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Abstract

We propose a method for simultaneously estimating regression coefficients and cluster-
ing response variables in a multivariate regression model, to increase prediction accuracy
and give insights into the relationship between response variables. The estimates of the re-
gression coefficients and clusters are found by using a penalized likelihood estimator, which
includes a cluster fusion penalty, to shrink the difference in fitted values from responses
in the same cluster, and an L1 penalty for simultaneous variable selection and estimation.
We propose a two-step algorithm, that iterates between k-means clustering and solving the
penalized likelihood function assuming the clusters are known, which has desirable parallel
computational properties obtained by using the cluster fusion penalty. If the response vari-
able clusters are known a priori then the algorithm reduces to just solving the penalized
likelihood problem. Theoretical results are presented for the penalized least squares case,
including asymptotic results allowing for p � n. We extend our method to the setting
where the responses are binomial variables. We propose a coordinate descent algorithm
for the normal likelihood and a proximal gradient descent algorithm for the binomial like-
lihood, which can easily be extended to other generalized linear model (GLM) settings.
Simulations and data examples from business operations and genomics are presented to
show the merits of both the least squares and binomial methods.

Keywords: Multivariate Regression, Clustering, Fusion Penalty

1. Introduction

In this article we consider the pair (xi,yi)
n
i=1, with xTi = (xi1, . . . , xip) ∈ Rp and yi =

(yi1, . . . , yir)
T ∈ Rr. Define X = (x1, . . . ,xn)T ∈ Rn×p and Y = (y1, . . . ,yn)T ∈ Rn×r. We

initially assume the linear model

yi = B∗Txi + εi, (1)

where εi = (εi1, . . . , εir)
T ∈ Rr are realizations of an i.i.d. random variable with mean zero

and covariance matrix Σ, B∗ = (β∗1, . . . ,β
∗
r) ∈ Rp×r and β∗k = (β∗1k, . . . , β

∗
pk)

T ∈ Rp. We

will refer to the matrix of error as E = (ε1, . . . , εn)T ∈ Rn×r. Under mild assumptions a
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consistent estimator of β∗k is the ordinary least squares (OLS) estimator of

β̃k = argmin
βk

n∑
i=1

(yik − xTi βk)
2.

If εi are i.i.d. and εi ∼ N(0r,Σ) the estimator β̃k is the MLE. This estimator does not use
the other responses, ignoring potentially useful information.

Throughout this paper for a vector a define ||a||q as the Lq norm and for a matrix A we
define ||A||q as the entrywise Lq norm. If there is a priori information that the fitted values
of response k and m should be close then we could impose a penalty on the difference in
the fitted values and consider the estimators

(β̃k, β̃m) = argmin
βk,βm

n∑
i=1

{
(yik − xTi βk)

2 + (yim − xTi βm)2
}

+
γ

n
||X(βk − βm)||22, (2)

where γ is a tuning parameter controlling the amount of agreement between the two fitted
values vectors. We propose an objective function that generalizes (2) for multiple responses
from multiple clusters that may not be known a priori. The proposed objective function
also includes an L1 penalty for simultaneous estimation and variable selection, which allows
our method to be used to increase prediction accuracy, select relevant variables for each
response, and detect groupings of response variables without assuming or estimating a
covariance structure. In our theory, simulations, and applied examples we consider cases
where p� n. We extend the proposed method to the generalized linear model framework,
specifically focusing on multiple binary responses. This extension allows the method to be
used in many different contexts, such as understanding co-morbidities related to patient
information recorded in electronic medical records, or product level purchasing habits of
customers based on information obtained from a loyalty program. We propose a coordinate
descent algorithm for the least squares case and proximal coordinate descent algorithm for
the binomial GLM case, which provides a general framework for extending the method to
other GLM or M-estimator settings.

Our work has been influenced by previous work in estimating high dimensional models.
When 1

nX
′X = Ip the penalty function is equivalent to a ridge penalty (Hoerl and Ken-

nard, 1970) on the difference of the coefficient vectors for the two responses. We add the L1

penalty as proposed in Tibshirani (1996) to do simultaneous variable selection and estima-
tion. Similar to the work of Zou and Hastie (2005) we combine the ridge and L1 penalties.
The proposed estimator simultaneously estimates clusters of the response and fuses the fit-
ted values of the clustered responses. Previous work has been done on clustering covariates
for high dimensional regression with a univariate response. This work is most similar to the
work of Witten et al. (2014) who proposed the cluster elastic net (CEN) that simultaneously
estimates clusters of covariates and fuses the effects of covariates within the same cluster.
Our proposed method is also similar to Grace estimators proposed in Li and Li (2008) and
Li and Li (2010), which use regularization based on external network information to mini-
mize the difference of coefficients for related predictors and use a lasso penalty for sparsity.
Huang et al. (2011) proposed the sparse Laplacian shrinkage method, which preforms vari-
able selection and promotes similarities among coefficients of correlated covariates. Zhao
and Shojaie (2016) proposed the Grace Test, a testing framework for Grace estimators, that
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allows for some uncertainty in the graph and showed that if the external graph is informa-
tive it increases the power of the Grace test. Bühlmann et al. (2013) proposed two different
penalized methods for clustered covariates in high-dimensional regression: cluster repre-
sentative lasso (CRL) and cluster group lasso (CGL). In CRL the covariates are clustered,
dimension reduction is done by replacing the original covariates with the cluster centers
and a lasso model is fit using the cluster centers as covariates. In CGL the group penalty
of Yuan and Lin (2005) is applied using the previously found clusters as the groups. Zhou
et al. (2017) demonstrated that averaging over models using different cluster centers for
both responses and predictors can improve prediction accuracy of DNase I hypersensitivity
using gene expression data. Kim et al. (2009) proposed graph-guided fused lasso (GGFL) to
the specific problem of association analysis to quantitative trait networks. GGFL presents
a fused lasso framework in multivariate regression that leverages correlated traits based on
a network structure. Our work is related to the fused lasso literature as well, though we do
not achieve exact fusion (Tibshirani et al., 2005; Rinaldo, 2009; Hoefling, 2010; Tibshirani,
2014). The proposed method differs from the works mentioned in this setting because it
focuses on using correlation between the response variables to improve estimation, however
all of the works mentioned were instrumental in helping us derive our final estimator.

The idea of using information from different responses to improve estimation in multi-
variate regression is not new and our work builds upon previous works in this area. Breiman
and Friedman (1997) introduced the Curds and Whey method whose predictions are an op-
timal linear combination of least squares predictions. Rothman et al. (2010) proposed
multivariate regression with covariance estimation (MRCE), which is a penalized likelihood
approach to simultaneously estimate the regression coefficients and the inverse covariance
matrix of the errors. MRCE leverages correlation in unexplained variation to improve esti-
mation, while our proposed method leverages correlation in explained variation to improve
estimation. Other estimators assume both the response and covariates are multivariate
normal and exploit this structure to derive estimators (Lee and Liu, 2012; Molstad and
Rothman, 2016). Rai et al. (2012) proposed a penalized likelihood method for multivariate
regression that simultaneously estimates regression coefficients, the inverse covariance ma-
trix of the errors, and the covariance matrix of the regression coefficients across responses
using lasso type penalties. Peng et al. (2010) introduced regularized multivariate regres-
sion for identifying master predictors (remMap), which relies on a priori information about
valuable predictors and imposes a group L1 and L2 norm, across responses, on all covari-
ates not prespecified as being useful predictors. Kim and Xing (2012) proposed the tree
guided group lasso, which uses an a priori hierarchical clustering of the responses to define
overlapping group lasso penalties for the multivariate regression model. They propose a
weighting method that ensures all coefficients are penalized equally, while using the hierar-
chical structure to impose a similar sparsity structure across highly correlated responses.

Another approach to improving efficiency is by doing dimension reduction on Y to find
a smaller subspace that retains the material information needed for estimation of the re-
gression coefficients (Cook et al., 2010; Cook and Zhang, 2015; Sun et al., 2015). Cook et al.
(2010) introduced the envelope estimator for the multivariate linear model, which projects
the maximum likelihood estimator onto the estimated subspace with the material infor-
mation. Cook and Zhang (2015) provided envelope models for GLMs and weighted least
squares. Sun et al. (2015) proposed a sparse regression model (SPReM) for estimating mod-
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els where r is very large. SPReM projects the response variables into a lower-dimensional
space while maintaining the structure needed for a specific hypothesis test. The key dif-
ference between our proposed method and these approaches is that we are interested in
simultaneously estimating clustering of the response variables and fusing the fitted values
from responses within the same cluster.

