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Abstract
Markov blanket (Mb) and Markov boundary (MB) are two key concepts in Bayesian networks
(BNs). In this paper, we study the problem of Mb and MB for multiple variables. First, we show
that Mb possesses the additivity property under the local intersection assumption, that is, an Mb of
multiple targets can be constructed by simply taking the union of Mbs of the individual targets and
removing the targets themselves. MB is also proven to have additivity under the local intersection
assumption. Second, we analyze the cases of violating additivity of Mb and MB and then put
forward the notions of Markov blanket supplementary (MbS) and Markov boundary supplementary
(MBS). The properties of MbS and MBS are studied in detail. Third, we build two MB discovery
algorithms and prove their correctness under the local composition assumption. We also discuss
the ways of practically doing conditional independence tests and analyze the complexities of the
algorithms. Finally, we make a benchmarking study based on six synthetic BNs and then apply
MB discovery to multi-class prediction based on a real data set. The experimental results reveal
our algorithms have higher accuracies and lower complexities than existing algorithms.

Keywords: Markov blanket, Markov boundary, Markov blanket supplementary, Markov boundary
supplementary, Bayesian network

1. Introduction

Bayesian networks (BNs) are graphical structures used to represent the probabilistic relations
among a large number of variables and to make the associated probabilistic inferences (Neapolitan,
2004; Pearl, 1988). In recent years, BNs have become one of the most powerful tools in encoding
uncertain expert knowledge in expert systems (Daly et al., 2011; Parviainen and Koivisto, 2013) and
also deeply influenced on many other actual domains such as medical diagnosis, financial analysis,
bioinformatics, and industrial applications (Zhang and Guo, 2006).
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As two important concepts in BNs, Markov blanket (Mb) and Markov boundary (MB) play a
key role in feature selection (FS; Fu and Desmarais, 2010; Pellet and Elisseeff, 2008; Aliferis et al.,
2010a,b). Mathematically, Pearl (1988, pp. 218–221) showed the conditional probability for the
target given other variables can be replaced by the MB as the conditional set. Pellet and Elisseeff
(2008, pp. 1299, 1302) proved that an MB is the theoretically optimal set of features. Further,
under certain assumptions about the learner and the loss function, MB is the solution to the variable
selection problem (Tsamardinos and Aliferis, 2003; Statnikov et al., 2013).

So far most authors have focused on the problem of Mb or MB for a single variable. In this paper,
we consider the problem of Mb and MB for multiple variables. This occurs if, for example, one
wants to compute the joint probability of two or more variables conditioned on all other variables.
The basic question for Mb of multiple variables is whether the additivity property holds, that is, can
an Mb of multiple variables be constructed by simply taking the union of the Mbs of the individual
variables and removing the target variables themselves? The same question is for MB. Further, if
the additivity property is violated in some situation, how can we do it?

In the literature, there have been lots of MB discovery algorithms, such as the Koller-Sahami
(KS) algorithm (Koller and Sahami, 1996), the grow-shrink (GS) algorithm (Margaritis and Thrun,
1999, 2000), the incremental association Markov boundary (IAMB) algorithm (Tsamardinos et al.,
2003) and its several variants, the HITON algorithm (Aliferis et al., 2003), the max-min Markov
boundary (MMMB) algorithm (Tsamardinos et al., 2006), the parents and children based Markov
boundary (PCMB) algorithm and KIAMB algorithms (Peña et al., 2007), the BFMB algorithm (Fu and
Desmarais, 2007), the algorithmic framework called generalized local learning (GLL, Aliferis et al.,
2010a), and some others (Fu and Desmarais, 2010; Schlüter, 2014). For a single target variable,
most of these algorithms are efficient to seek an approximate MB; for multiple target variables, if
simply regarding them as a multivariate variable, these algorithms seem to be feasible. However,
this will lead to low accuracies and high computational complexities. Hence, it is necessary to
design more efficient MB discovery algorithms for multiple variables.

The remainder of this paper is organized as follows. Section 2 presents necessary preliminaries
and the motivations of this paper. Subsection 3.1 shows additivity of Mb and MB under the local
intersection assumption. In Subsection 3.2, we first analyze when additivity is violated and then put
forward the notions of Markov blanket supplementary (MbS) and Markov boundary supplementary
(MBS). The properties of MbS and MBS are studied detailedly. In Section 4, we design two MB
discovery algorithms for multiple variables, and prove their correctness under the local composition
assumption. In addition, we discuss the ways of practically doing conditional independence (CI)
tests and analyze the complexities of the algorithms. Section 5 makes a benchmarking study based
on six synthetic BNs, and Section 6 considers a practical application. The experimental results
show the superiority of our algorithms with higher accuracies and lower complexities than existing
algorithms. Section 7 concludes this paper and presents three remarks.

2. Preliminaries and Motivations

In the paper, we denote a variable and its value by upper-case and lower-case letters in italics
(e.g., X, x), a set of variables and its value by upper-case and lower-case bold letters in italics (e.g.,
X, x). The difference between X and Y is denoted by X \ Y. For brevity, we write (X \ Y) \ Z as
X \ Y \ Z. In addition, we use |X| to denote the number of variables involved in X.
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2.1 Preliminaries

Suppose we have a joint probability distribution P over V ≜ {X1, · · · , Xp} and a directed acyclic
graph (DAG) G with the variables in V as its nodes. We say (G,P) satisfies the Markov condition
if every X ∈ V is conditionally independent of its nondescendants given its parents; Further, (G,P)
is called a Bayesian network (BN) if it satisfies the Markov condition; Furthermore, (G,P) satisfies
the faithfulness condition if, based on the Markov condition, G entails all and only conditional
independences (CIs) in P (Pearl, 1988; Neapolitan, 2004).

We write X y Y | Z (X ̸y Y | Z), if X and Y are conditionally independent (dependent) given
Z with respect to P. The following properties describe the relations among CI statements (Pearl,
1988; Peña et al., 2007; Statnikov et al., 2013). For any X,Y, Z,W ⊆ V, we have (i) symmetry:
X y Y | Z is equivalent to Y y X | Z; (ii) decomposition: X y Y ∪W | Z implies X y Y | Z and
X yW | Z; (iii) weak union: X y Y∪W | Z implies X y Y | Z∪W; (iv) contraction: X y Y | Z∪W
and X y W | Z imply X y Y ∪W | Z; (v) self-conditioning: X y Y |Y ∪ Z. Further, if P is strictly
positive, then besides (i)∼(v) we also have (vi) intersection: X y Y | Z ∪W and X y W | Z ∪ Y
imply X y Y ∪W | Z. Furthermore, if P is faithful to a DAG G, then besides (i)∼(vi) we also have
(vii) composition: X y Y | Z and X yW | Z imply X y Y ∪W | Z.

Among these properties, intersection and composition are two global ones. Statnikov et al.
(2013, p. 504) provided a relaxed version for composition called local composition: one says T ⊆ V
satisfies the local composition property, if T y X | Z and T y Y | Z imply T y X ∪ Y | Z for any
X,Y, Z ⊆ V \ T. We will provide a relaxed version for the intersection property.

Conditional mutual information (CMI) is one of the basic tools for testing CIs. Denote the CMI
between X and Y conditioned on Z by I(X; Y | Z). Then I(X; Y | Z) ⩾ 0, with equality holding if
and only if X y Y | Z (Zhang and Guo, 2006). For a practical problem, we cannot access to the true
CMI; instead, we use its empirical estimate, denoted by ID(X; Y | Z), based on the data D (Cheng
et al., 2002). Note that ID(X; Y | Z) ⩾ 0 also holds for any X,Y, Z ⊆ V.

The chain rule for CMI (Cover and Thomas, 2006) is useful to prove the main results of this
paper: I(X; Y1 ∪ Y2 | Z) = I(X; Y1 | Z) + I(X; Y2 | Z ∪ Y1) holds for any four sets of variables X, Y1,
Y2, and Z from V.

Another notion closely related to CI is d-separation (Pearl, 1988, p. 117). For a DAG G over
V, letting X,Y, Z ⊆ V be disjoint, we say Z d-separates X and Y if it blocks every path between
X and Y, and if this is the case we write X ⊥ Y | Z. Here, Z blocking a path c means that c has a
head-to-tail node or a tail-to-tail node belonging to Z, or that c has a head-to-head node C such that
C and its all descendants are not in Z. As well known, X ⊥ Y | Z ⇒ X y Y | Z, if (G,P) is a BN
(Neapolitan, 2004, p. 74). This implication provides a convenient way of identifying CIs.

For example, consider a BN with the graph presented in Figure 1 as its DAG. It follows that: X2
and X8 are d-separated by {X4, X5}, meaning X2 ⊥ X8 | {X4, X5} and thus X2 y X8 | {X4, X5}; X3 and
X4 are d-separated by Ø, meaning X3 ⊥ X4, so X3 y X4. Note that these two probabilistic CIs can
not be directly derived from the Markov condition.

In what follows, the concepts of Mb and MB are presented. They are a direct extension of Mb
and MB for a single target variable (Pearl, 1988, p. 97; Neapolitan, 2004, pp. 108–109): an Mb
of T is a set of variables shielding T from all other variables, so it carries all information of T that
cannot be obtained from other variables, while an MB is a minimal Mb.

Definition 1 Let T ⊆ V and M ⊆ V\T. We call M a Markov blanket (Mb) of T if T y V\M\T |M.
Further, a Markov boundary (MB) of T is any Mb such that none of its proper subsets is an Mb.
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When |T| = 1, the following results are well known in the literature (Pearl, 1988; Neapolitan,
2004; Statnikov et al., 2013): (a) if (G,P) is a BN, then for T ∈ V the set of its all parents, children,
and spouses is an Mb of T (denoted by MT ); (b) if P satisfies the intersection property, then T has
a unique MB; (c) if (G,P) satisfies the faithfulness condition, then MT is the unique MB of T .

Consider again the BN with the graph presented in Figure 1 as its DAG. In this BN, it is seen
that MX4 ≜ {X2, X6, X3} is an Mb of X4; further, MX4 is the unique MB of X4 if the faithfulness
condition is satisfied. Similarly, MX2 ≜ {X4, X5} is the unique MB of X2 under the faithfulness
condition.

The above result (b) points out that if the uniqueness of MB is violated, then the intersection
property must be violated. Lemeire (2007) provided a case of violating intersection called informa-
tion equivalence: X and Y are called information equivalent with respect to T if T ̸y X, T ̸y Y,
T y X |Y, and T y Y | X. A related notion is conditional information equivalence (Lemeire et al.,
2012; Statnikov et al., 2013): X and Y are called to be conditionally information equivalent with
respect to T given Z ⊆ V \ X \ Y \ T, if T ̸y X | Z, T ̸y Y | Z, T y X |Y ∪ Z, and T y Y | X ∪ Z.
Lemeire et al. (2012, pp. 1309–1311) showed that (conditional) information equivalence is one of
the two major cases in which adjacency faithfulness is violated. Here, the adjacency faithfulness
condition (Ramsey et al., 2006; Lemeire et al., 2012) is defined as: if X and Y are adjacent, then
X ̸y Y | Z for any Z ⊆ V \ {X,Y}. Statnikov et al. (2013, p. 503) provided a local version for
adjacency faithfulness by focusing on a specific variable.

Here, we employ the information flow metaphor (Cheng et al., 2002) to intuitively explain
information equivalence: we can view a BN as a network of information channels, where each
node is a valve that is either active or inactive; the valves are connected by information channels;
information can flow through an active valve but not an inactive one; instantiating a node means this
valve becomes inactive. We extend this metaphor by viewing a clique of one or more nodes as a
valve. In this sense, a CI relation X y Y | Z means all the channels between X and Y are cut off by Z
and thus the information between X and Y can not flow once Z becomes inactive. When information
equivalence occurs, we further extend this information flow metaphor as follows: if X and Y are
information equivalent with respect to T given Z, then there exists an information equivalent valve,
denoted by δX,Y; T | Z , which connects T and X and connects T and Y; δX,Y; T | Z is active when and
only when both X and Y are active. Then, the relation “X and Y are information equivalent with
respect to T given Z” can be presented in Figure 2.

Information equivalence represents all the possible situations leading to the nonuniqueness of
MB. In fact, we can show the following result, which indicates that violating the uniqueness of MB
implies the presence of information equivalence. The proof is presented in Section B.

Lemma 1 The intersection property holds if and only if no information equivalence occurs.
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The following lemma presents the well-known chain rule for CMI (Cover & Thomas, 2006,114

Theorem 2.5.2), which is very useful to prove the main results of this paper.115
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X and Y are not d-separated by Z. For example, considering the DAG presented in (1): X2 and125

X8 are d-separated by {X4,X5}, meaning X2 ⊥ X8 | {X4,X5}; X4 and X5 are d-separated by X2,126

meaning X4 ⊥ X5 |X2; X3 and X4 are d-separated by Ø but d-connected by X6 or X7, meaning127

X3 ⊥ X4 but X3 6⊥ X4 |X6 and X3 6⊥ X4 |X7.128

X1

��

X2
uu

��

X4

��

X3

�� X5

~~
X6

vv ((
X7 X8

(1)129

X1

��

X2
uu

��

X4

��

X3

�� X5

}}
X6

vv ((
X7 X8

Figure 1:

For any BN, the implication “X ⊥ Y |Z ⇒ X y Y |Z” can facilitates the identification of CIs.130

Taking the BN with (1) as its DAG for example, we have X2 y X8 | {X4,X5}; X4 y X5 |X2; and X3 y X4.131

Further, under the faithfulness condition, D-separation coincides with conditional independence132

while D-connection is equivalent to conditional dependence (Neapolitan, 2004, Theorem 2.5). That133

is, X ⊥ Y |Z ⇔ X y Y |Z while X 6⊥ Y |Z ⇔ X 6y Y |Z. This conclusion describes the relationship134

between the graphical side (G) and the probabilistic side (P) of a BN.135

In what follows, the concepts of MB and Mb for a single variable are presented (see Neapolitan,136

2004, pp. 108–109). The definition for multivariate case is similarly given in Definition 3.137

Definition 2 (Univariate MB and Mb) Let P be a joint probability distribution over V , and T ∈ V . Then138

a Markov blanket (MB), M, of T is any set of variables from V such that T y V \M \ {T} |M. A Markov139

boundary (Mb) of T is any MB such that none of its proper subsets is an MB of T.140

This definition requires that an Mb is a minimal MB in a sense. In other words, an Mb of T is141

a minimal variable set conditioned on which all other variables are independent of T, so it carries142

all information of T that cannot be obtained from other variables. The following lemma collects143

the main results of MB and Mb for the univariate case existing in the literature. The proofs can be144

found in Neapolitan (2004, p. 109) and Pearl (1988, pp. 97 and 141).145
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Figure 1: A simple DAG used to illustrate d-separation.
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Consider again the BN with the graph presented in Figure 1 as its DAG. In this BN, it is seen that114
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is satisfied. Similarly, MX2 , {X4,X5} is the unique Mb of X2 under the faithfulness condition.116

The above result (b) points out that if the uniqueness of Mb is violated, then the intersection117

property must be violated. Lemeire (2007) provided a case of violating intersection called information118

equivalence: X and Y are called information equivalent with respect to T if T 6y X, T 6y Y, T y X |Y,119

and T y Y |X. Lemeire et al. (2012) modified this definition by adding some conditioning set;120

Statnikov et al. (2013) called the resulting notion to be conditional information equivalence: X and Y121

are called conditionally information equivalent with respect to T given Z ⊆ V \X \Y \T, if T 6y X |Z,122

T 6y Y |Z, T y X |Y ∪ Z, and T y Y |X ∪ Z. Lemeire et al. (2012, pp. 1309–1311) showed that123

(conditional) information equivalence is one of the two major cases in which adjacency faithfulness124

is violated. Here, the adjacency faithfulness condition (Ramsey et al., 2006; Lemeire et al., 2012) is125

defined as: if X and Y are adjacent, then X 6y Y |Z for any Z ⊆ V \ {X,Y}.126

Here, we employ the metaphor that Cheng et al. (2002) used: we can view a BN as a network127

of information channels, where each node is a valve that is either active or inactive; the valves128

are connected by information channels; information can flow through an active valve but not an129

inactive one; instantiating a node means this valve becomes inactive. We extend this metaphor by130

viewing a clique of one or more nodes as a valve.131
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Information equivalence represents all the possible situations leading to the nonuniqueness of133

Mb. In fact, we can show the following result, which indicates that violating the uniqueness of Mb134

implies the presence of information equivalence. The proof is presented in Appendix B.135

Lemma 1 The intersection property holds if and only if no information equivalence occurs.136

By analyzing the proof of Lemma 1, we present a relaxed version for the intersection property137

called local intersection as follows.138

Definition 2 (Local Intersection) Letting T ⊆ V , we say T satisfies the local intersection property, if the139

following two types of local conditions hold simultaneously: (i) type-I local condition: in the case of |T| > 2,140

for any disjoint T1,T2 ⊆ T, there are no disjoint X,Y ⊆ V \T such that T1 and T2 are information equivalent141

with respect to X conditioned on Y; and (ii) type-II local condition: there are no disjoint X,Y,Z ⊆ V \ T142

such that X and Y are information equivalent with respect to T conditioned on Z.143

Clearly, intersection implies local intersection but not vice versa, because the former requires no144

any information equivalence while the latter only requires no information equivalence between145

the targets and the remaining variables. Here, we give a lemma concerning the uniqueness of Mb146

under the local intersection assumption. The proof is presented in Appendix B.147

Lemma 2 For T ⊆ V , assume the type-II local condition in Definition 2 holds. Then T has a unique Mb.148

To facilitate the identification of information equivalence, Lemeire (2007) introduced the notions149

of target partition (T-partition) and equivalent partition (E-partition), and then provided a relation150

among information equivalence, T-partition, and E-partition.151
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Figure 2: An intuitive illustration on T-partition and E-partition: in the DAG “B ← A → C → D”,
all variables take {1, 2, 3} except for D taking {1, 2}, and dotted arrows denote all non-zero
conditional probabilities of each variable given its parents.
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Figure 2: An intuitive illustration for information equivalence.

By analyzing the proof of Lemma 1, we present a relaxed version for the intersection property
called local intersection as follows.

Definition 2 (Local Intersection) Letting T ⊆ V, we say T satisfies the local intersection property,
if the following two types of local conditions hold simultaneously: (i) type-I local condition: in the
case of |T| ⩾ 2, for any disjoint T1,T2 ⊆ T, there are no disjoint X,Y ⊆ V \ T such that T1 and
T2 are information equivalent with respect to X conditioned on Y; and (ii) type-II local condition:
there are no disjoint X,Y, Z ⊆ V \ T such that X and Y are information equivalent with respect to
T conditioned on Z.

