥2

+

√
|G̃` − S|

∥∥∇Lj(β∗j )∥∥∞.
Since λ > 25

∥∥∇Lj(β∗j )∥∥∞, (26) implies that∥∥∇
G̃`Lj(β

∗
j )
∥∥

2
≤
∥∥∇SLj(β∗j )∥∥2

+
∥∥δ(`−1)

A

∥∥
2

/
(25c2), (27)

where A := (G`)c − S ⊂ I`. Thus (27) can be written as∥∥∇
G̃`Lj(β

∗
j )
∥∥

2
≤
∥∥∇SLj(β∗j )∥∥2

+
∥∥δ(`−1)

I`

∥∥
2

/
(25c2). (28)
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Also notice that ∀βjk ∈ R, if |βjk − β∗jk| ≥ c2λ,

p′λ(|βjk|) ≤ λ ≤ |βjk − β∗jk|
/
c2;

otherwise we have |β∗jk| − |βjk| ≤ |βjk − β∗jk| < c2λ and thus p′λ(|βjk|) ≤ p′λ
(
|β∗jk|−c2λ

)
by

the concavity of pλ(·). Hence the following inequality always holds:

p′λ(|βjk|) ≤ p′λ
(
|β∗jk|−c2λ

)
+ |βjk − β∗jk|

/
c2. (29)

Applying (29) to β̂
(`−1)
j we have

∥∥λ(`−1)
S

∥∥
2
≤
[ ∑

(j,k)∈S

p′λ
(
|β∗jk|−c2λ

)2]1/2

+

[ ∑
(j,k)∈S

|β̂(`−1)
jk −β∗jk|2

]1/2/
c2,

which leads to ∥∥λ(`−1)
S

∥∥
2
≤
[ ∑

(j,k)∈S

p′λ
(
|β∗jk|−c2λ

)2]1/2
+
∥∥δ(`−1)

I`−1

∥∥
2

/
c2. (30)

By (24), (28) and (30) we obtain∥∥δ(`)

I`

∥∥
2
≤ 10ρ−1

∗
[∥∥∇SLj(β∗j )∥∥2

+ Υj

]
+ γ
∥∥δ(`−1)

I`−1 ‖2,

where γ := 11(c2ρ∗)
−1 and we define Υj :=

[∑
(j,k)∈S p

′
λ

(
|β∗jk|−c2λ

)2]1/2
for notational

simplicity. Note that since c2 ≥ 24ρ−1
∗ , we have γ < 1. By recursion we obtain∥∥δ(`)

I`

∥∥
2
≤ 10%

[∥∥∇SLj(β∗j )∥∥2
+ Υj

]
+ γ`−1

∥∥δ(1)
I1

∥∥
2
, (31)

where % := ρ−1
∗ · (1 − γ)−1 = c2(c2ρ∗ − 11)−1. Using

∥∥β̂(`)
j − β∗j

∥∥
2
≤ 2.2

∥∥β̂(`)

I`j
− β∗

I`j

∥∥
2
, we

can bound
∥∥β̂(`)

j − β∗j
∥∥

2
by∥∥β̂(`)

j − β
∗
j

∥∥
2
≤ 22%

[∥∥∇SjLj(β
∗
j )
∥∥

2
+ Υj

]
+ 2.2γ`−1

∥∥δ(1)

I1j

∥∥
2
.

Note that for ` = 1, by (24) we have∥∥δ(1)

I1j

∥∥
2
≤ 10ρ−1

∗
√
s∗
[
λ+
√

2
∥∥∇Lj(β∗j )∥∥∞] ≤ 11ρ−1

∗
√
s∗λ = c2γ

√
s∗λ. (32)

then we establish the following bound for
∥∥β̂(`)

j − β∗j
∥∥

2
:∥∥β̂(`)

j − β
∗
j

∥∥
2
≤ 22%

[∥∥∇SjLj(β
∗
j )
∥∥

2
+ Υj

]
+ 2.2c2

√
s∗λγ`. (33)

Similarly, by
∥∥β̂(`)

j −β∗j
∥∥

1
≤ 2.2

√
2s∗
∥∥β̂(`)

I`j
−β∗

I`j

∥∥
2
, we obtain a bound on

∥∥β̂(`)
j −β∗j

∥∥
1
:

∥∥β̂(`)
j − β

∗
j

∥∥
1
≤ 32

√
s∗%
[∥∥∇SjLj(β

∗
j )
∥∥

2
+ Υj

]
+ 2.2γ`−1

√
2s∗
∥∥δ(1)

I1j

∥∥
2
. (34)
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By (32) we have 2.2
√

2s∗
∥∥δ(1)

I1j

∥∥
2
≤ 3.2c2γs

∗λ, then the right-hand side of (34) can be

bounded by ∥∥β̂(`)
j − β

∗
j

∥∥
1
≤ 32

√
s∗%
[∥∥∇SjLj(β

∗
j )
∥∥

2
+ Υj

]
+ 3.2c2s

∗λγ`. (35)

Therefore (15) and (16) can be implied by (33) and (35) respectively. Moreover, by Lemma
12, we conclude that the statistical rates (33) and (35) hold for all j ∈ [d] with probability
at least 1− d−1.

A.2. Proof of Theorem 8

Proof We first remind the reader that, for 1 ≤ j 6= k ≤ d, we denote

βj\k=(βj1, . . . , βjj−1, βjj+1, . . . , βjk−1, βjk+1, . . . , βjd)
T ∈ Rd−2,

βj∨k = (βjk,βj\k,βk\j)
T ∈R2d−3 and β̂′j∨k = (0, β̂j\k, β̂k\j)

T . In addition, we define σ2
jk =

Σjk
jk,jk − 2Σjk

jk,j\kw
∗
j,k − 2Σjk

jk,k\jw
∗
k,j + w∗j,k

TΣjk
j\k,j\kw

∗
j,k + w∗k,j

TΣjk
k\j,k\jw

∗
k,j . To prove the

theorem our goal is to prove the following two arguments:

lim
n→∞

max
j<k

√
n
∣∣Ŝjk−Sjk(β∗j∨k)∣∣ = 0 and lim

n→∞
max
j<k
|σ̂jk − σjk| = 0. (36)

Note that by Lemma 14, σ2
jk is the asymptotic variance of

√
n/2·Sjk(β∗j∨k). Thus combining

(36) and Slutsky’s theorem yields the theorem. By the the expression of Sjk(β
∗
j∨k) and

Ŝjk in (17) and (18), under null hypothesis, for a fixed pair of nodes j and k, we have

Ŝjk−Sjk(β∗j∨k)=I1j+I2j+I1k+I2k where I1j and I2j are defined as

I1j :=
[
∇jkLj(β̂′j)−∇jkLj(β∗j )

]
− ŵT

j,k

[
∇j\kLj(β̂′j)−∇j\kLj(β∗j )

]
and

I2j := (w∗j,k − ŵj,k)
T∇j\kLj(β∗j );

whereas I1k and I2k are defined by interchanging j and k in I1j and I2j :

I1k :=
[
∇kjLk(β̂′k)−∇jkLk(β∗k)

]
− ŵT

k,j

[
∇k\jLk(β̂′k)−∇k\jLk(β∗k)

]
and

I2k := (w∗k,j − ŵk,j)
T∇k\jLj(β∗k).

We first bound I1j . Recall that β̂′j = (0, β̂j\k)
T . Note that under the null hypothesis, β∗jk = 0,

by the Mean-Value Theorem, there exists a β̃j\k ∈ Rd−2 in the line segment between β̂j\k
and β∗j\k such that

I1j =
[
Λ̃jk,j\k − ŵT

j,kΛ̃j\k,j\k
](
β̂j\k − β∗j\k

)
,

where Λ̃ := ∇2Lj(0, β̃j\k). We let δ := β̂′j −β∗j and denote ∇2Lj(β̂
′
j) and ∇2(β∗j ) as Λ and

Λ∗ respectively. From the definition of Dantzig selector we obtain

|I1j | ≤ ‖Λjk,j\k − ŵTΛj\k,j\k‖∞‖δj\k‖1︸ ︷︷ ︸
I11

+ ‖Λjk,j\k − Λ̃jk,j\k‖∞‖δj\k‖1︸ ︷︷ ︸
I12

+ ‖ŵT (Λj\k,j\k − Λ̃j\k,j\k)δj\k‖∞︸ ︷︷ ︸
I13

.
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Theorem 5 implies that
∥∥δ‖1 ≤ Cs∗λ with probability tending to 1 for some constant C > 0.

Then by the definition of Dantzig selector, I11 ≤ Cs∗λλD. with high probability. Moreover,
the constant C is the same for all (j, k). By assumption 7, I11 = o(n−1/2) with probability
tending to one.

For term I12, Hölder’s inequality implies that

I12 ≤ ‖Λjk,j\k − Λ̃jk,j\k‖∞‖δj\k‖1. (37)

By Lemma 26 we obtain

‖Λ− Λ̃‖∞ ≤ ‖Λ−Λ∗‖∞ + ‖Λ∗ − Λ̃‖∞ ≤ 2Cs∗λ log2 d. (38)

Therefore combining (37) and (38) we have

I12 ≤ 2Cs∗2λ2 log2 d . s∗λλD uniformly for 1 ≤ j < k ≤ d.

Similarly by Hölder’s inequality, we have

I13 ≤ ‖ŵj,k‖1‖Λ− Λ̃‖∞‖δ‖1. (39)

Notice that by the optimality of ŵj,k, ‖ŵj,k‖1 ≤ ‖w∗j,k‖1 ≤ w0. Combining (39) and (38)
we have

I13 ≤ Cw0s
∗2λ2 log2 d . s∗λλD uniformly for 1 ≤ j < k ≤ d.

where we use the fact that λD & max{1, w0}s∗λ log2 d. Therefore we conclude that for
all j ∈ [d], |I1j | . s∗λλD = oP(n−1/2). For I2j , Hölder’s inequality implies that |I2j | ≤
‖w∗j,k − ŵj,k‖1

∥∥∇Lj(β∗j )∥∥∞. To control ‖w∗j,k − ŵj,k‖1, we need to the following lemma to
obtain the estimation error of the Dantzig selector ŵj,k.

Lemma 13 For 1 ≤ j 6= k ≤ d, let ŵj,k be the solution of the Dantzig-type optimization

problem (11) and let w∗j,k = Hj
jk,j\k(H

j
j\k,j\k)

−1. Under Assumptions 2, 4, 6 and 7, with
probability tending to one, we have

‖ŵj,k −w∗j,k‖1 ≤ 37ν−1
∗ s?0λD for all 1 ≤ j 6= k ≤ d.

Proof See §D.2 for a detailed proof.

Now combining Lemma 13 and Theorem 10 we obtain that

|I2j | ≤ 37ν−1
∗ K1s

?
0λD

√
log d/n � s?0λλD = o(n−1/2).

Therefore we have shown that I1j + I2j = o(n−1/2) with high probability. Similarly, we also
have I1k + I2k = o(n−1/2) with high probability. Moreover, since the bounds for |I1j | and
|I2j | is independent of the choice of (j, k) ∈ {(j, k) : 1 ≤ j 6= k ≤ d}, we conclude that

√
n
[
Ŝjk − Sjk

(
β∗j∨k

)]
= oP(1) uniformly for 1 ≤ j < k ≤ d.

Our next lemma characterizes the limiting distribution of ∇Ljk
(
β∗j∨k

)
and is pivotal for

establishing the validity of the composite pairwise score test.
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Lemma 14 For any b ∈ R2d−3 with ‖b‖2 =1 and |b‖0 ≤ s̃, if lim
n→∞

s̃
/
n=0, we have

√
n/2 · bT∇Ljk

(
β∗j∨k) N

(
0,bTΣjkb

)
. (40)

By Lemma 14 we obtain

√
n/2 · S

(
β∗j∨k

)
= ∇jkLjk

(
β∗j∨k

)
−w∗j,k

T∇j\kLjk
(
β∗j∨k

)
−w∗k,j

T∇j\kLjk
(
β∗j∨k

)
 N(0, σ2

jk),

where the asymptotic variance σ2
jk is given by

σ2
jk = Σjk

jk,jk − 2Σjk
jk,j\kw

∗
j,k − 2Σjk,k\jw

∗
k,j + w∗j,k

TΣjk
j\k,j\kw

∗
j,k + w∗k,j

TΣjk
k\j,k\jw

∗
k,j .

For a more accurate estimation of Ŝjk − Sjk
(
β∗j∨k

)
, we have

√
n
∣∣Ŝjk − Sjk(β∗j∨k)∣∣ ≤ √n(|I1|+ |I2|

)
.
√
n(s∗+s?0)λλD. (41)

Finally, the following lemma, whose proof is deferred to the supplementary material, shows
that σ̂jk is a consistent estimator of σjk.

Lemma 15 For 1 ≤ j 6= k ≤ d, we denote the asymptotic variance of
√
n/2 · Sjk(β∗j∨k) as

σ2
jk. Under Assumptions 2, 4, 6 and 7, the estimator σ̂jk satisfies lim

n→∞
max
j<k
|σ̂jk−σjk| = 0.

Proof See §D.3 for a proof.

Since σ̂jk is consistent for σjk by Lemma 15 and σjk is bounded away from zero by Assump-

tion 6, Slutsky’s theorem implies that
√
nŜjk/(2σ̂jk) N(0, 1).