The proposed method simultaneously estimates clusters of the response and coefficients.
Changes in cluster groups are discrete changes and as a result our objective function is dis-
continuous, similar to k-means clustering, thus making it difficult to derive an efficient
algorithm that will find the optimal estimates for coefficients and groups. Witten et al.
(2014) dealt with a similar difficulty for the CEN estimator, but noticed that if the groups
are fixed then the problem is convex, while if the regression coefficients are fixed the prob-
lem becomes a k-means clustering problem. We modify the approach proposed in Witten
et al. (2014) to our problem of grouping responses and extend the approach to the case of
generalized linear models, specifically the binomial logistic model. In our theoretical results
we assume the clustering groups are known, but the problem remains challenging as we are
dealing with multiple responses, allow for p� n and for p to increase with n.

In Section 2 we present our method for the multivariate linear regression model and
provide theoretical results, including consistency of our estimator, to better understand
the basic properties of the penalized likelihood solution. In Section 3 we provide details
on the two-step iterative algorithm and show estimating the regression coefficients for the
different clusters is an embarrassingly parallel problem, which is a property of our cluster
fusion penalty that fuses within group fitted values. This avoids issues that would arise
in fusing all possible combinations of regression coefficients, or having to specify a fusion
set a priori. Examples of the issues that can arise can be found in Price et al. (2017),
who discussed the importance of choosing the fusion set, and the original fused lasso paper
which fused only consecutive coefficients (Tibshirani et al., 2005). In Section 4 we present
the model for binomial responses along with an algorithm, demonstrating how the use
of the cluster fusion penalty can exploit relationships of response variables beyond the
traditional Gaussian problem. Simulations for both conditional Gaussian and binomial
responses are presented in Section 5. The least squares version of our method is applied to
model baby birth weight, placental weight and cotinine levels given maternal gene expression
and demographic information. The binomial case is applied to model concession stand
purchases using customer information as covariates. Both applied analysis are presented in
Section 6. We conclude with a summary in Section 7.

2. Least Squares Model

2.1 Method

First, we consider estimating (1) when there are Q unknown clusters of the r responses. We
further assume that

∑n
i=1 yik = 0 for all k = 1, . . . , r,

∑n
i=1 xij = 0 and

∑n
i=1 x

2
ij ≤ n for

all j = 1 . . . , p. The model requires rp parameters to be estimated for prediction, which is
problematic when r or p are large. Let D = (D1, . . . , DQ) be a partition of the set {1, . . . , r}.
For a set A define |A| as the cardinality of that set. We propose the multivariate cluster
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elastic net (MCEN) estimator as

(B̂, D̂) = arg min
B∈Rp×r,D1,...,DQ

1

2n

n∑
i=1

r∑
c=1

(yic − xTi βc)
2 + δ||B||1

+
γ

2n

Q∑
q=1

1

|Dq|
∑

l,m∈Dq

||X(βl − βm)||22,
(3)

where Q is the number of clusters and γ and δ are non-negative user specified tuning param-
eters. In addition Q, the total number of clusters, can be considered a tuning parameter.
The cluster fusion penalty, associated with tuning parameter γ, is used to exploit similar-
ities in the fitted values. The lasso penalty, with tuning parameter δ, is used to perform
simultaneous estimation and variable selection. When γ = 0 or Q = r, the optimization in
(3) reduces to r independent lasso penalized least squares problems with tuning parameter
δ. If D̂ is known then the optimization in (3) can be split into Q independent optimizations
that are similar to the optimizations presented in Li and Li (2008), Li and Li (2010), and
Witten et al. (2014) and can be solved in parallel. We exploit this computational feature
in our algorithm, which is a result of using the cluster fusion penalty.

The proposed method uses a combination of L1 and L2 penalties as proposed by Zou and
Hastie (2005). Similar methods have been proposed for grouping the effects of predictors
with a univariate response such as CEN (Witten et al., 2014) and Grace estimators (Li and
Li, 2008, 2010; Zhao and Shojaie, 2016). Kim and Xing (2012) proposed a method that uses
a predetermined hierarchical clustering of the responses that provides an L1 penalty for all
coefficients and a group L2 penalty for responses that are grouped together. Chen et al.
(2016) proposed a method using conjoint clustering to incorporate similarities in preferences
between individuals in conjoint analysis. This method does not simultaneously estimate
coefficients and groupings. It requires a two-step algorithm to estimate the number of
clusters, and then estimates coefficients using regularization based on the estimated cluster.
The proposed approach uses non-hierarchical clusters, allows for the clustering structure to
be unknown before estimation of the coefficients and focuses more on imposing similar fitted
values for grouped responses, compared to directly imposing a similar sparsity structure.

Selecting the triplet, (Q, γ, δ), of tuning parameters can be done by K-fold cross valida-
tion minimizing the squared prediction error. Let Fk be the set of indices in the kth fold,

k ∈ {1, . . . ,K}, and β̂
(−Fk)

c (Q, γ, δ) be the estimated regression coefficient vector using Q,
γ and δ for response c produced from the training set with Fk removed. Then select the
triplet, (Q̂, γ̂, δ̂), that minimizes

V (Q, δ, γ) =

K∑
k=1

r∑
c=1

∑
i∈Fk

{
yic − xTi β̂

(−Fk)

c (Q, γ, δ)
}2

. (4)

2.2 Theoretical Results

For theoretical discussions we assume that D is known for some fixed value of Q. This is
because for D unknown the objective function in (3) is discontinuous because of the discrete
changes in groups, however if D is known (3) is a convex function. In this section we will
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look at properties of the MCEN estimator for the special case of fixed n and p with δ = 0. In
addition, we present a consistency result that allows for p� n when δ = o(1) and γ = o(1).

Thus, the first two theorems refer to the following estimator

B̄ = arg min
B∈Rp×r

1

2n

n∑
i=1

r∑
c=1

(yic − xTi βc)
2 + δ||B||1

+
γ

2n

Q∑
q=1

1

|Dq|
∑

l,m∈Dq

||X(βl − βm)||22.
(5)

The estimator B̄ does not simultaneously estimate the groups, it assumes they are known
a priori, and thus is different than B̂. There are instances where the grouping structure is
known before data analysis and thus using B̄ would be preferable in practice. In addition
B̄ is a key component to the algorithm discussed in Section 3. We begin by relating the
estimator in (5) to ordinary least squares (OLS), for the special case of δ = 0. Removing
the L1 penalty allows us to derive a closed form for the estimator.

Theorem 1 Assume n > p, δ = 0, and Q and γ are fixed values. Define Ḃ = (β̇1, . . . , β̇r)
to be the OLS estimates for the r response variables and B̄ = (β̄1, . . . , β̄r) be the solution
to (5) with tuning parameter γ. Given l ∈ Dq then β̄l has the closed form solution of

β̄l = β̇l +
2γ

(1 + 2γ)|Dq|
∑

c∈Dqc 6=l
(β̇c − β̇l). (6)

Theorem 1 provides some intuition about the MCEN estimator. As γ increases the
MCEN estimator approaches a weighted average of the OLS coefficients within a cluster.
In addition the results from Theorem 1 can be used to calculate the bias and variance of
B̄, which are needed for proving Theorem 2. The proof of Theorem 1 and the following
Theorems can be found in the appendix.

Theorem 2 Assume E(ε2ic) = 1 for all i ∈ {1, . . . , n} and c ∈ {1, . . . , r} and E(εicεik) = ρ
for c 6= k, where ρ ∈ (0, 1). Set δ = 0, then for a fixed n and p where n > p there exists a
positive γ such that

E
(∣∣∣∣B̄ −B∗∣∣∣∣2

2

)
< E

(∣∣∣∣∣∣Ḃ −B∗∣∣∣∣∣∣2
2

)
, (7)

where B∗ are the true regression coefficients, Ḃ is as defined in Theorem 1 and B̄ is as
defined in (5).

Similar to ridge regression Theorem 2 shows that for some positive γ the estimator
from (5) has a smaller mean squared error than OLS. Note, we are not assuming that for
l, s ∈ Dm that β∗l = β∗m and unless this condition holds the estimator B̄ is biased. Thus,
there exists a value of γ for which there is a favorable bias-variance trade off.

Next we examine the asymptotic performance of the estimator with the L1 penalty.
At times it will be easier to refer to a vectorized version of a matrix and for any matrix
A ∈ Ra×b, vec(A) ∈ Rab. Where vec(A) is the vector formed by stacking the columns of A.

