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Abstract

A binary classification problem is considered. The excess error probability of the k-nearest-
neighbor classification rule according to the error probability of the Bayes decision is revis-
ited by a decomposition of the excess error probability into approximation and estimation
errors. Under a weak margin condition and under a modified Lipschitz condition or a local
Lipschitz condition, tight upper bounds are presented such that one avoids the condition
that the feature vector is bounded. The concept of modified Lipschitz condition is applied
for discrete distributions, too. As a consequence of both concepts, we present the rate of
convergence of L2 error for the corresponding nearest neighbor regression estimate.
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1. Introduction

Let the feature vector X take values in Rd, and let its label Y be ±1 valued. If g is an
arbitrary decision function then its error probability is denoted by

L(g) = P{g(X) 6= Y }.

Put
D(x) = E{Y | X = x},

then the Bayes decision g∗ minimizes the error probability:

g∗(x) = signD(x),

where sign(z) = 1 for z > 0 and sign(z) = −1 for z ≤ 0, and

L∗ = P{g∗(X) 6= Y }
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denotes its error probability.
In the standard model of pattern recognition, we are given training labeled samples,

which are independent and identical copies of (X,Y ):

Dn = {(X1, Y1), . . . , (Xn, Yn)}.

Based on these labeled samples, one can estimate the regression function D by D̃, and the
corresponding plug-in classification rule g derived from D̃ is defined by

g(x) = sign D̃(x).

Then for any plug-in rule g derived from the regression estimate D̃ we have

L(g)− L∗ = E
{
I{g(X) 6=g∗(X)}|D(X)|

}
= E

{
I{sign D̃(X)6=signD(X)}|D(X)|

}
, (1)

where I denotes the indicator function (compare Theorem 2.2 in Devroye, Györfi and Lugosi
1996).

In the sequel our focus lies on the rate of convergence of the excess error probability
E{L(gn,k)}−L∗, where gn,k is the k-nearest-neighbor rule defined as follows. We fix x ∈ Rd,
and reorder the data (X1, Y1), . . . , (Xn, Yn) according to increasing values of ‖Xi−x‖, where
‖ · ‖ denotes the Euclidean norm. The reordered data sequence is denoted by

(X(n,1)(x), Y(n,1)(x)), . . . , (X(n,n)(x), Y(n,n)(x)).

X(n,k)(x) is the k-th nearest neighbor of x. In this paper we assume that tie happens with
probability 0. For instance when the distribution µ of X has a density f , this assumption
is satisfied. In any case, by adding a randomizing component to X one can ensure that this
assumption holds. Choose an integer k less than n, then the k-nearest-neighbor estimate of
D is

Dn,k(x) =
1

k

k∑
i=1

Y(n,i)(x),

and the k-nearest-neighbor classification rule is

gn,k(x) = signDn,k(x).

Concerning the properties of k-nearest-neighbor rule and the related literature see Biau and
Devroye (2015).

The main aim of this paper is to show tight upper bounds on the excess error proba-
bility E{L(gn,k)} − L∗ of the k-nearest-neighbor classification rule gn,k. Given the plug-in
classification rule g derived from D̃, (1) implies that

E{L(g)} − L∗ ≤ E{|D(X)− D̃(X)|}.

Therefore we may get an upper bound on the rate of convergence of the excess error prob-
ability E{L(gn,k)} − L∗ via the L1 rate of convergence of the corresponding regression
estimation. Then

E{L(gn,k)} − L∗ ≤ E{|D(X)−Dn,k(X)|}.
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Under some smoothness assumptions on D one could further upper bound the L1 rate.
For instance we may assume that D satisfies the Lipschitz condition: there is a constant C
such that for any x, z ∈ Rd

|D(x)−D(z)| ≤ C‖x− z‖.