Clearly, intersection implies local intersection but not vice versa, because the former requires
no any information equivalence while the latter only requires no information equivalence between
the targets and the remaining variables. Here, we give a lemma concerning the uniqueness of MB
under the local intersection assumption. The proof is presented in Appendix B.

Lemma 2 For T ⊆ V, assume the type-II local condition defined in Definition 2 holds. Then T has
a unique MB.

To facilitate the identification of information equivalence, Lemeire (2007) ever introduced the
notions of target partition (T-partition) and equivalent partition (E-partition), and then provided a
relation among information equivalence, T-partition, and E-partition.

• T-partition: The domain, Xdom, of X can be partitioned into disjoint subsets X(k)
dom for which

P(T | x) is the same for all x ∈ X(k)
dom. This is called the T-partition of Xdom with respect to T.

• E-partition: A relation R ⊂ X ⊗ Y defines an E-partition in Ydom to a partition of Xdom, if: (i)
¬(x2Ry1) holds for any x1, x2 ∈ Xdom belonging to different partitions and for any y1 ∈ Ydom
with x1Ry1; and (ii) for every X(k)

dom, there exist x1 ∈ X(k)
dom and y1 ∈ Ydom such that x1Ry1.

• Relation among information equivalence, T-partition, and E-partition: If T ̸yX and TyY | X,
then TyX |Y (meaning X and Y are information equivalent with respect to T) if and only if
the relation xRy defined by P(x, y) > 0 with x ∈ Xdom and y ∈ Ydom defines an E-partition in
Ydom to the T-partition of Xdom with respect to T.

The graph shown in Figure 3, originally presented by Statnikov and Aliferis (2010), makes an
intuitive illustration on T-partition and E-partition. As seen, {1, 2} and {3} constitute the T-partition
of Adom ≜ {1, 2, 3} with respect to C; {1, 2} and {3} are the E-partition of Bdom ≜ {1, 2, 3} to the
T-partition of Adom, Therefore, A and B are information equivalent with respect to C if C ̸y A, since
C y B | A holds inherently because of the Markov condition.
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As a simple example, MX3 , {X1,X6,X4} is an MB of X3 in the BN shown by (1). Further, MX3 is152

also an Mb under the faithfulness condition.153

Definition 3 (Multivariate MB and Mb) Let P be a joint probability distribution over V , and T ⊆ V .154

An MB, M, of T is any set of variables from V such that T y V \M \ T |M. An Mb of T is any MB such155

that none of its proper subsets is an MB of T.156

Lemeire (2007) provided a positive characterization of the cases which may lead to violations of157

the intersection property and thus eliminate uniqueness of Mb, by virtue of the techniques about158

information equivalence. Statnikov et al. (2013) and Lemeire et al. (2012) made further developments159

about this. The following three definitions and Lemma 3 are from Lemeire (2007, pp. 96–101) and160

Statnikov et al. (2013, pp. 504–505) with some slight modifications.161

i Equivalent Information. Two subsets of variables, X and Y, from V are said to contain equivalent162

information about T (⊆ V) if T 6y X, T 6y Y, T y X |Y, and T y Y |X.163

i Target Partition. Let T be the target. The domain of X, denoted by Xdom, can be partitioned164

into disjoint subsets X(k)
dom for which P(T | x) is the same for all x ∈ X(k)

dom. This is called the165

target partition (T-partition) of Xdom with respect to T.166

i Equivalent Partition. Let X ⊗ Y be the Cartesian product of X and Y. A relation R ⊂ X ⊗ Y167

defines an equivalent partition (E-partition) in Ydom to a partition of Xdom, if: (i) for any x1168

and x2 ∈ Xdom that do not belong to the same partition and for any y1 ∈ Ydom with x1Ry1, it169

must be that ¬(x2Ry1); and (ii) for all subsets X(k)
dom of the partition, there exist x1 ∈ X(k)

dom and170

y1 ∈ Ydom such that x1Ry1.171

By Lemeire (2007, p. 99), E-partition can be intuitively explained as follows: for an E-partition,172

every partition X(k)
dom corresponds to a partition Y(`)

dom. More specifically, if an element of Ydom is173

related to an element of a partition of Xdom, then it is not related to an element of another partition;174

and each partition of Xdom has at least one element that is related to a partition of Ydom.175

Lemma 3 If T 6y X and T y Y |X, then T y X |Y (meaning X and Y contain equivalent information about176

T) if and only if the relation xRy defined by P(x, y) > 0 with x ∈ Xdom and y ∈ Ydom defines an E-partition177

in Ydom to the T-partition of Xdom with respect to T.178

This lemma characterizes exactly when the intersection property (and thus uniqueness of Mb)179

is violated. Also, it gives a direct method for justifying if two sets of variables contain equivalent180

information about the target. The DAG shown in (2), originally presented by Statnikov & Aliferis181

(2010), makes an intuitive illustration on T-partition and E-partition.2 As seen, {1, 2} and {3} are the182

E-partition of Bdom , {1, 2, 3} to the T-partition, {1, 2} and {3}, of Adom , {1, 2, 3} with respect to C.183

Therefore, A and B contain equivalent information about C, since C 6y A and C y B |A because (i) A184

is the only parent of C and (ii) B is a nondescendant of C.185
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2. By Statnikov et al. (2013), (2) represents a BN over V = {A,B,C,D} with each variable taking {1, 2, 3} except for D taking
{1, 2}, in which dashed arrows denote all non-zero conditional probabilities of each variable given its parents.
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The following two definitions will be used in Example 6, via the property (stated in Equation 2.1)187

of context-independent equivalent information (Statnikov et al., 2013, p. 506) in structuring new188

MBs for target variables.189

i Conditional Equivalent Information. Two sets of variables, X and Y, from V are said to contain190

equivalent information about T (⊆ V) conditioned on a non-empty set of variables W, if the191

following four conditions hold: T 6y X |W, T 6y Y |W, T y X |W ∪ Y, and T y Y |W ∪ X.192

i Context-Independent Equivalent Information. Two sets of variables, X and Y, from V are said193

to contain context-independent equivalent information about T (⊆ V), if X and Y contain194

equivalent information about T conditioned on any subset of variables from V \ X \ Y \ T.195

Lemma 4 If M is an MB of T (⊆ V) containing a set X, and there is a subset of variables Y such that X and196

Y contain context-independent equivalent information about T, then (M \ X) ∪ Y is also an MB of T.197

As seen, intersection and composition are two global properties of probability distributions.198

Statnikov et al. (2013, p. 504) provided a relaxed version of composition called local composition,199

which extends applications of several Mb discovery algorithms, such as IAMB and KIAMB, to the case200

when composition of its global version is violated. We give the definition of local composition with201

a slightly generalization with respect to the target as follows.202

Definition 4 (Local Composition) Assume P is a joint probability distribution over V , and T is a given203

set of variables from V . We say T satisfies the local composition property with respect to P, if T y X |Z and204

T y Y |Z imply T y X ∪ Y |Z for any three sets of variables X,Y, and Z from V .205

Likewise, the intersection property may also be violated in some situations. For the sake of206

subsequent theoretical analysis, we introduce two relaxed versions of intersection as follows:207

6

Figure 2:

The following two definitions will be used in Example 6, via the property (stated in Figure 2.1)187

of context-independent equivalent information (Statnikov et al., 2013, p. 506) in structuring new188

MBs for target variables.189

i Conditional Equivalent Information. Two sets of variables, X and Y, from V are said to contain190

equivalent information about T (⊆ V) conditioned on a non-empty set of variables W, if the191

following four conditions hold: T 6y X |W, T 6y Y |W, T y X |W ∪ Y, and T y Y |W ∪ X.192

i Context-Independent Equivalent Information. Two sets of variables, X and Y, from V are said193

to contain context-independent equivalent information about T (⊆ V), if X and Y contain194

equivalent information about T conditioned on any subset of variables from V \ X \ Y \ T.195

Lemma 4 If M is an MB of T (⊆ V) containing a set X, and there is a subset of variables Y such that X and196

Y contain context-independent equivalent information about T, then (M \ X) ∪ Y is also an MB of T.197

As seen, intersection and composition are two global properties of probability distributions.198

Statnikov et al. (2013, p. 504) provided a relaxed version of composition called local composition,199

which extends applications of several Mb discovery algorithms, such as IAMB and KIAMB, to the case200

when composition of its global version is violated. We give the definition of local composition with201

a slightly generalization with respect to the target as follows.202

Definition 4 (Local Composition) Assume P is a joint probability distribution over V , and T is a given203

set of variables from V . We say T satisfies the local composition property with respect to P, if T y X |Z and204

T y Y |Z imply T y X ∪ Y |Z for any three sets of variables X,Y, and Z from V .205

Likewise, the intersection property may also be violated in some situations. For the sake of206

subsequent theoretical analysis, we introduce two relaxed versions of intersection as follows:207

6

Figure 2: An intuitive illustration on T-partition and E-partition: in the DAG “B ← A → C → D”,
all variables take {1, 2, 3} except for D taking {1, 2}, and dotted arrows denote all non-zero
conditional probabilities of each variable given its parents.
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Finally, the notion of context-independent information equivalence given by Statnikov et al. (2013)160

will be used in Example 6: X and Y are called context-independent information equivalent with161

respect to T, if X and Y are information equivalent with respect to T given any Z ⊆ V \X \Y \T. For162

this notion, Statnikov et al. (2013) proved the following conclusion: if M is an MB of T with X ⊆M,163

and there is some Y ⊆ V \M \T such that X and Y are context-independent information equivalent164

with respect to T, then (M \ X) ∪ Y is also an MB of T.165

2.2 Two Typical Algorithms: IAMB and KIAMB166

In this subsection, we concisely present two typical Mb discovery algorithms: IAMB (Tsamardinos167

et al., 2003) and KIAMB (Peña et al., 2007). We select them because of their high adaptability and time168

efficiency: (i) the correctness of IAMB and KIAMB requires only the local composition assumption,169

while the correctness of the parents and children based algorithms, such as PCMB and the algorithms170

in the GLL framework, usually requires the faithfulness condition (Peña et al., 2007, Theorem 6;171

and Aliferis et al., 2010a, Theorem 1); (ii) IAMB and KIAMB are time efficient and thus suitable for172

the problem of Mb for multiple variables, while the parents and children based algorithms have173

exponential complexities (Aliferis et al., 2010a, pp. 199–200), so that they are hard to work when174

applied to the problem of Mb for multiple variables.175

IAMB is an enhanced variant of GS. In 2003, Tsamardinos et al. pointed out that GS uses a static176

and potentially inefficient heuristic in the growing phase, and then proposed IAMB by employing a177

dynamic heuristic. Tsamardinos et al. (2003) showed the correctness of IAMB under the faithfulness178

condition; Peña et al. (2007) relaxed the condition to the composition assumption; Statnikov et al.179

(2013) further relaxed the condition to the local composition assumption. Algorithm 7 describes180

the pseudo code for a modified version of IAMB. Here, the modification means that the shrinking181

phase incorporates a similar dynamic heuristic to that of the growing phase.182
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Figure 3: An illustration on T-partition and E-partition: in the DAG “B ← A → C → D”, all
variables take {1, 2, 3} except for D taking {1, 2}, and dotted arrows denote all non-zero
conditional probabilities of each variable given its parents.

Finally, the notion of context-independent information equivalence given by Statnikov et al.
(2013) will be used in Example 2. X and Y are called context-independent information equivalent
with respect to T, if X and Y are information equivalent with respect to T given any Z ⊆ V\X\Y\T.
For this notion, Statnikov et al. (2013) proved the following conclusion: if M is an Mb of T with
X ⊆ M, and there is some Y ⊆ V \ M \ T such that X and Y are context-independent information
equivalent with respect to T, then (M \ X) ∪ Y is also an Mb of T.

2.2 Two Typical Algorithms: IAMB and KIAMB

This subsection concisely presents two typical MB discovery algorithms: IAMB (Tsamardinos
et al., 2003) and KIAMB (Peña et al., 2007). We select them because of their high adaptability and
time efficiency: (i) correctness of IAMB and KIAMB requires only the local composition assumption
(Statnikov et al., 2013), while the correctness of the parents and children based algorithms, such
as PCMB and the algorithms in the GLL framework, usually requires the faithfulness condition (Peña
et al., 2007, Theorem 6; and Aliferis et al., 2010a, Theorem 1); (ii) IAMB and KIAMB are time efficient
and thus suitable for the problem of MB for multiple variables, while the parents and children based
algorithms have exponential complexities (Aliferis et al., 2010a, pp. 199–200), so they are hard
to work when too many variables are involved, such as the problem of MB discovery for multiple
variables.

IAMB is an enhanced variant of GS. In 2003, Tsamardinos et al. pointed out that GS uses a static
and potentially inefficient heuristic in the growing phase, and then proposed IAMB by employing a
dynamic heuristic. Tsamardinos et al. (2003) showed the correctness of IAMB under the faithfulness
condition; Peña et al. (2007) relaxed the condition to the composition assumption; Statnikov et al.
(2013) further relaxed the condition to the local composition assumption. Algorithm 3 describes the
pseudo code for IAMB. See Appendix A for details.

In the algorithm, there is a function fD (Line 3 of IAMB in Algorithm 3) denoting a heuristic
used to measure the association between variables (Tsamardinos et al., 2003; Peña et al., 2007).
Two widely used selections for fD are CMI (Cheng et al., 2002; Tsamardinos et al., 2003) and the
negative p-value (Tsamardinos et al., 2006; Aliferis et al., 2010a,b; Statnikov et al., 2013). Also,
Yaramakala (2004, p. 41) suggested an equivalent version of the negative p-value. Subsection 4.3
will make a discussion about the ways of practically doing CI tests and the selections for fD.
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KIAMB is a stochastic extension of IAMB. It embeds a randomization parameter K ∈ [0, 1] which
specifies the trade-off between greediness and randomness. If taking K = 1, KIAMB reduces to IAMB.
Peña et al. (2007) proved the correctness of KIAMB under the composition assumption. By the proof,
the local composition assumption is sufficient for KIAMB to be correct. Algorithm 3 describes the
pseudo code for KIAMB.

For the case of |T| ⩾ 2, IAMB and KIAMB can remain correct if strengthening the precondition.
We present the correctness of them as follows, without presenting the proof since it is similar to that
of the original IAMB and KIAMB (Tsamardinos et al., 2003; Peña et al., 2007; Statnikov et al., 2013).
In what follows, we say a CI test for a hypothesis is correct if the statistical decision is correctly
made by using a testing method. Subsection 4.3 gives a further discussion on this issue.

Theorem 1 (Correctness of IAMB and KIAMB) Assume T satisfies the local composition property,
and all CI tests are correct. Then (i) IAMB outputs an MB of T; (ii) KIAMB outputs an MB of T for
any K ∈ [0, 1].

2.3 Motivations

This subsection provides three motivations of this paper.
Let M be an MB of T . Then P(T |V \ {T }) = P(T |M). In other words, all information for

predicting T is carried by M. Further, M is a solution to the FS problem, if the algorithm that
constructs the prediction model can learn any probability distribution, and the performance metric
is strictly decreasing with the mean-squared loss with a preference for smaller subsets (Tsamardinos
and Aliferis, 2003, Proposition 3). For this reason, MB for a single variable is sufficient.

However, there are the situations where MB for multiple variables is preferred. This occurs if
we need the probability distribution of more than one variables given all the others. Let Mi be an
MB of Ti for i = 1, 2. Denoting T = {T1,T2}, it follows that

P(T |V \ T) =

{
P(T1 |M1)P(T2 |M2) if T1 < M2 or T2 < M1

P(T1,T2,V \ T) /
∑

t1, t2 P(t1, t2,V \ T) if T1 ∈ M2 and T2 ∈ M1

As seen, in the case of T1 ∈ M2 and T2 ∈ M1, the computation is intractable, especially when the
dimension is high. Nevertheless, if we have an MB for T, denoted by M, then P(T |V\T) = P(T |M)
follows immediately, so the problem is simplified greatly. In this sense, it is meaningful to consider
the problem of MB for multiple variables.

The second motivation is that we want to know whether the prediction for T will be affected if
the observed values of some variables outside T (in a new observation) are missing. Denote these
missing variables by Vm. This problem can be considered as follows: find an approximate MB
(denoted by Mm) of T in V \ Vm by means of some method, then check if Mm is an Mb in V via
some criterion (e.g., a criterion based on Lemma 2 given by Statnikov et al., 2013); and finally
assert T will not be affected if the above checking result is “yes”. In this sense, it is also preferred
to consider MB for multiple variables.

Figure 4 represents the DAG for the ALARM network (Beinlich et al., 1989), which is well
known in the literature. Take T1 ≜ X22 and T2 ≜ X23. Then, MTi is the unique MB of Ti for i = 1, 2
under the faithfulness condition, with

MT1 ≜ {X1, X4, X15, X21, X23, X27, X29} and MT2 ≜ {X2, X22, X24, X25, X27, X29}, (1)
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Figure 4: ALARM network (37 nodes and 46 edges): a logical alarm reduction mechanism.

respectively. This leads to intractable computations on the joint probability distribution of T1 and
T2 given all other variables, consider that T1 ∈ MT2 and T2 ∈ MT1 . Further, if the observed
values of some variables (e.g., X j for j = 32, 33, · · · , 37) in a new observation are missing, can
this observation be used any more for predicting T1 and T2? Furthermore, we have to face similar
problems if three or more target variables are considered.

The third motivation concerns MB discovery algorithms. By Theorem 1, IAMB and KIAMB can be
applied to the problem of MB for multiple variables if simply regarding the targets as a multivariate
vector, under the strengthened local composition assumption. However, the assumption of local
composition imposed on multiple targets may have more occasions to become invalid than imposed
on single targets, due to the synergy effect in the sense that neither X nor Y carries information of T
but together they contain some information of T (Rauh et al., 2014).

Here is an illustration: considering the BN with the graph in Figure 5 as its DAG, by direct
computations using the FullBNT toolbox (Murphy, 2007), we find that

A y C, A y D, and A y {C,D};
B y C, B y D, and B y {C,D};

{A, B} y C, {A, B} y D, but {A, B} ̸y {C,D}.

By this illustration, the idea of applying the existing MB discovery algorithms to multiple targets
seems to be practically improper although it is theoretically feasible, because synergy effects may
lead to potential inefficiency and even incorrectness. This motivates us to build some algorithms
which are resistant to synergy effects and, further, are time efficient.