6



A Cluster Elastic Net for Multivariate Regression

Define S as the set of active predictors. That is, S is a subset of {1, . . . , rp} where m ∈ S
if vec(B∗)m 6= 0. The subspace for the active predictors is

M(S) ≡ {θ ∈ Rpr|θj = 0 if j /∈ S}.

The parameter space will be separated using projections of vectors into orthogonal comple-
ments. We define a projection of a vector u into space M(S) as

uM(S) ≡ arg min
v∈M(S)

||u− v||2.

The orthogonal complement of space M(S) ⊆ Rp is

M⊥(S) ≡ {v ∈ Rpr|〈u,v〉 = 0 for all u ∈M(S)}.

The following set is central to our proof of consistency,

C ≡ {θ ∈ Rpr| ||θM⊥(S)||1 ≤ ||θM||1}.

For our proof of the consistency of B̄ we make the following six assumptions:

A1 Define Xj to be the jth column vector of X, then Xj ∈ Rp has the condition that
||Xj ||22
n ≤ 1.

A2 Define εc = (ε1c, . . . , εnc)
T ∈ Rn as the error vector for response c. The error vector

εc has a mean of zero and sub-Gaussian tails for all c ∈ {1, . . . , r}. That is, there
exists a constant σc such that for any a ∈ Rn, with ||a||2 = 1,

P (|〈εc,a〉| > t) ≤ 2exp

(
− t2

2σ2
c

)
.

Define σ = max
c
σc.

A3 Define X̃ = Ir ⊗ X ∈ Rrn×rp, where ⊗ is the standard Kronecker product. There
exists a positive constant κ such that

κ||θ||22 ≤ min
θ∈C

n−1||X̃θ||22.

A4 There exists a positive constant b́ such that maxq=1,...,Q max(l,k)∈Dq
||β∗l − βk||2 ≤ b́.

A5 Given l, k ∈ Dq, if β∗lj = 0 then β∗kj = 0, for all j ∈ {1, . . . , p} and q ∈ {1, . . . , Q}.

A6 Define ρmax(A) as the maximum eigenvalue of square matrix A and XSDq
as the matrix

of true predictors for cluster q, where the jth predictor is a true predictor if β∗lj 6= 0
for any l ∈ Dq. There exists a positive constant ρmax such that

max
q=1,...,q

ρmax

(
1

n
XT
SDq

XSDq

)
≤ ρmax.
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Assumption A1 is a standard assumption for lasso-type penalties and can be achieved
by appropriately scaling the covariates, which is commonly done in penalized regression.
Assumption A2 is a generalization of the sub-Gaussian error assumption for penalized re-
gression for a univariate response. Assumption A1 could be relaxed to allow for certain
unbounded covariates, but then A2 would be replaced by assuming the errors are normally
distributed (Candes and Tao, 2007; Meinshausen and Yu, 2009). Assumption A3 is a gen-
eralization of the common restricted eigenvalue assumption. Motivation for assumption A3
is discussed in great detail by Negahban et al. (2012) and a version for r = 1 has been used
in several works analyzing asymptotic behaviors of the lasso estimator (Bickel et al., 2009;
van de Geer and Bühlmann, 2009; Meinshausen and Yu, 2009). Assumptions A4 and A5
provide that the true coefficients are similar for responses in the same group. Assumption
A5 provides that they have the same sparsity structure. While, assumption A4 ensures
that the difference in the non-zero elements can be bounded by a finite constant, even if
the number of predictors increases with n. Assumption A6 assumes the maximum eigen-
values of the sample covariance of the true predictors are bounded, a common assumption
in high-dimensional work. Assumptions A4-A6 can be replaced by an assumption simi-
lar to assumption A2 from Witten et al. (2014) that if b, c ∈ Dm then β∗b = β∗c , for all
m ∈ {1, . . . , Q}, thus the bias of the MCEN estimator only comes from the L1 penalty.

Using assumptions A3 and A5 we can provide a closed form definition of the asymptotic
bias when δ = 0. This relationship will be central to our proof of consistency of B̄.

Corollary 3 Let B∗ be an s-sparse matrix, whose column vectors are all sparse and E[XTX/n] ∈
Rp×p to be a positive definite matrix. Assume Q and γ are fixed values. Define,

B́ =
(
β́1, . . . β́r

)
= arg min

β1,...,βr∈Rp
E

 1

2n

n∑
i=1

r∑
c=1

(yic − xTi βc)
2 +

γ

2n

Q∑
q=1

1

|Dq|
∑

l,m∈Dq

||X(βl − βm)||22

 ,

Assume l ∈ Dq then β́l has closed form solution,

β́l = β∗l +
2γ

(1 + 2γ)|Dq|)
∑

c∈Dq ,c 6=l
(β∗c − β∗l ).

Corollary 3 provides insight into what B̄ would converge to for a fixed γ. Knowing this
exact relationship is used in our consistency proof because it allows us to understand the
exact nature of the bias caused by the L2 penalty and for γ going to zero at a given rate
we can show that the bias is asymptotically negligible.

Theorem 4 Let B∗ be an s-sparse matrix, whose column vectors are all sparse and E[XTX/n] ∈
Rp×p to be a positive definite matrix. Given δ = 16σ

√
log(rp)
n , γ ≤ 5

4ρmaxb́
σ

√
log(rp)
n and as-

sumptions A1-A6 hold then there exist constants c1, c2, c3 and c4 such that

∣∣∣∣vec
(
B̄ −B∗

)∣∣∣∣
2
≤ σ

√
s log(rp)

n

(
c3

κ
+

c4

ρmax

)
, (8)

with probability at least 1− c1 exp(−c2nδ
2).
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The convergence rate derived is similar to rates found in lasso-type estimators with a uni-
variate response, with log(rp) replacing log(p) to accommodate for the multiple responses
(Bickel et al., 2009; Candes and Tao, 2007; Meinshausen and Yu, 2009; Negahban et al.,
2012). Thus, under the conditions of Theorem 4 if pr → ∞ then ||vec(B̄ − B∗)||2 =

Op

{√
s log(rp)

n

}
. Our results prove consistency of our estimator when the group structure

is known. Zhao and Shojaie (2016) propose the Grace test for an estimator with a similar
penalty for grouping predictors with a univariate response and establish asymptotic results
that allow for inference even if there is some uncertainty to the grouping structure.

3. Algorithm

The optimization in (3) is discontinuous because of the estimation of cluster assignments.
To simplify the optimization we propose an iterative algorithm that alternates between
estimating the groups with the regression coefficients fixed, and estimating the regression
coefficients with the groups fixed. If the clusters are known (5) then it is a convex optimiza-
tion problem that can be solved by a coordinate descent algorithm. Let R = 1

nX
TX, define

Rj as the jth column of R. The super script (−h) denotes the hth element of the vector has
been removed, and rjj is jth diagonal element of R. Define S(a, b) = sign(a) max(0, |a|− b).
To solve (5), we use a coordinate descent algorithm where each update is preformed by

β̄jk ←
S
[

1
ny

T
k Xj −

{
1 +

γ(|Dq |−1)
|Dq |

}
R

(−j)T
j β

(−j)
k + γ

|Dq |
∑

s∈Dq ,s 6=k RT
j βs, δ/2

]
rjj

(
1 + γ

|Dq |−1
|Dq |

) . (9)

Thus, (5) is solved by iterating through j ∈ {1, . . . , p} and k ∈ {1, . . . , r} until the solution
converges, similar to other coordinate descent solutions (Witten et al., 2014; Li and Li,
2010, 2008; Friedman et al., 2008). If B is known then the solution to (3) reduces to the
well studied k-means clustering problem. Recognizing this, we propose a two-step iterative
procedure to obtain a local minimum. To start the algorithm an initial estimate of D or
B is needed. We propose initializing the regression coefficients for the different responses
separately with the elastic net estimator of response c of

β̂
1

c = arg min
βc∈Rp

1

2n

n∑
i=1

(yic − xTi βc)
2 + δ||βc||1 + γ||βc||22, (10)

where B̂w =
(
β̂
w

1 , . . . , β̂
w

r

)
represents the wth iterative estimate of B∗. Given a fixed

(Q, γ, δ) we propose the following algorithm.

1. Begin with initial estimates, β̂
1

1, . . . , β̂
1

r .

2. For the wth step, where w > 1, repeat the steps below until the group estimates do
not change:

(a) Hold B̂w−1 fixed and minimize,(
D̂w

1 , . . . , D̂
w
Q

)
= minimize

D1,...,DQ


Q∑
q=1

1

|Dq|
∑

l,m∈Dq

∣∣∣∣∣∣X (β̂w−1

l − β̂
w−1

m

)∣∣∣∣∣∣2
2

 . (11)
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The above can be solved by performingK-means clustering on the r n−dimensional

vectors Xβ̂
w−1

1 , . . . , Xβ̂
w−1

r .

