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Abstract

AUDEEP is a Python toolkit for deep unsupervised representation learning from acoustic
data. It is based on a recurrent sequence to sequence autoencoder approach which can
learn representations of time series data by taking into account their temporal dynamics.
We provide an extensive command line interface in addition to a Python API for users and
developers, both of which are comprehensively documented and publicly available at https:
//github.com/auDeep/auDeep. Experimental results indicate that AUDEEP features are
competitive with state-of-the art audio classification.

Keywords: deep feature learning, sequence to sequence learning, recurrent neural net-
works, autoencoders, audio processing

1. Introduction

Machine learning approaches for audio processing commonly operate on a variety of hand-
crafted features computed from raw audio signals. Considerable effort has been put into
developing high-performing feature sets for specific tasks. Recently, representation learning,
in particular deep representation learning, has received significant attention as a highly
effective alternative to using such conventional feature sets (Bengio et al., 2013; Schmitt
and Schuller, 2017). These techniques have been shown to be superior to feature engineering
for a plethora of tasks, including speech recognition and music transcription (Bengio et al.,
2013; Amiriparian et al., 2016). Sequential data such as audio, however, poses challenges
for deep neural networks, as they typically require inputs of fixed dimensionality. In this
regard, sequence to sequence learning with recurrent neural networks (RNNs) has been
proposed in machine translation, for learning fixed-length representations of variable-length
sequences (Sutskever et al., 2014).
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Figure 1: Ilustration of the feature learning procedure with AUDEEP. A detailed descrip-
tion of the procedure is given in Section 3.1.

In this paper, we present AUDEEP, a first of its kind TENSORFLOW based Python toolkit
for deep unsupervised representation learning from acoustic data. This is achieved using a
recurrent sequence to sequence autoencoder approach. AUDEEP can be used both through
its Python API as well as through an extensive command line interface.

2. Recurrent Sequence to Sequence Autoencoders

Our implementation of sequence to sequence autoencoders extends the RNN encoder-
decoder model proposed by Sutskever et al. (2014). The input sequence is fed to a multi-
layered encoder RNN which collects key information about the input sequence in its hidden
state. The final hidden state of the encoder RNN is then passed through a fully connected
layer, the output of which is used to initialise the hidden state of the multilayered decoder
RNN. The function of the decoder RNN is to reconstruct the input sequence based on the
information contained in the initial hidden state. The network is trained to minimise the
root mean squared error between the input sequence and the reconstruction. In order to ac-
celerate model convergence, the expected decoder output from the previous step is fed back
as the input into the decoder RNN (Sutskever et al., 2014). Once training is complete, the
activations of the fully connected layer are used as the representation of an input sequence.

For the purposes of representation learning from acoustic data, we train sequence to
sequence autoencoders built of long short-term memory cells or gated recurrent units on
spectrograms, which are viewed as time dependent sequences of frequency vectors. Two of
the key strengths of this approach are (i) fully unsupervised training, and (ii) the ability to
account for the temporal dynamics of sequences.

3. System Overview

AUDEEP contains at its core a high-performing implementation of sequence to sequence
autoencoders which is not specifically constrained to acoustic data. Based on this domain-
independent implementation, we provide extensive additional functionality for representa-
tion learning from audio.
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3.1 Practical Usage

An illustration of the feature learning procedure with AUDEEP is shown in Figure 1. First,
spectrograms are extracted from raw audio files (cf. Figure 1a). Then, a sequence to se-
quence autoencoder, as previously described, is trained on the extracted spectrograms
(cf. Figure 1b), and the learned representation of each instance is extracted as its feature
vector (cf. Figure 1c). If instance labels are available, a classifier can then be trained and
evaluated on the extracted features (cf.Figure 1d). Finally, the extracted features, and
any associated metadata, can be exported to CSV or ARFF for further processing, such as
classification with alternate algorithms (cf. Figure le).