If D is Lipschitz continuous and X is bounded with the diameter M of the support of µ,
then

E{|D(X)−Dn,k(X)|2} ≤ c1M
2(k/n)2/d + c2/k (2)

with d ≥ 2 (compare Chapter 6 in Györfi et al. 2002 and Liitiäinen, Corona and Lendasse
2010), so for k = bc3n

2/(d+2)c,

E{L(gn,k)} − L∗ ≤
√

E{|D(X)−Dn,k(X)|2} ≤ c4n
−1/(d+2). (3)

However, according to Section 6.7 in Devroye, Györfi and Lugosi (1996) the classification
is easier than L1 regression function estimation, since the rate of convergence of the error
probability depends on the behavior of the function D in the neighborhood of the decision
boundary

B0 = {x;D(x) = 0}. (4)

This phenomenon has been discovered and investigated by Mammen and Tsybakov (1999);
Tsybakov (2004); Audibert and Tsybakov (2007) and Kohler and Krzyżak (2007), who
introduced the (weak) margin condition:

• The weak margin condition means that for all 0 < t ≤ 1,

P{0 < |D(X)| ≤ t} ≤ c∗ · tα,

where α > 0 and c∗ > 0.

Denote by

B0,r =

{
x; min

z∈B0

‖x− z‖ ≤ r
}
, r > 0,

the closed r-neighborhood of the decision boundary B0 defined by (4). Let λ be the Lebesgue
measure and let M∗(B0) be the outer surface (Minkowski content) of the decision boundary
B0 defined by

M∗(B0) = lim
r↓0

λ(B0,r \B0)

r
.

If D satisfies the Lipschitz condition, X has a density f , the density f is bounded by fmax
and M∗(B0) is finite, then Lemma 2 in Döring, Györfi and Walk (2015) implies that the
weak margin condition holds with α = 1. Notice that the Lipschitz condition implies α ≤ 1.

In the analysis of classification rule one may use conditions on the density f of X:

• The strong density condition means that for f(x) > 0,

f(x) ≥ fmin > 0.
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The strong density condition implies that the support of the density f has finite Lebesgue
measure, and so this assumption is close to the condition that X is bounded. It is a very
restrictive condition, excluding important densities like Gaussian densities.

Kohler and Krzyżak (2007) proved that under the margin condition, Lipschitz condition
and strong density assumption, for choice

kn = b(log n)2n2/(d+2)c,

the order of the upper bound is smaller than (3):

(log n)
2(1+α)

d n−
1+α
d+2 .

Gadat, Klein and Marteau (2016) (comprehending also some classes of distributions with
unbounded support) extended this bound such that under the margin condition, Lipschitz
condition and the so called strong minimal mass assumption, for choice

kn = bn2/(d+2)c, (5)

one has the order
n−

1+α
d+2 . (6)

Audibert and Tsybakov (2007) showed that, under the margin condition and the strong
density assumption, (6) is the minimax optimal rate of convergence for the class of Lipschitz
continuous D, that is, (6) is the lower bound for any classifier.

Let Sx,r = {x′ ∈ Rd : ‖x′ − x‖ ≤ r} and Sox,r = {x′ ∈ Rd : ‖x′ − x‖ < r} be the

closed and open Euclidean ball, respectively, centered at x ∈ Rd with radius r > 0. In
Chaudhuri and Dasgupta (2014) distribution-dependent rates of convergence are provided
for the nearest neighbor classification rule in the framework of metric spaces. Therein a
smoothness condition with respect to the distribution µ is introduced: For positive constants
κ and L it is assumed that∣∣∣∣∣D(x)− 1

µ(Sx,r)

∫
Sx,r

D(z)µ(dz)

∣∣∣∣∣ ≤ Lµ(Sox,r)
κ

for all r > 0 and x in the support of µ. Then the regression function D is called (κ, L)-
smooth. Chaudhuri and Dasgupta (2014) revisited the order (6) using such a smoothness
condition.