(b) Holding D̂w
1 , . . . , D̂

w
Q fixed the wth estimate of B∗ is

B̂w = arg min
B∈Rp×r

1

2n

n∑
i=1

r∑
c=1

(yic − xTi βc)
2 + δ||B||1

+
γ

2n

Q∑
q=1

1

|D̂w
q |

∑
l,m∈D̂w

q

||X(βl − βm)||22.
(12)

Note that for the groups known, instead of estimated, B̂w is equivalent to B̄.
Thus (12) can be solved using the coordinate descent solution from (9) using
B̂w−1 as the initial estimates for the coordinate descent algorithm.

Convergence is reached once the groups at the wth and (w − 1)th iteration are the
same. The optimization in (5) is separable with respect to D̂, and results in Q independent
optimization problems that can be solved in parallel. The algorithm for (5) can be solved
in solution path type form where we iterate across different values of δ in a similar fashion
as proposed in the glmnet algorithm (Friedman et al., 2008). If all of the initial elastic
net estimators are fully sparse, we set the solution to be a zero matrix and thus following
Friedman et al. (2008), initialize the algorithm by beginning the sequence with δmax at

δmax = 2 max
j,k

∣∣∣∣∑n
i=1 yikxij
n

∣∣∣∣ .
Our two-step approach is closely related to the CEN algorithm proposed by Witten et al.
(2014), who proposed a two-step algorithm where the two steps are solved by coordinate
descent and k-means algorithms. The major difference in our proposal is that we cluster
the responses rather than the predictors, and have the ability to solve the optimization in
parallel due to the nature of our regularization in a multiple response setting.

4. Binomial Model

4.1 Method

Next we extend the multivariate cluster elastic net to generalized linear models. We fo-
cus specifically on the binomial response case, but our discussion here will scale to other
exponential families. A fusion penalty has been proposed for merging groups from a multi-
nomial response (Price et al., 2017), but our method differs as it aims to leverage association
between multiple binomial responses. Kasap et al. (2016) proposed an ensemble method
that combines association rule mining and binomial logistic regression via a multiple linear
regression model. Our method differs from this by simultaneously estimating the clusters
of the response variables and estimating the regression coefficients. An example is n cus-
tomers, with p covariates, such as demographic and historic purchasing variables, and r
indicators of product purchasing statuses for each customer. You could run r independent
models, but this would not allow for modeling the relationship between the different prod-
ucts. Extending the multivariate cluster elastic net to multiple binomial responses would
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allow us to group products by purchase probabilities to identify and use relationships be-
tween products. This could also be used to create a probabilistic model for diseases based
on patient demographic and medical information.

For the linear model we ignore the intercept term as it can be removed by appropriately
scaling Y and X. This is not possible in logistic regression, therefore the model needs an
intercept term. We define ui = (1,xTi )T ∈ Rp+1, U = (uT1 , . . . ,un)T ∈ Rn×p+1, Uk ∈ Rn
as the kth column vector of U and R̃ = UTU . The true coefficients for response k is defined
as θ∗k ∈ Rp+1, Θ∗ = (θ∗1, . . . ,θ

∗
r) ∈ Rp+1×r, Θ∗−1 ∈ Rp×r is the matrix with the first row,

the row of intercept coefficients, of Θ∗ removed and θ∗(−1)k ∈ Rp is the kth column vector
of Θ∗−1. In this model yik is an independent draw from

Bin (1, π∗ik) , (13)

where

π∗ik =
exp(uTi θ

∗
k)

1 + exp(uTi θ
∗
k)
. (14)

The penalized negative log-likelihood function is
r∑

k=1

n∑
i=1

yiku
T
i θk − log

{
1 + exp(uTi θk)

}
+

γ

2n

q∑
q=1

1

|Dq|
∑

l,m∈Dq

||U(θl − θm)||22 + δ||Θ−1||1.
(15)

4.2 Algorithm

We propose solving (15) by approximating it with a penalized quadratic function similar to
the glmnet algorithm proposed by Friedman et al. (2008). Define,

g(πik) = log

(
πik

1− πik

)
= uTi θk. (16)

To implement this approximation we define

zik = g(yik) = g(πik) +
yik − πik

πik(1− πik)
, (17)

wik = πik(1− πik), (18)

−lAk(θk) =

n∑
i=1

wik(zik − uTi θk)
2. (19)

Note that zik is just the first order Taylor approximation of g(yik), and that wik is the condi-
tional variance of zik given ui. Define Zk = (z1k, . . . , znk)

T ∈ Rn and W = (w1k, . . . , wnk)
T ∈

Rn.
The MCEN estimator for the binomial model is

(Θ̂, D̂) = arg min
Θ∈Rp+1×r,D1,...,DQ

r∑
k=1

−lAk(θk) + δ||Θ−1||1

+
γ

2n

q∑
q=1

1

|Dq|
∑

l,m∈Dq

||U(θr − θs)||22.
(20)
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If the groups are known a priori the solution is

Θ̄ = arg min
Θ∈Rp+1×r

r∑
k=1

−lAk(θk) + δ||Θ(−1)||1

+
γ

2n

q∑
q=1

1

|Dq|
∑

l,m∈Dq

||U(θr − θs)||22.
(21)

For same length vectors a and b let a ◦ b represent the component wise multiplication of
the two vectors. To solve (21), we use a proximal coordinate descent algorithm where each
update is performed by

θ̄jk ←
S
{

(wk ◦ zk)
TUj −Mjk, I(j 6= 0)δ/2

}
rjjγ

|Dq |−1
n|Dq | + UT

j (wk ◦Uj)
, (22)

where

Mjk =

p∑
c=1,c 6=h

UT
j (wk ◦Uc)Θ̄cj +

γ(|Dq| − 1)

n|Dq|
R̃

(−j)T
j θ̄

(−j)
k

− γ

n|Dq|
∑

s∈Dq ,s 6=k
R̃T
j θ̄s.

The final solution is found by iterating through j ∈ {1, . . . , p} and k ∈ {1, . . . , r} until
convergence. Again this is a solution similar to the glmnet algorithm proposed by Friedman
et al. (2008).

To solve (20), we propose an algorithm that is similar in nature to the penalized least
squares solution proposed in Section 3. The main difference is that we solve (20) with
D1, . . . , DQ fixed using an iteratively reweighed least squares (IRWLS) solution with a
proximal coordinate descent algorithm. The initial estimator for each response is done
separately with

θ̂
1

k = arg min
θk∈Rp+1

−lAk(θk) + δ||θ(−1)k||1 + γ||θ(−1)k||22. (23)

The following is our proposed algorithm for estimating (20).

1. Begin with initial estimates of Θ̂1 =
(
θ̂

1

1, . . . , θ̂
1

r

)
∈ Rp+1×r.

2. For the wth step, where w > 1, repeat the steps below until the group estimates do
not change:

(a) Hold Θ̂w−1 fixed and minimize

(
D̂w

1 , . . . , D̂
w
Q

)
= minimize

D1,...,DQ

{
Q∑
q=1

1

|Dq|
∑

l,m∈Dq

∣∣∣∣∣
∣∣∣∣∣U (θw−1

l − θw−1
m

)∣∣∣∣∣
∣∣∣∣∣
2

2

}
. (24)

The above can be solved by performing K-means clustering.
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(2b) Holding D̂w
1 , . . . , D̂

w
Q fixed the wth update for the coefficients is

Θ̂w = arg min
Θ∈Rp+1×r

r∑
k=1

−lAk(θk) + δ||Θ−1||1

+
γ

2n

q∑
q=1

1

|D̂w
q |

∑
l,m∈D̂w

q

||U(θr − θs)||22.
(25)

Where (25) can be solved using the proximal coordinate descent solution pre-
sented in (22), using Θ̂w−1 as the initial estimates for the proximal coordinate
descent algorithm.

The triplet (Q, γ, δ) can be selected using K-Fold cross validation maximizing the val-
idation log-likelihood. Let Fk be the set of indices in the kth fold (k ∈ {1, . . . ,K}) and

π̂
(−Fk)
ic (Q, γ, δ) be the estimated probability for observation i and response c produced from

the model with Fk removed using Q, γ and δ. Specifically we select the triplet that maxi-
mizes

V (Q, δ, γ) =

K∑
v=1

r∑
c=1

∑
i∈Fv

[
yic log

{
π̂

(−Fk)
ic

}
+ (1− yik) log

{
1− π̂(−Fk)

ic

}]
. (26)

The quadratic approximation defined by (19), is a standard technique used to estimate
parameters in generalized linear models, making this framework and our algorithm scalable
to other exponential family settings (Faraway, 2006). Tuning parameter selection would
then be done by updating (26) with the appropriate likelihood.