X A

D

Y

E B

W C Z

X A

D

Y

E B

W C Z

X A

D

Y

E B

W C Z

Figure 5: An illustration on synergy effects: each of {X,Y,Z,W} takes {1, 2} equiprobably; each of
{A, B,C,D} takes 1 with probabilities p1, p2, p3, p4 and takes 2 with probabilities 1− p1,
1 − p2, 1 − p3, 1 − p4 given its parents, with p4 = p1 − p2 + p3; E has an arbitrary
distribution.

8



Markov Blanket andMarkov Boundary ofMultiple Variables

3. Markov Blanket and Markov Boundary for Multiple Variables

This section presents the theoretical results on the problem of Mb and MB for multiple variables
when the local intersection property is satisfied and when this property is violated. We study this
problem following this way because we are trying to find a suitable approach to transform the
problem of Mb and MB from multiple case to single cases, based on which we can build efficient
algorithms with high accuracies and low complexities.

3.1 Additivity under Local Intersection

In this subsection, we consider the problem of Mb and MB for multiple variables under the
local intersection assumption. We prove Mb and MB possess an ideal property called additivity.
That is, an Mb of multiple variables can be constructed by simply taking the union of the Mbs of the
individual variables and removing the target variables themselves (the same for MB). The results
are presented in Theorem 2 and Theorem 3, respectively. Appendix B gives their proofs.

Theorem 2 (Additivity of Mb) Let (G,P) be a BN over V. The following two statements hold:
(i) Let Mi be an Mb of Ti ⊆ V for i = 1, 2, and assume T1 ∪ T2 satisfies the local intersection

assumption. Then, (M1 ∪ M2) \ (T1 ∪ T2) is an Mb of T1 ∪ T2.
(ii) Let Mi be an Mb of Ti ∈ V for i = 1, · · · , k, and assume T ≜ {T1, · · · ,Tk} satisfies the local

intersection assumption. Then,
∪k

i=1 Mi \ T is an Mb of T.

The additivity property of Mb can be intuitively described by the information flow metaphor
(Cheng et al., 2002) using Figure 6: (M1 ∪ M2) \ (T1 ∪ T2) is enough to cut off all information
channels from T1 ∪ T2 to other valves, when no information equivalence associated with T1 ∪ T2
occurs.

Let T ⊆ V be the set of target variables. As we know, in the case of |T| = 1 (denoting T = {T }),
the set MT composed of the parents, children, and spouses of T is an Mb of it (Pearl, 1988), since
MT d-separates T from all other variables. For the case of |T| ⩾ 2 (denoting T = {T1, · · · ,Tk}),
Theorem 2 indicates that the union of all MTi’s with T1, · · · ,Tk excluded is an Mb of T.

Considering the ALARM network presented in Figure 4, we put T1 ≜ X22 and T2 ≜ X23. Then
MTi is an Mb of Ti for i = 1, 2, where MT1 and MT2 are defined in (1). Assume T1, 2 ≜ {T1,T2}
satisfies the local intersection property. It follows from Theorem 2 that

(MT1 ∪ MT2) \ T1, 2 = {X1, X2, X4, X15, X21, X24, X25, X27, X29} ≜ M1, 2 (2)

is an Mb of T1, 2. Those variables outside M1, 2 contain no information about T1, 2 conditioned on
M1, 2 and thereby P(T1, 2 |V \ T1, 2) reduces to P(T1, 2 |M1, 2). Further, if the observed values of

Markov Blanket andMarkov Boundary ofMultiple Variables

For additivity of MB shown in (i) of Theorem 2, we have a useful remark (used to simplify our289

algorithms in Section 4), based on the fact that if M is an MB of T then M ∪M0 is also an MB of T290

for any M0 ⊆ V \M \T. By the remark, the local intersection assumption for additivity of MB is not291

required in some special cases. The proof of this remark is given in Appendix B.292

Remark 1 In the case of either T1 ⊆ V \M2 or T2 ⊆ V \M1, the conclusion of (i) in Theorem 2 holds293

without requiring the local intersection assumption.294

Theorem 2 shows the additivity of MB. A natural idea is to wonder if additivity is possessed295

by Mb. Theorem 3 affirms this. Appendix B provides the proof. Note that the statements about the296

uniqueness of Mb in this theorem follow from Lemma 2.297

Theorem 3 (Additivity of Mb) Let (G,P) be a BN over V . The following two statements hold:298

(i) Assume T1 ∪ T2 satisfies the local intersection assumption. Let Mi be the unique Mb of T i for i = 1, 2.299

Then, (M1 ∪M2) \ (T1 ∪ T2) is the unique Mb of T1 ∪ T2.300

(ii) Assume T , {T1, · · · ,Tk} satisfies the local intersection assumption. Let Mi be the unique Mb of Ti for301

i = 1, · · · , k. Then,
⋃k

i=1 Mi \ T is the uniqe Mb of T.302

According to Theorem 3, M1, 2 defined in (2) is not only an MB but also the unique Mb of T1, 2303

in the ALARM network if the faithfulness condition is satisfied. Further, M1, 2, 3 defined in (3) is the304

unique Mb of T1, 2, 3.305
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3.2 Theoretical Results in the General Case308

Let (G,P) be a BN over V , and assume T i ⊆ V with |T| > 1 has an MB or Mb, Mi, for i = 1, 2.309

Denote T = T1∪T2 and N = (M1∪M2)\T. In the case that Mi is an Mb of T i, Theorem 3 reveals that310

N is an Mb of T if T satisfies the local intersection assumption. However, when the local intersection311

assumption does not hold (meaning information equivalence occurs, as Lemma 1 shows), N may312

be no longer an Mb of T, due to one of the following reasons: (i) N may be an MB but it may not313

possess minimality, as shown by Example 2; (ii) N may be insufficient to shield T1 and T2 from all314

other variables, so it is no longer an MB in this case, and some extra variables are required to enter315

into N. Example 1 provides an illustration.316

9

Figure 6: An illustration for additivity of Mb and MB with T = T1 ∪ T2 and N = (M1 ∪ M2) \ T.
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X j for j = 32, · · · , 37 in a new observation are missing, this observation can still be used without
affecting the prediction on T1, 2. Further, MT3 ≜ {X15, X19, X20, X22, X29} is an Mb of T3 ≜ X21.
Assume T1, 2, 3 ≜ {T1,T2,T3} satisfies the local intersection property. Then Theorem 2 shows

MT1 ∪ MT2 ∪ MT3 \ T1, 2, 3 = {X1, X2, X4, X15, X19, X20, X24, X25, X27, X29} ≜ M1, 2, 3 (3)

is an Mb of T1, 2, 3.
For additivity of Mb shown in (i) of Theorem 2, we have a useful remark (used to simplify our

algorithms in Section 4), based on the fact that if M is an Mb of T then M ∪ M0 is also an Mb of T
for any M0 ⊆ V \ M \ T. By the remark, the local intersection assumption for additivity of Mb is
not required in some special cases. The proof of this remark is given in Appendix B.

Remark 1 In the case of either T1 ⊆ V \ M2 or T2 ⊆ V \ M1, the conclusion of (i) in Theorem 2
holds without requiring the local intersection assumption.

Theorem 2 shows the additivity of Mb. A natural idea is to wonder if additivity is possessed by
MB. Theorem 3 affirms this. Appendix B provides the proof. Note that the statements about the
uniqueness of MB in this theorem follow from Lemma 2.

Theorem 3 (Additivity of MB) Let (G,P) be a BN over V. The following two statements hold:

(i) Assume T1 ∪ T2 satisfies the local intersection assumption. Let Mi be the unique MB of Ti

for i = 1, 2. Then, (M1 ∪ M2) \ (T1 ∪ T2) is the unique MB of T1 ∪ T2.

(ii) Assume T ≜ {T1, · · · ,Tk} satisfies the local intersection assumption. Let Mi be the unique
MB of Ti for i = 1, · · · , k. Then,

∪k
i=1 Mi \ T is the uniqe MB of T.

According to Theorem 3, M1, 2 defined in (2) is not only an Mb but also the unique MB of T1, 2
in the ALARM network if the faithfulness condition is satisfied. Further, M1, 2, 3 defined in (3) is
the unique MB of T1, 2, 3.

3.2 Theoretical Results in the General Case

Let (G,P) be a BN over V, and assume Ti ⊆ V with |Ti| ⩾ 1 has an Mb or MB, Mi, for i = 1, 2.
Denote T = T1 ∪ T2 and N = (M1 ∪ M2) \ T. In the case that Mi is an MB of Ti, Theorem 3
reveals that N is an MB of T if T satisfies the local intersection assumption. However, when the
local intersection assumption does not hold (meaning information equivalence occurs, as Lemma 1
shows), N may be no longer an MB of T, due to one of the following reasons: (i) N may be an Mb
but it may not possess minimality, as shown by Example 2; (ii) N may be insufficient to shield T1
and T2 from all other variables, so it is no longer an Mb in this case, and some extra variables are
required to enter into N. Example 1 provides an illustration.

For the first case, we need only to optimize N by simply removing redundant variables from N;
however, for the second case, the additivity property of MB is thoroughly broken, and the problem
of constructing an MB for T based on M1 and M2 becomes complex. On the one hand, there are
some variables in V \ N \T needing to enter into N; on the other hand, there may be some variables
in N becoming redundant once some new members supplement N. What we concern are which
variables should enter into N and how we find them.
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For additivity of MB shown in (i) of Theorem 2, we have a useful remark (used to simplify our289
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i = 1, · · · , k. Then,
⋃k

i=1 Mi \ T is the uniqe Mb of T.302

According to Theorem 3, M1, 2 defined in (2) is not only an MB but also the unique Mb of T1, 2303

in the ALARM network if the faithfulness condition is satisfied. Further, M1, 2, 3 defined in (3) is the304

unique Mb of T1, 2, 3.305

V \N \ T

M1 \ T2 M2 \ T1

T1 T2

306

V \N \ T V \ (N ∪ S) \ T

M1 \ T2 M2 \ T1 +3 M1 \ T2 S M2 \ T1

T1 δT1,T2; V\N\T |N T2 T1 δT1,T2; S |N T2

307

3.2 Theoretical Results in the General Case308

Let (G,P) be a BN over V , and assume T i ⊆ V with |T| > 1 has an MB or Mb, Mi, for i = 1, 2.309

Denote T = T1∪T2 and N = (M1∪M2)\T. In the case that Mi is an Mb of T i, Theorem 3 reveals that310

N is an Mb of T if T satisfies the local intersection assumption. However, when the local intersection311

assumption does not hold (meaning information equivalence occurs, as Lemma 1 shows), N may312

be no longer an Mb of T, due to one of the following reasons: (i) N may be an MB but it may not313

possess minimality, as shown by Example 2; (ii) N may be insufficient to shield T1 and T2 from all314

other variables, so it is no longer an MB in this case, and some extra variables are required to enter315

into N. Example 1 provides an illustration.316
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Figure 7: An illustration for the case of violating additivity of Mb and MB, caused by information
equivalence.

Assume N is no longer an Mb of T. Then, it is easily shown that

V \ N \ T ̸y T1 | N, but V \ N \ T y T1 | N ∪ T2,

V \ N \ T ̸y T2 | N, but V \ N \ T y T2 | N ∪ T1.

That is, T1 and T2 contain equivalent information about V \ N \ T given N. See Figure 7 for an
illustration: the valves M1 \T2 and M2 \T1 can not cut off all information channels between T and
V \ N \ T, because some information can flow through δT1,T2; V\N\T | N, an information equivalent
valve of T1 and T2 with respect to V \ N \ T given N. In other words, T1 and T2 may exchange
information directly; besides, they also share the equivalent information about V \ N \ T. This
indicates we should continue to turn off some valves, S ⊆ V \ N \ T, besides M1 \ T2 and M2 \ T1
such that T1 and T2 no longer exchange information through external valves and thus such that T
has no information exchange with remaining valves.

This analysis motivates us to give the following definition:

Definition 3 With the notations above, we call S (⊆ V \ N \ T) a Markov blanket supplementary
(MbS) (of T to N), if N ∪ S is an Mb of T. Further, a Markov boundary supplementary (MBS) is
any MbS such that none of its proper subsets is an MbS.

In what follows, we give the properties of MbS and MBS.

Theorem 4 Assume S ⊆ V \ N \ T. Then, the following statements are equivalent:
(i) S is an MbS;

(ii) I(T1; T2 | N ∪ S) = minS′⊆V\N\T I(T1; T2 | N ∪ S′);
(iii) I(T; S | N) = maxS′⊆V\N\T I(T; S′ | N);

(iv) N ∪ S is an Mb of T1 in V \ T2 (or N ∪ S is an Mb of T2 in V \ T1).

In addition, if S is an MbS, then it is also an MBS if and only if T1 ̸y Y | N ∪ (S \ {Y}) or
T2 ̸y Y | N ∪ (S \ {Y}) holds for any Y ∈ S.

The proof of this theorem is presented in Appendix B.
As seen, (ii) and (iii) of Theorem 4 explain the implication of MbS that the information flow

metaphor illustrates in Figure 7: finding an MbS is equivalent to turning off some valves such that
T1 and T2 no longer exchange information through external valves, or equivalent to finding all
remaining equivalent information contained by T1 and T2; (iv) and the property of MBS provide a
practical way of building MBS discovery algorithms.

Here, we use an example to demonstrate the notions of MbS and MBS and their properties.

11
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Example 1 Consider the BN (G,P) over V = {A, B,C,D} presented in Figure 8, in which A, B,
and C take {1, 2, 3} while D takes {1, 2}. Put T = {T1,T2}, N = (M1 ∪ M2) \ T = Ø, and S = {C},
S0 = {C,D} with T1 = A, T2 = B, M1 = {B}, M2 = {A}. Using the theory of information equivalence
(Lemeire, 2007), we can show the following results (see Appendix B for the proofs):

(i) M1 is an MB of T1 in V: I(A; C,D | B) = 0 and I(A; C,D) > 0;

(ii) M2 is an MB of T2 in V: I(B; C,D | A) = 0 and I(B; C,D) > 0;

(iii) N ∪ S is an Mb of T in V, so S is an MbS: I(A, B; D |C) = 0;

(iv) I(T1; T2 | N ∪ S) = minS′⊆V\N\T I(T1; T2 | N ∪ S′), because of I(A; B |C) = I(A; B |C,D),
I(A; B |C) ⩽ I(A; B |D), and I(A; B |C) ⩽ I(A; B);

(v) I(T; S | N) = maxS′⊆V\N\T I(T; S′ | N);

(vi) N ∪ S is an MB of T1 in V \ {T2}: I(A; C,D) > 0 and I(A; D |C) = 0;

(vii) N ∪ S is an MB of T2 in V \ {T1}: I(B; C,D) > 0 and I(B; D |C) = 0;

(viii) S is an MBS; S0 is an MbS (not an MBS): I(A, B; C,D) > 0 and I(A; B |C,D) = I(A; B |C).

By Example 1, A and B share the equivalent information about C, so turning off the valve A (or
B) means cutting off all the channels from B (or A) to C. This is why they can screen off each other
from C. However, A and B lose the shield if they are integrated into a whole. In this case, we have to
turn C off such that A and B no longer exchange information through external valves. This example
reveals that an MBS is a minimal set of variables, S ⊆ V \ N \ T, such that T1 and T2 contain no
equivalent information about the remaining variables given N ∪ S.

When finding an MBS, S, and letting the variables in S supplement N, there may be some
variables in N becoming redundant. In addition, N may be redundant even before supplementing S.
Example 2 gives an illustration. For both cases, we need to remove the redundant variables.

Example 2 Consider the BN presented in Figure 9, in which any one variable from {A, B,C} and
another from {D, E, F} (denoted by X and Y, respectively) contain context-independent equivalent
information about G (see Statnikov et al., 2013, Example 3). Then, {X,Y} is an MB of G. Put now
T1 = {C, F} and T2 = {G}, and take M1 = {B, E} and M2 = {B,D}. Note that T1 ⊆ V \ M2 (and
also T2 ⊆ V \ M1). It concludes that N = {B,D, E} is not an MB but only an Mb of T1 ∪ T2, since
its proper subset {B, E} is also an Mb (and also an MB) of T1 ∪ T2. This shows why the process of
refining N is necessary.

P(A=1)=0.3
P(A=2)=0.3
P(A=3)=0.4

A

      P(B=1|A=1)=0.4; P(B=1|A=2)=0.8; P(B=1|A=3)=0.0
      P(B=2|A=1)=0.6; P(B=2|A=2)=0.2; P(B=2|A=3)=0.0
      P(B=3|A=1)=0.0; P(B=3|A=2)=0.0; P(B=3|A=3)=1.0

B

P(C=1|A=1)=1.0; P(C=1|A=2)=1.0; P(C=1|A=3)=0.0      
P(C=2|A=1)=0.0; P(C=2|A=2)=0.0; P(C=2|A=3)=0.9      
P(C=3|A=1)=0.0; P(C=3|A=2)=0.0; P(C=3|A=3)=0.1      

P(D=1|C=1)=1.0; P(D=1|C=2)=0.0; P(D=1|C=3)=0.7      
P(D=2|C=1)=0.0; P(D=2|C=2)=1.0; P(D=2|C=3)=0.3      

C

D

Figure 8: BN (G,P): P is a joint probability distribution over V = {A, B,C,D} with each variable
taking values {1, 2, 3} except for D taking {1, 2}; G is a DAG over V.
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P(A=1)=0.3
P(A=2)=0.7 A

        P(B=1|A=1)=1.0; P(B=1|A=2)=0.0  
        P(B=2|A=1)=0.0; P(B=2|A=2)=1.0  B

        P(C=1|B=1)=1.0; P(C=1|B=2)=0.0  
        P(C=2|B=1)=0.0; P(C=2|B=2)=1.0  C

P(D=1)=0.6
P(D=2)=0.4

 P(E=1|D=1)=1.0; P(E=1|D=2)=0.0       
 P(E=2|D=1)=0.0; P(E=2|D=2)=1.0       

 P(F=1|E=1)=1.0; P(F=1|E=2)=0.0       
 P(F=2|E=1)=0.0; P(F=2|E=2)=1.0       

     P(G=1|C=1, F=1)=0.2; P(G=1|C=1, F=2)=0.8
     P(G=2|C=1, F=1)=0.8; P(G=2|C=1, F=2)=0.2 G   P(G=1|C=2, F=1)=0.2; P(G=1|C=2, F=2)=0.8       

  P(G=2|C=2, F=1)=0.8; P(G=2|C=2, F=2)=0.2       

D

E

F

Figure 9: BN (G,P): P is a joint probability distribution over V = {A, B,C,D, E, F,G} with all
variables taking values {1, 2}, G is a DAG with the variables in V as its nodes.