Appendix B. Additional Estimation Results

We present the additional results of parameter estimation. In §B.1 we verify the sparse
eigenvalue condition for Gaussian graphical models, which justifies Assumption 4 in our
paper. In §B.2 we derive a more refined statistical rates of convergence for the iterates of
Algorithm 1.

B.1. Verify the Sparse Eigenvalue Condition for Gaussian Graphical Models

In this subsection, we verify the sparse eigenvalue condition for Gaussian graphical models.
Moreover, we show that such condition holds uniformly over a `1-ball centered at the true
parameter β∗j .

Proposition 16 Suppose X ∼ N(0,Σ) is a Gaussian graphical model and let Θ = Σ−1

be the precision matrix. For all j ∈ [d], the conditional distribution of Xj given X\j is a

normal distribution with mean β∗j
TX\j and variance Θ−1

jj , where β∗j = Θj\j . Let Lj(·) be
the loss function defined in (6). We assume that there exist positive constants D, cλ and
Cλ such that ‖Σ‖∞ ≤ D and cλ ≤ λmin(Σ) ≤ λmax(Σ) ≤ Cλ. We let s∗ = maxj∈[d] ‖β∗j ‖0
and also assume that there exists a constant Cβ > 0 such that ‖β∗j ‖2 ≤ Cβ for all j ∈ [d].
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Suppose r > 0 is a real number such that r = O(1/
√
s∗). Then, there exist ρ∗, ρ

∗ > 0 such
that for all j ∈ [d], and s = 1, . . . , d− 1,

ρ∗ ≤ ρ−
(
E
[
∇2Lj

]
,β∗j ; s, r

)
≤ ρ+

(
E
[
∇2Lj

]
,β∗j ; s, r

)
≤ ρ∗.

Proof We prove this lemma in two steps. For any βj ∈ Rd−1 such that ‖βj − β∗j ‖1 ≤ r

and any v ∈ Rd−1 such that ‖v‖2 = 1, we first give a lower bound for vTE
[
∇2Lj(βj)

]
v by

truncation. Then we give an upper bound in the second step.

Step (i): Lower Bound of vTE
[
∇2Lj(βj)

]
v. We denote Bj(r) :=

{
β ∈ Rd−1 : ‖β −

β∗j ‖1 ≤ r
}

. For two truncation levels τ > 0 and R > 0, we denote Aii′ :=
{
|Xij | ≤ τ

}
∩{

|Xi′j | ≤ τ
}

, Bi :=
{∣∣XT

i\jβj
∣∣ ≤ R,∀βj ∈ Bj(r)

}
and Bi′ :=

{∣∣XT
i′\jβ

∗
j

∣∣ ≤ R,∀βj ∈ Bj(r)
}
.

The values of R and τ will be determined later. By the definition of Lj(·), for any βj ∈ Bj(r)
and any v ∈ Rd−1 with ‖v‖2 = 1, we have

vT∇2Lj(βj)v ≥
2C1(R, τ)

n(n− 1)

∑
i<i′

(
Xij −Xi′j

)2[(
Xi\j −Xi′\j

)T
v
]2
I(Bi)T (Bi′)I(Aii′), (42)

where C1(R, τ) := exp(−4Rτ)
[
1 + exp(−4Rτ)

]−2
. For notational simplicity, we denote the

right-hand side of (42) as C1(R, τ)vT∆v. By the properties of Gaussian graphical models,
the conditional density of Xij given Ii :=

{
Xi\j = xi\j

}
∩ Bi is

p
(
xij |Ii) = p(xi|Bi)

/∫
R
p(xi|Bi)dxij = p(xij |xi\j),

where we use the fact that p(xi|Bi) = p(xi)/P(Bi) and that P(Bi) is a constant. Recall that

p(xij |Xi\j) =
√

Θjj

/
(2π) exp

[
−Θjj/2(xij −XT

i\jβ
∗
j )

2
]

where β∗j = Θj\j .

Thus the conditional expectation of (Xij −Xi′j)
2I(Aij) given Ii and Ii′ is

E
[
(Xij −Xi′j)

2I(Aii′)
∣∣∣Ii ∩ Ii′]

= Θjj/(2π)

∫ τ

−τ

∫ τ

−τ
(xij − xij)2 exp

{
−Θjj/2

[
(xij − βTj xi\j)2 + (xi′j − βTj xi′\j)2

]}
dxijdxi′j .

Note that on event Ii, |βTj Xi\j | ≤ R, hence the expression above can be lower-bounded by

E
[
(Xij −Xi′j)

2I(Aii′)
∣∣∣Ii ∩ Ii′]

≥ Θjj/(2π)

∫ τ

−τ

∫ τ

−τ
(xij − xi′j)2 exp

{
−Θjj/2

[
x2
ij + x2

i′j + 2R2 + 2R(|xij |+ |xi′j |)
]}

dxijdxi′j .

The last expression is positive and we denote it as C2(R, τ) for simplicity. Thus by the law
of total expectation we obtain

vTE(∆)v = vTE
[
E(∆

∣∣ ∩ni=1 Ii)
]
v ≥ C2(R, τ)E

{[
(Xi\j −Xi′\j)

Tv
]2
I(Bi)I(Bj)

}
.
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By Cauchy-Schwarz inequality we have

E
{[

(Xi\j −Xi′\j)
Tv
]2[

1− I(Bi)I(Bi′)
]}
≤
√
E[(Xi\j −Xi′\j)Tv

]4√P
(
Bci ∪ Bci′

)
. (43)

Note that for Gaussian graphical model, the marginal distribution of X\j is N(0,Σ\j\j).

If we denote Σ\j\j as Σ1, we have (Xi\j−Xi′\j)
Tv ∼ N(0, σ2

v), X
T
i\jβ

∗
j ∼ N(0, σ2

1) and

XT
i\jβ ∼ N(0, σ2

2) where σ2
v = 2vTΣ1v, σ

2
1 = β∗j

TΣ1β
∗
j and σ2

2 = βTj Σ1βj . Hence we have

E
[
(Xi\j −Xi′\j)

Tv
]4

= 3σ4
v . Because the maximum eigenvalue of Σ1 is upper bounded by

Cλ, we have σ2
1 ≤ CλC2

β and σ2
v ≤ 2Cλ. Note that σ2

2−σ2
1 =βTj Σ1βj−β∗j

TΣ1β
∗
j , the following

lemma in linear algebra bounds this type of error.

Lemma 17 Let M ∈ Rd×d be a symmetric matrix and vectors v1 and v2 ∈ Rd, then∣∣vT1 Mv1 − vT2 Mv2

∣∣ ≤ ‖M‖∞‖v1 − v2‖21 + 2‖Mv2‖∞‖v1 − v2‖1.

Proof Note that vT1 Mv1 − vT2 Mv2 = (v1−v2)TM(v1−v2) + 2vT2 M(v1−v2), Hölder’s
inequality implies∣∣vT1 Mv1 − vT2 Mv2

∣∣ ≤ ∣∣(v1−v2)TM(v1−v2)
∣∣+ 2

∣∣vT2 M(v1−v2)
∣∣

≤ ‖M‖∞‖v1 − v2‖21 + 2‖Mv2‖∞‖v1 − v2‖1.

Hence, we conclude the proof of Lemma 17.

By Lemma 17, we have

σ2
2 − σ2

1 ≤ ‖Σ1‖∞‖βj − β∗j
∥∥2

1
+ 2‖Σ1β

∗
j ‖∞‖βj − β∗j ‖1. (44)

By Hölder’s inequality and the relation between `1-norm and `2-norm of a vector, we have
‖Σ1β

∗
j ‖∞ ≤ ‖Σ1‖∞‖β∗j ‖1 ≤

√
s∗CβD. Therefore the right-hand side of (44) can be bounded

by

σ2
2 − σ2

1 ≤ r2D + 2
√
s∗rCβD,

which shows that σ2
2 is also bounded because r = O(1

/√
s∗). In addition, by the bound

1 − Φ(x) ≤ exp(−x2/2)/(x
√

2π) for the standard normal distribution function, we obtain
that

P
(
Bci
)
≤ P

(
XT
i\jβ

∗
j > R

)
+ P

(
XT
i\jβj > R

)
≤ cσ1 exp

[
−R2/(2σ2

1)
]
/R+ cσ2 exp

[
−R2/(2σ2

2)
]
/R,

where the constant c = 1/
√

2π. We denote the last expression as C3(R), then the right-
hand side of (43) can be upper-bounded by

√
3σ4

v

√
2C3(R) ≤ 2

√
6C3(R)Cλ. Hence we

can choose a sufficiently large R such that 2
√

6C3(R)Cλ = λmin(Σ) and we denote this
particular choice of R as R0.

Now we have

E
{[

(Xi\j −Xi′\j)
Tv
]2[

1− I(Bi)I(Bi′)
]}
≤ λmin(Σ)
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Note that E
{

[(Xi\j −Xi′\j)
Tv]2

}
= σ2

v ≥ 2λmin(Σ), we obtain that

vTE
[
∇2Lj(βj)

]
v ≥ C1(R0, τ)C2(R0, τ)λmin(Σ) for all τ ∈ R.

Therefore we conclude that for all βj ∈ Rd−1 such that ‖βj − β∗j ‖1 ≤ r,

vTE
[
∇2Lj(βj)

]
v ≥ max

τ∈R

{
C1(R0, τ)C2(R0, τ)

}
λmin(Σ). (45)

Step (ii): Upper Bound of vTE
[
∇2Lj(βj)

]
v. For any βj ∈ Rd−1 such that ‖βj−β∗j ‖1 ≤

r and for any v ∈ Rd−1 with ‖v‖2 = 1, by the definition of ∇2Lj(βj) we have

vT∇2Lj(βj)v ≤ (Xij −Xi′j)
2
[
(Xi\j −Xi′\j)

Tv
]2
. (46)

Notice that conditioning on Xi\j , Xij ∼ N
(
XT
i\jβ

∗
j ,Θ

−1
jj

)
, hence

E
[
(Xij −Xi′j)

2
∣∣Xi\j ,Xi′\j

]
=
[
(Xi\j −Xi′\j)

Tβ∗j
]2

+ 2Θ−1
jj . (47)

Combining (46) and (47) we obtain

E
[
vT∇2Lj(βj)v

]
≤ E

{
E
[
(Xij −Xi′j)

2
∣∣Xi\j ,Xi′\j

]
·
[
(Xi\j −Xi′\j)

Tv
]2}

≤ 2Θ−1
jj E

(
(Xi\j −Xi′\j)

Tv
)2

+ E
{[

(Xi\j −Xi′\j)
Tβ∗j

]2[
(Xi\j −Xi′\j)

Tv
]2}

. (48)

Because Xi\j ∼ N(0,Σ1) where Σ1 := Σ\j,\j , and also note that the maximum eigenvalue
of Σ1 is upper bounded by Cλ, we have

E
[
(Xi\j −Xi′\j)

Tv
]2

= 2vTΣ1v ≤ 2Cλ.

Moreover, by inequality 2ab ≤ a2 + b2 we obtain

2E
{[

(Xi\j −Xi′\j)
Tβ∗j

]2[
(Xi\j −Xi′\j)

Tv
]2} ≤ E

[
(Xi\j −Xi′\j)

Tβ∗j
]4

+ E
[
(Xi\j −Xi′\j)

Tv
]4
.

Since (Xi\j −Xi′\j)
Tv ∼ N(0, σ2

v) and (Xi\j −Xi′\j)
Tβ∗j ∼ N(0, 2σ2

1) where σ2
v and σ2

1 are

defined as 2vTΣ1v and β∗j
TΣ1β

∗
j respectively, we obtain

E
[
(Xi\j −Xi′\j)

Tβ∗j
]4

= 3σ4
v ≤ 12C2

λ and E
[
(Xi\j −Xi′\j)

Tv
]4

= 12σ4
1 ≤ 12CλC

2
β.

Therefore we can bound the right-hand side of (48) by

E
[
vT∇2Lj(βj)v

]
≤ 4Θ−1

jj Cλ + 6C2
λ + 6CλC

2
β. (49)

Combining (45) and (49) we conclude that Proposition 16 holds with

ρ∗ = max
τ∈R

{
C1(R0, τ)C2(R0, τ)

}
λmin(Σ) and ρ∗ = 4Θ−1

jj Cλ + 6C2
λ + 6CλC

2
β.

Therefore, we conclude the proof of Proposition 16.
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B.2. Refined Statistical Rates of Parameter Estimation

In this subsection we show more refined statistical rates of convergence for the proposed
estimators. In specific, we consider the case where β∗j contains nonzero elements with both
strong and week magnitudes.