5. Simulations

5.1 Gaussian Simulations

In this section we compare the performances of the MCEN estimator (3), the true MCEN
(TMCEN) (5), with clustering structure known a priori, the separate elastic net (SEN)
estimator (10), the joint elastic net (JEN) estimator

B̂JEN = arg min
B

1

2n

r∑
k=1

n∑
i=1

(yik − xTi βk)
2 + δ

p∑
j=1

√
β2
j1 + . . .+ β2

jr + γ

r∑
k=1

p∑
j=1

β2
jk, (27)

and the tree-guided group lasso (TGL) (Kim and Xing, 2012). Define Bj ∈ Rr as the jth
row vector of matrix B. Given a tree T with vertices V , where each node v ∈ V is associated
with group Gv define BGv

j as a vector of the jth predictors from responses in group Gv.
The TGL estimator is

B̂TGL = arg min
B

1

2

r∑
k=1

n∑
i=1

(yik − xTi βk)
2 + δ

p∑
j=1

∑
v∈V

wv||BGv
j ||2, (28)

where wv are weights that can vary with the nodes. See Kim and Xing (2012) for a detailed
presentation of TGL, including how the weights, wv, are derived.

13



Price and Sherwood

The JEN and SEN models are fit using the glmnet package in R (Friedman et al.,
2008). Tuning parameters for all methods are selected using 10-folds cross validation. For
the MCEN and TMCEN methods cluster sizes of 2, 3 and 4 are considered. We include the
TMCEN estimator for two reasons. First, in practice the TMCEN estimator could be used
if the practitioner has a predetermined clustering of the responses. Second, the TMCEN
is useful as a benchmark to compare with the MCEN estimator because if the grouping
of responses is useful TMCEN provides the optimal grouping.In all of the simulations the
sample size is 100 and the number of responses is 15. For the number of covariates we
considered 12, 100 and 300. Next we define how the covariates are generated and then will
present the generating process for the response variables.

Define Σ̃ ∈ R12×12 with entries σ̃ii = 1 and σ̃ij = ρ, for i 6= j. Let 0a,b ∈ Ra×b be
a matrix with all entries equal to zero. The covariates are generated by xi ∼ N(0p,Σx),
where Σx = Σ̃ for p = 12 and otherwise

Σx =

(
Σ̃ 0p−12,p−12

0p−12,p−12 Ip−12

)
,

with ρ = .7.

For a group of responses we define the grouped coefficients as bq(η, λ) = (ηq−λ,η∗q ,ηq+
λ,ηq + 2λ,η + 3λ) ∈ Rq×5, where λ is a constant and ηq ∈ Rq with each element equal to
η. In the case of p = 12 the matrix of coefficients is

B∗η,λ =


b4(η, λ) 04,5 04,5

04,5 b4(η, λ) 04,5

04,5 04,5 b4(η, λ)

 ,

otherwise

B∗η,λ =


b10(η, λ) 010,5 010,5

010,5 b10(η, λ) 010,5

010,5 010,5 b10(η, λ)
0p−30,5 0p−30,5 0p−30,5

 .

Define Σε ∈ R15×15 with σ(ε)ij being the entry for the ith row and jth column of Σε.
The generating process for the response is

yi = B∗η,λ
Txi + εi, (29)

where εi ∼ N(015,Σε), σ(ε)ii = 1 and σ(ε)ij = 0, for i not equal to j. In all simulations we
set the sample size to 100, perform 50 replications and with p set consider the following 9
different combinations for the true coefficient matrix,

(η, λ) ∈ {0.25, 0.5, 0.75, 1} × {0.02, 0.05, 0.10}.

Models are fit using the training data with a sample size of 100. The tree for TGL is
defined by performing complete-linkage hierarchical clustering on the responses in the train-
ing data. In addition we generate 1000 additional testing samples to assess the prediction
accuracies of the models. Let y∗ij represent the ith training sample for the jth response and
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ŷij represent a predicted value of that sample and response. The average squared prediction
error (ASPE) is defined as

1

15000

1000∑
i=1

15∑
j=1

(
y∗ij − ŷij

)2
. (30)

We also report the mean squared error (MSE) of the estimators where for an estimator B

MSE (B) =

15∑
j=1

∣∣∣∣βj − β∗j
∣∣∣∣2

2
. (31)

In addition we report the number of true variables selected (TV), out of a maximum of 60
for p = 12 and 150 otherwise, and the number of false variables selected (FV). Box plots of
the statistics for p = 300 and the different combinations of η and λ are reported in Figures
1–4. These results show that TMCEN generally outperforms all methods in terms of ASPE
and MSE. The one exception being when η = 1, particularly for larger values of λ, TGL
is competitive with or outperforms TMCEN. For larger values of λ we expect more bias in
the MCEN and TMCEN solutions and our simulation setting is favorable to TGL because
the sparsity structure is the same for responses in the same cluster. With regards to ASPE
and MSE, MCEN generally does better than TGL when η = .5 or .75. This suggests that
the MCEN approach is advantageous with several smaller signals, but the signals need to
be strong enough to correctly identify the clustering of the responses. The MCEN method
also outperforms JEN and SEN in terms of ASPE and MSE, except in the case of η = .25
where JEN outperforms MCEN. In this case the signal is too small resulting in the MCEN
method not finding the true clustering structure, and thus the grouping penalty will not
be optimal. The MCEN and TMCEN methods tend to pick a larger model than SEN,
but a smaller model than JEN. This results in the MCEN and TMCEN methods correctly
choosing more true predictors than SEN and fewer false positive predictors than JEN for
weaker signal cases. In terms of variable selection MCEN and TMCEN tend to do better
than TGL in terms of both true and false variable selection. For the stronger signal cases the
SEN approach does the best in terms of variable selection, tending to have the maximum
number of true covariates selected, while a smaller number of false covariates selected.
Similar conclusions can be derived for the plots of p = 12 and p = 100, which are available
in the supplementary material.

5.2 Binomial Simulations

In this setting we have a binomial response variable and compare performance of the MCEN
estimator (20) to SEN (23), for r = 15 and p = 12, 100 or 300. The SEN models were fit
using the glmnet package in R (Friedman et al., 2008). Similar to the previous section, the
covariates are generated by xi ∼ N(0p,Σx), where Σx has the same structure provided in
the Gaussian simulations with ρ = .9.

We use the same structure of B presented in Section 5.1, consider the same values of η
and λ and again perform 50 replications with a sample size of 100. Tuning parameters for
the models are estimated via 10-folds cross validation as explained in Section 4.2. For Q,
the number of groups, we consider values of 2, 3, and 4. For the SEN method each response
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Figure 1: MSE results for the Gaussian simulations with p equal to 300. Different box plots
correspond to different values of λ, while x-axis values are for different values of
η.
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Figure 2: ASPE results for the Gaussian simulations with p equal to 300. Different box
plots correspond to different values of λ, while x-axis values are for different
values of η.
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Figure 4: FV results for the Gaussian simulations with p equal to 300. Different box plots
correspond to different values of λ, while x-axis values are for different values of
η.
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c ∈ {1, . . . , r} will be associated with its own tuning parameters of γc and δc that will be
selected by maximizing the equivalent of (26) for only one response.

Define β∗k(η, λ) as the kth column vector of B∗η,λ. In all settings the kth response of the
ith observation, yik, is an independent draw from Bin(1, π∗ik) where

π∗ik =
exp {x′iβ

∗
k(η, λ)}

1 + exp {x′iβ
∗
k(η, λ)}

.

To evaluate the methods, 1000 validation observations are generated from the data
generating model and the KL divergence is measured for each of the 50 replications. The
KL divergence for a replication is defined as,

1

1000

1000∑
i=1

15∑
k=1

{
log

(
π̂ik
π∗ik

)
π̂ik + log

(
1− π̂ik
1− π∗ik

)
(1− π̂ik)

}
,

where π∗ik is the true probability and π̂k(xi, δ, γ) is the estimated probability for response k
for validation observation i.

Box plots are presented to compare the KL divergence of MCEN and SEN for the
different settings in the case of p = 300. The results of simulation in cases where p = 12
and 100 are available in the supplementary material. Figure 5 presents the KL divergence
results from the 50 replications for the different settings of η and λ. In terms of KL
divergence MCEN outperforms SEN in all settings.