3.3 An Alternative Approach

Before building MB discovery algorithms for multiple targets, this subsection concisely presents
an alternative approach to the additivity based and MBS based methods. In Section 5, we will apply
this method as an FS strategy in multi-class prediction problems.

Let T ≜ {T1, · · · ,Tk} be the targets of interest and T be T’s merged version, taking values
{1, · · · , t} with t ⩾ 3. This procedure transforms the MB discovery for multiple targets T into the
MB discovery for single target T , so all the existing MB discovery algorithms can be employed
theoretically if the required conditions are satisfied. However, if t is large, selecting features of T or
T directly will be difficult. Subsection 3.1 and Subsection 3.2 provide a way of solving this problem
in different situations. In this case, an alternative strategy is to further convert T into a set of dummy
variables denoted by

{
T (d)

j

}t
j=1, where T (d)

j is a 0-1 variable defined as

T (d)
j =

{
1, if T = j
0, if T , j

This transformation produces a multiple-target T(d) ≜
(
T (d)

1 , · · · ,T
(d)
t
)
. Clearly, T, T , and T(d) have

the same MBs. In what follows, we show the MB of T(d) can be derived by simply taking the union
of MBs of T (d)

1 , · · · ,T
(d)
t and then removing the redundant variables in an efficient way. The proof

will be given in Appendix B.

Theorem 5 Let M j be an MB of T (d)
j in V \ T for j = 1, · · · , t. Then, M ≜ ∪k

j=1 M j is an Mb of T.

Further, M is an MB of T iff for any X ∈ M there is some j such that T (d)
j ̸y X | M \ {X}.

For why this transformative method is efficient, the fourth concluding remark in Section 7 will
make a brief explanation.

4. Algorithms

This section builds MB discovery algorithms for multiple targets, {T1, · · · ,Tk} ≜ T.

13
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Let A be an MB discovery algorithm, assumed to perform well when used to discover an MB
for a single target. In this paper, we employ IAMB and KIAMB as A. Clearly, A can be directly used
to find an MB for T if simply regarding T as the input of A. Usually, this will lead to low accuracies
and high complexities.

By Theorem 4, the MB discovery problem for multiple targets can be translated equivalently
into a number of MB discovery problems for single targets, according to the following way: (i) use
A to find an MB of Ti in V for i = 1, · · · , k, denoted by Mi; (ii) find an Mb of T2 in V \ {T1} based
on (M1 ∪ M2) \ {T1,T2}, and then get an MB of {T1,T2}, written as M1,2; (iii) find an Mb of T3
in V \ {T1,T2} based on (M1,2 ∪ M3) \ {T1,T2,T3}, and then get an MB of {T1,T2,T3}, written as
M1,2,3; (iv) the rest can be done in a similar manner. Following this way, the input of A for each use
is a single variable, so this idea successfully avoids assigning an multivariate input to A. Note that
in the above process the equivalent information is extracted in a stepwise manner.

4.1 IAMBS and KIAMBS

Let (G,P) be a BN over V, and assume Ti ⊆ V with |Ti| ⩾ 1 has an MB, Mi, for i = 1, 2. Denote
N = (M1 ∪ M2) \ (T1 ∪ T2). This subsection presents the algorithms for discovering an MB of
T1 ∪ T2. To design one such algorithm, we note that there may be some variables in N becoming
redundant once an MBS, S, is supplemented. Therefore, we need to first find S by setting N as a
whitelist in A and then refine N.

Applying this idea to IAMB and KIAMB, we obtain two algorithms called IAMBS and KIAMBS,
in which “S” refers to as “supplementary”. Their pseudo codes are presented in Algorithm 1. In
order to differentiate these two algorithms, we set K in the KIAMBS algorithm as K ∈ [0, 1). It is
mentioned here that S2 is a random subset of S1 with size max{1, ⌊|S1| · K⌋} in Line 5 of KIAMBS.
As seen, these two algorithms first find an MbS, S, in the growing phase and then refine S and N in
sequence in the shrinking phase.

For example, based on a data set drawn from the BN in Example 1, the unique MB, {C}, of
{A, B} can be discovered by calling IAMBS or KIAMBS only once.

Theorem 1 presents the correctness of IAMB and KIAMB under the assumption that T1 ∪ T2
satisfies the local composition property. The theorem below shows IAMBS and KIAMBS are correct
if T2 (instead of T1 ∪ T2) satisfies the local composition property. Appendix B gives the proof.

Theorem 6 (Correctness of IAMBS and KIAMBS) Assume that T2 satisfies the local composition
property, and that all CI tests are correct. Then (i) IAMBS outputs an MB of T1 ∪ T2; (ii) KIAMBS
outputs an MB of T1 ∪ T2 for any K ∈ [0, 1).

The following remark presents a relation among local intersection, local composition, and the
adjacency faithfulness condition, under the orientation faithfulness condition. The proof is given in
Appendix B. Here, the orientation faithfulness condition (Ramsey et al., 2006; Lemeire et al., 2012)
is defined as: for any X,Y,Z ∈ V such that X and Z are adjacent to Y but X is not adjacent to Z, (i)
if X → Y ← Z, then X ̸y Z |W holds for any W ⊆ V \ {X,Z} with Y ∈W; (ii) otherwise, X ̸y Z |W
holds for any W ⊆ V \ {X,Y,Z}.

Remark 2 The following two statements hold: (a) violating local intersection implies violating
adjacency faithfulness; (b) under the orientation faithfulness condition, violating local composition
at the end of the first phase of IAMB or KIAMB or IAMBS or KIAMBS means violating adjacency
faithfulness.
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In addition, the lemma below is useful to explain the succeeding remarks.

Lemma 3 (a) If there is P ⊆ M1 \ T2 such that T1 y P | (N \ P) ∪ T2, then (N \ P) ∪ T2 is an Mb
of T1; (b) If there is Q ⊆ N \ P such that T1 y Q | (N \ P \ Q) ∪ T2 and T2 y Q | (N \ P \ Q) ∪ T1,
then (N \ P \ Q) ∪ T2 is an Mb of T1, and (N \ P \ Q) ∪ T1 is an Mb of T2.

For Algorithm 1, we have three remarks below:

(i) In these two algorithms, the two CI tests for adding members to S and for refining S are based
on T2 instead of T, while the CI test for refining N is based on T instead of T2. (a) For the first
two CI tests, T2 can be replaced with T without affecting the correctness of the algorithms,
since T2 y X | N∪S′ ⇔ T y X | N∪S′ holds for any S′ ⊆ V \N \T and X ⊆ V \ (N∪S′)\T.
However, if we replace T2 with T, the resulting algorithms will need much longer time to run.
This is why we use T2 in stead of T in these two places. (b) For the third CI test, T can not
be replaced with T2, because of T2 y X | (N \ X) ∪ S⇏ T y X | (N \ X) ∪ S.

(ii) According to Remark 2, there may be some situations in which both local intersection and
local composition are simultaneously violated. In this case, IAMBS and KIAMBS may not

Algorithm 1: IAMBS and KIAMBS

Procedure: M←IAMBS(D; T1,T2; M1,M2)
Input: a data matrix D; two sets of targets T1

and T2; an MB Mi of Ti for i = 1, 2.
Output: an MB, M, of T ≜ T1 ∪ T2.

//Forward: Growing Phase

1 S← Ø
2 while S has changed do
3 M ← N ∪ S
4 Y ← arg maxX∈V\M\T fD(T2; X |M)
5 if T2 ̸y Y |M then
6 S← S ∪ {Y}
7 end
8 end

//Backward: Shrinking Phase

9 foreach X ∈ S do
10 if T2 y Y | N ∪ (S \ {Y}) then
11 S← S \ {Y}
12 end
13 end
14 foreach Y ∈ N do
15 if T y Y | (N \ {Y}) ∪ S then
16 N ← N \ {Y}
17 end
18 end
19 return M ← N ∪ S

Procedure: M←KIAMBS(D;T1,T2; M1,M2;K)
Input: Besides {D, Ti, Mi}, K ∈ [0, 1) is a

randomization parameter.
Output: an MB, M, of T ≜ T1 ∪ T2.

//Forward: Growing Phase

1 S← Ø
2 while S has changed do
3 M ← N ∪ S
4 if S1←{X∈V\M\T : T2 ̸yX |M},Ø then
5 Y ← arg maxX∈S2 fD(T2; X |M)
6 S← S ∪ {Y}
7 end
8 end
//Backward: Shrinking Phase

9 foreach X ∈ S do
10 if T2 y Y | N ∪ (S \ {Y}) then
11 S← S \ {Y}
12 end
13 end
14 foreach Y ∈ N do
15 if T y Y | (N \ {Y}) ∪ S then
16 N ← N \ {Y}
17 end
18 end
19 return M ← N ∪ S
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correctly work. Specifically, the violation of local intersection means T1 and T2 contain
equivalent information about V \ N \ T given N; while the violation of local composition
indicates not all equivalent information are successfully extracted by N. Let P and Q be
defined as in Lemma 3, and assume P ∪ Q , Ø. Then, it can be shown that T1 and T2
contain equivalent information about P ∪ Q given N \ (P ∪ Q). This means some equivalent
information about P ∪ Q shared by T1 and T2 conditioned on N \ (P ∪ Q) may mask some
equivalent information about V \ N \ T contained by T1 and T2 conditioned on N. This may
be why not all equivalent information can be extracted by N. According to this analysis, a
potential remedy is to run IAMBS or KIAMBS by replacing N with a superset of N \ (P ∪ Q)
that is a subset of N.

(iii) By Remark 1, if T1 ⊆ V \M2 or T2 ⊆ V \M1, N must be an Mb of T, so Lines 2∼14 of IAMBS
and KIAMBS can be omitted. In this case, however, it is still necessary to refine N, because N
may not possess minimality. Example 2 illustrates this necessity.

In addition, another problem that we concern is whether we can refine N before seeking S and,
if this is the case, which variables in N can be removed directly. We consider this problem because
any redundant variable in N can lead to unnecessary inaccuracies when using N as a part of the
conditional set in practical computations. Lemma 3 indicates we can do like this. However, to
avoid the danger of missing the information about P ∪ Q (this occurs if the equivalent information
involved in P∪Q given N\P\Q is different in some sense from any part of the equivalent information
involved in V \ N \ T given N), we recommend to first search the members of S in V \ N \ T and
then check if some variables in P ∪ Q are necessary to enter into S when implementing Lines 2∼8
of IAMBS and KIAMBS. Note that this will increase the total running time.

4.2 MIAMB and MKIAMB

In this subsection, we present two multivariate Markov boundary discovery algorithms, called
MIAMB and MKIAMB, respectively.

Let {T1, · · · ,Tk} ∈ V with Mi as its an MB for i = 1, · · · , k. If the local intersection property is
satisfied, Theorem 3 shows

∪k
i=1 Mi \ T is an MB of T ≜ {T1, · · · ,Tk}. Otherwise, M may be no

longer an MB. In this case, we use MIAMB or MKIAMB to seek an MB for T. Given an ordering of
T1, · · · ,Tk, saying τ ≜ {i1, · · · , ik}, which determines the priorities of the variables in T entering into
the queue whose an MB will be sought in the current step, we denote an MB of {Ti1 , · · · ,Tiℓ } ≜ T ∗iℓ
by M ∗

i j
.

With these notations, MIAMB and MKIAMB are pseudo-coded in Algorithm 2. Their correctness,
shown by Theorem 7, is a direct consequence of Theorem 1 and Theorem 6. As seen, MIAMB or
MKIAMB uses the following stepwise idea: it first finds an MB of two targets {Ti1 ,Ti2} = {Ti1}∪ {Ti2},
and then finds an MB of three targets {Ti1 ,Ti2 ,Ti3} = {Ti1 ,Ti2} ∪ {Ti3}; the rest can be done in a
similar manner until all the k target variables are considered.

Theorem 7 (Correctness of MIAMB and MKIAMB) Assume that Ti satisfies the local composition
property for i = 1, · · · , k, and that all CI tests are correct. Denote T ≜ {T1, · · · ,Tk}. Then (i)
MIAMB outputs an MB of T; (ii) MKIAMB outputs an MB of T for any K ∈ [0, 1).

As we know, for any real data, those preconditions (such as faithfulness or local composition)
required by a learning algorithm are hard to hold exactly. However, our algorithms can be seen as
an improvement over earlier methods. Specifically, IAMB/KIAMB algorithms require faithfulness or
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local composition for multiple targets when used for MB discovery of multiple targets, while our
MIAMB/MKIAMB only need local composition for single targets, which may be more close to real
situations than faithfulness or local composition for multiple targets.

For MIAMB or MKIAMB, an ordering τ is set in Algorithm 2 mainly because different orderings
may lead to different computational complexities. In Subsection 4.4, we will make a complexity
analysis about the algorithms, based on which we present a feasible way of selecting τ, under the
expectation that our algorithms should be run as quickly as possible. When |T| = 2, however, τ is
not necessary.

Besides MIAMB/MKIAMB algorithms (which are MBS based), we can consider additivity based
(Theorem 3) and dummy variables based (Theorem 5) algorithms: (a) the additivity based MIAMB
or MKIAMB simply takes the union of outputs of IAMB/KIAMB with respect to all single targets as the
output; its correctness requires the conditions in Theorem 7 plus Theorem 3; and (b) the dummy
(variables based) MIAMB/MKIAMB takes the union of the outputs of IAMB/KIAMB with respect to
every dummy variable and removes redundant variables; its correctness requires the same condition
as in Theorem 7. Throughout this paper, unless specified, MIAMB/MKIAMB denote the MBS based
algorithms.

4.3 A Discussion on CI Test

As argued by Aliferis et al. (2010a, p. 200), the quality of an MB discovery algorithm highly
depends on the selected CI testing methods. In this subsection, we discuss the ways of practically
doing CI tests. Usually, the Pearson’s X2 test or the log-likelihood ratio G2 test can be employed for
this purpose (Yaramakala, 2004; Bromberg and Margaritis, 2009; Aliferis et al., 2010b; Statnikov
et al., 2013). Here, the X2 statistic and the G2 statistic have the same asymptotic χ2 distribution. We
can also use some experimental testing methods such as the Akaike information criterion-based test
(Cressie and Read, 1989; Scutari, 2010).

Algorithm 2: MIAMB and MKIAMB

Procedure: M ← MIAMB(D; T; τ)
Input: a data matrix D; a target set

T≜ {T1, · · · ,Tk}; and an ordering
τ ≜ {i1 · · · , ik}.

Output: an MB, M, of T.

// MIAMB: M ← MIAMB(D; T; τ)
1 for ℓ ← 1 to k do
2 Miℓ ← IAMB(D; {Tiℓ })
3 end
4 for ℓ ← 2 to k do
5 M ∗

iℓ ← IAMBS(D; T ∗iℓ−1
, {Tiℓ }; M ∗

iℓ−1
,Miℓ)

6 end
7 return M ← M ∗

ik

Procedure: M ← MKIAMB(D; T; K; τ)
Input: a data matrix D; a target set T; a

randomization parameter K ∈ [0, 1);
and an ordering τ.

Output: an MB, M, of T.

// MKIAMB: M ← MKIAMB(D; T; K; τ)
1 for ℓ ← 1 to k do
2 Miℓ ← KIAMB(D; {Tiℓ }; K)
3 end
4 for ℓ ← 2 to k do
5 M ∗

iℓ ←
KIAMBS(D; T ∗iℓ−1

, {Tiℓ }; M ∗
iℓ−1
,Miℓ ; K)

6 end
7 return M ← M ∗

ik
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Recall that we are dealing with the MB discovery problem for multiple target variables. When
the target set, namely T, contains only a few variables (e.g., 1 or 2), the X2 test or the G2 test
performs quite well in most situations. Unfortunately, when T contains too many variables (e.g.,
5 or 6 or even more), X2 or G2 may not work well due to the overmany degrees of freedom. See
Appendix C for a detailed discussion. In fact, as Cochran (1954, p. 420) recommended about the
working rules for X2 (also applicable to G2), these two testing methods are unreliable if more than
20% of the cells in contingency tables have an expected count of less than 5 data points; however,
such cases frequently arise in practice (Bromberg and Margaritis, 2009; Yaramakala, 2004).

Many authors have considered improving X2 and G2 by adjusting the statistics. Lawley (1956)
showed that such tests can be improved by multiplying with a suitable scale factor; Hosmane (1986,
1987, 1990) and the pioneer scholars recommended the following two adjustment procedures (i)
replace zero observed counts by a positive constant, leaving nonzero counts intact; and (ii) add a
positive constant to all the observed counts. Brin et al. (1997) and Silverstein et al. (1998) used two
heuristic “solutions” to the problem of low expected counts as follows: (i) simply ignore these cells
when calculating X2 or G2; and (ii) use what is called contingency table support (CT-support): a set
of items S has CT-support s at the t% level if at least t% of the cells in the contingency table for S
have value s. Aliferis et al. (2010b) considered a similar heuristic called heuristic power size, which
denotes the smallest sample size per cell in the contingency table of a reliable CI test.

The above ideas can lead to improvements on X2 and G2 to varying degrees if the dimensions
are not very high. However, when working on the MB discovery problem for multiple targets, we
need more suitable methods to do CI tests. For this reason, we suggest the following practical
operation: when |T| ⩽ 2, we can (i) use X2 or G2 or their variants mentioned above to do CI tests;
otherwise, we consider the following testing method: (ii) use CMI and an experimental threshold,
ε, to make statistical decisions as Cheng et al. (2002) did, in the sense that ID(X; Y | Z) ⩾ ε asserts
X ̸y Y | Z while ID(X; Y | Z) < ε concludes X y Y | Z, where ε ≜ |T|a1 · 100 a2

n · log2 v is related to
the the sample size, the average number of values that each variable takes, and the number of targets
(denoted by n, v, and |T|, respectively), in which a1 and a2 are two adjusting factors (a1 = 0.5 and
a2 ∈ (0.1, 0.5) are recommended). The association function, fD, can be selected as

fD(X; Y | Z) = ID(X; Y | Z) ≜ f (2)
D (X; Y | Z). (4)

Besides this experimental method, we can (iii) improve X2 or G2 by adjusting the number of the
theoretical degrees of freedom.