For higher order smoothness, one gets better rates of convergence. For weighted nearest
neighbor classification including non-weighted k-nearest-neighbor classification, Samworth
(2012a,b), with further references, considered the case whenX is bounded, D is continuously
differentiable with gradient ∇D(x) 6= 0 for x ∈ B0, the conditional densities of X given
Y are twice differentiable and the density f of X satisfies the strong density assumption.
Under some additional conditions on B0, Samworth (2012b) derives the margin condition
with α = 1 and shows

E{L(gn,k)} − L∗ ≤
c5

k
+ c6(k/n)4/d,

which implies the order

n−
4
d+4 .
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In Cannings, Berett and Samworth (2017) the order n−
4
d+4 is revisited combining tail and

smoothness conditions. For the feature vector a moment condition instead of boundedness
is required. Further it is assumed that in a neighborhood of the decision boundary the
function D and the marginal feature density are twice continuously differentiable and that
the latter density allows to control the error of a Taylor approximation even in this region.
For feature values away from the decision boundary it is assumed that the marginal feature
distribution fulfills the strong minimal mass assumption, see Gadat, Klein and Marteau
(2016), and that the function D does not approach the decision boundary too fast:

sup
x∈Rd\B0,r:f(x)≥δ

|D(x)|−1 = o(δ−τ ) as δ → 0 for some r > 0 and for every τ > 0.

Interestingly, the analysis of empirical error minimization rules can avoid the condition
that X is bounded, see Binev, Cohen, Dahmen and DeVore (2014) and Blaschzyk and
Steinwart (2018).

Under the margin condition with α ≤ 1 (d ≥ 2) and the strong density assumption,
Audibert and Tsybakov (2007) showed that the order

n−
2(1+α)
d+4

is the minimax optimal rate of convergence for the class of regression functionsD, which have
Lipschitz continuous gradients, that is, they are differentiable and the partial derivatives are
Lipschitz continuous. Samworth (2012b) showed that under the assumptions together with
Lipschitz continuity of the density function f several weighted nearest neighbor classifiers,
particularly the non-weighted k-nearest-neighbor classifiers, attain this minimax rate.

2. Rate of Convergence of the Error Probability for k-NN Classifier

For most of the above cited results, the feature vector X is assumed to be bounded. When-
ever the strong density assumption is used, it is implicitly assumed that the feature vector
is bounded. They exclude the classical parametric discrimination problem, where the con-
ditional distribution of X given Y are multidimensional Gaussian distributions. Next, we
revisit these bounds such that our main aim is to avoid the condition that X is bounded
and the strong density assumption.

In order to have non-trivial rate of convergence of the classification error probability,
one has to assume tail and smoothness conditions. We treat two concepts of combined tail
and smoothness condition, under which we get the known minimax rate of convergence.

• The modified Lipschitz condition means that there is a constant C∗ such that for any
x, z ∈ Rd

|D(x)−D(z)| ≤ C∗µ(Sox,‖x−z‖)
1/d.

Obviously, this definition is equivalent to the corresponding symmetric definition, i.e.,

|D(x)−D(z)| ≤ C∗min{µ(Sox,‖x−z‖)
1/d, µ(Soz,‖x−z‖)

1/d}.

In fact, for (κ, L)-smooth regression function D, Chaudhuri and Dasgupta (2014) already
introduced the modified Lipschitz condition, where κ = 1/d and L = C∗. The modified
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Lipschitz condition is a universal condition not assuming the existence of a density, it holds
for any pair of distribution µ and function D of practical interest.

The main result (Theorem 1) establishes rate of convergence under the modified Lips-
chitz condition by a decomposition of the excess error into approximation and estimation
errors such that it extends and sharpens the result of Kohler and Krzyżak (2007) by avoid-
ing the use of the strong density assumption. Furthermore, Theorem 7b in Chaudhuri and
Dasgupta (2014) is closely related to Theorem 1 below.

Theorem 1 Assume that tie happens with probability 0, D satisfies the weak margin con-
dition with 0 < α ≤ 1 and the modified Lipschitz condition. Then

E{L(gn,k)} − L∗ = O(1/k(1+α)/2) +O((k/n)(α+1)/d),

and the choice (5) yields the order (6).