Theorem 18 (Refined statistical rates of convergence) Under Assumptions 2 and 4,
we let K1 and K2 be the constants defined in Theorem 10 and also let ρ∗> 0 and r > 0 be
defined in Assumption 4. For all j ∈ [d], we define the support of β∗j as Sj :={(j, k) : β∗jk 6=
0, k ∈ [d]} and let s∗ = maxj∈[d] ‖β∗j ‖0. The penalty function pλ(u) : [0,+∞)→ [0,+∞) in
(7) satisfies regularity conditions (C.1), (C.2) and (C.3) listed in §3.2 with c1 = 0.91 and
c2≥ 24/ρ∗ for condition (C.3). We set the regularity parameter λ = C

√
log d/n such that

C≥25K1. Moreover, we assume that the penalty function pλ(u) satisfies an extra condition
(C.4): there exists a constant c3 > 0 such that p′λ(u)=0 for u∈

[
c3λ,+∞

)
. Suppose that the

support of β∗j can be partitioned into Sj =S1j ∪ S2j where S1j =
{

(j, k) : |β∗jk| ≥ (c2 +c3)λ
}

and S2j = Sj −S1j . We denote constants A1 = 22%, A2 = 2.2c2, B1 = 32%, B2 = 3.2c2,
% = c2(c2ρ∗−11)−1, γ= 11c−1

2 ρ−1
∗ < 1 and a= 1.04; we let s∗1j = |S1j | and s∗2j = |S2j |. With

probability at least 1−d−1, we have the following more refined rates of convergence:∥∥β̂(`)
j − β

∗
j

∥∥
2
≤ A1

{∥∥∇S1jLj(β
∗
j )
∥∥

2
+ a
√
s∗2jλ

}
+A2

√
s∗λγ` and (50)∥∥β̂(`)

j − β
∗
j

∥∥
1
≤ B1

{∥∥∇S1jLj(β
∗
j )
∥∥

2
+ a
√
s∗2jλ

}
+B2s

∗λγ`, ∀j ∈ [d]. (51)

Proof Let Sj = {(j, k) : β∗jk 6= 0, k∈ [d]} be the support of β∗j and let index set G`j , J
`
j and

I`j be the same as defined in the proof of Theorem 5. For notational simplicity, we omit the
subscript j in these index sets which stands for the j-th node of the graph; we simply write

them as G`, J ` and I`. Moreover, we let δ(`) = β̂
(`)
j − β∗j , it is shown in Lemma 12 that∥∥δ(`)

I`

∥∥
2
≤ 10ρ−1

∗

(∥∥∇
G̃`Lj(β

∗
j )
∥∥

2
+
∥∥λ(`−1)

Sj

∥∥
2

)
; G̃` = (G`)c. (52)

In the proof of Theorem 5, we show that |G̃`| ≤ 2s∗ for all j ∈ [d] and ` ≥ 1. Because
Sj = S1j ∪ S2j where S1j =

{
(j, k) : |β∗jk| ≥ (c2 + c3)λ

}
and S2j = Sj−S1j , then by triangle

inequality we have∥∥∇SjLj(β
∗
j )
∥∥

2
≤
∥∥∇S1jLj(β

∗
j )
∥∥

2
+
√
s∗2j
∥∥∇S2jLj(β

∗
j )
∥∥
∞.

Since λ ≥ 25
∥∥∇Lj(β∗j )∥∥∞ with high probability, by (28), we further have∥∥∇

G̃`Lj(β
∗
j )
∥∥

2
≤
∥∥∇S1jLj(β

∗
j )
∥∥

2
+
√
s∗2jλ

/
25 +

∥∥δ(`−1)

I`−1

∥∥
2

/
(25c2). (53)

Note that by the definition of S1j , for any (j, k)∈S1j , p
′
λ

(
|βjk|−c2λ

)
≤ p′λ(c3λ) = 0, then

we have

Υj := λ
[ ∑

(j,k)∈Sj

p′λ
(
|β∗jk| − c2λ

)2]1/2
= λ

[ ∑
(j,k)∈S2j

p′λ(|β∗jk| − c2λ)2
]1/2
≤
√
s∗2jλ.
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Therefore (30) is reduced to∥∥λ(`−1)
Sj

∥∥
2
≤ Υj +

∥∥δ(`−1)

I`−1

∥∥
2

/
c2 ≤

√
s∗2jλ+

∥∥δ(`−1)

I`−1

∥∥
2

/
c2. (54)

Combining (52), (53) and (54) we obtain∥∥δ(`)

I`

∥∥
2
≤ 10ρ−1

∗

{∥∥∇S1jLj(β
∗
j )
∥∥

2
+ 1.04

√
s∗2jλ+ 1.04

∥∥δ(`−1)

I`−1

∥∥
2

/
c2

}
.

Then by recursion, we obtain the following estimation error:∥∥δ(`)

I`

∥∥
2
≤ 10%

{∥∥∇S1jLj(β
∗
j )
∥∥

2
+ 1.04

√
s∗2jλ

}
+ γ`−1

∥∥δ(1)
I1

∥∥
2
,

where γ := 11c−1
2 ρ−1

∗ and % := c2(c2ρ∗ − 11)−1. Note that we assume c2 ≥ 24ρ−1
∗ , for k = 1

by (32) we have

2.2
∥∥δ(1)

I1

∥∥
2
≤ 2.2c2γ

√
s∗λ and 2.2

√
2s∗
∥∥δ(1)

I1

∥∥
2
≤ 3.2c2γs

∗λ.

Therefore, using the original notation, we obtain the refined rates of convergence by (23):∥∥β̂(`)
j − β

∗
j

∥∥
2
≤ 22%

{∥∥∇S1jLj(β
∗
j )
∥∥

2
+ 1.04

√
s∗2jλ

}
+ 2.2c2γ

`
√
s∗λ and∥∥β̂(`)

j − β
∗
j

∥∥
1
≤ 32%

√
s∗
{∥∥∇S1jLj(β

∗
j )
∥∥

2
+ 1.04

√
s∗2jλ

}
+ 3.2c2γ

`s∗λ,

where s∗2j = |S2j |. Moreover, it is easy to see that, with probability at least 1−d−1, these
convergence rates hold for all j ∈ [d].

Appendix C. Proof of the Auxiliary Results for Estimation

In this appendix, we prove the main results for estimation results presented in §4.1. In this
appendix, we prove the auxiliary results for estimation. In specific, we give detailed proofs
of Lemmas 10, 11, and 12, which are pivotal for the proof of Theorem5. We first prove
Lemmas 10, which gives an upper bound for ‖∇Lj(β∗j )‖∞.

C.1. Proof of Lemma 10

Proof By definition, ∇Lj(β∗j ) is a centered second-order U -statistic with kernel function

hjii′(β
∗
j )∈Rd−1, whose entries are given by

[
hjii′(β

∗
j )
]
jk

=
Rjii′(β

∗
j )(Xij −Xi′j)(Xik −Xi′k)

1 +Rjii′(β
∗
j )

.

By the tail probability bound in (14), for any i ∈ [n] and j ∈ [d], we have

P
(
|Xij | > x,∀i ∈ [n], ∀j ∈ [d]

)
≤

∑
i∈[n],j∈[d]

P(|Xij | > x)

≤ 2 exp(κm + κh/2) exp(−x+ log d+ log n). (55)
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By setting x = C log d for some constant C, we conclude that event E := {|Xij | ≤
C log d,∀i ∈ [n], ∀j ∈ [d]} holds with probability at least 1 − (4d)−1. Following from
the same argument as in Ning et al. (2017b), it is easy to show that, conditioning on E ,
hjii′(β

∗
j ) is also centered. Note that conditioning on event E ,

∥∥hjii′(β∗j )∥∥∞ ≤ C log2 d for
some generic constant C and for all i, i′ ∈ [d] and j ∈ [d]. The following Bernstein’s in-
equality for U -statistics, presented in Arcones (1995), gives an upper bound for the tail
probability of ∇Lj(β∗j ).

Lemma 19 (Bernstein’s inequality for U-statistics) Given n i.i.d. random variables
Z1, . . . Zn taking values in a measurable space (S,B) and a symmetric and measurable kernel
function h : Sm → R, we define the U -statistics with kernel h as

U :=

(
n

m

)−1 ∑
i1<...<im

h(Zi1 , . . . , Zim).

Suppose that E[h(Zi1 , . . . , Zim)] = 0, E
{
E[h(Zi1 , . . . , Zim) | Zi1 ]

}2
= σ2, and ‖h‖∞ ≤ b for

some positive σ and b. There exists an absolute constant K(m) > 0 that only depends on
m such that

P(|U | > t) ≤ 4 exp
{
−nt2/[2m2σ2 +K(m)bt]

}
, ∀t > 0. (56)

Note that by (14), the fourth moment of X is bounded, which implies that E[hjii′(β
∗
j )]

2

is uniformly bounded by an absolute constant for all j ∈ [d]. By Lemma 19, setting
b = C log2 d in (56) yields that

P
(∣∣∇jkLj(β∗j )∣∣ > t

∣∣E) ≤ 4 exp
[
−nt2

/
(C1 + C2 log2 d · t)

]
(57)

for some generic constants C1 and C2. Taking a union bound over {(j, k) : j, k ∈ [d], k 6= j}
we obtain

max
j∈[d]

{
P
(∥∥∇Lj(β∗j )∥∥∞ > t

∣∣E)} . d2 · exp
[
−nt2

/
(C1 + C2 log2 d · t)

]
. (58)

Under Assumption 4 and conditioning on E , by setting t = K1

√
log d/n for a sufficiently

large K1 > 0, it holds probability greater than 1− (4d)−1 that∥∥∇Lj(β∗j )∥∥∞ ≤ K1

√
log d/n ∀j ∈ [d].

Note that E holds with probability at least 1−(4d)−1, we conclude the proof of Lemma 10.

C.2. Proof of Lemma 11

Proof In what follows, for notational simplicity and readability, we omit j in the subscript
and ` in the superscript by simply writing Sj , G

`
j , J

`
j and I`j as S,G, J an I respectively. By

the definition of G,
∥∥λ(`−1)

G`

∥∥
min
≥ p′λ(θ) ≥ 0.91λ > 22.75‖∇Lj(β∗j )‖∞. We prove this lemma
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in two steps. In the first step we show that
∥∥β̂(`)

j − β∗j
∥∥

1
≤ 2.2

∥∥β̂`Gc − β∗Gc

∥∥
1
. Suppose

that β̂
(`)
j is the solution in the `-th iteration and we denote ∇jkLj(βj) = ∂Lj(βj)

/
∂βjk,

the Karush-Kuhn-Tucker condition implies that

∇jkLj(β̂
(`)
j ) + λ

(`−1)
jk sign(β̂

(`)
jk ) = 0 if β̂

(`)
jk 6= 0;

∇jkLj(β̂
(`)
j ) + λ

(`−1)
jk ξ

(`)
jk = 0, ξ

(`)
jk ∈ [−1, 1] if β̂

(`)
jk = 0.

The above Karush-Kuhn-Tuker condition can be written in a compact form as

∇Lj(β̂(`)
j ) + λ

(`−1)
j ◦ ξ(`)

j = 0, (59)

where ξ
(`)
j ∈∂

∥∥β̂(`)
j

∥∥
1
and λ

(`−1)
j =

(
λ

(`−1)
j1 , . . . , λ

(`−1)
jj−1 , λ

(`−1)
jj+1 , . . . , λ

(`−1)
jd

)T ∈ Rd−1.

For notational simplicity, we let δ = β̂
(`)
j − β∗j ∈ Rd−1 and omit the superscript ` and

subscript j in both λ
(`−1)
j and ξ

(`)
j by writing them as λ and ξ. By definition, I = Gc ∪ J .

Note that we denote the support of β∗j as S; we define H := Gc−S, then S,H and G is a

partition of
{

(j, k) : k∈ [d], k 6=j
}
.

By the Mean-Value theorem, there exists an α∈ [0, 1] such that β̃j :=αβ∗j+(1−α)β̂
(`)
j ∈

Rd−1 satisfies

∇Lj(β̂j)−∇Lj(β∗j ) = ∇2Lj(β̃j)δ.

Then (59) implies that

0 ≤ δT∇2Lj(β̃j)δ = −
〈
δ,λ ◦ ξ

〉︸ ︷︷ ︸
(i)

−
〈
∇Lj(β∗j ), δ

〉︸ ︷︷ ︸
(ii)

. (60)

For term (ii) in (60), Hölder’s inequality implies that

(ii) ≥ −
∥∥∇Lj(β∗j )∥∥∞‖δ‖1. (61)

For term (i) in (60), recall that we denote |v| as the vector that takes entrywise absolute

value for v. By the fact that ξ
(`)
jk β̂

(`)
jk = |β̂(`)

jk |, we have ξG ◦ δG = |δG| and ξH ◦ δH = |δH |.
Since δSc = β̂

(`)
Sc . Hölder’s inequality implies that〈
δ,λ ◦ ξ

〉
=
〈
δS , (λ ◦ ξ)S

〉
+
〈
|δH |,λH

〉
+
〈
|δG|,λG

〉
≥ −‖δS‖1‖λS‖∞ + ‖δG‖1‖λG‖min + ‖δH‖1‖λH‖min. (62)

Combining (60), (61) and (62) we have

−‖δS‖1‖λS‖∞ + ‖δG‖1‖λG‖min + ‖δH‖1‖λH‖min −
∥∥∇Lj(β∗j )∥∥∞‖δ‖1 ≤ 0. (63)

By the definition of G, we have ‖λG‖min ≥ p′λ(c2λ) ≥ 0.91λ. Rearranging terms in (63) we
have

p′λ(c2λ)‖δG‖1 ≤ ‖δG‖1‖λG‖min ≤
∥∥∇Lj(β∗j )∥∥∞‖δ‖1 + ‖δS‖1‖λS‖∞.
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Using the decomposability of the `1-norm, we have[
p′λ(c2λ)−

∥∥∇Lj(β∗j )∥∥∞]‖δG‖1 ≤ [‖λS‖∞ + ‖∇Lj(β∗j )‖∞
]
‖δGc‖1 (64)

Recall that λ > 25
∥∥∇Lj(β∗j )∥∥∞ and p′λ(θ) ≥ 0.91λ, (64) implies

∥∥δG∥∥1
≤

λ+
∥∥∇Lj(β∗j )∥∥∞

p′λ(c2λ)−
∥∥∇Lj(β∗j )∥∥∞ ‖δGc‖1 ≤ 1.2‖δGc‖1, (65)

where we use the fact that

λ+
∥∥∇Lj(β∗j )∥∥∞

p′λ(c2λ)−
∥∥∇Lj(β∗j )∥∥∞ ≤ λ+ 0.04λ

0.91λ− 0.04λ
≤ 1.2.