For the above (iii), to be clear, we consider the G2 statistic, G2(X; Y | Z) ≜ 2n · ID(X; Y | Z),
which approximates to the chi-square variate with r ≜ (rX−1)(rY−1)rZ degrees of freedom, namely
χ2(r), where rξ represents the number of configurations for ξ (de Campos, 2006, p. 2158). Denote
the p-value by

p(X; Y | Z) = P{χ2(r) ⩾ G2(X; Y | Z)}.

Then, the G2 test asserts X y Y | Z if p(X; Y | Z) > α for a significance level α, and concludes
X ̸y Y | Z if p(X; Y | Z) ⩽ α. In this paper, α is set to be 0.05. Aliferis et al. (2010a, pp. 200–201)
provided a further discussion about this. Accordingly, the negative p-value is used as the association
function, fD, as Tsamardinos et al. (2006), Aliferis et al. (2010a,b), and Statnikov et al. (2013) did:

fD(X; Y | Z) = −p(X; Y | Z) = −P{χ2(r) ⩾ G2(X; Y | Z)} ≜ f (1)
D (X; Y | Z). (5)
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Replace the theoretical value of r in p(X; Y | Z) with its a damped version of the form

gn,κ(r) ≜ r
(

1 − e−
n
κr
)
, (6)

where κ > 0 is a constant, based on which n
κ measures the amount of valid cells that n sample

instances can support. For convenience, we will call the resulted p-value, denoted by pg(X; Y | Z)
instead of p(X; Y | Z), and the resulted testing method to be the damped p-value and the damped
log-likelihood ratio test (or damped G2 test). Further, we use the the following association function:

fD(X; Y | Z) = −pg(X; Y | Z) = −P{χ2(gn,κ(r)) ⩾ G2(X; Y | Z)} ≜ f (3)
D (X; Y | Z). (7)

In Appendix C, we will provide the details for this damping procedure, and give some numerical
illustrations about its reasonability. Clearly, the damped G2 test approximately degenerates into the
ordinary G2 test when taking κ as a very small positive number.

4.4 Complexity Analysis

In the following, we analyze the computational complexities of the four algorithms: IAMB,
KIAMB, MIAMB, and MKIAMB. Usually, the number of CI tests can be employed to measure the
complexity of a CI-based MB discovery algorithm (Tsamardinos et al., 2003, 2006; Aliferis et al.,
2010a), considering there exists efficient implementations of the CMI-based test or the association
computation taking time O(n log n) if the conditional set is small. However, Aliferis et al. (2010a)
also mentioned that the running time, denoted by tn,q, for computing per CMI-based statistic is
linear to the sample size, n, and exponential to the number, q, of variables in the conditional set.
This means we should take tn,q into account, not simply using O(n log n) to measure the complexity.

Assume we are seeking an MB for T ≜ {T1, · · · ,Tk} according to the ordering τ. Without loss
of generality, we assume τ = {1, · · · , k}. Consider the case of k = 2. Suppose Mi is an MB of Ti

with |Mi| = mi ⩾ 1, and S is an MBS for N ≜ M1 ∪ M2 \ {T1,T2} with |S| = s ⩾ 0. By Remark 1,
we assume T1 ∈ M2 and T2 ∈ M1. Recall that the number of all variables is p. It follows that:

• In view of |N∪S| = m1+m2+s−2 ≜ m, IAMB takes time O[(mp+m)tn,m] to finish an execution.
Thus, the complexity of IAMB is O(m ptn,m). KIAMB has almost the same complexity.

• For MIAMB, it first takes time O[(m1 p+m1)tn,m1 + (m2 p+m2)tn,m2] to find M1 and M2; then it
seeks S and refines N taking time O{[s(p −m1 −m2 + 2) +m]tn,m}. Hence, MIAMB needs time
O{(m1 p+m1)tn,m1 + (m2 p+m2)tn,m2 + [s(p−m1 −m2 + 2)+m]tn,m} to finish an execution, so
its complexity is O(m1 ptn,m1 + m2 ptn,m2 + s ptn,m). MKIAMB has almost the same complexity.

By this analysis, the complexity of MIAMB or MKIAMB is lower than that of IAMB or KIAMB. In
fact, noting tn,q is exponential to q (⩽ m; meaning tn,q ≪ tn,m in most situations) for q = m1,m2,
this implies MIAMB/MKIAMB are expected to need much less time to run than IAMB/KIAMB, especially
when T contains many variables. The evaluation section (Figure 15) confirms this expectation in
the case of moderately large sample size.

For the general case, using the notations in Subsection 4.2 with |Mi| = mi (i = 1, · · · , k),
we assume Si be an MBS for M ∗

i−1 and Mi, with |Si| = si (i = 2, · · · , k). Denote m∗i ≜
∑i

j=1 m j +∑i
j=2 s j−i. Note that, in general, tn,ma ≪ tn,m∗a ≪ tn,m∗b for a < b. Then, the IAMB or KIAMB algorithm

has the complexity O(m∗k ptn,m∗k ), while MIAMB or MKIAMB has a lower complexity O(
∑k

i=1 mi ptn,mi +∑k
i=2 si ptn,m∗i ).
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According to this theoretical result on complexities, we can use the ordering, τ ≜ {i1 · · · , ik}, in
MIAMB or MKIAMB such that mi1 ⩽ · · · ⩽ mik . This can reduce the complexities to some extent.

Besides, the additivity based MIAMB/MKIAMB algorithms have almost the same complexity as the
MBS based MIAMB/MKIAMB, while the dummy MIAMB/MKIAMB have the complexity O(mrT ptn,m),
where m =

∑k
j=1 m j, rT =

∏k
j=1 rT j , rξ denotes the number of configurations for ξ. It will be seen

from Section 6 that, although the dummy MIAMB/MKIAMB are of high complexity theoretically, they
usually perform well in multi-class prediction problems.

5. Benchmarking Study

This section makes a benchmarking study based on the data sets of six synthetic BNs. These
data sets, generated by Tsamardinos et al. (2006) and Aliferis et al. (2010a), and the BNs are briefly
described in Table 1. As Tsamardinos et al. (2006) and Aliferis et al. (2010a) stated, these BNs are
representatives of a wide range of problem domains. Also, these BNs have different complexities
(according to the number of nodes, the number of edges, maximal in-degree, maximal out-degree,
and domain range). More details about the BNs and the used data sets are provided by Tsamardinos
et al. (2006) and Aliferis et al. (2010a).

The following items are clarified before presenting the experimental results:

• Measurements: The primary measurement for the performance of an MB discovery algorithm
used in our experiment is the weighted accuracy (WA), which is the average of the rate of true
members and that of true nonmembers of an MB with respect to the truth. We also compute
what we call the weighted precision (WP) as the average of the rate of true members and that
of true nonmembers of an MB with respect to the output. In addition, we record the running
time (RT) for every data set of each algorithm and for each BN. Here, RT refers to the single
CPU time implemented on an Intel i7-3612QM 2.1 GHz and Windows 7 with 64 bits.

BN Num.
Nodes

Num.
Edges

Maximal
In-degree

Maximal
Out-degree

Domain
Range Selected Targets Sizes of

Data Sets
Total RT
(Hours)

Child10 200 257 2 7 2 ∼ 6
X131, X132, X98, X194,
X184, X22, X135, X60

5 × 500 3.4297
1 × 5000 8.2220

ALARM10 370 570 4 7 2 ∼ 4
X341, X48, X37, X249,
X209, X188, X192, X161

5 × 500 4.6547
1 × 5000 6.3721

Pigs 441 592 2 39 3 ∼ 3
X390, X357, X180, X400,
X199, X241, X228, X176

5 × 500 11.7651
1 × 5000 15.8443

Link 724 1125 3 14 2 ∼ 4
X369, X293, X303, X457,
X399, X512, X183, X501

5 × 500 9.7932
1 × 5000 16.1046

Lung Cancer 800 1476 4 28 2 ∼ 3
X1, X416, X345, X641,
X513, X198, X78, X746

5 × 500 16.0301
1 × 5000 16.3790

Gene 801 977 4 10 3 ∼ 5
X801, X301, X569, X317,
X185, X622, X516, X577

5 × 500 17.2465
1 × 5000 35.6790

Table 1: BNs and data sets.
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Figure 10: Average WA of the algorithms versus |T| with respect to the data sets of size 500

• Algorithms: Four algorithms are used: IAMB, KIAMB, MIAMB, and MKIAMB. We take K = 0.8
as the randomization parameter in KIAMB and MKIAMB due to the following two reasons: (i)
Peña et al. (2007, p. 227) asserted that K ∈ [0.7, 0.9] performs best; and (ii) K = 0.8 is an
appropriate tradeoff between WA (or WP) and RT.

• Used CI Test: Following the practical operation suggested in Subsection 4.3, we implemented
the algorithms via the G2 test, and found G2 is suitable for small |T| but is not very suitable
and even no longer works for large |T|. Then, we used the experimental CMI-based test with
a relatively rough ε ≈

√
|T| · ε0, in which ε0 = 0.05 if n = 500 and ε0 = 0.01 if n = 5000;

after that, we used the damped G2 test by setting κ = 5. The results indicate both alternatives
are desirable. Considering the association function, f (2)

D defined in (4) corresponding to the
CMI-based test, contains no the average number, v, of values that each variable takes, we may
need to reselect ε0 for a BN with a very different v. For these reasons, we eventually decided
to use the damped G2 test for the four algorithms in our experiment.

• Data: We use the data sets of sizes 500 and 5000, generated by Tsamardinos et al. (2006)
and Aliferis et al. (2010a), which are available at http://www.nyuinformatics.org/
downloads/supplements/JMLR2009/index.html.

• Targets: We employ eight of those variables selected by Aliferis et al. (2010a, p. 226) as the
potential targets for each BN. See Table 1 for details. Then, T is any possible combination of
k targets for k = 2, · · · , 8.

• Steps: For each BN with eight selected targets, the steps of making simulation based on the
data set of size 5000 are as follows: (a) for k = 2, · · · , 8, call the four algorithms to obtain four
MBs of T ≜ {Ti1 , · · · ,Tik }; (b) compute their WAs and WPs, and record the respective RTs;
(c) take the average values of these

(8
k

)
WAs or WPs or RTs for each of the four algorithms.

For the five data sets of size 500, each reported WA or WP or RT is the average value of the
corresponding five results of an algorithm derived by (a)∼ (c) above.
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Figure 11: Average WA of the algorithms versus |T| with respect to the data sets of size 5000
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Figure 12: Average WP of the algorithms versus |T| with respect to the data sets of size 500

According to the above description, we make computations with the aid of FullBNT (Murphy,
2007) and MIToolbox (Brown et al., 2012). The results of the WAs are presented in Figure 10 and
Figure 11; the results of the WPs are given in Figure 12 and Figure 13; and the results of the RTs
are shown in Figure 14, and Figure 15. The total RTs are presented in Table 1. By these figures, it
is concluded that, on the whole, our MIAMB and MKIAMB have higher computational accuracies and
lower time complexities than the existing IAMB and KIAMB.

Specifically, we have:
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Figure 13: Average WP of the algorithms versus |T| with respect to the data sets of size 5000
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Figure 14: Average RT of the algorithms versus |T| with respect to the data sets of size 500

(i) Performance on WA: (a) MIAMB and MKIAMB have larger WAs than IAMB and KIAMB for all
the six BNs in any case of |T|; (b) when |T| increases, WA declines quickly for IAMB and
KIAMB, but it decreases gently for MIAMB and MKIAMB; and (c) the improvements of MIAMB
and MKIAMB over IAMB and KIAMB tend to be gradually noticeable and then reduce slightly as
|T| increases. The performance degradation along with the increase of |T| can be attributed
to two possible aspects: one is that the local composition assumption may be more apt to be
violated for a larger |T| because of synergy effects; and the other is that the assumption about
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Figure 15: Average RT of the algorithms versus |T| with respect to the data sets of size 5000

the correctness of CI tests may also be more apt to be violated for a larger |T|, due to the
accumulation and propagation of the cascading errors (Bromberg and Margaritis, 2009). It is
mentioned that (a)(b)(c) appear more evidently for the case of n = 5000 than for the case of
n = 500.

(ii) Performance on WP: The similar interpretations to (a)(c) of (i) are valid.

(iii) Performance on RT: Here, we note that the real RT of an MB discovery algorithm is composed
of two parts, in which the part (I) is for CI tests, and the part (II) is for all other computations.
The part (I) is the major part used to measure the complexity of the MB discovery algorithm.
Note also that the RT, tn,q, of per CI test is linear to the sample size, n, and exponential to the
number, q, of variables in the conditional set (see Subsection 4.4 for details).

This means that the part (II) of the real RT may dominate the part (I) if n is not large (for
example, n = 500).

Let us now observe Figure 14 and Figure 15. First, both figures show the real RT that each
algorithm needs is increasing along with the increase of |T|. Also, Figure 14 indicates MIAMB
and MKIAMB need slightly longer time to run than IAMB and KIAMB, because the running for CI
tests is dominated by the running for all other computations in the case of a small sample size,
while Figure 15 reveals that the real RTs of IAMB and KIAMB increase sharply as |T| increases
and that the real RTs of MIAMB and MKIAMB increase slowly, just like the theoretical analyses
about the complexities of the four algorithms show in Subsection 4.4.

In summary, the existing MB discovery algorithms, IAMB and KIAMB, can be approximately
applied to the problem of MB discovery for multiple target variables when |T| is small, but they
will perform poorly if |T| is moderately large. In comparison, our MIAMB and MKIAMB have higher
accuracies and lower complexities for this problem, especially when |T| is large.
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6. Application to FS in Multi-Class Prediction Problems

In this section, we apply the MB discovery for multiple targets to FS in multi-class prediction
problems based on a real data set, HIVA. This data set is very challenging in WCCI 2006 (http://
www.modelselect.inf.ethz.ch) and IJCNN 2007 (http://www.agnostic.inf.ethz.ch),
because it contains many very unbalanced variables.

Let T ∈ V be a target variable taking values {1, · · · , t}, t ⩾ 3. The multi-class prediction problem
is to select features of T from V \ {T } such that T can be predicted as accurately as possible based
on the chosen features. Let T(d) ≜

(
T (d)

1 , · · · ,T
(d)
t
)

be the dummy version of T . Theoretically, T(d)

and T have the same MBs.

With these notations, the experiment is designed as follows:

• Data: HIVA contains 4229 data points and 1618 variables.

• Targets: In view of the fact that almost all variables in HIVA are binary, we randomly take
k 2-class variables (k = 2, · · · , 5) to create a merged 2k-class target, T . Accordingly, we
rearrange the original data to get a data set that is used only for FS of T . Repeat this step
n ≜ 200 times. Denote the resulting targets and their dummy versions by T1, · · · ,Tn and
T(d)

1 , · · · ,T(d)
n , respectively.

• Algorithms: We use the following 10 MB discovery algorithms to get the features for each T j

or T(d)
j ≜

(
T (d)

j1 , · · · ,T
(d)
jtk

)
with tk ≜ 2k, j = 1, · · · , n:

a) IAMB/KIAMB-I: the IAMB/KIAMB algorithms working on T j directly;

b) IAMB/KIAMB-II: the IAMB/KIAMB algorithms working on T(d)
j (that is, with T(d)

j as its
multiple targets);

c) MIAMB/MKIAMB-I: the additivity based MIAMB/MKIAMB algorithms, taking the union of
the outputs of IAMB/KIAMB with respect to T (d)

ji (i = 1, · · · , tk) as its output;

d) MIAMB/MKIAMB-II: the MBS based MIAMB/MKIAMB algorithms, which are pseudo-coded
in Algorithm 2;

e) MIAMB/MKIAMB-III: the dummy MIAMB/MKIAMB algorithms, which take the union of the
outputs of IAMB/KIAMB with respect to T (d)

ji (i = 1, · · · , tk) and removing redundant
variables.

• Classifier: After making a number of preliminary experiments on the six benchmarking BNs,
we found that the support vector machines (SVMs; implemented via LibSVM v3.22) perform
the best in demonstrating the optimality of MBs for FS. This coincides with the assertion of
Statnikov et al. (2013). Therefore, we use SVMs for our multi-class prediction problems. All
the classifications are performed by 10-fold cross-validation.

• Measurement of an algorithm: For each target, the predictive quality of an MB is measured
by the balanced accuracy defined as τ ≜ 1

tk

∑tk
ℓ=1

(
cℓℓ

/∑tk
i=1 ciℓ

)
, where C ≜

(
ciℓ

)
denotes

the associated confusion matrix. As seen, τ is equal to one minus the balanced error rate used
in WCCI 2006 and IJCNN 2007. We choose to use τ (instead of ordinary accuracy) because
it trades off all values of the target in the sense that any unbalanced value (that the target
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Problem
IAMB MIAMB

I II I II III

4-class 0.9295 ± 0.08200.9020 ± 0.11390.9414 ± 0.06820.9366 ± 0.07350.9507 ± 0.0572
8-class 0.9016 ± 0.10250.8666 ± 0.13330.9237 ± 0.09130.9277 ± 0.08730.9348 ± 0.0771

16-class 0.8878 ± 0.10560.8461 ± 0.14380.9131 ± 0.08740.9167 ± 0.08620.9256 ± 0.0750
32-class 0.8683 ± 0.11320.8179 ± 0.15790.9118 ± 0.07840.9139 ± 0.07810.9242 ± 0.0674

Table 2: Balanced accuracy of IAMB/MIAMB algorithms in the form of “(mean ± std)”.

Problem
KIAMB MKIAMB

I II I II III

4-class 0.9283 ± 0.08520.8972 ± 0.12400.9281 ± 0.09280.9444 ± 0.06680.9501 ± 0.0589
8-class 0.9007 ± 0.10550.8631 ± 0.14490.9245 ± 0.08900.9280 ± 0.08280.9340 ± 0.0786

16-class 0.8886 ± 0.10620.8494 ± 0.14250.9159 ± 0.08480.9168 ± 0.08640.9263 ± 0.0755
32-class 0.8687 ± 0.11400.8241 ± 0.15120.9111 ± 0.08120.9151 ± 0.07670.9239 ± 0.0688

Table 3: Balanced accuracy of KIAMB/MKIAMB algorithms in the form of “(mean ± std)”.

takes) should not impact on the accuracy too much.1 On the other hand, when two outputs
of algorithms have the same total numbers of “true positives + true negatives”, the balanced
accuracy can identify the output that prefers to protect the scarce class as the better one, while
the ordinary accuracy cannot. Finally, we compute the mean and standard deviation (std) of
the n values of balanced accuracy, denoting them in the form of “(mean ± std)”.