Because of (1), we have the following decomposition of the excess error probability:

E{L(gn,k)} − L∗ = E

{∫
{signDn,k(x)6=signD(x)}

|D(x)|µ(dx)

}

≤ E

{∫
{|Dn,k(x)−D(x)|≥|D(x)|}

|D(x)|µ(dx)

}
≤ In,k + Jn,k,

where

In,k = E

{∫
{|Dn,k(x)−D(x)|≥|D(x)|/2}

|D(x)|µ(dx)

}
and

Jn,k = E

{∫
{|Dn,k(x)−Dn,k(x)|≥|D(x)|/2}

|D(x)|µ(dx)

}
with

Dn,k(x) = E{Dn,k(x) | X1, . . . , Xn} =
1

k

k∑
i=1

D(X(n,i)(x)). (7)

In,k is called approximation error, while Jn,k is the estimation error.
We split Theorem 1 into two lemmas such that Lemma 2 is on the estimation error,

while Lemma 3 is on the approximation error.

Lemma 2 If D satisfies the weak margin condition with 0 < α ≤ 1, then

Jn,k = O(1/k(1+α)/2). (8)

Lemma 3 Assume that tie happens with probability 0. If D satisfies the weak margin
condition with 0 < α ≤ 1 and the modified Lipschitz condition holds, then

In,k ≤ e−(1−log 2)k +O((k/n)(α+1)/d). (9)
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The proofs of these lemmas are in Section 4.
The concept of modified Lipschitz condition can be applied for discrete distributions,

too. As an example, assume that the values of X are positive integers:

P{X = j} = pj .

For the classical example for slow rate of convergence, put Y = D(X), that means the
function D takes ±1 values. Then L∗ = 0 and D satisfies the Lipschitz condition with C = 2.
As in the proof of Theorem 7.2 in Devroye, Györfi and Lugosi (1996), for any classifier gn,
the rate of convergence of E{L(gn)} to zero can be arbitrarily slow by appropriate choice
of the distribution {pi} of large tail.

Consider this discrete case with arbitrary function D such that the modified Lipschitz
condition has the form

|D(j)−D(j′)| ≤ C∗µ([j − |j − j′|+ 1, j + |j − j′| − 1]). (10)

Next we show that under (10) and for any distribution {pi}, even with large tail, the slow
rate of convergence is excluded. Apply the k-NN rule with tie-breaking by indices, such
that the k-NN estimate of D has the form

Dn,k(j) =
1

k

k∑
i=1

Y(n,i)(j).

Proposition 4 Under the modified Lipschitz condition (10),

E{L(gn,k)} − L∗ ≤
2 max{0≤z} ze

−z2/8
√
k

+ e−3k/14 + 4C∗k/n.

The modified Lipschitz condition is an implicit condition, it is used in the proof of
Lemma 3 in Section 4. We show how to extend this proof starting from a second concept
such that we avoid the boundedness of X again. One can check that the Lipschitz condition
and the strong density condition imply both concepts. However, as we mentioned earlier,
the strong density condition is close to the condition, that X is bounded.

In the framework of the second concept we assume that µ has a density f satisfying a
mild condition:

• The weak density condition means that there exist cmin > 0 and δ > 0 such that for
f(x)rd ≤ δd,

µ(Sx,r) ≥ cdminf(x)rd.

If vd denotes the volume of the unit ball S0,1, then the Lebesgue density theorem implies
that for all f and for almost all x with respect to the Lebesgues measure,

lim
r↓0

µ(Sx,r)

vdrd
= f(x),

therefore, for small r > 0,
µ(Sx,r) ≈ f(x)vdr

d.

Thus, the weak density condition requires a bit more than the Lebesgue density theorem.
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• The local Lipschitz condition means that there exists a constant C̄ such that for any
x, z ∈ Rd with f(x) > 0

|D(x)−D(z)| ≤ Cf(x)1/d‖x− z‖.

For the local Lipschitz condition the Lipschitz factor is proportional to f(x)1/d. Thus, the
fluctuation of D is small if the density is small. One may have a symmetric definition
meaning that there exists a constant C̄ such that for min{f(x), f(z)} > 0

|D(x)−D(z)| ≤ C min{f(x), f(z)}1/d‖x− z‖.