Going back to the original notation, (65) is equivalent to∥∥β̂(`)
j − β

∗
j

∥∥
1
≤ 2.2

∥∥β̂(`)

G̃`
j

− β∗
G̃`

j

∥∥
1
.

Now we show in the second step that
∥∥β̂(`)

j − β∗j
∥∥

2
≤ 2.2

∥∥β̂(`)

I`j
− β∗

I`j

∥∥
2
. Recall that J

is the largest k∗ components of β̂
(`)
G in absolute value where we omit the subscript j and

superscript ` in the sets G`j , J
`
j and I`j . By the definition of J we obtain that

‖δIc‖∞ ≤ ‖δJ‖1
/
k∗ ≤ ‖δG‖1

/
k∗, where δ = β̂

(`)
j − β

∗
j .

By inequality (65) and the fact that Gc ⊂ I, we further have

‖δIc‖∞ ≤ 1.2/k∗ · ‖δGc‖1 ≤ 1.2/k∗ · ‖δI‖1. (66)

Then by Hölder’ inequality and (66) we obtain that

‖δIc‖2 ≤
(
‖δIc‖1‖δIc‖∞

)1/2 ≤ (1.2/k∗)1/2
(
‖δI‖1‖δIc‖1

)1/2
. (67)

By the definition of index sets G and I, we have Ic ⊂ G and Gc ⊂ I. Then by (65) and (67)
we obtain

‖δIc‖2 ≤ (1.2/k∗)1/2
(
‖δGc‖1‖δG‖1

)1/2 ≤ 1.2‖δGc‖1
/√

k∗.

By the norm inequality between `1-norm and `2-norm, we have

‖δIc‖2 ≤ 1.2‖δGc‖1/
√
k∗ ≤ 1.2

√
2s∗/k∗‖δGc‖2 ≤ 1.2‖δI‖2,

where we use k∗ ≥ 2s∗ and the induction assumption that |G| ≤ 2s∗. Then triangle inequal-
ity for `2-norm yields that

‖δ‖2 ≤ ‖δIc‖2 + ‖δI‖2 ≤ 2.2‖δI‖2. (68)

Note that (65) and (68) are equivalent to∥∥β̂(`)
j − β

∗
j

∥∥
2
≤ 2.2

∥∥β̂(`)

I`j
− β∗

I`j

∥∥
2

and
∥∥β̂(`)

j − β
∗
j

∥∥
1
≤ 2.2

∥∥β̂(`)

G̃`
j

− β∗
G̃`

j

∥∥
1
,

where G̃`j =
(
G`j
)c
, which concludes the proof.
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C.3. Proof of Lemma 12

Proof We first show that β̂
(`)
j stays in the `1-ball centered at β∗j with radius r =

Cρs
∗√log d/n, where Cρ ≥ 33ρ−1

∗ . For notational simplicity, we denote δ = β̂
(`)
j − β̂j

and write Sj , G
`
j , J

`
j and I`j as S,G, J an I respectively. We prove by contradiction. Sup-

pose that ‖δ‖1 > r, then we define β̃j =β∗j + t(β̂
(`)
j − β∗j )∈Rd−1 with t ∈ [0, 1] such that∥∥β̃j − β∗j∥∥1

≤ r. Letting δ̃ := β̃j − β∗j , by (68) we obtain

‖δ̃‖2 = t‖δ‖2 ≤ 2.2t‖δI‖2 = 2.2‖δ̃I‖2. (69)

Moreover, by Lemma (11) and the relation between `1- and `2-norms we have

‖δ̃‖1 = t‖δ‖1 ≤ 2.2t‖δGc‖1 ≤ 2.2
√

2s∗‖δ̃I‖2, (70)

where we use the fact that Gc ⊂ I and the induction assumption that |Gc| ≤ 2s∗. By
Mean-Value theorem, there exists a γ ∈ [0, 1] such that ∇Lj(β̃j)−∇Lj(β∗j ) = ∇2Lj(β1)δ̃,

where β1 := γβ∗j + (1 − γ)β̃j ∈ Rd−1. In what follows we will derive an upper bound for

‖δ̃I‖2 from δ̃T∇2Lj(β1)δ̃. Before doing that, we present two lemmas. The first one shows
that the restricted correlation coefficients defined as follows are closely related to the sparse
eigenvalues. This lemma also appear in Zhang (2010) and Zhang et al. (2013) for `2-loss.

Lemma 20 (Local sparse eigenvalues and restricted correlation coefficients) Let m be a
positive integer and M(·) : Rm → Sm be a mapping from Rm to the space of m×m symmetric
matrices. We define the s-sparse eigenvalues of M(·) over the `1-ball centered at u0 ∈ Rm
with radius r as

ρ+

(
M,u0; s, r

)
= sup

v,u∈Rm

{
vTM(u)v : ‖v‖0 ≤ s, ‖v‖2 = 1, ‖u− u0‖1 ≤ r

}
;

ρ−
(
M,u0; s, r

)
= inf

v,u∈Rm

{
vTM(u)v : ‖v‖0 ≤ s, ‖v‖2 = 1, ‖u− u0‖1 ≤ r

}
.

In addition, we define the restricted correlation coefficients of M over the `1-ball centered
at u0 with radius r as

π
(
M,u0; s, k, r

)
:= sup
v,w,u∈Rm

{
vTI M(u)wJ

∥∥vI∥∥2

vTI M(u)vI
∥∥wJ

∥∥
∞

: I∩J=∅, |I|≤s, |J |≤k,
∥∥u−u0

∥∥
1
≤r
}
.

Suppose that the local sparse eigenvalue ρ−
(
M,u0; s+k, r

)
> 0, then we have the following

upper bound on the restricted correlation coefficient π(M,u0; s, k) :

π
(
M,u0; s, k, r

)
≤
√
k

2

√
ρ+

(
M,u0; k, r

)/
ρ−
(
M,u0; s+k, r

)
−1.

Proof See §E.1.1 for a detailed proof.

35



Yang, Ning, and Liu

We denote the restricted correlation coefficients of ∇2Lj(·) over the `1-ball centered at
β∗j with radius r as πj(s1, s2) := π

(
∇2Lj ,β

∗
j ; s1, s2, r

)
and denote the s-sparse eigenval-

ues ρ−
(
∇2Lj ,β

∗
j ; s, r

)
and ρ+

(
∇2Lj ,β

∗
j ; s, r

)
as ρj−(s) and ρj+(s) respectively. Applying

Lemma 20 to πj(2s
∗+k∗, k∗) we obtain

πj(2s
∗+k∗, k∗) ≤ k∗1/2/2 ·

√
ρj+(k∗)/ρj−(2s∗+2k∗)− 1. (71)

By the law of large numbers, if the sample size n is sufficiently large such that ∇2Lj is close
to its expectation E

[
∇2Lj

]
. When βj is close to β∗j , by Assumption 4, we expect that the

sparse eigenvalue condition also holds for ∇2Lj(βj) with high probability. The following
lemma justifies this intuition.

Lemma 21 Recall that we define the sparse eigenvalues of E
[
∇2Lj(β

∗
j )
]

in Definition 3.

Under Assumptions 2 and 4, if n is sufficiently large such that ρ∗ & k∗λ log2 d, with proba-
bility at least 1−(2d)−1, for all j∈ [d], there exists a constant Cρ ≥ 33ρ−1

∗ such that

ρ∗j−(2s∗+2k∗)− 0.05ρ∗ ≤ ρj−(2s∗+2k∗) < ρj+(k∗) ≤ ρ∗j+(k∗) + 0.05ρ∗, and

ρj+(k∗)
/
ρj−(2s∗+2k∗) ≤ 1 + 0.27k∗/s∗,

where we denote the local sparse eigenvalues ρ−
(
∇2Lj ,β

∗
j ; s, r

)
and ρ+

(
∇2Lj ,β

∗
j ; s, r

)
with

r = Cρ
√

log d/n as ρj−(s) and ρj+(s), respectively.

Proof See §E.1.2 for a detailed proof.

Thus by Lemma 21 we have

πj(2s
∗+k∗, k∗) ≤ 0.5

√
0.27k∗2

/
s∗. (72)

By (65), (72) and Gc ⊂ I we obtain

1− 2πj(2s
∗+k∗, k∗)k∗−1‖δ̃G‖1/‖δ̃I‖2 ≥ 1− 1.2

√
0.54 := κ1, (73)

where we denote κ1 := 1− 1.2
√

0.54 ≥ 0.11. Now we use the second lemma to get an lower
bound of δ̃T∇2Lj(β1)δ̃, which implies an upper bound for ‖δ̃I‖2.

Lemma 22 Let M : Rm → Sm be a mapping from Rm to the space of m ×m-symmetric
matrices. Suppose that the sparse eigenvalue ρ−

(
M,u0; s+ k, r

)
> 0, let the restricted

correlation coefficients of M(·) be defined in Lemma 20. We denote the restricted correlation
coefficients π

(
M,u0; s, k, r

)
and s-sparse eigenvalue ρ−

(
M,u0; s, r

)
as π(s, k) and ρ−(s)

respectively for notational simplicity. For any v ∈ Rd, let F be any index set such that
|F c| ≤ s, let J be the set of indices of the largest k entries of vF in absolute value and
let I = F c ∪ J . For any u ∈ Rd such that ‖u − u0‖2 ≤ r and any v ∈ Rd satisfying
1− 2π(s+k, k)‖vF ‖1/‖vI‖2 > 0 we have

vTM(u)v ≥ ρ−(s+k)
[
‖vI‖2 − 2π(s+k, k)‖vF ‖1

/
k
]
‖vI‖2.
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Proof See §E.1.3 for a detailed proof.

Now applying Lemma 22 to ∇2Lj(·) with F =G, s=2s∗ and k=k∗ we obtain

δ̃T∇2Lj(β1)δ̃ ≥ ρj−(2s∗+k∗)‖δ̃I‖2
[
‖δ̃I‖2 − 2πj(2s

∗+k∗, k∗)/k∗‖δ̃G‖1
]
. (74)

Then by (73), the right-hand side of (74) can be lower bounded by

δ̃T∇2`(β1)δ̃ ≥ κ1ρj−(2s∗+k∗)‖δ̃I‖22 ≥ 0.95κ1ρ∗‖δ̃I‖22 = κ2ρ∗‖δ̃I‖22, (75)

where we let κ2 := 0.95κ1 ≥ 0.1. Now we derive an upper bound for δ̃T∇2Lj(β1)δ̃. We
define the symmetric Bregman divergence of Lj(βj) as Dj(β1,β2) :=

〈
β1 − β2,∇Lj(β1)−

∇Lj(β2)
〉
, where β1,β2 ∈ Rd−1. Then by definition, δ̃T∇2`(β1)δ̃ = Dj(β̃j ,β

∗
j ). The follow-

ing lemma relates Dj(β̃j ,β
∗
j ) with Dj(β̂j ,β

∗
j ).

Lemma 23 Let Dj(β1,β2) :=
〈
β1 − β2,∇Lj(β1) − ∇L(β2)

〉
, β(t) = β1 + t(β2 − β1),

t ∈ (0, 1) be any point on the line segment between β1 and β2. Then we have

Dj(β(t),β1) ≤ tDj(β2,β1)

Proof See §E.1.4 for a detailed proof.