While our system is capable of learning representations of the extracted spectrograms
entirely without additional metadata, we provide the possibility to parse instance labels,
data set partitions, or a cross-validation setup from a variety of common formats. If avail-
able, metadata is stored alongside the extracted spectrograms, and can be used, e.g. for
evaluation of a classifier on the learned representations. To demonstrate the strength of the
learned representations two conventional classifiers are built into the toolkit: a Multilayer
Perceptron (MLP) with softmax output, and an interface to LibLINEAR (Fan et al., 2008).

3.2 Design

AUDEEP provides a highly modularised Python library for deep unsupervised representation
learning from audio. The core sequence to sequence autoencoder models are implemented
using TENSORFLOW. This implementation substantially extends the built-in sequence to
sequence learning capabilities of TENSORFLOW; for example, the RNNs allow probabilistic
feedback and are also reusable, self-contained modules. Furthermore, diversely structured
data sets are handled by the system in a unified way without requiring time-consuming
manual adjustments. The topology and parameters of autoencoders are stored as TENSOR-
Frow checkpoints which can be reused in other applications. This enables users, e.g. to
pretrain the encoder RNN with AUDEEP and subsequently apply custom retraining. Data
sets are represented in binary format using the platform-independent NetCDF standard,
but we provide tools for converting data between NetCDF and CSV/ARFF.

Users are given fine-grained control over the representation learning process through
the Python API and the command line interface. The system is platform-independent,
and has been tested on Windows and various Linux distributions on desktop PCs and in a
cluster environment. AUDEEP is capable of running on CPU only, and GPU-acceleration is
leveraged automatically when available.

4. Experiments

We demonstrate the capabilities of AUDEEP on three audio classification tasks. First, we
perform acoustic scene classification on the development partition of the TUT Acoustic
Scenes 2017 (TUT AS 2017) data set (Mesaros et al., 2017). Furthermore, we conduct envi-
ronmental sound classification (ESC) on the ESC-10 and ESC-50 data sets (Piczak, 2015b),
and, finally, we perform music genre classification on the GTZAN data set (Tzanetakis and
Cook, 2002).
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Figure 2: Comparison of AUDEEP to baselines and state-of-the-art on four data sets.

We train multiple autoencoder configurations using AUDEEP, and perform feature-level
fusion of the learned representations. The fused representations are evaluated using the
built-in MLP with the same cross-validation setup as used for the baseline systems on
the TUT AS 2017, ESC-10, and ESC-50 data sets. For GTZAN, no predefined cross-
validation setup is available, therefore we randomly generate five stratified cross-validation
folds (cf. Figure 2, AUDEEP). Due to space limitations, we refrain from detailing our full ex-
perimental setup. However, to ensure reproducibility, we distribute the codes and parameter
choices used for these experiments with AUDEEP.

Finally, we compare the performance of AUDEEP with baseline and state-of-the-art
approaches for the different datasets (cf.Figure 2, identified by authors’ names). We
observe that AUDEEP either matches or outperforms a convolutional neural network ap-
proach (Piczak, 2015a) and a representation learning approach for ESC-10 and ESC-50,
and a sparse coding approach for GTZAN (Henaff et al., 2011). The SoundNet (Aytar
et al., 2016) and L3 (Arandjelovic and Zisserman, 2017) systems did achieve stronger per-
formances on ESC-10 and ESC-50. However, this is not a straightforward comparison, as
AUDEEP was trained using ESC-10 and ESC-50 data only whilst L3 and SoundNet were
pre-trained on external corpora of 500000 and 24 million videos, respectively. For further
details and comparisons with state-of-the-art for the TUT Acoustic Scenes 2017 corpus, the
reader is referred to Amiriparian et al. (2017).

5. Conclusions

AUDEEP is an easy-to-use, open-source toolkit for deep unsupervised representation learning
from audio with competitive performance on various audio classification tasks. Our long-
term goal is to grow AUDEEP into a general-purpose deep audio toolkit, by integrating other
deep representation learning algorithms such as conditional variational sequence to sequence
autoencoders or deep convolutional generative adversarial networks, and by extending the
feature learning functionality to regression tasks on continuously labelled data.
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