A comparison of MSE of coefficient estimates between methods is shown using box
plots in Figure 6 and shows similar results to the cases of p = 12 and 100 available in
the supplementary material. The results show that based on MSE binomial MCEN either
outperforms or performs as well as binomial SEN. Figures 7 and 8 report the number of
true positive and false positive predictors selected by each method for each combination
of η and λ when p = 300, and MCEN outperforms SEN by generally selecting more true
positive predictors, while the number of false predictors selected varies by the signal size.
For smaller signals MCEN selects a smaller number of false predictors, but for larger signals
MCEN tends to select more false predictors.

6. Data Example

6.1 Genomics Data

Votavova et al. (2011) collected gene expression profiles, demographic and birth information
from 72 pregnant mothers. Using these data we modeled four response variables: placental
weight, newborn weight, cotinine level from the mothers’ peripheral blood sample and
cotinine level from the umbilical cord blood sample. Smoking status, mother’s age, mother’s
BMI, parity, gestational age and expression data for 24,526 gene probes from the mother’s
peripheral blood sample were used as covariates. Our analysis was limited to the 65 mothers
with complete data. From a clinical perspective an accurate model for birth weight would
be the primary interest as birth weight is associated with both short and long term negative
health outcomes (Turan et al., 2012). Including placental weight as an additional response
could potentially be helpful in the MCEN model because previous studies found placental
and newborn weight are correlated (Molteni et al., 1978; Panti et al., 2012; Thame et al.,
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Figure 5: Simulation results comparing binomial SEN and binomial MCEN for p=300 at
varying values of λ and η. Each box plot represents results for a different value
of η, given at the top of the plot.
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Figure 6: Simulation results comparing MSE of binomial SEN and binomial MCEN when
p=300 at varying values of λ and η. Each box plot represents results for a different
value of η, given at the top of the plot.
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Figure 7: Simulation results comparing TV results by binomial SEN and binomial MCEN
when p=300 at varying values of λ and η. Each box plot represents results for a
different value of η, given at the top of the plot.
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Figure 8: Simulation results comparing FV results by binomial SEN and binomial MCEN
when p=300 at varying values of λ and η. Each box plot represents results for a
different value of η, given at the top of the plot.
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2004), but placental weight is hard to use as a predictor since it is observed at birth. The
two measurements of cotinine levels are essentially measuring the same thing and are clearly
related to smoking status. Thus we can test if these variables were correctly clustered and
smoking status selected in the MCEN models.

The same methods used in Section 5.1 are used to fit the data, except we did not
implement the TMCEN method as we did not assume to know the true clustering structure
of the response variables. To evaluate the methods we randomly partitioned the data into
50 training and 15 testing samples. All four response variables are modeled on the log
scale. In the training data all variables are centered and scaled to have mean zero and a
standard deviation of one. We filter the gene expression data for each response by using
the top 25 genes in terms of absolute value of correlation with a given response. For the
joint modeling methods we use a union of the top 25 genes for each response. Models
are fit using the training data, then predictions are evaluated on the testing samples. We
compare the methods by looking at the ASPE, as defined in Section 5.1. For MCEN we
consider clusters of size 1, 2 and 3. The process is repeated 100 times and the ASPE for
all methods and responses are included in Figure 9. The MCEN method performs the best
for modeling birth weight, the most clinically interesting variable, and is about the same
as the other methods for modeling placenta weight. However, it does worse than the other
three methods for modeling cotinine level. In all 100 random partitions the MCEN method
correctly grouped the two cotinine responses together and selected smoking status as a
predictor for those two responses.

6.2 Concession Data

We analyzed 2000 concession transactions from a major event venue. Each transaction is
linked with the customer’s information from the venue’s loyalty program. These data are
proprietary and cannot be made publicly available. Whether a customer purchases a specific
item, 0 if they do and 1 if they do not, is the response and customer information from the
loyalty program, such as seat identification and amount spent on previous concession sales,
are treated as the covariates. The multiple response setting comes from there being multiple
items available for sale at the concession stands. In total there are 34 predictor variables,
stemming from purchase history from the venue, ticketing, and seating. The same customer
may appear in the data more than once, but any correlation structure is ignored. We analyze
two different sets of responses with the same covariates. The point-of-sale system records
purchases in two different item set groupings; menu group (7 items) and food group (12
items). The different groups provide different insights into customer habits as the items
form different groups.

Similar to the simulation section we compared SEN and MCEN, with tuning parameter
selected as described in Section 5.2. For Q, the number of groups, we consider values of
{1, 2, . . . , 7}. We divide 2000 transactions into training and validation sets. There is a time
component to our data, which we ignore, but use to evaluate the predictive performance
of our models. The first 1000 transactions are used to train our models, with 3-fold cross
validation used to select the tuning parameters for both MCEN and SEN. The predictive
performance of the models are then compared using the next 1000 transactions.

25



Price and Sherwood

●

●●

●

●●

●

●

●
●

●●
●
●
●
●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●
●
●
●

●
●

●

●●

●
● ●

●

●
●

●●●
●

●

●

●

●
●

●

●
●
●

●

Blood Cotinine Cord Cotinine

Newborn Weight Placental Weight

0

1

2

3

0

1

2

3

JEN MCEN SEN TGL JEN MCEN SEN TGL
Method

M
ea

n 
S

P
E

Figure 9: Mean SPE from 100 random partitions
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For comparison of the methods we present the ROC curves as a metric for classification
performance on the 1000 validation observations. Figure 10 presents the ROC curves and
shows that in most situations the binomial logistic MCEN was competitive with SEN. In
this analysis MCEN found 3 response clusters where the first cluster contained concession
food, the second cluster contained both alcoholic and non-alcoholic beverages, and the third
cluster contained all specialty item groups. For comparison we used k-means clustering on
the predicted values of the independent elastic net, and selected the number of clusters
based on the gap statistic. It selected 2 clusters. The first cluster had concession and both
beverage types, while the second cluster contained all specialty items.

The resulting ROC curves for the food group analysis are presented in Figure 11. Five
clusters were found by binomial logistic MCEN. The first cluster has popcorn, hamburger,
french fires, bottled water, appetizers, and a chicken basket. These correspond to low
selling non-alcoholic items. The second cluster consists of hot dogs, craft beer and misc
sides, which represents a group of higher selling items. The last three clusters are singleton
clusters consisting of non-alcoholic beverages, domestic beer, and liquor. These clusters
represent high selling items with different demographics important in each. We also ran
k-means clustering on the predicted values from the EN results, and found no distinct
clustering using the gap statistic to select the number of clusters. Thus the MCEN method
clusters all cold beverages together, while using k-means on fitted values from SEN does not
find this clustering. The results of both analyses show that SEN outperforms MCEN using
ROC curves. This could be due to the coarseness of MCEN framework, which assumes a
similar sparsity structure for all responses. The grouping insights given from the resulting
MCEN clusters provide a starting point for investigating each cluster individually with its
own MCEN models. This procedure would allow for different levels of sparsity for different
clusters. Flexibility such as this should be addressed in extensions of MCEN.

7. Discussion

We present a method for simultaneous estimation of regression coefficients and response
clustering for a multivariate response model. The method is introduced for the case of
continuous and binary responses. Future work could include extending the model to other
GLM settings. Currently, our model imposes the same amount of sparsity on all response
models, but this could be relaxed by allowing a sparsity tuning parameter for each individual
response or each response group. The mcen R package that implements the methods outlined
in this article is available on CRAN (Sherwood and Price, 2018).

Define `(B) as a likelihood or convex objective function, P (β, Dq) as a distance function

between all elements where
∑Q

q=1 P (B,Dq) is an optimization problem to separate the r
p-dimensional coefficient vectors into Q clusters and pδ(B) as a penalty function with tuning
parameter δ. Then the MCEN method could be generalized to a larger class of estimators
where

(B̂, D̂) = arg min
B,D1,...,DQ

`(B) + γ

Q∑
q=1

P (B,Dq) + pδ(B). (32)

One example would be to define P (B,Dq) as an L1 norm to penalize the difference between
fitted values, similar to a fused lasso penalty (Tibshirani et al., 2005; Tibshirani, 2014). An
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Figure 10: ROC curves for the 1000 validation observations for the menu group item re-
sponses. The black lines represent the ROC for MCEN and red for SEN.
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Figure 11: ROC curves for the 1000 validation observations for the food group item re-
sponses comparing EN and MCEN. The black lines represent the ROC for
MCEN and red for SEN.
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advantage of the estimator proposed in this paper is that by defining P (B,Dq) as the L2

norm squared, when the coefficients are fixed, the minimization problem is equivalent to
a k-means problem. However, different definitions of P (B,Dq) may not have well studied
clustering algorithms to solve the optimization to define the groupings. One challenge of
extending this work would be finding functions P (B,Dq) that become well defined clustering
problems when B is known or proposing new algorithms for solving P (B,Dq). Otherwise
the two-step algorithm proposed in this paper would not work.