By Lemma 23 and (60),

Dj(β̃j ,β
∗
j ) ≤ tDj(β̂j ,β

∗
j ) ≤ −t

〈
∇Lj(β∗j ), δ

〉︸ ︷︷ ︸
(i)

−t
〈
δ,λj ◦ ξj

〉︸ ︷︷ ︸
(ii)

. (76)

For term (i) in (76), by Hölder’s inequality we have

−t
〈
∇Lj(β∗j ), δ

〉
≤ t
∥∥∇GcLj(β

∗
j )
∥∥

2
‖δGc‖2 + t

∥∥∇GLj(β∗j )∥∥∞‖δG‖1
≤
∥∥∇GcLj(β

∗
j )
∥∥

2
‖δ̃I‖2 +

∥∥∇GLj(β∗j )∥∥∞‖δ̃G‖1, (77)

where the inequality follows from Gc ⊂ I. For term (ii) in (76), by (62) and Hölder’s
inequality we have

−t
〈
δ,λj ◦ ξj

〉
≤ −

〈
δS , (λj ◦ ξj)S

〉
−
〈
|δ̃G|,λG

〉
≤ ‖λS‖2‖δ̃I‖2 − p′λ(c2λ)‖δ̃G‖1, (78)

where we use the Hölder’s inequality and the definition of G. Combining (75),(77) and (78)
we obtain that

κ2ρ∗
∥∥δ̃I∥∥2

2
≤
(∥∥∇GcLj(β

∗
j )
∥∥

2
+ ‖λS‖2

)
‖δ̃I‖2 +

[∥∥∇Lj(β∗j )∥∥∞ − p′λ(c2λ)
]
‖δ̃G‖1

≤
(∥∥∇GcLj(β

∗
j )
∥∥

2
+ ‖λS‖2

)∥∥δ̃I∥∥2
,

where the second inequality follows from p′λ(c2λ) >
∥∥∇Lj(β∗j )∥∥∞. From the inequality above

and the induction assumption |Gc| ≤ 2s∗ we obtain that∥∥δ̃I∥∥2
≤ 10ρ−1

∗
(∥∥∇GcLj(β

∗
j )
∥∥

2
+ ‖λS‖2

)
≤ 10ρ−1

∗
√
s∗
(√

2
∥∥∇Lj(β∗j )∥∥∞ + λ

)
. (79)
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Thus (70), (79) and the the fact that 25
∥∥∇Lj(β∗j )∥∥∞ ≤ λ imply that

‖δ̃‖1 ≤ 22
√

2ρ−1
∗ (1 +

√
2/25)s∗λ < 33ρ−1

∗ s∗λ ≤ r, (80)

where the last inequality follows from the definition of λ. Notice that (80) contradicts our
assumption that ‖δ̃‖1 = r, the reason for this contradiction is because we assume that∥∥β̂(`)

j − β∗j
∥∥

1
> r, hence

∥∥β̂(`)
j − β∗j

∥∥
1
≤ r and β̃j = β̂

(`)
j . This means that β̂

(`)
j stays in the

`1-ball centered at β∗j with radius r in each iteration.
Moreover, by (68) and (79), we obtain the following upper bound for ‖δI‖2 :

‖δ‖2 ≤ 22ρ−1
∗
(∥∥∇GcLj(β

∗
j )
∥∥

2
+ ‖λS‖2

)
≤ 24ρ−1

∗
√
s∗λ,

where we use the condition that λ ≥ 25
∥∥∇Lj(β∗j )∥∥∞. In addition, by(65) and (79) we obtain

the following bound on ‖δ‖1

‖δ‖1 ≤ 2.2‖δGc‖1 ≤ 22
√

2s∗ρ−1
∗

(∥∥∇GcLj(β
∗
j )
∥∥

2
+ ‖λS‖2

)
≤ 33ρ−1

∗ s∗λ, (81)

Therefore going back to the original notations, note that κ2 ≥ 0.1, we establish the following
crude rates of convergence for ` ≥ 1:∥∥β̂(`)

j − β
∗
j

∥∥
2
≤ 24ρ−1

∗
√
s∗λ and

∥∥β̂(`)
j − β

∗
j

∥∥
1
≤ 33ρ−1

∗ s∗λ. (82)

And (79) is equivalent to∥∥β̂(`)

I`j
− β∗

I`j

∥∥
2
≤ 10ρ−1

∗

(∥∥∇
G̃`

j
Lj(β

∗
j )
∥∥

2
+
∥∥λ(`−1)

Sj

∥∥
2

)
, G̃`j := (G`j)

c. (83)

Note that we use Lemmas 10 and 21, hence (83) and (83) hold with probability at least
1− d−1 for all j ∈ [d].

Appendix D. Proof of Auxiliary Results for Asymptotic Inference

We prove the auxiliary results for asymptotic inference. More specifically, we first prove
Lemma 14, which is pivotal for deriving the limiting distribution of the pairwise score
statistic. Then we prove the lemmas presented in the proof of Theorem 8.

D.1. Proof of Lemma 14

Proof Before proving this lemma, we first let ∇2Ljk
(
βj∨k

)
be the Hessian of Ljk

(
βj∨k

)
and define Hjk := E

[
∇2Ljk

(
β∗j∨k

)]
. We also define

Σjk := E
[
gjk(Xi)gjk(Xi)

T
]

and Θjk := E
[
hjkii′(β

∗)hjkii′(β
∗)T
]
.

Under Assumption 2, we first show that there exists a positive constant D such that for
any j, k ∈ d, j 6= k, max

{∥∥Σjk
∥∥
∞,
∥∥Hjk

∥∥
∞,
∥∥Θjk

∥∥
∞
}
≤ D. The reason is as follows.

Note that Hölder’s inequality imply∥∥Hjk
∥∥
∞ . max

j∈[d]
E|Xij −Xi′j |4 . max

j∈[d]
E|Xj |4 for any j, k ∈ [d], j 6= k.
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Similarly, for Θjk, we also have
∥∥Θjk

∥∥
∞ . max

j∈[d]
E|Xj |4. By (14) we have

E|Xj |4 =

∫ ∞
0

P(|X4|4 > t)dt ≤
∫ ∞

0
c exp(−t1/4)dt = 24c, c = 2 exp(κm + κh/2).

Moreover, note that by the law of total variance, the diagonal elements of Σjk are no
larger than the corresponding diagonal elements of Θjk; then by Cauchy-Schwarz inequality,
‖Σjk‖∞ ≤ ‖Θjk‖∞. Therefore there exists a constant D that does not depend on (s∗, n, d)
such that

max
{
‖Hjk‖∞, ‖Σjk‖∞, ‖Θjk‖∞

}
≤ D, 1≤ j<k≤ d. (84)

Now we are ready to prove the lemma. Recall that ∇Ljk
(
βj∨k

)
is a U -statistic with ker-

nel function hjkii′(βj∨k). Because hjkii′
(
β∗j∨k

)
is centered, the law of total expectation implies

that E
[
gjk(Xi)

]
= 0. Note that the left-hand side of (40) can be written as

√
n

2
bT∇Ljk

(
β∗j∨k

)
=

√
n

2
bTUjk +

√
n

2
bT
[
∇Ljk

(
β∗j∨k

)
−Ujk

]
=

1√
n

n∑
i=1

bTgjk(Xi)︸ ︷︷ ︸
I1

+

√
n

2
bT
[
∇Ljk

(
β∗j∨k

)
−Ujk

]
︸ ︷︷ ︸

I2

.

Notice that I1 is a weighted sum of i.i.d. random variables with the mean and variance
given by

E
[
bTgjk(Xi)

]
= 0 and Var

[
bTgjk(Xi)

]
= bTΣjkb.

Central limit theorem implies that I1  N(0,bTΣjkb). In what follows we use hii′ and

hii′|i to denote hjkii′
(
β∗j∨k

)
and E

[
hjkii′
(
β∗j∨k

)∣∣Xi

]
= gjk(Xi). Thus we can write I2 as

I2 =
1√

n(n− 1)

∑
i<i′

bTχii′ , where χii′ = (hii′ − hii′|i − hii′|i′).

Then E(I2
2 ) can be expanded as

E(I2
2 ) =

1

n(n− 1)2

∑
i<i′,s<s′

bTE(χii′χ
T
ss′)b. (85)

By the definition of χii′ , we have

E(χii′χ
T
ss′) = E(hii′h

T
ss′)− E(hii′h

T
ss′|s)− E(hii′h

T
ss′|s′)− E(hii′|ih

T
ss′)

+ E(hii′|ih
T
ss′|s) + E(hii′|ih

T
ss′|s′)− E(hii′|i′h

T
ss′) + E(hii′|i′h

T
ss′|s) + E(hii′|i′h

T
ss′|s′). (86)

Therefore, for i 6= s, s′ and i′ 6= s, s′, law of total expectation implies that E(χii′χ
T
ss′) = 0.

Similarly, if exactly one of i, i′ is identical to one of s, s′, say i = s, then (86) becomes

E(χii′χ
T
ii′′) = E(hii′h

T
ii′′)− E(hii′h

T
ii′′|i)− E(hii′|ih

T
ii′′) + E(hii′|ih

T
ii′′|i), i 6= i′ 6= i′′.
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Note that by the law of total expectation, for each term in (86) we have

E(hii′h
T
ii′′) = E(hii′h

T
ii′′|i) = E(hii′|ih

T
ii′′) = E(hii′|ih

T
ii′′|i).

Therefore, E(χii′χ
T
ii′′) = 0. Finally, if i = s and i′ = s′, by the law of total expectation,

(86) can be further reduced to E(χii′χ
T
ii′) = E(hii′h

T
ii′) − E(hii′|ih

T
ii′|i) − E(hii′|i′h

T
ii′|i′) =

Θjk − 2Σjk. Thus by triangle inequality we have∥∥E(χii′χ
T
ii′)
∥∥
∞ ≤

∥∥E(hii′h
T
ii′)
∥∥
∞ +

∥∥E(hii′|ih
T
ii′|i)

∥∥
∞ +

∥∥E(hii′|jh
T
ii′|j)

∥∥
∞ ≤ 3D,

where the last inequality follows from Assumption 6. Then equation (85) can be reduced
to

E(I2
2 ) =

1

n(n− 1)2

∑
i<i′,s<s′

bTE(χii′χ
T
ss)b =

1

n(n− 1)2

∑
i<i′

bTE
(
χii′χ

T
ii′
)
b.

By Hölder’s inequality we obtain

E(I2
2 ) ≤ 1

2(n− 1)
‖b‖1

∥∥E(χii′χ
T
ii′)b

∥∥
∞

≤ 1

2(n− 1)
‖b‖21

∥∥E(χii′χ
T
ii′)
∥∥
∞ ≤

3D

2(n− 1)
‖b‖21. (87)

Since ‖b‖0 ≤ s̃, by the relationship between `1-norm and `2-norm, we can further bound
the right-hand side of (87) by E(I2

2 ) ≤ 1.5s̃D/(n− 1)→ 0, where we use the condition that
lim
n→∞

s̃/n = 0. Therefore, we conclude the proof of Lemma 14.

D.2. Proof of Lemma 13

Proof By the definition of w∗j,k we have Hj
jk,j\k = w∗j,k

THj
j\k,j\k. We let β̂′j = (0, β̂j\k) and

denote ∇2Lj(β̂
′
j) and ∇2Lj(β

∗
j ) as Λ and Λ∗ respectively. In addition, we write Hj ,w∗j,k

and ŵj,k as H,w∗ and ŵ respectively for notational simplicity. Triangle inequality implies
that

‖Λjk,j\k−w∗TΛj\k,j\k‖∞ ≤ ‖Hjk,j\k−Λjk,j\k‖∞+‖w∗T (Hj\k,j\k−Λj\k,j\k)‖∞.

Hölder’s inequality implies that

‖Λjk,j\k−w∗TΛj\k,j\k‖∞ ≤ ‖Λ−H‖∞(1 + ‖w∗‖1). (88)

Under null hypothesis, β∗jk = 0. By Lemma 26, we have ‖Λ−H‖∞ . s∗λ log2 d. Then the
right-hand side of (88) is bounded by

‖Λjk,j\k−w∗TΛj\k,j\k‖∞ . (w0 + 1)s∗λ log2 d.

Therefore, by the assumption that λD & max{1, w0}s∗λ log2 d we can ensure that w∗ is in
the feasible region of the Dantzig selector problem (11), hence we have ‖ŵ‖1 ≤ ‖w∗‖1 ≤ w0
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by the optimality of ŵ. Let J be the support set of w∗, that is, J := {(j, `) : [w∗j,k]j` 6=
0, `∈ [d], ` 6=j}; the optimality of w∗ is equivalent to ‖ŵJc‖1 + ‖ŵJ‖1 ≤ ‖w∗J‖1. By triangle
inequality, we have

‖ŵJc−w∗Jc‖1 = ‖ŵJc‖1 ≤ ‖w∗J‖1−‖ŵJ‖1 ≤ ‖ŵJ−w∗J‖1, (89)

where Jc := {(j, `) : (j, `) /∈ J, j fixed}. Letting ω̂ = ŵ −w∗, inequality (89) is equivalent
to ‖ω̂Jc‖1 ≤ ‖ω̂J‖1. Moreover, triangle inequality yields that

‖Λj\k,j\kω̂‖∞ ≤ ‖Λjk,j\k −Λj\k,j\kŵ‖∞ + ‖Λjk,j\k −Λj\k,j\kw
∗‖∞ ≤ 2λD,

where the last inequality follows from that both w∗ and ŵ are feasible for the Dantzig
selector problem (11). Then triangle inequality implies that

|ω̂TΛj\k,j\kω̂| ≤ |ω̂TJ ΛJ,j\kω̂|︸ ︷︷ ︸
A1

+ |ωTJcΛJc,j\kω̂|︸ ︷︷ ︸
A2

.

By Hölder’s inequality and inequality between `1-norm and `2-norms, we obtain that

A1 ≤ 2λD‖ω̂J‖1 ≤ 2
√
s?0λD‖ω̂J‖2 and A2 ≤ 2λD‖ω̂Jc‖1 ≤ 2λD‖ω̂J‖1 ≤ 2

√
s?0λD‖ω̂J‖2.

Hence we conclude that |ω̂TΛj\k,j\kω̂| ≤ 4
√
s?0λD‖ω̂J‖2.

We let J1 be the set of indices of the largest k?0 component of ω̂Jc in absolute value

and let I = J1 ∪ J , then |I| ≤ s?0 + k?0. Under the null hypothesis, ‖β̂′j −β∗j ‖1 = ‖β̂j\k −
β∗j\k‖1 ≤ 33ρ−1

∗ s∗λ. We denote the s-sparse eigenvalue of ∇2
j\k,j\kLj(βj) over the `1-ball

centered at β∗j with radius r as ρ′j+(s) and ρ′j−(s) respectively and denote the corresponding

restricted correlation coefficients as π′j(s1, s2). And we denote these quantities of ∇2Lj(β
∗
j )

as ρj−(s), ρj+(s) and πj(s1, s2). By definition, we immediately have ρj−(s) ≤ ρ′j−(s) ≤
ρ′j+(s) ≤ ρj+(s).