However, this definition has no additional advantage, just makes the derivation more in-
volved. Because all three sets {(x, z); f(x) = 0}, {(x, z); f(z) = 0}, {(x, z); f(x) = 0orf(z) =
0} have zero product measure µ⊗ µ, both definitions are equivalent. Notice that the local
Lipschitz condition is satisfied for any pair of density f and function D of practical interest.

Theorem 5 below states that under the local Lipschitz condition together with the weak
density condition instead of the modified Lipschitz condition, the assertion of Theorem 1
remains valid. It will be shown in Section 4 by a modification of the proof of Lemma 3.

Theorem 5 Assume that µ has a density such that the weak density condition holds. Fur-
thermore, suppose that D satisfies the weak margin condition with 0 < α ≤ 1 and the local
Lipschitz condition. Then

E{L(gn,k)} − L∗ = O(1/k(1+α)/2) +O((k/n)(α+1)/d),

and the choice (5) yields the order (6).

On the one hand, note that the conditions of Theorem 1 don’t imply the conditions of
Theorem 5, because for Theorem 1, even the existence of a density is not required. On the
other hand, the local Lipschitz and the weak density conditions imply that the modified
Lipschitz condition holds in a neighborhood of x. It means that for all x, z ∈ Rd with
f(x) > 0 and with ‖x− z‖ ≤ δf(x)−1/d, one has

|D(x)−D(z)| ≤ Cf(x)1/d‖x− z‖ ≤ Cµ(Sox,‖x−z‖)
1/d/cmin.

3. Rate of Convergence of the L2 Error for k-NN Regression Estimator

In this section we summarize the consequences of the previous section for k-NN regression
estimation such that we prove (2) without assuming that X is bounded. Usually, (2) is
proved such that after applying the Lipschitz condition one investigates

E{‖X(n,k)(X)−X‖2},

which involves the condition that X is bounded. Compare Theorem 14.5 in Biau and
Devroye (2015), Theorem 6.2 in Györfi et al. (2002) and Theorem 3.2 in Liitiäinen, Corona
and Lendasse (2010), also Theorem 2 in Kohler, Krzyżak and Walk (2006), where a moment
condition on X is assumed.
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Rate of convergence of k-NN classification rule

Theorem 6 Put

σ2(x) = E
{

(Y −D(X))2 | X = x
}
.

If tie happens with probability 0, D satisfies the modified Lipschitz condition and k/n→ 0,
then ∫

E{(Dn,k(x)−D(x))2}µ(dx) ≤ (E{σ2(X)}+ o(1))/k + 2C∗2(k/n)2/d.

The proof of Theorem 6 is at the end of Section 4. Similarly to Theorem 5, in Theorem
6 the modified Lipschitz condition can be replaced by the local Lipschitz condition together
with the weak density condition.

4. Proofs

In this section we present the proofs of Lemmas 2 and 3, hence Theorem 1, and of Propo-
sition 4, and of Theorems 5 and 6.

Proof of Lemma 2. For a fixed x, Proposition 8.1 in Biau and Devroye (2015) says the
following: given X1, . . . , Xn, the random pairs

(X(n,1)(x), Y(n,1)(x)), . . . , (X(n,k)(x), Y(n,k)(x))

are independent, and

E{Y(n,i)(x)−D(X(n,i)(x)) | X1, . . . , Xn} = 0.

Therefore, the Hoeffding inequality implies that

P{|Dn,k(x)−Dn,k(x)| ≥ |D(x)|/2 | X1, . . . , Xn}

= P

{∣∣∣∣∣1k
k∑
i=1

(Y(n,i)(x)−D(X(n,i)(x)))

∣∣∣∣∣ ≥ |D(x)|/2 | X1, . . . , Xn

}
≤ 2e−k|D(x)|2/8.

Thus,

Jn,k ≤ 2

∫
|D(x)|e−k|D(x)|2/8µ(dx).