The experiment is then performed following the above procedures. Its results are summarized
in Table 2 and Table 3. In these two tables, the backcolor indicates the performance of algorithms
with black corresponding to the best while light blue to the worst. By the results, it can be seen that
MIAMB/MKIAMB outperform IAMB/KIAMB in most situations. Specifically, we have:

• IAMB/KIAMB algorithms: IAMB/KIAMB-I are much more preferred than IAMB/KIAMB-II.

• MIAMB/MKIAMB algorithms: MKIAMB-I has almost equal performance to KIAMB-I in 4-class
problems, and they performs slightly better than IAMB/KIAMB-I in 16- and 32-class problems;

1. For example, consider an unbalanced target T and its classification with the following two confusion matrices (the
left is extremely bad, while the right is very good):

Test Truth T = 1 T = 2

T = 1 948 49

T = 2 2 1

Test Truth T = 1 T = 2

T = 1 899 0

T = 2 51 50

Then, we have: (a) for the left bad confusion matrix, the ordinary accuracy equals 94.90% (meaning it is impacted
deeply by the unbalanced value 1 of T ), while its balanced accuracy equals 50.89%; (b) for the right good confusion
matrix, its ordinary accuracy also equals 94.90%, but its balanced accuracy equals 97.32%. This means balanced
accuracy is more reasonable than ordinary accuracy to measure classification performance for a practical problem
containing unbalanced variables (note that such problems may frequently occur in practice).
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Null hypothesis (H0)
Problem

4-class 8-class 16-class 32-class
MIAMB-I ≼ IAMB-I 2.0349 × 10−4 1.3225 × 10−7 1.3816 × 10−10 4.0634 × 10−19

MIAMB-II ≼ IAMB-I 1.4772 × 10−2 9.3393 × 10−10 4.0911 × 10−12 8.2111 × 10−21

MIAMB-III ≼ IAMB-I 2.1276 × 10−10 9.5876 × 10−16 1.8800 × 10−20 9.1061 × 10−30

MKIAMB-I ≼ KIAMB-I 0.6221 4.9365 × 10−9 5.9117 × 10−12 2.0651 × 10−19

MKIAMB-I = KIAMB-I 0.7558 —— —— ——
MKIAMB-II ≼ KIAMB-I 2.2839 × 10−6 5.9538 × 10−11 5.4564 × 10−12 2.7021 × 10−22

MKIAMB-III ≼ KIAMB-I 4.5857 × 10−10 1.1261 × 10−15 4.7802 × 10−20 6.4206 × 10−30

Table 4: p-values on paired t-test for comparison between MIAMB/MKIAMB and IAMB/KIAMB. Here,
the notations are defined as follows: letting A1 and A2 be two algorithms and P be a
problem, if A1 is better (in the sense of possessing higher accuracy) than A2 when used
to solve P, we denote it by A1 ≻ A2 (w.r.t. P); otherwise, we write it as A1 ≼ A2. In
addition, we use A1 = A2 to denote A1 ≼ A2 and A1 ≽ A2.

MIAMB/MKIAMB-II significantly improve IAMB/KIAMB and even MIAMB/MKIAMB-I in most cases
(although MIAMB/MKIAMB-II have larger std values than MIAMB/MKIAMB-I in some cases, the
differences are slight). MIAMB/MKIAMB-III perform the best in all situations, with the highest
mean values and the smallest std values.

Further, for any two algorithms, denote their balanced accuracy values as n (= 200) paired
data points. Then, we can compute the p-values of paired t-test of associated hypotheses for
one algorithm to be better (in the sense of possessing higher accuracy) than the other. The
results are presented in Table 4. This table quantificationally shows the statistical significance
of how much MIAMB/MKIAMB improve IAMB/KIAMB: in most cases, the improvement is more
and more significant as the classification complex increases.

• The performance of each algorithm degrades with the increase of classification complexity.
However, the degenerations of MIAMB/MKIAMB are slower than that of IAMB/KIAMB.

To compare IAMB/KIAMB and MIAMB/MKIAMB detailedly, we take the results of IAMB/KIAMB-I
and MIAMB/MKIAMB-III to make a further analysis. For the 4-class prediction problem, denote the
results of IAMB-I and MIAMB-III by τ(IAMB)i and τ(MIAMB)i for i = 1, · · · , n, and draw them in (a) of
Figure 16. Put

I1 =
{

i ∈ {1, · · · , n} : τ(IAMB)i > τ(MIAMB)i

}
,

I2 =
{

i ∈ {1, · · · , n} : τ(IAMB)i = τ(MIAMB)i

}
,

I3 =
{

i ∈ {1, · · · , n} : τ(IAMB)i < τ(MIAMB)i

}
.

Draw the scatters of τ(IAMB)i and τ(MIAMB)i for i ∈ I j in (a j) of Figure 16. In addition, the information
about (mean ± std) of IAMB-I vs that of MIAMB-III is annotated in each title. For other three K-class
prediction problems (K = 8, 16, 32), repeat the above steps to get the scatters drawn in the other
subplots of Figure 16. Similarly, Figure 17 draws the results of KIAMB-I versus MKIAMB-III.
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Figure 16: Balanced accuracy results on IAMB/MIAMB algorithms applied to 200 K-class prediction
problems (K = 4, 8, 16, 32): the subplots in the first column for all the 200 results; the
ones in the second column for the results that IAMB performs better than MIAMB; the ones
in the third column for the results that IAMB and MIAMB perform equally well; the ones
in the last column for the results that MIAMB performs better than IAMB.
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Figure 17: Balanced accuracy results on KIAMB/MKIAMB applied to 200 K-class prediction problems
(K = 4, 8, 16, 32): the subplots in the first column for all the 200 results; the ones in
the second column for the results that KIAMB performs better than MKIAMB; the ones in
the third column for the results that KIAMB and MKIAMB perform equally well; the ones
in the last column for the results that MKIAMB performs better than KIAMB.
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Figure 18: Balanced accuracy results on IAMB/MIAMB and KIAMB/MKIAMB applied to 100 64-class
prediction problems: MIAMB/MKIAMB can improve IAMB/KIAMB substantially.

Figure 16 indicates that: (i) In most cases, MIAMB can improve IAMB to various degrees: MIAMB
has higher mean values of balanced accuracy and smaller std values as well. Although there are a
few of situations in which IAMB performs better than MIAMB, the difference of performance between
them is very slight. In addition, there are some situations in which the two algorithms perform
equally well (with very high mean and small std). (ii) MIAMB is more resistant to the classification
complexity than IAMB: the improvements of MIAMB over IAMB become more and more visible with
the increase of K (from 4 to 32). Figure 17 shows similar conclusions.

In brief, an FS problem for multi-class prediction can be transformed into a problem of MB
discovery for multiple targets, and then get a more efficient solution. This idea may be particularly
useful when the classification complexity is high or very high. To check this imagination, we apply
the same procedures to 100 64-class prediction problems (also taken from the HIVA data set). The
results are summarized in Figure 18, in which (a) and (a j) are for IAMB/MIAMB while (b) and (b j)
are for KIAMB/MKIAMB, j = 1, 2, 3. By the figure, the improvement (nearly 14% on accuracy) of
MIAMB/MKIAMB algorithms over IAMB/KIAMB is really desirable in the case of high classification
complexity.

Finally, we apply LibSVM and the random forest (RF) algorithm (Breiman, 2001) to the whole
HIVA data without any FS, considering LibSVM is of high classification performance while RF is
a state-of-the-art FS algorithm. The results can be served as a baseline to see why FS (or equiva-
lently, MB discovery) is necessary for a complex classification problem. Recall that HIVA contains
many unbalanced variables, which enhance the classification complexity. Figure 19 draws the 95%
confidence bands of LibSVM and FS, respectively.

By the figure, it follows that:
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Figure 19: The 95% confidence bands of LibSVM and RF.

• Without any FS, LibSVM performs undesirably in all situations. This may be because too
many noisy variables can lead to masking effects upon those unbalanced features such that
LibSVM cannot classify targets expectedly. This shows the necessity of FS. In other words,
LibSVM may not be suitable for some high-dimension problems, especially when there are
many unbalanced variables.

• Without any FS, RF performs quite well when the classification complexity is not very high.
However, with the increase of classification complexity, the performance of RF decreases
gradually and then sharply. In other words, RF may not be suitable for those problems with
too high complexity, especially when there are many unbalanced variables.

To observe why this happens, we check the results and then randomly take some targets (with
extraordinarily low accuracy) to implement LibSVM and RF again by appropriately adjusting the
algorithmic setting of LibSVM and increasing the number of trees of RF from 100 to 1000. However,
the results change very little.

To make an intuitive comparison, the 95% confidence bands of MIAMB/MKIAMB-based LibSVM
are also drawn in Figure 19. As seen, all methods degenerate with the increase of the classification
complexity, but our methods degenerate far slower than LibSVM/RF based on the whole data. In a
word, MB discovery (or equivalently, FS) is important to make classification, especially when the
problem is of high dimension and of high complexity.
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7. Concluding Remarks

In this paper, we considered the problem of Mb and MB of multiple variables. We first addressed
their additivity under the local intersection assumption, and then studied this problem in the general
case. The two algorithms that we proposed , MIAMB and MKIAMB, were proven to be correct under
the local composition assumption with respect to single targets. The benchmarking study based on
six synthetic BNs showed that MIAMB and MKIAMB have higher accuracies and lower complexities
than the existing IAMB and KIAMB.

Before ending this paper, we present four concluding remarks as follows:

(i) The first remark concerns a method of using MIAMB and MKIAMB to find an MB for a single
variable. Such an idea is motivated by the following two aspects: (a) the local composition
assumption may be violated in practice, and if this is the case, IAMB and KIAMB may perform
not very well in MB discovery even for a single variable; (b) randomness of a data set may
result in a violation to the assumption that all the CI tests involved are correct. Naturally, it is
useful to take a remedy for these two situations. One remedial strategy is described as follows:
letting T ∈ V be the target variable, and M1 be a potential MB discovered by IAMB or KIAMB,
take T0 ≜ arg maxX∈M1 f (ℓ)

D (T ; X |M1\{X}) as a co-target of T for ℓ = 1 or 2 or 3; then, employ
MIAMB or MKIAMB to find a potential MB for {T,T0}, saying M2. Finally, refine {T0} ∪ M2 to
obtain M, by virtue of the shrinking phase of IAMB or KIAMB, since this phase needs no the
local composition precondition.

(ii) Our MIAMB and MKIAMB contain an ordering τ, which may affect the RT and even the WA or
WP. A question arises here: is there an optimal selection of τ such that MIAMB or MKIAMB has
the highest accuracy and the lowest complexity?

(iii) All the considered algorithms (IAMB, KIAMB, MIAMB, and MKIAMB) need the local composition
assumption to theoretically guarantee their correctness. However, this precondition may be
violated in practice and in this case only an approximate MB can be obtained by means of one
of the above algorithms. Subsection 4.1 provides a potential remedy. We note that MIAMB and
MKIAMB transform the problem of MB discovery for multiple targets into the ones for single
targets. This idea provides a facilitation to use some stochastic optimization methods such as
the particle swarm optimization algorithm (Kennedy and Eberhart, 1995, 1997).

(iv) In Subsection 3.3, we provided a method for MB discovery of a complex single variable based
on an MB discovery of some simple multiple variables. Let us now explain why this transfor-
mation method is efficient. With the notations used in Subsection 3.3, let

MBT = MBT(d) ≜ M.

Then, a variable X can enter and stay in M (in the sense of MBT ) if T ̸y X | M \ {X}. On
the other hand, by Theorem 5, X can enter and stay in M (in the sense of MBT(d)) only if
T (d)

j ̸y X | M \ {X} holds for some j. That is, we need to test the following two pairs of
hypotheses:

H(1)
0 : T y X | M \ {X} ↔ H(1)

1 : T ̸y X | M \ {X};
H(2)

0 : T (d)
j y X | M \ {X} ↔ H(2)

1 : T (d)
j ̸y X | M \ {X}.
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Clearly, when T is high-dimensional, the test for H(1)
0 ↔ H(1)

1 requires far more data points
than that for H(2)

0 ↔ H(2)
1 , since the test statistic for the first pair of hypotheses contains far

more free parameters than that for the second. In addition, the transformation from T to T(d)

can be easily made, with almost no running time. This explains why Theorem 5 is useful.

Acknowledgments

The authors are very grateful to the four anonymous reviewers and Prof. Marina Meila and Prof.
Joris Mooij for their valuable comments and constructive suggestions which result in the present
version. Thanks also to Prof. Kevin Murphy for all of his kind help.

This work was supported by the National Natural Science Foundation of China (61374183,
51472117, 51535005, 51675212), the Research Fund of State Key Laboratory of Mechanics and
Control of Mechanical Structures (MCMS-0417G02, MCMS-0417G03), the Fundamental Research
Funds for the Central Universities (NP2017101, NC2018001), the Project Funded by the Priority
Academic Program Development of Jiangsu Higher Education Institutions, and the Open Fund for
the Key Laboratory for Traffic and Transportation Security of Jiangsu Province.

Appendix A. Pseudo Codes for IAMB and KIAMB

This appendix presents the pseudo codes for IAMB and KIAMB. We mention here that, in Line 4
of KIAMB, M2 denotes a random subset of M1 with size |M2| = max{1, ⌊|M1| · K⌋}.

Algorithm 3: IAMB and KIAMB

Procedure: M ← IAMB(D; T)
Input: D is a data matrix; T is a set of target

variables.
Output: an MB, M, of T.

//Forward: Growing Phase

1 M ← Ø
2 while M has changed do
3 Y ← arg maxX∈V\M\T fD(T; X |M)
4 if T ̸y Y |M then
5 M ← M ∪ {Y}
6 end
7 end

//Backward: Shrinking Phase

8 foreach X ∈ M do
9 if T y X |M \ {X} then

10 M ← M \ {X}
11 end
12 end
13 return M

Procedure: M ← KIAMB(D; T; K)
Input: Besides {D,T} as in IAMB, K ∈ [0, 1]

is a randomization parameter.
Output: an Mb, M, of T.

//Forward: Growing Phase

1 M ← Ø
2 while M has changed do
3 if M1←{X∈V\M\T : T ̸yX |M},Ø then
4 Y ← arg maxX∈M2 fD(T; X |M)
5 M ← M ∪ {Y}
6 end
7 end

//Backward: Shrinking Phase

8 foreach X ∈ M do
9 if T y X |M \ {X} then

10 M ← M \ {X}
11 end
12 end
13 return M

33

https://www.stat.washington.edu/mmp/index.html
https://staff.fnwi.uva.nl/j.m.mooij/
https://staff.fnwi.uva.nl/j.m.mooij/
http://www.cs.ubc.ca/~murphyk/


Liu and Liu

Appendix B. Proofs

In this appendix, we give the proofs of the theoretical results.

Lemma 1 The intersection property holds if and only if no information equivalence occurs.

Proof Equivalently, we show that the intersection property is violated if and only if information
equivalence occurs. The sufficiency holds clearly. To prove the necessity, we assume the
intersection property is violated, that is, there are T, X, Y, and Z such that T y X | Z ∪ Y, and
T y Y | Z ∪ X, but T ̸y X ∪ Y | Z. Then, we can show T ̸y X | Z. In fact, if T y X | Z, then
combined with T y Y | Z ∪ X and the contraction property, it concludes T y X ∪ Y | Z, which
contradicts T ̸y X ∪ Y | Z. Similarly, we can show T ̸y Y | Z. Therefore, X and Y are information
equivalent with respect to T given Z. That is, information equivalence occurs.

Lemma 2 For T ⊆ V, assume the type-II local condition holds. Then T has a unique MB.

Proof Suppose T has two different MBs, M1 and M2. Putting M12 ≜ M1 \ M2, M21 ≜ M2 \ M1,
and M ≜ M1 ∩ M2 ⫋ Mi for i = 1, 2, we have

T y V \ M1 \ T |M1 ⇒ T y V \ M1 \ T |M ∪ M12, (8)

T y V \ M2 \ T |M2 ⇒ T y V \ M2 \ T |M ∪ M21. (9)

Now we show T y̸ M12 |M. In fact, suppose we have T y M12 |M. This combined with
(8) implies T y (V \ M1 \ T) ∪ M12 |M, in view of the contraction property. Equivalently,
T y V \ M \ T |M, which contradicts the fact that M1 is an MB of T, since M ⫋ M1. Hence,
T ̸y M12 |M. Similarly, we can show T ̸y M21 |M. On the other hand, by the decomposition
property, (9) and (8) indicate T y M12 |M ∪M21 and T y M21 |M ∪M12, respectively. Therefore,
M12 and M21 are information equivalent with respect to T conditioned on M. This contradicts the
precondition. The uniqueness of MB of T is shown under the type-II local condition.

Theorem 2 (Additivity of Mb) Let (G,P) be a BN over V. The following two statements hold:

(i) Let Mi be an Mb of Ti ⊆ V for i = 1, 2, and assume T1 ∪ T2 satisfies the local intersection
assumption. Then, (M1 ∪ M2) \ (T1 ∪ T2) is an Mb of T1 ∪ T2.

(ii) Let Mi be an Mb of Ti ∈ V for i = 1, · · · , k, and assume T ≜ {T1, · · · ,Tk} satisfies the local
intersection assumption. Then,

∪k
i=1 Mi \ T is an Mb of T.

Proof It suffices to prove (i), since (ii) is a direct consequence of (i) using induction on the number
of variables involved in T.

Denote V0 = V \ N \ T with N = N1 ∪ N2, in which N1 = M1 \ T2 and N2 = M2 \ T1. Note
that N can also be expressed as N = (M1 ∪ M2) \ T. First, we prove the following CI relationship,
by means of the graphoid properties:

V0 y T1 | N ∪ T2. (10)

In fact, with the above notations, it is readily justified that V \ M1 \ T1 = V0 ∪ [(N2 ∪ T2) \ M1].
On the other hand, M1 is an Mb of T1. Therefore, T1 y V \ M1 \ T1 |M1, and thus we obtain
T1 y V0 ∪ [(N2 ∪ T2) \ M1] |M1. By the weak union property, T1 y V0 |M1 ∪ [(N2 ∪ T2) \ M1].
This means (10) holds, since M1 ∪ [(N2 ∪ T2) \ M1] = N ∪ T2.
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Similarly, V0 y T2 | N ∪ T1, which combined with (10) indicates

V0 y T | N

by the local intersection assumption. Or equivalently, T y V \N \T | N. That is, (M1∪M2)\T = N
is an Mb of T. The proof is completed.