By Lemma 22 we have

|ω̂TΛj\k,j\kω̂| ≥ ρ′j−
(
k?+s?

)[
‖ω̂I‖2 − 2π′j(s

?+k?0, s
?
0)‖ω̂Jc‖1

/
k?
]
‖ω̂I‖2. (90)

The following lemma relates the sparse eigenvalues of ∇2Lj(βj) to those of E∇2Lj(β
∗
j ).

Lemma 24 Under Assumptions 2, 4 and 7, if n is sufficiently large such that ρ∗ &
s∗λ log2 d, with probability at least 1−(2d)−1, for all j∈ [d], there exists a constant Cρ ≥ 33ρ−1

∗
such that

ρ∗j−(2s?0+2k?0)− 0.05ν∗ ≤ ρj−(2s?0+2k?0) < ρj+(k?0) ≤ ρ∗j+(k?0) + 0.05ν∗, and

ρj+(k?0)
/
ρj−(2s?0+2k?0) ≤ 1 + 0.58k?0/s

?
0,

where we denote the local sparse eigenvalues ρ−
(
∇2Lj ,β

∗
j ; s, r

)
and ρ+

(
∇2Lj ,β

∗
j ; s, r

)
with

r = Cρ
√

log d/n as ρj−(s) and ρj+(s), respectively.

Proof The proof is similar to that of Lemma 3, hence is omitted here.
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By ‖ω̂Jc‖1 ≤ ‖ω̂J‖1 ≤
√
s?0‖ω̂J‖2 and Lemma 24, the right-hand side of (90) can be

reduced to

|ω̂TΛj\k,j\kω̂| ≥ 0.95ν∗
(
‖ω̂I‖2 − 2π′j(s

?
0+k

?
0, s

?)‖ω̂J‖2
√
s?0/k

?
0)‖ω̂I‖2. (91)

Using Lemma 20 we obtain

2π′j(s
?
0+k

?
0, k

?
0)
√
s?0/k

?
0 ≤

√
s?0/k

?
0

√
ρ′j+(k?0)/ρ′j−(s?0+2k?0)− 1

≤
√
s?0/k

?
0

√
ρj+(k?0)/ρj−(s?0+2k?0)− 1 ≤

√
s?0/k

?
0

√
0.58k?0/s

?
0 ≤ 0.76.

Thus the right-hand side of (91) can be reduced to

|ω̂TΛj\k,j\kω̂| ≥ 0.95ν∗(1− 0.76‖ω̂J‖2
/
‖ω̂I‖2)‖ω̂I‖22 ≥ ν∗κ‖ω̂I‖22, (92)

where κ = 0.22. This inequality holds because J ⊂ I. By (92) we have

ν∗κ‖ω̂I‖22 ≤ 4
√
s?0λd‖ω̂J‖2 ≤ 4

√
s?0λd‖ω̂I‖2, which implies ‖ω̂I‖2 ≤ 4ν−1

∗ κ−1
√
s?0λD.

Therefore the estimation error of ŵj,k can be bounded by

‖ω̂‖1 ≤ 2‖ω̂J‖1 ≤ 2
√
s?‖ω̂J‖2 ≤ 8ν−1

∗ κ−1s?0λD ≤ 37ν−1
∗ s?0λD.

Returning to the original notations, we conclude that ‖ŵj,k −w∗j,k‖1 ≤ 37ν−1
∗ s?0λD for all

(j, k) such that j, k∈ [d], j 6= k.

D.3. Proof of Lemma 15

Proof We only need to show that σ̂2
jk is a consistent estimator of σ2

jk, which is equivalent

to showing that lim
n→∞

|σ̂2
jk − σ2

jk| = 0. To begin with, triangle inequality implies that

|σ̂2
jk − σ2

jk| ≤
∣∣Σ̂jk

jk,jk −Σjk
jk,jk

∣∣︸ ︷︷ ︸
I1

+2
∣∣ŵT

j,kΣ̂
jk
j\k,jk −w∗j,k

TΣjk
j\k,jk

∣∣︸ ︷︷ ︸
I2j

+
∣∣ŵT

j,kΣ̂
jk
j\k,j\kŵj,k −w∗j,k

TΣjk
j\k,j\kw

∗
j,k

∣∣︸ ︷︷ ︸
I3j

+ 2
∣∣ŵT

k,jΣ̂
jk
k\j,jk −w∗k,j

TΣjk
k\j,jk

∣∣︸ ︷︷ ︸
I2k

+
∣∣ŵk,j

T Σ̂jk
k\j,k\jŵk,j −w∗k,j

TΣjk
k\j,k\jw

∗
k,j

∣∣︸ ︷︷ ︸
I3k

,

where Σ̂jk = Σ̂jk
(
β̂′j∨k

)
and Σ̂jk

(
βj∨k

)
is defined as

Σ̂jk(βj∨k) =
1

n

n∑
i=1

{ 1

n− 1

∑
i′ 6=i

hjkii′(βj∨k)
}⊗2

. (93)

To prove the consistency of σ̂2
jk, we need the following theorem to show that Σ̂jk is a

consistent estimator of Σjk in the sense that
∥∥Σ̂jk −Σjk

∥∥
∞ is negligible.
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Lemma 25 For 1≤ j<k≤ d, let Σ̂jk
(
βj∨k

)
be defined as (93). Suppose β̂j and β̂k are the

estimators of β∗j and β∗k obtained from Algorithm 1 and we denote β̂j∨k = (β̂jk, β̂
T
j\k, β̂

T
k\j)

T .

Then Σ̂jk(β̂j∨k) is a consistent estimator of Σjk. There exists a constant CΣ that does not
depend on (j, k) such that, with probability tending to one,∥∥Σ̂jk(β̂j∨k)−Σjk

∥∥
∞ ≤ CΣs

∗λ log2 d for 1≤ j<k≤ d.

Proof See §E.2.1 for a detailed proof.

In the rest of the proof, we will omit the superscripts in both Σ̂jk and Σjk for notational
simplicity. By Lemma 25,

I1 ≤ ‖Σ̂−Σ‖∞ ≤ OP
(
s∗λ log2 d

)
. (94)

By triangle inequality, we have the following inequality for I2 :

I2j ≤
∣∣(ŵj,k−w∗j,k)

T
(
Σ̂j\k,jk−Σj\k,jk

)∣∣︸ ︷︷ ︸
I21

+
∣∣(ŵj,k−w∗j,k)

TΣj\k,jk
∣∣︸ ︷︷ ︸

I22

+
∣∣w∗j,kT (Σ̂j\k,jk −Σj\k,jk

)∣∣︸ ︷︷ ︸
I23

.

By Hölder’s inequality, Lemma 25 and the estimation error of ŵj,k, we obtain an upper-
bound for I21 as follows:

I21 ≤ ‖ŵj,k−w∗j,k‖1‖Σ̂−Σ‖∞ = OP
(
s∗s?0λDλ log2 d

)
. (95)

Similarly, for I22, Hölder’s inequality implies that

I22 ≤ ‖ŵj,k−w∗j,k‖1‖Σ‖∞ = OP
(
s?0λDD

)
, (96)

where the constant D appears in (84). For I23, by Hölder’s inequality and 25 we obtain

I23 ≤ ‖w∗j,k‖1‖Σ̂−Σ‖∞ = OP
(
w0s

∗λ log2 d
)
. (97)

Combining (95), (96) and (97) we have

I2j . (w0 + s?0λD)s∗λ log2 d+ s?0λD. (98)

For I3j , by triangle inequality we have

I3j ≤
∣∣ŵT

j,k

(
Σ̂j\k,j\k−Σj\k,j\k

)
ŵj,k

∣∣︸ ︷︷ ︸
I31

+
∣∣ŵT

j,kΣj\k,j\kŵj,k−w∗j,k
TΣj\k,j\kw

∗
j,k

∣∣︸ ︷︷ ︸
I32

.

For term I31, Hölder’s inequality and the optimality of ŵ implies that

I31 ≤ ‖ŵj,k‖21‖Σ̂j\k,j\k−Σj\k,j\k‖∞ ≤ CΣw
2
0s
∗λ log2 d. (99)

For term I32, Lemma 17 implies that

I32 ≤ ‖Σj\k,j\k‖∞‖ŵj,k −w∗j,k‖21 + ‖Σj\k,j\kw
∗
j,k‖∞‖ŵj,k −w∗j,k‖1

≤
(
Dω0s

?
0λD +Ds?0

2λ2
D

)
, (100)
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where we use Hölder’s inequality ‖Σj\k,j\kw
∗
j,k‖∞ ≤ ‖w∗j,k‖1‖Σ‖∞ ≤ Dw0. By (99), (100)

and λD & w0s
∗λ log2d, we obtain

I3j . w
2
0s
∗λ log2 d+

(
Dω0s

?
0λD +Ds?0

2λ2
D

)
. (101)

Therefore combining (94), (98) and (101) we obtain I1 + I2j + I3j = oP(1). We can show
similarly that I2k + I3k = oP(1). Thus lim

n→∞
max
j<k

∣∣σ̂2
jk − σ2

jk

∣∣ = 0 with probability converging

to one.

Appendix E. Proof of Technical Lemmas

Finally, we prove the technical lemmas in this appendix. Specifically, we prove the lemmas
introduced to derive the auxiliary results.

E.1. Proof of Technical Lemmas in §C

In this subsection we prove the technical lemmas we use to prove the auxiliary results of
estimation. These lemmas are standard for high-dimensional linear regression, but proving
them for our logistic-type loss function needs nontrivial extensions.

E.1.1. Proof of Lemma 20

Proof Let I and J be two index sets with I ∩ J = ∅, |I| ≤ s, |J | ≤ k, for any u ∈ Rd with
‖u− u0‖2 ≤ r and any v,w ∈ Rd, let θ = vI + αwJ with some α ∈ R, then by definition,
‖θ‖0 ≤ s+ k. For notational simplicity, we denote s-sparse eigenvalues ρ+

(
M,u0; s, r) and

ρ−
(
M,u0; s, r) as ρ−(s) and ρ+(s) respectively. By definition, we have

ρ−(s+k)‖θ‖22 ≤ θTM(u)θ = vTI M(u)vI︸ ︷︷ ︸
A1

+2αvTI M(u)wJ︸ ︷︷ ︸
A2

+α2 wT
JM(u)wJ︸ ︷︷ ︸

A3

. (102)

Since ‖θ‖22 = ‖vI‖22 + α2‖wJ‖22. Rearranging the terms in (102) we have[
A3−ρ−(s+k)‖wJ‖22

]
α2 + 2A2α+

[
A1−ρ−(s+k)‖vI‖22

]
≥ 0 for all α ∈ R. (103)

Note that the left-hand side (103) is a univariate quadratic function in α, thus (103) implies
that [

A1−ρ−(s+k)‖vI‖22
][
A3−ρ−(s+k)‖wJ‖22

]
≥ A2

2. (104)

Therefore by multiplying 4‖vI‖∞2
/

(A2
1‖wJ‖22) to both sides of (104) we have

4A2
2‖vI‖22

A2
1‖wJ

∥∥2

2

≤ 4‖vI‖22
A1‖wJ‖22

[
A1−ρ−(s+k)

∥∥vI∥∥2

2

A1

][
A3−ρ−(s+k)‖wJ‖22

]
. (105)

By the inequality of arithmetic and geometric means, we have

ρ−(s+k)‖vI‖22
A1

[
A1−ρ−(s+k)‖vI‖22

A1

]
≤ 1

4
.
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Then the right-hand side of (104) can be bounded by

4A2
2‖vI‖22

A2
1‖wJ‖22

≤ A3 − ρ−(s+k)‖wJ‖22
ρ−(s+k)‖wJ‖22

≤ ρ+(k)

ρ−(s+k)
− 1,

where the last inequality follows from A3 ≤ ρ+(k)‖wJ‖22. Note that by the relationship
between `2- and `∞ norm, we have ‖wJ‖2 ≤

√
k‖wJ‖∞, which further implies that

vTI M(u)wJ‖vI‖2
vTI M(u)vI‖wJ‖∞

≤
√
kvTI M(u)wJ‖vI‖2
vTI M(u)vI‖wJ‖2

=

√
kA2‖vI‖2
A1‖wJ‖2

≤
√
k

2

√
ρ+(k)/ρ−(s+ k)− 1.

Taking supremum over v,w ∈ Rd finally yields Lemma 20.

E.1.2. Proof of lemma 21

Proof Under Assumption 4, for any βj ∈ Rd−1 such that ‖βj−β∗j ‖2 ≤ r and any v ∈ Rd−1

with ‖v‖0 ≤ 2s∗+ 2k∗, we denote ∇2Lj(βj) − ∇2Lj(β
∗
j ) and ∇2Lj(βj) − E

[
∇2Lj(β

∗
j )
]

as

Λ1 and Λ2 respectively. Our goal is to show that both |vTΛ1v| and |vTΛ2v| are negligi-
ble. Hölder’s inequality implies that

∣∣vTΛ2v
∣∣ ≤ ‖v‖1‖Λ2v‖∞ ≤ ‖v‖21‖Λ2‖∞. We use the

following lemma to control |v>Λ1v| and ‖Λ2‖∞.