The weak margin condition

G(t) := P{0 < |D(X)| ≤ t} ≤ c∗ · tα,
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implies by use of partial integration with respect to G(s) that

∫
|D(x)|e−k|D(x)|2/8µ(dx) =

∫ 1

0
se−ks

2/8G(ds)

= e−k/8 −
∫ 1

0
e−ks

2/8[1− ks2/4]G(s)ds

≤ e−k/8 +
c∗

4

∫ 1

0
e−ks

2/8ks2+αds

≤ e−k/8 +
c∗

4
k−(α+1)/2

∫ ∞
0

e−u
2/8u2+αdu

= O(k−(α+1)/2).

Thus, (8) is obtained.

Proof of Lemma 3. For U1, . . . , Un i.i.d. uniformly distributed on [0, 1], let U(1,n), . . . , U(n,n)

denote the corresponding order statistic. If tie happens with probability 0, then for any
fixed x, µ(Sx,r) is continuous in r, which implies that µ(Sx,‖x−X‖) is uniformly distributed
on [0, 1]. From Section 1.2 in Biau and Devroye (2015) for any fixed x we have that

µ(Sx,‖x−X(n,k)(x)‖)
D
= U(k,n). (11)

Because of

|D(x)−Dn,k(x)| =

∣∣∣∣∣D(x)− 1

k

k∑
i=1

D(X(n,i)(x))

∣∣∣∣∣
≤ 1

k

k∑
i=1

|D(x)−D(X(n,i)(x))|

the modified Lipschitz condition together with (11) implies that

P
{
|D(x)|/2 < |D(x)−Dn,k(x)|

}
≤ P

{
|D(x)|/2 < C∗

1

k

k∑
i=1

µ(Sx,‖x−X(n,i)(x)‖)
1/d

}
≤ P

{
|D(x)|/2 < C∗µ(Sx,‖x−X(n,k)(x)‖)

1/d
}

= P
{
|D(x)|/2 < C∗U

1/d
(k,n)

}
= P

{
|D(x)|d/(2C∗)d < U(k,n)

}
. (12)
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Without loss of generality, assume that C∗ ≥ 1/2. Then

P
{
|D(x)|/2 < |D(x)−Dn,k(x)|

}
≤ P

{
n∑
i=1

I{Ui≤|D(x)|d/(2C∗)d} < k

}

≤ I{|D(x)|d/(2C∗)d≥2k/n}P

{
n∑
i=1

I{Ui≤|D(x)|d/(2C∗)d} <
n

2
|D(x)|d/(2C∗)d

}
+ I{|D(x)|d/(2C∗)d<2k/n}

≤ I{|D(x)|d/(2C∗)d≥2k/n}e
− 1−log 2

2
n|D(x)|d/(2C∗)d + I{|D(x)|d/(2C∗)d<2k/n}

≤ e−(1−log 2)k + I{|D(x)|d/(2C∗)d<2k/n}, (13)

where the third inequality follows from Chernoff’s exponential inequality. Applying the
weak margin condition, we get (9) by

In,k =

∫
|D(x)|P

{
|D(x)|/2 < |D(x)−Dn,k(x)|

}
µ(dx)

≤ e−(1−log 2)k +O((k/n)(α+1)/d). (14)

Proof of Proposition 4. The Hoeffding inequality implies

P{|Dn,k(j)−Dn,k(j)| ≥ |D(j)|/2 | X1, . . . , Xn}

= P

{∣∣∣∣∣1k
k∑
i=1

(Y(n,i)(j)−D(X(n,i)(j)))

∣∣∣∣∣ ≥ |D(j)|/2 | X1, . . . , Xn

}
≤ 2e−k|D(j)|2/8, j ∈ N,

from which one gets a rough non-trivial upper bound on the estimation error:

E

{∫
{|Dn,k(x)−Dn,k(x)|≥|D(x)|/2}

|D(x)|µ(dx)

}
≤ 2

∞∑
j=1

pj |D(j)|e−k|D(j)|2/8

≤
2 max{0≤z} ze

−z2/8
√
k

.