The asymptotics in this paper are limited to consistency of the estimator when groups
are known. Zhao and Shojaie (2016) presented an inference framework for a similar esti-
mator that uses a fusion penalty and demonstrated that inference is still possible even if
the structure of the graph that determines the fusion penalty is not correctly specified. Ex-
tending the results provided here to include inference would be of great use to practitioners
and a good topic for future research.
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Appendix

A.1. Proof of Theorem 1

Proof Define

L(B) =
1

2n

n∑
i=1

r∑
c=1

(yic − xTi βc)
2 +

γ

2n

Q∑
q=1

1

|Dq|
∑

l,m∈Dq

||X(βl − βm)||22.

For l ∈ Dq

∂

∂βl
L(B) = − 1

n

(
XTY −XTXβl

)
+XTX

2γ

n|Dq|
∑

c∈Dq , c 6=l
βl − βc.

Thus,

β̄l

{
1 +

2γ(|Dq| − 1)

|Dq|

}
− β̇l −

2γ

|Dq|
∑

c∈Dq , c 6=l
β̄c = 0. (33)

Therefore for l,m ∈ Dq

β̄l

{
1 +

2γ(|Dq| − 1)

|Dq|

}
− β̇l −

2γ

|Dq|
∑

c∈Dq , c 6=l
β̄c

− β̄m

{
1 +

2γ(|Dq| − 1)

|Dq|

}
− β̇m −

2γ

|Dq|
∑

c∈Dq , c 6=m
β̄c

=
(
β̄l − β̄m

)
(1 + 2γ)− β̇l + β̇m = 0.
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Therefore for l,m ∈ Dq and l 6= m

β̄m = β̄l +
1

1 + 2γ

(
β̇m − β̇l

)
. (34)

Combining (33) and (34) gives

β̄l

{
1 +

2γ(|Dq| − 1)

|Dq|

}
= β̇l +

2γ

|Dq|
∑

c∈Dq , c 6=l
β̄l +

1

1 + 2γ

(
β̇c − β̇l

)
= β̇l +

2γ(|Dq| − 1)

|Dq|
β̄l +

2γ

(1 + 2γ)|Dq|
∑

c∈Dq , c 6=l

(
β̇c − β̇l

)
,

which completes the proof.

A.2. Proof of Theorem 2

Proof It is assumed that E(ε2ic) = 1 and for c 6= k that E(εicεik) = ρ. Thus, note that for
any v ∈ {1, . . . , r}

Var
(
β̄v
)

= Var

 |Dq|+ 2γ

(1 + 2γ)|Dq|
β̇v +

2γ

(1 + 2γ)|Dq|
∑

s∈Dq ,s 6=v
β̇s


= (XTX)−1

{
|Dq|

(
|Dq|+ 4γ + 4γ2

)
(1 + 2γ)2|Dq|2

+ 4ργ(|Dq| − 1)
|Dq|+ 2γ|Dq| − 2γ

(1 + 2γ)2|Dq|2

}
.

Define bv =
∑

s∈Dq ,s 6=v (β∗s − β∗v). The squared bias term is then

E
[{
E
(
β̄v
)
− β∗v

}′ {
E
(
β̄v
)
− β∗v

}]
= E

[{
β∗v +

2γ

(1 + 2γ)|Dq|
bv − β∗v

}′{
β∗v +

2γ

(1 + 2γ)|Dq|
bv − β∗v

}]
=

4γ2

(1 + 2γ)2|Dq|2
||bv||22.

Let ω = Trace
{(
XTX

)−1
}

then MSE of β̄v will be smaller than MSE of β̇v if

ω

{
|Dq|

(
|Dq|+ 4γ + 4γ2

)
(1 + 2γ)2|Dq|2

+ 4ργ(|Dq| − 1)
|Dq|+ 2γ|Dq| − 2γ

(1 + 2γ)2|Dq|2

}

+
4γ2

(1 + 2γ)2|Dq|2
||bv||22

< ω,
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which is equivalent to

γ||bv||22 < ω

{
|Dq|(|Dq| − 1) + γ|Dq|(|Dq| − 1)

−ρ
{

(|Dq| − 1)|Dq|+ 2γ(|Dq| − 1)2
}}

.

Note that, ω|Dq|(|Dq|−1)(1−ρ) > 0 and thus if ||bv||22 ≤ ω(|Dq|−1) {|Dq| − 2ρ(|Dq| − 1)}
then the MSE of β̄v is smaller than the MSE of β̇v for any γ > 0. Otherwise, the MSE of β̄v
will be smaller for any γ ∈

(
0,

ω|Dq |(|Dq |−1)(1−ρ)

||bv ||22−ω(|Dq |−1){|Dq |−2ρ(|Dq |−1)}

)
. Thus for any v ∈ {1, . . . , r}

then any γ > 0 or any γ sufficiently small will result in β̄v having a smaller MSE than β̇v.
The proof is complete because we can then find a γ sufficiently small that will result in β̄v
having a smaller MSE than β̇v for all v ∈ {1, . . . , r}.

A.3. Proof of Corollary 3

The proof of Corollary 3 is similar to the proof of Theorem 1 and only changes with respect
to the expected loss rather than the observed loss.

A.4. Theorem 4

The proof of Theorem 4 will include some new definitions and an alternative formulation
of (5). In our proof we use a vectorized version of many of the matrices. Let Ỹ = vec(Y ),

β̃ = vec(B), β̃
′

= vec(B́) and Ẽ = vec(E). Define Am,s ∈ Rr, where (m, s) ∈ Dq,

with
√

1
|Dq | in the mth element, −

√
1
|Dq | in the sth element and 0 in all other elements,

ADq ∈ R|Dq |(|Dq |−1)×r as the matrix with row vectors Am,s where (m, s) ∈ Dq, and AD ≡(
ATD1

, . . . , ATDQ

)T
∈ R

∑Q
q=1 |Dq |(|Dq |−1)×r.

Then the objective function from (5) can be restated as

1

2n

[
β̃
T
{
X̃T X̃ + γ(AD ⊗X)T (AD ⊗X)

}
β̃ − 2ỸT X̃β̃

]
+ δ||β̃||1

= `(β̃) + δg(β̃).

In addition define, ˜̀(∆, β̃) ≡ `(β̃ + ∆)− `(β̃)− 〈∇`(β̃,∆)〉.
First, we will present some lemmas that are helpful in proving Theorem 4. A general

outline of the proof for Theorem 4 is by using the triangle inequality we have ||vec(B̄ −
B∗)||2 ≤ ||vec(B̄ − B́)||2 + ||β̃′ − β̃

∗||2. Completing the proof is done by establishing upper

bounds for ||vec(B̄ − B́)||2 and ||β̃′ − β̃
∗||2. Much of the proof will require working with β̃

′

and we introduce the following notation to easily relate β̃
′

and β̃
∗
. For response l in group

q define Hl = 1√
|Dq |

∑
c∈Dq ,c 6=l Ac,l where Hl ∈ Rr and H = (H1, . . . ,Hr)

T ∈ Rr×r. Then

we have

β̃
′
=

{(
Ir +

2γ

2γ + 1
H

)
⊗ Ip

}
β̃
∗
.
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For response l is in group q define Ul = 1
|Dq |

∑
k∈Dq

(β∗k − β∗l ) where Ul ∈ Rp and U =

(U1, . . . ,Ur) with U ∈ Rp×r and Ũ = vec(U) ∈ Rpr, then∥∥∥vec
(
B́ −B∗

)∥∥∥
2

=
2γ

1 + 2γ

∥∥∥(H ⊗ Ip)β̃
∗
∥∥∥

2
=

2γ

1 + 2γ

∥∥∥Ũ∥∥∥
2
.

Lemma 5 Under assumption A3

˜̀(∆, β̃
′
) ≥ κ||∆||22 for all ∆ ∈ C.

Proof From the definition of ˜̀(∆, β̃), assumption A3 and that ∆ ∈ C it follows that

˜̀(∆, β̃
′
) =

1

2n
∆T

{
X̃T X̃ + γ(AD ⊗X)T (AD ⊗X)

}
∆

≥ 1

2n
∆T X̃T X̃∆

≥ κ

2
||∆||22.