Lemma 26 We denote s∗= maxj∈[d] ‖β∗j ‖0. Let r1(s∗, n, d) > 0 be a real number depend-

ing on s∗, n, and d that satisfy lim
n→∞

r1(s∗, n, d) log2 d = 0. We define Bj(r1) :=
{
βj ∈

Rd−1 :
∥∥βj−β∗j∥∥1

≤ r1(s∗, n, d)
}

as the `1-ball centered at β∗j with radius r1(s∗, n, d). Under
Assumptions 2 and 4, there exist absolute constants Ch, Cr > 0 such that, with probability
at least 1− (2d)−1, for all j ∈ [d], βj ∈ Bj(r1) and v ∈ Rd, it holds that,∥∥∇2Lj(β

∗
j )− E

[
∇2Lj(β

∗
j )
]∥∥
∞ ≤ Ch

√
log d/n, (106)∥∥∇2Lj(βj)−∇2Lj(β

∗
j )
∥∥
∞ ≤ Crr1(s∗, n, d) · log2 d, (107)∣∣vT [∇2Lj(βj)−∇2Lj(β

∗
j )v
∣∣ ≤ Crr1(s∗, n, d) · ‖v‖22. (108)

Proof See §E.3 for a detailed proof.

Lemma 26 implies that ‖Λ2‖∞ ≤ Ch
√

log d/n with probability at least 1− (2d)−1. By
the relation between `1- and `2-norms, we have∣∣vTΛ2v

∣∣ ≤ (2s∗+ 2k∗)‖v‖22‖Λ‖∞ ≤ (2s∗+ 2k∗)Ch
√

log d/n.

Moreover, setting r = Cρs
∗√log d/n with Cρ ≥ 33ρ−1

∗ , we have

|vTΛ1v| ≤ CrCρ‖v‖21 ≤ CrCρ(2s∗+ 2k∗)
√

log d/n.

By Assumption 4, if n is large enough such that (2s∗+ 2k∗)(CrCρ+Ch)
√

log d/n
]
≤ 0.05ρ∗,

then we have

0.95ρ∗ ≤ ρ∗j−(2s∗+ 2k∗)− 0.05ρ∗ ≤ ρj−(2s∗+ 2k∗) < ρj+(k∗) ≤ ρ∗j+(k∗) + 0.05ρ∗,
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where we denote the s-sparse eigenvalues ρ−
(
∇2Lj ,β

∗
j ; s, r

)
and ρ+

(
∇2Lj ,β

∗
j ; s, r

)
as ρj−(s)

and ρj+(s) respectively. Under Assumption 4, ρ∗j+(k∗)
/
ρ∗j−(2s∗+ 2k∗) ≤ 1 + 0.2k∗/s∗ and

k∗ ≥ 2s∗, simple computation yields that

ρj+(k∗)

ρj−(2s∗+ 2k∗)
≤

ρ∗j+(k∗) + 0.05ρ∗

ρ∗j−(2s∗+ 2k∗)− 0.05ρ∗
≤
ρ∗j+(k∗) + 0.05ρ∗j−(2s∗+ 2k∗)

0.95ρ∗j−(2s∗+ 2k∗)
≤ 1 + 0.27k∗/s∗.

Thus, we conclude the proof of Lemma 26.

E.1.3. Proof of Lemma 22

Proof For v = (v1, . . . , vd)
T ∈ Rd, without loss of generality, we assume that F c = [s1]

where s1 = |F c| ≤ s. In addition, we assume that when j > s1, vj is arranged in descending
order of |vj |. That is, we rearrange the components of v such that |vj | ≥ |vj+1| for all
j ≥ s1. Let J0 = [s1] and Ji = {s1 +(i − 1)k+1, . . . ,min(s1 + ik, d)}. By definition, we
have J = J1 and I = J0 ∪ J1. Moreover, we have ‖vJi‖∞ ≤ ‖vJi−1‖1

/
k when i ≥ 2 because

by the definition of Ji, we have
∑

i≥2 ‖vJi‖∞ ≤ ‖vF ‖1
/
k. Note that by the definition of

index sets I and Ji, |Ji| ≤ k and |I| = k+s1 ≤ k+s. We denote the restricted correlation
coefficients π(M,u0; s, k, r) as π(s, k), then by the definition of π(s+k, k) we have∣∣vTI M(u)vJi

∣∣≤ π(s+k, k)
[
vTI M(u)vI

]
‖vJi‖∞

/
‖vI‖2.

Thus we have the following upper bound for
∣∣vTI M(u)vIc

∣∣ :∣∣vTI M(u)vIc
∣∣ ≤∑

i≥2

∣∣vTI M(u)vJi
∣∣ ≤ π(s+k, k)‖vI‖−1

2

[
vTI M(u)vI

]∑
i≥2

‖vJi‖∞

≤ π(s+k, k)‖vI‖−1
2

[
vTI M(u)vI

]
‖vF ‖1

/
k. (109)

Because vTM(u)v ≥ vTI M(u)vI + 2vTI M(u)vIc , by (109) we have

vTM(u)v ≥ vTI M(u)vI − 2π(s+k, k)‖vI‖−1
2

[
vTI M(u)vI

]
‖vF ‖1

/
k

=
[
vTI M(u)vI

][
1− 2π(s+k, k)‖vI‖−1

2 ‖vF ‖1
/
k
]
.

Thus we can bound the right-hand side of the last formula using the sparse eigenvalue
condition

vTM(u)v ≥ ρ−(s+k)
[
1− 2π(s+k, k)k−1‖vI‖−1

2 ‖vF ‖1
]
‖vI‖22, (110)

where we denote s-sparse eigenvalue ρ−(M,u0; s, r) as ρ−(s+ k) for the simplicity of nota-
tions. Inequality (110) concludes the proof of Lemma 22.

E.1.4. Proof of Lemma 23

Proof Let F (t) = Lj
(
β(t)

)
− Lj(β1) −

〈
∇Lj(β1),β(t) − β1

〉
. Since the derivative of

Lj
(
β(t)

)
with respect to t is

〈
∇Lj

(
β(t)

)
,β2 − β1

〉
, the derivative of F is given by

F ′(t) =
〈
∇Lj

(
β(t)

)
−∇Lj(β1),β2 − β1

〉
.
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Therefore the Bregman divergence Dj

(
β(t),β1

)
can be written as

Dj

(
β(t),β1

)
=
〈
∇Lj [β(t)]−∇Lj(β1), t(β2 − β1)

〉
= tF ′(t).

By definition, it is easy to see that F ′(1) = Dj(β2,β1). To derive Lemma 23, it suffices to
show that F (t) is convex, which implies that F ′(t) is non-decreasing and Dj

(
β(t),β1

)
=

tF ′(t) ≤ tF ′(1) = tDj(β2,β1).
For ∀t1, t2 ∈ R+, t1 + t2 = 1, x, y ∈ (0, 1), by the linearity of β(t), β(t1x + t2y) =

t1β(x) + t2β(y). Then we have〈
∇Lj(β1),β(t1x+ t2y)− β1

〉
= t1

〈
∇Lj(β1),β(x)− β1

〉
+ t2

〈
∇Lj(β1),β(y)− β1

〉
. (111)

In addition, by convexity of function Lj(·), we obtain

Lj
(
β(t1x+ t2y)

)
≤ t1Lj

(
β(x)

)
+ t2Lj

(
β(y)

)
. (112)

Adding (111) and (112) we obtain

F
(
t1x+ t2y

)
≤ t1F (x) + t2F (y).

Therefore F (t) is convex, thus we have Dj(β(t),β1) ≤ tDj(β2,β1).

E.2. Proof of Technical Lemmas in §D

Now we prove the lemmas that supports the auxiliary inferential results. We first prove
Lemma 25, which implies that the σ̂2

jk is a consistent estimator of the asymptotic variance
of σjk.

E.2.1. Proof of lemma 25

Proof Recall that we denote βj∨k = (βjk,βj\k,βk\j) and Ljk
(
βj∨k

)
= Lj(βj)+Lk(βk). We

denote the kernel function of the second-order U -statistic ∇Ljk
(
βj∨k

)
as hjkii′

(
βj∨k

)
where

the subscripts i, i′ indicate that hjkii′(·) depends on Xi and Xi′ . We define Vjk
ii′i′′
(
βj∨k

)
:=

hjkii′
(
βj∨k

)
hjkii′
(
βj∨k

)T
. Then by definition, Σ̂jk

(
βj\k

)
can be written as

Σ̂jk
(
βj∨k

)
=

1

n(n− 1)2

n∑
i=1

∑
i′ 6=i,i′′ 6=i

Vjk
ii′i′′
(
βj∨k

)
.

Note that Σ̂jk
(
βj∨k

)
−Σjk = Σ̂jk

(
βj∨k

)
− Σ̂jk

(
β∗j∨k

)︸ ︷︷ ︸
I1

+ Σ̂jk
(
β∗j∨k

)
−Σjk︸ ︷︷ ︸

I2

.

We first consider I2. For notational simplicity, we use hii′ and hii′|i to denote hjkij
(
β∗j∨k

)
and hjkii′|i

(
β∗j∨k

)
:= E

[
hjkij
(
β∗j∨k

)∣∣Xi

]
respectively. As shown in §D.1, for i 6= i′ 6= i′′,

E
(
hii′h

T
ii′′
)

= E
(
hii′h

T
ii′′
∣∣Xi

)
= E

(
hii′|ih

T
ii′′|i
)

= Σjk and E
(
hijh

T
ij

)
= Θjk,

we can write I2 as
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I2 =
n− 2

n− 1

{(
n

3

)−1∑
i<i′<i′′

[
Vii′i′′−E(Vii′i′′)

]}
︸ ︷︷ ︸

I21

+
1

n− 1

{(
n

2

)−1∑
i<i′

[
Vii′i′−E(Vii′i′)

]}
︸ ︷︷ ︸

I22

+
1

n− 1

(
Θjk−Σjk

)
,

where we use Vii′i′′ to denote Vjk
ii′i′′(β

∗
j∨k). Observing that I21 is a centered third order

U -statistic, for x large enough such that x4≥
∥∥E[Vijk(β

∗
j∨k)

]∥∥
∞ and for any (a, b), (c, d) ∈{

(p, q) : p, q ∈ {j, k}
}

we have

P
([

Vjk
ii′i′′(βj∨k)

]
ab,cd

> 2x4
)
≤ P

[
(Xia −Xi′a)(Xib −Xi′b)(Xic −Xi′′c)(Xid −Xi′′d) > x4

]
≤ 8 exp(2κm + κh) exp(−x).

Thus there exist constants c1 and C1 that does not depend on n or d or (j, k) such that for
any x ∈ R, any i, i′, i′′ ∈ [n] and any j, k ∈ [d],

P
(
[Vjk

ii′i′′(β
∗
j∨k)]ab,cd > x

)
≤ C1 exp(c1x

1/4). (113)

This implies that there exists some generic constant C such that ‖Vjk
ii′i′′(β

∗
j∨k)‖∞ ≤ C log4 d

for all j, k ∈ [d] and i, i′ ∈ [n] with probability tending to one. Similar to the method we

use in §E.3, we define E :=
{
‖Vjk

ii′i′′(β
∗
j∨k)‖∞ ≤ C log4 d,∀i, i′, i′′ ∈ [n], j, k ∈ [d]

}
. By

Bernstein’s inequality for U -statistics (Lemma 19) with b = C log4 d in (56), for some
generic constants C, it holds with high probability that(

n

2

)−1∑
i<i′

[
Vii′i′−E(Vii′i′ |E)

]
≤ C

√
log d/n, ∀j, k ∈ [d], i, i′, i′′ ∈ [n]. (114)

Moreover, by (113), we have

E
{

[Vii′i′(β
∗
j∨k)]ab,cd|E

}
− E

{
[Vii′i′′(β

∗
j∨k)]ab,cd

}
≤
∫ ∞
C log4 d

P
{∣∣[Vjk

ii′i′′(β
∗
j∨k)]ab,cd

∣∣ > x
}
≤ c1 log3 d · exp(−c2 log d) (115)

for some absolute constant c1 and c2. Since (115) holds uniformly, we have(
n

2

)−1∑
i<i′

[
E(Vii′i′ |E)− E(Vii′i′′)

]
≤ log3 d · exp(−c2 log d) .

√
log d/n. (116)

Combining (114) and (116) we obtain that

‖I21‖∞ = OP
(√

log d/n
)

uniformly for 1 ≤ j < k ≤ n. (117)

For the second part I22, noting that it is a U -statistic of order 2, because (113) also holds
for Vii′i′′(β

∗
j∨k), applying the same technique, we have ‖I21‖∞ = OP

(√
log d/n

)
uniformly
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for 1 ≤ j < k ≤ n. Combining with (117), we conclude that, for some absolute constant C,
we have ∥∥Σ̂jk

(
β∗j∨k

)
−Σjk

∥∥
∞ ≤ C

√
log d/n, ∀1 ≤ j < k ≤ n. (118)

Now we turn to I1. For any βj ,βk ∈ Rd−1 such that ‖βj − β∗j ‖1 ≤ r(s∗, n, d) and

‖βk −β∗k‖1 ≤ r(s∗, n, d), we denote ωjii′ := exp
[
−(Xij −Xi′j)(βj −β∗j )T (Xi\j −Xi′\j)

]
and

denote ωkii′ similarly. Recall that we denote Rjii′(βj) = exp
[
−(xij − xi′j)βjT (xi\j − xi′\j)

]
.