Concerning the approximation error, the modified Lipschitz condition (10) implies

|Dn,k(j)−D(j)| ≤ 1

k

k∑
i=1

|D(X(n,i)(j))−D(j)|

≤ C∗ 1

k

k∑
i=1

µ
(
[j − |X(n,i)(j)− j|+ 1, j + |X(n,i)(j)− j| − 1]

)
≤ C∗µ

(
[j − |X(n,k)(j)− j|+ 1, j + |X(n,k)(j)− j| − 1]

)
.
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Without loss of generality assume that C∗ > 1/2 and |D(j)| > 0. Introduce the notation

`∗j := min

{
` ∈ N;µ ([j − `+ 1, j + `− 1]) ≥ |D(j)|

2C∗

}
.

Because of

0 <
|D(j)|
2C∗

< 1,

`∗j is well defined. Put

Aj =
[
j − `∗j + 1, j + `∗j − 1

]
.

Thus

E

{∫
{|Dn,k(x)−D(x)|≥|D(x)|/2}

|D(x)|µ(dx)

}

≤
∞∑
j=1

pj |D(j)|P
{
µ
(
[j − |X(n,k)(j)− j|+ 1, j + |X(n,k)(j)− j| − 1]

)
≥ |D(j)|

2C∗

}

=
∞∑
j=1

pj |D(j)|P
{
|X(n,k)(j)− j| ≥ `∗j

}
.

If µn denotes the empirical distribution for X1, . . . , Xn, then

E

{∫
{|Dn,k(x)−D(x)|≥|D(x)|/2}

|D(x)|µ(dx)

}
≤
∞∑
j=1

pj |D(j)|P

{
n∑
i=1

I|Xi−j|<`∗j ≤ k

}

=

∞∑
j=1

pj |D(j)|P {µn(Aj) ≤ k/n} .

For the decomposition

P {µn(Aj) ≤ k/n} ≤ Iµ(Aj)≤2k/n + Iµ(Aj)>2k/nP {µn(Aj) ≤ k/n} ,

apply the Bernstein inequality:

Iµ(Aj)>2k/nP {µn(Aj) ≤ k/n} = Iµ(Aj)>2k/nP {µn(Aj)− µ(Aj) ≤ k/n− µ(Aj)}
≤ Iµ(Aj)>2k/nP {µn(Aj)− µ(Aj) ≤ −µ(Aj)/2}

≤ Iµ(Aj)>2k/ne
−

nµ(Aj)
2/4

2(µ(Aj)+µ(Aj)/6)

= Iµ(Aj)>2k/ne
−3nµ(Aj)/28

≤ e−3k/14.

The definition of Aj implies

µ(Aj) ≥
|D(j)|
2C∗

.

12



Rate of convergence of k-NN classification rule

Therefore,

∞∑
j=1

pj |D(j)|Iµ(Aj)≤2k/n ≤
∞∑
j=1

pj |D(j)|I|D(j)|/(2C∗)≤2k/n

≤ 4C∗k/n.

These bounds imply the bound on the approximation error:

E

{∫
{|Dn,k(x)−D(x)|≥|D(x)|/2}

|D(x)|µ(dx)

}
≤ e−3k/14 + 4C∗k/n.

Proof of Theorem 5. Again we use the decomposition (7). Lemma 2 with unchanged
proof yields (8). Under the local Lipschitz condition and the weak density condition, we
have to prove (9), i.e., (14). Let δ > 0 be from the definition of weak density assumption.
We have that∫

|D(x)|P
{
|D(x)|/2 < |D(x)−Dn,k(x)|

}
µ(dx)

≤
∫
|D(x)|P

{
|D(x)|/2 < Cf(x)1/d 1

k

k∑
i=1

‖x−X(n,i)(x)‖

}
µ(dx)

≤
∫
|D(x)|P

{
|D(x)|/2 < Cf(x)1/d‖x−X(n,k)(x)‖

}
µ(dx)

≤
∫
|D(x)|P

{
|D(x)|/2 < Cµ(Sx,‖x−X(n,k)(x)‖)

1/d/cmin

}
µ(dx)

+

∫
|D(x)|P

{
f(x)1/d‖x−X(n,k)(x)‖ > δ

}
µ(dx).