For any vector a = (a1, . . . , apr)
T ∈ Rpr we define the ||a||∞ as the L∞ norm of a, that

is ||a||∞ = max
i
|ai|.

Lemma 6 For B̄ from (5), under assumptions A1-A4 with δ ≥ 2
∣∣∣∣∣∣∇`(β̃′)∣∣∣∣∣∣

∞
then there

exists a positive constant c3 such that∣∣∣∣∣∣vec(B̄ − B́)
∣∣∣∣∣∣2

2
≤ 9

δ2

κ2
s.

Proof Define the set Ś = {j ∈ {1, . . . , rp}, β̃′j 6= 0}. By assumption A5 and Corollary

3 Ś = S, that is β̃
′
j = 0 if and only if β̃

∗
j = 0. Define ψ(M) ≡ sup

u∈M\{0}

||u||1
||u||2 . Note that

ψ{M(S)} =
√
s. Also, note that the dual norm of the L1 norm is the L∞ norm. Results

follow from Theorem 1 of Negahban et al. (2012) and Lemma 5.

Lemma 7 Under the conditions of Theorem 4 there exists positive c1, c2 and c3 such that

∣∣∣∣∣∣vec
(
B̄ − B́

)∣∣∣∣∣∣
2
≤ 48σ

κ

√
s log(rp)

n
,

with probability at least 1− c1exp(−c2nδ
2).

Proof If we can find positive constants c1 and c2 such that with probability at least

1− c1exp(−c2nδ
2) that δ ≥ 2

∣∣∣∣∣∣∇`(β̃′)∣∣∣∣∣∣
∞

then proof will be complete by Lemma 6 and by
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the condition that δ = 16σ

√
log(rp)
n . Note that

2
∣∣∣∣∣∣∇`(β̃′)∣∣∣∣∣∣

∞
= 2

∣∣∣∣∣∣∣∣ 1n [{X̃T X̃ + γ(AD ⊗X)T (AD ⊗X)
}
β̃
′ − X̃T Ỹ

]∣∣∣∣∣∣∣∣
∞

= 2

∣∣∣∣∣∣∣∣ 1n
[{
X̃T X̃ + γ(AD ⊗X)T (AD ⊗X)

}{(
Ir +

2γ

2γ + 1
H

)
⊗ Ip

}
β̃
∗ − X̃T

(
X̃β̃

∗
+ Ẽ

)]∣∣∣∣∣∣∣∣
∞

≤ 2

∥∥∥∥ 2γ

n(1 + 2γ)
X̃T X̃Ũ

∥∥∥∥
∞

+ 2
∥∥∥γ
n

(AD ⊗X)T (AD ⊗X)β̃
∗
∥∥∥
∞

+2

∥∥∥∥ 2γ2

n(1 + 2γ)
(AD ⊗X)T (AD ⊗X)Ũ

∥∥∥∥
∞

+ 2

∥∥∥∥ 1

n
X̃T Ẽ

∥∥∥∥
∞
.

Next, we will establish upper bounds for the first three terms. Define I(l ∈ Dq) to be 1 if
l ∈ Dq and zero otherwise. Using the definition of Ũ and assumptions A4-A6,

2

∥∥∥∥ 2γ

n(1 + 2γ)
X̃T X̃Ũ

∥∥∥∥
∞

=
4γ

1 + 2γ
max

l∈{1,...,r}

∥∥∥∥∥∥ 1

n
XTX

Q∑
q=1

I(l ∈ Dq)
∑
k∈Dq

1

|Dq|
(β∗k − β∗l )

∥∥∥∥∥∥
∞

≤ 4γ

1 + 2γ
ρmax max

l∈{1,...,r}

∥∥∥∥∥∥
Q∑
q=1

I(l ∈ Dq)
∑
k∈Dq

1

|Dq|
(β∗k − β∗l )

∥∥∥∥∥∥
2

≤ 4γ

1 + 2γ
ρmaxb́.

Using assumptions A4-A6,

2
∥∥∥γ
n

(AD ⊗X)T (AD ⊗X)β̃
∗
∥∥∥
∞

= 2γ max
l∈{1,...,r}

∥∥∥∥∥∥ 1

n
XTX

∑
k,l∈Dq ,k 6=l

1

|Dq|
(β∗k − β∗l )

∥∥∥∥∥∥
∞

≤ 2γρmax max
l∈{1,...,r}

∥∥∥∥∥∥
∑
k,l∈Dq

1

|Dq|
(β∗k − β∗l )

∥∥∥∥∥∥
2

≤ 2γρmaxb́.

Note that for a ∈ Dq and b ∈ Dq that

Ua −Ub =
1

|Dq|

∑
l∈Dq

β∗l − β∗a −
∑
l∈Dq

β∗l − β∗b


=

1

|Dq|
∑
l∈Dq

β∗b − β∗a = β∗b − β∗a.
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Therefore

2

∥∥∥∥ 2γ2

n(1 + 2γ)
(AD ⊗X)T (AD ⊗X)Ũ

∥∥∥∥
∞

=
4γ2

1 + 2γ
max

l∈{1,...,r}

∥∥∥∥∥∥ 1

n
XTX

Q∑
q=1

I(l ∈ Dq)
∑
k∈Dq

1

|Dq|
(Uk −Ul)

∥∥∥∥∥∥
∞

=
4γ2

1 + 2γ
max

l∈{1,...,r}
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n
XTX

Q∑
q=1

I(l ∈ Dq)
∑
k∈Dq

1

|Dq|
β∗l − β∗k

∥∥∥∥∥∥
∞

≤ 4γ2

1 + 2γ
ρmax max

l∈{1,...,r}

∥∥∥∥∥∥
Q∑
q=1

I(l ∈ Dq)
∑
k∈Dq

1

|Dq|
β∗l − β∗k

∥∥∥∥∥∥
2

≤ 4γ2

1 + 2γ
ρmaxb́

≤ 2γρmaxb́.

Under assumptions A1 and A2 it follows that

P

(∣∣∣∣∣∣∣∣ 1nX̃T Ẽ

∣∣∣∣∣∣∣∣
∞
> t

)
≤ 2 exp

{
−nt2

2σ2
+ log(rp)

}
. (35)

Thus,

P
{
δ ≥ 2

∣∣∣∣∣∣∇`(β̃′)∣∣∣∣∣∣
∞

}
≥ P

{
δ ≥ 2

∥∥∥∥ 1

n
X̃T Ẽ

∥∥∥∥
∞

+ ρmaxb́

(
4γ

1 + 2γ
+ 2γ + 2γ

)}
≥ P

(
δ ≥ 2

∥∥∥∥ 1

n
X̃T Ẽ

∥∥∥∥
∞

+ 8γρmaxb́

)
≥ P

(
3

16
δ ≥

∥∥∥∥ 1

n
X̃T Ẽ
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∞

)
≥ 1− 2 exp

{
−9nδ2

1622σ2
+ log(rp)

}
= 1− 2 exp

{
−7

2
log(rp)

}
.

Set c1 = 2 and c2 = 7
2 and the proof is complete.

Proof of Theorem 4

Proof Applying the triangle inequality we have∥∥∥vec
(
β̂ − β∗

)∥∥∥
2
≤
∥∥∥vec

(
β̂ − β́

)∥∥∥
2

+
∥∥∥β̃′ − β̃

∗
∥∥∥

2
. (36)

For the second term using the upper bound for γ stated in the conditions for Theorem 4
and assumptions A4 and A5 it follows that∥∥∥β̃′ − β̃

∗
∥∥∥

2
=

2γ

1 + 2γ

∥∥∥Ũ∥∥∥
2

≤ 2γ
√
sb́ ≤ 5σ

2ρmax

√
s log(rp)

n
.
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Combining the above inequality with (36) and Lemma 7 it follows that there exists positive
constants c1 and c2 such that

∣∣∣∣vec
(
B̄ −B∗

)∣∣∣∣
2
≤ 48σ

κ

√
s log(rp)

n
+

5σ

2ρmax

√
s log(rp)

n
,

with probability at least 1−c1exp(−c2nδ
2). To complete the proof set c3 = 48 and c4 = 5

2 .

References

Peter J. Bickel, Ya’acov Ritov, and Alexandre B. Tsybakov. Simultaneous analysis of lasso
and dantzig selector. Ann. Statist., 37(4):1705–1732, 2009.

Leo Breiman and Jerome H. Friedman. Predicting multivariate responses in multiple linear
regression. J. R. Statist. Soc. B, 59(1):3–54, 1997.
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