Remark 1 In the case of either T1 ⊆ V \ M2 or T2 ⊆ V \ M1, the conclusion of (i) in Theorem 2
holds without requiring the local intersection assumption.

Proof If T1 ⊆ V \M2 but T2 ⊈ V \M1, M1 ∪M2 is then an Mb of T1 according to the weak union
property whereas (M1 \ T2) ∪ M2 is an Mb of T2. Equivalently, we have

T1 y V \ (M1 ∪ M2) \ T1 |M1 ∪ M2,

T2 y V \ [(M1 \ T2) ∪ M2] \ T2 | (M1 \ T2) ∪ M2.

By means of the contraction property and the decomposition property, it is seen that

V \ [(M1 ∪ M2) \ T2] \ T y T1 | [(M1 ∪ M2) \ T2] ∪ T2,

V \ [(M1 ∪ M2) \ T2] \ T y T2 | (M1 ∪ M2) \ T2,

so T y V \ [(M1∪M2) \T2] \T | (M1∪M2) \T2. That is, (M1∪M2) \ (T1∪T2) = (M1∪M2) \T2
is an Mb of T. If T1 ⊈ V \ M2 but T2 ⊆ V \ M1, we can similarly show

(M1 ∪ M2) \ (T1 ∪ T2) = (M1 ∪ M2) \ T1

is an Mb of T. Finally, if T1 ⊆ V \ M2 and T2 ⊆ V \ M1, imposing decomposition on

T1 y V \ (M1 ∪ M2) \ T1 |M1 ∪ M2

and weak union on T2 y V \ (M1 ∪ M2) \ T2 |M1 ∪ M2, we get

V \ (M1 ∪ M2) \ T y T1 |M1 ∪ M2,

V \ (M1 ∪ M2) \ T y T2 | (M1 ∪ M2) ∪ T1.

By the contraction property, T y V \ (M1 ∪ M2) \ T |M1 ∪ M2. That is,

(M1 ∪ M2) \ (T1 ∪ T2) = M1 ∪ M2

is an Mb of T. The conclusion is proved.

Theorem 3 (Additivity of MB) Let (G,P) be a BN over V. The following two statements hold:

(i) Assume T1 ∪ T2 satisfies the local intersection assumption. Let Mi be the unique MB of Ti

for i = 1, 2. Then, (M1 ∪ M2) \ (T1 ∪ T2) is the unique MB of T1 ∪ T2.
(ii) Assume T ≜ {T1, · · · ,Tk} satisfies the local intersection assumption. Let Mi be the unique

MB of Ti for i = 1, · · · , k. Then,
∪k

i=1 Mi \ T is the uniqe MB of T.
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Proof We need only to prove (i), since (ii) is a direct consequence of (i).
Denote N1 = M1 \ T2 and N2 = M2 \ T1. By Theorem 2, (M1 ∪ M2) \ T = N1 ∪ N2 is an

Mb of T. Therefore, it suffices to prove the minimality of N1 ∪ N2, based on Lemma 2. In fact, let
N0 be any Mb of T which is a subset of N1 ∪ N2. Note that Ti ∩ N0 = Ø for i = 1, 2. Denote now
M = N0 ∪ (M1 \ N1) = N0 ∪ (M1 ∩ T2). It follows that

• M1 is the MB of T1: This implies T1 y V \ M1 \ T1 |M1, or equivalently, we have

T1 y V \ M1 \ T1 | (M1 ∩ M) ∪ (M1 \ M), (11)

in view of M1 = (M1 ∩ M) ∪ (M1 \ M).

• N0 is an Mb of T: Equivalently, we have T1 ∪ T2 y V \ N0 \ T2 \ T1 | N0, which gives

T1 y V \ (N0 ∪ T2) \ T1 | N0 ∪ T2,

according to the weak union property, and thus T1 y V \ (M ∪ T2) \ T1 |M ∪ T2 in view
of N0 ∪ T2 = M ∪ T2, or equivalently we have T1 y V \ M \ T1 \ T2 |M ∪ T2. By the
self-conditioning property, this leads to T1 y V \ (M1 ∩ M) \ T1 |M ∪ T2, Therefore,

T1 y (V \ M1 \ T1) ∪ (M1 \ M) |M ∪ T2,

in terms of V \ (M1 ∩M) \T1 = (V \M1 \T1)∪ (M1 \M). By the weak union property, this
indicates T1 y M1 \ M | (M ∪ T2) ∪ (V \ M1 \ T1). Consequently,

T1 y M1 \ M | (M1 ∩ M) ∪ (V \ M1 \ T1), (12)

due to (M ∪ T2) ∪ (V \ M1 \ T1) = (M1 ∩ M) ∪ (V \ M1 \ T1).

By the local intersection property, (11)(12) indicate T1 y (M1 \ M) ∪ (V \ M1 \ T1) |M1 ∩ M,
so

T1 y V \ (M1 ∩ M) \ T1 |M1 ∩ M,

since (M1 \ M)∪ (V \ M1 \ T1) = V \ (M1 ∩ M) \ T1. Hence, M1 ∩ M (⊆ M1) is an Mb of T1. On
the other hand, M1 is the MB of T1 and thereby M1 ∩ M = M1, or equivalently,

N1 ∪ (M1 ∩ T2) = M1 ⊆ M = N0 ∪ (M1 ∩ T2),

which means N1 ⊆ N0. In a similar fashion, N2 ⊆ N0. Combined with N0 ⊆ N1∪N2, the expected
relationship N0 = N1 ∪ N2 follows. This indicates that N1 ∪ N2 is an MB of T. The proof is
completed, since Lemma 2 shows the uniqueness of MB under the local intersection assumption.

Theorem 4 Assume S ⊆ V \ N \ T. Then, the following statements are equivalent:

(i) S is an MbS;

(ii) I(T1; T2 | N ∪ S) = minS′⊆V\N\T I(T1; T2 | N ∪ S′);
(iii) I(T; S | N) = maxS′⊆V\N\T I(T; S′ | N);

(iv) N ∪ S is an Mb of T1 in V \ T2 (or N ∪ S is an Mb of T2 in V \ T1).
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In addition, if S is an MbS, then it is also an MBS if and only if T1 ̸y Y | N ∪ (S \ {Y}) or
T2 ̸y Y | N ∪ (S \ {Y}) holds for any Y ∈ S.

Proof We first prove (i) ⇔ (ii). Put Q = V \ (N ∪ S) \ T. First, note that T1 y V \ M1 \ T1 |M1
since M1 is an Mb of T1. In other words, a ≜ I(T1; Q ∪ (V \ M1 \ T1 \ Q) |M1) = 0. By the chain
rule for CMI (Cover and Thomas, 2006), we have I(T1; V \ M1 \ T1 \ Q |M1) = 0. It follows that

a = I(T1; V \ M1 \ T1 \ Q |M1) + I(T1; Q | (V \ M1 \ T1 \ Q) ∪ M1)

= I(T1; Q | (V \ M1 \ T1 \ Q) ∪ M1)

= I(T1; Q | N ∪ S ∪ T2)

= I(T; Q | N ∪ S) − I(T2; Q | N ∪ S) (13)

≜ b − c,

which combined with a = 0 gives b = c. Observing T2 y V \ M2 \ T2 |M2 since M2 is an Mb of
T2, we obtain T2 y Q | (V \ M2 \ T2 \ Q) ∪ M2 by using the weak union property, or equivalently,
T2 y Q | N ∪ S ∪ T1, so I(T2; Q | N ∪ S ∪ T1) = 0. This means

0 ⩽ c = I(T2; Q | N ∪ S)

= I(T2; T1 ∪ Q | N ∪ S) − I(T2; T1 | N ∪ S ∪ Q)

= I(T2; T1 | N ∪ S) + I(T2; Q | N ∪ S ∪ T1) − I(T2; T1 | N ∪ S ∪ Q)

= I(T2; T1 | N ∪ S) − I(T2; T1 | N ∪ S ∪ Q). (14)

• (i) ⇐ (ii): If I(T1; T2 | N ∪ S) ⩽ I(T1; T2 | N ∪ S′) holds for any S′ ⊆ V \ N \ T, then (14)
indicates c = 0 since 0 ⩽ c = I(T2; T1 | N ∪ S) − I(T2; T1 | N ∪ S ∪ Q) ⩽ 0. Therefore,

I(T; V \ (N ∪ S) \ T | N ∪ S) = I(T; Q | N ∪ S) = b = 0,

because of b = c. That is, T y V \ (N ∪ S) \ T | N ∪ S, which means N ∪ S is an Mb of T, or
equivalently, S is an MbS.

• (i) ⇒ (ii): Observe that I(T1; T2 |V \ T) = minS′⊆V\N\T I(T1; T2 | N ∪ S′) holds according to
(14) holding for any S ⊆ V \ N \ T and N ∪ S ∪ Q = V \ T. Then,

I(T; Q | N ∪ S) = I(T; V \ (N ∪ S) \ T | N ∪ S) = 0

follows immediately if N ∪ S is an Mb of T. By (13) and (14), we have

I(T1; T2 | N ∪ S) = I(T1; T2 |V \ T) = minS′⊆V\N\T I(T1; T2 | N ∪ S′), (15)

noting again N ∪ S ∪ Q = V \ T. This means N ∪ S is an MbS.

To prove the equivalence between (ii) and (iii), we need only to show

I(T1; T2 | N ∪ S) = I(T1; M1) + I(T2; M2) − I(T1; T2) − I(T; N ∪ S). (16)

In fact, using I(T; N ∪ S) = I(T1; N ∪ S) + I(T2; N ∪ S |T1), we have

d ≜ I(T1; T2 | N ∪ S) + I(T1; T2) + I(T; N ∪ S)

= I(T1; T2 | N ∪ S) + I(T1; N ∪ S) + I(T2; T1) + I(T2; N ∪ S |T1)

= I(T1; T2 ∪ N ∪ S) + I(T2; N ∪ S ∪ T1)

= I(T1; M1) + I(T2; M2),
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which is equivalent to (16). This means (ii)⇔ (iii).
Now, we show that (i) is equivalent to (iv):

• (i)⇒ (iv): This implication holds clearly due to the decomposition property.

• (i)⇐ (iv): Assume N∪S is an Mb of T1 in V \T2, that is, T1 y (V \T2)\ (N∪S)\T1 | N∪S,
or equivalently, V \ (N ∪ S) \ T y T1 | N ∪ S. On the other hand, M2 is an Mb of T2 in
V, meaning T2 y V \ M2 \ T2 |M2, which combined with the weak union property gives
V \ (N ∪ S) \ T y T2 | N ∪ S ∪ T1. By the contraction property, T y V \ (N ∪ S) \ T | N ∪ S.
This means S is an MbS. Similarly, if N ∪ S is an Mb of T2 in V \ T1, we can show S is an
MbS.

Finally, we prove that an MbS, S, is an MBS if and only if T2 ̸y Y | N ∪ (S \ {Y}) holds for any
Y ∈ S. We first prove the necessity by reductio ad absurdum. Suppose there is some variable Y ∈ S
such that T2 y Y | N ∪ R, in which R ≜ S \ {Y}. Recall that S is an MbS, we get

T2 y (V \ T1) \ (N ∪ S) \ T2 | N ∪ S.

Equivalently, T2 y V\(N∪R)\T\{Y} | (N∪R)∪{Y}, which combined with T2 y Y | N∪R gives T2 y
V\(N∪R)\T | N∪R, in view of the contraction property. That is, T2 y (V\T1)\(N∪R)\T2 | N∪R.
Therefore, N∪R is an Mb of T2 in V\T1, and thus an MbS of T to N. This contradicts the condition
that S is an MBS of T to N, and thus T2 ̸y Y | N ∪ (S \ {Y}) holds for any Y ∈ S.

To prove the sufficiency, we suppose S is not a MBS of T to N, that is, there is some R ⫋ S such
that R is an MbS of T to N. Take any given variable, Y , in S \ R. Then, N ∪ R is an Mb of T2 in
V \ T1. That is, T2 y (V \ T1) \ (N ∪ R) \ T2 | N ∪ R. By the weak union property, we have

T2 y (V \ T1) \ [N ∪ (S \ {Y})] \ T2 | N ∪ (S \ {Y}).

This combined with the decomposition property means T2 y Y | N ∪ (S \ {Y}), since

Y ∈ (V \ T1) \ [N ∪ (S \ {Y})] \ T2,

and thus leads to a contradiction to the condition that T2 ̸y Y | N ∪ (S \ {Y}) holds for any Y ∈ S.
The proof of Theorem 4 is completed.

Example 1 Consider the BN (G,P) over V = {A, B,C,D} presented in Figure 8, in which A, B, and
C take {1, 2, 3} while D takes {1, 2}. Put T = {T1,T2}, N = (M1 ∪ M2) \ T = Ø, and S = {C},
S0 = {C,D} with T1 = A, T2 = B, M1 = {B}, M2 = {A}. By Figure 3, we can easily conclude that A
and B are information equivalent with respect to C. This means

I(C; A) > 0, I(C; B | A) = 0; and I(C; B) > 0, I(C; A | B) = 0. (17)

It follows from the chain rule for CMI (Cover and Thomas, 2006) that

(i) M1 is an MB of T1 in V: By (17), we have

• I(A; C,D | B) = I(A; C | B) + I(A; D | B,C) = 0, since {B,C} d-separates {A} and {D};
• I(A; C,D) ⩾ I(A; C) > 0.
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(ii) M2 is an MB of T2 in V: By (17), we have

• I(B; C,D | A) = I(B; C | A) + I(B; D | A,C) = 0, since {A,C} d-separates {B} and {D};
• I(B; C,D) ⩾ I(B; C) > 0.

(iii) N ∪ S is an Mb of T in V, so S is an MbS: By (17),

I(A, B; D |C) = I(A; D |C) + I(B;D | A,C) = 0,

because {C} d-separates {A} and {D}, while {A,C} d-separates {B} and {D}.
(iv) I(T1; T2 | N∪S) = minS′⊆V\N\T I(T1; T2 | N∪S′): it suffices to show the following inequalities:

• I(A; B |C) = I(A; B |C,D). In fact,

I(A; B |C,D) = I(A; B,D |C) − I(A; D |C)

= I(A; B |C) + I(A; D | B,C) − I(A; D |C) = I(A; B |C),

since both {B,C} and {C} d-separate {A} and {D};
• I(A; B |C) ⩽ I(A; B |D); In fact,

I(A; B |C) = I(A; B |C,D) = I(A; B,C |D) − I(A; C |D)

= I(A; B |D) + I(A; C | B,D) − I(A; C |D)

= I(A; B |D) − I(A; C |D) ⩽ I(A; B |D),

due to I(A; C | B,D) = 0, because of

0 ⩽ I(A; C | B,D) = I(A; C,D | B) − I(A; D | B)

= I(A; C | B) + I(A; D | B,C) − I(A; D | B) = − I(A; D | B) ⩽ 0,

since I(A; C | B) = 0 (see Equation 17) and {B,C} d-separates {A} and {D};
• I(A; B |C) ⩽ I(A; B). In fact, by (17), we have I(A; C | B) = 0. Thus,

I(A; B) = I(A; B,C) − I(A; C | B) = I(A; C) + I(A; B |C) − I(A; C | B)

= I(A; C) + I(A; B |C) ⩾ I(A; B |C).

(v) I(T; S | N) = maxS′⊆V\N\T I(T; S′ | N): the proof is omitted.

(vi) N ∪ S is an Mb of T1 in V \ {T2}: By (17), we have

• I(A; C,D) ⩾ I(A; C) > 0;
• I(A; D |C) = 0, since {C} d-separates {A} and {D}.

(vii) N ∪ S is an Mb of T2 in V \ {T1}: By (17), we have

• I(B; C,D) ⩾ I(B; C) > 0;
• I(B; D |C) = 0, since {C} d-separates {B} and {D}.

(viii) S is an MBS; S0 is an MbS (but not an MBS): I(A; B |C,D) = I(A; B |C). In fact,

I(A; B |C,D) = I(A; B,D |C) − I(A; D |C) = I(A; B |C) + I(A; D | B,C) − 0 = I(A; B |C),

since both {B,C} and {C} d-separate {A} and {D}.
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Theorem 5 Let M j be an MB of T (d)
j in V \ T for j = 1, · · · , t. Then, M ≜ ∪k

j=1 M j is an Mb of T.

Further, M is an MB of T iff for any X ∈ M there is some j such that T (d)
j ̸y X | M \ {X}.

Proof Recall that T is the merged version of T, while T(d) is the dummy version of T ; all of them
have the same MBs.

First, we have T (d)
j y (V \ T) \ M j \ {T (d)

j } | M j for j = 1, · · · , t. Considering T (d)
j < V \ T, it

follows that T (d)
j y V \ T \ M j | M j, which combined with the weak union property gives

T (d)
j y V \ T \ M | M, j = 1, · · · , t, (18)

since M j ⊆ M. Putting U ≜ V \ T \ M, the above independence statements imply

P
(
T (d)

j = 1, U = u
∣∣ M

)
= P

(
T (d)

j = 1
∣∣ M

)
P
(
U = u

∣∣ M
)
, j = 1, · · · , t,

or equivalently, P(T = j, U = u | M) = P(T = j | M)P(U = u | M), meaning T y V \ T \ M | M,
and thus T y V \ T \ M | M. This shows M is an Mb of T.

In what follows, we prove M is an MB of T if and only if, for any X ∈ M, T (d)
j ̸y X | M \ {X}

holds for some j:

“⇒” Assume M is an MB of T. Suppose there is some variable X such that T (d)
j y X | M \ {X}

holds for any j. Then, by (18) and the contraction property, we get

T (d)
j y (V \ T) \ (M \ {X}) | M \ {X}, j = 1, · · · , t. (19)

Similar to the proof of the first conclusion, it can be readily proven that (19) implies

T y (V \ T) \ (M \ {X}) | M \ {X},

meaning that M has a proper subset, M \ {X}, which is an Mb of T. This contradicts the
minimality of M, and thus proves the necessity.