Hence by definition we have Rjii′(βj) = ωjii′R
j
ii′(β

∗
j ). As shown in §E.3, we have

min{1, ωjii′ , ω
k
ii′}h

jk
ii′(β

∗
j∨k) ≤ hjkii′(βj∨k) ≤ max{1, ωjii′ , ω

k
ii′}h

jk
ii′(β

∗
j∨k), (119)

where the inequality is taken elementwisely. We denote b := maxi,i′∈[n];j∈[d] r(s
∗, n, d)

∥∥(Xij−
Xi′j)(Xi\j−Xi′\j)

∥∥
∞. Note that when ‖βj−β∗j ‖1 ≤ r(s∗, n, d) and ‖βk−β∗k‖1 ≤ r(s∗, n, d),

we have ωjii′ , ω
k
ii′ ∈ [exp(−b), exp(b)]. Therefore by (119) and the definition of V jk

ii′i′′
(
βj\k

)
,

we obtain the following elementwise inequality

exp(−2b)Vjk
ii′i′′
(
β∗j\k

)
≤ Vjk

ii′i′′
(
βj\k

)
≤ exp(2b)Vjk

ii′i′′
(
β∗j\k

)
,

which implies that∥∥Σ̂jk
(
βj∨k

)
− Σ̂jk

(
β∗j∨k

)∥∥
∞ ≤ max

{
1− exp(−2b), exp(2b)− 1

}∥∥Σ̂jk
(
β∗j∨k

)∥∥
∞. (120)

As we show in §E.3, b ≤ Cr(s∗, n, d) log2 d with high probability for some absolute constant
C > 0. Since lim

n→∞
r(s∗, n, d) log2 d = 0, by (120) we have

∥∥Σ̂jk
(
βj∨k

)
− Σ̂jk

(
β∗j∨k

)∥∥
∞ . b

∥∥Σ̂jk
(
β∗j∨k

)∥∥
∞
∥∥
∞ ≤ b

∥∥Σ̂jk
(
β∗j∨k

)
−Σjk

∥∥
∞ + b‖Σjk‖∞.

Note that we show ‖I2‖∞ =
∥∥Σ̂jk

(
β∗j∨k

)
− Σjk

∥∥
∞ = OP

(√
log d/n

)
, which converges to

zero asymptotically. Thus we conclude that∥∥Σ̂jk
(
βj∨k

)
− Σ̂jk

(
β∗j∨k

)∥∥
∞ = OP

(
r(s∗, n, d) log2 d

)
. (121)

Combining (118) and (121), we have the following error bound for Σ̂jk
(
βj∨k

)
:∥∥Σ̂jk

(
βj∨k

)
−Σjk

∥∥
∞ = OP

(
r(s∗, n, d) log2 d+

√
log d/n

)
for all (j, k). (122)

Finally, by the fact that maxj∈[d] ‖β̂j −β∗j ‖1 . s∗λ, we conclude the proof of Lemma 25 by
setting r = Cs∗λ.

E.3. Proof of Lemma 26

Now we turn to the last unproven result, namely Lemma 26, which characterizes the per-
turbation of ∇2Lj(βj).
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Proof Note that ∇2Lj(βj) is a second-order U -statistic. Hence ∇2Lj(βj)− E
[
∇2Lj(βj)

]
is a centered U -statistic. We denote its kernel as Tii′(βj), then

∇2Lj(βj)− E
[
∇2Lj(βj)

]
=

2

n(n− 1)

∑
i<i′

Tii′(βj).

Note that
∥∥E[Tii′(βj)]

∥∥
∞ is bounded for all βj ∈ Rd−1 because

max
u∈Rd−1

∥∥E[Tii′(βj)]
∥∥
∞. max

j∈[d]
E|Xij −Xi′j |4. max

j∈[d],i∈[n]
E|Xij |4 ≤

∫ ∞
0

c exp(−t1/4)dt = 24c,

where c = 2 exp(κm + κh/2). Here the last inequality follows from (14). Let ∇2
jk,j`Lj(βj) =

∂2Lj(βj)
/(
∂βjk∂βj`

)
and let

[
Tii′(βj)

]
k`

be the corresponding kernel function. That is,

∇2
jk,j`Lj(βj) =

(
n
2

)−1∑
i<i′
[
Tii′(βj)

]
k`
. For x > 0 such that x4 > 24c and k, ` 6= j, we have

P
{∣∣[Tii′(β

∗
j )]k`

∣∣ > 2x4
}
≤ P

[
(Xij −Xi′j)

2(Xik −Xi′k)(Xi` −Xi′`) > x4
]

≤ P
(
|Xij −Xi′j | > x

)
+ P

(
|Xik −Xi′k| > x

)
+ P

(
|Xi` −Xi′`| > x

)
. (123)

As a direct implication of Assumption 2, we have P
(
|Xij − Xij | > x

)
≤ 2 exp(2κm +

κk) exp(−x) for all j ∈ [d]. Then we can bound the right-hand side of (123) by

P
{∣∣[Tii′(β

∗
j )]k`

∣∣ > 2x4
}
≤ 6 exp(2κm + κh) exp(−x) when x4 > 48 exp(κm + κh/2).

Letting CT = max
{

6 exp(2κm + κh), exp
{

[48 exp(κm + κh/2)]1/4
}}
, it holds that

P
{∣∣[Tii′(β

∗
j )]k`

∣∣ > x
}
≤ CT exp(−2−1/4x1/4) for all x > 0. (124)

Thus by a union bound, we conclude that there exists some generic constant C such that
‖Tii′(β

∗
j )‖∞ ≤ C log4 d for all j ∈ [d] and i, i′ ∈ [n] with probability at least 1 − (8d)−1.

We define an event E :=
{
‖Tii′(β

∗
j )‖∞ ≤ C log4 d,∀i, i′ ∈ [n], j ∈ [d]

}
. By (124), it is easy

to see that Tii′(β
∗
j ) is `2-integrable. By Bernstein’s inequality for U -statistics (Lemma 19)

with b = C log4 d in (56), for some generic constants C1 and C2, we obtain that

P
(
∇2Lj(βj)− E1

[
∇2Lj(βj)

]
> t
∣∣E) ≤ 4 exp

[
−nt2

/
(C1 + C2 log4 ·t)

]
, ∀j ∈ [d]. (125)

Here we use E1

[
∇2Lj(βj)

]
to denote E

[
∇2Lj(βj)

∣∣E]. Thus under Assumption 4 we obtain
that, conditioning on event E ,∥∥∇2Lj(βj)− E1

[
∇2Lj(βj)

]∥∥
∞ ≤ C

√
log d/n, ∀j ∈ [d] (126)

with probability at least 1− (8d)−1. Moreover, by (124) we obtain that

E
{

[Tii′(β
∗
j )]k`

∣∣E}−E{[Tii′(β
∗
j )]k`

}
≤
∫ ∞
C log4 d

P
{∣∣[Tii′(β

∗
j )]k`

∣∣ > x
}
≤ c1 log3 d·exp(−c2 log d)

for some absolute constant c1 and c2. Therefore we have∥∥E1

[
∇2Lj(βj)

]
− E

[
∇2Lj(βj)

]∥∥
∞ . log3 d · exp(−c2 log d) .

√
log d/n. (127)
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Combining (126) and (127) we show that, with probability at least 1−(4d)−1,
∥∥∇2Lj(β

∗
j )−

E[∇2Lj(β
∗
j )]
∥∥
∞ ≤ Ch

√
log d/n for all j ∈ [d].

For the second argument (107), let ∆ = βj − β∗j where βj ∈ Rd−1 lies in the `1-ball

centered at β∗j with radius r1(s∗, n, d), that is,
∥∥βj−β∗j∥∥1

≤ r1(s∗, n, d). By the independence
between Xi and Xi′ , Assumption 2 implies that

max
{

logE
[
exp(Xij −Xi′j)

]
, logE

[
exp(Xi′j −Xij)

]}
≤ 2κm + κh,

which further implies that for any x > 0

P
(∣∣(Xij −Xi′j)

∣∣ > x
)
≤ 2 exp(2κm + κh) exp(−x), ∀j ∈ [d].

Hence for any x > 0 and j, k ∈ [d], a union bound implies that

P
[∣∣(Xij −Xi′j)(Xik −Xi′k)

∣∣ > x2
]
≤ P

[∣∣(Xij −Xi′j)
∣∣ > x

]
+ P

[∣∣(Xik −Xi′k)
∣∣ > x

]
≤ 4 exp(2κm + κh) exp(−x). (128)

Taking a union bound over 1≤ j<k≤ d and 1 ≤ i < i′ ≤ n we obtain that

P
[

max
i,i′∈[n];j∈[d]

∥∥(Xij −Xi′j)(Xi\j −Xi′\j)
∥∥
∞ > x2

]
. n2d2 exp(−x).

If we denote b := maxi,i′∈[n];j∈[d] r1(s∗, n, d)
∥∥(Xij −Xi′j)(Xi\j −Xi′\j)

∥∥
∞, then we obtain

that b ≤ Cr1(s∗, n, d) log2 d with probability at least 1 − (4d)−1 for some constant C > 0.
Denoting ωii′ := exp

{
−(Xij −Xi′j)∆

T (Xi\j −Xi′\j)
}
, by definition,

Rjii′(βj) = exp
{
−(Xij −Xi′j)(∆ + β∗j )

T (Xi\j −Xi′\j)
}

= ωii′R
j
ii′(β

∗
j ).

Thus we can write ∇2Lj(βj) as:

∇2Lj(βj) =
2

n(n− 1)

∑
i<i′

Rjii′(β
∗)(Xij −Xi′j)

2(Xi\j −Xi′\j)
⊗2(

1 +Rjii′(β
∗)
)2 ωii′

(
1 +Rjii′(β

∗)
)2(

1 + ωii′R
j
ii′(β

∗)
)2 .

(129)

If ωii′ ≥ 1, then (ωii′)
−2 ≤

(
1 + Rjii′(β

∗)
)2/(

1 + ωii′R
j
ii′(β

∗)
)2 ≤ 1; otherwise we have

1 ≤
(
1 +Rjii′(β)

)2
/
(
1 + ωii′R

j
ii′(β

∗)
)2 ≤ (ωii′)

−2. This observation implies

min
{
ωii′ , 1/ωii′

}
≤

ωii′
(
1 +Rjii′(β)

)2(
1 + ωii′R

j
ii′(β

∗)
)2 ≤ max

{
ωii′ , 1/ωii′

}
. (130)

By the definition of ωii′ , Hölder’s inequality implies that
∣∣(Xij−Xi′j)∆

T (Xi\j−Xi′\j)
∣∣ ≤ b,

thus we have

exp(−b) ≤ min
{
ωii′1/ωii′

}
≤ max

{
ωii′ , 1/ωii′

}
≤ exp(b). (131)
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Combining (129),(130) and (131) we obtain

exp(−b)∇2Lj(β
∗
j ) ≤ ∇2Lj(βj) ≤ exp(b)∇2Lj(β

∗
j ). (132)

Then by (132), since lim
n→∞

r1(s∗, n, d) log2 d = 0, we have

∥∥∇2Lj(βj)−∇2Lj(β
∗
j )
∥∥
∞ ≤ max

{
1− exp(−b), exp(b)− 1

}∥∥∇2Lj(β
∗
j )
∥∥
∞ . b

∥∥∇2Lj(β
∗
j )
∥∥
∞.

Notice that under Assumption 2, as shown in §D.1, we can assume that
∥∥E[∇2Lj(β

∗
j )
]∥∥
∞ ≤

D where D appears in (84). By triangle inequality,∥∥∇2Lj(β
∗
j )
∥∥
∞ ≤

∥∥∇2Lj(β
∗
j )−E

[
∇2Lj(β

∗
j )
]∥∥
∞+

∥∥E[∇2Lj(β
∗
j )
]∥∥
∞ ≤ D+Ch

√
log d/n ≤ 2D

with probability at least 1 − (4d)−1, where the last inequality follows from the fact that(
log9 d/n

)1/2
tends to zero as n goes to infinity. Then we obtain that∥∥∇2Lj(βj)−∇2Lj(β

∗
j )
∥∥
∞ ≤ Crr1(s∗, n, d) log2 d

holds for some absolute constant Cr > 0 and uniformly for all j ∈ [d] and βj ∈ Bj(r1) with
probability at least 1− (2d)−1.

Finally, for the last argument (108), for any v ∈ Rd−1, by (132) we have

exp(−b)vT∇2Lj(β
∗
j )v ≤ vT∇2Lj(βj)v ≤ exp(b)vT∇2Lj(β

∗
j )v.

Thus we have∣∣vT [∇2Lj(βj)−∇2Lj(β
∗
j )
]
v
∣∣ . b∣∣vT∇2Lj(β

∗
j )v
∣∣ ≤ b‖v‖21∥∥∇2Lj(β

∗
j )
∥∥
∞,

which implies (108).
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(a). The asymmetric score test based on Lk(βk). (b). Inconsistent edges of the asymmetric score test

Figure 4: In (a) we plot estimated graph in the CAL500 dataset inferred by the asymmetric
score test based on the loss function Lk(βk) for testing H0 : β∗jk = 0 for any
1 ≤ j < k ≤ d. We plot the connected components of the estimated graph for
illustration. Compared with Figure 3, we observe that the two asymmetric score
tests yields different graphs. In (b) we plot the edges that appear in (a) and
Figure 3-(a) but not in Figure 3-(b). In other words, we plot the inconsistent
edges of these two asymmetric score tests that are discovered by the pairwise
score test. Thus, by taking symmetry into consideration, the pairwise score test
is able to correct such inconsistency.
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