The first term of the right hand side is

e−(1−log 2)k +O((k/n)(α+1)/d)

by the weak margin condition according to (12) and (13). For the second term, we note

P
{
f(x)1/d‖x−X(n,k)(x)‖ > δ

}
= P

{
‖x−X(n,k)(x)‖ > δ/f(x)1/d

}
= P

{
n∑
i=1

I{
Xi∈Sx,δ/f(x)1/d

} < k

}

≤ I{
µ(S

x,δ/f(x)1/d
)≥2k/n

}P
{

n∑
i=1

I{
Xi∈Sx,δ/f(x)1/d

} < n

2
µ(Sx,δ/f(x)1/d)

}
+ I{

µ(S
x,δ/f(x)1/d

)<2k/n
}

≤ I{
µ(S

x,δ/f(x)1/d
)≥2k/n

}e− 1−log 2
2

nµ(S
x,δ/f(x)1/d

)
+ I{

µ(S
x,δ/f(x)1/d

)<2k/n
},

13
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the latter by Chernoff’s exponential inequality. The weak density assumption yields

I{
µ(S

x,δ/f(x)1/d
)<2k/n

} ≤ I{cdminδd<2k/n}.

Thus the second term is bounded by

e−(1−log 2)k + I{cdminδd<2k/n} = e−(1−log 2)k,

as soon as

cdminδ
d ≥ 2k/n.

Proof of Theorem 6. With the notation (7), we have

E{(Dn,k(x)−D(x))2} = E{(Dn,k(x)−Dn,k(x))2}+ E{(Dn,k(x)−D(x))2}.

We show that ∫
E
{(
Dn,k(x)−Dn,k(x)

)2}
µ(dx) = (E{σ2(X)}+ o(1))/k (15)

and

E
{(
Dn,k(x)−D(x)

)2} ≤ 2C∗2(k/n)2/d, (16)

which imply the assertion of the theorem.

In the proof of Lemma 2 we mentioned that for given X1, . . . , Xn, the random variable
Dn,k(x)−Dn,k(x) is an average of independent random variables with mean zero, therefore

E
{

(Dn,k(x)−Dn,k(x))2 | X1, . . . , Xn

}
= E


(

1

k

k∑
i=1

(Y(n,i)(x)−D(X(n,i)(x)))

)2

| X1, . . . , Xn


=

1

k2

k∑
i=1

E
{(
Y(n,i)(x)−D(X(n,i)(x))

)2 | X1, . . . , Xn

}
=

1

k2

k∑
i=1

σ2(X(n,i)(x)).

Problems 6.3 and 6.4 in Györfi et al. (2002) together with k/n→ 0 imply that

∫
E{(Dn,k(x)−Dn,k(x))2}µ(dx) =

E{σ2(X)}+ o(1)

k
,

14
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and so (15) is verified. Concerning (16), the modified Lipschitz condition implies that

(
Dn,k(x)−D(x)

)2
=

(
1

k

k∑
i=1

(D(x)−D(X(n,i)(x)))

)2

≤

(
1

k

k∑
i=1

|D(x)−D(X(n,i)(x))|

)2

≤ C∗2
(

1

k

k∑
i=1

µ(Sx,‖x−X(n,i)(x)‖)
1/d

)2

≤ C∗2µ(Sx,‖x−X(n,k)(x)‖)
2/d.

Thus,

E
{(
Dn,k(x)−D(x)

)2} ≤ C∗2E{U2/d
(k,n)

}
.

If d ≥ 2, then the Jensen inequality implies

E
{
U

2/d
(k,n)

}
≤ (k/n)2/d,

while for d = 1, one has

E
{
U2

(k,n)

}
= Var(U(k,n)) + E

{
U(k,n)

}2 ≤ k/n2 + (k/n)2.
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