“⇐” Suppose M is not an MB of T (or T ). Then, there is some X ∈ M such that T y X | M \ {X}.
It follows that P(T = j, X = x | M \ {X}) = P(T = j | M \ {X})P(X = x | M \ {X}) holds for
any j = 1, · · · , t. Or equivalently, we have

P
(
T (d)

j = 1, X = x
∣∣ M \ {X}

)
= P

(
T (d)

j = 1
∣∣ M \ {X}

)
P
(
X = x

∣∣ M \ {X}
)
. (20)

Futher, (20) indicates

P
(
T (d)

j = 0, X = x
∣∣ M \ {X}

)
= P

(
X = x

∣∣ M \ {X}
)
− P

(
T (d)

j = 1, X = x
∣∣ M \ {X}

)
=

[
1 − P

(
T (d)

j = 1
∣∣ M \ {X}

)]
P
(
X = x

∣∣ M \ {X}
)

= P
(
T (d)

j = 0
∣∣ M \ {X}

)
P
(
X = x

∣∣ M \ {X}
)
. (21)

By (20) and (21), we get T (d)
j y X | M \ {X}, which contradicts T (d)

j ̸y X | M \ {X}. This
proves the sufficiency.

The proof is completed.
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Theorem 6 (Correctness of IAMBS and KIAMBS) Assume that T2 satisfies the local composition
property, and that all CI tests are correct. Then (i) IAMBS outputs an MB of T1 ∪ T2; (ii) KIAMBS
outputs an MB of T1 ∪ T2 for any K ∈ [0, 1).

Proof Clearly, N ∪ S is an Mb of T2 in V \ T1 at the end of the growing phase of either IAMBS or
KIAMBS under the local composition assumption, as in IAMB and KIAMB. Therefore, S is an MbS at
the end of this stage. According to the last conclusion of Theorem 4, S is an MBS after it is refined.
Finally, as a direct consequence of Lemma 4 (shown below), N ∪ S is an MB at the end of the
algorithm, considering the process of refining N is similar to that of refining S.

Remark 2 The following two statements hold: (a) violating local intersection implies violating
adjacency faithfulness; (b) under the orientation faithfulness condition, violating local composition
at the end of the first phase of IAMB or KIAMB or IAMBS or KIAMBS means violating adjacency
faithfulness.

Proof By Lemma 1, the violation of the local intersection property means information equivalence
occurs; further, Lemeire et al. (2012) showed that information equivalence is one of the cases of
violating adjacency faithfulness. Hence, the violation of local intersection is one of the violations
of adjacency faithfulness.

Now, we show that the violation of local composition, which is present at the end of the first
phase of IAMB or KIAMB, is also one of the violations of adjacency faithfulness under the orientation
faithfulness condition.

In fact, let M be the output of the first phase of IAMB or KIAMB, but not an Mb of T. Without loss
of generality, we assume |T| = 1 and T = {T }. Then, T y X |M holds for any X ∈ V \ M \ {T } but
T ̸y V \ M \ {T } |M. Considering that the set MT composed of the parents, children, and spouses
of T is an Mb of T , we have M ⊉ MT . Thus, there is some X ∈ MT such that X < M. If X is a
spouse of T , then all the children of T and X are not in M (if not so, T ̸y X |M holds immediately
following from the orientation faithfulness condition, and thus contradicts T y X |M since X < M).
In this sense, we conclude that there is some node X adjacent to T such that T y X |M. This means
the adjacency faithfulness condition is violated.

In short words, both the violation of the local composition property (present at the end of the
first phase of IAMB or KIAMB) and the violation of the local intersection property are the violations
of adjacency faithfulness, under the orientation faithfulness condition.

Lemma 3 (a) If there is P ⊆ M1 \ T2 such that T1 y P | (N \ P) ∪ T2, then (N \ P) ∪ T2 is an Mb
of T1; (b) If there is Q ⊆ N \ P such that T1 y Q | (N \ P \ Q) ∪ T2 and T2 y Q | (N \ P \ Q) ∪ T1,
then (N \ P \ Q) ∪ T2 is an Mb of T1, and (N \ P \ Q) ∪ T1 is an Mb of T2.

Proof Considering that N ∪ T2 is an Mb of T1, we have T1 y V \ (N ∪ T2) \ T1 | (N \ P)∪ T2 ∪ P,
which combined with T1 y P | (N \ P) ∪ T2 implies T1 y V \ [(N \ P) ∪ T2] \ T1 | (N \ P) ∪ T2, in
view of the contraction property. The first conclusion is proved.

For convenience, we denote now N1 ≜ M1 \ T2. To show the second conclusion, we note that
P ⊆ N1, so (N \ P)∪T1 is an Mb of T2. It follows that: (i) T1 y V \ [(N \ P)∪T2]\T1 | (N \ P)∪T2,
which combined with T1 y Q | (N\P\Q)∪T2 gives T1 y V\[(N\P\Q)∪T2]\T1 | (N\P\Q)∪T2;
and (ii) T2 y V \ [(N \ P)∪T1] \T2 | (N \ P)∪T1, which combined with T2 y Q | (N \ P \Q)∪T1
yields T2 y V \ [(N \ P \Q) ∪ T1] \ T2 | (N \ P \Q) ∪ T1. The second conclusion is also proved.
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Lemma 4 Let Ti be a subset of V with an Mb Mi for i = 1, 2, and S ⊆ V \ N \ T be an MBS of T
to N, with T = T1 ∪ T2 and N = (M1 ∪ M2) \ T. Assume N0 be a subset of N such that N0 ∪ S is
an Mb of T. Then N0 ∪ S is an MB of T if and only if T ̸y Y | (N0 \ {Y}) ∪ S holds for any Y ∈ N0.

Proof By the definition of MBS, N ∪ R and thus N0 ∪ R will never be an Mb of T for any N0 ⊆ N
and R ⫋ S, in view of the weak union property.

• Necessity: Suppose there is some Y ∈ N0 such that T y Y | (N0 \{Y})∪S. By the precondition
that N0 ∪ S is an Mb of T, we have T y V \ (N0 ∪ S) \ T | [(N0 \ {Y}) ∪ S] ∪ {Y}. These two
relationships combined with the contraction property imply

T y V \ [(N0 \ {Y}) ∪ S] \ T | (N0 \ {Y}) ∪ S,

or equivalently, (N0 \ {Y}) ∪ S is an Mb of T. This contradicts that N0 ∪ S is an MB of T.

• Sufficiency: Suppose N0 ∪ S is not an MB of T, that is, there is some N′0 ⫋ N0 such that
N′0 ∪ S is an Mb of T. Take any given variable, Y , in N0 \ N′0. It can be shown that T y
Y | (N0 \ {Y}) ∪ S, which leads to a contradiction. Hence, N0 ∪ S is an MB of T.

The proof is completed.

Appendix C. Improving the Log-Likelihood Ratio Test

In Subsection 4.3, we mentioned that the X2 or G2 test is suitable only for cases of small |T|,
and then summarized some improving methods proposed in the literature (Lawley, 1956; Hosmane,
1986, 1987, 1990; Brin et al., 1997; Silverstein et al., 1998; Aliferis et al., 2010b). However, we
need more suitable CI testing methods when working on the MB discovery problem for multiple
targets. In this appendix, we discuss a practical way of improving the G2 test by damping the
number of degrees of freedom for the G2 statistic.

Consider the G2 statistic, G2(X; Y | Z) ≜ 2n · ID(X; Y | Z), which approximates to the chi-square
variate with r ≜ (rX−1)(rY−1)rZ degrees of freedom, namely χ2(r), where rξ represents the number
of configurations for ξ (de Campos, 2006, p. 2158).

Theoretically, G2(X; Y | Z) is a reasonable statistic for testing the hypothesis “X y Y | Z” when
n is large enough. Unfortunately, this precondition is practically hard to be valid in many situations
(Cochran, 1954; Yaramakala, 2004; Bromberg and Margaritis, 2009) due to the following reason:
Let X = {Xi1 , · · · , Xix}, Y = {X j1 , · · · , X jy}, and Z = {Xk1 , · · · , Xkz}, in which each variable Xℓ takes
rℓ values. Then r = (

∏x
ℓ=1 riℓ − 1)(

∏y
ℓ=1 r jℓ − 1)(

∏z
ℓ=1 rkℓ), which is exponential with respect to x,

y, and z. On the one hand, by the Wilson-Hilferty approximation for χ2
α(r) (de Campos, 2006; Gao,

2005), we obtain χ2
α(r) ≈ cα,r r, in which cα,r ≜

(
1 − 2/(9r) +

√
2/(9r) zα

)3 is a bit larger than 1,
with zα being the upper α-quantile of the standard normal distribution; on the other hand, we can
show ID(X; Y | Z) ⩽ log2 rX,Y with rX,Y ≜ min{

∏x
ℓ=1 riℓ ,

∏y
ℓ=1 r jℓ }. It follows that

p(X; Y | Z) = P
{
χ2(r) ⩾ 2n · ID(X; Y | Z)

}
⩾ P

{
χ2(r) ⩾ 2n · log2 rX,Y

}
.

Suppose we are doing a G2 test for the false hypothesis “X y Y | Z” (i.e., the truth is X ̸y Y | Z).
Then, at least χ2

α(r)
2 log2 rX,Y

≈ cα,r r
2 log2 rX,Y

= O
( r

log2 rX,Y

)
instances are required if we expect the statistical
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Figure 20: p-value/damped p-value versus the number of instances, n: the left subfigure illustrates
why a very large n may still not be “large enough” for making a correct decision about
the false hypothesis “X1 y Y1 | Z1” based on the G2 test: at least 4.31 × 105 instances
are required; while the right illustrates why the damped G2 test is suitable for testing the
same false hypothesis: about 8000 instances are sufficient.

decision can be correctly made with the significance level α (or equivalently, p(X; Y | Z) ⩽ α).
In many practical situations, however, n may be far smaller than the required number of sample
instances with the magnitude of at least O(r/ log2 rX,Y), recalling that r is exponential with respect
to x, y, and z, especially when too many variables are involved. In this case, the statistical decision
made for the hypothesis will be wrong.

Taking the ALARM network presented in Figure 4 for example, we put

X1 = {X36}, Y1 = {X11, X34, X35, X37}, and Z1 = {X4, X14, X15, X16, X18, X21, X22, X31};

then we compute the p-value versus the number of instances from 1000 to 1,000,000. The results
are drawn in Figure 20 (averaged over 10 different samples with the same size). Note that the
truth is X1 ̸y Y1 | Z1 since Y1 is an Mb of X1. By the figure, the CI test for the false hypothesis
“X1 y Y1 | Z1” is not correct unless at least nmin ≈ 4.31 × 105 sample instances are available. It is
mentioned that, in this example, r/ log2 rX1,Y1 ≈ 2.42 × 105.

In short words, the precondition, “when n is large enough”, for the theoretical assertion that “G2

is a reasonable statistic for CI testing” may be hard to be guaranteed in practice because the above
analysis and the numerical example indicate that a seemingly very large n may still not be “large
enough”. The problem is then how to improve on the G2 test.

Observe that, for the G2 test, the major reason for failing to make a correct statistical decision on
CI testing is that the theoretical value of r is far larger than its data-driven value, due to the null cells
frequently existing in the multi-contingency tables of X and Y given Z (e.g., Yaramakala, 2004, p.
34). In other words, the linear increase of n is hard to exponentially bring null cells into valid cells.
Hence, a feasible way of improving the log-likelihood ratio G2 test is to damp the increase of r such
that the unmatched behaviours of n and r can get alleviated to a certain degree. Mathematically,
we replace the theoretical value of r in p(X; Y | Z) with its a damped version, gn,κ(r), defined in
(6), where κ > 0 is a constant, based on which n

κ measures the amount of valid cells that n sample
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Figure 21: Damped p-value versus the number of instances: κ is taken as 20 and 100, respectively.

instances can support. It is easily seen that gn,κ(·) possesses the following properties, which interpret
the reasonability of employing such a damping procedure in the G2 test:

• gn,κ(r) is monotonically increasing versus n for given r, and limn→+∞ gn,κ(r) = r. This means
more instances may generate more valid cells in the multi-contingency tables of X and Y
given Z, and all the theoretical degrees of freedom are valid when n is large enough.

• gn,κ(r) is monotonically increasing versus r for given n, and limr→+∞ gn,κ(r) = n
κ . This means

a larger r should correspond to a larger gn,κ(r), but not exceeding the supporting capacity of
the data.

• For sufficient data, the damping function gn,κ(·) only plays a little role; while for insufficient
data, it trades off the theoretical r and the supporting capacity of the data.

For convenience, we call the resulted p-value, denoted by pg(X; Y | Z) instead of p(X; Y | Z), and
the resulted testing method to be the damped p-value and the damped log-likelihood ratio test (or
damped G2 test). Further, we use the negative damped p-value, f (3)

D defined in (7), as the association
function. It is mentioned here that the damped G2 test approximately degenerates into the ordinary
G2 test when taking κ as a very small positive number.

The damped G2 test may be more suitable than the ordinary G2 test when too many variables
are involved in the conditional set. We implement this testing method (by taking κ as 2, 3, · · · , 10,
respectively) on the false hypothesis “X1 y Y1 | Z1”, and find that the correct decision “X1 ̸y
Y1 | Z1” is always made for κ ⩾ 3, even when the number of instances is smaller than 1000. For the
case of κ = 2, we present the results in the right subfigure of Figure 20, from which it is seen that,
for the damped G2 test, about 8000 sample instances are sufficient to make the correct decision.
Note also that the ordinary G2 test needs at least 4.31 × 105 instances.

However, the damped G2 test may also face a potential danger: it may excessively damp the
theoretical value of r if a too large κ is inappropriately used. Here, “excessively damping r” means
that a too large value of κ will lead to a too small gn,κ(r) such that the damped G2 test incorrectly
reject a true hypothesis “X y Y | Z”. To illustrate this explanation, we put

X2 = {X21}, Y2 = {X11, X34, X35, X36, X37}, and Z2 = {X15, X19, X20, X22, X29}

from the ALARM network. The truth is X2 y Y2 | Z2 since Z2 is an Mb of X2. Now, use damped
G2 to test the true hypothesis “X2 y Y2 | Z2” by taking κ as 3, 4, · · · , 10, 20, 100, respectively. All
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Figure 22: An illustration on why the damped G2 test is more suitable than the ordinary G2 test for
the problem that involves too many variables, by virtue of the Pigs BN: the G2 test no
longer works when there are too many variables are involved, while the damped G2 test
remains valid in all considered cases.

the decisions are correctly made. However, a too large κ may be more apt to yield a relatively small
damped p-value although it is still larger than α, as shown by Figure 21: 0.84 for the case of κ = 20
and only 0.27 for the case of κ = 100. Hence, to avoid the potential danger of excessively damping
r, we conservatively recommend to take κ from the interval [3, 10] in practice. In our benchmarking
study, we employ κ = 5, which is large enough for testing false hypotheses and small enough for
testing true hypotheses.

To further illustrate why the damped G2 test is more suitable than the ordinary G2 when working
on a problem that involves too many variables, we make experiments on the six synthetical BNs
based on IAMB, KIAMB, MIAMB, and MKIAMB.

For each algorithm, the G2 test and the damped G2 test are implemented for CI testing. Accord-
ingly, the association functions, f (1)

D and f (3)
D defined by (5) and (7) are used. Figure 22 presents the

results of the Pigs network, in which the left two are based on the ordinary G2 test while the right
two are based on the damped G2 test. As seen, for the case of n = 500 the G2 test becomes invalid
when the target, T, contains 6 or more variables, and for the case of n = 5000 this method no longer
works when |T| = 8. In comparison, the damped G2 test is suitable for all cases. The results of the
other five BNs show similar conclusions.
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Appendix D. Used Acronyms

BFMB breadth first search of Markov boundary algorithm (Fu and Desmarais, 2007).
BN Bayesian network.
CI conditional independence.
CMI conditional mutual information.
CT-support contingency table support: a set of items S has CT-support s at the t% level if at

least t% of the cells in the contingency table for S have value s (Silverstein et al.,
1998).

DAG directed acyclic graph.
E-partition equivalent partition (Lemeire, 2007): a relationR ⊂ X⊗Y defines an E-partition in

Ydom to a partition of Xdom, if: (i) ¬(x2Ry1) holds for any x1, x2 ∈ Xdom belonging
to different partitions and for any y1 ∈ Ydom with x1Ry1; and (ii) for every X(k)

dom,
there exist x1 ∈ X(k)

dom and y1 ∈ Ydom such that x1Ry1.
FS feature selection.
GLL generalized local learning: an algorithmic framework for local causal discovery

and FS proposed by Aliferis et al. (2010a).
GS grow-shrink algorithm (Margaritis and Thrun, 1999, 2000).
HITON an MB discovery algorithm, pronounced hee-tón, from the Greek Xιτών, for

“cover”, “cloak”, or “blanket” (Aliferis et al., 2003).
IAMB incremental association Markov boundary algorithm (Tsamardinos et al., 2003);

see Algorithm 3 for details.
IAMBS an IAMB-based Markov boundary supplementary algorithm, outputting an MB for

multiple targets (Algorithm 1).
KIAMB a stochastic variant of IAMB (Peña et al., 2007); see Algorithm 3 for details.
KIAMBS an KIAMB-based Markov boundary supplementary algorithm, outputting an MB

for multiple targets (Algorithm 1).
KS Koller-Sahami algorithm (Koller and Sahami, 1996).
LibSVM a library for support vector machines contributed by Chang and Lin (2011).
Mb Markov blanket: we call M an Mb of T if T y V \ M \ T |M (Definition 1).
MB Markov boundary: an MB of T is any Mb such that none of its proper subsets is

an Mb of T (Definition 1).
MbS Markov blanket supplementary: we call S an MbS of T to N, if N ∪ S is an Mb of

T (Definition 3).
MBS Markov boundary supplementary: an MBS is any MbS such that none of its proper

subsets is an MbS (Definition 3).
MIAMB an IAMB and IAMBS-based algorithm, outputting an MB for multiple targets (see

Algorithm 2 for details).
MKIAMB an KIAMB and KIAMBS-based algorithm, outputting an MB for multiple targets

(Algorithm 2).
MMMB max-min Markov boundary algorithm (Tsamardinos et al., 2006).
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PCMB parents and children based Markov boundary algorithm (Peña et al., 2007).
RF random forest algorithm.
RT running time: the single CPU time implemented on an Intel i7-3612QM 2.1 GHz

and Windows 7 with 64 bits.
SVM support vector machine (in one-against-one approach).
T-partition target partition (Lemeire, 2007): the domain, Xdom, of X can be partitioned into

some disjoint subsets X(k)
dom for which P(T | x) is the same for all x ∈ X(k)

dom. This is
called the T-partition of Xdom with respect to T.

WA weighted accuracy: WA is the average of the rate of true members and that of true
nonmembers of an MB with respect to the truth.

WP weighted precision: WP is the average of the rate of true members and that of true
nonmembers of an MB with respect to the test.
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